Science.gov

Sample records for actinides thorium uranium

  1. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)

  2. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    SciTech Connect

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.; Lukens, Wayne W.; Arnold, John

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  3. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  4. Identification of hexanuclear Actinide(IV) carboxylates with Thorium, Uranium and Neptunium by EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Hennig, Christoph; Takao, Shinobu; Takao, Koichiro; Weiss, Stephan; Kraus, Werner; Emmerling, Franziska; Meyer, Michel; Scheinost, Andreas C.

    2013-04-01

    Hydrated actinide(IV) ions undergo hydrolysis and further polymerization and precipitation with increasing pH. The resulting amorphous and partly crystalline oxydydroxides AnOn(OH)4-2n·xH2O can usually be observed as colloids above the An(IV) solubility limit. The aging process of such colloids results in crystalline AnO2. The presence of carboxylates in the solution prevents the occurrence of such colloids by formation of polynuclear complexes through a competing reaction between hydrolysis and ligation. The majority of recently described carboxylates reveals a hexanuclear core of [An6(μ3-O)4(μ3-OH)4]12+ terminated by 12 carboxylate ligands. We found that the An(IV) carboxylate solution species remain often preserved in crystalline state. The An(IV) carboxylates show An-An distances which are ~ 0.03 Å shorter than the An-An distances in AnO2 like colloids. The difference in the distances could be used to identify such species in solution.

  5. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  6. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  7. SEPARATION OF URANIUM FROM THORIUM

    DOEpatents

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  8. Uranium thorium hydride nuclear fuel

    SciTech Connect

    Simnad, M.T.

    1985-01-15

    A nuclear fuel includes uranium dispersed within a thorium hydride matrix. The uranium may be in the form of particles including fissile and non-fissile isotopes. Various hydrogen to thorium ratios may be included in the matrix. The matrix with the fissile dispersion may be used as a complete fuel for a metal hydride reactor or may be combined with other fuels.

  9. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  10. PRODUCTION OF URANIUM AND THORIUM COMPOUNDS

    DOEpatents

    Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

    1955-12-27

    Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

  11. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOEpatents

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  12. SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM

    DOEpatents

    Musgrave, W.K.R.

    1959-06-30

    This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

  13. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor

    NASA Astrophysics Data System (ADS)

    Frybort, Jan

    2014-11-01

    Thorium fuel is considered as a viable alternative to the uranium fuel used in the current generation of nuclear power plants. Switch from uranium to thorium means a complete change of composition of the spent nuclear fuel produced as a result of the fuel depletion during operation of a reactor. If the Th-U fuel cycle is implemented, production of minor actinides in the spent fuel is negligible. This is favourable for the spent fuel disposal. On the other hand, thorium fuel utilisation is connected with production of 232U, which decays via several alpha decays into a strong gamma emitter 208Tl. Presence of this nuclide might complicate manipulations with the irradiated thorium fuel. Monte-Carlo computation code MCNPX can be used to simulate thorium fuel depletion in a VVER-1000 reactor. The calculated actinide composition will be analysed and dose rate from produced gamma radiation will be calculated. The results will be compared to the reference uranium fuel. Dependence of the dose rate on time of decay after the end of irradiation in the reactor will be analysed. This study will compare the radiological hazard of the spent thorium and uranium fuel handling.

  14. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  15. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    NASA Astrophysics Data System (ADS)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-01

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required 233U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium & uranium confinement in PWR.

  16. A method for the rapid radiochemical analysis of uranium and thorium isotopes in impure carbonates.

    PubMed

    Elyahyaoui, A; Zarki, R; Chiadli, A

    2003-01-01

    A simple method combining solvent extraction and electrodeposition procedures is described for the determination of the isotopic composition and content of uranium and thorium in travertine samples. The actinide elements are extracted with diethyl ether from a calcium nitrate solution. The isolation of the elements and the alpha source preparation are performed in two steps after the sample digestion. The acid leaching of samples is performed using both partial and total dissolution methods. High recoveries of both uranium and thorium and good alpha-spectra are obtained with both partial and total dissolution methods. PMID:12485673

  17. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium.

    PubMed

    Marçalo, Joaquim; Gibson, John K

    2009-11-12

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. PMID:19725530

  18. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    NASA Astrophysics Data System (ADS)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  19. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    SciTech Connect

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  20. Smart thorium and uranium determination exploiting renewable solid-phase extraction applied to environmental samples in a wide concentration range.

    PubMed

    Avivar, Jessica; Ferrer, Laura; Casas, Montserrat; Cerdà, Víctor

    2011-07-01

    A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV-MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0-1,200 and 0-2,000 μg L(-1) Th and U, respectively). Limits of detection reached are 5.9 ηg L(-1) of uranium and 60 ηg L(-1) of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method. PMID:21573729

  1. Selective recovery of uranium and thorium ions from dilute aqueous solutions by animal biopolymers.

    PubMed

    Ishikawa, Shin-ichi; Suyama, Kyozo; Arihara, Keizo; Itoh, Makoto

    2002-06-01

    Selective actinide ion recovery from dilute, aqueous, multication waste streams is an important problem. The recovery of uranium (U) and thorium (Th) by various animal biopolymers was examined. Of four species of biopolymers tested, a high uptake of uranium and thorium was found in hen eggshell membrane (ESM) and silk proteins, with the maximum uranium and thorium recovery exceeding 98% and 79%, respectively. The uptake of U and Th was significantly affected by the pH of the solution. The optimum pH values were 6 and 3 for the uptake of U and Th, respectively. The effect of temperature differed with the metal. The uptake of U decreased with increasing temperature (30-50 degrees C), whereas the Th uptake increased with increasing temperature. Selective recovery of U and Th from dilute aqueous binary and multimetal solutions was also examined. ESM and silk proteins tested were effective and selective for removing each metal by controlling the pH and temperature of the solution. In multimetal systems, the order of sorption of ESM proteins was preferential: U > Cu > Cd > Mn > Pb > Th > Ni > Co > Zn at pH 6 and Th > U > Cu > Pb > Cd > Mn > Co > Ni = Zn at pH 3. These biopolymers appear to have potential for use in a commercial process for actinide recovery from actinide-containing wastewater. PMID:12019520

  2. Evolution of uranium and thorium minerals

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Ewing, R. C.; Sverjensky, D. A.

    2009-12-01

    The origins and near-surface distributions of the approximately 250 known uranium and/or thorium minerals elucidate principles of mineral evolution. This history can be divided into four phases. The first, from ~4.5 to 3.5 Ga, involved successive concentrations of uranium and thorium from their initial uniform trace distribution into magmatic-related fluids from which the first U4+ and Th4+ minerals, uraninite (UO2), thorianite (ThO2) and coffinite (USiO4), precipitated in the crust. The second period, from ~3.5 to 2.2 Ga, saw the formation of large low-grade concentrations of detrital uraninite (containing several weight percent Th) in the Witwatersrand-type quartz-pebble conglomerates deposited in a highly anoxic fluvial environment. Abiotic alteration of uraninite and coffinite, including radiolysis and auto-oxidation caused by radioactive decay and the formation of helium from alpha particles, may have resulted in the formation of a limited suite of uranyl oxide-hydroxides. Earth’s third phase of uranium mineral evolution, during which most known U minerals first precipitated from reactions of soluble uranyl (U6+O2)2+ complexes, followed the Great Oxidation Event (GOE) at ~2.2 Ga and thus was mediated indirectly by biologic activity. Most uraninite deposited during this phase was low in Th and precipitated from saline and oxidizing hydrothermal solutions (100 to 300°C) transporting (UO2)2+-chloride complexes. Examples include the unconformity- and vein-type U deposits (Australia and Canada) and the unique Oklo natural nuclear reactors in Gabon. The onset of hydrothermal transport of (UO2)2+ complexes in the upper crust may reflect the availability of CaSO4-bearing evaporites after the GOE. During this phase, most uranyl minerals would have been able to form in the O2-bearing near-surface environment for the first time through weathering processes. The fourth phase of uranium mineralization began approximately 400 million years ago, as the rise of land plants

  3. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    1959-08-01

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  4. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  5. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  6. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1991-04-05

    This invention is comprised of a process of converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  7. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  8. Uranium and thorium sorption on minerals studied by x-ray absorption spectroscopy

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-01

    Several actinide-mineral sorption systems were studied by uranium and thorium L{sub 3}-edge x-ray absorption spectroscopy. A series of layer silicate minerals, including micas, were selected for their systematic variations in surface structure, e.g. degree of permanent negative charge on the basal planes. An expansible layer silicate, vermiculite, was treated to provide several different interlayer spacings, allowing variations in the accessibility of interior cation exchange sites. The finely powdered minerals were exposed to aqueous solutions of uranyl chloride or thorium chloride. Analysis of the EXAFS and XANES spectra indicates the influence of the mineral substrate upon the local structure of the bound actinide species. Trends in the data are interpreted based upon the known variations in mineral structure.

  9. Neutron scattering from elemental uranium and thorium

    SciTech Connect

    Smith, A.B. |; Chiba, S.

    1995-01-01

    Differential neutron-scattering cross sections of elemental uranium and thorium are measured from {approx} 4.5 to 10.0 MeV in steps of {approx} 0.5 MeV. Forty or more differential values are obtained at each incident energy, distributed between {approx} 17{degree} and 160{degree}. Scattered-neutron resolutions are carefully defined to encompass contributions from the first four members of the ground-state rotational band (0{sup 2} g.s., 2{sup +}, 4{sup +} and 6{sup +} states). The experimental results are interpreted in the context of coupled-channels rotational models, and comparisons made with the respective ENDF/B-VI evaluated files. These comparisons suggest some modifications of the ENDF/B-VI {sup 238}U and {sup 232}Th evaluations.

  10. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium and Minor Actinides in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2002-06-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup and improved wasteform characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium fuel cycles that rely on "in situ" use of the bred-in U-233. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle; particularly in the reduction of plutonium. While uranium-based mixedoxide (MOX) fuel will decrease the amount of plutonium, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the U-238. Here we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed oxide fuel in a light water reactor (LWR). Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2; where more than 70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnup of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels. Furthermore, use of a thorium-based fuel could also be used as a strategy for reducing the amount of long-lived nuclides (including the minor actinides), and thus the radiotoxicity in spent nuclear fuel. Although the breeding of U-233 is a concern, the presence of U-232 and its daughter products can aid in making this fuel self-protecting, and/or enough U-238 can be added to denature the fissile uranium. From these calculations, it appears that thorium-based fuel for plutonium incineration is superior as

  11. RECOVERY OF THORIUM AND URANIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-02-18

    This patent deals with the separation and recovery of uranium from monazite sand. After initial treatment of the sand with sodium hydroxide, a precipitate is obtuined which contains the uranium, thorium, rare earths and some phosphorus. This precipitate is then dissolved in nitric acid. The bulk of the rare earths are removed from thls soiution by adding aa excess of alkali carbonate, causing precipitation of the rare earths together with part of the thorium present. The solution still contains a considerable amount of thorium, some rare earths, and practically all of the uranium originally present. Thorium and rare earth values are readily precipitated from such solution, and the uranium values thus isolated, by the addition of an excess hydrogen peroxide. The pH value of the solution is preferably adjusted to at least 9 prior to the addition of the peroxide.

  12. Tables for determining lead, uranium, and thorium isotope ages

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.

    1974-01-01

    Tables for determining lead, uranium, and thorium isotope ages are presented in the form of computer printouts. Decay constants, analytical expressions for the functions evaluated, and the precision of the calculations are briefly discussed.

  13. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.

    PubMed

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Klímová, Kateřina; Macková, Anna; Pumera, Martin

    2014-07-22

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in the fields of energy generation and sensing. Metal-doped graphenes, where metal serves as the catalytic center and graphene as the high area conductor, have been used as electrocatalysts for such applications. In this paper, we investigated the use of uranium-graphene and thorium-graphene hybrids prepared by a simple and scalable method. The hybrids were synthesized by the thermal exfoliation of either uranium- or thorium-doped graphene oxide in various atmospheres. The synthesized graphene hybrids were characterized by high-resolution XPS, SEM, SEM-EDS, combustible elemental analysis, and Raman spectroscopy. The influence of dopant and exfoliation atmosphere on electrocatalytic activity was determined by electrochemical measurements. Both hybrids exhibited excellent electrocatalytic properties toward oxygen and hydrogen peroxide reduction, suggesting that actinide-based graphene hybrids have enormous potential for use in energy conversion and sensing devices. PMID:24979344

  14. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    NASA Astrophysics Data System (ADS)

    Judge, Elizabeth J.; Barefield, James E., II; Berg, John M.; Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines.

  15. Comparison of the distributions of the actinides uranium and thorium with the lanthanide gadolinium in the tissues and eggs of Japanese quail: concentrations of uranium in feeds and foods

    SciTech Connect

    Robinson, G.A.; Wasnidge, D.C.; Floto, F.

    1984-05-01

    Japanese quail were given UCl/sub 3/, UO/sub 2/ (NO/sub 3/)/sub 2/, Th(NO/sub 3/)/sub 4/, or GdCl/sub 3/ (/sub 153/Gd -labeled) intravenously in aqueous solution. Distribution of Th among the tissues was as for Gd; distributions of U(III) and U(VI) were markedly different. Whole body losses by 18 hr were: females, U 24%, Th 14%, Gd 4%; males, U 72%, Th 23%, Gd 1%. Cumulative depositions in yolks of eggs laid over 8 days were: U(III) 1.9%, U(VI) 1.7%, Th 57.3%, Gd 46.8%. The distribution of U in quail may be atypical of actinides. Concentrations of U in various feeds, foods, and mineral supplements ranged from 169 micrograms/g in a phosphate fertilizer for farm use to below the lower detectable limit of .01 microgram/g in many foods intended for human use. Two batches of the game bird laying ration supplied to the quail colony contained 3.05 and 4.42 micrograms U/g. Body burdens of 3.5 micrograms U/bird for noninjected quail were attributed to the U content of this feed.

  16. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    PubMed Central

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211

  17. A Thorium/Uranium fuel cycle for an advanced accelerator transmutation of nuclear waste concept

    SciTech Connect

    Truebenbach, M.T.; Henderson, D.L.; Venneri, F.

    1993-12-31

    Utilizing the high thermal neutron flux of an accelerator driven transmuter to drive a Thorium-Uranium fuel production scheme, it is possible to produce enough energy in the transmuter not only to power the accelerator, but to have enough excess power available for commercial use. A parametric study has been initiated to determine the ``optimum`` equilibrium operation point in terms of the minimization of the equilibrium actinide inventory and the fuel {alpha} for various residence times in the High Flux Region (HFR) and in the Low Flux Region (LFR). For the cases considered, the ``optimum`` equilibrium operation point was achieved for a HFR residence time of 45 days and a LFR residence time of 60 days. For this case, the total actinide inventory in the system is about 20 tonnes and the fuel {alpha} approximately 1.46.

  18. Uranium- and thorium-bearing pegmatites of the United States

    SciTech Connect

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  19. Age dependence of natural uranium and thorium concentrations in bone.

    PubMed

    Larivière, Dominic; Packer, Ana Paula; Marro, Leonora; Li, Chunsheng; Chen, Jing; Cornett, R Jack

    2007-02-01

    The age dependence of the natural concentration of uranium and thorium in the skeleton was investigated using human vertebrae bone collected from two Canadian locations (Winnipeg, Manitoba, and Regina, Saskatchewan). The concentration of both radioelements in digested ashed bone samples was determined using sector-field inductively coupled plasma mass spectrometry. The geometric means for uranium level in bones showed a significant statistical difference between the two locations studied. Similarly for thorium, a statistical difference was observed, although this difference was considered marginal. The thorium concentration differed only marginally with respect to age group, indicating that its behavior in the body could be age-independent. Conversely, the uranium level in bones was found to change for the age groups tested, an indication of age-specific deposition. The age profile for uranium was comparable to the calcium turn-over rate, indicating that uranium deposition is probably, in part, dictated by this metabolic process, showing the role of present uptake into the uranium concentration in bones for populations exposed to significant uranium intake. PMID:17220713

  20. Configurational analysis of uranium-doped thorium dioxide

    NASA Astrophysics Data System (ADS)

    Shields, A. E.; Ruiz-Hernandez, S. E.; de Leeuw, N. H.

    2015-04-01

    While thorium dioxide is already used industrially in high temperature applications, more insight is needed about the behaviour of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model, commensurate with a prominent existing UO2 potential, to conduct configurational analyses of uranium-doped ThO2 supercells. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analysed the distribution of low concentrations of uranium in the bulk material, but have not observed the formation of uranium clusters or a single dominant configuration.

  1. Purification of thorium from uranium-233 process residue

    SciTech Connect

    Webb, O.F.; Boll, R.A.; Lucero, A.J.; DePaoli, D.W.

    1999-04-01

    Thorium-229 can be used to produce {sup 213}Bi. Researchers in phase 1 human trials are investigating the use of antibodies labeled with {sup 213}Bi for selectively destroying leukemia cells. Other types of cancer may potentially be treated using similar approaches. Crude {sup 229}Th was liberated from Rachig rings by sonication in 7.5 M HNO{sub 3} followed by filtration. Contaminants included significant levels of uranium, a number of other metals, and radiolytic by-products of di-(2-butyl) phosphoric acid extractant (which was used i the original separation of {sup 233}U from thorium). Thorium was selectively retained on Reillex HPQ anion-exchange resin from 7.5 M HNO{sub 3} at 65%, where U(VI), Ac(III), Fe(III), Al(III), Ra(II), and Pb(II) were eluted. Thorium and uranium isotherms on Reillex HPQ are reported. The thorium was then easily eluted form the bed with 0.1 M HNO{sub 3}. To overcome mass transfer limitations of the resin, the separation was conducted at 65 C. The resin stood up well to use over several campaigns. Other researchers have reported that HPQ has excellent radiological and chemical stability. The eluted thorium was further purified by hydroxide precipitation from the organic contaminants. This process yielded 65 mCi of {sup 229}Th.

  2. Thorium and uranium abundances in the Jilin H5 chondrite

    NASA Astrophysics Data System (ADS)

    Pernicka, E.

    1985-02-01

    Thorium and uranium abundances have been measured in the Jilin H5 chondrite by radiochemical neutron activation analysis. Although the abundances of (35.8 + or - 1.5) ppb Th and (14.9 + or - 0.9) ppb U are within the range of literature values, the ratio Th/U is about 25 percent lower than the average value for H chondrites. Terrestrial addition of uranium appears to be the most likely explanation.

  3. Discovery of actinium, thorium, protactinium, and uranium isotopes

    NASA Astrophysics Data System (ADS)

    Fry, C.; Thoennessen, M.

    2013-05-01

    Thirty-one actinium, thirty-one thorium, twenty-eight protactinium, and twenty-three uranium isotopes have so far been observed; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  5. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in... or natural thorium, and its packaging, are excepted from the requirements in this subchapter...

  6. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in... or natural thorium, and its packaging, are excepted from the requirements in this subchapter...

  7. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in... or natural thorium, and its packaging, are excepted from the requirements in this subchapter...

  8. Functional Sorbents for Selective Capture of Plutonium, Americium, Uranium, and Thorium in Blood

    SciTech Connect

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffrey A.; Pattamakomsan, Kanda; Wiacek, Robert J.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Charles

    2010-09-01

    Nano-engineered solid sorbents for chelation of actinides (239Pu, 241Am, uranium, thorium) from human blood were developed and evaluated in vitro. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMSTM), are hybrid materials created from attachment of organic moieties onto extremely high surface area mesoporous silica. The organic moieties known to be effective at capturing actinides including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate analog were evaluated. SAMMS are being reported elsewhere as potential candidates for orally administered drug for radionuclide decorporation. Herein, actinide decorporation of SAMMS in blood were evaluated to assess their viability for sorbent hemoperfusion in renal insufficient patients, whose kidney clear radionuclides at very slow rate. Sorption affinity (Kd), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for decorporation of all four actinides and outperformed the DTPA analog on SAMMS and on commercial resins by a factor of 103-fold in term of affinity. A fifty percent reduction of actinides in blood was achieved within minutes with no evidence of protein fouling and material leaching in blood after 24 hr of contact time. Less than 0.4 wt.% of Si was dissolved from 3,4-HOPO-SAMMS across the pH of 0 to 8. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 hr. A 0.2 g of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in just 18 min and that of 500 dpm mL-1 in just 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 years, indicating their feasibility for stockpiling in preparedness for emergency.

  9. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  10. Plutonium and minor actinides utilization in Thorium molten salt reactor

    SciTech Connect

    Waris, Abdul; Aji, Indarta K.; Novitrian,; Kurniadi, Rizal; Su'ud, Zaki

    2012-06-06

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/{sup 233}U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu and MA composition in the fuel of 5.96% or more.

  11. Plutonium and minor actinides utilization in Thorium molten salt reactor

    NASA Astrophysics Data System (ADS)

    Waris, Abdul; Aji, Indarta K.; Novitrian, Kurniadi, Rizal; Su'ud, Zaki

    2012-06-01

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/233U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu & MA composition in the fuel of 5.96% or more.

  12. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  13. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  14. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  15. Thorium and uranium diphosphonates: Syntheses, structures, and spectroscopic properties

    SciTech Connect

    Adelani, Pius O.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Four new thorium and uranium diphosphonate compounds, [H{sub 3}O]{l_brace}Th{sub 2}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{sub 2}F{r_brace} (Thbbp-1), An{sub 2}{l_brace}(O{sub 3}PC{sub 6}H{sub 4}PO{sub 3}H){sub 2}[C{sub 6}H{sub 4}(PO{sub 3}H){sub 2}]{r_brace} [An=Th(IV), U(IV)] (Thbbp-2)/(U4bbp), and [(C{sub 2}H{sub 5})(CH{sub 3}){sub 3}N][(UO{sub 2}){sub 3}(O{sub 3}PC{sub 6}H{sub 4}PO{sub 3}H){sub 2}F(H{sub 2}O)] (U6bbp) have been synthesized hydrothermally using 1,4-benzenebisphosphonic acid as ligand. The crystal structures of these compounds were determined by single crystal X-ray diffraction. Thbbp-1 and Thbbp-2 contain seven-coordinate Th(IV) within ThO{sub 6}F and ThO{sub 7} units with capped trigonal prismatic and capped octahedral geometries, respectively. U4bbp is isotypic with Thbbp-2. The structure of U6bbp contains U(VI) is the common seven-coordinate pentagonal bipyramid. - Graphical abstract: Coordination polyhedra and luminescence properties in thorium and uranium compounds. Highlights: Black-Right-Pointing-Pointer Three-dimensional thorium and uranium complexes. Black-Right-Pointing-Pointer Conversion of U(VI) to U(IV) under hydrothermal condition. Black-Right-Pointing-Pointer Unusual seven-coordinate thorium complexes exhibiting capped octahedral and capped trigonal prismatic geometries.

  16. Quantification of thorium and uranium sorption to contaminated sediments

    SciTech Connect

    Kaplan, D.I.

    2000-08-01

    Desorption tests using a sequential extraction method were used to characterize and quantify thorium and uranium sorption to contaminated wetland sediments collected from the Savannah River Site located in South Carolina. In situ distribution coefficients, or Kd values (Kd equal to Csolid/Cliquid), were determined. A problem associated with determining desorption Kd values is that it is difficult to identify Csolid, because by definition it must comprise only the fraction that is reversibly (and linearly) sorbed. A series of selective and sequential extractions was used to determine desorption Kd values. Thorium Kd values ranged from 115 to 2255 mL/g. Uranium Kd values ranged from 170 to 6493 mL/g. Compared to sorption Kd values, these desorption Kd values were appreciably greater because they captured the ``aging'' process of the radionuclides with the sediment, making the radionuclide more refractory. Compared to nonsite-specific data, these in situ Kd values improved accuracy, were more defensible, reduced uncertainty, and removed unnecessary conservatism for subsequent transport and risk calculations. Additional tests were conducted to provide geochemical information relevant for selecting appropriate remediation technologies for the contaminated site. Thorium and U were associated with labile fractions and were not concentrated with the smaller sediment particles. These findings suggest that phytoremediation or heap leaching, and not soil washing, are viable remediation approaches for this site.

  17. Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature.

    PubMed

    Kigoshi, K

    1971-07-01

    The rate of ejection of alpha-recoil thorium-234 into solution from the surface of zircon sand gives an alpha-recoil range of 550 angstroms. The alpha-recoil thorium-234 atoms ejected into the groundwater may supply excess uranium-234. In pelagic sediments, ejected alpha-recoil thorium-234 may contribute to the supply of mobile uranium-234 in the sedimentary column. PMID:17747313

  18. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  19. Uranium and thorium distribution in soils and weathered bedrock in south Texas

    USGS Publications Warehouse

    Dickinson, Kendell A.

    1977-01-01

    The distribution of uranium and thorium in soils and weathered bedrock in areas of calich soil development on various kinds of sedimentary bedrock in south Texas indicates that uranium and thorium are leached from the surface layers and deposited deeper in the soil or weathered bedrock. The data provide field evidence that uranium is mobilized during dry-climate weathering, and suggest that caution be used in the interpretation of airborne, radioactive surveys that measure uranium at the surface.

  20. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Activity-mass relationships for uranium and natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of...

  1. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of...

  2. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of...

  3. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of...

  4. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Activity-mass relationships for uranium and natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of...

  5. [Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers].

    PubMed

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers. PMID:3006158

  6. Interim report on studies of uranium, thorium, and lead migration at Key Lake, Saskatchewan, Canada

    SciTech Connect

    Curtis, D.B.; Gancarz, A.J.

    1980-07-01

    The redistribution of uranium, thorium, and lead is being examined in samples representing several million cubic meters of sandstone and metamorphased sediments in the Athabasca Basin which is located in the northwest corner of the Canadian province of Saskatchewan. The region of study includes zones of uranium mineralization at Key Lake. Mineralization occurs at the unconformity between the Athabasca sandstone and the underlying metasediments and in fault zones within the metasediments. Lead isotopes record a radiometric age of 1300 +- 150 m.y. in samples from above and below the unconformity. This age probably reflects the time of deposition of the sandstones and an associated redistribution of uranium and/or lead in the underlying rocks. Many of the samples have been fractionated with respect to radiogenic lead and the actinide parent elements since that time. Sandstones and altered rocks from the region above the unconformity have been a transport path and are a repository for lead. In contrast, mineralized rocks are deficient in radiogenic lead and must be an important source of lead in the local geologic environment. However, the isotopic composition of lead missing from the ores is different from that found in the overlying sandstones. The two types of rocks do not appear to represent complements with respect to a source and a repository for lead.

  7. Uranium, thorium, and lead systematics in Granite Mountains, Wyoming

    USGS Publications Warehouse

    Rosholt, J.N.; Bartel, A.J.

    1969-01-01

    Uranium, thorium and lead concentrations and isotopic compositions were determined on total rocks and a feldspar sample from widely separated parts of the Granite Mountains in central Wyoming. Linear relations defined by 206Pb/204Pb - 207Pb/204Pb and 208Pb/204Pb - 232Th/204Pb for the total rock samples define 2.8 billion-year isochrons. In contrast, 238U/206Pb ages are anomalously old by a factor of at least four. The low 238U/204Pb values, coupled with the radiogenic 206Pb/204Pb and radiogenic 207Pb/204Pb ratios, indicate that contents of uranium in near-surface rocks would have had to have been considerably greater than those presently observed to have generated the radiogenic lead. It is possible that more than 1011 kg of uranium has been removed from the Granite Mountains, and the most feasible interpretation is that most of this uranium was leached from near-surface rocks at some time during the Cenozoic, thus providing a major source for the uranium deposits in the central Wyoming basins. ?? 1969.

  8. Functional sorbents for selective capture of plutonium, americium, uranium, and thorium in blood.

    PubMed

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffery A; Pattamakomsan, Kanda; Wiacek, Robert J; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2010-09-01

    Self-assembled monolayer on mesoporous supports (SAMMS) are hybrid materials created from attachment of organic moieties onto very high surface area mesoporous silica. SAMMS with surface chemistries including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate (DTPA) analog were evaluated for chelation of actinides ((239)Pu, (241)Am, uranium, thorium) from blood. Direct blood decorporation using sorbents does not have the toxicity or renal challenges associated with traditional chelation therapy and may have potential applications for critical exposure cases, reduction of nonspecific dose during actinide radiotherapy, and for sorbent hemoperfusion in renal insufficient patients, whose kidneys clear radionuclides at a very slow rate. Sorption affinity (K(d)), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for all four actinides from blood and plasma and greatly outperformed the DTPA analog on SAMMS and commercial resins. In batch contact, a fifty percent reduction of actinides in blood was achieved within minutes, and there was no evidence of protein fouling or material leaching in blood after 24 h. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 h. A 0.2 g quantity of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in 18 min and that of 500 dpm mL(-1) in 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 y, indicating its feasibility for stockpiling in preparedness for an emergency. The excellent efficacy and stability of SAMMS materials in complex biological matrices suggest that SAMMS can also be used as orally administered drugs and for wound decontamination. By changing the organic groups of

  9. Functional Sorbents for Selective Capture of Plutonium, Americium, Uranium, and Thorium in Blood

    PubMed Central

    Yantasee, Wassana; Sangvanich, Thanapon; Creim, Jeffery A; Pattamakomsan, Kanda; Wiacek, Robert J; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2010-01-01

    Self-assembled monolayer on mesoporous supports (SAMMS™) are hybrid materials created from attachment of organic moieties onto very high surface area mesoporous silica. SAMMS with surface chemistries including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate (DTPA) analog were evaluated for chelation of actinides (239Pu, 241Am, uranium, thorium) from blood. Direct blood decorporation using sorbents does not have toxicity or renal challenges associated with traditional chelation therapy and may have potential applications for critical exposure cases, reduction of nonspecific dose during actinide radiotherapy, and for sorbent hemoperfusion in renal insufficient patients, whose kidney clear radionuclides at very slow rate. Sorption affinity (Kd), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for all four actinides from blood and plasma and greatly outperformed the DTPA analog on SAMMS and commercial resins. In batch contact, a fifty percent reduction of actinides in blood was achieved within minutes, and there was no evidence of protein fouling or material leaching in blood after 24 hr. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 hr. A 0.2 g quantity of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in 18 min and that of 500 dpm mL−1 in 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 years, indicating its feasibility for stockpiling in preparedness for an emergency. The excellent efficacy and stability of SAMMS materials in complex biological matrices suggest that SAMMS can also be used as orally administered drugs and for wound decontamination. By changing the organic groups of SAMMS

  10. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  11. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  12. Kinetic and thermodynamic studies of the dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions

    NASA Astrophysics Data System (ADS)

    Thomas, A. C.; Dacheux, N.; Le Coustumer, P.; Brandel, V.; Genet, M.

    2001-06-01

    The dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions (TUPD) was studied as a function of the temperature and leachate acidity. The dependence of the normalized dissolution rate on the temperature leads to an activation energy equal to about 40 kJ mol -1, close to that obtained for the pure thorium phosphate-diphosphate ( 42±3 kJ mol-1) and for thorium-plutonium (IV) phosphate-diphosphate solid solutions ( 41±1 kJ mol-1). The normalized dissolution rate of TUPD slightly increases with the leachate acidity. The partial order related to the proton concentration, n, is equal to 0.40±0.02 while the apparent normalized dissolution rate constant, k'T,I, reaches (2.8±0.7)×10 -4 g m-2 d-1 at 90°C and for [ H3O+]=1 M. When the saturation of the leachate is reached, the concentration of thorium, uranium and phosphate ions measured in the solution are controlled by the precipitation of the uranyl phosphate pentahydrate (UO 2) 3(PO 4) 2·5H 2O and the thorium phosphate-hydrogenphosphate Th 2(PO 4) 2(HPO 4)·H 2O. Both solids were extensively characterized using XRD, infrared and UV-visible spectroscopies or electron probe microanalysis (EPMA). Their solubility products, K°S,0, were determined and extrapolated to I=0. They are equal to 10 -55.2±0.5 and 10 -66.6±1.2, respectively. All the samples leached were characterized using EPMA, SEM and TEM. These techniques showed that during the dissolution process, thorium and uranium are completely separated as (UO 2) 3(PO 4) 2·5H 2O, on one hand, and Th 2(PO 4) 2(HPO 4)·H 2O, on the other hand. In the first days of leaching tests, an amorphous additional phase, identified as Th 2(PO 4) 2(HPO 4)· nH 2O was also observed. Several leaching tests performed on sintered TUPD samples revealed that the dissolution rates measured in 10 -1 M HNO3 is very low (6.5×10 -5 g d-1) by comparison to other ceramics studied in the same objective. In these conditions, the thorium phosphate-diphosphate (TPD) appears as

  13. Actinide(IV) Deposits on Bone: Potential Role of the Osteopontin-Thorium Complex.

    PubMed

    Creff, Gaëlle; Safi, Samir; Roques, Jérôme; Michel, Hervé; Jeanson, Aurélie; Solari, Pier-Lorenzo; Basset, Christian; Simoni, Eric; Vidaud, Claude; Den Auwer, Christophe

    2016-01-01

    In case of a nuclear event, contamination (broad or limited) of the population or of specific workers might occur. In such a senario, the fate of actinide contaminants may be of first concern, in particular with regard to human target organs like the skeleton. To improve our understanding of the toxicological processes that might take place, a mechanistic approach is necessary. For instance, ∼50% of Pu(IV) is known from biokinetic data to accumulate in bone, but the underlining mechanisms are almost unknown. In this context, and to obtain a better description of the toxicological mechanisms associated with actinides(IV), we have undertaken the investigation, on a molecular scale, of the interaction of thorium(IV) with osteopontin (OPN) a hyperphosphorylated protein involved in bone turnover. Thorium is taken here as a simple model for actinide(IV) chemistry. In addition, we have selected a phosphorylated hexapeptide (His-pSer-Asp-Glu-pSer-Asp-Glu-Val) that is representative of the peptidic sequence involved in the bone interaction. For both the protein and the biomimetic peptide, we have determined the local environment of Th(IV) within the bioactinidic complex, combining isothermal titration calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, theoretical calculations with density functional theory, and extended X-ray absorption fine structure spectroscopy at the Th LIII edge. The results demonstrate a predominance of interaction of metal with the phosphate groups and confirmed the previous physiological studies that have highlighted a high affinity of Th(IV) for the bone matrix. Data are further compared with those of the uranyl case, representing the actinyl(V) and actinyl(VI) species. Last, our approach shows the importance of developing simplified systems [Th(IV)-peptide] that can serve as models for more biologically relevant systems. PMID:26684435

  14. Research in actinide chemistry

    SciTech Connect

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  15. X-ray powder data for uranium and thorium minerals

    USGS Publications Warehouse

    Frondel, Clifford; Riska, Daphne; Frondel, Judith Weiss

    1956-01-01

    The U.S. Geological Survey has in preparation a comprehensive volume on the mineralogy of uranium and thorium. This work has been done as part of a continuing systematic survey of data on uranium and thorium minerals on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. Pending publication of this volume and in response to a widespread demand among workers in uranium and thorium mineralogy, the X-ray powder diffraction data for the known minerals that contain uranium or thorium as an essential constituent are presented here. The coverage is complete except for a few minerals for which there are no reliable data owing to lack of authentic specimens. With the exception of that for ianthinite, the new data either originated in the Geological Survey or in the Mineralogical Laboratory of Harvard University. Data from the literature or other sources were cross-checked against the files of standard patterns of these laboratories; the sources are indicated in the references. Data not accompanied by a reference were obtained from films in the Harvard Standard File and cross-checked as to the identity of the film with the Geological Survey's file. Minor differences can be expected in the d-spacings reported for the same specimens by different investigators because of the manner of preparation of the mount, the conditions of X-ray irradiation, and the method of photography and measurement of the film or chart. The Harvard and Geological Survey data all were obtained from films taken in 114-mm diameter cameras, using either ethyl cellulose and toluene or collodion spindle mounts and Straumanis-type film mounting. Unless otherwise indicated all patterns were taken with copper radiation (Kα 1.5418 A.) and nickel filter and data are given in Angstrom units. The d-spacings are not corrected for film shrinkage. The correction ordinarily is small and in general is less than either the variation in spacing arising from differences in experimental technique of

  16. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  17. Uranium and thorium in urine of United States residents: Reference range concentrations

    SciTech Connect

    Ting, B.G.; Paschal, D.C.; Jarrett, J.M.; Pirkle, J.L.; Jackson, R.J.; Sampson, E.J.; Miller, D.T.; Caudill, S.P. )

    1999-07-01

    The authors measured uranium and thorium in urine of 500 US residents to establish reference range concentrations using a magnetic-sector inductively coupled argon plasma mass spectrometer (ICP-MS). They found uranium at detectable concentrations in 96.6% of the urine specimens and thorium in 39.6% of the specimens. The 95th percentile concentration for uranium was 34.5 ng/L (parts per trillion); concentrations ranged up to 4,080 ng/L. Thorium had a 95th percentile concentration of 3.09 ng/L; concentrations ranged up to 7.7 ng/L.

  18. Selected uranium and uranium-thorium occurrences in New Hampshire

    USGS Publications Warehouse

    Bothner, W.A.

    1978-01-01

    Secondary uranium mineralization occurs in a northwest-trending fracture zone in the Devonian Concord Granite in recent rock cuts along Interstate Highway 89 near New London, New Hampshire. A detailed plane table map of this occurrence was prepared. Traverses using total gamma ray scintillometers throughout the pluton of Concord Granite identified two additional areas in which very small amounts of secondary mineralization occurs in the marginal zones of the body. All three areas lie along the same northwest trend. A ground radiometry survey of a large part of the Jurassic White Mountain batholith was conducted. Emphasis was placed on those areas from which earlier sampling by Butler (1975) had been done. No unusual geological characteristics were apparent around sample localities from which anomalous U and Th had been reported.. The results of this survey confirm previous conclusions that the red, coarse-grained, biotite granite phase of the Conway Granite is more radioactive than other phases of the Conway Granite or other rock types of the White Mountain Plutonic-Volcanic Series. Aplites associated with the Conway Granite were found .generally to be as radioactive as the red Conway Granite.

  19. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... described in § 173.422(a)), and if not a hazardous substance or hazardous waste, shipping papers and the... outer surface of the uranium or thorium is enclosed in an inactive sheath made of metal or other...

  20. Stability of dilute solutions of uranium, lead, and thorium ions

    USGS Publications Warehouse

    Milkey, R.G.

    1954-01-01

    Standard solutions and samples containing a few micrograms of metallic ions per milliliter are frequently used in determination of trace elements. It is important to know whether the concentrations of such solutions remain constant from day to day. The stability of dilute solutions of three metallic ions-uranium, lead, and thorium-has been investigated. Solutions containing concentrations of metallic ions, ranging from 1000 to 0.1 ?? per milliliter, were allowed to stand for approximately 2.5 months, and then the metallic ion content of those solutions that had lost strength was determined. Both adsorption and hydrolysis variously influenced the solute loss, but the minimum pH at which loss of concentration of lead and uranium occurred seemed to coincide with the pH at which the hydrolyzed metal ions began to precipitate. No increase in the stability of the solutions was obtained by substituting polyethylene containers for borosilicate glass. The solutions that lost strength could not be restored promptly to the original concentration by manual means, such as shaking them vigorously for several minutes.

  1. Uranium-series dating of actinide decay series mobility at Pena Blanca

    SciTech Connect

    Dixon, P.R.; Goldstein, S.J.; Murrell, M.T.

    1997-12-31

    Studies of U-series disequilibria near uranium ore deposits can provide valuable information on the mobility of actinides and their daughters over the range of timescales needed to assess the stability of proposed waste repositories. We have applied highly sensitive TIMS methods to obtain 238U-234U-230Th dates for three whole rock samples within a {approximately}30 in long fracture emanating into surrounding tuff from the deposit at Pena Blanca, Mexico. The 238U-234U-230Th data lie on a whole-rock isochron that requires closed-system behavior for the last 380 ka. Preliminary 231Pa-235U data for the U-rich vein also indicates closed system behavior for at least the last 100 ka. In contrast, 226Ra/230Th activity ratios range from 0.76-0.99 which indicates more recent Ra mobility within the fracture most likely due to surface water infiltration. Our results require uranium, thorium and protactinium stability despite recent radium mobility and provide important constraints on repository stability over {approximately}100 ka timescales.

  2. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  3. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini

    2015-04-01

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as `pokok senduduk') as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.

  4. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    SciTech Connect

    Saat, Ahmad; Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.

  5. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    SciTech Connect

    C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

  6. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted...

  7. Thermodynamic investigations of oxyfluoride of thorium and uranium

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sumanta; Dash, Smruti; Mukerjee, S. K.; Ramakumar, K. L.

    2015-10-01

    The standard molar Gibbs energy of formation of ThOF2(s) and UO2F2(s) has been determined using an e.m.f. technique. For this purpose, separate fluoride cell has been constructed using CaF2(s) as the solid electrolyte. From the measured e.m.f. values and required Gibbs energy data available in the literature, ΔfGom(T) for these oxyfluorides has been calculated. The enthalpy of formation of ThOF2(s) and UO2F2(s) at 298.15 K has been calculated from the experimentally measured Gibbs energy data using the second and the third law methods. To determine the stability domains of ThOF2(s) and UO2F2(s), the phase diagram and chemical potential diagrams of Th-F-O and U-F-O systems were calculated by the CALPHAD method and FactSage software. These calculations can be used to predict the oxygen partial pressures and the temperature domains in which thorium and uranium oxyfluorides might be formed in the molten salt medium.

  8. Thermodynamic investigations of oxyfluoride of thorium and uranium

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sumanta; Dash, Smruti; Mukerjee, S. K.; Ramakumar, K. L.

    2015-10-01

    The standard molar Gibbs energy of formation of ThOF2(s) and UO2F2(s) has been determined using an e.m.f. technique. For this purpose, separate fluoride cell has been constructed using CaF2(s) as the solid electrolyte. From the measured e.m.f. values and required Gibbs energy data available in the literature, ΔfGom(T) for these oxyfluorides has been calculated. The enthalpy of formation of ThOF2(s) and UO2F2(s) at 298.15 K has been calculated from the experimentally measured Gibbs energy data using the second and the third law methods. To determine the stability domains of ThOF2(s) and UO2F2(s), the phase diagram and chemical potential diagrams of Th-F-O and U-F-O systems were calculated by the CALPHAD method and FactSage software. These calculations can be used to predict the oxygen partial pressures and the temperature domains in which thorium and uranium oxyfluorides might be formed in the molten salt medium.

  9. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.

    PubMed

    Hare, Dominic; Tolmachev, Sergei; James, Anthony; Bishop, David; Austin, Christine; Fryer, Fred; Doble, Philip

    2010-04-15

    Internal exposure from naturally occurring radionuclides (including the inhaled long-lived actinides (232)Th and (238)U) is a component of the ubiquitous background radiation dose (National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States; NCRP Report No. 160; NCRP: Bethesda, MD, 2009). It is of interest to compare the concentration distribution of these natural alpha-emitters in the lungs and respiratory lymph nodes with those resulting from occupational exposure, including exposure to anthropogenic plutonium and depleted and enriched uranium. This study examines the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantifying and visualizing the mass distribution of uranium and thorium isotopes from both occupational and natural background exposure in human respiratory tissues and, for the first time, extends this application to the direct imaging of plutonium isotopes. Sections of lymphatic and lung tissues taken from deceased former nuclear workers with a known history of occupational exposure to specific actinide elements (uranium, plutonium, or americium) were analyzed by LA-ICPMS. Using a previously developed LA-ICPMS protocol for elemental bio-imaging of trace elements in human tissue and a new software tool, we generated images of thorium ((232)Th), uranium ((235)U and (238)U), and plutonium ((239)Pu and (240)Pu) mass distributions in sections of tissue. We used a laboratory-produced matrix-matched standard to quantify the (232)Th, (235)U, and (238)U concentrations. The plutonium isotopes (239)Pu and (240)Pu were detected by LA-ICPMS in 65 mum diameter localized regions of both a paratracheal lymph node and a sample of lung tissue from a person who was occupationally exposed to refractory plutonium (plutonium dioxide). The average (overall) (239)Pu concentration in the lymph node was 39.2 ng/g, measured by high purity germanium (HPGe) gamma

  10. Soiled-based uranium disequilibrium and mixed uranium-thorium series radionuclide reference materials

    SciTech Connect

    Donivan, S.; Chessmore, R.

    1988-12-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology has assigned the Technical Measurements Center (TMC), located at the DOE Grand Junction Colorado, Projects Office and operated by UNC Geotech (UNC), the task of supporting ongoing remedial action programs by providing both technical guidance and assistance in making the various measurements required in all phases of remedial action work. Pursuant to this task, the Technical Measurements Center prepared two sets of radionuclide reference materials for use by remedial action contractors and cognizant federal and state agencies. A total of six reference materials, two sets comprising three reference materials each, were prepared with varying concentrations of radionuclides using mill tailings materials, ores, and a river-bottom soil diluent. One set (disequilibrium set) contains varying amounts of uranium with nominal amounts of radium-226. The other set (mixed-nuclide set) contains varying amounts of uranium-238 and thorium-232 decay series nuclides. 14 refs., 10 tabs.

  11. Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms.

    PubMed

    Baeza, A; Guillén, J

    2006-09-01

    The soil-mushroom transfer of thorium and uranium was analyzed in two ecologically similar but geographically separated Spanish ecosystems by means of the transfer factor, TF. Uranium TF values were in the range 0.043-0.49, and thorium TF values in the range 0.030-0.62. These values were similar to those of (90)Sr, (239+240)Pu, and (241)Am found previously in the same ecosystems. Given the low availability of uranium and thorium, the available transfer factors, ATF, were also determined. These were higher than the TF values by one order of magnitude for (234, 238)U, and by 2-3 orders of magnitude for (228, 230, 232)Th. The ATF value of thorium was similar to that of (137)Cs, and that of uranium similar to that of (40)K. Hebeloma cylindrosporum presented the highest uranium and thorium transfer factors, confirming this species as a good bioindicator of a soil's radioactive content. PMID:16723237

  12. A rapid method of extraction of uranium and thorium from granite for alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Gascoyne, M.; Larocque, J. P. A.

    1984-06-01

    The lithium metaborate fusion technique for analysis of rock samples has been adapted for the alpha spectrometric determination of uranium and thorium isotope abundances in granite. Powdered granite is spiked with a solution of a uranium-thorium isotope tracer, mixed with LiBO 2 in a 1:3 ratio and fused at 950°C in a graphite crucible. The mixture is poured into 1 M HNO 3 and stirred until dissolved. Uranium and thorium are simultaneously extracted with 10% tributylphosphate (TBP) in amyl acetate using Al(NO 3) 3 as the salting agent, and then back-extracted into 1 M H 2SO 4. Uranium is separated from thorium using anion exchange resin and, after further purification, each is plated onto steel discs for alpha counting. Overall chemical yields are adequate at present (generally 20 to 60%). Preliminary tests show the TBP extraction step to be almost quantitative for both elements, in spite of the presence of silicon and high concentrations of aluminium. This procedure is much faster than the usual acid digestion technique, and uranium and thorium discs for counting can be prepared in approximately eight hours, starting from rock powder.

  13. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium...

  14. A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide

    NASA Astrophysics Data System (ADS)

    Shields, Ashley E.; Santos-Carballal, David; de Leeuw, Nora H.

    2016-05-01

    Thorium dioxide is of significant research interest for its use as a nuclear fuel, particularly as part of mixed oxide fuels. We present the results of a density functional theory (DFT) study of uranium-substituted thorium dioxide, where we found that increasing levels of uranium substitution increases the covalent nature of the bonding in the bulk ThO2 crystal. Three low Miller index surfaces have been simulated and we propose the Wulff morphology for a ThO2 particle and STM images for the (100), (110), and (111) surfaces studied in this work. We have also calculated the adsorption of a uranium atom and the U adatom is found to absorb strongly on all three surfaces, with particular preference for the less stable (100) and (110) surfaces, thus providing a route to the incorporation of uranium into a growing thoria particle.

  15. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants.

    PubMed

    Pourcelot, L; Masson, O; Renaud, P; Cagnat, X; Boulet, B; Cariou, N; De Vismes-Ott, A

    2015-03-01

    Uranium and thorium isotopes were measured in cypress leaves, wheat grains and lettuce taken in the surroundings of the uranium conversion facility of Malvési (South of France). The comparison of activity levels and activity ratios (namely (238)U/(232)Th and (230)Th/(232)Th) in plants with those in aerosols taken at this site and plants taken far from it shows that aerosols emitted by the nuclear site (uranium releases in the atmosphere by stacks and (230)Th-rich particles emitted from artificial ponds collecting radioactive waste mud) accounts for the high activities recorded in the plant samples close to the site. The atmospheric deposition process onto the plants appears to be the dominant process in plant contamination. Dry deposition velocities of airborne uranium and thorium were measured as 4.6 × 10(-3) and 5.0 × 10(-3) m s(-1), respectively. PMID:25500060

  16. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-08-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO{sub 2}{sup +2}, thorium dihydroxide Th(OH){sub 2}{sup +2}, and thorium hydroxide Th(OH){sup +3}, tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO{sub 2}(CO){sub 3}{sub 3}{sup {minus}4} and thorium tetrahydroxide complex Th(OH){sub 4} tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO{sub 3}) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO{sub 3}) and 0.1 molar sodium sulfate (Na{sub 2}SO{sub 4}) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides.

  17. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO{sub 2}{sup +2}, thorium dihydroxide Th(OH){sub 2}{sup +2}, and thorium hydroxide Th(OH){sup +3}, tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO{sub 2}(CO){sub 3}{sub 3}{sup {minus}4} and thorium tetrahydroxide complex Th(OH){sub 4} tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO{sub 3}) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO{sub 3}) and 0.1 molar sodium sulfate (Na{sub 2}SO{sub 4}) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides.

  18. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    SciTech Connect

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations.

  19. Analysis of thorium-salted fuels to improve uranium utilization in the once-through fuel cycle

    SciTech Connect

    Eschbach, E.A.; Merrill, E.T.; Prichard, A.W.

    1981-09-01

    Calculations and analyses indicate that no improvement can be achieved in uranium utilization for the once-through LWR fuel cycle over use of slightly enriched uranium by employing thorium distributed with uranium. The study included thorium additions: (1) slight amounts, (2) larger amounts, in either intimately mixed or in duplex pellets, (3) in spectrally shifted or not spectrally shifted reactors, and (4) in three- or five-year reactivity limited exposures. While thorium-uranium combinations improves the initial conversion ratio, the reactivity lifetime was not extended enough to override the additional uranium required. The effective fission cross-section of the bred /sup 233/U relative to /sup 239/Pu's in typical LWR neutron spectra is not large enough for /sup 233/U to make as great a contribution to end-of-life reactivity as /sup 239/Pu in a slightly enriched uranium fuel element. /sup 233/U's reactivity contribution relative to /sup 239/Pu's is lower in fuel configurations such as slightly enriched uranium LWR fuel loads. On the other hand, /sup 233/U's reactivity contribution appears more positive for reactors that involve lower average concentrations of thermal neutron absorbers. If /sup 238/U-thorium fuels reprocessed, the recovered /sup 233/U would increase uranium utilization, but may not reduce fuel cycle costs. The thorium-salted fuels exhibit substantially flatter reactivity characteristics with exposure time. Spectral shift helped the utilization of uranium and thorium.

  20. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States

    USGS Publications Warehouse

    McNeal, J.M.; Lee, D.E.; Millard, H.T., Jr.

    1981-01-01

    Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.

  1. Thorium

    NASA Astrophysics Data System (ADS)

    Wickleder, Mathias S.; Fourest, Blandine; Dorhout, Peter K.

    In 1815 Berzelius analyzed a rare mineral from the Falun district. He assumed that the mineral contained a new element, which he named thorium after the ancient Scandinavian god of thunder and weather, Thor (Weeks and Leicester, 1968).

  2. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... published a final rule under 10 CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry... for reimbursement. DOE amended the final rule on June 3, 2003, (68 FR 32955) to adopt several... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  3. Uranium and thorium sequential separation from norm samples by using a SIA system.

    PubMed

    Mola, M; Nieto, A; Peñalver, A; Borrull, F; Aguilar, C

    2014-01-01

    This study presents a sequential radiochemical separation method for uranium and thorium isotopes using a novel Sequential Injection Analysis (SIA) system with an extraction chromatographic resin (UTEVA). After the separation, uranium and thorium isotopes have been quantified by using alpha-particle spectrometry. The developed method has been tested by analyzing an intercomparison sample (phosphogypsum sample) from International Atomic Energy Agency (IAEA) with better recoveries for uranium and thorium than the obtained by using a classical method (93% for uranium using the new methodology and 82% with the classical method, and in the case of thorium the recoveries were 70% for the semi-automated method and 60% for the classical strategy). Afterwards, the method was successfully applied to different Naturally Occurring Radioactive Material (NORM) samples, in particular sludge samples taken from a drinking water treatment plant (DWTP) and also sediment samples taken from an area of influence of the dicalcium phosphate (DCP) factory located close to the Ebro river reservoir in Flix (Catalonia). The obtained results have also been compared with the obtained by the classical method and from that comparison it has been demonstrated that the presented strategy is a good alternative to existing methods offering some advantages as minimization of sample handling, reduction of solvents volume and also an important reduction of the time per analysis. PMID:24172603

  4. Mechanisms of magma generation beneath hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence.

    PubMed

    Sims, K W; Depaolo, D J; Murrell, M T; Baldridge, W S; Goldstein, S J; Clague, D A

    1995-01-27

    Measurements of uranium/thorium and samarium/neodymium isotopes and concentrations in a suite of Hawaiian basalts show that uranium/thorium fractionation varies systematically with samarium/neodymium fractionation and major-element composition; these correlations can be understood in terms of simple batch melting models with a garnet-bearing peridotite magma source and melt fractions of 0.25 to 6.5 percent. Midocean ridge basalts shows a systematic but much different relation between uranium/thorium fractionation and samarium/neodymium fractionation, which, although broadly consistent with melting of a garnet-bearing peridotite source, requires a more complex melting model. PMID:17788786

  5. New Twists and Turns for Actinide Chemistry: Organometallic Infinite Coordination Polymers of Thorium Diazide.

    PubMed

    Monreal, Marisa J; Seaman, Lani A; Goff, George S; Michalczyk, Ryszard; Morris, David E; Scott, Brian L; Kiplinger, Jaqueline L

    2016-03-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. PMID:26865502

  6. Uranium and thorium complexes of the phosphaethynolate ion

    DOE PAGESBeta

    Camp, Clément; Settineri, Nicholas; Lefèvre, Julia; Jupp, Andrew R.; Goicoechea, José M.; Maron, Laurent; Arnold, John

    2015-06-20

    New tris-amidinate actinide (Th, U) complexes containing a rare O-bound terminal phosphaethynolate (OCP⁻) ligand were synthesized and fully characterized. The cyanate (OCN⁻) and thiocyanate (SCN⁻) analogs were prepared for comparison and feature a preferential N-coordination to the actinide metals. The Th(amid)3(OCP) complex reacts with Ni(COD)2 to yield the heterobimetallic adduct (amid)3Th(μ-η1(O):η2(C,P)-OCP)Ni(COD) featuring an unprecedented reduced (OCP⁻) bent fragment bridging the two metals.

  7. Uranium and thorium complexes of the phosphaethynolate ion

    SciTech Connect

    Camp, Clément; Settineri, Nicholas; Lefèvre, Julia; Jupp, Andrew R.; Goicoechea, José M.; Maron, Laurent; Arnold, John

    2015-06-20

    New tris-amidinate actinide (Th, U) complexes containing a rare O-bound terminal phosphaethynolate (OCP⁻) ligand were synthesized and fully characterized. The cyanate (OCN⁻) and thiocyanate (SCN⁻) analogs were prepared for comparison and feature a preferential N-coordination to the actinide metals. The Th(amid)3(OCP) complex reacts with Ni(COD)2 to yield the heterobimetallic adduct (amid)3Th(μ-η1(O):η2(C,P)-OCP)Ni(COD) featuring an unprecedented reduced (OCP⁻) bent fragment bridging the two metals.

  8. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  9. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  10. Yields of Fission Products from Various Uranium and Thorium Targets

    SciTech Connect

    Kronenberg, Andreas; Spejewski, Eugene H.; Mervin, Brenden T.; Jost, Cara; Carter, H Kennon; Stracener, Daniel W; Greene, John P.; Nolen, Jerry A.; Talbert, Willard L.

    2008-01-01

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  11. Yields of fission products from various uranium and thorium targets.

    SciTech Connect

    Kronenberg, A.; Spejewski, E. H.; Mervin, B.; Jost, C.; Carter, H. K.; Stracener, D. W.; Greene, J. P.; Nolen, J. A.; Talbert, W. L.; Physics; Oak Ridge Associated Univ.; ORNL; TechSource, Inc.

    2008-10-31

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  12. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  13. MEASUREMENTS OF RADON, THORON, ISOTOPIC URANIUM AND THORIUM TO DETERMINE OCCUPATIONAL & ENVIRONMENTAL EXPOSURE & RISK AT FERNALD FEED MATERIALS PRODUCTION CENTER.

    EPA Science Inventory

    The research at the Fernald Environmental Restoration Management Corporation (FERMCO) site will provide radionuclide data, and realistic risk evaluation for isotopic radon, thorium, uranium and lead exposure.We have developed and tested a passive radon monitor with proven accur...

  14. Uranium in granites from the southwestern United States: actinide parent-daughter systems, sites and mobilization. Second year report. National Uranium Resource Evaluation

    SciTech Connect

    Silver, L.T.; Woodhead, J.A.; Williams, I.S.; Chappell, B.W.

    1984-09-01

    Results of detailed field and laboratory studies are reported on the primary distribution of uranium (and thorium and lead) in the radioactive minerals of five radioactive granite bodies in Arizona and California. This distribution was examined in a granite pluton. Granites with uranium concentrations ranging from 4 to 47 ppM, thorium concentrations from 11 to 181 ppM, and Th/U ratios of 0.6 to 16.0 were compared. Evidence for secondary mobilization, migration, fixation and/or loss of uranium, thorium and radiogenic leads was explored. Uranium distribution in radioactive granites is hosted in a far greater diversity of sites than has previously been known. Uranium and thorium distribution in primary minerals of granites is almost entirely a disequilibrium product involving local fractionation processes during magmatic crystallization. Every radioactive granite studied contains minerals that contain uranium and/or thorium as major stoichiometric components. When the granites are subject to secondary geochemical events and processes, the behavior of uranium is determined by the stability fields of the different radioactive minerals in the rocks. The two most powerful tools for evaluating uranium migration in a granite are (a) isotope dilution mass spectrometry and (b) the electron microprobe. Uranium mobilization and loss is a common feature in radioactive granites of the southwestern United States. A model for the evaluation of uranium loss from granites has been developed. The mineral zircon can be used as an independent indicator of uranium and thorium endowment. The weathering products show surprising differences in the response of different granites in arid region settings. Significant losses of primary uranium (up to 70%) has been a common occurrence. Uranium, thorium and radiogenic lead exist in labile (movable) form on surfaces of cleavages, fractures and grain boundaries in granites.

  15. Uranium and thorium in granitic rocks of northeastern Washington and northern Idaho, with comments on uranium resource potential

    USGS Publications Warehouse

    Nash, J. Thomas

    1979-01-01

    Northeastern Washington and northern Idaho is a uranium province in which many Cretaceous and Tertiary granitic plutons contain abnormal amounts of uranium. Mean uranium content of 108 samples of granitic rock is 8.8 parts per million (ppm), more than twice normal for rocks of this composition. The mean thorium content, 20.3 ppm, and mean Th/U, 3.19, are normal. The most uraniferous and fertile rocks are the peraluminous two-mica granitic suite, although not all two-mica plutons are enriched in uranium. The muscovite-bearing suite has mean uranium content of 22.3 ppm, mean thorium content of 22.8 ppm, and mean Th/U of 2.82. Porphyritic quartz monzonite of the Midnite mine, which I interpret to be a two-mica granitic rock, is especially radioactive with mean U of 14.7 ppm, mean Th of 32.1 ppm, and mean Th/U of 2.72. Mean uranium and thorium contents of the two-mica granitic plutons are significantly different from those of the calcalkaline hornblende granitic suite, which are mean U, 5.0 ppm; mean Th, 17.6; and mean Th/U, 3.78. Biotite granitic rocks containing no hornblende or muscovite appear to be an intermediate suite in terms of U and Th, or possibly are variants of both hornblende and muscovite type; mean U is 3.88 ppm, mean Th is 14.4 ppm, and mean Th/U is 3.03 as calculated from the more abundant data of Castor and others (1978). occurrence of uranium and thorium in the muscovite and hornblende suites is systematically different. Many muscovite-bearing rocks are much more enriched in uranium (>15 ppm) than they are in thorium, and have a relatively low Th:U correlation coefficient of +0.409. Many of the uraniferous muscovite-bearing rocks contain less than 20 ppm Th, probably a consequence of forming by anatexis of thorium deficient sedimentary rocks. Uranium and thorium variation is much more regular in the hornblende suite, which has a Th:U correlation coefficient of +0.780. Uranium in the muscovite suite is held primarily in magnetite and biotite, and

  16. Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials.

    PubMed

    Sarkar, Arnab; Alamelu, Devanathan; Aggarwal, Suresh K

    2009-05-15

    Laser-induced breakdown spectroscopy (LIBS) has been developed for determining the percentage of uranium in thorium-uranium mixed oxide fuel samples required as a part of the chemical quality assurance of fuel materials. The experimental parameters were optimized using mixed oxide pellets prepared from 1:1 (w/w) mixture of thorium-uranium mixed oxide standards and using boric acid as a binder. Calibration curves were established using U(II) 263.553 nm, U(II) 367.007 nm, U(II) 447.233 nm and U(II) 454.363 nm emission lines. The uranium amount determined in two synthetic mixed oxide samples using calibration curves agreed well with that of the expected values. Except for U(II) 263.553 nm, all the other emission lines exhibited a saturation effect due to self-absorption when U amount exceeded 20 wt.% in the Th-U mixture. The present method will be useful for fast and routine determination of uranium in mixed oxide samples of Th and U, without the need for dissolution, which is difficult and time consuming due to the refractory nature of ThO(2). The methodology developed is encouraging since a very good analytical agreement was obtained considering the limited resolution of the spectrometer employed in the work. PMID:19269431

  17. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  18. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  19. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  20. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  1. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill Tailings Radiation Control Act of 1978, as amended. The licensee will be the Department of Energy, another... this general license is to ensure that uranium and thorium mill tailings disposal sites will be...

  2. Natural uranium and thorium isotopes in sediment cores off Malaysian ports

    NASA Astrophysics Data System (ADS)

    Yusoff, Abdul Hafidz; Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim

    2015-06-01

    Sediment cores collected from three Malaysian marine ports, namely, Kota Kinabalu, Labuan and Klang were analyzed to determine the radioactivities of 234U, 238U, 230Th, 232Th and total organic carbon (TOC) content. The objectives of this study were to determine the factors that control the activity of uranium isotopes and identify the possible origin of uranium and thorium in these areas. The activities of 234U and 238U show high positive correlation with TOC at the middle of sediment core from Kota Kinabalu port. This result suggests that activity of uranium at Kota Kinabalu port was influenced by organic carbon. The 234U/238U value at the upper layer of Kota Kinabalu port was ≥1.14 while the ratio value at Labuan and Klang port was ≤ 1.14. These results suggest a reduction process occurred at Kota Kinabalu port where mobile U(VI) was converted to immobile U(IV) by organic carbon. Therefore, it can be concluded that the major input of uranium at Kota Kinabalu port is by sorptive uptake of authigenic uranium from the water column whereas the major inputs of uranium to Labuan and Klang port are of detrital origin. The ratio of 230Th/232Th was used to estimate the origin of thorium. Low ratio value (lt; 1.5) at Labuan and Klang ports support the suggestion that thorium from both areas were come from detrital input while the high ratio (> 1.5) of 230Th/232Th at Kota Kinabalu port suggest the anthropogenic input of 230Th to this area. The source of 230Th is probably from phosphate fertilizers used in the oil-palm cultivation in Kota Kinabalu that is adjacent to the Kota Kinabalu port.

  3. Lanthanide, thorium, and uranium oxide clusters formed by DLV/FTICR

    SciTech Connect

    Pires de Matos, A.; Marcalo, J.; Leal, J.P.

    1995-12-31

    In this work the formation of clusters of all the lanthanides (except promethium), thorium and uranium by direct laser vaporization (DLV) of surface oxidized metallic targets in a vacuum of about 2 x 10{sup -8} Torr. The cluster ions were obtained using a Nd:YAG laser pulse (ca. 30 mJ at the fundamental 1064 nm wavelength) and the ions were stored in the trap of an Extrel (Waters) FTMS 2001-DT Fourier transform ion cyclotron resonance (FTICR) spectrometer.

  4. Electrodeposition of uranium and thorium onto small platinum electrodes

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  5. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    SciTech Connect

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  6. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

    PubMed

    Borovička, Jan; Kubrová, Jaroslava; Rohovec, Jan; Randa, Zdeněk; Dunn, Colin E

    2011-10-01

    Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess. PMID:21390524

  7. Earth Models and Geo-neutrino Estimates of the Terrestrial Thorium to Uranium Ratio

    NASA Astrophysics Data System (ADS)

    Dye, S.

    2011-12-01

    Remote sensing of terrestrial isotopes in the radioactive series of uranium and thorium provides a unique method for constraining the origin and thermal history of the planet. During nuclear beta decay these isotopes radiate electron antineutrinos, which are known as geo-neutrinos. Although most geo-neutrinos escape to space, large sub-surface detectors efficiently record their interactions. The energy spectrum of these interactions estimates the relative amounts of terrestrial uranium and thorium, while the intensity assesses planetary radiogenic power. Models of the uranium and thorium contents in the silicate earth and in the continental crust suggest significantly different mantle contents, predicting measurable differences in the intensity and energy spectrum of geo-neutrino interactions at selected locations. Following a brief introduction of relevant neutrino physics and an overview of geo-neutrino flux calculation, this contribution describes the construction of global models, presents predictions of the intensities and energy spectra of geo-neutrino interactions, and explores the observational requirements for resolving one model from another.

  8. Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination.

    PubMed

    Aydin, Funda Armagan; Soylak, Mustafa

    2007-04-15

    A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2molL(-1) HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N=10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5mug of uranium and thorium. The three sigma detection limits (N=15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3ngL(-1), respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS. PMID:19071600

  9. Quantitative determination of environmental levels of uranium, thorium and plutonium in bone by solvent extraction and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.

    1984-06-01

    Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.

  10. Calculated optical properties of thorium, protactinium, and uranium metals

    SciTech Connect

    Gasche, T.; Brooks, M.S.; Johansson, B.

    1996-07-01

    We report self-consistent energy band calculations using the linear muffin-tin orbital method and the local-spin-density approximation to exchange and correlation in density-functional theory for the light actinide metals Th, Pa, and U. The optical properties have been calculated and compared with measurements, where possible. The dependence of the optical response functions upon crystal structure was found to be surprisingly large and the dependence upon spin-orbit coupling, less so. Where it was possible to make comparison, agreement with experiment was obtained for the maxima of the optical spectra, the exception being a feature in the optical conductivity at 10 eV measured in both Th and U but not obtained in the calculations. {copyright} {ital 1996 The American Physical Society.}

  11. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    SciTech Connect

    Liu, Yuan; Batchelder, Jon Charles; Galindo-Uribarri, Alfredo {nmn}; Stracener, Daniel W

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  12. Ion source development for ultratrace detection of uranium and thorium

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  13. Uranium-thorium isotope geochemistry of saline ground waters from central Missouri

    SciTech Connect

    Banner, J.L.; Chen, J.H.; Wasserburg, G.J.

    1989-03-01

    The isotopic and elemental distributions of uranium and thorium were examined in a suite of saline ground waters from central Missouri using mass spectrometric techniques. The waters were sampled from natural springs and artesian wells in Mississippian and Ordovician aquifers and have a wide range in salinity (5 to 26 /per thousand/), deltaD (/minus/108 to /minus/45 /per thousand/), and delta/sup 18/O (/minus/14.7 to /minus/6.5 /per thousand/) values. The suite of samples has a large range in /sup 238/U (50 to 200 x 10/sup /minus/12/g/g) and /sup 232/Th (0.3 to 9.1 x 10/sup /minus/12/g/g) concentrations and extremely high /sup 234/U//sup 238/U activity ratios ranging from 2.15 to 16.0. These isotopic compositions represent pronounced uranium-series disequilibrium compared with the value of modern seawater (1.15) or the equilibrium value (1.00). For such /sup 234/U-enriched waters, /sup 234/U//sup 238/U isotope ratios can be determined with a precision of /+-/ 10 /per thousand/ (2sigma) on 10 mL of sample and less than /+-/5 /per thousand/ on 100 mL. In contrast to the large /sup 234/U enrichments, /sup 230/Th//sup 238/U activity ratios in the ground waters are significantly lower than the equilibrium value. The more saline samples have markedly higher /sup 234/U//sup 238/U activity ratios and lower deltaD and delta/sup 18/O values. Unfiltered and filtered (< 0.1 ..mu..m) aliquots of a saline sample have the same isotopic composition and concentration of uranium, indicating uranium essentially occurs entirely as a dissolved species. The filtered/unfiltered concentration ratio for thorium in this sample is 0.29, demonstrating the predominant association of thorium with particulates.

  14. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T., Jr.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  15. Surprising coordination for low-valent actinides resembling uranyl(vi) in thorium(iv) organic hybrid layered and framework structures based on a graphene-like (6,3) sheet topology.

    PubMed

    Li, Yuxiang; Weng, Zhehui; Wang, Yanlong; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-01-21

    Three thorium(iv)-based metal-organic hybrid compounds with 2D layered and 3D framework structures exhibiting graphene-like (6,3) sheet topologies were prepared with linkers with threefold symmetry. These compounds contain rare and relatively anisotropic coordination environments for low-valent actinides that are similar to those often observed for high-valent actinide ions. PMID:26672441

  16. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  17. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect

    Quach, D.L.; Wai, C.M.; Mincher, B.J.

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  18. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect

    Bi, G.; Liu, C.; Si, S.

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no

  19. Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents

    SciTech Connect

    Lin, Y.; Wai, C.M.; Smart, N.G. |

    1995-10-01

    Extraction techniques for the recovery of uranium and transuranic elements from acid waste solutions are important in nuclear waste management. This paper examines the feasibility of extracting uranyl and thorium ions from nitric acid solutions with supercritical CO{sub 2} containing the different organophosphorus reagents. In this study, an organophosphorus reagent is dissolved in supercritical CO{sub 2} by passing the fluid through a reagent vessel placed upstream of the sample vessel in the extractor. Using TBPO or TOPO in supercritical CO{sub 2}, effective extraction of uranyl and thorium ions can be achieved even in dilute HNO{sub 3} solutions, thus yielding the possibility of reducing acidic waste volumes in nuclear waste treatment. The results may form the basis of a novel extraction process for the treatment of acidified nuclear wastes, while minimizing the production of secondary wastes. 12 refs., 2 figs., 2 tabs.

  20. Uranium-thorium disequilibrium in north-east Atlantic waters.

    PubMed

    Smith, K J; León Vintró, L; Mitchell, P I; Bally de Bois, P; Boust, D

    2004-01-01

    In this paper we report and compare the concentrations of 234Th and 238U measured in surface and subsurface waters collected in the course of a sampling campaign in the north east Atlantic in June-July 1998. Dissolved 234Th concentrations in surface waters ranged from 5 to 20 Bq m(-3), showing a large deficiency relative to 238U concentrations (typically 42 Bq m-3). This disequilibrium is indicative of active 234Th scavenging from surface waters. Observed 234Th/238U activity ratios, together with corresponding 234Th particulate concentrations, were used to calculate mean residence times for 234Th with respect to scavenging onto particles (tau(diss)) and subsequent removal from surface waters (tau(part)). Residence times in the range 5-30 days were determined for tau(diss) and 4-18 days for tau(part) (n=14). In addition, ultrafiltration experiments at six stations in the course of the same expedition revealed that in north-east Atlantic surface waters a significant fraction (46+/-17%; n=6) of the thorium in the (operationally-defined) dissolved phase (<0.45 microm) is in colloidal form. These observations are consistent with the 'colloidal pumping' model in which it is assumed that 234Th is rapidly absorbed by colloidal particles, which then aggregate, albeit at a slower rate, into larger filterable particles. In essence, colloids act as intermediaries in the transition from the fully dissolved to the filter-retained (>0.45 microm) phase. Thus, the time (tau(c)) for fully dissolved 234Th to appear in the filter-retained fraction is dependent on the rate of colloidal aggregation. Here, we determined tau(c) values in the range 3-17 days. PMID:15063548

  1. Stellar age dating with thorium, uranium and lead

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Kratz, Karl-Ludwig

    2009-06-01

    We present HE 1523-0901, a metal-poor star in which the radioactive elements Th and U could be detected. Only three stars have measured U abundances, of which HE 1523-0901 has the most confidently determined value. From comparing the stable Eu, Os, and Ir abundances with measurements of Th and U, stellar ages can be derived. Based on seven such chronometer abundance ratios, the age of HE 1523-0901 was found to be ~13 Gyr. Only an upper limit for Pb could be measured so far. Knowing all three abundances of Th, U, and Pb would provide a self-consistent test for r-process calculations. Pb is the beta- plus alpha-decay end-product of all decay chains in the mass region between Pb and the onset of dominant spontaneous fission above Th and U. Hence, in addition to Th/U also Th, U/Pb should be used to obtain a consistent picture for actinide chronometry. From recent r-process calculations within the classical “waiting-point” model, for a 13 Gyr old star we predict the respective abundance ratios of logγ(Th/U) = 0.84, logγ(Th/Pb) = -1.32 and logγ(U/Pb) = -2.16. We compare these values with the measured abundance ratios in HE 1523-0901 of logγ(Th/U) = 0.86, logγ(Th/Pb) > -1.0 and logγ(U/Pb) > -1.9. With this good level of agreement, HE 1523-0901 is already a vital probe for observational “near-field” cosmology by providing an independent lower limit for the age of the Universe.

  2. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  3. Thorium-uranium fractionation by garnet: Evidence for a deep source and rapid rise of oceanic basalts

    SciTech Connect

    LaTourrette, T.Z.; Kennedy, A.K.; Wasserburg, G.J. )

    1993-08-06

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238-disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  4. Thorium-uranium fractionation by garnet: evidence for a deep source and rapid rise of oceanic basalts.

    PubMed

    Latourrette, T Z; Kennedy, A K; Wasserburg, G J

    1993-08-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (QIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and QIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year. PMID:17757210

  5. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. PMID:24801893

  6. Determination of thorium and uranium at the nanogram per gram level in semiconductor potting plastics by neutron activation analysis

    SciTech Connect

    Dyer, F.F.; Emery, J.F.; Bate, L.C.

    1985-01-01

    A method was developed to determine thorium and uranium in semiconductor potting plastics. The method is based on neutron activation and subsequent radiochemical separation to isolate and permit measurement of the induced /sup 233/Pa and /sup 239/Np. These plastics typically contain macro amounts of silicon, bromine and antimony and nanogram per gram amounts of thorium and uranium. The radiochemical method provides the necessary sensitivity and makes it possible to easily attain adequate decontamination of the tiny amounts of /sup 233/Pa and /sup 239/Np from the high levels of radioactive bromine and antimony. 8 refs.

  7. Determination of thorium and uranium in ultrapure lead by inductively coupled plasma mass spectrometry.

    PubMed

    Grinberg, Patricia; Willie, Scott; Sturgeon, Ralph E

    2005-04-15

    A method for the determination of U and Th at sub-ppt levels in high-purity Pb samples using extraction chromatography with ICPMS detection is described. Following acid digestion, uranium and thorium are separated from the lead matrix using UTEVA resin. Sorption and elution procedures were optimized, the potential reusability of the chromatographic resin was evaluated, and a performance comparison between prepacked and freshly prepared UTEVA column was made. Uranium could be eluted with 0.025 M HCl and Th then recovered using 0.5% oxalic acid. Recovery yields for U exceed 80% whereas those for Th were typically 60%. Procedural detection limits of 0.5 and 1.5 pg g(-)(1) were obtained for U and Th, respectively. For purposes of comparison, GD-MS analysis of samples was also performed, yielding results consistent with those generated by ICPMS but with inferior detection power. PMID:15828778

  8. IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect

    Fox, K.; Edwards, T.

    2012-01-11

    This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

  9. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    SciTech Connect

    Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de

    2015-08-15

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uranium clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.

  10. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    NASA Astrophysics Data System (ADS)

    Shields, A. E.; Ruiz Hernandez, S. E.; de Leeuw, N. H.

    2015-08-01

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO2 potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO2. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uranium clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th(1-x)UxO2 which generated values in very good agreement with experimental data.

  11. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  12. Abundances of uranium, thorium, and potassium for some Australian crystalline rocks

    USGS Publications Warehouse

    Bunker, Carl Maurice; Bush, C.A.; Munroe, Robert J.; Sass, J.H.

    1975-01-01

    This report contains a tabulation of the basic radioelement and radiogenic heat data obtained during an Australian National University (ANU) - United States Geological Survey (USGS) heat-flow project, directed jointly by J. C. Jaeger (ANU) and J. H. Sass (USGS). Most samples were collected during the periods June through September, 1971 and 1972. The measurements were made subsequently by two of us (C. M. Bunker and C. A. Bush) using the gamma-ray spec trometric techniques described by Bunker and Bush (1966, 1967). Interpreting the spectra for quantitative analyses of the radioelements was accomplished with an iterative leastsquares computer program modified from one by Schonfeld (1966). Uranium content determined by gamma-ray spectrometry is based on a measurement of the daughter products of 226Ra. Equilibrium in the uranium-decay series was assumed for these analyses . Throughout the report, when U content is stated, radium-equivalent uranium is implied. The coefficient of variation for the accuracy of the radioelement data, when compared to ana lyses by isotope dilution and flame photometry is about 3 percent for radium-equivalent uranium and thorium and about 1 percent for potassium. These percentages are in addition to minimum standard deviations of about 0.05 ppm for U and Th, and about 0.03 percent for K.

  13. 78 FR 21352 - Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... CFR Part 765 in the Federal Register on May 23, 1994, (59 FR 26714) to carry out the requirements of... amended the final rule on June 3, 2003, (68 FR 32955) to adopt several technical and ] administrative... eligible uranium and thorium licensees for certain costs of decontamination, decommissioning,...

  14. Selected values of chemical thermodynamic properties: compounds of uranium, protactinium, thorium, actinium, and the alkali metals. Final report

    SciTech Connect

    Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Nuttall, R.L.

    1981-05-01

    This publication contains tables of recommended values for the standard enthalpies (heats) of formation, Gibbs (free) energies of formation, entropies, enthalpy contents and heat capacities at 298.15 K, and enthalpies of formation at O K for compounds of uranium, protactinium, thorium, actinium, lithium, sodium, potassium, rubidium, cesium, and francium.

  15. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  16. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  17. Use of Thorium for Transmutation of Plutonium and Minor Actinides in PWRs

    SciTech Connect

    Shwageraus, Eugene; Hejzlar, Pavel; Kazimi, Mujid S.

    2004-07-15

    An assessment is made of the potential for Th-based fuel to minimize Pu and minor actinide (MA) production in pressurized water reactors (PWRs). Destruction rates and residual amounts of Pu and MA in the fuel used for transmutation are examined. In particular, sensitivity of these two parameters to the fuel lattice hydrogen to heavy metal (H/HM) ratio and to the fuel composition was systematically investigated. All burnup calculations were performed using CASMO4, the fuel assembly burnup code. The results indicate that up to 1000 kg of reactor-grade Pu can be burned in Th-based fuel assemblies per gigawatt (electric) year. Up to 75% of initial Pu can be destroyed per passage through reactor core. Addition of MA to the fuel mixture degrades the burning efficiency. The theoretically achievable limit for total transuranium (TRU) destruction per passage through the core is 50%. Efficient MA and Pu destruction in Th-based fuel generally requires a higher degree of neutron moderation and, therefore, higher fuel lattice H/HM ratio than typically used in the current generation of PWRs. Reactivity coefficients evaluation demonstrated the feasibility of designing a Th-Pu-MA fueled core with negative Doppler and moderator temperature coefficients. Introduction of TRU-containing fuels to a PWR core inevitably leads to lower control material worths and smaller delayed-neutron yields than with conventional UO{sub 2} cores. Therefore, a major challenge associated with the introduction of Th-TRU fuels to PWRs will be the design of the whole core and reactor control features to ensure safe reactor operation.

  18. Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity.

    PubMed

    Behrle, Andrew C; Kerridge, Andrew; Walensky, Justin R

    2015-12-21

    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E2PR2)(1-) (E = S, Se; R = (i)Pr, (t)Bu), with thorium(IV) and uranium(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl4(DME)2 with 4 equiv of KS2PR2 (R = (i)Pr, (t)Bu) produced the homoleptic complexes, Th(S2P(i)Pr2)4 (1S-Th-(i)Pr) and Th(S2P(t)Bu2)4 (2S-Th-(t)Bu). The diselenophosphinate complexes were synthesized in a similar manner using KSe2PR2 to produce Th(Se2P(i)Pr2)4 (1Se-Th-(i)Pr) and Th(Se2P(t)Bu2)4 (2Se-Th-(t)Bu). U(S2P(i)Pr2)4, 1S-U-(i)Pr, could be made directly from UCl4 and 4 equiv of KS2P(i)Pr2. With (Se2P(i)Pr2)(1-), using UCl4 and 3 or 4 equiv of KSe2P(i)Pr2 yielded the monochloride product U(Se2P(i)Pr2)3Cl (3Se-U(iPr)-Cl), but using UI4(1,4-dioxane)2 produced the homoleptic U(Se2P(i)Pr2)4 (1Se-U-(i)Pr). Similarly, the reaction of UCl4 with 4 equiv of KS2P(t)Bu2 yielded U(S2P(t)Bu2)4 (2S-U-(t)Bu), whereas the reaction with KSe2P(t)Bu2 resulted in the formation of U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl). Using UI4(1,4-dioxane)2 and 4 equiv of KSe2P(t)Bu2 with UCl4 in acetonitrile yielded U(Se2P(t)Bu2)4 (2Se-U-(t)Bu). Transmetalation reactions were investigated with complex 2Se-U-(t)Bu and various CuX (X = Br, I) salts to yield U(Se2P(t)Bu2)3X (6Se-U(tBu)-Br and 7Se-U(tBu)-I) and 0.25 equiv of [Cu(Se2P(t)Bu2)]4 (8Se-Cu-(t)Bu). Additionally, 2Se-U-(t)Bu underwent transmetalation reactions with Hg2F2 and ZnCl2 to yield U(Se2P(t)Bu2)3F (6) and U(Se2P(t)Bu2)3Cl (4Se-U(tBu)-Cl), respectively. The molecular structures were analyzed using (1)H, (13)C, (31)P, and (77)Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide-selenium bonds over actinide-sulfur bonds. PMID:26636609

  19. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    SciTech Connect

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, with total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.

  20. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  1. Uranium, plutonium, and thorium isotopes in the atmosphere and the lithosphere

    SciTech Connect

    Essien, I.O.

    1983-01-01

    Concentration of /sup 238/U in rain and snow collected at Fayetteville (36/sup 0/N, 94/sup 0/W), Arkansas, showed a marked increase during the summer months of 1980, while Mount St. Helens remained active. This observed increase of /sup 238/U can be explained as due to the fallout of natural uranium from the eruption of Mount St. Helens. Large increases in the concentration of thorium isotopes detected in rain and snow samples during the last months of 1982 and early months of 1983 probably originated from the eruption of El Chichon volcano, which occurred on 28 March 1982. About 450 Ci of /sup 232/Th is estimated to have been injected into the atmosphere by this eruption. Isotopic anomalies were observed in atmospheric samples such as rain and snow. These anomalies can be attributed to various natural as well as man-made sources: nuclear weapon tests, nuclear accidents involving the burn-up of nuclear powered satellites, and volcanic eruptions. The variation of /sup 234/U//sup 238/U ratios in radioactive minerals when leached with nitric acid were also noticed and this variation, while /sup 235/U//sup 238/U remained fairly constant, can be explained in terms of the ..cap alpha..-recoil effect and changes in oxidation state of uranium. Difference found in /sup 239/Pu//sup 238/U ratios in terrestrial samples and uranium minerals can be explained as due to fallout contamination.

  2. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    SciTech Connect

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannot account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.

  3. Assessment of co-contaminant effects on uranium and thorium speciation in freshwater using geochemical modelling.

    PubMed

    Lofts, Stephen; Fevrier, Laureline; Horemans, Nele; Gilbin, Rodolphe; Bruggeman, Christophe; Vandenhove, Hildegarde

    2015-11-01

    Speciation modelling of uranium (as uranyl) and thorium, in four freshwaters impacted by mining activities, was used to evaluate (i) the influence of the co-contaminants present on the predicted speciation, and (ii) the influence of using nine different model/database combinations on the predictions. Generally, co-contaminants were found to have no significant effects on speciation, with the exception of Fe(III) in one system, where formation of hydrous ferric oxide and adsorption of uranyl to its surface impacted the predicted speciation. Model and database choice on the other hand clearly influenced speciation prediction. Complexes with dissolved organic matter, which could be simulated by three of the nine model/database combinations, were predicted to be important in a slightly acidic, soft water. Model prediction of uranyl and thorium speciation needs to take account of database comprehensiveness and cohesiveness, including the capability of the model and database to simulate interactions with dissolved organic matter. Measurement of speciation in natural waters is needed to provide data that may be used to assess and improve model capabilities and to better constrain the type of predictive modelling work presented here. PMID:26225834

  4. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    SciTech Connect

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U was mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.

  5. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  6. Application of uranium-thorium systematics to rocks from the Lassen Dome Field, California

    SciTech Connect

    Trimble, D.A.; Clynne, M.A.; Robinson, S.W.

    1984-01-01

    /sup 238/U-/sup 230/Th disequilibrium systematics were applied to a suite of fifteen dacites, rhyodacites, and mafic inclusions from the Lassen dome field, Lassen Volcanic National Park, California. Chemical procedures were established and are reported for separation and purification of uranium and thorium from whole-rock samples and mineral separates. Activities of /sup 230/Th, /sup 232/Th, /sup 234/U, and /sup 238/U were determined by alpha spectrometry. Age determinations were made for five of the rhyodacite units using /sup 230/Th-/sup 238/U isochrons. The determined ages range from 3600 to 57,000 years, and are in agreement with volcanic and glacial stratigraphy and with preliminary radiocarbon and K-Ar ages. The data support a origin for the intermediate and silicic rocks of the Lassen Volcanic Center by fractional crystallization of mantle derived mafic magmas in an open system. 24 figs., 8 tabs.

  7. Penultimate deglacial sea-level timing from uranium/thorium dating of Tahitian corals.

    PubMed

    Thomas, Alex L; Henderson, Gideon M; Deschamps, Pierre; Yokoyama, Yusuke; Mason, Andrew J; Bard, Edouard; Hamelin, Bruno; Durand, Nicolas; Camoin, Gilbert

    2009-05-29

    The timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial. We found, by means of uranium/thorium dating of fossil corals, that sea level during the penultimate deglaciation had risen to ~85 meters below the present sea level by 137,000 years ago, and that it fluctuated on a millennial time scale during deglaciation. This indicates that the penultimate deglaciation occurred earlier with respect to NHI than the last deglacial, beginning when NHI was at a minimum. PMID:19390000

  8. Uranium and thorium in the middle Precambrian Estes Conglomerate, Nemo District, Lawrence County, South Dakota: a preliminary report

    USGS Publications Warehouse

    Hills, F. Allan

    1977-01-01

    The Estes Conglomerate, which is exposed in the Nemo District on the northeastern flank of the Black Hills, South Dakota, is inferred to be of early middle Precambrian age (early Precambrian X or Paleoaphebian) and to be resting on late early Precambrian (late Precambrian W) granitic continental crust. The Estes contains beds of quartzite and quartz-pebble conglomerate (oligomictic conglomerate) with matrices of micaceous quartzite that locally contain 5 to 25 percent dispersed pyrite. Highly oxidized outcrop samples of the oligomictic conglomerate have anomalously high contents of both uranium (10 to 40 ppm) and thorium (20 to 800 ppm). High thorium values in the oligomictic conglomerate favor a placer mechanism for the concentration of radioactive minerals and appear to eliminate the possibility of epigenetic processes, such as reduction of uranium by pyrite. The presence of abundant old prospect pits and of several abandoned mines suggests that these conglomerates may also contain some gold. Early prospectors may have been attracted by the gossan produced by oxidation of pyrite. Uranium in the Estes Conglomerate may be of similar origin to the economically very important uranium deposits in the Matinenda Formation of the Elliot Lake District, Ontario. Because uranium is rapidly dissolved in acidic, oxygenated ground water, such as is present where pyrite is weathering, most of the uranium originally present in the analyzed samples has probably been leached out. Conglomerate located below the zone of weathering and oxidation has good potential for economic uranium deposits.

  9. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents.

    PubMed

    Fattal, Elias; Tsapis, Nicolas; Phan, Guillaume

    2015-08-01

    The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies. PMID:26144994

  10. Chemistry of tetravalent actinide phosphates-Part I

    SciTech Connect

    Brandel, V. . E-mail: vbrandel@neuf.fr; Dacheux, N. . E-mail: dacheux@ipno.in2p3.fr

    2004-12-01

    The chemistry and crystal structure of phosphates of tetravalent cations, including that of actinides was reviewed several times up to 1985. Later, new compounds were synthesized and characterized. In more recent studies, it was found that some of previously reported phases, especially those of thorium, uranium and neptunium, were wrongly identified. In the light of these new facts an update review and classification of the tetravalent actinide phosphates is proposed in the two parts of this paper. Their crystal structure and some chemical properties are also compared to non-actinide cation phosphates.

  11. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    SciTech Connect

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R; Sleaford, Brad W; Ebbinghaus, Bartley B; Collins, Brian W; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

  12. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    SciTech Connect

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  13. Determination of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Bolin, R.N.

    1995-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS), using standard sample introduction by peristaltic pumping, is presented as a method to determine total and isotopic uranium ({sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U) and thorium ({sup 232}Th) in soil samples. Initial sample preparation consists of oven drying to determine moisture content, and grinding and mixing the soil to make it homogeneous. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium into solution. Bismuth ({sup 209}Bi) is added prior to digestion to monitor for losses due to sample preparation and analysis. An addition digestion, using nitric/perchloric acid is performed if the total thorium concentration is required on the sample. The uranium and thorium content of this solution and the {sup 235}U/{sup 238}U ratio are measured on an initial pass through the ICP-MS. The total uranium measurement is based on the {sup 238}U isotope measurement with correction for the presence of the U isotopes. To determine the concentration of the less abundant {sup 234}U and {sup 236}U isotopes, the digestate is further concentrated by using a solid phase extraction column (TRU.Spec by EiChrom Industries, Inc.) before a second pass through the ICP-MS.

  14. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply. PMID:17735740

  15. Elevated concentrations of actinides in Mono Lake

    SciTech Connect

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  16. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    SciTech Connect

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.; Krause, T.R.; Deepak; Vojta, Y.; Thuillet, E.; Mertz, C.J.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.

  17. Preparation of actinide targets by electrodeposition

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  18. Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.

    PubMed

    Marrero, T W; Morris, J S; Manahan, S E

    2004-02-01

    The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. gamma-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to analyze the cerium, thorium, and uranium from 46 to 438 days of leaching. Leaching procedures followed the guidance of ASTM Procedure C 1220-92, Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. The combination of the thermally reductive pretreatment, vitrification and cementation produced a highly non-leachable form suitable for long-term disposal of cerium, thorium, protactinium, uranium, and neptunium. PMID:14637345

  19. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  20. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels.

    PubMed

    Masson, Olivier; Pourcelot, Laurent; Boulet, Béatrice; Cagnat, Xavier; Videau, Gérard

    2015-03-01

    Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium ((230)Th). This study was performed during a whole year (November 2009-November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods. PMID:25613358

  1. Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite.

    PubMed

    Phillips, D H; Watson, D B

    2015-03-21

    The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided a unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al(3+), Ca(2+), NO(3-), and SO4(2-) over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ∼6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration of U and other pH sensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater. PMID:25544493

  2. A procedural manual for measurement of uranium and thorium isotopes utilizing the USGS-Stanford Finnegan Mat 262

    USGS Publications Warehouse

    Shamp, Donald D.

    2001-01-01

    Over the past several decades investigators have extensively examined the 238U-234U- 230Th systematics of a variety of geologic materials using alpha spectroscopy. Analytical uncertainty for 230Th by alpha spectroscopy has been limited to about 2% (2σ). The advantage of thermal ionization mass spectroscopy (TIMS), introduced by Edwards and co-workers in the late 1980’s is the increased detectability of these isotopes by a factor of ~200, and decreases in the uncertainty for 230Th to about 5‰ (2σ) error. This report is a procedural manual for using the USGS-Stanford Finnegan-Mat 262 TIMS to collect and isolate Uranium and Thorium isotopic ratio data. Chemical separation of Uranium and Thorium from the sample media is accomplished using acid dissolution and then processed using anion exchange resins. The Finnegan-Mat262 Thermal Ionization Mass Spectrometer (TIMS) utilizes a surface ionization technique in which nitrates of Uranium and Thorium are placed on a source filament. Upon heating, positive ion emission occurs. The ions are then accelerated and focused into a beam which passes through a curved magnetic field dispersing the ions by mass. Faraday cups and/or an ion counter capture the ions and allow for quantitative analysis of the various isotopes.

  3. Distribution of uranium and thorium in groundwater of arid climate region

    NASA Astrophysics Data System (ADS)

    Murad, Ahmed; Alshamsi, Dalal; Aldahan, Ala; Hou, Xiaolin

    2014-05-01

    Uranium, thorium and their decay products are the most common radionuclides in groundwater in addition to potassium-40. Once groundwater is used for drinking, domestic and irrigation purposes, the radionuclides will then pose environmental and health related hazard originating from radioactivity and toxicity. In the investigation presented here, assessment of 238U, 235U and 232Th concentrations in groundwater across of the United Arab Emirates (UAE) is evaluated in terms of quality and sources. The region is dominated by arid climate conditions and radioactivity assessment of groundwater is essential for safe use of groundwater. Furthermore, the results were linked to data from other arid regions and worldwide. Groundwater samples (total dissolved solids,TDS, 142.5 mg L-1 to 12770 mg L-1) from 67 different wells were collected across geomorphologically different areas and most of the wells are actively used for agriculture. The aquifers are recent sand dunes, Quaternary (3 million years to present) sediments, and older carbonate rocks (230-10 million years). The 235U, 238U and 232Th measurements were carried out using ICP-MS system equipped with an Xt-skimmer cone and a concentric nebulizer under hot plasma conditions. Concentrations of 235U, 238U and 232Th range at (0.125-508.4) ng L-1, (25.81-69237) ng L-1 and (0.236-2529) ng L-1, respectively. Apparently, most 235U, 238U, 232Th concentrations in the sampled groundwater are below the WHO proposed permissible level of 60000 ng/L for total uranium (1 Bq L-1 for 235U and 10 Bq L-1 for 238U) and 5000 ng L-1 (1Bq L-1) for 232Th. A few samples show high concentrations of uranium that are associated with high TDS values and occur within interbedded limestones and shales aquifer. Comparison with worldwide groundwater data suggests that 238U concentration is highest in the arid regions groundwater where the recharge to aquifers is relatively low. The situation for 232Th concentrations seems less affected by climatic

  4. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    PubMed

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method. PMID:21523506

  5. Earth's Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Javoy, Marc; Kaminski, Edouard

    2014-12-01

    The Earth's thermal evolution is controlled by the amount of heat released by the radioactive decay of 40K, 238U, 235U and 232Th. Their crust and upper mantle content is inferred from direct sampling, whereas estimating the lower mantle concentrations requires indirect constraints, such as those brought by primitive chondrites, or by geoneutrinos. Here we follow the framework of "E-Earth" models, based on the isotopic and chemical composition of E-chondrites (EC), to calculate U and Th concentrations in the Earth's present day mantle, and the corresponding geoneutrinos flux. The model uses a compilation of data of U and Th contents of EC and account for the Earth differentiation and crust extraction. We obtain that the Bulk Silicate Earth (BSE) contains 15.4±1.8 ppb of Uranium and 51.3±4.4 ppb of Thorium, and has an average Th/U mass ratio of 3.4±0.4, with a peak value around 3.15. The prediction of geoneutrinos events originating from the mantle (i.e., without taking into account the local contribution of the crust) is 5.1±1.0 TNU, with 4.3±0.9 TNU coming from Uranium, and 0.8±0.2 TNU from Thorium. These numbers are in good agreement with the most recent KamLAND detector estimate, and compatible with the (higher) Borexino flux. On the other hand, the KamLAND constraints are not consistent with the high content of heat producing elements in the mantle predicted by the simple application of parameterized convection model to the thermal evolution of the Earth's mantle. Since the measurement error in the mantle neutrino flux is currently dominated by the crustal contribution, geoneutrinos cannot for now discriminate between CI-based and EH-base models of the Earth's composition. Further progress is expected if an ocean based geoneutrino detector is deployed.

  6. Third Minima in Thorium and Uranium Isotopes in a Self-Consistent Theory

    SciTech Connect

    McDonnell, J. D.

    2013-01-01

    Background: Well-developed third minima, corresponding to strongly elongated and reflection-asymmetric shapes associated with dimolecular configurations, have been predicted in some non-self-consistent models to impact fission pathways of thorium and uranium isotopes. These predictions have guided the interpretation of resonances seen experimentally. On the other hand, self-consistent calculations consistently predict very shallow potential-energy surfaces in the third minimum region.

    Purpose: We investigate the interpretation of third-minimum configurations in terms of dimolecular (cluster) states. We study the isentropic potential-energy surfaces of selected even-even thorium and uranium isotopes at several excitation energies. In order to understand the driving effects behind the presence of third minima, we study the interplay between pairing and shell effects.

    Methods: We use the finite-temperature superfluid nuclear density functional theory. We consider two Skyrme energy density functionals: a traditional functional SkM and a recent functional UNEDF1 optimized for fission studies.

    Results: We predict very shallow or no third minima in the potential-energy surfaces of 232Th and 232U. In the lighter Th and U isotopes with N = 136 and 138, the third minima are better developed. We show that the reflection-asymmetric configurations around the third minimum can be associated with dimolecular states involving the spherical doubly magic 132Sn and a lighter deformed Zr or Mo fragment. The potential-energy surfaces for 228,232Th and 232U at several excitation energies are presented. We also study isotopic chains to demonstrate the evolution of the depth of the third minimum with neutron number.

    Conclusions: We show that the neutron shell effect that governs the existence of the dimolecular states around the third minimum is consistent with the spherical-to-deformed shape transition in the Zr andMo isotopes around N = 58.We demonstrate that the depth of

  7. Third minima in thorium and uranium isotopes in a self-consistent theory

    NASA Astrophysics Data System (ADS)

    McDonnell, J. D.; Nazarewicz, W.; Sheikh, J. A.

    2013-05-01

    Background: Well-developed third minima, corresponding to strongly elongated and reflection-asymmetric shapes associated with dimolecular configurations, have been predicted in some non-self-consistent models to impact fission pathways of thorium and uranium isotopes. These predictions have guided the interpretation of resonances seen experimentally. On the other hand, self-consistent calculations consistently predict very shallow potential-energy surfaces in the third minimum region.Purpose: We investigate the interpretation of third-minimum configurations in terms of dimolecular (cluster) states. We study the isentropic potential-energy surfaces of selected even-even thorium and uranium isotopes at several excitation energies. In order to understand the driving effects behind the presence of third minima, we study the interplay between pairing and shell effects.Methods: We use the finite-temperature superfluid nuclear density functional theory. We consider two Skyrme energy density functionals: a traditional functional SkM* and a recent functional UNEDF1 optimized for fission studies.Results: We predict very shallow or no third minima in the potential-energy surfaces of 232Th and 232U. In the lighter Th and U isotopes with N=136 and 138, the third minima are better developed. We show that the reflection-asymmetric configurations around the third minimum can be associated with dimolecular states involving the spherical doubly magic 132Sn and a lighter deformed Zr or Mo fragment. The potential-energy surfaces for 228,232Th and 232U at several excitation energies are presented. We also study isotopic chains to demonstrate the evolution of the depth of the third minimum with neutron number.Conclusions: We show that the neutron shell effect that governs the existence of the dimolecular states around the third minimum is consistent with the spherical-to-deformed shape transition in the Zr and Mo isotopes around N=58. We demonstrate that the depth of the third minimum

  8. Medical effects of internal contamination with actinides: further controversy on depleted uranium and radioactive warfare.

    PubMed

    Durakovic, Asaf

    2016-05-01

    The Nuclear Age began in 1945 with testing in New Mexico, USA, and the subsequent bombings of Hiroshima and Nagasaki. Regardless of attempts to limit the development of nuclear weapons, the current world arsenal has reached the staggering dimensions and presents a significant concern for the biosphere and mankind. In an explosion of a nuclear weapon, over 400 radioactive isotopes are released into the biosphere, 40 of which pose potential dangers including iodine, cesium, alkaline earths, and actinides. The immediate health effects of nuclear explosions include thermal, mechanical, and acute radiation syndrome. Long-term effects include radioactive fallout, internal contamination, and long-term genotoxicity. The current controversial concern over depleted uranium's somatic and genetic toxicity is still a subject of worldwide sustained research. The host of data generated in the past decades has demonstrated conflicting findings, with the most recent evidence showing that its genotoxicity is greater than previously considered. Of particular concern are the osteotropic properties of uranium isotopes due to their final retention in the crystals of exchangeable and nonexchangeable bone as well as their proximity to pluripotent stem cells. Depleted uranium remains an unresolved issue in both warfare and the search for alternative energy sources. PMID:27002520

  9. Improving Natural Uranium Utilization By Using Thorium in Low Moderation PWRs - A Preliminary Neutronic Scoping Study

    SciTech Connect

    Gilles Youinou; Ignacio Somoza

    2010-10-01

    The Th-U fuel cycle is not quite self-sustainable when used in water-cooled reactors and with fuel burnups higher than a few thousand of MWd/t characteristic of CANDU reactors operating with a continuous refueling. For the other industrially mature water-cooled reactors (i.e. PWRs and BWRs) it is economically necessary that the fuel has enough reactivity to reach fuel burnups of the order of a few tens of thousand of MWd/t. In this particular case, an additional input of fissile material is necessary to complement the bred fissile U-233. This additional fissile material could be included in the form of Highly Enriched Uranium (HEU) at the fabrication of the Th-U fuel. The objective of this preliminary neutronic scoping study is to determine (1) how much HEU and, consequently, how much natural uranium is necessary in such Th-U fuel cycle with U recycling and (2) how much TRansUranics (TRU=Pu, Np, Am and Cm) are produced. These numbers are then compared with those of a standard UO2 PWR. The thorium reactors considered have a homogeneous hexagonal lattice made up of the same (Th-U)O2 pins. Furthermore, at this point, we are not considering the use of blankets inside or outside the core. The lattice pitch has been varied to estimate the effect of the water-to-fuel volume ratio, and light water as well as heavy water have been considered. For most cases, an average burnup at discharge of 45,000 MWd/t has been considered.

  10. Research in actinide chemistry. Progress report, 1990--1993

    SciTech Connect

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  11. National Uranium-Resource Evaluation: genesis of the Bokan Mountain, Alaska uranium-thorium deposits

    SciTech Connect

    Thompson, T.B.; Lyttle, T.; Pierson, J.R.

    1980-01-01

    The objective of this research project is to develop a model that can be used in evaluating peralkaline granitic-syenitic rocks for uranium potential. The deposits at Bokan Mountain (also known as Kendrick Bay) were studied to generate a specific model as to their mode of formation. To achieve the objective several types of data have been obtained: (1) Distinction by mapping and core logging of multiple intrusive phases within the Bokan Mountain Granite complex; (2) Detailed chemical and petrographic data on each igneous phase; (3) Extent of and mineralogical/chemical characteristics of the associated wallrock alteration; (4) Radiometric dates on magmatic and hydrothermal products; (5) Fluid inclusion analysis of quartz, calcite, and fluorite from mineralized rock; (6) Ore and sulfide mineralogy; (7) C, O, and S isotope analyses of minerals from mineralized rock; (8) Trace element dispersion with respect to mineralized zones; and (9) Structural data for interpretation of emplacement mechanisms as well as post-magmatic events important to ore localization. The U/Th mineralization is localized in shear zones as vein-like bodies or in irregular cylindrical bodies formed by concentrations of microfractures. The ore zones are localized within or on top of syenitic masses and have intense albitization and chloritization, with subordinate amounts of calcite, fluorite, quartz, sulfides, and tourmaline. Hematite occurs peripherally to the higher-grade ore zones. Uranothrorite and uraninite are the main ore minerals.

  12. A study of contaminated soils near Crucea-Botus, ana uranium mine (East Carpathians, Romania): metal distribution and partitioning of natural actinides with implications for vegetation uptake

    NASA Astrophysics Data System (ADS)

    Petrescu, L.; Bilal, E.

    2012-04-01

    total uranium can be found in the specifically absorbed and carbonate bound fraction, indicated the important role played by the carbonates in the retention of U; one the other hand this fraction is liable to release the uranium if the pH should happen to change. Thorium appear in high-enough concentration in the soil is scarcely available because 70.29% is present in residual fraction, and about 21.78% in the crystalline iron oxides occluded fraction and organically and secondary sulfide bound fraction. This is certainly due to the fact that this naturally occurring radionuclide can be associated with relatively insoluble mineral phases like alumino-silicates and refractory oxides. Its association with the organic matter (10.93%) suggests that it can form soluble organic complexes that can facilitate its removal by the stream waters. Grounded on these results, we were able to prove that the examined mine dumps can represent an impact on the environment, which constitute an argument in favor of the initiation of a program of remedying the quality of the environment from this mining zone. Although from our research it resulted that the natural actinides does not concentrate in the exchangeable fraction (Th) or it concentrates very little in it (U), the isolation of the mineral fraction of soil rich in U and Th helps us in the future identification of the links between the bioavailability and the pedogenesis, connections which control the cycle of the radioactive metals.

  13. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    SciTech Connect

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  14. Melting of the Earth's lithospheric mantle inferred from protactinium-thorium-uranium isotopic data

    PubMed

    Asmerom; Cheng; Thomas; Hirschmann; Edwards

    2000-07-20

    The processes responsible for the generation of partial melt in the Earth's lithospheric mantle and the movement of this melt to the Earth's surface remain enigmatic, owing to the perceived difficulties in generating large-degree partial melts at depth and in transporting small-degree melts through a static lithosphere. Here we present a method of placing constraints on melting in the lithospheric mantle using 231Pa-235U data obtained from continental basalts in the southwestern United States and Mexico. Combined with 230Th-238U data, the 231Pa-235U data allow us to constrain the source mineralogy and thus the depth of melting of these basalts. Our analysis indicates that it is possible to transport small melt fractions--of the order of 0.1%--through the lithosphere, as might result from the coalescence of melt by compaction owing to melting-induced deformation. The large observed 231Pa excesses require that the timescale of melt generation and transport within the lithosphere is small compared to the half-life of 231Pa (approximately 32.7 kyr). The 231Pa-230Th data also constrain the thorium and uranium distribution coefficients for clinopyroxene in the source regions of these basalts to be within 2% of one another, indicating that in this setting 230Th excesses are not expected during melting at depths shallower than 85 km. PMID:10917528

  15. Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite.

    PubMed

    Akkaya, Recep

    2013-06-01

    Poly(hydroxyethylmethacrylate-pumice), [P(HEMA-Pum)], composite was synthesized by free radical polymerization in aqueous solution. The adsorptive features of P(HEMA-Pum) composite were investigated for UO2(2+) and Th(4+) using a range of pH, concentration, time (kinetics), temperature (thermodynamics), ionic strength and selectivity, and the related parameters were derived from the obtained results. These results indicated that all adsorbents had high affinity to the uranium and thorium ions. The parameters obtained from Langmuir, Freundlich and Dubinin-Radsushkevich models fit the data well. The values of enthalpy and entropy changes showed that the overall adsorption process was endothermic (ΔH > 0) and increasing entropy (ΔS > 0), and it was spontaneous (ΔG < 0) as expected. The adsorption kinetics following the pseudo-second order model indicated that the rate-controlling step was chemical adsorption that occurred by ion exchange process. Reusability of P(HEMA-Pum) was also investigated, and it was found that the composite could be used at least 5 times. PMID:23416761

  16. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    NASA Astrophysics Data System (ADS)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-01

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  17. Production of microspheres of thorium oxide, uranium oxide and plutonium oxide and their mixtures containing carbon

    SciTech Connect

    Bezzi, G.; Facchini, A.; Martignani, G.; Pastore, M.

    1980-05-13

    A process is desclosed for the production of microspheres of thorium oxide, uranium oxide or plutonium oxide and mixtures thereof, containing carbon. The microspheres are prepared by first forming an aqueous alkaline solution of a salt of said metals which will precipitate to a solid form in a concentrated alkaline medium together with an alkaline polymerizable organic monomer and carbon, thereafter dripping this solution into a concentrated alkaline medium wherein metal hydroxide is precipitated out and said monomers polymerized to thereby form said microspheres. The precipitated metal compounds with polymerized monomer and carbon are washed to remove unwanted ions and dried by various methods such as air currents, infrared lamps, high frequency microwaves or preferably by azeotropic distillation whereby the washed particles are dispersed in an organic liquid immiscible with water which is then boiled off. Simple liquids include 1,1,1-trichloroethane, carbontetrachloride and xylene. The particles are then subjected to thermal treatments which vary according to the particular composition and the properties required in the final product. The microspheres obtained according to the process of the invention possess excellent properties of high density, good homogeneity, and high tensile strength and are useful as fuel for high temperature gas-cooled nuclear reactors. In a preferred embodiment, uranyl nitrate is mixed with acrolein in dilute ammonia solution to which carbon is added and the solution dripped into a concentrated alkaline medium, and the microspheres thereby formed washed with water, dried by azeotropic distillation with an organic liquid, and thermally cycled.

  18. Distributions of selenium, iodine, lead, thorium and uranium in Japanese river waters

    SciTech Connect

    Tagami, K.; Uchida, S.

    2007-07-01

    Long-lived radionuclides released from nuclear facilities, such as deep underground disposal facilities, could reach humans through several transfer paths in the environment. Uses of ground water and river water for agricultural field irrigation and for drinking water are important paths. In order to understand behavior of long-lived radionuclides in the terrestrial water environment, we carried out a natural analogue study, that is, measurement of selenium (Se), iodine (I), lead (Pb), thorium (Th) and uranium (U) concentrations in 45 Japanese rivers at 10 sampling points from the upper stream to the river mouth for each river. Geometric mean concentrations for Se, I, Pb, Th and U were 0.057, 1.4, 0.039, 0.0055, 0.0109 ng/mL, respectively. Distribution patterns from upper stream to river mouth were different by elements, for instance, the concentrations of I, Th and U increased when the sampling points were nearer the river mouth, while that of Se were almost constant. For Pb, the highest value was observed in the middle part of each river in many cases. (authors)

  19. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    SciTech Connect

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  20. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  1. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    SciTech Connect

    Judge, Elizabeth J.; Berg, John M.; Le, Loan A.; Lopez, Leon N.; Barefield, James E.

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and

  2. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  3. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    SciTech Connect

    Baybas, Demet; Ulusoy, Ulvi

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  4. Uranium, Thorium and some other trace elements in phosphorites from different provenances

    NASA Astrophysics Data System (ADS)

    Bech, J.; Reverter, F.; Tume, P.; Roca, N.; Suarez, E.; Sepúlveda, G.; Sokolovska, M.

    2012-04-01

    Data on the trace element composition of phosphorites is scarce. Some of them may be harmful at certain concentrations. Special concern is given to the radionuclides U and Th and some other heavy metals such as: Co, Cr, Cu, Ni and V. Phosphorites of different origins can vary significantly in the trace element concentrations. 37 samples of phosphorites from 16 deposits were analyzed for Uranium, Thorium and five potential toxic elements (Co, Cr, Cu, Ni and V) as well as 26 samples of data gathered from the literature. In total 63 samples of phosphorites from 20 deposits of 19 countries were studied: Algeria, Australia, Brazil, Burkina Faso, Chile, Colombia, Egypt, India, Israel, Mongolia, Morocco, New Zealand, Peru, Senegal, Syria, Togo, Tunisia, USA and Venezuela. Aqua regia extracts were used to estimate the "pseudototal" values, following standard procedures (ISO 11466, 2002) and measured by ICP-MS. The median concentrations (mgkg-1) obtained were: U 53 (range 0.20-177), Th 4.05 (range 1-49), Co 4 (range 0.5-159), Cr 100 (range 15-1000), Cu 20 (range 5-213), Ni 21 (range 3-850) and V 70.05 (range 20-591). As 120 mgkg-1 of U concentration of phosphorites is the value considered to be useful as a source of nuclear fuel, we now indicate the deposits with values higher than 120 mgkg-1: Khouribga KIISB (Morocco) 121, Khouribga KIISL (Morocco) 123, Champ mines (Idaho, USA) 131, Noralyn (Central Florida, USA) 138, Bone Valley (Florida, USA) 140, Boucraa BGB (Morocco) 141, Boucraa BGC (Morocco) 152, Negev (Israel) 172 and Chatam Rise (New Zealand) 177. The highest Th concentration found was 49 mgkg-1 at Bijawar Group (India). Uranium shows significant positive correlations with V (r = 0.41) and Cr (r = 0.30), and significant negative correlations with Co (r= -0.47). Other positive correlations are Cr with Cu (r=0.58), Cr with V (r=0.52) and Cr with Ni (r=0.51). Cu correlates positively with Ni (r=0.84) and with V (r=0.63). Ni correlates positively with V (r=0.72).

  5. Uranium and thorium behavior in groundwater of the natural spa area “Choygan mineral water” (East Tuva)

    NASA Astrophysics Data System (ADS)

    Kopylova, Y.; Guseva, N.; Shestakova, A.; Khvaschevskaya, A.; Arakchaa, K.

    2015-11-01

    The natural spa area “Choygan mineral waters”, a unique deposit of natural carbon dioxide mineral waters in Siberia, is located in the Eastern Sayan Mountains. There are 33 spring discharges in this area. Spring waters are mainly of HCO3-Na-Ca type. TDS varies from 300 mg/L to 2600 mg/L, the temperature ranges from 7 °C (in spring 33) to 39 °C (in spring 12), pH varies from 5.9 to 8.3, and the value of the oxidation-reduction potential is from -170 mV to 236 mV. All studied waters were divided into two groups according to their temperature and geochemical conditions: cold fresh water in oxidizing environment and warm slightly brackish water in reducing environment. The uranium concentration varies from 0.7 to 14 μg/l and the thorium concentration varies from 0.001 to 0.33 μg/l in the studied waters. The predominant uranium complexes are (UO2(CO3)3)4-, (UO2(CO3)2)2-, UO2CO3, (UO2(PO4)2)4- in the waters in oxidizing and reducing environments. It was found that acid-alkaline and oxidizing-reducing conditions were the determining factors for uranium behavior and speciation in the studied waters. The pH conditions are determining factors for thorium behavior and speciation in the studied waters. In slightly acidic water the predominant thorium species is negatively charge complex (ThCO3(OH)3)- (more than 95%).

  6. Relativistic effects on the thermal expansion of the actinide elements

    SciTech Connect

    Soederlind, P.; Nordstroem, L.; Lou Yongming; Johansson, B. )

    1990-09-01

    The room-temperature linear thermal-expansion coefficient is calculated for the light actinides thorium, protactinium, uranium, neptunium, and plutonium for the fcc crystal structure. The relativistic spin-orbit interaction is included in these calculations. We show that the spin-orbit splitting of the 5{ital f} band gives rise to a considerable increase of the thermal expansion and to a large extent explains the observed anomalously large thermal expansion for the neptunium and plutonium metals.

  7. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  8. Acquisition of improved reference values for cesium, iodine, strontium, thorium, and uranium in selected NIST reference materials.

    PubMed

    Parr, R M; Kawamura, H; Iyengar, G V

    1999-01-01

    As part of a study on the ingestion and organ content of some trace elements of importance in radiological protection, additional work has been undertaken to acquire improved reference values for cesium, iodine, strontium, thorium, and uranium in four selected reference materials provided by the US National Institute of Standards and Technology. The materials are SRM-1548 Total Diet, SRM-1548a Typical Diet, SRM-1486 Bone Meal, and RM-8414 Bovine Muscle. A coordinated study was undertaken with the help of seven selected laboratories in five countries. Instrumental and radiochemical neutron activation analysis and inductively coupled plasma-mass spectrometry were the analytical main techniques used. PMID:10676473

  9. Abundance and distribution of uranium and thorium in zircon, sphene, apatite, epidote, and monazite in granitic rocks

    USGS Publications Warehouse

    Hurley, Patrick M.; Fairbairn, Harold W.

    1956-01-01

    Analyses were made of uranium and thorium in ziircon, sphene, apatite, epidote, and monazite separated as accessory minerals from samples of granitic rock from widely scattered localities to indicate the abundance and distribution of these two elements among the five mineral phases.  For any pair of mineral phases the distribution ratio remains within the same order of magnitude over the different rocks tested, although the variability of the data is such that only wide departures from constancy could be ascertained.  Such gross differences have not been found. 

  10. Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra da Bodoquena and Pantanal do Miranda, Mato Grosso do Sul State, central Brazil.

    PubMed

    Ribeiro, F B; Roque, A; Boggiani, P C; Flexor, J M

    2001-01-01

    Activities of gamma-ray emitting members of the uranium (238U) and thorium (232Th) series were measured in a quaternary limestone deposit that outcrops in the southeastern Pantanal Matogrossense Basin and in quaternary tufas deposited at the drainage of the Serra da Bodoquena. It is a first step in a study of the mobilization of uranium and thorium series and its relation to surface hydrology, in a region where carbonate deposits are being continuously dissolved and reprecipitated. The obtained results show that all these deposits are characterized by very low concentrations of uranium and thorium. The 238U/226Ra and 228Th/228Ra activity ratios are significantly different than 1.0, indicating that both series are in radioactive disequilibrium. Although the Serra da Bodoquena deposits seem to be very recent, their very fine granulation and high porosity suggest that they behave as open systems for geochemical exchanges of uranium and thorium series members. The Pantanal do Miranda limestone has a radiocarbon age of 3900 yr BP. Since the thorium series is in disequilibrium it is also concluded that this deposit behaves as an open system for geochemical exchanges. PMID:11144246

  11. Fission-product data analysis from actinide samples exposed in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Murphy, B.D.; Dickens, J.K.; Walker, R.L.; Newton, T.D.

    1994-12-31

    Since 1979 a cooperative agreement has been in effect between the United States and the United Kingdom to investigate the irradiation of various actinide species placed in the core of the Dounreay Prototype Fast Reactor (PFR). The irradiated species were isotopes of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium. A set of actinide samples (mg quantities) was exposed to about 490 effective full power days (EFPD) of reactor operations. The fission-product results are reported here. The actinide results will be report elsewhere.

  12. Thorium and uranium porphyrins. Synthesis and crystal structure of bis(acetylacetonato)(2,3,7,8,12,13,17,18-octaethylporphyrinato)thorium(IV)

    SciTech Connect

    Dormond, A.; Belkalem, B.; Charpin, P.; Lance, M.; Vigner, D.; Folcher, G.; Guilard, R.

    1986-12-17

    The action of thorium tetrachloride or uranium tetrachloride with porphyrins affords the dichloro complexes (Por)MCl/sub 2/ (M = Th or U). The latter derivatives react with sodium acetylacetonate giving rise to bis(acetylacetonato) complexes (Por)M(acac)/sub 2/. The two series of complexes are characterized on the basis of mass spectral, IR, UV-visible, and NMR data. The crystal structure of the title compound has been determined by X-ray diffraction methods: (OEP)Th(acac)/sub 2/, C/sub 46/H/sub 58/N/sub 4/O/sub 4/Th; M/sub r/ = 963; triclinic, P anti 1; a = 9.493 (7), b = 21.185 (5), c = 24.331 (7) A; ..cap alpha.. = 104.18 (2), ..beta.. = 96.11 (4), ..gamma.. = 92.35 (4)/sup 0/; V = 4705 A/sup 3/; d/sub calcd/ = 1.359 g cm/sup -3/; Z = 4; T = 298 K. A total of 9019 intensities were measured on a CAD 4 Enraf-Nonius diffractometer in the omega-2 theta scan mode with monochromatized Mo K..cap alpha.. radiation (1.5 < theta < 20/sup 0/). The crystal structure was refined to a conventional R(F) = 0.047 for 5323 reflections having sigma (I)/I < 0.33. The thorium atom is octacoordinated by the four porphyrin nitrogen atoms and by the four oxygen atoms of the two acetylacetonato groups. 18 references, 2 figures, 8 tables.

  13. High-Precision Isotope Analysis of Uranium and Thorium by TIMS

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.

    2006-12-01

    The U.S. Geological Survey (USGS) Yucca Mountain Project Branch laboratory in Denver, Colorado, conducts routine high-precision isotope analyses of uranium (U) and thorium (Th) using thermal ionization mass- spectrometry (TIMS). The measurements are conducted by a ThermoFinnigan Triton\\texttrademark equipped with a Faraday multi-collector system and an energy filter in front of an active-film-type secondary electron multiplier (SEM). The abundance sensitivity of the instrument (signal at mass 237 over 238U in natural U) with the energy filter is about 15 ppb and peak tails are reduced by a factor of about 100 relative to the Faraday cup measurements. Since instrument installation in April 2004, more than 500 rock and water samples have been analyzed in support of isotope-geochemical studies for the U.S. Department of Energy`s Yucca Mountain Project. Isotope ratios of sub-nanogram to microgram U and Th samples are measured on graphite-coated single- filament and double-filament assemblies using zone-refined rhenium filaments. Ion beams less than 5 mV are measured with the SEM, which is corrected for non-linearity on the basis of measurements of NIST U-500 and 4321B standards with ion beams ranging from 0.01 to 8 mV. Inter-calibration between the SEM and the Faraday multi-collector is performed for every mass cycle using a 5 mV beam switched between Faraday cup and SEM (bridging technique), because SEM-Faraday inter-calibrations prior to the measurement failed to produce acceptable results. Either natural (^{235}U) or artificial (^{236}U, ^{229}Th) isotopes were used for the bridging. Separate runs are conducted for minor isotopes using SEM only. These techniques result in high within-run precisions of less than 0.1 to 0.2 percent for 234U/238U and 0.2 to 0.5 percent for 230Th/238U. The performance of the instrument is monitored using several U and Th isotope standards. The mean measured 234U/238U in NIST SRM 4321B is (52.879±0.004)×10-6 (95 percent confidence, n

  14. Uranium, thorium, and potassium in soils along the shore of Lake Issyk-Kyol in the Kyrghyz Republic.

    PubMed

    Hamby, D M; Tynybekov, A K

    2002-01-01

    The Kyrghyz Republic, located in the southeastern region of the former Soviet Union, maintains a population of more than one-half-million persons and is heavily dependent on Lake Issyk-Kyol, both to draw tourists to the area and for its utilization by some as a food and recreation source. Historical surveys, conducted primarily for geological exploration, have indicated that localized areas of shoreline on Lake Issyk-Kyol have relative radiation levels in excess of ambient background by as much as a factor often. Uranium mining operations in the mountains bordering the lake to the south may have resulted in the contamination of a number of areas on the lake's southern shore. Concentrations of naturally occurring uranium, thorium, and potassium are present in these soils in elevated quantities. This paper presents the results of an investigation of soil concentrations along the shoreline of Lake Issyk-Kyol relative to previously discovered areas of high exposure rate. PMID:11878643

  15. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solutions by inductively coupled plasma-multiple collector-mass spectrometry

    SciTech Connect

    Bowen, I.; Walder, A.J.; Hodgson, T.; Parrish, R.R. |

    1998-12-31

    A novel method for the high accuracy and high precision measurement of uranium isotopic composition by Inductively Coupled Plasma-Multiple Collector-Mass Spectrometry is discussed. Uranium isotopic samples are spiked with either thorium or lead for use as internal calibration reference materials. This method eliminates the necessity to periodically measure uranium standards to correct for changing mass bias when samples are measured over long time periods. This technique has generated among the highest levels of analytical precision on both the major and minor isotopes of uranium. Sample throughput has also been demonstrated to exceed Thermal Ionization Mass Spectrometry by a factor of four to five.

  16. Budgets and behaviors of uranium and thorium series isotopes in the Santa Monica Basin off the California Coast

    SciTech Connect

    Yu, Lei

    1991-12-16

    Samples from three time-series sediment traps deployed in the Santa Monica Basin off the California coast were analyzed to study the flux and scavenging of uranium and thorium series isotopes. Variations of uranium and thorium series isotopes fluxes in the water column were obtained by integrating these time-series deployment results. Mass and radionuclide fluxes measured from bottom sediment traps compare favorably with fluxed determined from sediment core data. This agreement suggests that the near-bottom sediment traps are capable of collecting settling particles representative of the surface sediment. The phase distributions of {sup 234}Th in the water column were calculated by an inverse method using sediment trap data, which help to study the variations of {sup 234}Th scavenging in the water column. Scavenging and radioactive decay of {sup 234}Th are the two principal processes for balancing {sup 234}Th budget in the water column. The residence times of dissolved and particulate {sup 234}Th were determined by a {sup 234}Th scavenging model.

  17. Synthesis, Characterization, and Density Functional Theory Analysis of Uranium and Thorium Complexes Containing Nitrogen-Rich 5-Methyltetrazolate Ligands.

    PubMed

    Browne, Kevin P; Maerzke, Katie A; Travia, Nicholas E; Morris, David E; Scott, Brian L; Henson, Neil J; Yang, Ping; Kiplinger, Jaqueline L; Veauthier, Jacqueline M

    2016-05-16

    Two nitrogen-rich, isostructural complexes of uranium and thorium, (C5Me5)2U[η(2)-(N,N')-tetrazolate]2 (7) and (C5Me5)2Th[η(2)-(N,N')-tetrazolate]2 (8), containing 5-methyltetrazolate, have been synthesized and structurally characterized by single-crystal X-ray diffraction, electrochemical methods, UV-visible-near-IR spectroscopy, and variable-temperature (1)H NMR spectroscopy. Density functional theory (DFT) calculations yield favorable free energies of formation (approximately -375 kJ/mol) and optimized structures in good agreement with the experimental crystal structures. Additionally, calculated NMR chemical shifts of 7 and 8 are in good agreement with the variable-temperature (1)H NMR experiments. Time-dependent DFT calculations of both complexes yield UV-visible spectroscopic features that are consistent with experiment and provide assignments of the corresponding electronic transitions. The electronic transitions in the UV-visible spectroscopic region are attributed to C5Me5 ligand-to-metal charge transfer. The low-lying molecular orbitals of the tetrazolate ligands (∼2 eV below the HOMO) do not contribute appreciably to experimentally observed electronic transitions. The combined experimental and theoretical analysis of these new nitrogen-rich uranium and thorium complexes indicates the tetrazolate ligand behaves primarily as a σ-donor. PMID:27110650

  18. The Impact of Higher Waste Loading on Glass Properties: The Effects of Uranium and Thorium

    SciTech Connect

    Peeler, D.K.

    2003-12-02

    In this study, glasses are designed or selected to assess the impacts of U3O8 and ThO2 on various glass properties of interest. More specifically, glasses were fabricated in which Th replaced U (on a molar basis) to assess the impact of ThO2 on the durability response (as measured by the Product Consistency Test ) and viscosity. Based on the measured normalized boron release values, the results indicated that the Th-enriched glasses were less durable than their Ubased counterparts. Although molar substitution of Th or U had a negative impact, all of the glasses were more durable than the Environmental Assessment glass - the highest release being 7.39 g/L as compared to 16.695 g/L as reported for EA. With respect to model predictions, THERMOTM predicts that a molar substitution of thorium for uranium should increase glass durability. However, these data suggest that the signs and/or magnitudes of the Gi values associated with U3O8 and ThO2 are inconsistent with the theory on which the current model is based for the limited number of glasses tested. It should be noted that these glasses cover a narrow compositional region. With respect to the impact on viscosity, the data suggest that there may be a bias in the model. That is, the model currently does not contain a U3O8 or ThO2 term - but perhaps it should to account for their contributions to the measured (or actual) viscosity results. In addition, a series of glasses were produced to assess the impact of higher waste loadings on select glass properties. The PCT results suggest that durable glasses can be made at relatively high WLs (exceeding 40 wt percent). Comparisons between the measured PCTs and their predictions indicate that the current model is applicable, with all of the quenched glasses falling within the 95 percent confidence bands. The viscosity data for the higher WL glasses suggest that the current model may be extremely accurate for some systems but for different regions the model may be biased high

  19. Actinide sulfite tetrahydrate and actinide oxysulfite tetrahydrate

    SciTech Connect

    Baugh, D.; Watt, G.

    1980-07-08

    A compound is prepared that comprises an actinide sulfite tetrahydrate selected from the group consisting of uranium (IV) sulfite tetrahydrate and plutonium (IV) sulfite tetrahydrate. A compound is also prepared that comprises an actinide oxysulfite tetrahydrate selected from the group consisting of uranium (IV) oxysulfite tetrahydrate and plutonium (IV) oxysulfite tetrahydrate

  20. Uranium and thorium isotopes in the rivers of the Amazonian basin: hydrology and weathering processes

    NASA Astrophysics Data System (ADS)

    Marques, Aguinaldo N., Jr.; Al-Gharib, Iyad; Bernat, Michel; Fernex, François

    2003-01-01

    hydroxylamine extracts. As expected, the 1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment.thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year

  1. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  2. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    PubMed

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17. PMID:26592585

  3. The Impacts of Uranium and Thorium on the Defense Waste Processing Facility (DWPF) Viscosity Model

    SciTech Connect

    CAROL, JANTZEN

    2005-02-28

    higher U3O8 concentrations but this would have to be demonstrated since the effects of the 0.66:0.33 BO to NBO ratio may become more significant as the U3O8 content increases. While U-plus-6 appears to have little to no impact on glass viscosity, this may or may not be true for U-plus-4 and U-plus-5 in glass since these species were not examined in this study. This is of especial note since the DWPF is currently operating at a REDOX target of 0.2 where 45 percent of the uranium is U-plus-6, 45 percent is U-plus-5, and 10 percent is U-plus-4. An additional 26 glasses for which 98 viscosity-temperature measurements were available indicate disparate roles for ThO2 depending on the U3O8 concentration and the Al2O3 concentration of the glasses measured. For the data generated on three DWPF glasses at SRNL where the ThO2 content and U3O8 content were each in the 2.5-3.0 wt percent range, the presence of ThO2 made the melts more fluid. This is consistent with what is known from the literature about the coordination chemistry of Th-plus-4 in glass, e.g. that it may act as a weak network modifier. However, twenty two West Valley mixed uranium-thorium glasses with U3O8 approximately 0.6-0.7 wt percent and ThO2 of 3.5-3.6 wt percent, demonstrate a trend toward more polymerized melts (higher viscosities). The West Valley glasses are much higher in Al2O3 than the glasses measured at SRNL although they are in the range of the DWPF viscosity model. This indicates that there may be a synergistic interaction between ThO2, U3O8, and Al2O3 that needs further investigation.

  4. Evaluation of chelation preconcentration for the determination of actinide elements by flow injection ICP-MS

    SciTech Connect

    Evans, E.H.; Truscott, J.B.; Bromley, L.; Jones, P.; Turner, J.; Fairman, B.E.

    1998-12-31

    A chelation column preconcentration method has been developed for the determination of uranium and thorium in waters by ICP-MS. Detection limits of 24 pg and 60 pg respectively were obtained, but these were blank limited. Uranium and Thorium were determined in certified reference materials. Results for uranium were 121 {+-} 21 and 15 {+-} 3 ng/g in NIST 1566a and NIST 1575 compared with certified values of 132 {+-} 12 and 20 {+-} 4 ng/g respectively. Results for thorium were 29 {+-} 8 and 28 {+-} 5 ng/g in NIST 1566a and NIST 1575 compared with indicative and certified values of 40 and 37 {+-} 3 ng/g respectively. The on-line separation of actinide radionuclides was achieved by selective elution of U, Th, Pu, Np, and Am.

  5. Systems of symbiotic large FBRs and small CANDLE-Thorium-HTGRs

    SciTech Connect

    Ismail; Liem, P. H.; Takaki, N.; Sekimoto, H.

    2006-07-01

    Multi-component nuclear system is a system in which several types of nuclear reactors and related fuel cycle facilities are operated with mutual material exchange. A mainstay of the system is a centralized nuclear park that consists of large-scale FBRs and nuclear fuel facilities for fabrication, reprocessing and cooling/storage of nuclear fuels. The role of the FBRs is simultaneously to produce electricity and support small satellite-reactors by providing nuclear fuel. The satellite-reactors can supply energy to remote small areas. In the present study, natural uranium and thorium are charged into the FBRs in distinct fuel pin types. Under the equilibrium state, the fuels are continually discharged and separated with a certain discharge constant. Actinides, excluding {sup 233}U-only or uranium-element, are returned to the FBRs while discharged-uranium is used for fresh fuels of small HTGR thorium cycle satellite-reactors. Fissile support capability of the FBR to the satellite-reactors is investigated as function of both the FBR uranium-thorium fraction and uranium discharge constant parameters. The system shows that larger number of uranium pins is better for the FBR criticality while larger number of thorium pins and larger uranium discharge constant give better support capability. (authors)

  6. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  7. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  8. The assessment of the radiation hazard indices due to uranium and thorium in some Egyptian environmental matrices

    NASA Astrophysics Data System (ADS)

    El-Taher, A.; Uosif, M. A. M.

    2006-10-01

    The estimation of exposures of humans to the various sources of radiation is important. Instrumental neutron activation analysis has been used for the determination of uranium and thorium in environmental samples such as Toshki soil, Aswan iron ore, gold vein deposits and phosphate samples from Upper Egypt. The specific activities due to 238U and 232Th have been measured and the radiation hazard to the workers, the Radium equivalent activities, representative level index and dose rates were also estimated. The lowest external γ-radiation dose received by the workers is 33.15 ± 6.06 µSv y-1 which comes from gold samples and the highest one was 315.65 ± 7.98 µSv y-1 which comes from phosphate samples which is far below the worldwide allowed dose of 20 mSv y-1 for workers (ICRP-60 1990).

  9. Potassium, rubidium, strontium, thorium, uranium, and the ratio of strontium-87 to strontium-86 in oceanic tholeiitic basalt

    USGS Publications Warehouse

    Tatsumoto, M.; Hedge, C.E.; Engel, A.E.J.

    1965-01-01

    The average concentrations of potassium, rubidium, strontium, thorium, and uranium in oceanic tholeiitic basalt are (in parts per million) K, 1400; Rb, 1.2; Sr, 120; Th, 0.2; and U, 0.1. The ratio Sr87 to Sr86 is about 0.702, that of K to U is 1.4 ?? 104, and of Th to U is 1.8. These amounts of K, Th, U, and radiogenic Sr87 are less than in other common igneous rocks. The ratios of Th to U and Sr87 to Sr 86 suggest that the source region of the oceanic tholeiites was differentiated from the original mantle material some time in the geologic past.

  10. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  11. Comparative uptake of uranium, thorium, and plutonium by biota inhabiting a contaminated Tennessee floodplain

    SciTech Connect

    Garten, C.T. Jr.; Bondietti, E.A.; Walker, R.L.

    1981-04-01

    The uptake of /sup 238/U, /sup 232/Th, and /sup 239/Pu from soil by fescue, grasshoppers, and small mammals was compared at the contaminated White Oak Creek floodplain in East Tennessee. Comparisons of actinide uptake were based on analyses of radionuclide ratios (U/Pu and Th/Pu) in soil and biota. U:Pu ratios in small mammal carcasses (shrews, mice, and rats) and bone samples from larger mammals (rabbit, woodchuck, opossum, and raccoon) were significantly greater (P less than or equal to 0.05) than U/Pu ratios in soil (based on 8M HNO/sub 3/ extractable). There was no significant difference between Th/Pu ratios in animals and soil. The order of actinide accumulation by biota from the site relative to contaminated soil was U > Th approx. = Pu.

  12. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. PMID:26901743

  13. Study of uranium and thorium isotopes in ground waters and solids of two uranium mines, south Texas

    SciTech Connect

    San Juan, F.C. Jr.

    1982-01-01

    Isotopic analysis was carried out on water and solid samples taken from both the ore zones and the general vicinity of two uranium mines in south Texas. The uranium deposits were of the roll-front type. The ore-bearing formations were the Catahoula Formation of Miocene age in Duval County and the Upper Jackson formation of Eocene age in Karnes County. Solid samples were analyzed for /sup 234/U, /sup 238/U and /sup 230/Th, water for /sup 234/U and /sup 239/U. In order to test several models which have been proposed to explain the fractionation of various nuclides in the vicinity of a reduction-oxidation front, plots incorporating uranium concentration and /sup 234/U//sup 238/U activity ratio (AR) of the water and /sup 234/U//sup 238/U and /sup 230/Th//sup 238/U - /sup 234/U//sup 238/U of the solid were used. The integration of data from each of these models, including contour maps of various isotopic parameters and statistical plots helped in predicting the presence, the stage of deposition (dispersing, stable or accumulating) and the degree of radioactive disequilibrium of the deposits under study. The isotopic data were also useful in determining the position of the redox boundary and the environment of a sample. These methods may be useful in prospecting studies of other possible uranium deposits, both in the oxidized and/or the reduced environment.

  14. Determination of trace element concentrations and stable lead, uranium and thorium isotope ratios by quadrupole-ICP-MS in NORM and NORM-polluted sample leachates.

    PubMed

    Mas, J L; Villa, M; Hurtado, S; García-Tenorio, R

    2012-02-29

    This work focuses on the monitoring of the potential pollution in scenarios that involve NORM-related industrial activities (environmental or in-door scenarios). The objective was to develop a method to determine extent and origin of the contamination, suitable for monitoring (i.e. simple, fast and economical) and avoiding the use of too many different instruments. It is presented a radiochemical method that allows the determination of trace element concentrations and 206Pb/207Pb/208Pb, 238U/234U and 232Th/230Th isotope ratios using a single sample aliquot and a single instrument (ICP-QMS). Eichrom UTEVA® extraction chromatography minicolumns were used to separate uranium and thorium in sample leachates. Independent ICP-MS determinations of uranium and thorium isotope ratios were carried out afterwards. Previously a small aliquot of the leachate was used for the determination of trace element concentrations and lead isotope ratios. Several radiochemical arrangements were tested to get maximum performances and simplicity of the method. The performances of the method were studied in terms of chemical yields of uranium and thorium and removal of the potentially interfering elements. The established method was applied to samples from a chemical industry and sediments collected in a NORM-polluted scenario. The results obtained from our method allowed us to infer not only the extent, but also the sources of the contamination in the area. PMID:22230754

  15. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  16. Synthesis of Coordinatively Unsaturated Tetravalent Actinide Complexes with η(5) Coordination of Pyrrole.

    PubMed

    Batrice, Rami J; Fridman, Natalia; Eisen, Moris S

    2016-03-21

    The synthesis of new actinide complexes utilizing bridged α-alkyl-pyrrolyl ligands is presented. Lithiation of the ligands followed by treatment with 1 equiv of actinide tetrachloride (uranium or thorium) produces the desired complex in good yield. X-ray diffraction studies reveal unique η(5):η(5) coordination of the pyrrolyl moieties; when the nonsterically demanding methylated ligand is used, rapid addition of the lithiated ligand solution to the metal precursor forms a bis-ligated complex that reveals η(5):η(1) coordination as determined by crystallographic analysis. PMID:26950463

  17. Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene.

    PubMed

    Wang, Lin; Yuan, Liyong; Chen, Ke; Zhang, Yujuan; Deng, Qihuang; Du, Shiyu; Huang, Qing; Zheng, Lirong; Zhang, Jing; Chai, Zhifang; Barsoum, Michel W; Wang, Xiangke; Shi, Weiqun

    2016-06-29

    Efficient nuclear waste treatment and environmental management are important hurdles that need to be overcome if nuclear energy is to become more widely used. Herein, we demonstrate the first case of using two-dimensional (2D) multilayered V2CTx nanosheets prepared by HF etching of V2AlC to remove actinides from aqueous solutions. The V2CTx material is found to be a highly efficient uranium (U(VI)) sorbent, evidenced by a high uptake capacity of 174 mg g(-1), fast sorption kinetics, and desirable selectivity. Fitting of the sorption isotherm indicated that the sorption followed a heterogeneous adsorption model, most probably due to the presence of heterogeneous adsorption sites. Density functional theory calculations, in combination with X-ray absorption fine structure characterizations, suggest that the uranyl ions prefer to coordinate with hydroxyl groups bonded to the V-sites of the nanosheets via forming bidentate inner-sphere complexes. PMID:27267649

  18. The extraction of thorium by calix[6]arene columns for urine analysis.

    PubMed

    Mekki, S; Bouvier-Capely, C; Jalouali, R; Rebière, F

    2011-03-01

    Thorium is a natural alpha-emitting element occurring in various ores and has numerous industrial applications. Routine monitoring of potentially exposed workers is generally achieved through radiobioassay (urine and faeces). The procedures currently used for analysing actinides such as thorium in urine require lengthy chemical separation associated with long counting times by alpha-spectrometry due to low activity levels. Thus, their main drawback is that they are time-consuming, which limits the frequency and flexibility of individual monitoring. In this context, this study developed new radiochemical procedures based on the use of tertbutylcalix[6]arenes bearing three carboxylic acid groups or three hydroxamic acid groups. These previous works demonstrated that these macrocyclic molecules immobilised on an inert solid support are excellent extractants for uranium, plutonium and americium. In this study, the authors investigated the thorium extraction by calix[6]arene columns. Experiments were performed on synthetic solutions and on real urine samples. The influence of various parameters, such as the thorium solution pH and the column flow rate on thorium extraction, was studied. The results showed that both calix[6]arenes are efficient to extract thorium. Thorium extraction is quantitative from pH = 2 for synthetic solution and from pH = 3 for real urine samples. This study has demonstrated that the column flow rate is a crucial parameter since its value must not be too high to achieve the steady-state complexation equilibrium. Finally, these results will be compared with those obtained for other actinides (U, Pu and Am) and the conditions of actinides' separation will be discussed. PMID:21159742

  19. Isotopes of uranium and thorium, lead-210, and polonium-210 in the lungs of coal miners of Appalachia and the lungs and livers of residents of central Ohio

    SciTech Connect

    Gilbert, G.E.; Casella, V.R.; Bishop, C.T.; Aguirre, A.G.

    1985-10-21

    The lungs of twelve and the livers of three residents of central Ohio and the lungs of four coal miners of Appalachia were analyzed for uranium-238, uranium-234, thorium-230, lead-210, polonium-210, and thorium-232. Mean and median lung concentrations of uranium-238 and of uranium-234 in the lungs of central Ohioans were essentially the same and were equal to 4 fCi/g dry. Mean concentrations of these isotopes in the lungs of Appalachian coal miners were also essentially the same and were equal to 9 fCi/g. Little uranium was found in the liver. The median concentration of thorium-230 in the lungs of central Ohioans was also 4 fCi/g dry; however, the mean concentration was 8 fCi/g due to the relatively high concentration values in a few persons. The mean concentrations of this isotope in the lungs of central Ohioans and Appalachian coal miners were essentially the same; i.e. 8 fCi/g. The mean and median concentrations of thorium-232 in the lungs of central Ohioans were assentially the same and equal to 4 fCi/g. The mean concentration of this isotope in the lungs of Appalachian coal miners was 9 fCi/g. Little thorium was found in the liver. The mean concentrations of lead-210 in the lungs of the two populations were nearly equal and about 23 fCi/g dry. The mean liver/lung ratio of this isotope was essentially two, and the concentrations appeared to be positively correlated with smoking. Polonium-210 concentrations in the lungs were distributed into three sets of values which are described here as low (2-4 fCi/g), medium (20-30 fCi/g), and high (>100 fCi/g), and also appeared to be correlated with smoking. Mean liver concentrations of this irotope were nearly equal to the mean liver concentrations of lead-210 (50 as opposed to 47 fCi/g). 18 refs., 6 tabs.

  20. Development of an Alternative Release Limit for a Former Uranium and Thorium Processing Plant in Cushing Oklahoma

    SciTech Connect

    Thatcher, A.H.

    2007-07-01

    The purpose of this presentation will be to describe how, through dose modeling and analysis, a complex site was able to obtain an Alternative Release Limit (ARL) that adequately protected the environment, met regulatory approval, and saved money in the process. The Kerr-McGee Refinery Site in Cushing, OK supported an experimental facility that processed nuclear fuel materials from 1963 to 1966. Radiological contaminants at the site as a result of operations consist of natural thorium and isotopes of uranium (Th-228, Th-232, U-234, U-235 and U-238). Site contamination existed in both surface and sub-surface soils and within a shallow aquifer. After the soil was remediated to acceptable regulatory limits, however, the potential existed for residual groundwater contamination to result in exposure to individuals following site closure. Traditional exposure pathway analysis for the resident farmer seemed to indicate that this exposure was excessive. A closer look at the exposure pathways present in this rural location showed that groundwater contamination existed in a shallow aquifer insufficient to support significant irrigation activities and was of sufficiently poor water quality that it could not be used for drinking water. Through the determination of aquifer yield pumping tests, agreement from the Oklahoma Department of Environmental Quality, and sensitivity and uncertainty analysis using Monte Carlo techniques, it was shown that the average member of the critical population was adequately protected in the current site configuration without further remediation. This paper describes the analytical methods and models used to apply the general dose limit of 0.25 mSv yr{sup -1} (25 mrem yr{sup -1}) to the particulars of the Cushing Site, and demonstrates how these methods achieved a much higher ARL for total uranium in groundwater that was accepted by the regulators and achieved significant savings for the Licensee. (authors)

  1. Application of ENDF data to the AVR reactor with highly enriched uranium fuel and thorium feed

    SciTech Connect

    Vondy, D.R.

    1986-09-01

    Calculations were done applying ENDF data to the German AVR pebble bed reactor at KFA. Several core models were used, and the results obtained with ORNL methods for the multiplication, reaction rates, temperature coefficient of reactivity, and fuel temperature distributions are reported and compared. Only a small difference in multiplication is found for this core in going from ENDF/B-IV to ENDF/B-V cross-section data. The temperature coefficients calculated with the ENDF/B-V are somewhat smaller in magnitude. The worth of control rods was obtained and only a small difference was found with the data, but the calculated results are high compared with experiment. Neutron reaction rates with the key actinides are reported for three-dimensional core calculations.

  2. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    PubMed

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach. PMID:15827719

  3. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad

    2016-01-01

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples were analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.

  4. Uranium and thorium enrichment in rocks from the base of DSDP Hole 465A, Hess Rise, central North Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Morgenson, L.A.

    1982-01-01

    Uranium and thorium are concentrated in Cretaceous limestone, chert, ash, basalt, and other rock types at Deep Sea Drilling Project Site 465 located on the southern Hess Rise in the central North Pacific. U concentrations, up to 194 ppm on a carbonate-free basis, are among the highest recorded for any deep-sea deposits. U was initially derived from seawater and concentrated by absorption on terrigenous (humic) organic matter in limestone in a shallow marine environment. U and Th were probably concentrated further by low-temperature hydrothermal fluids emanating from the basaltic basement. Mainly montmorillonite, an alteration product of basalt and ash, and organic matter in sedimentary rocks acted as hosts for U and Th. The unique combination of sediments rich in humic organic matter, abundant smectite in altered ash and basalt, and warm hydrothermal solutions provided the necessary conditions for migration and concentration of U and Th. To better understand the conditions limiting the migrating and concentration of U and Th, other rocks deposited during the ocean-wide Cretaceous anoxic events should be analyzed for these elements. ?? 1982.

  5. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  6. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes.

    PubMed

    Kesava Raju, Ch Siva; Subramanian, M S

    2007-06-25

    A novel grafted polymer for selective extraction and sequential separation of lanthanides, thorium and uranium from high acidic wastes has been developed by grafting Merrifield chloromethylated (MCM) resin with octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) (MCM-CMPO). The grafting process is well characterized using FT-IR spectroscopy, (31)P and (13)C CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNPS elemental analysis. The influence of various physico-chemical parameters during metal ion extraction by the resin phase are studied and optimized by both static and dynamic methods. The resin shows very high sorption capacity values of 0.960mmolg(-1) for U(VI), 0.984mmolg(-1) for Th(IV), 0.488mmolg(-1) for La(III) and 0.502mmolg(-1) for Nd(III) under optimum HNO(3) medium, respectively. The grafted polymer shows faster rate exchange kinetics (<5min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, sequential separation of the analytes is possible with varying eluting agents. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. All the analytical data is based on triplicate analysis and measurements are within 3.5% rsd reflecting the reproducibility and reliability of the developed method. PMID:17178189

  7. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are

  8. Utilisation of thorium in reactors

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  9. Actinides and Life's Origins

    NASA Astrophysics Data System (ADS)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  10. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOEpatents

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  11. Determination of thorium-232 in Canadian soils by gamma-ray spectrometry via lead-212 and actinium-228, interference from uranium

    SciTech Connect

    Zikovsky, L.; Blagoeva, R.

    1994-12-31

    Thorium-232 background levels in non-cultivated Canadian soils (southern and northern Quebec and the Northwest Territories) are presented. Gamma-ray spectrometry was used to determine the activity of {sup 232}Th by measuring the activities of {sup 228}Ac and {sup 212}Pb at 37 sites. The specific activity levels ranged from 2.7 to 95.5 Bq/kg with an overall mean of 24.0 {+-} 15.4 Bq/kg. This activity generated an annual absorbed dose equivalent in air of 0.1 mSv. The activities of {sup 228}Ac and {sup 212}Pb in the soil increased with increasing depth. IT was found that uranium, via its decay product radium, can interfere with the determination of thorium in the soil.

  12. Redistribution of uranium and thorium series isotopes during isovolumetric weathering of granite

    NASA Astrophysics Data System (ADS)

    Michel, Jacqueline

    1984-06-01

    Previous studies of the distribution of U and Th in parent versus weathered granites have shown both depletion and enrichment of these elements during weathering. In this study, the distribution of U and Th decay series isotopes was determined in a weathering profile of a granitic saprolite, which showed textural preservation indicating isovolumetric weathering. Two types of dissolution methods were used: a whole-rock dissolution and a sodium-citrate dithionite leach to preferentially attack noncrystalline phases of weathering products. Using volume-based activities, 45-70 percent of the total 232Th was gradually removed during weathering. Although the whole-rock 228Th /232Th activity ratios were in equilibrium, there were large excesses of 228Th in the leachable fraction of both parent rock ( 228Th /232Th = 2.06 ) and partially weathered saprolite ( 228Th /232Th = 3-6.5 ), due to alpha recoil and release of daughter 228Th to the weathering rind of the mineral grain. For the most weathered sample, 81 percent of the thorium was in the teachable fraction and 228Th /232Th = 1 , indicating that even the more resistant minerals were attacked. The total U activities showed as much variation in the six parent rock samples as in the weathered profile, and 234U /238U were in equilibrium in both the whole-rock and leachable fractions. 230Th was deficient relative to 234U and 226Ra in both fractions, suggesting recent addition of U and Ra to the entire profile. The large variation in U was not from absorption onto the intermediate weathering products, because only 11-23 percent of the U was in the leachable fraction.

  13. The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am).

    PubMed

    Yücel, Haluk

    2007-11-01

    The multi-group analysis (MGA) method for the determination of uranium isotopic abundances in depleted uranium (DU) and natural uranium (NU) samples is applied in this study. A set of non-destructive gamma-ray measurements of DU and NU samples were performed using a planar Ge detector. The relative abundances of 235U and 238U isotopes were compared with the declared values of the standards. The relative abundance for 235U obtained by MGA for a "clean" DU or NU sample with a content of uranium>1wt% is determined with an accuracy of about +/-5%. However, when several actinides such as 232Th, 237Np, 233Pa and 241Am are present along with uranium isotopes simulating "dirty" DU or NU, it has been observed that MGA method gives erroneous results. The 235U abundance results for the samples were 6-25 times higher than the declared values in the presence of above-mentioned actinides, since MGA is utilized the X-ray and gamma-ray peaks in the 80-130 keV energy region, covering XKalpha and XKbeta regions. After the least-squares fitting of the spectra, it is found that the increases in the intensities of the X-ray and gamma-ray peaks of uranium are remarkably larger in the complex 80-130 keV region. On the other hand, it is observed that the interferences of the actinide peaks are relatively less dominant in the higher gamma-ray region of 130-300 keV. The results imply the need for dirty DU and NU samples that the MGA method should utilize the higher energy gamma-rays (up to 1001 keV of (234m)Pa) combined with lower energies of the spectra, which may be collected in a two detector mode (a planar Ge and a high efficient coaxial Ge). PMID:17606378

  14. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  15. Mobility of uranium, thorium and lanthanides around the Bangombe natural nuclear reactor (Gabon)

    SciTech Connect

    Bros, R.; Gauthier-Lafaye, F.; Larque, P.; Samual, J.; Stille, P.

    1995-12-31

    New mineralogical and isotopic studies were carried out on samples form the Bangombe natural nuclear reactor. This reactor is located at shallow depth in the weathering profile and has been subjected to severe supergene alteration. Textural evidence indicates partial dissolution of uraninite in the Bangombe ore related to precipitation of Fe-Ti oxyhydroxides and clay minerals (kaolinite and metahalloysite). As a consequence of the alteration of the uraninite, uranium and fissiogenic rare earth elements were released in the clayey border of the reactor, whereas radiogenic {sup 232}Th remained confined in the close vicinity of the core. A retention effect is also evidenced, under reducing conditions, in the black shales located above the reactor.

  16. Thorium-uranium disequilibrium dating of Late Quaternary ferruginous concretions and rinds

    NASA Astrophysics Data System (ADS)

    Short, Stephen A.; Lowson, Richard T.; Ems, John; Price, David M.

    1989-06-01

    Radioactive ferruginous nodules from the Alligator Rivers Uranium Province, Northern Territory, Australia, were systematically examined by optical microscopy, XRD, alpha- and fission-track autoradiography, and analysed for U, Th, Ra and major stable elements. Correlation of autoradiographs with microscopic structure and analyses of selective extractions confirmed that U and Th were strongly associated with Fe oxides. Fission-track autoradiography showed no concentration gradient evidence for postdepositional leaching of uranium. Strong acid leaching studies showed that irreversibly adsorbed U, and authigenic 234U and 230Th, but not 226Ra, are quantitatively retained by accumulated oxide/oxyhydroxide. Correlation of the groundwater activity ratio with oxidic 234U/ 238U activity ratios indicated the latter was radiogenically consistent with oxidic 230Th/ 234U activity ratios < 1. Dense, accumulated Fe/Mn oxide matrices are apparently capable of forming radiogenic closed systems in respect of the 230U → 234U → 230Th decay set. 234U/ 238U and 230Th/ 234U activity ratios were used to derive similar mean ages of rinds for four nodules in the same horizon. Th/U ages were also determined, using a Th-index detrital correction method previously used for impure carbonates, of pedogenic Fe/Mn accumulations having background concentrations of U and Th from other locations in Australia. These ages were compared with TL and 14C ages of the-host sediments. The comparisions suggest that Th/U dating could be used to age indurated layers of Fe/Mn oxides in soil horizons < 350 ka old.

  17. Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Carvalho, F. P.

    2006-01-01

    A sequential extraction technique was developed and tested for common naturally-occurring radionuclides. This technique allows the extraction and purification of uranium, thorium, radium, lead, and polonium radionuclides from the same sample. Environmental materials such as water, soil, and biological samples can be analyzed for those radionuclides without matrix interferences in the quality of radioelement purification and in the radiochemical yield. The use of isotopic tracers (232U, 229Th, 224Ra, 209Po, and stable lead carrier) added to the sample in the beginning of the chemical procedure, enables an accurate control of the radiochemical yield for each radioelement. The ion extraction procedure, applied after either complete dissolution of the solid sample with mineral acids or co-precipitation of dissolved radionuclide with MnO2 for aqueous samples, includes the use of commercially available pre-packed columns from Eichrom® and ion exchange columns packed with Bio-Rad resins, in altogether three chromatography columns. All radioactive elements but one are purified and electroplated on stainless steel discs. Polonium is spontaneously plated on a silver disc. The discs are measured using high resolution silicon surface barrier detectors. 210Pb, a beta emitter, can be measured either through the beta emission of 210Bi, or stored for a few months and determined by alpha spectrometry through the in-growth of 210Po. This sequential extraction chromatography technique was tested and validated with the analysis of certified reference materials from the IAEA. Reproducibility was tested through repeated analysis of the same homogeneous material (water sample).

  18. Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates

    SciTech Connect

    Jin, Geng Bang Soderholm, L.

    2015-01-15

    Colorless crystals of ThSiO{sub 4} (huttonite) (1) and (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaThSi{sub 8}O{sub 20} (2) have been synthesized by the solid-state reactions of ThO{sub 2}, CaSiO{sub 3}, and Na{sub 2}WO{sub 4} at 1073 K. Green crystals of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaUSi{sub 8}O{sub 20} (3) have been synthesized by the solid-state reactions of UO{sub 2}, CaSiO{sub 3}, and Na{sub 2}WO{sub 4} at 1003 K. All three compounds have been characterized by single-crystal X-ray diffraction. Compound 1 adopts a monazite-type three-dimensional condensed structure, which is built from edge- and corner-shared ThO{sub 9} polyhedra and SiO{sub 4} tetrahedra. Compounds 2 and 3 are isostructural and they crystallize in a steacyite-type structure. The structure consists of discrete pseudocubic [Si{sub 8}O{sub 20}]{sup 8−} polyanions, which are connected by An{sup 4+} cations into a three-dimensional framework. Each An atom coordinates to eight monodentate [Si{sub 8}O{sub 20}]{sup 8−} moieties in a square antiprismatic geometry. Na{sup +} and Ca{sup 2+} ions reside in the void within the framework. Raman spectra of 1, 2, and 3 were collected on single crystal samples. 1 displays more complex vibrational bands than thorite. Raman spectra of 2 and 3 are analogous with most of vibrational bands located at almost the same regions. - Graphical abstract: A Raman spectrum and crystal structures of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaAnSi{sub 8}O{sub 20} (An=Th, U), which contain pseudocubic [Si{sub 8}O{sub 20}]{sup 8−} polyanions and eight-coordinate An{sup 4+} cations. - Highlights: • Single crystal growth of three tetravalent actinide silicates from melts. • Single-crystal structures and Raman spectra of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaAnSi{sub 8}O{sub 20} (An=Th, U). • First report of Raman spectrum of huttonite on single crystal samples.

  19. Sensitivity to actinide doping of uranium compounds by resonant inelastic X-ray scattering at uranium L3 edge.

    PubMed

    Kvashnina, Kristina O; Kvashnin, Yaroslav O; Vegelius, Johan R; Bosak, Alexei; Martin, Philippe M; Butorin, Sergei M

    2015-09-01

    Valence-to-core resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detection (HERFD) X-ray absorption measurements were performed at the U L3 edges of UO2 and UO2(NO3)2(H2O)6. The results are compared with model calculations based on the local-density-approximation formalism, taking into account Coulomb interaction U (LDA + U). We show that despite strong 5f-5f electronic correlations in the studied systems and the use of core-level excitations in the intermediate stage of the spectroscopic process, the RIXS technique probes a convolution of the single-particle densities of states in the valence and conduction bands. For UO2, the detected crystal-field splitting between the U 6d eg and t2g orbitals from the RIXS spectra (∼3.5 eV) is larger than that previously derived from optical spectroscopy. Furthermore, by using an example of the U0.75Pu0.25O2 mixed oxide, we show that the RIXS technique at the U L3 edges is sensitive to the substitution of U with other actinide, in contrast to conventional X-ray absorption methods. That is, due to changes in the occupied part rather than in the unoccupied part of the U 6d states caused by the substitution. PMID:26255719

  20. Thorium Energy Futures

    SciTech Connect

    Peggs, Stephen; Roser, Thomas; Parks, G; Lindroos, Mats; Seviour, Rebecca; Henderson, Stuart; Barlow, R; Cywinski, R; Biarrote, J -L; Norlin, A; Ashley, V; Ashworth, R; Hutton, Andrew; Owen, H; McIntyre, Peter; Kelly, J

    2012-07-01

    The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options - liquid or solid, with or without an accelerator - can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice.

  1. Overview of actinide chemistry in the WIPP

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].

  2. Uranium series disequilibrium and high thorium and radium enrichments in Karst formations

    SciTech Connect

    Gunten, H.R. von; Roessler, E.; Surbeck, H.

    1996-04-01

    We found, in limestone Karst soils of the Jura Mountains and of the mountains in the central part of Switzerland, an enrichment up to a factor 20 of {sup 230}Th and {sup 226}Ra with respect to the activities of their progenitors, {sup 234}U and {sup 238}U. Thus, a significant radioactive disequilibrium exists between {sup 238/234}U and {sup 230}Th and {sup 226}Ra. The enrichment of {sup 226}Ra leads to locally high concentrations of its decay product, the noble gas {sup 222}Rn. We propose continuous chemical weathering of limestone (calcite) fragments within the soil column as a plausible cause for the high {sup 230}Th, {sup 226}Ra, and {sup 222}Rn activities. Uranium, contained within calcite, is released during weathering and migrates as stable uranyl carbonate complexes through the soil column. In contrast, its decay products ({sup 230}Th and {sup 226}Ra) hydrolyze, are strongly sorbed to soil particles, and/or form insoluble compounds that become more and more enriched in the soil as this process continues in time. 39 refs., 3 figs., 5 tabs.

  3. Impact of vegetation change on the mobility of uranium- and thorium-series nuclides in soils

    NASA Astrophysics Data System (ADS)

    Gontier, A.; Rihs, S.; Turpault, M.-P.; Chabaux, F.

    2012-04-01

    The effect of land cover change on chemical mobility and soil response was investigated using short- and long-lived nuclides from the U- and Th series. Indeed, the matching of these nuclides half-live to the pedogenic processes rates make these nuclides especially suitable to investigate either time or mechanism of transfers within a soil-water-plant system. This study was carried out from the experimental Breuil-Chenue site (Morvan mountains, France). The native forest (150 year-old) was partially clear-felled and replaced in 1976 by mono-specific plantations distributed in different stands. Following this cover-change, some mineralogical changes in the acid brown soil were recognized (Mareschal, 2008). Three soil sections were sampled under the native forest and the replanted oak and Douglas spruce stands respectively. The (238U), (234U), (230Th), (226Ra), (232Th) and (228Ra) activities were analysed by thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (MC-ICPMS) and gamma spectrometry. Significant differences in U, Th, and Ra activities were observed between the soils located under the native forest or the replanted-trees stands, mostly dominated by a large uranium mobilization from the replanted soils. Moreover, all the investigated U and Th-series activity ratios show a contrasted trend between the shallowest horizons (0-50cm) and the deepest one (below 50cm), demonstrating the chemical effect of the vegetation change on the shallow soil layers. Using a continuous open-system leaching model, the coupled radioactive disequilibria measured in the different soil layers permit to quantify the rate of the radionuclides mobilities. Reference: Mareschal, L., 2008. Effet des substitutions d'essences forestières sur l'évolution des sols et de leur minéralogie : bilan après 28 ans dans le site expérimental de Breuil (Morvan) Université Henri Poincaré, Nancy-I.

  4. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  5. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  6. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    SciTech Connect

    Sasaki, Takayuki; Rajib, Mohammad; Akiyoshi, Masafumi; Kobayashi, Taishi; Takagi, Ikuji; Fujii, Toshiyuki; Zaman, Md. Mashrur

    2015-06-15

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of {sup 40}K. The maximum values of {sup 232}Th and {sup 238}U, estimated from the radioactivity of {sup 208}Tl and {sup 234}Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.

  7. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-01

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. PMID:25576783

  8. Uranium-238, Thorium-232, Potassium-40 and Cesium-137 in the surface layers of soils from Lehliu area, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2014-05-01

    Cs-137 from soil decreases with depth, clay minerals and soils rich in exchangeable potassium adsorb cesium by binding the cations to interlayer positions of the clay particles. Unlike uranium which is mobile element in soil surface, thorium, potassium and cesium has low mobility and their concentrations in soil reflect these variation in parental material, their distribution in soil being dependents by pH, organic matter content, clay minerals from soils.

  9. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners.

    PubMed

    Smiles, Danil E; Wu, Guang; Hrobárik, Peter; Hayton, Trevor W

    2016-01-27

    Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(η(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (δ((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ∼3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier. PMID:26667146

  10. Actinide Speciation and Solubility in a Salt Repository (Invited)

    NASA Astrophysics Data System (ADS)

    Reed, D.; Borkowski, M.; Richmann, M.; Lucchini, J.; Khaing, H.; Swanson, J.

    2009-12-01

    The use of bedded salt deposits for the permanent disposal of nuclear waste continues to receive much attention in the United States and internationally. This is largely based on the highly successful Waste Isolation Pilot Plant (WIPP) transuranic waste repository that was opened in 1999 in Southeastern New Mexico. A bedded salt formation, such as the one in which the WIPP is located, has many advantages that make it an ideal geology for permanent disposal of nuclear waste. This includes well established mining techniques, self-sealing that lead to a naturally-induced geologic isolation, a relatively dry environment, and a favorable chemistry. Herein we report on recent progress in our investigations, as part of ongoing recertification effort for the operating WIPP repository, to establish the redox distribution and overall solubility of actinides in brine. The overall ranking of actinides, from the perspective of potential contribution to release from the WIPP, is: Pu ~ Am >>U > Th >> Np, Cm. Our recent research emphasis has centered on the redox chemistry of multivalent actinides (e.g., U, Pu and Np) with the use of oxidation-state-invariant analogs (Th and Nd) to establish the solubilities. Under a wide range of conditions investigated, the predominant oxidation states established are Pu(III) and Pu(IV) for plutonium, U(IV) and U(VI) for uranium, and Am (III) for americium. Reduction pathways for plutonium include reaction with organics, reaction with reduced iron, and bioreduction by halophiles under anaerobic conditions. Uranium(VI) can also be reduced to U(IV) by reduced iron and microbial processes. Solubility data for neodymium (+3 analog), Uranium (+6 analog) and thorium (+4 analog) in brine are also reported. These data extend our past understanding of WIPP-specific actinide chemistry and show the WIPP, and salt-based repositories in general, to be a robust repository design from the perspective of actinide containment and immobilization.

  11. Characterisation of airborne uranium and thorium contamination in northern England through measurement of U, Th and 235U/238U in tree bark.

    PubMed

    Bellis, D J; Ma, R; McLeod, C W

    2001-02-01

    Samples of tree bark were collected from four locations in Northern England (a typical rural site, a coal-fired power station, a uranium (isotopic) enrichment plant and a nuclear fuel fabrication facility), to assess the nature and extent of airborne uranium and thorium contamination. The U and Th concentrations of bark were determined by inductively coupled plasma mass spectrometry after conventional nebulisation of bark digests, whilst measurement of 235U/238U isotopic ratio utilised high efficiency nebulisation. Uranium concentrations varied between and within the sites (range, 0.01-12 micrograms g-1), with maximum values recorded within 1 km of the nuclear fuel fabrication plant (Springfields). In comparison, the concentration of Th in bark was low (mean, 0.018 microgram g-1) at all sites with the exception of the area affected by coal combustion (0.2-0.8 microgram g-1). The U/Th ratio varied from 0.5 to 3900 compared with the average crustal ratio of 0.3. Low values (< 2) were recorded at the 'coal' and 'rural' sites whilst Capenhurst and Springfields showed high values indicating the relative magnitude of uranium elevation. Significant enrichment of the natural 235U/238U ratio (0.00725) was observed near the nuclear installations, in particular, the enrichment plant (Capenhurst). PMID:11354728

  12. Distribution and transport of radionuclides in a boreal mire--assessing past, present and future accumulation of uranium, thorium and radium.

    PubMed

    Lidman, Fredrik; Ramebäck, Henrik; Bengtsson, Åsa; Laudon, Hjalmar

    2013-07-01

    The spatial distribution of (238)U, (226)Ra, (40)K and the daughters of (232)Th, (228)Ra and (228)Th, were measured in a small mire in northern Sweden. High activity concentrations of (238)U and (232)Th (up to 41 Bq (238)U kg(-1)) were observed in parts of the mire with a historical or current inflow of groundwater from the surrounding till soils, but the activities declined rapidly further out in the mire. Near the outlet and in the central parts of the mire the activity concentrations were low, indicating that uranium and thorium are immobilized rapidly upon their entering the peat. The (226)Ra was found to be more mobile with high activity concentrations further out into the mire (up to 24 Bq kg(-1)), although the central parts and the area near the outlet of the mire still had low activity concentrations. Based on the fluxes to and from the mire, it was estimated that approximately 60-70% of the uranium and thorium entering the mire currently is retained within it. The current accumulation rates were found to be consistent with the historical accumulation, but possibly lower. Since much of the accumulation still is concentrated to the edges of the mire and the activities are low compared to other measurements of these radionuclides in peat, there are no indications that the mire will be saturated with respect to radionuclides like uranium, thorium and radium in the foreseen future. On the contrary, normal peat growth rates for the region suggest that the average activity concentrations of the peat currently may be decreasing, since peat growth may be faster than the accumulation of radionuclides. In order to assess the total potential for accumulation of radionuclides more thoroughly it would, however, be necessary to also investigate the behaviour of other organophilic elements like aluminium, which are likely to compete for binding sites on the organic material. Measurements of the redox potential and other redox indicators demonstrate that uranium possibly

  13. Thorium Mono- and Bis(imido) Complexes Made by Reprotonation of cyclo-Metalated Amides.

    PubMed

    Bell, Nicola L; Maron, Laurent; Arnold, Polly L

    2015-08-26

    Molecules containing actinide-nitrogen multiple bonds are of current interest as simple models for new actinide nitride nuclear fuels, and for their potential for the catalytic activation of inert hydrocarbon C-H bonds. Complexes with up to three uranium-nitrogen double bonds are now being widely studied, yet those with one thorium-nitrogen double bond are rare, and those with two are unknown. A new, simple mono(imido) thorium complex and the first bis(imido) thorium complex, K[Th(═NAr)N″3] and K2[Th(═NAr)2N″2], are readily made from insertion reactions (Ar = aryl, N″ = N(SiMe3)2) into the Th-C bond of the cyclometalated thorium amides [ThN″2(N(SiMe3)(SiMe2CH2))] and K[ThN″(N(SiMe3)(SiMe2CH2))2]. X-ray and computational structural analyses show a "transition-metal-like" cis-bis(imido) geometry and polarized Th═N bonds with twice the Wiberg bond order of the formally single Th-N bond in the same molecule. PMID:26244991

  14. Extending Stannyl Anion Chemistry to the Actinides: Synthesis and Characterization of a Uranium-Tin Bond.

    PubMed

    Winston, Matthew S; Batista, Enrique R; Yang, Ping; Tondreau, Aaron M; Boncella, James M

    2016-06-01

    We have synthesized a rare example of a uranium(IV) stannyl (κ(4)-N(CH2CH2NSi((i)Pr)3)3U(SnMe3), 1) via transmetalation with LiSnMe3. This complex has been characterized crystallographically and shown to have a U-Sn bond length of 3.3130(3) Å, substantially longer than the only other crystallographically observed U-Sn bond (3.166 Å). Computational studies suggest that the U-Sn bond in 1 is highly polarized, with significant charge transfer to the stannylate ligand. We briefly discuss plausible mechanistic scenarios for the formation of 1, which may be relevant to other transmetalation processes involving heavy main group atoms. Furthermore, we demonstrate the reducing ability of [SnMe3](-) in the absence of strongly donating ligands on U(IV). PMID:27219499

  15. Formation of uranium-thorium-rich bitumen nodules in the Lockne impact structure, Sweden: A mechanism for carbon concentration at impact sites

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Parnell, John; Norman, Craig; Mark, Darren F.; Baron, Martin; Ormö, Jens; Sturkell, Erik; Conliffe, James; Fraser, Wesley

    The Ordovician Lockne impact structure is located in central Sweden. The target lithology consisted of limestone and black unconsolidated shale overlaying a Precambrian crystalline basement. The Precambrian basement is uranium-rich, and the black shale is both uranium- and organic-rich. This circumstance makes Lockne a good candidate for testing the occurrence of U-Th-rich bitumen nodules in an impact structure setting. U-Th-rich bitumen nodules are formed through irradiation; hence the increase in the complexity of organic matter by a radioactive (uranium- and thorium-rich) mineral phase. U-Th-rich bitumen nodules were detected in crystalline impact breccia and resurge deposits from the impact structure, but samples of non-impact-affected rocks from outside the impact structure do not contain any U-Th-rich bitumen nodules. This implies that in the Lockne impact structure, the nodules are associated with impact-related processes. U-Th-rich bitumen nodules occur throughout the geological record and are not restricted to an impact structure setting, but our studies at Lockne show that this process of irradiation can readily occur in impact structures where fracturing of rocks and a post-impact hydrothermal system enhances fluid circulation. The irradiation of organic matter by radioactive minerals has previously been proposed as a process for concentration of carbon on the early Earth. Impact structures are suggested as sites for prebiotic chemistry and primitive evolution, and irradiation by radioactive minerals could be an important mechanism for carbon concentration at impact sites.

  16. Reaction of Laser-Ablated Uranium and Thorium Atoms with H2Se: A Rare Example of Selenium Multiple Bonding.

    PubMed

    Vent-Schmidt, Thomas; Andrews, Lester; Thanthiriwatte, K Sahan; Dixon, David A; Riedel, Sebastian

    2015-10-19

    The compounds H2ThSe and H2USe were synthesized by the reaction of laser-ablated actinide metal atoms with H2Se under cryogenic conditions following the procedures used to synthesize H2AnX (An = Th, U; X = O, S). The molecules were characterized by infrared spectra in an argon matrix with the aid of deuterium substitution and electronic structure calculations at the density functional theory level. The main products, H2ThSe and H2USe, are shown to have a highly polarized actinide-selenium triple bond, as found for H2AnS on the basis of electronic structure calculations. There is an even larger back-bonding of the Se with the An than found for the corresponding sulfur compounds. These molecules are of special interest as rare examples of multiple bonding of selenium to a metal, particularly an actinide metal. PMID:26418218

  17. Mono(imidazolin-2-iminato) actinide complexes: synthesis and application in the catalytic dimerization of aldehydes.

    PubMed

    Karmel, Isabell S R; Fridman, Natalia; Tamm, Matthias; Eisen, Moris S

    2014-12-10

    The synthesis of the mono(imidazolin-2-iminato) actinide(IV) complexes [(Im(R)N)An(N{SiMe3)2}3] (3-8) was accomplished by the protonolysis reaction between the respective imidazolin-2-imine (Im(R)NH, R = tBu, Mes, Dipp) and the actinide metallacycles [{(Me3Si)N}2An{κ(2)C,N-CH2SiMe2N(SiMe3)}] (1, An = U; 2, M = Th). The thorium and uranium complexes were obtained in high yields, and their structures were established by single-crystal X-ray diffraction analysis. The mono(imidazolin-2-iminato) actinide complexes 3-8 display short An-N bonds together with large An-N-C angles, indicating strong electron donation from the imidazolin-2-iminato moiety to the metal, corroborating a substantial π-character to the An-N bond. The reactivity of complexes 3-8 toward benzaldehyde was studied in the catalytic dimerization of aldehydes (Tishchenko reaction), displaying low to moderate catalytic activities for the uranium complexes 3-5 and moderate to high catalytic activities for the thorium analogues 6-8, among which 8 exhibited the highest catalytic activity. In addition, actinide coordination compounds showed unprecedented reactivity toward cyclic and branched aliphatic aldehydes in the catalytic Tishchenko reaction mediated by the thorium complex [(Im(Dipp)N)Th{N(SiMe3)2}3] (8), exhibiting high activity even at room temperature. Moreover, complex 8 was successfully applied in the crossed Tishchenko reaction between an aromatic or polyaromatic and an aliphatic cyclic and branched aldehyde, yielding selectively the asymmetrically substituted ester in high yields (80-100%). PMID:25393398

  18. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    SciTech Connect

    Franceschini, F.; Lahoda, E.; Wenner, M.; Lindley, B.; Fiorina, C.; Phillips, C.

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  19. Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions

    SciTech Connect

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

  20. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  1. Mineral resource assessment of rare-earth elements, thorium, titanium, and uranium in the Greenville 1 degree by 2 degrees Quadrangle, South Carolina, Georgia, and North Carolina

    USGS Publications Warehouse

    Lesure, Frank G.; Curtin, Gary C.; Daniels, David L.; Jackson, John C.

    1993-01-01

    Mineral resources of the Greenville 1° x 2° quadrangle, South Carolina, Georgia, and North Carolina, were assessed between 1984 and 1990 under the Conterminuous United States Mineral Assessment Program (CUSMAP) of the U.S. Geological Survey (USGS). The mineral resource assessments were made on the basis of geologic, geochemical, and geophysical investigations and the presence of mines, prospects, and mineral occurrences from the literature. This report is an assessment of the rare-earth elements (REE), thorium, titanium, and uranium resources in the Greenville quadrangle and is based on heavy mineral concentrates collected in 1951-54 by the USGS (Overstreet and others, 1968; Caldwell and White, 1973; Cuppels and White, 1973); on the results of the U.S. Department of Energy, National Uranium Resource Evaluation (NURE) sampling program (Ferguson, 1978, 1979); on analyses of stream-sediment and heavy-mineral-concentrate samples (Jackson and Moore, 1992, G.C Cullin, USGS, unpub. data, 1992) on maps showing aerial gamma radiation in the Greenville quadrangle (D.L. Daniels, USGS, unpub. data, 1992); and on the geology as mapped by Nelson and others (1987, 1989).

  2. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  3. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin.

    PubMed

    Ghasemi, Jahan B; Zolfonoun, E

    2010-01-15

    A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples. PMID:20006073

  4. Thorium: Crustal abundance, joint production, and economic availability

    DOE PAGESBeta

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuelmore » cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.« less

  5. Thorium: Crustal abundance, joint production, and economic availability

    SciTech Connect

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuel cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.

  6. SEPARATION PROCESS FOR THORIUM SALTS

    DOEpatents

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  7. Hydrothermal method of preparation of actinide(IV) phosphate hydrogenphosphate hydrates and study of their conversion into actinide(IV) phosphate diphosphate solid solutions.

    PubMed

    Dacheux, N; Grandjean, S; Rousselle, J; Clavier, N

    2007-11-26

    Several compositions of Th2-x/2AnIVx/2(PO4)2(HPO4).H2O (An=U, Np, Pu) were prepared through hydrothermal precipitation from a mixture of nitric solutions containing cations and concentrated phosphoric acid. All the samples were fully characterized by X-ray diffraction, UV-vis, and infrared spectroscopies to check for the existence of thorium-actinide(IV) phosphate hydrogenphosphate hydrates solid solutions. Such compounds were obtained as single phases, up to x=4 for uranium, x=2 for neptunium, and x<4 for plutonium, the cations being fully maintained in the tetravalent oxidation state. In a second step, the samples obtained after heating crystallized precursors at high temperature (1100 degrees C) were characterized. Single-phase thorium-actinide(IV) phosphate-diphosphate solid solutions were obtained up to x=0.8 for Np(IV) and x=1.6 for Pu(IV). For higher substitution rates, polyphase systems composed by beta-TAnPD, An2O(PO4)2, and/or alpha-AnP2O7 were formed. Finally, this hydrothermal route of preparation was applied successfully to the synthesis of an original phosphate-based compound incorporating simultaneously tetravalent uranium, neptunium and plutonium. PMID:17973479

  8. Synthesis and extraction studies with a rationally designed diamide ligand selective to actinide(iv) pertinent to the plutonium uranium redox extraction process.

    PubMed

    Sharma, Shikha; Panja, Surajit; Bhattacharyya, Arunasis; Dhami, Prem S; Gandhi, Preetam M; Ghosh, Sunil K

    2016-05-01

    A new class of conformationally constrained oxa-bridged tricyclo-dicarboxamide (OTDA) ligand was rationally designed for the selective extraction of tetravalent actinides pertinent to the Plutonium Uranium Redox EXtraction (PUREX) process. Two of the designed diamide ligands were synthesized and extraction studies were performed for Pu(iv) from HNO3 medium. The mechanism of extraction was investigated by studying various parameters such as feed HNO3, NaNO3 and OTDA concentrations. The nature of the extracted species was found to be [Pu(NO3)4(OTDA)]. One of the OTDA ligands was elaborately tested and showed the selective extraction of Pu(iv) and Np(iv) over other actinide species, viz., U(vi), Np(v), Am(iii), lanthanides and fission products contained in a nuclear waste from the PUREX process. DFT calculations predicted the charge density on each of the coordinating 'O' atoms of OTDA supporting its high Pu(iv) selectivity over other ions studied and also provided the energy optimized structure of OTDA and its Pu(iv) complex. PMID:27054892

  9. Design and synthesis of a chiral uranium-based microporous metal organic framework with high SHG efficiency and sequestration potential for low-valent actinides.

    PubMed

    Wang, Yanlong; Li, Yuxiang; Bai, Zhuanling; Xiao, Chengliang; Liu, Zhiyong; Liu, Wei; Chen, Lanhua; He, Weiwei; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-11-21

    The solvothermal reaction of [tris-(4-carboxylphenyl)phosphineoxide] (H3TPO) with UO2(NO3)2·6H2O in DMF affords a uranium-based chiral, microporous, metal-organic framework compound [(CH3)2NH2][UO2(TPO)]·4DMF·12.5H2O (SCU-3) that exhibits the highest void volume (68.8%) and second-harmonic generation (SHG) efficiency (1.54 KDP) for an actinide compound reported to date. The combination of large channels and the coordination capabilities of P=O moieties in the structure enables SCU-3 to capture large amounts of Th(iv) from aqueous solutions, providing a new strategy for preparing heterobimetallic 5f/5f compounds, and may lead to applications in nuclear waste management. PMID:26459775

  10. Radiogenic production of 10Be and 26Al in uranium and thorium ores: Implications for studying terrestrial samples containing low levels of 10Be and 26Al

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Middleton, R.

    1989-03-01

    10Be and 26Al are produced by cosmic-ray-induced spallation of atmospheric constituents, and also as has recently been shown, by spallation in the rocks exposed to cosmic rays. We now present experimental data showing that these two isotopes can also be produced by radiation from uranium and thorium decay chain radionuclides contained within the host rocks. We have measured the 10Be and 26Al concentrations in a number of shielded uranium (spontaneous fission half-life ~10 26 years) and thorium (no spontaneous-fission-decay mode) ores using accelerator mass spectrometry. The concentrations of 10Be and 26Al range from 2.8·10 6 to 29.6·10 6 and 1.1 · 10 7 to 1.43· 10 atoms g -, respectively. The high concentrations of 10Be and 26Al imply unacceptably-high branching ratios (~ 10 -4 to 10 -1) for their production from spontaneous fission and coupled with the presence of 10Be and 26A1 in the Th ores, eliminate spontaneous fission as the major source of either isotope. The large 26A1 to 10Be ratio found in all the samples eliminates atmospheric production. The most likely sources are the alpha reactions, 7Li( α, p) 10Be and 23Na( α, n) 26Al, and neutron reactions, 9Be( n, γ) 10Be, 10B( n, p) 10Be and 13C( n, α) 10Be. Our work provides an upper limit on the contribution of in situ radioactivity to samples containing low levels of 10Be and 26Al. We have calculated the equilibrium concentrations of 10Be and 26Al in a wide variety of geologic materials including granites, ultramafic rocks, basalts, shales, pelagic sediments, ferromanganese nodules, tektites and Libyan Desert Glass. The calculated concentrations of 10Be and 26Al range from <1 to 4100 and 9 to 10.3 · 10 6 atoms g -1, respectively. Implications of these calculations are discussed. In general, the calculated amounts of radiogenically produced 10Be in geological materials are quite small and frequently negligible compared to cosmogenic production, while that of 26Al are significant and sometimes the

  11. High-precision measurements of uranium and thorium isotopic ratios by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Ma, Zhibang; Duan, Wuhui

    2015-04-01

    Isotopic compositions of U-Th and 230Th dating have been widely used in earth sciences, such as chronology, geochemistry, oceanography and hydrology. In this study, five ages of different carbonate samples were measured using 230Th dating technique with U-Th high-precision isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, in Uranium-series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences.In this study, the precision and accuracy of uranium isotopic composition were estimated by measuring the uranium ratios of NBS-CRM 112A, NBS-CRM U500 and HU-1. The mean measured ratios, 234U/238U = 52.86 (±0.04) × 10-6 and δ234U = -38.36 (±0.77) × 10-3 for NBS-CRM 112A, 234U/238U = 10.4184 (±0.0001) × 10-3, 236U/238U = 15.43 (±0.01) × 10-4 and 238U/235U = 1.00021 (±0.00002) for NBS-CRM U500, 234U/238U = 54.911 (±0.007) and δ234U = -1.04 (±0.13) × 10-3 for HU-1 (95% confidence levels). The U isotope data for standard reference materials are in excellent agreement with previous studies, further highlighting the reliability and analytical capabilities of our technique. We measured the thorium isotopic ratios of three different thorium standards by MC-ICPMS. The three standards (Th-1, Th-2 and Th-3) were mixed by HU-1 and NBS 232Th standard, with the 230Th/232Th ratios from 10-4 to 10-6. The mean measured atomic ratios, 230Th/232Th = 2.1227 (±0.0024) × 10-6, 2.7246 (±0.0026) × 10-5, and 2.8358 (±0.0007) × 10-4 for Th-1, Th-2 and Th-3 (95% confidence levels), respectively. Using this technique, the following standard samples were dated by MC-ICPMS. Sample RKM-4, collected from Babardos Kendal Hill terrace, was used during the first stage of the Uranium-Series Intercomparison Project (USIP-I). Samples 76001, RKM-5 and RKM-6 were studied during the second stage of the USIP program (USIP-II). Sample 76001 is a laminated flowstone, collected from Sumidero Terejapa, Chiapas, Mexico, and samples

  12. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    PubMed

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  13. Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium

    SciTech Connect

    Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D.

    1993-06-01

    The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics.

  14. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies.

    PubMed

    Verma, Parveen Kumar; Pathak, Priyanath N; Kumari, Neelam; Sadhu, Biswajit; Sundararajan, Mahesh; Aswal, Vinod Kumar; Mohapatra, Prasanta Kumar

    2014-12-11

    The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle. PMID:25422857

  15. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  16. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1999-10-28

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  17. Environmental assessments for the existing radioactive materials in the Weldon Spring raffinate pits. [Various radioactive residues and wastes from processing of uranium and thorium between 1957 and 1966

    SciTech Connect

    Yang, J.Y.; Wang, J.

    1985-01-01

    Various radioactive residues (raffinates) and wastes from the processing of uranium and thorium between 1957 and 1966 are stored in four pits at Weldon Spring, Missouri. The US Department of Energy (DOE) plans to stabilize all the contaminated materials on a long-term (more than 1000-year) basis. The effectiveness of stabilization measures are evaluated by estimating radioactive releases under two options: (1) no action, and (2) improved containment using the existing raffinate pits. Two major pathways of radiation exposure are examined: (1) airborne radioactive gases and particulates, and (2) seepage into near-surface groundwater. The relative reductions of releases into the air and groundwater for a reference stabilization option (improved containment) are analyzed using mathematical models for radioactive and particulate gas fluxes and atmospheric dispersion, as well as groundwaterr transport and dispersion. The consequent health risks for nearby individuals and the general public are also evaluated. This study focuses on the migration of radionuclides under existing conditions and evaluates the effectiveness of proposed stabilization measures at the pits. Results indicate that the potential effects to the general public would be insignificant. 22 refs., 2 figs., 6 tabs.

  18. In pursuit of homoleptic actinide alkyl complexes.

    PubMed

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory. PMID:22716022

  19. Solvent extraction of thorium(IV), uranium(VI), and europium(III) with lipophilic alkyl-substituted pyridinium salts. Final report for subcontract 9-XZ2-1123E-1, June 1, 1992--December 1, 1995

    SciTech Connect

    Ensor, D.D.

    1997-01-01

    In the treatment of high level nuclear wastes, aromatic pyridinium salts which are radiation-resistant are desired for the extraction of actinides and lanthanides. The solvent extraction of Th{sup +4}, UO{sub 2}{sup +2}, and Eu{sup +3} by three aromatic extractants, 3,5-didodecylpyridinium nitrate (35PY), 2,6-didodecylpyridinium nitrate (26PY), and 1-methyl-3,5-didodecyl-pyridinium iodide (1M35PY) has been studied in nitric acid media. The general order of extractability of the three extractants in toluene was 1M35PY>> 26PY > 35PY. The overall extraction efficiency of the metal ions was Th{sup +4} >UO{sub 2}{sup +2} > Eu{sup +3}. The extraction of HNO{sub 3}, which was competitive with the extraction of metal ions, was quantitatively investigated by NaOH titration and UV spectrometry. The loading capacity suggested that the extracted species in the organic phase for thorium was (R{sub 4}N{sup +}){sub 2}Th(NO{sub 3}{sup -}){sub 6}, where R{sub 4}N{sup +} denotes 1M35PY. A comparison of 1M35PY to the well-characterized extractant, Aliquat-336, an aliphatic ammonium salt was made. At the same extractant concentration, 1M35PY extracted thorium more efficiently than Aliquat-336 at high acidity. Thorium could be readily stripped with dilute nitric acid from 1M35PY. After irradiation of 0.1M 1M35PY with {sup 60}Co at 40R/min for 48 hours, no change in the extraction efficiency of thorium was observed.

  20. ALPHA SPECTROMETRIC EVALUATION OF SRM-995 AS A POTENTIAL URANIUM/THORIUM DOUBLE TRACER SYSTEM FOR AGE-DATING URANIUM MATERIALS

    SciTech Connect

    Beals, D.

    2011-12-06

    Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separated and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.

  1. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  2. Tetrapositive plutonium, neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation.

    PubMed

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-04-17

    The Pu(4+), Np(4+), and U(4+) ions, which have large electron affinities of ∼34.6, ∼33.6, and ∼32.6 eV, respectively, were stabilized from solution to the gas phase upon coordination by three neutral tetramethyl-3-oxa-glutaramide ligands (TMOGA). Both collision induced dissociation (CID) and electron transfer dissociation (ETD) of Pu(TMOGA)3(4+) reveal the propensity for reduction of Pu(IV) to Pu(III), by loss of TMOGA(+) in CID and by simple electron transfer in ETD. The reduction of Pu(IV) is in distinct contrast to retention of Th(IV) in both CID and ETD of Th(TMOGA)3(4+), where only the C-Oether bond cleavage product was observed. U(TMOGA)3(4+) behaves similarly to Th(TMOGA)3(4+) upon CID and ETD, while the fragmentation patterns of Np(TMOGA)3(4+) lie between those of Pu(TMOGA)3(4+) and U(TMOGA)3(4+). It is notable that the gas-phase fragmentation behaviors of these exceptional tetrapositive complexes parallel fundamental differences in condensed phase chemistry within the actinide series, specifically the tendency for reduction from the IV to III oxidation states. PMID:24660979

  3. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGESBeta

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  4. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-09-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

  5. Solubility of uranium and thorium from a healing earth in synthetic gut fluids: a case study for use in dose assessments.

    PubMed

    Höllriegl, Vera; Li, Wei Bo; Leopold, Karsten; Gerstmann, Udo; Oeh, Uwe

    2010-11-01

    The aim of this case study was to estimate the bioaccessibility of uranium ((238)U) and thorium ((232)Th) from a healing earth by analysing the solubility of these radionuclides in synthetic gastric and intestinal fluids. An easy applicable in vitro test system was used to investigate the fractional mobilization of the soil contaminants being potentially available for absorption under human in vivo conditions. These findings provided the basis for a prospective dose assessment. The solubility experiments were performed using two different in vitro digestion methods. The concentrations of (238)U and (232)Th in the solutions extracted from the soil were measured by inductively coupled plasma mass spectrometry (ICP-MS). The dissolved fractions in the synthetic gastrointestinal fluid ranged in average from 10.3% to 13.8% for (238)U and from 0.3% to 1.6% for (232)Th, respectively, depending on the digestion method. Subsequently, the committed effective doses from intake of (238)U and (232)Th after ingestion of the healing earth during 1 year were evaluated for adult persons. Thereby ingestion dose coefficients calculated as a function of bioaccessibility were used. The dose assessments ranged between 4.3 × 10(-7)-1.9 × 10(-6) Sv y(-1) for (238)U and 5.6 × 10(-7)-3.3 × 10(-6) Sv y(-1) for (232)Th, respectively. On the basis of the assumptions and estimations made, the present work indicates a relatively low radiation risk due to (238)U and (232)Th after internal exposure of the healing earth. PMID:20832099

  6. Actinide incorporation in a zirconia based pyrochlore (Nd 1.8An0.2)Zr 2O 7+x ( An=Th, U, Np, Pu, Am)

    NASA Astrophysics Data System (ADS)

    Nästren, Catharina; Jardin, Regis; Somers, Joseph; Walter, Marcus; Brendebach, Boris

    2009-01-01

    Actinides (thorium, uranium, neptunium, plutonium, and americium) were infiltrated into a porous Nd 1.8Zr 2O 6.7 matrix, prepared by gel-supported precipitation. (Nd 1.8An0.2)Zr 2O 7+x pyrochlores were formed after sintering in Ar/H 2 and the pyrochlore structure remains during oxidation at 800 °C in air. X-ray diffraction reveals a linear relationship between the pyrochlore lattice parameter and the ionic radii of the actinides. EXAFS measurements on actinide L3-edge show a split shell of nearest neighbour oxygen atoms similar to that surrounding of Nd. The actinide-oxygen bond distances decrease with the actinide ionic radii, which verifies that these actinides adopt the Nd site in the (Nd 1.8An0.2)Zr 2O 7+x pyrochlore. The oxidation susceptibility of Np is related to the availability of oxygen vacancies and in contrast to stabilised zirconia Np(V) can be obtained in zirconia based pyrochlore.

  7. Determination of actinides in environmental samples using an automated batch preconcentration/matrix elimination system

    SciTech Connect

    Smith, F.G.; Crain, J.S.

    1995-12-31

    The determination of thorium, uranium, and uranium progeny (e.g. {sup 226}Ra) in environmental samples is of considerable interest in terms of human health. Traditional radiochemical determinations of long-lived radioisotopes often require rigorous chemical separations and long duration measurements by techniques such as {alpha}-spectrometry. Inductively coupled plasma mass spectrometry (ICP-MS) offers sub-ppt (1 ng/L) detection limits for the actinides with minimal sample preparation and high sample throughput. However, sample preconcentration and/or matrix elimination is required to achieve required detection limits below 1ppq (1 pg/L). This paper describes a batch preconcentration/matrix elimination system for off-line sample preparation. An aliquot of an actinide selective polymer beads is added to a sample and pumped through a filter. Unbound sample matrix components are washed to waste then the beads with bound actinides are released in a small volume. The preconcentrate is then introduced to the ICP-MS by pneumatic or ultrasonic nebulization. Data for a variety of natural water matrices (well, spring, lake, river, and tapwater) will be presented.

  8. Determination of plutonium-239, thorium-232, and natural uranium isotopic concentrations in biological samples using photofission track analysis

    NASA Astrophysics Data System (ADS)

    Parry, James Roswell

    Fission track analysis (FTA) has many uses in the scientific community including but not limited to geological dating, neutron flux mapping, and dose reconstruction. The common method of fission for FTA is through neutrons from a nuclear reactor. This dissertation investigates the use of bremsstrahlung radiation produced from an electron linear accelerator to induce fission in FTA samples. This provides a means of simultaneously measuring the amount of Pu-239, U-nat, and Th-232 in a single sample. The benefit of measuring the three isotopes simultaneously is the possible elimination of costly and time consuming chemical processing for dose reconstruction samples. Samples containing the three isotopes were irradiated in two different bremsstrahlung spectra and a neutron spectrum to determine the amount of Pu-239, U-nat, and Th-232 in the samples. The reaction rate from the calibration samples and the counted fission tracks on the samples were used in determining the concentration of each isotope in the samples. The results were accurate to within a factor of two or three, showing that the method can work to predict the concentrations of multiple isotopes in a sample. The limitations of current accelerators and detectors limits the application of this specific procedure to higher concentrations of isotopes. The method detection limits for Pu-239, U-nat, and Th-232 are 20 pCi, 1 fCi, and 0.4 flCI respectively. Analysis of extremely low concentrations of isotopes would require the use of different detectors such as quartz due to the embrittlement encountered in the Lexan at high exposures. Cracking of the Texan detectors started to appear at a fluence of about 2 x 1018 electrons from the accelerator. This may be partly due to the beam stop not being an adequate thickness. The procedure is likely limited to specialty applications for the near term. However, with the world concerns of exposure to depleted uranium, this procedure may find applications in this area since

  9. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials.

    PubMed

    Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K

    2014-08-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. PMID:24681438

  10. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  11. [Determining thorium level in urine with its preliminary chromatographic extraction].

    PubMed

    Kononykina, N N; Astafurov, V I; Zablotskaia, I D; Popov, V I

    1990-01-01

    The contributors propose a radiometric technique of detecting thorium in urine. The technique is based on a prior concentrating of the nuclide on phosphate residues, with its further separation in extraction-chromatographic vessel filled with diethylhexylphosphorus acid, and reextraction with oxalic acid. Measurements were made in the hard scintillator layer at 90 percent effectiveness. Thorium chemical output was at 85 +/- 3 percent, sensitivity at 5 mBk for a sample. If the sample contained an equal quantity of uranium, the percentage of cleaning thorium from uranium was 100. The proposed technique is economical, simple to perform, and is designed for natural thorium content measurements in human organism. PMID:2086364

  12. New Insights into Arctic Tectonics: Uranium-Lead, (Uranium-Thorium)/Helium, and Hafnium Isotopic Data from the Franklinian Basin, Canadian Arctic Islands

    NASA Astrophysics Data System (ADS)

    Anfinson, Owen Anthony

    More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages

  13. Metal-silicate Partitioning of Uranium and Thorium up to 138 GPa and 5500 K and Implications for Stratified Layer at the Top of the Outer Core

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Hirose, K.; Kimura, J. I.; Chang, Q.

    2014-12-01

    The excess abundances of siderophile elements in the mantle can be explained by metal-silicate equilibrium at mid-mantle depths in magma ocean of the growing Earth. The final equilibrium pressure and temperature would reach 37-60 GPa and melting temperature of the mantle at this pressure (Wade et al. 2012; Siebert et al., 2013). Much severe conditions (>6000 K) have been supposed at the final stage of the Earth's formation immediate aftermath the moon-forming giant impact (e.g. Canup, 2004), evoking the additional chemical equilibrium between core materials of the giant impactor and the surrounding silicate materials. Previous studies on partitioning of U up to 20 GPa and 2700 K by multi-anvil press have shown very small partition coefficients (D ~10^-5) in S-poor system with oxygen fugacity at around IW-1.5 (Wheeler et al., 2006; Bouhifd et al., 2013). Such a very small D make it difficult to examine the partitioning at higher P-T using laser-heated diamond anvil cell (LH-DAC) and electron microprobe since the small size of each phase introduce artificial error by such as secondary fluorescent effect (Wade and Wood, 2012). 1% contamination from surrounding silicate may increase D by three orders (i.e. D =10^-2), artificially. One solution is to use laser ablation ICP-MS by carefully ablating only a metallic portion. Here, we introduced FIB to isolate the metallic phase from the surrounding silicate melt by slicing off surrounding silicate potion. Consequently, we have successfully obtained the metal-silicate partitioning data of U and Th up to 138 GPa and 5500 K in S-free/S-poor system using LH-DAC. The results show a large temperature dependence of partition coefficient of uranium and thorium, approaching to 0.1~1 at temperature near 5500 K. The pressure dependence was not observed clearly. The large temperature dependence suggests that only the core material of the giant impactor can be enriched in U and Th, which may stratify at the top of the liquid core.

  14. Stability of tetravalent actinides in perovskites

    SciTech Connect

    Williams, C.W.; Morss, L.R.; Choi, I.K.

    1983-01-01

    This paper reports the first determination of the enthalpy of formation of a complex actinide(IV) oxide: ..delta..H/sup 0//sub f/ (BaUO/sub 3/, s, 298 K) = -1690 +- 10 kJ mol/sup -1/. The preparation and properties of this and other actinide(IV) complex oxides are described and are compared with other perovskites BaMO/sub 3/. The relative stabilities of tetravalent and hexavalent uranium in various environments are compared in terms of the oxidation-reduction behavior of uranium in geological nuclear waste storage media; in perovskite, uranium(IV) is very unstable in comparison with uranium(VI).

  15. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  16. Actinides-1981

    SciTech Connect

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  17. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.

  18. [Thorium: analysis and dosimetry of thorium welding electrodes].

    PubMed

    Laroche, P; Cazoulat, A; Rotger, C; Petitot, F; Gérasimo, P

    1998-01-01

    The use of thoriated tungsten electrodes may be at the origin of a potential hazard for the personnel involved in the use of electrodes, as well as the general population. To assess this hazard, the electrode radioactivity measurements by alpha and beta counting has been conducted. The radioelements were identified by alpha and gamma spectromety. It appeared that there was a radioactive disequilibrium between thorium-232 (Th-232) and it daughters atoms. Additionally, some thorium 230 (Th-230) belonging to the uranium chain, was present. The chemical separation and the milling processing had affected the radioactive composition and the thorium in the electrodes, doesn't exactly corresponds to natural thorium. Radiation doses were also assessed: film and photoluminescence dosimetry were undertaken. Finally smears method showed a alpha removable area contamination. Even if the hazard is weak. As a matter of fact, it must not be neglected because it was complex, for the thorium was always accompanied by Th-232 progeny, alpha emitters but also beta and gamma emitters. PMID:9770019

  19. Natural thorium resources and recovery: Options and impacts

    USGS Publications Warehouse

    Ault, Timothy; Van Gosen, Bradley S.; Krahn, Steven; Croff, Allen

    2016-01-01

    This paper reviews the front end of the thorium fuel cycle, including the extent and variety of thorium deposits, the potential sources of thorium production, and the physical and chemical technologies required to isolate and purify thorium. Thorium is frequently found within rare earth element–bearing minerals that exist in diverse types of mineral deposits, often in conjunction with other minerals mined for their commercial value. It may be possible to recover substantial quantities of thorium as a by-product from active titanium, uranium, tin, iron, and rare earth mines. Incremental physical and chemical processing is required to obtain a purified thorium product from thorium minerals, but documented experience with these processes is extensive, and incorporating thorium recovery should not be overly challenging. The anticipated environmental impacts of by-product thorium recovery are small relative to those of uranium recovery since existing mining infrastructure utilization avoids the opening and operation of new mines and thorium recovery removes radionuclides from the mining tailings.

  20. Thorium terephthalates coordination polymers synthesized in solvothermal DMF/H2O system.

    PubMed

    Falaise, Clément; Charles, Jean-Sébastien; Volkringer, Christophe; Loiseau, Thierry

    2015-03-01

    A series of thorium-based terephthalates have been solvothermaly synthesized in N,N-dimethylformamide (DMF) with different amounts of water and various temperatures (100-150 °C). Without the addition of water, the Th-H2bdc-DMF system gives rise to the formation of two phases, Th(bdc)2(DMF)2 (1) and Th6O4(OH)4(H2O)6(bdc)6·6DMF·12H2O (3) (bdc = 1,4-benzenedicarboxylate or terephthalate). Their structures are built up of isolated thorium centers ThO8(DMF)2 for (1) and the hexanuclear core Th6O4(OH)4(H2O)6 for (3). The latter adopts the UiO-66 metal-organic framework topology and exhibits a very high porosity for an actinides-based porous material (BET surface up to 730(6) m(2)·g(-1)). The synthesis of (3) is also favored upon adding water. However, for pure aqueous solutions or for a very low amount of water, a third solid Th(bdc)2 (2) crystallizes and contains thorium monomers ThO8. The main similitude with the parent system dedicated to tetravalent uranium concerns the possibility to stabilize the An6O8(H2O)6 core by terephthalate linkers and to reproduce An(bdc)2(DMF)2 for both actinides U(4+) and Th(4+). The thermal treatment of the latter shows a structural transition into the crystalline Th(bdc)2 (2) solid. PMID:25668215

  1. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    NASA Astrophysics Data System (ADS)

    Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Méplan, O.; Nuttin, A.; Siem, S.

    2012-02-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  2. Rapid Column Extraction Method for Actinides and Sr-89/90 in Water Samples

    SciTech Connect

    MAXWELL III, SHERROD L.

    2005-06-15

    The SRS Environmental Laboratory analyzes water samples for environmental monitoring, including river water and ground water samples. A new, faster actinide and strontium 89/90 separation method has been developed and implemented to improve productivity, reduce labor costs and add capacity to this laboratory. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized. The method can be used for routine analysis or as a rapid method for emergency preparedness. Thorium and curium are often analyzed separately due to the interference of the daughter of Th-229 tracer, actinium (Ac)-225, on curium isotopes when measured by alpha spectrometry. This new method also adds a separation step using DGA Resin{reg_sign}, (Diglycolamide Resin, Eichrom Technologies) to remove Ac-225 and allow the separation and analysis of thorium isotopes and curium isotopes at the same time.

  3. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  4. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology.

    PubMed

    Kumar, Amit; Ali, Manjoor; Ningthoujam, Raghumani S; Gaikwad, Pallavi; Kumar, Mukesh; Nath, Bimalendu B; Pandey, Badri N

    2016-04-15

    Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75μM, these ions affected heme moiety. Metal-heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal-Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity. PMID:26799219

  5. DECONTAMINATION OF URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  6. Uranium and thorium in achondrites.

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Lovering, J. F.

    1973-01-01

    The abundances of U and Th in 19 achondrites and two pallasite olivines have been measured by radiochemical neutron activation analysis. Brecciated eucrites are enriched relative to chondrites in both elements by factors between 10 and 20, perhaps as a result of a magmatic differentiation process. Two unbrecciated eucrites are far less enriched, possibly due to their origin as igneous cumulates. The diogenites Johnstown and Shalka contain approximately chondritic levels of U and Th, but Ellemeet is 10 times lower. The abundances in three howardites are in good agreement with those expected from major element data for a mixing model with eucrite and diogenite end members. The high O-18 basaltic achondrites Nakhla, Shergotty and Angra dos Reis have a range of U and Th abundances similar to the brecciated eucrites and howardites, but have systematically higher Th/U ratios.

  7. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  8. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect

    Not Available

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by

  9. Actinide recovery techniques utilizing electromechanical processes

    SciTech Connect

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy.

  10. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOEpatents

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  11. Tunneling through equivalent multihumped fission barriers: Some implications for the actinide nuclei

    SciTech Connect

    Bhandari, B.S.; Al-Kharam, A.S.

    1989-03-01

    A comparison of the penetrabilities calculated in the Wentzel-Kramers-Brillouin approximation through equivalent multihumped fission barriers shows that the penetrability saturates to its maximum value much more slowly for a three-humped potential than that for comparable two-humped and single-humped potentials. An analysis of the slopes of the near-barrier photofission cross sections of actinides yields results that can be understood in terms of the predicted potential barrier shapes for these nuclei, and thus provides evidence in support of resolving the ''thorium anomaly'' along the lines suggested by Moeller and Nix. Our results further indicate that the uranium nuclei, and in particular /sup 236/U, may more likely exhibit three-humped potential shapes in which the apparent consequences of both the second and third minima may be observable.

  12. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  13. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  14. The Use of Thorium within the Nuclear Power Industry - 13472

    SciTech Connect

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

  15. Synthesis and characterization of uranium-bearing britholites

    NASA Astrophysics Data System (ADS)

    Terra, Olivier; Audubert, Fabienne; Dacheux, Nicolas; Guy, Christophe; Podor, Renaud

    2007-06-01

    Unlike thorium which incorporation is easy and quantitative in the britholite structure, that of tetravalent uranium appears rather difficult even after heating at high temperature. Indeed, only about 3.5 wt% of uranium (instead of 10.3 wt% expected) are incorporated in the britholite structure when using a manual grinding of the initial mixture while it is increased to 5.9 wt% when performing mechanical grinding/heating cycles. The optimized grinding and heating conditions can be fixed to 15 min at 30 Hz and to 1400 °C for 6 h, respectively. All the samples prepared at 1400 °C are found to be composed by (Nd, U)-britholite and calcium uranate CaU 2O 5+ y which formation results from that of CaUO 4 above 800 °C consequently to the direct reaction between UO 2 and CaO. The incorporation of tetravalent uranium in (Nd, U)-britholites begins simultaneously to the transformation of CaUO 4 into CaU 2O 5+ y above 1100 °C. Due to these redox reactions, the incorporation of uranium remains partial even though it is significantly increased at 1400 °C and mainly proceeds through diffusion phenomena. Two main methods can be used to improve significantly the incorporation of uranium in (Nd, U)-britholites. The first one deals with the compaction of the powdered initial mixture prior to perform the heating treatment at 1400 °C. The second one is based on the simultaneous incorporation of tetravalent thorium and uranium, leading to the formation of (Nd, Th, U)-britholites. Like for uranium, such methods could be of significant interest in the field of the incorporation of other tetravalent actinides, e.g. neptunium or plutonium, which could be also stabilized in several oxidation states.

  16. Uranium industry annual 1996

    SciTech Connect

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  17. Systematization of actinides using cluster analysis

    SciTech Connect

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  18. THORIUM-230 DATING OF THERMAL WATERS IN THE VICINITY OF THE NEVADA TEST SITE

    EPA Science Inventory

    Radiochemical measurements of the concentrations of thorium and uranium isotopes were carried out for a total of 10 samples of hot springs mineral springs and lakes collected in the vicinity of the Nevada Test Site. he uranium to thorium ratios in these water found to bemuchhan t...

  19. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  20. Thorium: An energy source for the world of tomorrow

    NASA Astrophysics Data System (ADS)

    Revol, J.-P.

    2015-08-01

    To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. Nuclear energy, which produces no green house gases and no air pollution, should be a leading candidate. How nuclear energy, based on thorium rather than uranium, could be an acceptable solution is discussed. Thorium can be used both to produce energy and to destroy nuclear waste. The thorium conference, organized by iThEC at CERN in October 2013, has shown that thorium is seriously considered by some major developing countries as a key element of their energy strategy. However, developed countries do not seem to move fast enough in that direction, while global cooperation is highly desirable in this domain. Thorium is not fissile. Various possible ways of using thorium will be reviewed. However, an elegant option is to drive an "Accelerator Driven System (ADS)" with a proton accelerator, as suggested by Nobel Prize laureate Carlo Rubbia .

  1. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

    SciTech Connect

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-12-31

    In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant.

  2. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGESBeta

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  3. Uranium*

    NASA Astrophysics Data System (ADS)

    Grenthe, Ingmar; Drożdżyński, Janusz; Fujino, Takeo; Buck, Edgar C.; Albrecht-Schmitt, Thomas E.; Wolf, Stephen F.

    Uranium compounds have been used as colorants since Roman times (Caley, 1948). Uranium was discovered as a chemical element in a pitchblende specimen by Martin Heinrich Klaproth, who published the results of his work in 1789. Pitchblende is an impure uranium oxide, consisting partly of the most reduced oxide uraninite (UO2) and partly of U3O8. Earlier mineralogists had considered this mineral to be a complex oxide of iron and tungsten or of iron and zinc, but Klaproth showed by dissolving it partially in strong acid that the solutions yielded precipitates that were different from those of known elements. Therefore he concluded that it contained a new element (Mellor, 1932); he named it after the planet Uranus, which had been discovered in 1781 by William Herschel, who named it after the ancient Greek deity of the Heavens.

  4. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  5. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  6. Actinide Studies with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Broussard, Leah

    2014-03-01

    Understanding the effects of sputtering due to nuclear fission is crucial to the nuclear industry and has wide-reaching applications, including nuclear energy, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. UCN are an ideal tool for finely controlling induced fission as a function of depth in an actinide sample. The mechanism for fission-induced surface damage is not well understood, especially regarding the effect of a surface oxide layer. We will discuss our experimental strategy for studies of UCN-induced fission and the ejected material, and present preliminary data from enriched and depleted uranium. We gratefully acknowledge the support of the G. T. Seaborg Institute for Transactinium Science and the U.S. Department of Energy through the LANL/LDRD Program for this work.

  7. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. PMID:26821345

  8. Involvement of 5f-orbitals in the bonding and reactivity of organoactinide compounds: thorium(IV) and uranium(IV) bis (hydrazonato) complexes

    SciTech Connect

    Cantat, Thibault; Graves, Christopher R; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)2AnR2 yields the first f-element bis(hydrazonato) complexes (C5Me5)2An[2-(N,N')-R-N-NCPh2]2 [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an 2-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)2Zr(CH3)2 or (C5Me5)2Hf(CH3)2 with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)2M[2-(N,N')-CH3-N-NCPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)2M[2-(N,N')-CH3-N-NCH2]2 (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)2ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)2ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the s and p electrons of the two 2-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities of the group 4

  9. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  10. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  11. Process for Making a Ceramic Composition for Immobilization of Actinides

    SciTech Connect

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Curtis, Paul G.; Hobson, Beverly F.; Farmer, Joseph; Herman, Connie Cicero; Herman, David Thomas

    1999-06-22

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  12. Study of actinide chemistry in saturated potassium fluoride solution

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Thalmayer, C. E.

    1969-01-01

    Study concerning the chemistry of actinides in saturated KF solution included work with neptunium, uranium, and americium. Solubilities, absorption spectra, oxidation-reduction reactions, and solid compounds which can be produced in KF solution were examined. The information is used for preparation of various materials from salts of the actinides.

  13. Environmental speciation of actinides.

    PubMed

    Maher, Kate; Bargar, John R; Brown, Gordon E

    2013-04-01

    Although minor in abundance in Earth's crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store

  14. PRODUCTION OF THORIUM FLUORIDE

    DOEpatents

    Zachariasen, W.H.

    1959-08-11

    A process is presented for producing anhydrous thorium fluoride comprising the step of contacting a saturated aqueous solution of thorium nitrate with an aqueous solution of hydrofluoric acid having a concentration of about 45 to 50% by weight at a temperature above 70 deg C whereby anhydrous thorium fluoride precipitates.

  15. Thorium and uranium M-shell x-ray production cross sections by 4.5-11.3 MeV carbon ion and 4.5-13.5 MeV oxygen ion bombardment

    NASA Astrophysics Data System (ADS)

    Phinney, L. C.; Lapicki, G.; Weathers, D. L.; Naab, F. U.; Duggan, J. L.; McDaniel, F. D.

    2012-02-01

    The M-shell x-ray production cross sections for thorium and uranium have been measured for carbon ions with energies from 4.5 to 11.3 MeV with the charge state q increasing from 2 to 4, and oxygen ions with energies from 4.5 to 13.5 MeV with the charge state q increasing from 2 to 5. These cross sections are compared to the predictions of the first Born (PWBA+OBKN) and ECUSAR ionization theories, which were evaluated in a novel manner for the C+q and O+q energies and charge states of the data and converted to x-ray production cross sections with atomic parameters for a singly ionized M-shell and multiple ionization in the outer shells. Individual groups of M-shell transitions are also compared to the two ionization theories. The ECUSAR theory is shown to describe the measurements better than the first Born approximation. It is found to be in generally good agreement for all the total M-shell x-ray production and M-shell lines except for the Mγ cross sections. Reasons for the overestimation of the Mγ data are discussed.

  16. Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe).

    PubMed

    Sahoo, S K; Žunić, Z S; Kritsananuwat, R; Zagrodzki, P; Bossew, P; Veselinovic, N; Mishra, S; Yonehara, H; Tokonami, S

    2015-07-01

    Human hair and nails can be considered as bio-indicators of the public exposure to certain natural radionuclides and other toxic metals over a long period of months or even years. The level of elements in hair and nails usually reflect their levels in other tissues of body. Niška Banja, a spa town located in southern Serbia, with locally high natural background radiation was selected for the study. To assess public exposure to the trace elements, hair and nail samples were collected and analyzed. The concentrations of uranium, thorium and some trace and toxic elements (Mn, Ni, Cu, Sr, Cd, and Cs) were determined using inductively coupled plasma mass spectrometry (ICP-MS). U and Th concentrations in hair varied from 0.0002 to 0.0771 μg/g and from 0.0002 to 0.0276 μg/g, respectively. The concentrations in nails varied from 0.0025 to 0.0447 μg/g and from 0.0023 to 0.0564 μg/g for U and Th, respectively. We found significant correlations between some elements in hair and nails. Also indications of spatial clustering of high values could be found. However, this phenomenon as well as the large variations in concentrations of heavy metals in hair and nail could not be explained. As hypotheses, we propose possible exposure pathways which may explain the findings, but the current data does not allow testing them. PMID:25875006

  17. A modeling study of the effect of depth of burial of depleted uranium and thorium on radon gas flux at a dry desert alluvial soil radioactive waste management site (RWMS)

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.

    1993-08-01

    An integral part of designing low-level waste (LLW) disposal pits and their associated closure covers in very dry desert alluvium is the use of a radon gas transport and fate model. Radon-222 has the potential to be a real heath hazard. The production of radon-222 results from the radioactive decay (a particle emission) of radium-226 in the uranium-235 and 238 Bateman chains. It is also produced in the thorium-230 series. Both long lived radionuclides have been proposed for disposal in the shallow land burial pits in Area 5 RWMS compound of Nevada Test Site (NTS). The constructed physics based model includes diffusion and barometric pressure-induced advection of an M-chain of radionuclides. The usual Bateman decay mechanics are included for each radionuclide. Both linear reversible and linear irreversible first order sorption kinetics are assumed for each radionuclide. This report presents the details of using the noble gas transport model, CASCADR9, in an engineering design study mode. Given data on the low-level waste stream, which constitutes the ultimate source of radon-222 in the RWMS, CASCADR9 is used to generate the surface flux (pCi/cm{sup 2}-sec) of radon-222 under the realistic atmospheric and alluvial soil conditions found in the RWMS at Area 5, of the NTS. Specifically, this study examines the surface flux of radon-222 as a function of the depth of burial below the land surface.

  18. X-Ray Absorption Studies of Borosilicate Glasses Containing Dissolved Actinides Or Surrogates

    SciTech Connect

    Lopez, C.; Deschanels, X.; Den Auwer, C.; Cachia, J.-N.; Peuget, S.; Bart, J.-M.

    2006-10-27

    The solubility of actinides and actinide surrogates in a nuclear borosilicate glass was studied with cerium, hafnium, neodymium, thorium and plutonium. Cerium is a possible surrogate for tetravalent and trivalent actinides such as plutonium, hafnium for tetravalent actinide such as thorium, and neodymium for trivalent actinides such as curium or americium. X-ray absorption spectroscopy was used to obtain data on the local environment of the dissolved elements in the glass network. For glasses melted at 1200 C, the solubility limits of the elements studied were as follows Nd > Ce > Th > Pu > Hf. A correlation has been established between the cation bonding covalence, the oxygen polyhedron and the solubility limit of the elements: the greater the solubility, the larger the oxygen bonds.

  19. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized

  20. Development of solid thorium-232 reference materials

    SciTech Connect

    Engelder, P.R.; Donivan, S.; Chessmore, R.B.

    1985-05-01

    Thorium-232 reference materials having a matrix similar to soil and uranium-mill tailings are necessary for ensuring uniform standardization among measurements performed by remedial-action contractors. A task was undertaken by the Technical Measurements Center (TMC) to prepare some 200 pounds each of three different concentrations of Th-232 reference material by diluting a thorium ore with soil. Target values for Th-232 content were 70, 30, and 10 pCi/g. The recommended thorium-232 concentrations for the three reference materials are 71.2 +- 2.0 pCi/g, 30.5 +- 0.6 pCi/g, and 10.2 +- 0.3 pCi/g.

  1. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    SciTech Connect

    Marshalkin, V. E. Povyshev, V. M.

    2015-12-15

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  2. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    NASA Astrophysics Data System (ADS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  3. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    SciTech Connect

    AL-Areqi, Wadeeah M. Majid, Amran Ab. Sarmani, Sukiman

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  4. Optimization of the Mode of the Uranium-233 Accumulation for Application in Thorium Self-Sufficient Fuel Cycle of Candu Power Reactor

    SciTech Connect

    Bergelson, Boris; Gerasimov, Alexander; Tikhomirov, Georgy

    2006-07-01

    Results of calculation studies of the first stage of self-sufficient thorium cycle for CANDU reactor are presented in the paper. The first stage is preliminary accumulation of {sup 233}U in the CANDU reactor itself. Parameters of active core and scheme of fuel reloading were accepted the same as those for CANDU reactor. It was assumed for calculations, that enriched {sup 235}U or plutonium was used as additional fissile material to provide neutrons for {sup 233}U production. Parameters of 10 different variants of the elementary cell of active core were calculated for the lattice pitch, geometry of fuel channels, and fuel assembly of the CANDU reactor. The results presented in the paper allow to determine the time of accumulation of the required amount of {sup 233}U and corresponding number of targets going into processing for {sup 233}U extraction. Optimum ratio of the accumulation time to number of processed targets can be determined using the cost of electric power produced by the reactor and cost of targets along with their processing. (authors)

  5. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  6. Practical introduction of thorium fuel cycles

    SciTech Connect

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where /sup 233/U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors).

  7. Raman spectroscopy for analysis of thorium compounds

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-01

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including e.g. ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  8. Thorium dioxide: properties and nuclear applications

    SciTech Connect

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  9. THORIUM DISPERSION IN BISMUTH

    DOEpatents

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  10. Thorium and uranium redox-active ligand complexes; reversible intramolecular electron transfer in U(dpp-BIAN)2/ U(dpp-BIAN)2(THE)

    SciTech Connect

    Schelter, Eric John; Wu, Ruilian; Scott, Brian L; Thompson, Joe D; Batista, Enrique R; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Actinide complexes of the redox-active ligand dpp-BIAN{sup 2-} (dpp-BIAN = bis(2,6-diisopropylphenyl)acenaphthylene), An(dpp-BIAN){sub 2}(THF){sub n} (An = Th, n = 1; An = U, n = 0, 1) have been prepared. Solid-state magnetic and single-crystal X-ray data for U(dpp-BIAN){sub 2}(THF){sub n} show when n = 0, the complex exists in an f{sup 2}-{pi}*{sup 4} configuration; whereas an intramolecular electron transfer occurs for n = 1, resulting in an f{sup 3}-{pi}*{sup 3} ground configuration. The magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of THF vapor to penetrate the solid on cooling of the sample. Spectroscopic data indicate the complex exists solely in the f{sup 2}-{pi}*{sup 4} form in solution, evidenced by the appearance of only small changes in the electronic absorption spectra of the U(dpp-BIAN){sub 2} complex on titration with THF and by measurement of the solution magnetic moment m d{sub 8}-tetrahydrofuran using Evans method. Electrochemistry of the complexes is reported, with small differences observed in wave potentials between metals and in the presence of THF. These data represent the first example of a well-defined, reversible intramolecular electron transfer in an f-element complex and the second example of oxidation state change through dative interaction with a metal ion.

  11. Electrorecovery of actinides at room temperature

    SciTech Connect

    Stoll, Michael E; Oldham, Warren J; Costa, David A

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  12. Thorium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide

  13. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  14. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  15. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Truscott, J B; Jones, P; Fairman, B E; Evans, E H

    2001-08-31

    High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter. PMID:11589474

  16. Centrosymmetric and chiral porous thorium organic frameworks exhibiting uncommon thorium coordination environments.

    PubMed

    Li, Yuxiang; Weng, Zhehui; Wang, Yanlong; Chen, Lanhua; Sheng, Daopeng; Liu, Yunhai; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-12-28

    The solvothermal reaction of thorium nitrate and tris-(4-carboxylphenyl)phosphine oxide in DMF affords a centrosymmetric porous thorium organic framework compound [Th(TPO)(OH)(H2O)]·8H2O (1). In contrast, the ionothermal reaction of the same reagents in the ionic liquid 1-butyl-2,3-dimethylimidazolium chloride results in the formation of a rare example of a chiral and porous thorium organic framework compound, [C9H17N2][Th(TPO)Cl2]·18H2O (2), which is derived solely from achiral starting materials. The geometries of the Th(iv) centers in compounds 1 and 2 are both atypical for low valent actinides, which can be best described as a ten-coordinate spherical sphenocorona and an irregular muffin, respectively. A large cavity of 17.5 Å (max. face to face) × 8 Å (min. face to face) with a BET surface area of 623 m(2) g(-1) in compound 2 is observed. The poor stability indicated by thermal gravimetric analysis and the water-resistance test for compound 2 may be due to the unique anisotropic coordination geometry for thorium. Temperature-dependent luminescence studies for both compounds indicate that the trends in the intensity vary as the Th-Th distance and the coordination environments of Th(iv) centers change. PMID:26564496

  17. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  18. METHOD OF RECOVERING THORIUM

    DOEpatents

    Fisher, R.W.

    1957-12-10

    A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.

  19. Preparation of actinide-metal research

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Lab. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films.

  20. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  1. Preparation of actinide-metal research materials

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Laboratory. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films. The actinide-metal processing capabilities of the IRML are continuing to be improved and applied to a wide variety of custom material preparations to meet the needs of the world-wide research community.

  2. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  3. Actinide-silicon multiradical bonding: infrared spectra and electronic structures of the Si(μ-X)AnF3 (An = Th, U; X = H, F) molecules.

    PubMed

    Hu, Han-Shi; Wei, Fan; Wang, Xuefeng; Andrews, Lester; Li, Jun

    2014-01-29

    We report a series of Si(μ-X)AnF3 (An = Th, U; X = H, F) complexes with silicon-actinide(IV) single bonds and unexpected multiradical features that form rare triplet silylenes. These bridged molecules have been prepared in microscopic scale through reactions of laser-ablated uranium and thorium atoms with silicon fluorides and identified from infrared spectra in argon and neon matrixes and relativistic quantum chemical calculations. Similar neon matrix experiments for the reactions of uranium with CF4 and CHF3 were carried out for comparison. Our density functional theory calculations show that the Si-U single-bonded species Si(μ-X)UF3 (X = H, F) with U(IV) oxidation state and the quasi-agostic bridge ligand of H or F are most stable among all the isomers, whereas the naively anticipated triple-bonded species XSi≡UF3 with U(VI) oxidation state and the double-bonded species XSi(•)═(•)UF3 with U(V) oxidation state lie markedly higher in energy. Similar thorium products from reactions with XSiF3 are also found to prefer the Si(μ-X)ThF3 structures with Si-Th single bonds and bridged H or F ligands. High level ab initio wave function theory calculations with the CCSD(T) and CASPT2 methods confirm that the ground states are quintet for Si(μ-X)UF3 and triplet for Si(μ-X)ThF3 with two unpaired electrons on the silylene group. These silicon-bearing molecules as the lowest-energy isomer of XSiAnF3 represent the first silicon-actinide systems with unusual "triplet" silylenes and Si-An single bonds with multiradical character. They are in dramatic contrast to the uranium-carbon analogs, XC≡UF3, which form triple-bonded singlet ground states with C3v symmetry. The calculated vibrational frequencies of the Si(μ-X)AnF3 complexes agree well with experimental observations. These results accentuate the critical difference of chemical bonding of 3p- and 2p-row main-group elements with actinides. The Lewis electron-pair model and the octet rule break down for these

  4. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGESBeta

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-06-14

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2–xFe3O12 (x = 0.5–0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation statesmore » and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2–xFe3O12 as viable waste form phases for U and other actinides.« less

  5. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  6. Minerals yearbook, 1988: Thorium

    SciTech Connect

    Hedrick, J.B.

    1988-01-01

    Mine production of monazite, the principal source of thorium, decreased slightly in 1988. Associated Minerals (USA) Inc. was the only domestic monazite producer. Monazite produced in the United States was exported, and the thorium products used domestically were derived from imported materials, existing company stocks, and thorium nitrate released from the National Defense Stockpile. Major nonenergy uses were in refractory applications, ceramics, and mantles for incandescent lanterns. The only energy use of thorium in the United States was in the high-temperature gas-cooled (HTGC) nuclear reactor at Fort St. Vrain, CO. Topics discussed in the report include domestic data coverage, legislation and government programs, domestic production, consumption and uses, stocks, prices, foreign trade, world capacity, and world review--(Australia, Brazil, Madagascar, Mozambique).

  7. ACTINIDE BIOCOLLOID FORMATION IN BRINE BY HALOPHILIC BACTERIA

    SciTech Connect

    GILLOW,J.B.; FRANCIS,A.J.; DODGE,C.J.; HARRIS,R.; BEVERIDGE,T.J.; BRADY,P.B.; PAPENGUTH,H.W.

    1998-11-09

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  8. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    SciTech Connect

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  9. Actinide biocolloid formation in brine by halophilic bacteria

    SciTech Connect

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1998-12-31

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  10. Separation of actinides from spent nuclear fuel: A review.

    PubMed

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  11. Raytheon explores thorium for next generation nuclear reactor

    SciTech Connect

    Crawford, M.

    1994-03-08

    Few new orders for nuclear power plants have been placed anywhere in the world in the last 20 years, but that is not discouraging Raytheon Engineers Constructors from making plans to explore new light water reactor technologies for commercial markets. The Lexington, Mass.-based company, which has extensive experience in nuclear power engineering and construction, has a vision for the light water reactor of the future - one that is based on the use of thorium-232, an element that decays over several steps to uranium-233. The use of thorium and a small amount of uranium that is 20 percent enriched is seen as providing operational, environmental, and safety advantages over reactors using the standard fuel mixture of uranium-238 and enriched uranium-235. According to Raytheon, the system could improve the economics of some reactors' operations by reducing fuel costs and lowering related waste volumes. At the same time, reactor safety could be improved by simpler control rod systems and the absence from reactor coolant of corrosive boric acid, which is used to slow neutrons in order to enhance reactions. Using thorium is also attractive because more of the fuel is burned up by the reactor, an estimated 12 percent as compared to about 4 percent for U-235. However, the technology's greatest attraction may well be its implications for nuclear proliferation. Growing plutonium inventories embedded in spent fuel rods from light water reactors have sparked concern worldwide. But according to Raytheon, using a thorium-based fuel core would alleviate this concern because it would produce only small quantities of plutonium. A thorium-based fuel system would produce 12 kilograms of plutonium over a decade versus 2,235 kilograms for an equivalent reactor operating with conventional uranium fuel.

  12. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  13. High-Pressure Synthesis and Characterization of New Actinide Borates, AnB4O8 (An=Th, U)

    PubMed Central

    Hinteregger, Ernst; Hofer, Thomas S; Heymann, Gunter; Perfler, Lukas; Kraus, Florian; Huppertz, Hubert

    2013-01-01

    New actinide borates ThB4O8 and UB4O8 were synthesized under high-pressure, high-temperature conditions (5.5 GPa/1100 °C for thorium borate, 10.5 GPa/1100 °C for the isotypic uranium borate) in a Walker-type multianvil apparatus from their corresponding actinide oxide and boron oxide. The crystal structure was determined on basis of single-crystal X-ray diffraction data that were collected at room temperature. Both compounds crystallized in the monoclinic space group C2/c (Z=4). Lattice parameters for ThB4O8: a=1611.3(3), b=419.86(8), c=730.6(2) pm; β=114.70(3)°; V=449.0(2) Å3; R1=0.0255, wR2=0.0653 (all data). Lattice parameters for UB4O8: a=1589.7(3), b=422.14(8), c=723.4(2) pm; β=114.13(3)°; V=443.1(2) Å3; R1=0.0227, wR2=0.0372 (all data). The new AnB4O8 (An=Th, U) structure type is constructed from corner-sharing BO4 tetrahedra, which form layers in the bc plane. One of the four independent oxygen atoms is threefold-coordinated. The actinide cations are located between the boron–oxygen layers. In addition to Raman spectroscopic investigations, DFT calculations were performed to support the assignment of the vibrational bands. PMID:24123698

  14. Surrogate Reactions in the Actinide Region

    SciTech Connect

    Burke, J T; Bernstein, L A; Scielzo, N D; Bleuel, D L; Lesher, S R; Escher, J; Ahle, L; Dietrich, F S; Hoffman, R D; Norman, E B; Sheets, S A; Phair, L; Fallon, P; Clark, R M; Gibelin, J; Jewett, C; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Wiedeking, M; Lyles, B F; Beausang, C W; Allmond, J M; Ai, H; Cizewski, J A; Hatarik, R; O'Malley, P D; Swan, T

    2008-01-30

    Over the past three years we have studied various surrogate reactions (d,p), ({sup 3}He,t), ({alpha},{alpha}{prime}) on several uranium isotopes {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U. An overview of the STARS/LIBERACE surrogate research program as it pertains to the actinides is discussed. A summary of results to date will be presented along with a discussion of experimental difficulties encountered in surrogate experiments and future research directions.

  15. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  16. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  17. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-07-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  18. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-04-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions -but still lack, for example, the effects of strong magnetic fields- we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  19. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    SciTech Connect

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.

    2013-07-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  20. Preliminary summary review of thorium-bearing mineral occurrences in Alaska

    USGS Publications Warehouse

    Bates, Robert G.; Wedow, Helmuth, Jr.

    1952-01-01

    Thorium-bearing minerals are known at 47 localities in Alaska. At these localities the thorium occurs as a major constituent or in minor amounts as an impurity in one or more of the following 12 minerals: allanite, columbite, ellsworthite, eschynite, gummite, monazite, orangite, parisite, thorianite, thorite, xenotime, and zircon. In addition other minerals, such as biotite and sphene, are radioactive and may contain thorium. Several unidentified columbate minerals with uranium or thorium and uranium as major constituents have been recognized at some localities. The distribution, by type of deposit, of the 57 thorium occurrences is as follows: lode - 3, lode and placer - 1, granitic rock - 3, granitic rock and related placer - 14, and placer - 26. Of the four lode occurrences only the radioactive veins at Salmon Bay in southeastern Alaska and the contact metamorphic deposit in the Nixon Fork area of central Alaska warrant further consideration, although insufficient data are available to determine whether these two deposits have commercial possibilities. The remaining occurrences of thorium-bearing minerals in Alaska are limited to placer deposits and disseminations of accessory minerals in granitic rocks. In most of these occurrences the thorium-bearing minerals occur in only trace amounts and consequently warrent little further consideration. More data are needed to determine the possibilities of byproduct recovery of thorium-bearing minerals from several of the gold and tin placers.

  1. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOEpatents

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  2. Th-U (thorium-uranium) system

    SciTech Connect

    Peterson, D.E.

    1985-01-01

    The phase behavior of the Th-U system was studied by a variety of techniques, including X-ray, electrical, resistivity, thermal, and metallographic measurements. The assessed Th-U phase diagram is shown. The system has monotectic, eutectic, and catatectic reactions. No intermetallic compounds are formed, but both Th and U display allotropic transformations. There is significant solubility of U in (Th), whereas the Th solubility in (U) is extremely low. A wide miscibility gap containing two liquids exists at high temperatures.

  3. Uranium-thorium-protactinium dating systematics

    SciTech Connect

    Cheng, H.; Edwards, R.L.; Murrell, M.T.; Benjamin, T.M.

    1998-11-01

    With precise {sup 234}U, {sup 230}Th, and {sup 231}Pa data available, {sup 230}Th and {sup 231}Pa ages can now be tested rigorously for concordancy. If the material is not concordant, the isotope characteristics of this material may be examined in some detail. Here, models similar to those used to describe the U-Pb system are evaluated for use in U-Th-Pa studies, for the case in which initial {sup 230}Th and {sup 231}Pa concentrations are effectively zero. The systematics of concordia plots in relation to models of variation in {delta}{sup 234}U, episodic U or loss or gain, continuous U loss or gain, and continuous {sup 234}U, {sup 230}Th and {sup 231}Pa gain or loss are considered for the case in which initial U concentration is significant (for example, in many carbonate deposits). The authors also examine linear U uptake models for the case in which initial U concentration is effectively zero (for example, in teeth and bones). Such models should prove useful in interpreting data from materials that have behaved as open-systems. In particular, these models may help constrain the nature of diagenetic processes, and in some situations it may be possible to determine or constrain true ages with materials that have behaved as open-systems.

  4. Preparation of thorium-uranium gel spheres

    SciTech Connect

    Spence, R.D.; Haas, P.A.

    1980-01-01

    Ceramic oxide spheres with diameters of 15 to 1500 ..mu..m are being evaluated for fabrication of power reactor fuel rods. (Th,U)O/sub 2/ spheres can be prepared by internal or external chemical gelation of nitrate solutions or oxide sols. Two established external gelation techniques were tested but proved to be unsatisfactory for the intended application. Established internal gelation techniques for UO/sub 2/ spheres were applied with minor modifications to make 75% ThO/sub 2/-25% UO/sub 2/ spheres that sinter to diameters of 200 to 1400 ..mu..m (99% T.D.).

  5. The measurement of incorporated radioactive actinides in the body by direct methods

    NASA Astrophysics Data System (ADS)

    Genicot, J. L.

    1994-10-01

    From the beginning of the nuclear industry the assessment of incorporated radionuclides has been an absolute necessity. Although this assessment is easy for many nuclides (fission or activation products, etc.), the problem of the detection and quantification of some of the actinides is still a challenge. Several of these, e.g. uranium, are easy to detect, but thorium, americium and plutonium are very difficult to assess. The necessity for the quantification of these elements is dictated by new recommendations of the International Commission for Radiological Protection which propose lower Annual Limit of Intake values, often less than the detection limits of the present measurement systems (proportional counters and 'Phoswich' scintillators). The new technologies are based on semiconductor detectors with large detection areas. Presently HPGe detectors are most appropriate for this application, but surface barrier detectors or room temperature systems (CdTe, HgI2) are being investigated. This paper describes the state of the art and the trends of Belgian Nuclear Research Center in this field. Some examples of measurements are given.

  6. Solvation of actinide salts in water using a polarizable continuum model.

    PubMed

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported. PMID:25563344

  7. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  8. Minor Actinides Recycling in PWRs

    SciTech Connect

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-07-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  9. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  10. Rapid actinide-separation methods

    SciTech Connect

    Maxwell, S.L. III

    1997-12-31

    New high-speed actinide-separation methods have been developed by the Savannah River Site Central Laboratory that can be applied to nuclear materials process samples, waste solutions and environmental samples. As part of a reengineering effort to improve efficiencies and reduce operating costs, solvent extraction methods (TTA, Hexone, TBP and TIOA) used for over thirty years in the SRS Central Laboratory were replaced with new rapid extraction column methods able to handle a variety of difficult sample matrices and actinide levels. Significant costs savings were realized and costly mixed-waste controls were avoided by using applied vacuum and 50-100 micron particle-size resins from Eichrom Industries. TEVA Resin{reg_sign}, UTEVA Resin{reg_sign}, and TRU Resin{reg_sign} columns are used with flow rates of approximately two to three milliliters per minute to minimize sample turnaround times. Single-column, dual-column and sequential-cartridge methods for plutonium, uranium, neptunium, americium and curium were developed that enable rapid, cost-effective separations prior to alpha-particle counting, thermal ionization and inductively coupled plasma mass spectrometry, and laser phosphorescence measurements.

  11. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  12. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  13. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  14. THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Gofman, J.W.

    1959-08-11

    The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

  15. Actinide solubility-controlling phases during the dissolution of phosphate ceramics

    NASA Astrophysics Data System (ADS)

    Du Fou de Kerdaniel, E.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R.

    2007-05-01

    Phosphate ceramics (britholites, monazite/brabantite solid solutions, thorium phosphate diphosphate, i.e. β-TPD, and associated β-TPD/monazite composites) are often considered as potential candidates to immobilize tri- and tetravalent actinides. In order to study the properties of such materials on the retention of actinides during aqueous alteration, phosphate-based neoformed phases were prepared using under- and over-saturation processes then extensively characterized (involving grazing XRD, EPMA, μ-Raman, IR or SEM). In over-saturation conditions, lanthanides (used as surrogates of trivalent actinides) are quickly precipitated as three hydrated forms (monazite, rhabdophane or xenotime) depending on the temperature, the heating time and the ionic radius of the element. Moreover, as already described for thorium, tetravalent actinides (Th, U, Np, Pu) are more often immobilized as phosphate hydrogenphosphate compounds. However, samples of (Ln,Ca,Th)-rhabdophane can also precipitate in the presence of large concentrations of calcium. Such neoformed phases were also precipitated at the surface of leached phosphate-based ceramics during under-saturation experiments. The associated thermodynamic solubility constants at infinite dilution were estimated. Due to their rapid precipitation and their very low solubility constants, these actinide phosphate solubility-controlling phases appear of significant interest in the field of the evaluation of the long-term performance of actinide-doped phosphate ceramics.

  16. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  17. Rapid determination of actinides in asphalt samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  18. Thin extractive membrane for monitoring actinides in aqueous streams.

    PubMed

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples. PMID:23747462

  19. Analysis of key safety metrics of thorium utilization in LWRs

    DOE PAGESBeta

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; Powers, Jeffrey

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel (233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on conceptsmore » that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of

  20. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  1. Research in actinide chemistry

    SciTech Connect

    Not Available

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  2. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    SciTech Connect

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-07-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  3. Thermochemistry of the actinides

    SciTech Connect

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  4. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  5. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  6. Gas-phase chemistry of bare and oxo-ligated protactinium ions: a contribution to a systematic understanding of actinide chemistry.

    PubMed

    Gibson, John K; Haire, Richard G

    2002-11-01

    Gas-phase chemistry of bare and oxo-ligated protactinium ions has been studied for the first time. Comparisons were made with thorium, uranium, and neptunium ion chemistry to further the systematic understanding of 5f elements. The rates of oxidation of Pa(+) and PaO(+) by ethylene oxide compared with those of the homologous uranium ions indicate that the first and second bond dissociation energies, BDE[Pa(+)-O] and BDE[OPa(+)-O], are approximately 800 kJ mol(-1). The relatively facile fluorination of Pa(+) to PaF(4)(+) by SF(6) is consistent with the high stability of the pentavalent oxidation state of Pa. Reactions with ethene, propene, 1-butene, and iso-butene revealed that Pa(+) is a very reactive metal ion. In analogy with U(+) chemistry, ethene was trimerized by Pa(+) to give PaC(6)H(6)(+). Reactions of Pa(+) with larger alkenes resulted in secondary and tertiary products not observed for U(+) or Np(+). The bare protactinium ion is significantly more reactive with organic substrates than are heavier actinide ions. The greatest difference between Pa and heavier actinide congeners was the exceptional dehydrogenation activity of PaO(+) with alkenes; UO(+) and NpO(+) were comparatively inert. The striking reactivity of PaO(+) is attributed to the distinctive electronic structure at the metal center in this oxide, which is considered to reflect the greater availability of the 5f electrons for participation in bonding, either directly or by promotion/hybridization with higher-energy valence orbitals. PMID:12401099

  7. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  8. A molecular dynamics study of the thermal properties of thorium oxide

    NASA Astrophysics Data System (ADS)

    Martin, Paul; Cooke, David J.; Cywinski, Robert

    2012-10-01

    There is growing interest in the exploitation of the thorium nuclear fuel cycle as an alternative to that of uranium. As part of a wider study of the suitability of thorium dioxide (thoria) as a nuclear fuel, we have used molecular dynamics to investigate the thermal expansion, oxygen diffusion, and heat capacity of pure thoria and uranium doped (1-10%) thoria between 1500 K and 3600 K. Our results indicate that the thermal performance of the thoria matrix, even when doped with 10%U, is comparable to, and possibly better than, that of UO2.

  9. Actinide Solubility and Speciation in the WIPP

    SciTech Connect

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  10. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  11. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  12. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect

    Lau, C. W.; Demaziere, C.; Nylen, H.; Sandberg, U.

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  13. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  14. Extraction of actinides and nitric acid by crown ethers

    SciTech Connect

    Rozen, A.M.; Nikolotova, Z.I.; Kartasheva, N.A.; Luk'yanenko, N.G.; Bogatskii, A.V.

    1982-10-01

    This work studied the extraction of thorium nitrate, and an extraction isotherm of uranyl nitrate was obtained; the distribution of HNO/sub 3/ was studied over a wide range of acidity (up to 18M), which uses different concepts on the mechanism of the process. The extraction of Pu(VI) and Np(IV) was studied up to a 12 M acidity; two crown ethers had not previously been used for the extraction of the actinides. A quantitative description of the equilibria studied is given, and the influence of the structure of the ethers on the complex formation is discussed.

  15. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2010-01-08

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  16. The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Lapka, Joseph L.; Paulenova, Alena; Alyapyshev, Mikhail Yu; Babain, Vasiliy A.; Law, Jack D.; Herbst, R. Scott

    2010-03-01

    Diamides of dipicolinic acid (N,N'-diethyl-N,N'-ditolyl-dipicolinamide, EtTDPA) were synthesized and evaluated for their extraction capability for actinides. In this work the extractions of neptunium(V), protactinium(V), and thorium(IV) with EtTDPA in a polar fluorinated diluent from nitric acid were investigated. EtTDPA shows a high affinity for Th(IV) even at millimolar concentrations. Np(V) and Pa(V) are both reasonably extractable with EtTDPA; however, near saturated solutions are required to achieve appreciable distribution ratios. A comparison with previously published actinide extraction data is given.

  17. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  18. Photochemical precipitation of thorium and cerium and their separation from other ions in aqueous solution.

    PubMed

    Das, M; Heyn, A H; Hoffman, M Z; Agarwal, R P

    1970-10-01

    Thorium was precipitated from homogeneous solution by exposing solutions of thorium and periodate in dilute perchloric acid to 253.7 nm radiation from a low-pressure mercury lamp. Periodate is reduced photochemically to iodate which causes the formation of a dense precipitate of the basic iodate of thorium(IV). The precipitate was redissolved, the iodate reduced, the thorium precipitated first as the hydroxide, then as the oxalate and ignited to the dioxide for weighing. Thorium(IV) solutions containing 8-200 mg of ThO(2) gave quantitative results with a standard deviation (s) of 0.2 mg. Separations from 25 mg each of iron, calcium, magnesium, 50 mg of yttrium and up to 500 mg of uranium(VI) were quantitative (s = 0.25 mg). Separations from rare earths, except cerium, were accomplished by using hexamethylenetetramine rather than ammonia for the precipitation of the hydroxide. Cerium(III) was similarly precipitated and converted into CeO(2) for weighing. Quantitative results were obtained for 13-150 mg of CeO(2) with a standard deviation of 0.2 mg. Separations from 200 mg of uranium were quantitative. Other rare earths and yttrium interfered seriously. The precipitates of the basic cerium(IV) and thorium iodates obtained are more compact than those obtained by direct precipitation and can be handled easily. Attempts to duplicate Suzuki's method for separating cerium from neodymium and yttrium were not successful. PMID:18960820

  19. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  20. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    SciTech Connect

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-02-10

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100/sup 0/C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables.

  1. Actinide transmutation in a thermal reactor

    SciTech Connect

    Facchini, A.; Sanjust, V.

    1993-12-31

    The long term radiotoxicity of nuclear wastes may be substantially reduced by long irradiation in thermal reactors. Preliminary calculations showed that appreciable quantities of the minor actinides and long lived fission products may be recycled in a power PWR, and that, a few centuries after 20--30 years of irradiation, they reach radiotoxicity levels comparable to those of the uranium quantity required to make the corresponding fuel amount. The purpose of the present work is to investigate the conceptual possibility of reducing the level of the long term radiotoxicity, due to Minor Actinides and Long-Lived Fission Products (MA/LLFP) produced in UO{sub 2} fuel, by long irradiation of them in a power PWR. More precisely the authors pursued the objective of determining what fraction of the MA/LLFP mixture produced in a 1,000 MWe PWR during its whole life, may be burned in a similar power reactor. A waste burning efficiency has been considered satisfactory if the long term radiotoxicity of the MA/LLFP contained in a given quantity of spent fuel reaches, a few centuries after its irradiation, the level corresponding to that of the amount of natural uranium required to produce the same quantity of fresh fuel. This waiting time is in fact necessary in any case for cooling the other fission products to a sufficiently low radioactivity level and is a time span not unreasonable when considering man-made barriers against the radionuclide diffusion into the biosphere.

  2. Unique advantages of organometallic supporting ligands for uranium complexes

    SciTech Connect

    Diaconescu, Paula L.; Garcia, Evan

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  3. Design study of long-life PWR using thorium cycle

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-01

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that 231Pa better than 237Np as burnable poisons in thorium fuel system. Thorium oxide system with 8% 233U enrichment and 7.6˜ 8% 231Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1% Δk/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53% Δk/k and reduced power peaking during its operation.

  4. Design study of long-life PWR using thorium cycle

    SciTech Connect

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  5. Advances in actinide solid-state and coordination chemistry

    SciTech Connect

    Burns, Peter C; Ikeda, Y.; Czerwinski, K.

    2011-01-31

    Actinide solid-state and coordination chemistry has advanced through unexpected results that have further revealed the complex nature of the 5f elements. Nanoscale control of actinide materials is emerging, as shown by the creation of a considerable range of cluster and tubular topologies. Departures from established structural trends for actinyl ions are provided by cation-cation interactions in which an O atom of one actinyl ion is an equatorial ligand of a bipyramid of another actinyl ion. The solid-state structural complexity of actinide materials has been further demonstrated by open framework materials with interesting properties. The U(VI) tetraoxide core has been added to this cation's repertoire of coordination possibilities. The emergence of pentavalent uranium solid-state and coordination chemistry has resulted from the prudent selection of ligands. Finally, analogues of the uranyl ion have challenged our understanding of this normally unreactive functional group.

  6. METHOD FOR PRODUCING THORIUM TETRACHLORIDE

    DOEpatents

    Mason, E.A.; Cobb, C.M.

    1960-03-15

    A process for producing thorium tetrachloride from thorium concentrate comprises reacting thorium concentrates with a carbonaceous reducing agent in excess of 0.05 part by weight per part of thoriferous concentrate at a temperature in excess of 1300 deg C, cooling and comminuting the mass, chlorinating the resulting comminuting mass by suspending in a gaseous chlorinating agent in a fluidized reactor at a temperatare maintained between about l85 deg C and 770 deg C, and removing the resulting solid ThCl/sub 4/ from the reaction zone.

  7. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Grün, Rainer; Aubert, Maxime; Joannes-Boyau, Renaud; Moncel, Marie-Hélène

    2008-11-01

    We have mapped U ( 238U) and Th ( 232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found. The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.

  8. Sequestering agents for the removal of actinides from waste streams

    SciTech Connect

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R.

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  9. Research in actinide chemistry

    SciTech Connect

    Not Available

    1989-01-01

    Research continued to be focused broadly on the chemistry of the actinide cations in solution. While the direct concern is the actinide elements, their radioactivity limits the techniques which can be applied to their study. A major area of interest continues to be the thermodynamics of interaction of the f-elements with a broad spectrum of inorganic and organic ligands. Solvent extraction (for tracer levels), potentiometric and calorimetric titration and absorption spectrometry have been used to obtain stability constants and the associated enthalpy and entropy changes for complexation. A number of studies were performed to provide a better data base and a better understanding of the more significant species determining the behavior of actinides in natural waters (e.g., hydrolysis and silicate interaction). A second major area has been kinetics. NpO{sub 2}{sup 2+} reduction by hydroxy and carboxylic acids was studied to obtain an understanding of how such functional groups in humic substances may influence actinyl redox. The kinetics of dissociation of UO{sub 2}{sup 2+} and Ln{sup 3+} (La{sup 3+} = lanthanide element cations) from synthetic polyelectrolytes and humics provided significantly increased understanding of actinide complexation by these macromolecules. A third area of activity used laser induced fluorescence to study the hydration state of Eu(III) in a number of systems. Finally, several other studies, not in these major areas, were conducted. These included investigation of NpO{sub 2}{sup +} cation-cation complexes, the extraction of Am(III) by MX (M = Li, Na, NH{sub 4}{sup +}, K{sup +}; X = ClO{sub 4}{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, BrO{sub 3}{sup {minus}}) over a concentration range from 0.01 M to saturated and the thermodynamics of synergistic extraction of actinides by crown ethers and {beta}-diketonates. 23 refs., 1 fig.

  10. Thorium and uranium M-shell x-ray production cross sections for 0.4--4.0 MeV protons, 0.4--6.0 MeV helium ions, 4.5--11.3 mev carbon ions, and 4.5--13.5 MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Phinney, Lucas C.

    The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4--4.0 MeV, helium ions of energy 0.4--6.0 MeV, carbon ions of energy 4.5--11.3 MeV and oxygen ions of energy 4.5--13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4-O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.

  11. Research efforts in the extraction of actinides using new tetradentate ligands

    SciTech Connect

    Ensor, D.D. . Dept. of Chemistry)

    1992-01-01

    The synergistic extraction of two light actinides, thorium and uranium, with mixtures of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one, HBNPP, 4-hexanoyl-3-methyl-1-phenyl-2-pyrazolin-5-one, P, and 4,4[prime]-nonanedioyl-bis(3-methyl-1-phenyl-2-pyrazolin-5-one), H[sub 2]NDBP with the tri-n-octyl phosphine oxide (TOPO) has been studied. The distribution of these ions between HN0[sub 3]/NaNO[sub 3] at an ionic strength of 1.0 M and the organic phase has been detected. Studies show, with the ligands alone, H[sub 2]NDBP is much more effective than either HBNPP or BHNPP. The slope-analysis treatments indicate formations ofTh(NDBP)[sub 2], Th(BNPP)[sub 4], and Th(EWP)[sub 4] for Th[sup +4], and U0[sub 2](NDBP), U0[sub 2](BMPP)[sub 2], and U0[sub 2](HMPP)[sub 2] for U0[sub 2][sup +2] in the organic phase. With the addition of TOPOas a neutral donor, Th[sup +4] shows a high extraction ability with the mixtures of chelate ligands and TOPO, and the order of the extraction power is H[sub 2]NDBP > HHNPP [approx] HBNPP within the range studied. Whereas, U0[sub 2][sup +2] shows significant increase in the extraction distribution and the extraction power follows the same order. Results show that in the TOPO systems, separation factors were much less than in the pyrazolone systems without TOPO.

  12. Establishment of a room temperature molten salt capability to measure fundamental thermodynamic properties of actinide elements

    SciTech Connect

    Smith, W.H.; Costa, D.A.

    1998-12-31

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this work was to establish a capability for the measurement of fundamental thermodynamic properties of actinide elements in room temperature molten salts. This capability will be used to study in detail the actinide chloro- and oxo-coordination chemistries that dominate in the chloride-based molten salt media. Uranium will be the first actinide element under investigation.

  13. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code. PMID:25574934

  14. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  15. Determination of actinides in urine and fecal samples

    SciTech Connect

    McKibbin, T.T.

    1992-12-31

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  16. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, Terry T.

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  17. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  18. Correlation consistent basis sets for actinides. I. The Th and U atoms

    SciTech Connect

    Peterson, Kirk A.

    2015-02-21

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2

  19. Correlation consistent basis sets for actinides. I. The Th and U atoms.

    PubMed

    Peterson, Kirk A

    2015-02-21

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol. PMID:25702000

  20. Correlation consistent basis sets for actinides. I. The Th and U atoms

    NASA Astrophysics Data System (ADS)

    Peterson, Kirk A.

    2015-02-01

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ˜1 kcal/mol.

  1. Device for Detecting Actinides, Method for Detecting Actinides

    SciTech Connect

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  2. RECOVERY OF URANIUM BY CYCLOALKYLDITHIO-CARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-06-30

    The separation of uranium-233 from an aqueous nitric acid solution of neutron irradiated thorium by selectively complexing the uranium is described. The separation is carried out by contacting the thorium solution with a non- aromatic organic dithiocarbamate selected from the group which consists of alkali and alkaline earth cycloalkyldithiocarbamates and recovering the resulting uranyl cycloalkyldithiocarbamate complex by organic solvent extraction such as with methyl ethyl ketone. The complexed uranium may be stripped from the separated organic phase by scrubbing with one normal nitric acid solution.

  3. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  4. Principal thorium resources in the United States

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Armbrustmacher, T.J.; Olson, J.C.; Brownfield, I.K.; Brock, M.R.; Lemons, J.F.; Coppa, L.V.; Clingan, B.V.

    1979-01-01

    Lemhi Pass and Wet Mountains Districts. The first district has reserves of 68,000 tons of ThO2 and probable potential resources of 124,000 tons that can be produced at less than $15 per pound; the second district has 54,000 tons of reserves and 141,000 tons of probable potential resources producible at less than $15 per pound. Rare earths are a common byproduct, and in many veins they are from one-half to several times as abundant as thorium. Massive carbonatite bodies are large-tonnage low-grade deposits. Thorium in these deposits would be a byproduct either of rare earth or of niobium mining. The Iron Hill carbonatite body in the Powderhorn district, Colorado, and the Sulfide Queen carbonatite body in the Mountain Pass district, California, were evaluated. These two deposits contain 40,800 tons of ThO2 in reserves and 125,000 tons of ThO2 in probable potential resources. More than 80 percent of this total is in the Iron Hill carbonatite. This thorium is entirely a byproduct and is producible at less than $15 per pound of ThO2. The Sulphide Queen massive carbonatite deposit was being mined in 1977 for rare earths, and thorium could be recovered by adding an extra circuit to the existing mill. Stream placers in North and South Carolina occur both in the Piedmont and just east of the Fall Line. The reserves of these deposits total 5,270 tons of ThO2, and the probable potential resources are 36,800 tons of ThO2. The Piedmont placers are all too small to produce ThO2 at a cost of less than $50 per pound. One placer on Hollow Creek, S.C., just east of the Fall Line had reserves of 2,040 tons of ThO2 that is producible at between $15 and $30 per pound. Thorium occurs in monazite in these placers. Other heavy minerals that would be recovered with the monazite include rutile, zircon, and ilmenite. In addition to thorium, monazite contains large amounts of rare earths and small amounts of uranium; both can be recovered during the process that separates thorium fr

  5. Contributions to the geology of uranium and thorium by the United States Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955

    USGS Publications Warehouse

    Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.

    1956-01-01

    Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.

  6. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  7. A literature review of actinide-carbonate mineral interactions

    SciTech Connect

    Stout, D.L.; Carroll, S.A.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  8. Structural studies of uranium and thorium complexes with 4,5-dihydroxy-3,5-benzenesdisulfonate (Tiron) at low and neutral pH by X-ray absorption spectroscopy.

    PubMed

    Sylwester, E R; Allen, P G; Dharmawardana, U R; Sutton, M

    2001-06-01

    We have determined the structure of uranyl, UO(2)(2+), and Th(4+) complexes formed in aqueous solution with 4,5-dihydroxy-3,5-benzenedisulfonate (Tiron) as function of pH and concentration. At equimolar concentrations of 0.05 M UO(2)(2+) and Tiron, the predominant species was found to be aqueous uranyl at pH = 2.0. At pH = 6.0, the formation of a 3:3 UO(2)(2+):Tiron trimer (proposed in earlier studies) was observed. In this structure, bidentate catecholate complexation to Tiron as well as oxygen bridging between uranyl units is detected. Th(4+) structural changes were observed both as a function of pH and Th:L (L = Tiron) ratio. At Th:L = 1:1 and pH = 1.4, a monomeric complex is observed with each Th center complexing monodentate to approximately 2 sulfonate functional groups. At pH 4.0 similar sulfonate ligation is observed along with oligomer formation. At pH 6.0 thorium hydrolysis products are detected, with little evidence for inner-sphere Tiron coordination. When the Th:L is changed to 1:2 at pH = 6.0, a stable oligomeric complex is formed that dominates the speciation for Th:L ratios up to 1:5. This complex is characterized by bidentate catechol and monodentate sulfonate ligation to Tiron along with oxygen bridging between Th(4+) atoms and is consistent with the formation of the 2:3 Th:L polymeric species proposed from earlier work. At a Th:L ratio of 1:10, Th(4+) complexation is dominated by bidentate catechol ligation and the formation of a monomeric Th(Tiron)(x) species, where x > or = 2. PMID:11375702

  9. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  10. Stability of a new cubic monoxide of Thorium under pressure

    PubMed Central

    Sun, Weiwei; Luo, Wei; Ahuja, Rajeev

    2015-01-01

    Density functional theory has been applied to elucidate the stability of thorium monoxide (ThO). It is found out that the pressure can stabilize the rocksalt phase of ThO, and the transition pressure is estimated between 14 and 22 GPa. The stability of ThO can be attributed due to the gradually filling 5f orbitals at the expense of 7s and 6d electrons in Th metal. For ThO, the pressure induces stronger Th-O bond reflected by the newly established 6d-2p hybridization which is the dominant cause of its stability. The phonon dispersion curves of the rocksalt phase show the positive frequencies which indicates its dynamical stability. Our successful prediction of the stabilization of the metallic ThO has proposed a route to synthesize novel actinide monoxides. PMID:26337015

  11. Microwave dissolution of plant tissue and the subsequent determination of trace lanthanide and actinide elements by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Alvarado, J.S.; Neal, T.J.; Smith, L.L.; Erickson, M.D.

    1997-08-01

    Recently there has been much concern with the ability of plants to uptake heavy metals from their surroundings. With the development of instrumental techniques with low detection limits such as inductively coupled plasma-mass spectrometry (ICP-MS), attention is shifting toward achieving faster and more elegant ways of oxidizing the organic material inherent in environmental samples. Closed-vessel microwave dissolution was compared with conventional methods for the determination of concentrations of cerium, samarium, europium, terbium, uranium and thorium in a series of samples from the National Institute of Standards and Technology and from fields in Idaho. The ICP-MS technique exhibited detection limits in parts-per-trillion and linear calibration plots over three orders of magnitude for the elements under study. The results obtained by using nitric acid and hydrogen peroxide in a microwave digestion system for the analysis of reference materials showed close agreement with the accepted values. These values were compared with results obtained from dry- and wet-ashing procedures. The findings from an experiment comparing radiometric techniques for the determination of actinide elements to ICP-MS are reported.

  12. Neutronic calculations for CANDU thorium systems using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Saldideh, M.; Shayesteh, M.; Eshghi, M.

    2014-08-01

    In this paper, we have investigated the prospects of exploiting the rich world thorium reserves using Canada Deuterium Uranium (CANDU) reactors. The analysis is performed using the Monte Carlo MCNP code in order to understand how much time the reactor is in criticality conduction. Four different fuel compositions have been selected for analysis. We have obtained the infinite multiplication factor, k∞, under full power operation of the reactor over 8 years. The neutronic flux distribution in the full core reactor has already been investigated.

  13. A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-07-01

    ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.

  14. Analysis of the thorium axial blanket experiments in the PROTEUS reactor

    SciTech Connect

    White, J. R.; Ingersoll, D. T.; Schmocker, U.

    1980-01-01

    An extensive program of reactor physics experiments in GCFR fuel pin lattices has been completed recently at the PROTEUS critical facility located at EIR laboratory in Switzerland. The PROTEUS reactor consists of a central test zone surrounded by a uranium buffer and thermal driver region. The test lattices included a PuO/sub 2//UO/sub 2/ fuel region with internal and axial blankets of UO/sub 2/, ThO/sub 2/, and thorium metal. Detailed analysis of the thorium-bearing lattices has been performed at EIR and at ORNL in order to validate nuclear data and methods used for reactor physics analysis of advanced GCFR designs.

  15. RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-08-11

    A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.

  16. Mineral resource of the month: thorium

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    This article provides information on thorium. Thorium is a natural radioactive element that can be found with other minerals. It can be used to generate power, produce light and transmit energy. Thorium has a potential to be used as a nuclear fuel. This element was discovered by Swedish chemist and mineralogist Jóns Jakob Berzelius in 1828.

  17. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    SciTech Connect

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  18. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded. PMID:18545032

  19. Evaluation of actinide biosorption by microorganisms

    SciTech Connect

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  20. Electrochemical decontamination of actinide processing gloveboxes

    SciTech Connect

    Lugo, J.L.; Wedman, D.E.; Nelson, T.O.

    1997-12-31

    Electrochemical technology for the decontamination of metallic surfaces has been successfully demonstrated. Highly enriched uranium and stainless steel surfaces are readily decontaminated to Low Level Waste (LLW) criteria using this process. This process is similar to electropolishing and utilizes the anodic dissolution of the substrate material to generate a clean surface. The surface contaminants are thus removed and collected along with the stripped substrate material as a compact precipitate. This separation allows the electrolyte to be recycled indefinitely. Using an alkaline Sodium Sulfate electrolyte solution, we are able to decontaminate to low levels of alpha activity, gloveboxes previously used in Actinide processing. Surfaces with contamination levels > 1,000,000 cpm alpha activity have been decontaminated to levels as low as 7,000. The process is rapid with decontamination occurring at a rate of over 3 square cm/sec.

  1. Chemical reduction of actinides probed by resonant inelastic X-ray scattering.

    PubMed

    Butorin, Sergei M; Shuh, David K; Kvashnina, Kristina O; Guo, Jinghua; Werme, Lars; Nordgren, Joseph

    2013-12-01

    The study addresses the possibilities of immobilizing the mobile species of actinides in the geosphere using metallic iron. Sorption on corroding iron is well-known, but there have been uncertainties with regard to the possibilities of reducing the actinyl species to sparingly soluble oxides and, thereby, permanently immobilizing them. Resonant inelastic X-ray scattering (RIXS) measurements at the actinide 5d edges on Fe foils exposed to uranium(VI) and neptunium(V) solutions in groundwater unambigiously indicate reduction of actinides to, respectively, uranium(IV) and neptunium(IV) on iron surfaces. The reduction manifests itself in an appearance of distinct specific signatures of uranium(IV) and neptunium(IV) in the RIXS profile of 5f-5f excitations. Such signatures and RIXS intensity/cross-section behavior with varying energy of incident photons can be reproduced by model atomic-multiplet calculations of the RIXS spectra. By normalizing the RIXS signal of corresponding 5f-5f excitations to core-to-core 6p-to-5d characteristic fluorescence transitions of actinides, their reduction rates on Fe samples with different exposure to actinide solutions can be estimated. Observed reduction implies similar processes in the nuclear waste canister thus suggesting reduced probability of nuclear waste release with ground waters from the canister. PMID:24187957

  2. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    SciTech Connect

    Franceschini, F.; Wenner, M.; Fiorina, C.; Huang, M.; Petrovic, B.; Krepel, J.

    2012-07-01

    As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energy ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially substantial

  3. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-01

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process. PMID:26907589

  4. Modeling actinide chemistry with ASPEN PLUS

    SciTech Connect

    Grigsby, C.O.

    1995-12-31

    When chemical engineers think of chemical processing, they often do not include the US government or the national laboratories as significant participants. Compared to the scale of chemical processing in the chemical process, petrochemical and pharmaceutical industries, the government contribution to chemical processing is not large. However, for the past fifty years, the US government has been, heavily involved in chemical processing of some very specialized materials, in particular, uranium and plutonium for nuclear weapons. Individuals and corporations have paid taxes that, in part have been used to construct and to maintain a series of very expensive laboratories and production facilities throughout the country. Even ignoring the ongoing R & D costs, the price per pound of enriched uranium or of plutonium exceeds that of platinum by a wide margin. Now, with the end of the cold war, the government is decommissioning large numbers of nuclear weapons and cleaning up the legacy of radioactive wastes generated over the last fifty years. It is likely that the costs associated with the build-down and clean-up of the nuclear weapons complex will exceed the investment of the past fifty years of production. Los Alamos National Laboratory occupies a special place in the history of nuclear weapons. The first weapons were designed and assembled at Los Alamos using uranium produced in Oak Ridge, Tennessee or plutonium produced in Richland, Washington. Many of the thermophysical and metallurgical properties of actinide elements have been investigated at Los Alamos. The only plutonium processing facility currently operating in the US is in Los Alamos, and the Laboratory is striving to capture and maintain the uranium processing technology applicable to the post-cold war era. Laboratory researchers are actively involved in developing methods for cleaning up the wastes associated with production of nuclear weapons throughout the US.

  5. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  6. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    SciTech Connect

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

  7. Thorium in occupationally exposed men.

    SciTech Connect

    Stehney, A. F.

    1999-02-24

    Higher than environmental levels of {sup 232}Th have been found in autopsy samples of lungs and other organs from four former employees of a thorium refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Examination of the distribution of thorium among the organs revealed poor agreement with the distribution calculated from the dosimetric models in Publication 30 of the International Commission on Radioprotection (ICRP). Concentrations in the lungs relative to pulmonary lymph nodes, bone or liver were much higher than calculated from the model for class Y thorium and the exposure histories of the workers. Much better agreement was found with more recently proposed models in Publications 68 and 69 of the ICRP. Radiation doses estimated from the amounts of thorium in the autopsy samples were compatible with health studies that found no significant difference in mortality from that of the general population of men in the US.

  8. Preparation and structure of uranium-incorporated Gd2Zr2O7 compounds and their thermodynamic stabilities under oxidizing and reducing conditions.

    PubMed

    Jafar, Mohsin; Phapale, Suhas B; Mandal, Balaji P; Mishra, Ratikant; Tyagi, Avesh K

    2015-10-01

    Gd2Zr2O7 is being contemplated as a futuristic matrix for the incorporation of high-level radioactive nuclear waste. This compound has the unique ability to incorporate several fission products and heavy metal ions like uranium and thorium into its lattice sites without undergoing structural changes. X-ray diffraction analyses of Gd2-xUxZr2O7+δ samples indicate that the parent compound can incorporate a substantial amount of uranium, both under oxidizing and reducing conditions. The oxidation state of these samples was investigated by X-ray photoelectron spectroscopy. The thermodynamic stability of uranium-substituted Gd2Zr2O7 is an important parameter that will govern the long-term storage of uranium and minor actinides in this matrix. High-temperature calorimetry has been used to investigate the stability of the Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) compositions. The standard molar free energy of the formation of Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) compositions has been estimated. From the free energy of formation data, the sample corresponding to x = 0.15 was found to be most stable in the Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) series. The relative stabilities of U(4+) and U(6+) substituted gadolinium zirconate have been discussed on the basis of the charge on the uranium ion and the incorporation of corresponding extra oxygen atoms into the lattice for charge compensation. PMID:26379146

  9. National Uranium Resource Evaluation, Klamath Falls Quadrangle, Oregon and California

    SciTech Connect

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1982-07-01

    The Klamath Falls Quadrangle, Oregon, was evaluated to identify and delineate areas favorable for uranium deposits according to criteria developed for the National Uranium Resource Evaluation. Surface radiometric reconnaissance and geochemical sampling were used for overall evaluation of the quadrangle. Detailed rock sampling, geologic mapping, and examinations of uranium mines and occurrences were performed in suspected favorable areas. Results of the work indicate good potential for shallow hydrothermal volcanogenic uranium deposits in the Lakeview favorable area, which comprises a northwest-trending belt of rhyolite intrusions in the eastern half of the quadrangle. The young age, peraluminous chemistry, and low thorium-to-uranium ratios of the rhyolite intrusions, as well as low uranium content of groundwater samples, indicate that uranium has not been leached from the intrusions by ground water. Therefore, supergene uranium deposits are not likely in the area. Scattered occurrences of ash-flow tuff in the east half of the quadrangle that contain high uranium and (or) thorium contents, and four occurrences of secondary uranium minerals in ash-flow tuff, indicate possible uranium deposits in ash flows in a poorly defined area that is partially coextensive with the Lakeview favorable area. Small granitic plutons with associated quartz-tourmaline breccia veins and base-metal occurrences may also be favorable for uranium deposits but were not examined during this study.

  10. Conceptual design study of small long-life PWR based on thorium cycle fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higer conversion ratio in thermal region compared to uranium cycle produce some significant of 233U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  11. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  12. Managing Inventories of Heavy Actinides

    SciTech Connect

    Wham, Robert M; Patton, Bradley D

    2011-01-01

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  13. Specific Sequestering Agents for the Actinides. 29. Stability of the Thorium(IV) Complexes of Desferrioxamine B (DFO) and Three Octadentate Catecholate or Hydroxypyridinonate DFO Derivatives: DFOMTA, DFOCAMC, and DFO-1,2-HOPO. Comparative Stability of the Plutonium(IV) DFOMTA Complex(1).

    PubMed

    Whisenhunt, Donald W.; Neu, Mary P.; Hou, Zhiguo; Xu, Jide; Hoffman, Darleane C.; Raymond, Kenneth N.

    1996-07-01

    The metal complex stability constants of Th(IV) with desferrioxamine B (DFO) and three octadentate derivatives [N-(2,3-dihydroxy-4-carboxybenzoyl)desferrioxamine B (DFOCAMC), N-(1,2-dihydro-1-hydroxy-2-oxopyridin-6-yl)carbonyl)desferrioxamine B (DFO-1,2-HOPO) and N-(2,3-dihydroxy-4-(methylamido)benzoyl)desferrioxamine B (DFOMTA)] have been determined. The formation constant of the Pu(IV)/DFOMTA complex has also been determined, and the formation constants have been estimated for the other Pu(IV) complexes of octadentate DFO derivatives. The DFO derivatives form 1:1 complexes with Th(IV) in aqueous solution. The solution chemistry of the Th(IV) complexes has been studied by spectrophotometric, potentiometric and proton NMR titrations. The Th(IV) formation constants are as follows (log K(f) values and esd's): DFO, 26.6(1); DFOMTA, 38.55(5); DFOCAMC, 37.2(3); DFO-1,2-HOPO, 33.7(4). The Pu(IV)/DFOMTA formation constant, determined by competitive spectrophotometric titration is (log K(f) value) 41.7(2). The estimation of the other Pu(IV) formation constants are as follows (log K(f) values): DFOCAMC, 40.4; DFO-1,2-HOPO, 36.9. The selectivity of DFO and the three derivatives for actinide(IV) ions is discussed. PMID:11666621

  14. Isotopic evidence of natural uranium and spent fuel uranium releases into the environment.

    PubMed

    Pourcelot, L; Boulet, B; Le Corre, C; Loyen, J; Fayolle, C; Tournieux, D; Van Hecke, W; Martinez, B; Petit, J

    2011-02-01

    Uranium and plutonium isotopes were measured in soils, sediments and waters in an area subject to the past and present discharges from the uranium conversion plant of Malvési (France). The isotopes (236)U and (239)Pu are well known activation products of uranium and they prove to be powerful tracers of spent fuel releases in soils and sediments. On the other hand (234)U and (238)U activities measured in waters can be used to distinguish between releases and background uranium sources. Such findings contribute to improve the monitoring of the actinides releases by nuclear fuel facilities (mining sites, conversion, enrichment and fuel plants, reprocessing plants). PMID:21132170

  15. Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite

    NASA Astrophysics Data System (ADS)

    Struve, Torben; van de Flierdt, Tina; Robinson, Laura F.; Bradtmiller, Louisa I.; Hines, Sophia K.; Adkins, Jess F.; Lambelet, Myriam; Crocket, Kirsty C.; Kreissig, Katharina; Coles, Barry; Auro, Maureen E.

    2016-01-01

    Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor-intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa-Th and U-Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two-stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (ɛNd = -9.20 ± 0.21 and -13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: ɛNd = -9.19 ± 0.57 and -13.14 ± 0.57). Furthermore, Nd isotope results for an in-house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U-Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U-Pa-Th and Nd, and can hence be readily implemented for a wide range of applications.

  16. Research efforts in the extraction of actinides using new tetradentate ligands. Final report, June 1, 1991--April 15, 1992

    SciTech Connect

    Ensor, D.D.

    1992-12-31

    The synergistic extraction of two light actinides, thorium and uranium, with mixtures of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one, HBNPP, 4-hexanoyl-3-methyl-1-phenyl-2-pyrazolin-5-one, P, and 4,4{prime}-nonanedioyl-bis(3-methyl-1-phenyl-2-pyrazolin-5-one), H{sub 2}NDBP with the tri-n-octyl phosphine oxide (TOPO) has been studied. The distribution of these ions between HN0{sub 3}/NaNO{sub 3} at an ionic strength of 1.0 M and the organic phase has been detected. Studies show, with the ligands alone, H{sub 2}NDBP is much more effective than either HBNPP or BHNPP. The slope-analysis treatments indicate formations ofTh(NDBP){sub 2}, Th(BNPP){sub 4}, and Th(EWP){sub 4} for Th{sup +4}, and U0{sub 2}(NDBP), U0{sub 2}(BMPP){sub 2}, and U0{sub 2}(HMPP){sub 2} for U0{sub 2}{sup +2} in the organic phase. With the addition of TOPOas a neutral donor, Th{sup +4} shows a high extraction ability with the mixtures of chelate ligands and TOPO, and the order of the extraction power is H{sub 2}NDBP > HHNPP {approx} HBNPP within the range studied. Whereas, U0{sub 2}{sup +2} shows significant increase in the extraction distribution and the extraction power follows the same order. Results show that in the TOPO systems, separation factors were much less than in the pyrazolone systems without TOPO.

  17. Thorium: Issues and prospects in Malaysia

    SciTech Connect

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  18. Thorium: Issues and prospects in Malaysia

    NASA Astrophysics Data System (ADS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  19. Environmental research on actinide elements

    SciTech Connect

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  20. The Thorium-Cycle: safe, abundant power for the new millennium

    NASA Astrophysics Data System (ADS)

    Don, May; George, Kim; Peter, Mcintyre; Charles, Meitzler; Robert, Rogers; Akhdior, Sattarov; Mustafa, Yavuz

    2001-10-01

    A design has been developed for using accelerator-driven thorium fission to produce electric power. A thorium-cycle reactor works by electro-breeding. A pattern of thorium fuel rods is supported in a vessel containing molten lead. A beam of high-energy (1 GeV) protons is targeted in the center of the vessel, and produces a copious flux of energetic neutrons by spallation. The neutrons transmute the thorium nuclei two steps up the periodic table to U233, which fissions rapidly to produce thermal energy. The lead serves as the spallation target, the moderator, and the heat exchange medium to transfer heat from the core to steam exchangers above the core. The thorium cycle has several important advantages over current uranium-cycle fission technology: it is intrinsically stable it cannot melt down; it eats its own waste; it cannot produce bomb-grade isotopes; and there are sufficient thorium reserves to supply the entire Earth’s energy economy for the next millennium. The concept of a thorium-cycle power reactor was first proposed by Rubbia in 1995. Key problems in the original concept were the proton injector (15 MW beam power), reliability of accelerator systems, and parasitic absorption of neutrons by fission products during the life of the core. We have addressed all three problems in a design for a flux-coupled stack of isochronous cyclotrons, delivering a pattern of 7 independent beams to the core. An interdisciplinary collaboration is being formed to develop the concept to a serious design.