Science.gov

Sample records for actinobacillus succinogenes atcc

  1. Actinobacillus succinogenes ATCC 55618 Fermentation Medium Optimization for the Production of Succinic Acid by Response Surface Methodology

    PubMed Central

    Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2012-01-01

    As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO3 were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L−1 of glucose, 14.5 g L−1 of yeast extract, and 64.7 g L−1 of MgCO3. Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L−1 was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852

  2. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113.

    PubMed

    Jiang, Min; Dai, Wenyu; Xi, Yonglan; Wu, Mingke; Kong, Xiangping; Ma, Jiangfeng; Zhang, Min; Chen, Kequan; Wei, Ping

    2014-02-01

    In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning.

  3. [Environmental factors affecting the succinic acid production by Actinobacillus succinogenes CGMCC 1593].

    PubMed

    Zheng, Pu; Zhou, Wei; Ni, Ye; Jiang, Min; Wei, Ping; Sun, Zhihao

    2008-06-01

    Actinobacillus succinogenes is a promising candidate for the production of bio-based succinic acid. Previously, we isolated a succinic acid-producing strain Actinobacillus succinogenes CGMCC 1593 from bovine rumen. In this paper, the influence of the environmental factors such as gas phase, pH, ORP, on succinic acid production by A. succinogenes CGMCC 1593 was studied. The results showed that CO2 was the optimum gas phase for anaerobic fermentation ofA. succinogenes CGMCC 1593 as well as one of the substrate for the succinic acid synthesis. Using MgCO3 as a pH regulator, the pH was maintained within 7.1-6.2 during the anaerobic fermentation for the cell growth and acid production of A. succinogenes CGMCC 1593. Our results showed that low initial ORP was disadvantageous for the growth of A. succinogenes CGMCC 1593 and an ORP of -270 mV was demonstrated to be beneficial to the succinic acid production. By adding Na2S.9H2O to decrease ORP to -270 mV at the end of exponential growth phase in batch culture of A. succinogenes CGMCC 1593, the succinic acid concentration reached 37 g/L and the yield of succinic acid was 129% at 48 h. This work might provide valuable information for further optimization of succinic acid fermentation by A. succinogenes CGMCC 1593.

  4. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production

    PubMed Central

    2010-01-01

    Background Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process. Results Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae. Conclusions Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could

  5. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials.

    PubMed

    Zhu, Wenhao; Li, Qiang; Dai, Ning

    2017-02-01

    CO2-derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO2/g materials. After addition with the functionalized microspheres into the culture broth, CO2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L(-1). Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO2-derived succinate.

  6. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu

    2011-04-07

    Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation.

  7. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM).

    PubMed

    Zhang, Yun-jian; Li, Qiang; Zhang, Yu-xiu; Wang, Dan; Xing, Jian-min

    2012-02-01

    Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1.

  8. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  9. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.

    PubMed

    Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo

    2016-07-01

    Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137.

  10. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.

  11. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid.

  12. Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z

    NASA Astrophysics Data System (ADS)

    Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning

    Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

  13. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources.

  14. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2014-10-01

    Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production.

  15. Succinic acid production with Actinobacillus succinogenes ZT-130 in the presence of succinic acid.

    PubMed

    Corona-Gonzalez, Rosa Isela; Bories, Andre; González-Alvarez, Víctor; Snell-Castro, Raul; Toriz-González, Guillermo; Pelayo-Ortiz, Carlos

    2010-01-01

    Glucose fermentation with Actinobacillus succinogenes was carried out at different initial concentrations of succinic acid (SA(0)) to determine its effect on growth and on the production of succinic acid itself. The specific rates of biomass production, succinic, formic and acetic acids decreased with SA(0) (0-40 g/l). The partially dissociated form of succinic acid had a higher effect on cell growth and production of succinic acid as compared to the non-dissociated forms of the acids, a fact that has not been reported until now. Cell growth fitted the Jerusalimski model, and the Aiba-Shoda model was suitable for quantification of the inhibition for the production of succinic acid. The growth inhibition constants K(is) and K(ip) and their summatory were consistent with the experimental values obtained, i.e., 22 g/l for the produced acids and 38 g/l for total acids that were the limits at which the biomass formation ceased.

  16. [Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology].

    PubMed

    Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo

    2013-10-01

    Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.

  17. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity.

    PubMed

    Maharaj, K; Bradfield, M F A; Nicol, W

    2014-09-01

    Continuous anaerobic fermentations were performed in a biofilm reactor packed with Poraver® beads. Dilution rates (D) varied between 0.054 and 0.72 h(-1), and D-glucose and CO2 gas were used as carbon substrates. Steady-state conditions were shown to be repeatable and independent of the operational history. Production stability was achieved over periods exceeding 80 h at values of D below 0.32 h(-1). In these situations, steady-state variation (expressed as fluctuations in NaOH neutralisation flow rates) exhibited a standard deviation of less than 5 % while no indication of biofilm deactivation was detected. The total biomass amount was found to be independent of the dilution rate with an average dry concentration of 23.8 ± 2.9 g L(-1) obtained for all runs. This suggests that the attachment area controls the extent of biofilm accumulation. Specific succinic acid (SA) productivities, based on the total biomass amount, exhibited a substantial decrease with decreasing D. An SA volumetric productivity of 10.8 g L(-1) h(-1) was obtained at D = 0.7 h(-1)-the highest value reported to date in Actinobacillus succinogenes fermentations. SA yields on glucose increased with decreasing D, with a yield of 0.90 ± 0.01 g g(-1) obtained at a D of 0.054 h(-1). Production of formic acid approached zero with decreasing D, while the succinic to acetic acid ratio increased with decreasing D, resulting in an increasing SA yield on glucose.

  18. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh.

  19. Structure of PEP carboxykinase from the succinate-producing Actinobacillus succinogenes: a new conserved active-site motif.

    PubMed

    Leduc, Yvonne A; Prasad, Lata; Laivenieks, Maris; Zeikus, J Gregory; Delbaere, Louis T J

    2005-07-01

    Actinobacillus succinogenes can produce, via fermentation, high concentrations of succinate, an important industrial commodity. A key enzyme in this pathway is phosphoenolpyruvate carboxykinase (PCK), which catalyzes the production of oxaloacetate from phosphoenolpyruvate and carbon dioxide, with the concomitant conversion of adenosine 5'-diphosphate to adenosine 5'-triphosphate. 1.85 and 1.70 A resolution structures of the native and a pyruvate/Mn(2+)/phosphate complex have been solved, respectively. The structure of the complex contains sulfhydryl reducing agents covalently bound to three cysteine residues via disulfide bonds. One of these cysteine residues (Cys285) is located in the active-site cleft and may be analogous to the putative reactive cysteine of PCK from Trypanosoma cruzi. Cys285 is also part of a previously unreported conserved motif comprising residues 280-287 and containing the pattern NXEXGXY(/F)A(/G); this new motif appears to have a structural role in stabilizing and positioning side chains that bind substrates and metal ions. The first few residues of this motif connect the two domains of the enzyme and a fulcrum point appears to be located near Asn280. In addition, an active-site Asp residue forms two coordinate bonds with the Mn(2+) ion present in the structure of the complex in a symmetrical bidentate manner, unlike in other PCK structures that contain a manganese ion.

  20. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  1. Utilization of Electrically Reduced Neutral Red by Actinobacillus succinogenes: Physiological Function of Neutral Red in Membrane-Driven Fumarate Reduction and Energy Conservation

    PubMed Central

    Park, D. H.; Zeikus, J. G.

    1999-01-01

    Neutral red (NR) functioned as an electronophore or electron channel enabling either cells or membranes purified from Actinobacillus succinogenes to drive electron transfer and proton translocation by coupling fumarate reduction to succinate production. Electrically reduced NR, unlike methyl or benzyl viologen, bound to cell membranes, was not toxic, and chemically reduced NAD. The cell membrane of A. succinogenes contained high levels of benzyl viologen-linked hydrogenase (12.2 U), fumarate reductase (13.1 U), and diaphorase (109.7 U) activities. Fumarate reductase (24.5 U) displayed the highest activity with NR as the electron carrier, whereas hydrogenase (1.1 U) and diaphorase (0.8 U) did not. Proton translocation by whole cells was dependent on either electrically reduced NR or H2 as the electron donor and on the fumarate concentration. During the growth of Actinobacillus on glucose plus electrically reduced NR in an electrochemical bioreactor system versus on glucose alone, electrically reduced NR enhanced glucose consumption, growth, and succinate production by about 20% while it decreased acetate production by about 50%. The rate of fumarate reduction to succinate by purified membranes was twofold higher with electrically reduced NR than with hydrogen as the electron donor. The addition of 2-(n-heptyl)-4-hydroxyquinoline N-oxide to whole cells or purified membranes inhibited succinate production from H2 plus fumarate but not from electrically reduced NR plus fumarate. Thus, NR appears to replace the function of menaquinone in the fumarate reductase complex, and it enables A. succinogenes to utilize electricity as a significant source of metabolic reducing power. PMID:10198002

  2. Effects of Areca Nut Extracts on Phagocytosis of Actinobacillus actinomycete mcomitans ATCC 33384 by Neutrophils in Patients with Chronic Periondontitis

    PubMed Central

    Patil, Kavita Gangaram; Metgud, Sharada Chidanand

    2013-01-01

    Background & Objective: A higher prevalence of periodontal disease among areca nut chewers than non chewers has been demonstrated. Neutrophils, the first line of defence mechanism against microbial infection play an important role in maintaining the periodontal health. In this context our aim was to evaluate the effects of areca nut extracts on phagocytic activity by neutrophils isolated from gingival crevicular washing of healthy subjects and patients with chronic periodontitis. Material and Methods: Sample size consisted of a total of 60 subjects which were divided into two groups of 30 each. Group I consisted healthy subjects and Group II consisted clinically diagnosed cases of chronic periodontitis. Neutrophils isolated from gingival crevicular washings of both groups were treated with aqueous extracts of ripe areca nut (rANE) and tender areca nut (tANE) and examined for their effect on cellular viability of neutrophils using typan blue exclusion assay. The possible/ ableffects on the phagocytic activity of neutrophils against a periodontal pathogen Aggregatibacter actinomycetemcomitans(ATCC 33384) was determined by using microscopic method. Results: Both rANE and tANE affected the phagocytic activity by neutrophils in healthy and patients with chronic periodontitis. Ripe areca nut extract has altered the neutrophil functions more than tender areca nut in both the groups. There was no difference seen in the cell viability of neutrophils when treated with rANE and tANE in both the groups (p> 0.05). Conclusion: Both ripe and tender arecanut extract affected the neutrophil function in healthy and patients with chronic periodontitis. Ripe arecanut extract significantly altered the neutrophils functions more than tender areca nut extract. Thus, alterations in these functions of neutrophils may lead to signs of clinical diseases associated with areca chewing. PMID:24298462

  3. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  4. Actinobacillus actinomycetemcomitans endocarditis.

    PubMed Central

    Affias, S.; West, A.; Stewart, J. W.; Haldane, E. V.

    1978-01-01

    Two patients had infective endocarditis due to Actinobacillus actinomycetemcomitans. One, a 52-year-old woman with a prosthetic aortic valve, was successfully treated with carbenicillin and gentamicin. The other, a 47-year old man with calcific aortic valve disease, required emergency valvectomy and prosthetic valve replacement and responded to a combination of penicillin and gentamicin. PMID:647545

  5. Monoclonal antibodies to Actinobacillus actinomycetemcomitans.

    PubMed Central

    Place, D A; Scidmore, N C; McArthur, W P

    1988-01-01

    Murine hybridoma cell lines were developed which synthesized monoclonal antibodies against Actinobacillus actinomycetemcomitans-associated antigens. Monoclonal antibodies specific for an antigen(s) common to all A. actinomycetemcomitans isolates tested but not detected on other gram-negative oral plaque microorganisms or other Actinobacillus species were identified. Monoclonal antibodies specific for each serotype group of A. actinomycetemcomitans which did not bind to other Actinobacillus species or oral plaque microorganisms were also identified. PMID:3356470

  6. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    SciTech Connect

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; Smith, Holly; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.; Nicol, Willie

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.

  7. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    DOE PAGES

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; ...

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility ofmore » microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.« less

  8. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    DOE PAGES

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; ...

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less

  9. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Xi, Yong-lan; Dai, Wen-yu; Xu, Rong; Zhang, Jiu-hua; Chen, Ke-quan; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-11-01

    Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.

  10. Functional annotation of Fibrobacter succinogenes S85 carbohydrate active enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibrobacter succinogenes is a cellulolytic bacterium that degrades plant cell wall biomass in ruminant animals and is among the most rapidly fibrolytic of all mesophilic bacteria. The complete genome sequence of Fisuc was completed by the DOE Joint Genome Institute in late 2009. Using new expression...

  11. Functional annotation of Fibrobacter succinogenes carbohydrate active enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibrobacter succinogenes (Fisuc) is a cellulolytic bacterium that degrades plant cell wall biomass in ruminant animals, and is among the most rapidly fibrolytic of all mesophilic bacteria. The complete genome sequence of Fisuc was completed by the DOE Joint Genome Institute in late 2009. Using new e...

  12. Actinomycetemcomitin: a new bacteriocin produced by Aggregatibacter (Actinobacillus) actinomycetemcomitans.

    PubMed

    Lima, Francisca Lúcia; de Carvalho, Maria Auxiliadora Roque; Apolônio, Ana Carolina Morais; Bemquerer, Marcelo Porto; Santoro, Marcelo Matos; Oliveira, Jamil Silvano; Alviano, Celuta Sales; Farias, Luiz de Macêdo

    2008-02-01

    Aggregatibacter (Actinobacillus) actinomycetemcomitans P(7-20) strain isolated from a periodontally diseased patient has produced a bacteriocin (named as actinomycetemcomitin) that is active against Peptostreptococcus anaerobius ATCC 27337. Actinomycetemcomitin was produced during exponential and stationary growth phases, and its amount decreased until it disappeared during the decline growth phase. It was purified by ammonium sulphate precipitation (30-60% saturation), and further by FPLC (mono-Q ionic exchange and Phenyl Superose hydrophobic interaction) and HPLC (C-18 reversed-phase). This bacteriocin loses its activity after incubation at a pH below 7.0 or above 8.0, following heating for 30 min at 45 degrees C, and after treatment with proteolytic enzymes such as trypsin, alpha-chymotrypsin, and papain. Actinomycetemcomitin has a molecular mass of 20.3 KDa and it represents a new bacteriocin from A. actinomycetemcomitans.

  13. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease.

    PubMed Central

    Zambon, J J; Slots, J; Genco, R J

    1983-01-01

    Actinobacillus actinomycetemcomitans from the human oral cavity was serologically characterized with rabbit antisera to the type strain NCTC 9710; a number of reference strains, including Y4, ATCC 29522, ATCC 29523, ATCC 29524, NCTC 9709; and our own isolates representative of each of 10 biotypes. Using immunoabsorbed antisera, we identified three distinct serotypes by immunodiffusion and indirect immunofluorescence. Serotype a was represented by ATCC 29523 and SUNYaB 75; serotype b was represented by ATCC 29522 and Y4; and serotype c was represented by NCTC 9710 and SUNYaB 67. Indirect immunofluorescence revealed no reaction between the three A. actinomycetemcomitans serotype-specific antisera and 62 strains representing 23 major oral bacterial species. Distinct from the serotype antigens were at least one A. actinomycetemcomitans species common antigen and an antigen shared with other Actinobacillus species, Haemophilus aphrophilus, and Haemophilus paraphrophilus. All serotype a A. actinomycetemcomitans strains failed to ferment xylose, whereas all serotype b organisms fermented xylose. Serotype c included xylose-positive as well as xylose-negative strains. A total of 301 isolates of A. actinomycetemcomitans from the oral cavity of 74 subjects were serologically categorized by indirect immunofluorescence with serotype-specific rabbit antisera. Each patient harbored only one serotype of A. actinomycetemcomitans. Fourteen healthy subjects, five diabetics, and seventeen adult periodontitis patients exhibited serotypes a and b in approximately equal frequency, whereas serotype c was found less frequently. In contrast, in 29 localized juvenile periodontitis patients, the incidence of serotype b was approximately two times higher than that of serotypes a or c, suggesting a particularly high periodontopathic potential of A. actinomycetemcomitans serotype b strains. In subjects infected with A. actinomycetemcomitans, serum antibodies were detected to the serotype

  14. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85.

    PubMed

    Burnet, Meagan C; Dohnalkova, Alice C; Neumann, Anthony P; Lipton, Mary S; Smith, Richard D; Suen, Garret; Callister, Stephen J

    2015-01-01

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  15. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    DOE PAGES

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; ...

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins,more » and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.« less

  16. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85

    PubMed Central

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-01-01

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases. PMID:26629814

  17. A bacteriocin of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Hammond, B F; Lillard, S E; Stevens, R H

    1987-01-01

    An inhibitory factor from Actinobacillus actinomycetemcomitans Y4 was isolated, and its properties indicated that it was a bacteriocin (actinobacillicin). The bacteriocin was active against Streptococcus sanguis strains, Streptococcus uberis (FDC1), and Actinomyces viscosus T14 as well as other strains of A. actinomycetemcomitans, but not against other crevicular bacteria, including other streptococci and actinomycetes. The activity of this bacteriocin was inhibited by pronase, trypsin, and heat (45 min at 56 degrees C) but not by DNase, RNase, phospholipase, exposure to UV light, or low pH (1.0 to 6.5). Although actinobacillicin markedly inhibited glycolysis in S. sanguis, the primary mechanism of its bactericidal action appears to be alterations in cell permeability, with the resultant leakage of RNA, DNA, and other essential intracellular macromolecules. These findings provide an ecologic explanation for the reciprocal growth relationship between A. actinomycetemcomitans and S. sanguis/Actinomyces viscosus observed in localized juvenile periodontitis. Images PMID:3818090

  18. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    SciTech Connect

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F. A.; Nicol, Willie; Black, Brenna A.; Biddy, Mary J.; Dowe, Nancy; Beckham, Gregg T.

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully explored or developed.

  19. Identification of an immunoglobulin Fc receptor of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Actinobacillus actinomycetemcomitans expresses proteins that bind to the Fc portion of immunoglobulins. The immunoglobulin Fc receptors on the surface of A. actinomycetemcomitans were detected by the binding of biotinylated human or murine Fc molecules to strain SUNY 465 adsorbed to the bottom of microtiter wells. Biotinylated Fc binding was inhibited by unlabeled Fc molecules and human plasma. Fc receptors were identified by the binding of biotinylated Fc molecules to bacterial membrane proteins separated by polyacrylamide gel electrophoresis and transferred to nitrocellulose. Multiple bands were identified, and the major Fc-binding protein was determined to be a heat-modifiable protein. This protein migrated with approximate molecular weights of 25,000 and 32,000 (unheated and heated, respectively). Amino-terminal sequence analysis of this protein revealed a sequence identical to the heat-modifiable protein described for A. actinomycetemcomitans ATCC 43718. This protein sequence exhibits significant homology with the N termini of outer membrane protein A (OmpA) of Escherichia coli and related OmpA-like proteins from other gram-negative bacteria. Images PMID:7927715

  20. Genome Sequences of Pseudoalteromonas Strains ATCC BAA-314, ATCC 70018, and ATCC 70019.

    PubMed

    Givan, Scott A; Zhou, Ming-Yi; Bromert, Karen; Bivens, Nathan; Chapman, Linda Fleet

    2015-05-07

    The assembly and annotation of the draft genome sequences for Pseudoalteromonas strains ATCC BAA314, ATCC 700518, and ATCC 700519 reveal candidates for promoting symbiosis between Pseudoalteromonas strains and eukaryotes. Groups of genes generally associated with virulence are present in all three strains, suggesting that these bacteria may be pathogenic under specific circumstances.

  1. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes

    SciTech Connect

    Wallace, W.; Attaway, H. |

    1995-12-31

    Perchlorate and chlorate salts are widely used by the chemical, aerospace and defense industries as oxidizers in propellant, explosives and pyrotechnics. The authors have isolated a anaerobic bacterium which is capable of the dissimilatory reduction of both perchlorate and chlorate for energy and growth. Strain HAP-1 is a gram negative, thin rod, non-sporeforming, highly motile strict anaerobe. Antibiotic resistance profiles, utilization of carbon substrates and electron acceptors demonstrated similar physiological characteristics to Wolinella succinogenes. Pairwise comparisons of 16S RNA sequences showed only a 0.75% divergence between strain HAP-1 and W. succinogenes. Physiological, morphological and 16S RRNA sequence data indicate strain HAP-1 is a subspecies of W. succinogenes that can utilize perchlorate and chlorate as terminal electron acceptors.

  2. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  3. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  4. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibrobacter succinogenes S85 is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of two known species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particu...

  5. cis Elements and trans factors are both important in strain-specific regulation of the leukotoxin gene in Actinobacillus actinomycetemcomitans.

    PubMed Central

    Kolodrubetz, D; Spitznagel, J; Wang, B; Phillips, L H; Jacobs, C; Kraig, E

    1996-01-01

    Actinobacillus actinomycetemcomitans, the etiologic agent of localized juvenile periodontitis, produces a potent leukotoxin that kills human neutrophils. The production of leukotoxin RNA can vary more than 50-fold among isolates of A. actinomycetemcomitans, and strains expressing high levels of leukotoxin RNA are most often found at sites of periodontal disease. To assess the relative contributions of transcription factors and promoter sequences in setting the disparate levels of leukotoxin RNA found, we have undertaken classical cis/trans analyses. First, the leukotoxin promoter regions from moderately leukotoxic (Y4) and minimally leukotoxic (ATCC 33384) strains of A. actinomycetemcomitans were cloned, sequenced, and compared with the previously sequences leukotoxin promoter region of the high-producer strain JP2. The Y4 and ATCC 33384 promoter regions each contain a 528-bp segment that is absent from JP2. Interestingly, the analysis of various deletion constructs in A. actinomycetemcomitans indicated that Y4, despite the large insertion, initiates leukotoxin RNA synthesis at the same promoter as JP2 does. To perform cis/trans analyses, these three leukotoxin promoter regions were cloned into a plasmid upstream of the reporter gene beta-galactosidase. Each plasmid was transformed into JP2, Y4, and ATCC 33384, and the beta-galactosidase levels were determined. The results indicated that the sequences responsible for down-regulating leukotoxin RNA levels in Y4 relative to JP2 are found within the transcribed region of the Y4 leukotoxin operon. Importantly, in ATCC 33384, strain-specific trans factors and promoter sequence differences are equally significant in determining the lower levels of leukotoxin RNA. We hypothesize that either strain ATCC 33384 has a negative regulatory protein (which is missing or mutated in JP2/Y4) or that JP2 and Y4 carry an activator that is missing or mutated in ATCC 33384. PMID:8751884

  6. Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes.

    PubMed Central

    Fuller, T E; Mulks, M H

    1995-01-01

    In this paper, we report the identification, cloning, and complete nucleotide sequence of four genes from Actinobacillus pleuropneumoniae that are involved in riboflavin biosynthesis. The cloned genes can specify production of large amounts of riboflavin in Escherichia coli, can complement several defined genetic mutations in riboflavin biosynthesis in E. coli, and are homologous to riboflavin biosynthetic genes from E. coli, Haemophilus influenzae, and Bacillus subtilis. The genes have been designated A. pleuropneumoniae ribGBAH because of their similarity in both sequence and arrangement to the B. subtilis ribGBAH operon. PMID:8522537

  7. In vitro antimicrobial susceptibility of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Slots, J; Evans, R T; Lobbins, P M; Genco, R J

    1980-01-01

    The agar dilution technique was used for determination of the antibiotic susceptibilities of 57 oral isolates and 2 nonoral isolates of Actinobacillus actinomycetemcomitans. Tetracycline, minocycline, and chloramphenicol inhibited more than 96% of the strains tested at a concentration of less than or equal to 2 micrograms/ml; 89% of the strains were inhibited by 2 micrograms of carbenicillin per ml. The other antimicrobial agents tested were less active. Approximately 10% of the A. actinomycetemcomitans strains were resistant to ampicillin, erythromycin, and penicillin G at concentrations of 32 to 64 micrograms/ml. These data suggest that tetracycline and minocycline may be valuable drugs in the treatment of A. actinomycetemcomitans infections. PMID:6903116

  8. Electron microscopy of phages in serotypes of Actinobacillus actinomycetemcomitans.

    PubMed

    Olsen, I; Namork, E; Myhrvold, V

    1993-12-01

    Actinobacillus actinomycetemcomitans, Actinobacillus ureae, Haemophilus aphrophilus, Haemophilus paraphrophilus, Haemophilus influenzae, Haemophilus parainfluenzae, Pasteurella haemolytica and Pasteurella multocida strains were examined by transmission electron microscopy for the presence of bacteriophages. Phages were detected in serotype a (SUNY 75) and e (UOH 1705) and in the fresh clinical isolates UOH Q1243 and UOH Q1247 of A. actinomycetemcomitans. Phages were not found in serotype b, c and d strains of A. actinomycetemcomitans, in the fresh clinical isolate UOH Q1244 of this species or in old strains (including reference strains) of related species from the Actinobacillus-Haemophilus-Pasteurella group.

  9. Murine macrophage interleukin-1 release by capsularlike serotype-specific polysaccharide antigens of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Takahashi, T; Nishihara, T; Ishihara, Y; Amano, K; Shibuya, N; Moro, I; Koga, T

    1991-01-01

    Serotype-specific polysaccharide antigens (SPAs) were extracted from whole cells of Actinobacillus actinomycetemcomitans ATCC 29523 (serotype a), Y4 (serotype b), and NCTC 9710 (serotype c) by autoclaving and purified by chromatography on DEAE-Sephadex A-25 and Sephacryl S-300 columns. Y4 SPA induced interleukin-1 (IL-1) release by P388D1 murine macrophages. Polymyxin B had virtually no effect on the release of IL-1. Rabbit anti-murine IL-1 serum strongly suppressed the proliferation of C3H/HeJ mouse thymocytes induced with the culture supernatants of Y4 SPA-stimulated P388D1 cells and a submitogenic dose of concanavalin A. Gel filtration of the culture supernatants of Y4 SPA-stimulated macrophages on Sephacryl S-200 showed that an IL-1 peak at a point corresponding to approximately 16.5 kDa was eluted. The ability of SPAs from strains ATCC 29523 and NCTC 9710 to induce the release of IL-1 was lower than that of Y4 SPA. The IL-1-releasing ability of serotype a and c antigens was enhanced by deacetylation of both polysaccharides, suggesting that acetyl groups of these antigens might hinder the interaction between the antigens and macrophages. PMID:1987032

  10. Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface.

    PubMed Central

    Ohta, H; Hara, H; Fukui, K; Kurihara, H; Murayama, Y; Kato, K

    1993-01-01

    Actinobacillus actinomycetemcomitans, a periodontopathic gram-negative bacterium, produces a leukotoxin that is a member of the RTX cytotoxin family. Although genes may function in toxin secretion, the leukotoxin is not secreted extracellularly but remains associated with the bacterial cell surface. We report here that this toxin-cell surface association is mediated by nucleic acids and directly demonstrate that the extracellular secretion of toxin occurs in growing cultures with increased ionic strength of medium. All examinations were performed with freshly harvested A. actinomycetemcomitans 301-b from anaerobic fructose-limited chemostat cultures. The occurrence of cell surface-localized DNA was shown by directly digesting whole cells with the restriction endonuclease EcoRI or HindIII, which yielded many DNA fragments. The cell surface DNA constituted about 20% of the total cellular DNA. The leukotoxin was released from the whole cells by digestion with DNase I as well as restriction endonucleases. Because the leukotoxin binds ionically to DNA, it is dependent on the ionic strength of buffers or media. Accordingly, the toxin was released from cells suspended in saline at pH 7.5 in the presence of increasing amounts of MgCl2 (0 to 10 mM) or NaCl (0 to 50 mM). Moreover, a considerable quantity of leukotoxin was detected in the culture supernatant of fructose-limited chemostat cultures when sodium succinate solution was pumped into the steady state as an additional salt (30 and then 50 mM). This toxin-DNA association was also found in well-characterized strains including not only the leukotoxin-producing ATCC 29522 but also the toxin production-variable ATCC 29523 and the non-leukotoxin-producing ATCC 33384 when these strains were grown in the chemostat culture. Images PMID:8406888

  11. Selective medium for isolation of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Slots, J

    1982-01-01

    A selective medium, TSBV (tryptic soy-serum-bacitracin-vancomycin) agar, was developed for the isolation of Actinobacillus actinomycetemcomitans, TSBV agar contained (per liter) 40 g of tryptic soy agar, 1 g of yeast extract, 100 ml of horse serum. 75 mg of bacitracin, and 5 mg of vancomycin. The TSBV medium suppressed most oral species and permitted significantly higher recovery of A. actinomycetemcomitans than nonselective blood agar medium. The distinct colonial morphology and positive catalase reaction of A. actinomycetemcomitans easily distinguished this bacterium from Haemophilus aphrophilus, Capnocytophaga species, and a few other contaminating organisms. With the TSBV medium, even modestly equipped laboratories will be able to isolate and identify A. actinomycetemcomitans from clinical specimens. Images PMID:7068837

  12. Hydrogen-dependent organisms from the human gingival crevice resembling Vibrio succinogenes.

    PubMed

    Van Palenstein Helderman, W H; Rosman, I

    1976-01-01

    Twenty-eight strains of microaerophilic, motile, slightly curved gram-negative rods isolated from the gingival crevice of patients with gingivitis were studied. They seemed similar to Vibrio sputorum, though eleven strains differed in minor characters from Bergey's description under the new name Campylobacter sputorum, subspecies sputorum. The oral strains studied appeared to be closely related to several species of the genus Campylobacter and to Vibrio succinogenes. The oral strains were able to utilize gaseous hydrogen and to grow in a mineral medium with either nitrate of fumarate as hydrogen acceptor. Formate could replace hydrogen as hydrogen donor. In contrast the Campylobacter strains were not dependent on hydrogen or formate as energy source and grew poorly in mineral medium. In these nutritional and metabolic aspects the oral strains are more related to Vibrio succinogenes than to Campylobacter species. Serologically the oral strains differed from all the Campylobacter species. The GC ratio in the DNA of the oral strains varied between 48 and 50%, conform to the values described for Vibrio succinogenes. Vibrio sputorum seems a nomen conservandum and vibrio-like organisms from human infections should be tested for hydrogen-dependence before they are classified as Campylobacter species.

  13. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85.

    PubMed

    Fukuma, Naoki; Koike, Satoshi; Kobayashi, Yasuo

    2012-11-01

    In a previous study, we reported the ecological significance of uncultured bacterial group U2 in the rumen. In this study, the involvement of a recently cultured group U2 bacterium, strain R-25, in fiber digestion was tested in coculture with the fibrolytic bacterium Fibrobacter succinogenes S85. Dry matter (DM) digestion, growth and metabolites were examined in culture using rice straw as the carbon source. Although strain R-25 did not digest rice straw in monoculture, coculture of strain R-25 and F. succinogenes S85 showed enhanced DM digestion compared with that for F. succinogenes S85 monoculture (36.9 ± 0.6% vs. 32.8 ± 1.3%, P < 0.05). Growth of strain R-25 and production of the main metabolites, d-lactate (strain R-25) and succinate (F. succinogenes S85), were enhanced in the coculture. Enzyme assay showed increased activities of carboxymethylcellulase and xylanase in coculture of strain R-25 and F. succinogenes S85. Triculture including strain R-25, F. succinogenes S85 and Selenomonas ruminantium S137 showed a further increase in DM digestion (41.8 ± 0.8%, P < 0.05) with a concomitant increase in propionate, produced from the conversion of d-lactate and succinate. These results suggest that the positive interaction between strains R-25 and F. succinogenes S85 causes increased rice straw digestion.

  14. [Breeding of Actinobacillus succiniogenes mutants with improved succinate production based on metabolic flux analysis].

    PubMed

    Pan, Lijun; Li, Xingjiang; Jiang, Shaotong; Wei, Zhaojun; Chen, Xiaohui; Cai, Licheng; Wang, Hefeng; Jiang, Jijun

    2008-09-01

    It is very important to obtain high yield mutant strains on the base of metabolic flux analysis of Actinobacillus succinogenes S.JST for the industrial bioconversion of succinic acid. The metabolic pathway was analized at first and the flux of the metabolic networks was calculated by matrix. In order to decrease acetic acid flux, the strains mutated by soft X-ray of synchronous radiation were screened on the plates with high concentration of fluoroacetic acid. For decreasing the metabolic flux of ethanol the site-directed mutagenesis was carried out for the reduction of alcohol dehydrogenase(Adh) specific activity. Then the enzyme activity determination and the gene sequence analysis of the mutant strain was compared with those of the parent strain. Metabolic flux analysis of the parent strain indicated that the flux of succinic acid was 1.78(mmol/g/h) and that the flux of acetic acid and ethanol were 0.60 (mmol/g/h) and 1.04( mmol/g/h), respectively. Meanwhile the metabolic pathway analysis showed that the ethanol metabolism enhanced the lacking of H electron donor during the synthesis of succinic acid and that the succinic acid flux was weakened by the metabolism of byproducts ethanol and acetic acid. Compared with the parent strain, the acetic acid flux of anti-fluoroacetic mutant strain S.JST1 was 0.024 (mmol/g/h), decreasing by 96%. Then the enzyme determination showed that the specific activity unit of phosphotransacetylase(Pta) decreased from 602 to 74 and a mutated site was founded in the pta gene of the mutant strain S.JST1. Compared with that of the parent strain S.JST1 the ethanol flux of adh-site-directed mutant strain S.JST2 was 0.020 (mmol/g/h), decreasing by 98%. Then the enzyme determination showed that the specific activity unit of Adh decreased from 585 to 62 and the yield of end product succinic acid was 65.7 (g/L). The interdiction of Adh and Pta decreased the metabolism of byproducts and the H electron donor was well balanced, thus the succinic

  15. Differentiation among closely related organisms of the Actinobacillus-Haemophilus-Pasteurella group by means of lysozyme and EDTA.

    PubMed Central

    Olsen, I; Brondz, I

    1985-01-01

    Bacteriolysis in Tris-maleate buffer (0.005 M, pH 7.2) supplemented with EDTA (0.01 M) and hen egg white lysozyme (HEWL, 1.0 microgram/ml) was set up to assist differentiation between the taxonomically closely related Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. A. actinomycetemcomitans was more sensitive to lysis in this system than H. aphrophilus. The standard method for bacteriolysis separated the 10 tested strains of A. actinomycetemcomitans into two groups (I and II) based on their lysis patterns, whereas the 7 strains of H. aphrophilus examined were homogeneous. In group I of A. actinomycetemcomitans, EDTA displayed a considerable lytic effect, which was not increased by supplementation with HEWL. In group II, the lytic effect of EDTA was much less, but HEWL had a considerable supplementary lytic effect. When the turbidity of A. actinomycetemcomitans (ATCC 29522) or H. aphrophilus (ATCC 33389) suspended in Tris buffer was monitored at close pH intervals (0.2) from pH 5.2 to 9.2, maximal lysis of ATCC 29522 occurred with EDTA at pH 8.0 and with EDTA-HEWL at pH 7.6, while ATCC 33389 lysed with EDTA at pH 9.0 and with EDTA-HEWL at pH 9.2. When other members of the family Pasteurellaceae (Haemophilus influenzae type b, Haemophilus paraphrophilus, Pasteurella multocida, Pasteurella haemolytica, and Pasteurella ureae) were included for comparison, the group I strains of A. actinomycetemcomitans were the most rapidly lysed by EDTA. H. paraphrophilus was the least sensitive of the gram-negative strains tested, but not as resistant as Micrococcus luteus (control). M. luteus was the organism most sensitive to lysozyme, followed by P. ureae and the group II strains of A. actinomycetemcomitans, while the group I strains of A. actinomycetemcomitans, H. paraphrophilus, and P. haemolytica were the least sensitive organisms. Images PMID:3935663

  16. Killing of Actinobacillus actinomycetemcomitans by human lactoferrin.

    PubMed Central

    Kalmar, J R; Arnold, R R

    1988-01-01

    Actinobacillus actinomycetemcomitans is a fastidious, facultative gram-negative rod associated with endocarditis, certain forms of periodontal disease, and other focal infections. Human neutrophils have demonstrated bactericidal activity against A. actinomycetemcomitans, and much of the oxygen-dependent killing has been attributed to the myeloperoxidase-H2O2-halide system. However, the contribution of other neutrophil components to killing activity is obscure. Lactoferrin, an iron-binding glycoprotein, is a major constituent of neutrophil-specific granules and is also found in mucosal secretions. In this report, we show that human lactoferrin is bactericidal for A. actinomycetemcomitans. Killing activity required an unsaturated (iron- and anion-free) molecule that produced a 2-log decrease in viability within 120 min at 37 degrees C at a concentration of 1.9 microM. Besides exhibiting concentration dependence, killing kinetics were affected by minor variations in temperature and pH. Magnesium, a divalent cation thought to stabilize lipopolysaccharide interactions on the surface of gram-negative organisms, enhanced lactoferrin killing of A. actinomycetemcomitans, while other cations, such as potassium and calcium, had no effect. Our data suggest that lactoferrin contributes to killing of A. actinomycetemcomitans by human neutrophils and that it may also play a significant role in innate secretory defense against this potential periodontopathogen. PMID:3417349

  17. Immunosuppressive properties of Actinobacillus actinomycetemcomitans leukotoxin.

    PubMed Central

    Rabie, G; Lally, E T; Shenker, B J

    1988-01-01

    Actinobacillus actinomycetemcomitans produces a leukotoxin that kills human polymorphonuclear cells (PMNs) and monocytes but not lymphocytes. In this study, we examined A. actinomycetemcomitans leukotoxin for its ability to alter human peripheral blood lymphocyte (HPBL) responsiveness. After a 90-min exposure to the leukotoxin, all monocytes were killed and HPBL responsiveness to mitogens and antigens was significantly inhibited. The ability of the leukotoxin to inhibit HPBL responses was not surprising, since monocytes and macrophages are required for many lymphocyte functions. However, we were unable to totally restore HPBL responsiveness when adherent autologous monocytes were added back to cultures of leukotoxin-treated lymphocytes. These studies demonstrate that A. actinomycetemcomitans leukotoxin may also exert nonlethal effects directly on lymphocytes. Furthermore, impaired lymphocyte function did not appear to be the result of indirect effects of products released by dying monocytes. Although it is not clear how A. actinomycetemcomitans acts to cause disease, several investigators have proposed that impaired host defenses may play a pivotal role. Several studies have demonstrated defects in PMN, monocyte, and lymphocyte function in patients with periodontal disease. These findings, along with the data presented in this paper, support the hypothesis that patients who harbor A. actinomycetemcomitans could suffer from local or systemic immune suppression. The effects of this suppression may be to enhance the pathogenicity of A. actinomycetemcomitans itself or that of some other opportunistic organism. PMID:3335399

  18. Inhibition of fibroblast proliferation by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Shenker, B J; Kushner, M E; Tsai, C C

    1982-01-01

    We have examined soluble sonic extracts of Actinobacillus actinomycetemcomitans for their ability to alter human and murine fibroblast proliferation. We found that extracts of all A. actinomycetemcomitans strains examined (both leukotoxic and nonleukotoxic) caused a dose-dependent inhibition of both murine and human fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation). Addition of sonic extract simultaneously with [3H]thymidine had no effect on incorporation, indicating that suppression was not due to the presence of excessive amounts of cold thymidine. Inhibition of DNA synthesis was also paralleled by decreased RNA synthesis ([3H]uridine incorporation) and by a decrease in cell growth as assessed by direct cell counts; there was no effect on cell viability. The suppressive factor(s) is heat labile; preliminary purification and characterization studies indicate that it is a distinct and separate moiety from other A. actinomycetemcomitans mediators previously reported, including leukotoxin, immune suppressive factor, and endotoxin. Although it is not clear how A. actinomycetemcomitans acts to cause disease, we propose that one aspect of the pathogenicity of this organism rests in its ability to inhibit fibroblast growth, which in turn could contribute to the collagen loss associated with certain forms of periodontal disease, in particular juvenile periodontitis. PMID:7152684

  19. Monoclonal antibodies to leukotoxin of Actinobacillus actinomycetemcomitans.

    PubMed Central

    DiRienzo, J M; Tsai, C C; Shenker, B J; Taichman, N S; Lally, E T

    1985-01-01

    Hybridoma cell lines which produce monoclonal antibodies to a leukotoxin from Actinobacillus actinomycetemcomitans were prepared. The monoclonal antibodies were selected for their ability to neutralize the cytotoxic activity of the leukotoxin and recognize the toxin on nitrocellulose blots. The antibodies belonged to either the immunoglobulin G1 (IgG1) or IgG2 subclass and differed in their ability to bind to the leukotoxin on nitrocellulose blots. However, only slight differences in neutralization titers were observed. Use of the monoclonal antibodies revealed that polymyxin B-extracted or osmotic shock-released leukotoxin could be separated into several high-molecular-weight polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis with the monoclonal antibodies also demonstrated that the leukotoxin was present in eight oral strains of A. actinomycetemcomitans that had been previously classified by a biological assay as leukotoxic. The availability of these monoclonal antibodies should facilitate and expand studies concerning the role of the leukotoxin in the pathogenicity of A. actinomycetemcomitans. Images PMID:3965404

  20. [Role of Actinobacillus actinomycetemcomitans in human infection].

    PubMed

    Giglio, C; Aránguiz, V; Giglio, M S; Fernández, A

    1990-04-01

    Actinobacillus actinomycetemcomitans (AA), is a cocobacillus thin and small, non motile, uncapsulate and capnophilic. AA, is: one of the species encountered in the mouth's comensal flora being able to be isolated in gingival crevices culture and oral mucosa in a 20% of the healthy population. An important number of pathogenic factors make it well equipped, to protect itself from host's defense mechanisms, and to destroy the periodontal tissue. Between the most important we find lipopolisacarides and leucotoxines which promote tisular invasion and destructive qualities of this microorganism. Since 1912, there are numerous reports of infectious process associated to it, between which we find: endocarditis in native and prothesic valve, soft tissues abscess, pneumonia, brain's abscess, urethritis, vertebral osteomielitis, thyroid's abscess, pericarditis and periodontal juvenile illness, being this one in which its isolation is more frequent. In vitro, AA is very susceptible to tetracicline. This antibiotic reaches high concentrations in gingival crevices, has significant affinity to the alveolar bone and contributes to protect the collagen. These special feature make them the election drug in periodontal disease produced by this microorganism.

  1. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    SciTech Connect

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  2. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.

    PubMed

    Luckmann, Monique; Mania, Daniel; Kern, Melanie; Bakken, Lars R; Frostegård, Asa; Simon, Jörg

    2014-08-01

    Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.

  3. Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni

    PubMed Central

    Mileni, Mauro; MacMillan, Fraser; Tziatzios, Christos; Zwicker, Klaus; Haas, Alexander H.; Mäntele, Werner; Simon, Jörg; Lancaster, C. Roy D.

    2005-01-01

    The ϵ-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR operons from the two pathogenic bacteria H. pylori and C. jejuni and their expression in Wolinella succinogenes, a non-pathogenic ϵ-proteobacterium. To our knowledge, this is the first documentation of heterologous membrane protein production in W. succinogenes. We demonstrate that the replacement of the homologous enzyme from W. succinogenes with the heterologous enzymes yields mutants where fumarate respiration is fully functional. We have isolated and characterized the heterologous QFR enzymes. The high quality of the enzyme preparation enabled us to determine unequivocally by analytical ultracentrifugation the homodimeric state of the three detergent-solubilized heterotrimeric QFR enzymes, to accurately determine the different oxidation–reduction (‘redox’) midpoint potentials of the six prosthetic groups, the Michaelis constants for the quinol substrate, maximal enzymatic activities and the characterization of three different anti-helminths previously suggested to be inhibitors of the QFR enzymes from H. pylori and C. jejuni. This characterization allows, for the first time, a detailed comparison of the QFR enzymes from C. jejuni and H. pylori with that of W. succinogenes. PMID:16367742

  4. The Modified Heparin-Binding L-Asparaginase of Wolinella succinogenes.

    PubMed

    Sannikova, E P; Bulushova, N V; Cheperegin, S E; Gubaydullin, I I; Chestukhina, G G; Ryabichenko, V V; Zalunin, I A; Kotlova, E K; Konstantinova, G E; Kubasova, T S; Shtil, A A; Pokrovsky, V S; Yarotsky, S V; Efremov, B D; Kozlov, D G

    2016-09-01

    The modified asparaginase Was79 was derived from the recombinant wild-type L-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125-8000 IU/kg). At Was79 single doses of 500-8000 IU/kg, the complete remission rate of 100 % was observed. The Was79 variant can be expressed intracellularly in E. coli as a less immunogenic formyl-methionine-free form at high per cell production levels.

  5. A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia.

    PubMed

    Sneath, P H; Stevens, M

    1985-10-01

    A numerical taxonomic study of strains of Actinobacillus, Pasteurella and Yersinia, with some allied bacteria, showed 23 reasonably distinct groups. These fell into three major areas. Area A contained species of Actinobacillus and Pasteurella: A. suis, A. equuli, A. lignieresii, P. haemolytica biovar A, P. haemolytica biovar T, P. multocida, A. actinomycetemcomitans, 'P. bettii', 'A. seminis', P. ureae and P. aerogenes. Also included in A was a composite group of Pasteurella pneumotropica and P. gallinarum, together with unnamed groups referred to as 'BLG', 'Mair', 'Ross' and 'aer-2'. Area B contained species of Yersinia: Y. enterocolitica, Y. pseudotuberculosis, Y. pestis and a group 'ent-b' similar to Y. enterocolitica. Area C contained non-fermenting strains: Y. philomiragia, Moraxella anatipestifer and a miscellaneous group 'past-b'. There were also a small number of unnamed single strains.

  6. Actinobacillus rossii sp. nov., Actinobacillus seminis sp. nov., nom. rev., Pasteurella bettii sp. nov., Pasteurella lymphangitidis sp. nov., Pasteurella mairi sp. nov., and Pasteurella trehalosi sp. nov.

    PubMed

    Sneath, P H; Stevens, M

    1990-04-01

    Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.

  7. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85.

    PubMed

    Raut, Mahendra P; Karunakaran, Esther; Mukherjee, Joy; Biggs, Catherine A; Wright, Phillip C

    2015-01-01

    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for

  8. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.

    PubMed

    Simon, Jörg; Sänger, Monica; Schuster, Stephan C; Gross, Roland

    2003-07-01

    The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from

  9. First Human Case of Meningitis and Sepsis in a Child Caused by Actinobacillus suis or Actinobacillus equuli

    PubMed Central

    Montagnani, Carlotta; Pecile, Patrizia; Moriondo, Maria; Petricci, Patrizia; Becciani, Sabrina; Chiappini, Elena; Indolfi, Giuseppe; Rossolini, Gian Maria; de Martino, Maurizio

    2015-01-01

    We report the first human case of meningitis and sepsis caused in a child by Actinobacillus suis or A. equuli, a common opportunistic pathogen of swine or horses, respectively. Identification was performed by matrix-assisted laser desorption ionization–time of flight mass spectrometry and real-time PCR assay. A previous visit to a farm was suspected as the source of infection. PMID:25878346

  10. Subclass and molecular form of immunoglobulin A antibodies to Actinobacillus actinomycetemcomitans in juvenile periodontitis.

    PubMed Central

    Brown, T A; Byres, L; Gardner, M; Van Dyke, T E

    1991-01-01

    Patients with juvenile periodontitis frequently have elevated levels of serum immunoglobulin A (IgA) antibodies to antigens of Actinobacillus actinomycetemcomitans. IgA occurs in two subclasses, IgA1 and IgA2, and in monomeric and polymeric forms. Because IgA1 is susceptible to cleavage by IgA1 proteases produced by microorganisms found at mucosal sites and in the gingival crevice, we wished to determine the IgA subclass distribution of antibodies to antigens of A. actinomycetemcomitans. The molecular form was examined because it may indicate the origin of the IgA and because the form differs in acute and chronic infections. There is also evidence that monomeric and polymeric IgA have different biological functions. Serum was taken from patients with juvenile periodontitis before and at intervals during and after initiation of therapy. IgA subclass distribution was determined against a sonic extracts of A. actinomycetemcomitans ATCC 2952a (serotype b) by using monoclonal anti-subclass reagents in an enzyme-linked immunosorbent assay. To determine the molecular form of the antibodies, sera were separated by high-performance liquid chromatography on a size-exclusion column. Fractions were assayed for antibody activity by the enzyme-linked immunosorbent assay, and described above. The results of the subclass analysis of the sera indicated that while both IgA1 and IgA2 antibodies to A. actinomycetemcomitans sonic extract are often found before, during, and after treatment, IgA1 antibodies dominated the response. There was a predominance of monomeric IgA1 antibodies to A. actinomycetemcomitans sonic extracts in most samples before, during, and after treatment. The monomeric form is consistent with what is seen in other chronic infections. The predominance of IgA1 antibodies implies that any protective effects of the IgA response to A. actinomycetemcomitans could be compromised by microbial IgA1 proteases. PMID:1997415

  11. Bacteriocin production by Actinobacillus actinomycetemcomitans isolated from the oral cavity of humans with periodontal disease, periodontally healthy subjects and marmosets.

    PubMed

    Lúcia, Lima Francisca; Farias, Flávio F; Eustáquio, Costa José; Auxiliadora, Maria; Carvalho, R; Alviano, Celuta S; Farias, Luiz M

    2002-01-01

    The ability of Actinobacillus actinomycetemcomitans to produce bacteriocin has rarely been reported. Antagonistic substance production may confer an important ecological advantage for the producer microorganisms, especially in a competitive ecosystem such as the oral cavity. In the present study, 75 A. actinomycetemcomitans strains isolated from the oral cavity of human patients with periodontal disease, periodontally healthy subjects and marmosets, as well as two reference strains (A. actinomycetemcomitans ATCC 29523 and FDC Y4) were evaluated for auto-, iso-, and heteroantagonistic activity. Fifty-one (68.00%) strains exhibited antagonistic activity; heteroantagonism was observed more often than isoantagonism. Isolated strains antagonized 17 different species of gram-positive and gram-negative bacteria from the oral and nonoral microbiota. Sensitivity to heat and to proteolytic enzymes constituted strong evidence that the antagonistic substance has a proteic nature. Taken together, our data enabled us to confirm that the antagonistic substance detected was a bacteriocin. The wide spectrum of activity indicates the possibility that more than one antagonistic substance is produced and that these substances play an important role in the ecological balance of the oral ecosystem.

  12. Utility of enzymes from Fibrobacter succinogenes and Prevotella ruminicola as detergent additives.

    PubMed

    Chen, Bo-Yuan; Wang, Han-Tsung

    2008-08-01

    In this study, we investigated the application of cellulase and protease purified from rumen bacteria as detergent additives. Cellulase and protease were purified from the rumen cellulytic bacteria Fibrobacter succinogenes S85, and Prevotella ruminicola 23, respectively. An inhibitor test indicated that the purified protease belongs to the category of serine proteases and metalloproteases. Both the enzymes were effective at a high temperature (50 degrees C) and neutral pH (pH 7-8), but the protease activity increased with the increase in temperature and pH. The purified protease was treated with ten types of surfactants/detergents; it was found to retain over 60% of its activity in the presence of anionic and nonionic detergents. The cellulose plus protease combination was still effective after treatment with Triton X-100 and Tween 80, but the residual activity was low after treatment with Tween 20 than that after treatment with other nonionic detergents. Washing tests indicated that enzyme addition produced no significant improvement in the removal of grass stains, but individual enzyme addition in surfactants/detergents, especially in nonionic detergents, could improve the washing performance of the detergents by improving its ability to remove blood stains. This suggested that the surfactant/detergent class, enzyme properties, and the mixing ratio of ingredients should be considered simultaneously to enhance the washing performance.

  13. Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri.

    PubMed

    Huang, Shu-Jung; Chen, Ming-Ju; Yueh, Pei-Ying; Yu, Bi; Zhao, Xin; Liu, Je-Ruei

    2011-03-09

    The aim of this study was to display a rumen bacterial β-glucanase on the cell surface of a probiotic Lactobacillus reuteri strain. The β-glucan degrading ability and the adhesion capability of the genetically modified strain were evaluated. The β-glucanase (Glu) from Fibrobacter succinogenes was fused to the C-terminus of collagen-binding protein (Cnb) from L. reuteri and then expressed by L. reuteri Pg4 as a recombinant Cnb-Glu-His(6) fusion protein. Confocal immunofluorescence microscopy and flow cytometric analysis of the transformed strain L. reuteri pNZ-cnb/glu demonstrated that Cnb-Glu-His(6) fusion protein was displayed on its cell surface. In addition, L. reuteri pNZ-cnb/glu acquired the capacity to break down barley β-glucan and showed higher adhesion capability, in comparison with the parental strain L. reuteri Pg4. To the best of the authors' knowledge, this is the first report of successful display of fibrolytic enzymes on the cell surface of intestinal lactobacilli.

  14. Evidence that extracellular components function in adherence of Actinobacillus actinomycetemcomitans to epithelial cells.

    PubMed Central

    Meyer, D H; Fives-Taylor, P M

    1993-01-01

    Extracellular microvesicles and a highly proteinaceous polymer associated with a leukotoxin-producing strain, Actinobacillus actinomycetemcomitans SUNY 75, were shown to increase adherence of other weakly adherent A. actinomycetemcomitans strains to KB epithelial cells. Images PMID:8406899

  15. A longitudinal microbiological investigation of Actinobacillus actinomycetemcomitans and Eikenella corrodens in juvenile periodontitis.

    PubMed Central

    Mandell, R L

    1984-01-01

    Longitudinal clinical and microbiological monitoring of subjects with localized juvenile periodontitis indicated that Actinobacillus actinomycetemcomitans and Eikenella corrodens were significantly associated (P less than 0.05) with active tissue destruction. PMID:6381313

  16. Minimal inhibitory concentrations of antimicrobial agents against Actinobacillus pleuropneumoniae.

    PubMed Central

    Nadeau, M; Larivière, S; Higgins, R; Martineau, G P

    1988-01-01

    Forty-five isolates of Actinobacillus pleuropneumoniae were tested for susceptibility to 12 antimicrobial agents using a microdilution method for the minimal inhibitory concentration determinations. These results confirmed the high prevalence of A. pleuropneumoniae strains resistant to antibiotics as reported earlier using the disc diffusion method (Kirby-Bauer method). While 36% of the isolates were resistant to the penicillins, 47% were resistant to chloramphenicol and 68% were resistant to tetracycline. Minimal inhibitory concentrations for the resistant isolates were approximately 32 times higher than those for the susceptible isolates to the above antibacterial agents. The isolates were in general weakly susceptible or resistant to spectinomycin, lincomycin, tiamulin and spiramycin whereas most of them were susceptible to gentamicin, trimethoprim and erythromycin. The susceptibility pattern was similar throughout the 1980 to 1984 period. The 14 serotype 5 isolates were more resistant to tetracycline but less resistant to chloramphenicol and the penicillins than the 28 serotype 1 isolates. PMID:3167716

  17. The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae.

    PubMed

    Kang, Shuai; Li, Zhengwen; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Chen, Zhenzhen; Peng, Lianci; Qu, Jing; Hu, Zhiqiang; Lai, Xin; Wang, Guangxi; Liang, Xiaoxia; He, Changliang; Yin, Lizi

    2015-01-01

    This study demonstrated berberine to be a potential natural compound against Actinobacillus pleuropneumoniae. Liquid doubling dilution, transmission electron microscopy (TEM), SDS-PAGE and 4',6-diamidino-2-phenylindole (DAPI) staining were employed to elucidate the antibacterial activity and mechanism of berberine. The minimal inhibitory concentration of berberine was 0.3125 mg/mL, and time-kill curves showed concentration and time dependence. The TEM micrographs displayed damaged cell wall, concentrated cytoplasm, cytoplasmic content leakage and cell death. SDS-PAGE and DAPI assays revealed that berberine can restrain DNA and protein syntheses. Berberine inhibited the synthesis of proteins associated with the growth and cleavage of bacteria and then blocked the division and development of bacteria. The compound ultimately induced cytoplasm pyknosis and bacterial death.

  18. Cellular fatty acid composition of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.

    PubMed Central

    Braunthal, S D; Holt, S C; Tanner, A C; Socransky, S S

    1980-01-01

    Strains of Actinobacillus actinomycetemcomitans isolated from deep pockets of patients with juvenile periodontitis were analyzed for their content of cellular fatty acids. Oral Haemophilus strains, morphologically and biochemically similar to Haemophilus aphrophilus, were also examined for their content of cellular fatty acids. The extractable lipids of the actinobacilli represented approximately 10% of the cell dry weight, with the bound lipids representing 2 to 5%. The major fatty acids consisted of myristic (C14:0) and palmitic (C16:0) acids and a C16:1 acid, possibly palmitoleic acid, accounting for 21, 35, and 31% of the total extractable fatty acids, respectively. Haemophilus strains had a similar cellular fatty acid content. PMID:7430333

  19. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    PubMed Central

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences. PMID:22247527

  20. Effect of extracellular pH on growth and proton motive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium.

    PubMed Central

    Russell, J B

    1987-01-01

    The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization. PMID:2827568

  1. Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes.

    PubMed

    Kern, Melanie; Mager, Anke M; Simon, Jörg

    2007-11-01

    Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c-type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.

  2. Degradation of Wheat Straw by Fibrobacter succinogenes S85: a Liquid- and Solid-State Nuclear Magnetic Resonance Study

    PubMed Central

    Matulova, M.; Nouaille, R.; Capek, P.; Péan, M.; Forano, E.; Delort, A.-M.

    2005-01-01

    Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium. PMID:15746325

  3. Experimental aerosol transmission of Actinobacillus pleuropneumoniae to pigs.

    PubMed Central

    Jobert, J L; Savoye, C; Cariolet, R; Kobisch, M; Madec, F

    2000-01-01

    In order to demonstrate the possible role of aerosol in the transmission of Actinobacillus pleuropneumoniae, an experiment including 18 specific pathogen-free (SPF), 10-week-old piglets, randomly distributed into 2 adjacent units, was carried out. In these facilities, air was forced through absolute filters to prevent any contact with infectious agents. During the first 6 d post inoculation, the 2 units were connected by a rectangular opening and the air circulation was forced by the ventilation system from unit A (inoculated pigs) to unit B (non-inoculated pigs). The A. pleuropneumoniae strain (biovar 1 serovar 9) was isolated in France from an outbreak of porcine pleuropneumonia. Two different infecting doses, 10(7) cfu/animal and 10(8) cfu/animal, were inoculated by intranasal route in 6 pigs of unit A. The infection spread quickly from the inoculated pigs to the non-inoculated pigs. Clinical signs were acute during the 4 d post inoculation: hyperthermia, respiratory distress and, sometimes, death (6 pigs of the unit A and 2 pigs of the unit B). All pigs seroconverted against A. pleuropneumoniae serovar 9 within 2 weeks. Lung lesions were severe: fibrinous pleurisy and lung hemorrhages in the acute stage, pleural adherences and focal pulmonary necrosis in the chronic stage. Actinobacillus pleuropneumoniae was isolated from the tonsils and/or lungs in 16 animals. It could be also isolated from the air of the experimental unit. This study showed that A. pleuropneumoniae was readily transmitted through aerosol over a distance of at least 2.5 m. Images Figure 1. Figure 2. PMID:10680652

  4. Draft Genome Assemblies of Proteus mirabilis ATCC 7002 and Proteus vulgaris ATCC 49132.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    The pleomorphic swarming bacilli of the genus Proteus are common human gut commensal organisms but also the causative agents of recurrent urinary tract infections and bacteremia. We sequenced and assembled the 3.99-Mbp genome of Proteus mirabilis ATCC 7002 (accession no. JOVJ00000000) and the 3.97-Mbp genome of Proteus vulgaris ATCC 49132 (accession no. JPIX00000000), both of which are commonly used reference strains.

  5. Evidence that the serotype b antigenic determinant of Actinobacillus actinomycetemcomitans Y4 resides in the polysaccharide moiety of lipopolysaccharide.

    PubMed Central

    Wilson, M E; Schifferle, R E

    1991-01-01

    A high-molecular-weight polysaccharide-containing antigen was isolated from a phenol-water extract of Actinobacillus actinomycetemcomitans ATCC 43718 (formerly Y4) by gel permeation chromatography in lipopolysaccharide (LPS)-disaggregating buffer. The polysaccharide antigen formed a precipitin band with rabbit serotype b-specific antiserum but not with rabbit antisera to serotype a or c. Electroblotted serotype b antigen was probed with serum from a patient with localized juvenile periodontitis (LJP), resulting in a diffuse "smear" in the upper region of the lane. By utilizing an enzyme-linked immunosorbent assay, it was demonstrated that the geometric mean immunoglobulin G antibody titer to the serotype b polysaccharide was significantly higher in sera from LJP patients than in sera from periodontally healthy individuals. Moreover, LJP antibody titers to the serotype b polysaccharide exhibited age-dependent variation. Double immunodiffusion analysis revealed that the serotype b antigen formed a line of identity with low-molecular-weight LPS following reaction with serotype b-specific antiserum. Incubation of LJP serum in the presence of a lipid-free polysaccharide moiety obtained by mild acid hydrolysis of LPS from A. actinomycetemcomitans Y4 markedly reduced immunoglobulin G titer to the serotype b antigen. In contrast, solubilized lipid A was only weakly inhibitory. The results of this study indicate that the serotype b-specific determinant of A. actinomycetemcomitans resides in the polysaccharide moiety of LPS and represents a major target for immunoglobulin G antibody in serum of LJP subjects colonized by this organism. Images PMID:1706323

  6. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.

  7. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase

    PubMed Central

    Lancaster, C. Roy D.; Groß, Roland; Haas, Alexander; Ritter, Michaela; Mäntele, Werner; Simon, Jörg; Kröger, Achim

    2000-01-01

    Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential. PMID:11186225

  8. Killing of human myelomonocytic leukemia and lymphocytic cell lines by Actinobacillus actinomycetemcomitans leukotoxin.

    PubMed Central

    Simpson, D L; Berthold, P; Taichman, N S

    1988-01-01

    The purified leukotoxin of Actinobacillus actinomycetemcomitans kills human leukemic cell lines (e.g., HL-60, U937, and KG-1) and human T- and B-cell lines (e.g., JURKAT, MOLT-4, Daudi, and Raji) in a dose- and time-dependent manner. The 50% effective doses for these cell lines are similar to those established for human polymorphonuclear leukocytes and monocytes. In contrast, other human and nonhuman tumor cell lines are not susceptible to the leukotoxin. These human leukemia and lymphoid cell lines will serve as useful model systems with which to study the molecular specificity and mechanism(s) of action of the actinobacillus leukotoxin. Images PMID:3258584

  9. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found to be time dependent and increased linearly with increasing numbers of bacteria added. Variation in the level of adhesion was noted among strains of A. actinomycetemcomitans. Adhesion was not significantly altered by changes in pH (from pH 5 to 9) but was sensitive to sodium chloride concentrations greater than 0.15 M. Pooled human saliva was inhibitory for adhesion when bacteria were pretreated with saliva before being added to the cells. Pretreatment of the KB cells with saliva did not inhibit adhesion. Protease treatment of A. actinomycetemcomitans reduced adhesion of the bacteria to KB cells. The data are consistent with the hypothesis that a protein(s) is required for bacterial adhesion and that host components may play a role in modulating adhesion to epithelial cells. Images PMID:8063383

  10. Transformation of Actinobacillus actinomycetemcomitans by electroporation, utilizing constructed shuttle plasmids.

    PubMed Central

    Sreenivasan, P K; LeBlanc, D J; Lee, L N; Fives-Taylor, P

    1991-01-01

    Actinobacillus actinomycetemcomitans, a periodontal pathogen, has been strongly implicated in human periodontal disease. Advances in the molecular analysis of A. actinomycetemcomitans virulence factors have been limited due to the unavailability of systems for genetic transfer, transposon mutagenesis, and gene complementation. Slow progress can be traced almost exclusively to the lack of gene vector systems and methods for the introduction of DNA into A. actinomycetemcomitans. An electrotransformation system that allowed at least five strains of A. actinomycetemcomitans to be transformed with stable shuttle plasmids which efficiently replicated in both Escherichia coli and A. actinomycetemcomitans was developed. One plasmid, a potential shuttle vector designated pDL282, is 5.7 kb in size, has several unique restriction enzyme sites, and codes for resistance to spectinomycin and ampicillin. E. coli and A. actinomycetemcomitans were transformed with equal efficiencies of approximately 10(5) transformants per micrograms of DNA. Similar transformation efficiencies were obtained whether the plasmid DNA was isolated from A. actinomycetemcomitans or E. coli. In addition, frozen competent cells of A. actinomycetemcomitans yielded comparable efficiencies of transformation. Restriction enzyme analysis of pDL282 isolated after transformation confirmed the presence of intact donor plasmids. A plasmid isolated from A. pleuropneumoniae was also capable of transforming some isolates of A. actinomycetemcomitans, although generally at a lower frequency. The availability of these shuttle plasmids and an efficient transformation procedure should significantly facilitate the molecular analysis of virulence factors of A. actinomycetemcomitans. PMID:1937823

  11. Cloning and expression of the leukotoxin gene from Actinobacillus actinomycetemcomitans.

    PubMed Central

    Kolodrubetz, D; Dailey, T; Ebersole, J; Kraig, E

    1989-01-01

    The leukotoxin produced by Actinobacillus actinomycetemcomitans has been implicated in the etiology of juvenile periodontitis. To initiate a genetic analysis of the role of this protein in disease, we have cloned the leukotoxin gene in Escherichia coli. Recombinant colonies carrying toxin gene sequences were isolated by screening a genomic A. actinomycetemcomitans library with a DNA probe for the leukotoxin gene from a related bacterium, Pasteurella haemolytica. To demonstrate that the cloned A. actinomycetemcomitans DNA contained a functional leukotoxin gene, protein extracts of E. coli containing the A. actinomycetemcomitans clone were tested directly for leukotoxic activity against human cell lines in chromium release assays. A construct containing the entire cloned region produced a functional toxin. No cytotoxicity was seen when extracts from cells containing plasmids with deletions in the putative coding region were used. Furthermore, the toxin produced by the cloned gene has the same target cell specificity as the leukotoxin extracted directly from A. actinomycetemcomitans. These results indicate that sequences encoding a functional leukotoxin have been cloned and are expressed in E. coli. Southern blot analysis of DNA from leukotoxin-producing (Lkt+) and non-leukotoxin-producing (Lkt-) strains indicated that the Lkt- strain also contained a copy of the gene. Images PMID:2707855

  12. Activation of rat B lymphocytes by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Yoshie, H; Taubman, M A; Ebersole, J L; Olson, C L; Smith, D J; Pappo, J

    1985-01-01

    We examined the lymphoproliferative responses of cervical lymphocytes and splenocytes of homozygous (rnu/rnu) congenitally athymic nude and normal heterozygous (rnu/+) Rowett rats to whole cells of Actinobacillus actinomycetemcomitans, a suspected periodontal disease pathogen. Previously sensitized cells from immunized only, infected only, or immunized and infected, normal rats demonstrated proliferation in response to formalinized A. actinomycetemcomitans, but cells from nude rats did not proliferate. The maximum antigenic response was observed at day 5 of culture. A. actinomycetemcomitans caused cervical lymphocytes and splenocytes from untreated naive normal and nude rats to undergo increased DNA synthesis at day 2 of culture. Highly enriched nonsensitized spleen T cells prepared on a nylon wool column did not respond to A. actinomycetemcomitans, whereas enriched nonsensitized B cells proliferated. Differences in response were probably not attributable to contributions from macrophages in the T- or B-cell populations, since macrophage percentages were approximately the same in both preparations. T-cell reconstitution of nude rats with neonatal thymus cells from rnu/+rats resulted in partial recovery of T-cell function but had no effect on the mitogenic response to A. actinomycetemcomitans. It is suggested that the antigenic responses to A. actinomycetemcomitans are dependent on T cells and that A. actinomycetemcomitans cells have mitogenic activity for B cells. The potential importance of these findings in periodontal disease is discussed. PMID:3871196

  13. Requirements for invasion of epithelial cells by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Sreenivasan, P K; Meyer, D H; Fives-Taylor, P M

    1993-01-01

    Actinobacillus actinomycetemcomitans, an oral bacterium implicated in human periodontal disease, was recently demonstrated to invade cultured epithelial cells (D. H. Meyer, P. K. Sreenivasan, and P. M. Fives-Taylor, Infect. Immun. 59:2719-2726, 1991). This report characterizes the requirements for invasion of KB cells by A. actinomycetemcomitans. The roles of bacterial and host factors were investigated by using selective agents that influence specific bacterial or host cell functions. Inhibition of bacterial protein synthesis decreased invasion, suggesting the absence of a preformed pool of proteins involved in A. actinomycetemcomitans invasion. Inhibition of bacterial and eukaryotic energy synthesis also decreased invasion, confirming that A. actinomycetemcomitans invasion is an active process. Bacterial adherence to KB cells was indicated by scanning electron microscopy of infected KB cells. Further, the addition of A. actinomycetemcomitans-specific serum to the bacterial inoculum reduced invasion substantially, suggesting a role for bacterial attachment in invasion. Many of the adherent bacteria invaded the epithelial cells under optimal conditions. Inhibitors of receptor-mediated endocytosis inhibited invasion by A. actinomycetemcomitans. Like that of many facultatively intracellular bacteria, A. actinomycetemcomitans invasion was not affected by eukaryotic endosomal acidification. These are the first published observations describing the requirements for epithelial cell invasion by a periodontopathogen. They demonstrate that A. actinomycetemcomitans utilizes a mechanism similar to those used by many but not all invasive bacteria to gain entry into eukaryotic cells. Images PMID:8454326

  14. Avidity of antibody responses to Actinobacillus actinomycetemcomitans in periodontitis.

    PubMed Central

    O'Dell, D S; Ebersole, J L

    1995-01-01

    We designed a study to examine the serum IgG antibody avidity characteristics in: (i) normal subjects (N); (ii) Actinobacillus actinomycetemcomitans-infected adult periodontitis (AP Aa+); (iii) A. actinomycetemcomitans-infected localized juvenile periodontitis (LJP Aa+); and (iv) AP subjects (AP) with various antibody patterns and disease presentation. Although there were significant elevations in antibody levels for AP Aa+ and LJP Aa+ patients compared with AP and normal patients (P < 0.0001), there were no significant differences in the avidity indices (AI). Correlations of antibody levels to avidity revealed that functional activity of the antibody as measured by avidity was independent of antibody levels. Increasing antibody levels correlated with an increase in the number of infected sites, yet there was a trend for A1 to decrease with increased infection. Avidity indices for all patient groups did not appear to show a strong biologic relationship to plaque; however, in AP Aa+ and LJP Aa+ patients there was a generally positive relationship between avidity and bleeding on probing or pocket depth. In AP Aa+ and LJP Aa+ patients, and in AP patients there was a positive relationship of avidity through a threshold of approximately 8 active disease sites. This study hypothesized that antibody avidity to A. actinomycetemcomitans could help to explain the relationship between the active host response and chronic infection with this pathogen. The results provide evidence that both antibody levels and avidity may contribute to the variation in host resistance to infection and disease associated with A. actinomycetemcomitans. PMID:7648712

  15. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    PubMed

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  16. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in young Chinese adults.

    PubMed

    Mombelli, A; Gmür, R; Frey, J; Meyer, J; Zee, K Y; Tam, J O; Lo, E C; Di Rienzo, J; Lang, N P; Corbet, E F

    1998-08-01

    The aim of this study was to determine the presence or absence of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in young Chinese adults and to examine the A. actinomycetemcomitans isolates from positive subjects with regard to the serotype distribution, presence of the leukotoxin gene lktA and the promoter for the leukotoxin operon as well as the incidence of phage Aa phi 23. Sixty subjects, working in a knitting factory in the Province of Guangzhou, People's Republic of China, were investigated. Subgingival microbial samples were taken from both upper first molars. They were cultured both anaerobically and in 5% CO2. P. gingivalis was found in 33 subjects. On average, it constituted 7% of the total anaerobic cultivable counts. A. actinomycetemcomitans was detected in 37 subjects of which seven yielded counts > 10(5). Twenty-one subjects were positive for both organisms. A. actinomycetemcomitans serotype a was found in 9 subjects, serotype c was found in 23 and serotype e in 5. A. actinomycetemcomitans serotypes b and d were not detected in any subjects. Presence of the leukotoxin gene lktA was demonstrated for all A. actinomycetemcomitans isolates; however, none of the A. actinomycetemcomitans strains from the present study had a deletion in the promoter region of the leukotoxin operon. The results of this investigation show a high frequency of the putative periodontal pathogens P. gingivalis and A. actinomycetemcomitans and corroborate the concept that there is variation in virulence and pathogenic potential among isolates from different subjects.

  17. Structural proteins of the Actinobacillus actinomycetemcomitans bacteriophage phi Aa.

    PubMed

    Stevens, R H; Hammond, B F; Fine, D H

    1990-08-01

    øAa is an A1 morphotype bacteriophage which infects certain strains of Actinobacillus actinomycetemcomitans. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of dissociated, purified phi Aa particles revealed 7 major structural proteins (P1-P7) ranging in size from 17.5 to 52.7 kilodaltons (Kd). Treatment of the intact phage particles with 67% dimethyl sulfoxide (DMSO) resulted in the separation of the virion head and tail subunits. Purification of the head subunits was accomplished by sucrose density gradient centrifugation of the DMSO-treated phage particles. The purified head subunits were composed of a single protein having an electrophoretic mobility which corresponded to a 39.5 Kd protein (P3) of the intact virus. Raising the pH of a purified phi Aa suspension to 12.7 disrupted the head subunits, as well as the tail tube and tail fibers, releasing intact contractile tail sheaths. The tail sheaths were collected by centrifugation. The purified tail sheaths were analyzed by SDS-PAGE and were found to be composed of two proteins (P1 and P2) having molecular weights of 52.7 and 41.2 Kd respectively. The location of each of the 4 remaining major structural proteins in the phi Aa virion remains to be determined.

  18. Oxidative and nonoxidative killing of Actinobacillus actinomycetemcomitans by human neutrophils.

    PubMed Central

    Miyasaki, K T; Wilson, M E; Brunetti, A J; Genco, R J

    1986-01-01

    Actinobacillus actinomycetemcomitans is a facultative gram-negative microorganism which has been implicated as an etiologic agent in localized juvenile periodontitis and in subacute bacterial endocarditis and abscesses. Although resistant to serum bactericidal action and to oxidant injury mediated by superoxide anion (O2-) and hydrogen peroxide (H2O2), this organism is sensitive to killing by the myeloperoxidase-hydrogen peroxide-chloride system (K.T. Miyasaki, M.E. Wilson, and R.J. Genco, Infect. Immun. 53:161-165, 1986). In this study, we examined the sensitivity of A. actinomycetemcomitans to killing by intact neutrophils under aerobic conditions, under anaerobic conditions, and under aerobic conditions in the presence of the heme-protein inhibitor sodium cyanide. Intact neutrophils killed opsonized A. actinomycetemcomitans under aerobic and anaerobic conditions, and the kinetics of these reactions indicated that both oxidative and nonoxidative mechanisms were operative. Oxidative mechanisms contributed significantly, and most of the killing attributable to oxidative mechanisms was inhibited by sodium cyanide, which suggested that the myeloperoxidase-hydrogen peroxide-chloride system participated in the oxidative process. We conclude that human neutrophils are capable of killing A. actinomycetemcomitans by both oxygen-dependent and oxygen-independent pathways, and that most oxygen-dependent killing requires myeloperoxidase activity. PMID:3013778

  19. Biochemical and Domain Analyses of FSUAxe6B, a Modular Acetyl Xylan Esterase, Identify a Unique Carbohydrate Binding Module in Fibrobacter succinogenes S85▿ †

    PubMed Central

    Yoshida, Shosuke; Mackie, Roderick I.; Cann, Isaac K. O.

    2010-01-01

    Acetyl xylan esterase (EC 3.1.1.72) is a member of a set of enzymes required to depolymerize hemicellulose, especially xylan that is composed of a main chain of β-1,4-linked xylopyranoside residues decorated with acetyl side groups. Fibrobacter succinogenes S85 Axe6B (FSUAxe6B) is an acetyl xylan esterase encoded in the genome of this rumen bacterium. The enzyme is a modular protein comprised of an esterase domain, a carbohydrate-binding module, and a region of unknown function. Sequences that are homologous to the region of unknown function are paralogously distributed, thus far, only in F. succinogenes. Therefore, the sequences were designated Fibrobacter succinogenes-specific paralogous module 1 (FPm-1). The FPm-1s are associated with at least 24 polypeptides in the genome of F. succinogenes S85. A bioinformatics search showed that most of the FPm-1-appended polypeptides are putative carbohydrate-active enzymes, suggesting a potential role in carbohydrate metabolism. Truncational analysis of FSUAxe6B, together with catalytic and substrate binding studies, has allowed us to delineate the functional modules in the polypeptide. The N-terminal half of FSUAxe6B harbors the activity that cleaves side chain acetyl groups from xylan-like substrates, and the binding of insoluble xylan was determined to originate from FPm-1. Site-directed mutagenesis studies of highly conserved active-site residues in the esterase domain suggested that the esterase activity is derived from a tetrad composed of Ser44, His273, Glu194, and Asp270, with both Glu194 and Asp270 functioning as helper acids, instead of a single carboxylate residue proposed to initiate catalysis. PMID:19897648

  20. Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae.

    PubMed

    Bossé, Janine T; Li, Yanwen; Atherton, Tom G; Walker, Stephanie; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Holden, Matthew T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2015-08-05

    The complete nucleotide sequence of a 7.7kb mobilisable plasmid (pM3446F), isolated from a florfenicol resistant isolate of Actinobacillus pleuropneumoniae, showed extended similarity to plasmids found in other members of the Pasteurellaceae containing the floR gene as well as replication and mobilisation genes. Mobilisation into other Pasteurellaceae species confirmed that this plasmid can be transferred horizontally.

  1. Actinobacillus equuli as a primary pathogen in breeding sows and piglets

    PubMed Central

    Thompson, Amy B.; Postey, Rosemary C.; Snider, Tim; Pasma, Tim

    2010-01-01

    The death of over 300 sows in 2 months on a 3000 sow farrow-to-isowean operation in Manitoba was attributed to infection with Actinobacillus equuli. This pathogen commonly infects foals, and is rarely reported in swine. Our report is the second recently published case of this pathogen in North American swine. PMID:21286321

  2. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae.

    PubMed Central

    Frey, J; Meier, R; Gygi, D; Nicolet, J

    1991-01-01

    The DNA sequence of the gene encoding the structural protein of hemolysin I (HlyI) of Actinobacillus pleuropneumoniae serotype 1 strain 4074 was analyzed. The nucleotide sequence shows a 3,072-bp reading frame encoding a protein of 1,023 amino acids with a calculated molecular size of 110.1 kDa. This corresponds to the HlyI protein, which has an apparent molecular size on sodium dodecyl sulfate gels of 105 kDa. The structure of the protein derived from the DNA sequence shows three hydrophobic regions in the N-terminal part of the protein, 13 glycine-rich domains in the second half of the protein, and a hydrophilic C-terminal area, all of which are typical of the cytotoxins of the RTX (repeats in the structural toxin) toxin family. The derived amino acid sequence of HlyI shows 42% homology with the hemolysin of A. pleuropneumoniae serotype 5, 41% homology with the leukotoxin of Pasteurella haemolytica, and 56% homology with the Escherichia coli alpha-hemolysin. The 13 glycine-rich repeats and three hydrophobic areas of the HlyI sequence show more similarity to the E. coli alpha-hemolysin than to either the A. pleuropneumoniae serotype 5 hemolysin or the leukotoxin (while the last two are more similar to each other). Two types of RTX hemolysins therefore seem to be present in A. pleuropneumoniae, one (HlyI) resembling the alpha-hemolysin and a second more closely related to the leukotoxin. Ca(2+)-binding experiments using HlyI and recombinant A. pleuropneumoniae prohemolysin (HlyIA) that was produced in E. coli shows that HlyI binds 45Ca2+, probably because of the 13 glycine-rich repeated domains. Activation of the prohemolysin is not required for Ca2+ binding. Images PMID:1879928

  3. Lytic sensitivity of Actinobacillus actinomycetemcomitans Y4 to lysozyme.

    PubMed Central

    Iacono, V J; Boldt, P R; MacKay, B J; Cho, M I; Pollock, J J

    1983-01-01

    The ability of both human and hen egg white lysozymes to lyse Actinobacillus actinomycetemcomitans Y4 was investigated. Lysis was followed optically at 540 nm by measuring the percent reduction in turbidity of freshly harvested log-phase cells suspended in Tris-maleate buffers within a wide range of pH (5.2 to 8.5) and molarity (0.01 to 0.2 M) and containing various amounts of enzyme and EDTA. In several instances, treated microorganisms were subsequently examined in thin sections by electron microscopy. Reductions in turbidity and clearing of suspensions occurred with small amounts of lysozyme (less than 1 microgram) under relatively alkaline conditions and at low ionic strength and in the presence of small amounts of EDTA (greater than 0.01 mM). Under the most alkaline conditions, EDTA alone effected turbidity reductions similar to those observed in the presence of lysozyme, which suggested that EDTA not only increased outer membrane permeability but also caused cell lysis. Ultrastructural analysis did not always correspond to turbidimetric observations. Cell lysis was virtually complete in suspensions containing both lysozyme and EDTA. However, in contrast to turbidimetric findings, a significant percentage of cells (greater than 25%) was lysed in the presence of lysozyme alone. Furthermore, significant damage occurred in the presence of EDTA alone. Spheroplast-like cell ghosts were present which surrounded condensed cytoplasm or relatively clear spaces. These findings further support the concept of the requirement for electron microscopy to assess lytic damage in addition to turbidimetric and biochemical methods. Our results are the first to demonstrate the remarkable sensitivity of A. actinomycetemcomitans Y4 to lysozyme and to show that EDTA not only affects outer membrane permeability but effects cell lysis, possibly through activation of autolytic enzymes at the cytoplasmic membrane. The exquisite sensitivity of A. actinomycetemcomitans Y4 to lysis could be

  4. Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR.

    PubMed Central

    Leys, E J; Griffen, A L; Strong, S J; Fuerst, P A

    1994-01-01

    By using PCR, Actinobacillus actinomycetemcomitans strains were identified directly from plaque samples without the need to isolate or culture bacteria. DNA fragments were generated by a nested, two-step PCR amplification of the ribosomal spacer region between the 16S and 23S rRNA genes. For the first amplification, primers homologous to sequences common to all bacterial species were used. This was followed by a second amplification with primers specific to A. actinomycetemcomitans. The ribosomal DNA spacer region was amplified from as few as 10 bacterial cells within a total population of 10(8) cells (0.00001%), and cross-reactivity between species was not observed. DNA fragments specific for Porphyromonas gingivalis were generated from the same samples by using a P. gingivalis-specific primer, and equivalent sensitivity and specificity were observed. A. actinomycetemcomitans was detected in 60% and P. gingivalis was detected in 79% of 52 subjects tested. Sequence analysis of the spacer region DNA fragment for A. actinomycetemcomitans gave precise strain identification, producing unique sequences for seven reference strains and identification of nine plaque-derived isolates. A phylogenetic tree based on quantitative sequence relationships was constructed. Two-step PCR amplification directly from plaque samples combined with sequence analysis of the ribosomal DNA spacer region provides a sensitive assay for detection and strain identification of multiple species directly from a single plaque sample. This simplified approach provides a practical method for large-scale studies on the transmission and pathogenicity of periodontitis-associated bacteria. Images PMID:8051258

  5. Transposon mutagenesis in Actinobacillus pleuropneumoniae with a Tn10 derivative.

    PubMed Central

    Tascon, R I; Rodriguez-Ferri, E F; Gutierrez-Martin, C B; Rodriguez-Barbosa, I; Berche, P; Vazquez-Boland, J A

    1993-01-01

    A transposon mutagenesis procedure functional in the gram-negative swine pathogen Actinobacillus pleuropneumoniae was developed for the first time. The technique involved the use of a suicide conjugative plasmid, pLOF/Km, carrying a mini-Tn10 with an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible transposase located outside the mobile element (M. Herrero, V. de Lorenzo, and K. N. Timmis, J. Bacteriol. 172:6557-6567, 1990). The plasmid was mobilized from Escherichia coli to A. pleuropneumoniae through the RP4-mediated broad-host-range conjugal transfer functions provided by the chromosome of the donor strain. When IPTG was present in the mating medium, A. pleuropneumoniae CM5 transposon mutants were obtained at a frequency of 10(-5), while no mutants were detected in the absence of IPTG. Since the frequency of conjugal transfer of the RP4 plasmid from E. coli to A. pleuropneumoniae CM5 was found to be as low as 10(-4), the above result indicated that the expression level of the transposase was a critical factor for obtaining a workable efficiency of transposon mutagenesis. The transposon insertions occurred at random, as determined by Southern blotting of chromosomal DNA of randomly selected mutants and by the ability to generate mutants defective for the selected phenotypes. Almost all the mutants analyzed resulted from a single insertion of the Tn10 element. About 1.2% of the mutants resulted from the cointegration of pLOF/Km into the A. pleuropneumoniae chromosome. The applicability of this transposon mutagenesis system was verified on other A. pleuropneumoniae strains of different serotypes. The usefulness of this transposon mutagenesis system in genetic studies of A. pleuropneumoniae is discussed. Images PMID:8396122

  6. Development of a cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5.

    PubMed

    Ito, Hiroya

    2010-05-01

    A cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5 was developed. This method should be specific and practical in Japan where more than 88% of isolates are serotypes 1, 2 or 5.

  7. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    PubMed

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  8. Capsule structure of Proteus mirabilis (ATCC 49565).

    PubMed Central

    Beynon, L M; Dumanski, A J; McLean, R J; MacLean, L L; Richards, J C; Perry, M B

    1992-01-01

    Proteus mirabilis 2573 (ATCC 49565) produces an acidic capsular polysaccharide which was shown from glycose analysis, carboxyl reduction, methylation, periodate oxidation, and the application of one dimensional and two-dimensional high-resolution nuclear magnetic resonance techniques to be a high-molecular-weight polymer of branched trisaccharide units composed of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine), 2-acetamido-2,6-dideoxy-L-galactose (N-acetyl-L-fucosamine), and D-glucuronic acid, having the structure: [formula: see text] P. mirabilis 2573 also produces an O:6 serotype lipopolysaccharide in which the O-chain component has the same structure as the homologous capsular polysaccharide. This is the first report of a defined capsular polysaccharide in this bacterial genus. PMID:1551839

  9. Effects of ketoprofen and flunixin in pigs experimentally infected with Actinobacillus pleuropneumoniae.

    PubMed

    Swinkels, J M; Pijpers, A; Vernooy, J C; Van Nes, A; Verheijden, J H

    1994-08-01

    The antipyretic effect of the non-steroidal anti-inflammatory drugs (NSAIDs) ketoprofen (3 mg/kg) and flunixin (2 mg/kg) were studied in pigs. The drugs were administered intramuscularly at 8 and 32 h following endobronchial challenge with Actinobacillus pleuropneumoniae. Infected (non-medicated) and non-infected (non-medicated) controls were used. Endobronchial challenge with Actinobacillus pleuropneumoniae induced laboured breathing, coughing, fever, reduced food and water consumption and increased white blood cell counts. At autopsy, pleuropneumonia was evident. Ketoprofen showed a highly significant antipyretic effect but flunixin did not. The decrease in food consumption of ketoprofen-treated pigs was significantly less than that of the infected (non-medicated) controls. Blood parameters were not significantly influenced by either NSAID and, at necropsy, gastric and renal side-effects were not observed for either drug.

  10. DNA analysis of temperate bacteriophage Aa(phi)23 isolated from actinobacillus actinomycetemcomitans.

    PubMed

    Willi, K; Meyer, J

    1998-05-01

    The DNA of the temperate bacteriophage Aaphi23 isolated from the oral bacterium Actinobacillus actinomycetemcomitans was examined structurally both in the phage head and in the prophage. The DNA in phage particles comprises 44 kb linear molecules with a terminal redundancy of 1.6 kb, which represent circular permutations. Thus, DNA is packaged into phage heads by the headful mechanism. The Aaphi23 prophage is integrated into the host chromosome.

  11. Domain Analysis of a Modular α-l-Arabinofuranosidase with a Unique Carbohydrate Binding Strategy from the Fiber-Degrading Bacterium Fibrobacter succinogenes S85 ▿ †

    PubMed Central

    Yoshida, Shosuke; Hespen, Charles W.; Beverly, Robert L.; Mackie, Roderick I.; Cann, Isaac K. O.

    2010-01-01

    Family 43 glycoside hydrolases (GH43s) are known to exhibit various activities involved in hemicellulose hydrolysis. Thus, these enzymes contribute to efficient plant cell wall degradation, a topic of much interest for biofuel production. In this study, we characterized a unique GH43 protein from Fibrobacter succinogenes S85. The recombinant protein showed α-l-arabinofuranosidase activity, specifically with arabinoxylan. The enzyme is, therefore, an arabinoxylan arabinofuranohydrolase (AXH). The F. succinogenes AXH (FSUAXH1) is a modular protein that is composed of a signal peptide, a GH43 catalytic module, a unique β-sandwich module (XX domain), a family 6 carbohydrate-binding module (CBM6), and F. succinogenes-specific paralogous module 1 (FPm-1). Truncational analysis and site-directed mutagenesis of the protein revealed that the GH43 domain/XX domain constitute a new form of carbohydrate-binding module and that residue Y484 in the XX domain is essential for binding to arabinoxylan, although protein structural analyses may be required to confirm some of the observations. Kinetic studies demonstrated that the Y484A mutation leads to a higher kcat for a truncated derivative of FSUAXH1 composed of only the GH43 catalytic module and the XX domain. However, an increase in the Km for arabinoxylan led to a 3-fold decrease in catalytic efficiency. Based on the knowledge that most XX domains are found only in GH43 proteins, the evolutionary relationships within the GH43 family were investigated. These analyses showed that in GH43 members with a XX domain, the two modules have coevolved and that the length of a loop within the XX domain may serve as an important determinant of substrate specificity. PMID:20709893

  12. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a Gram-negative, rod shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. ...

  13. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila.

    PubMed

    Tang, Jane S; Gillevet, Patrick M

    2003-07-01

    Strain ATCC 9341, currently known as Micrococcus luteus, has been designated as a quality-control strain in a number of applications. It is also cited as the standard culture in several official methods and manuals, as well as the Code of Federal Regulations. Over the years, it has become apparent that ATCC 9341 does not resemble other M. luteus strains; however, its phenotypic characteristics alone were ambiguous. Recently, a polyphasic study was performed in which molecular data were combined with cytochemical properties and physiological characteristics. The results clearly indicate that ATCC 9341 is a member of the genus Kocuria. Thus, it is proposed to reclassify ATCC 9341 as Kocuria rhizophila and to alert users worldwide of this name change.

  14. Phylogenomic and molecular demarcation of the core members of the polyphyletic pasteurellaceae genera actinobacillus, haemophilus, and pasteurella.

    PubMed

    Naushad, Sohail; Adeolu, Mobolaji; Goel, Nisha; Khadka, Bijendra; Al-Dahwi, Aqeel; Gupta, Radhey S

    2015-01-01

    The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the "sensu stricto" members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the "sensu stricto" clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.

  15. Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus, and Pasteurella

    PubMed Central

    Naushad, Sohail; Adeolu, Mobolaji; Goel, Nisha; Khadka, Bijendra; Al-Dahwi, Aqeel; Gupta, Radhey S.

    2015-01-01

    The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera. PMID:25821780

  16. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z.

    PubMed

    Van der Werf, M J; Guettler, M V; Jain, M K; Zeikus, J G

    1997-06-01

    Actinobacillus sp. 130Z fermented glucose to the major products succinate, acetate, and formate. Ethanol was formed as a minor fermentation product. Under CO2-limiting conditions, less succinate and more ethanol were formed. The fermentation product ratio remained constant at pH values from 6.0 to 7.4. More succinate was produced when hydrogen was present in the gas phase. Actinobacillus sp. 130Z grew at the expense of fumarate and l-malate reduction, with hydrogen as an electron donor. Other substrates such as more-reduced carbohydrates (e.g., d-sorbitol) resulted in higher succinate and/or ethanol production. Actinobacillus sp. 130Z contained the key enzymes involved in the Embden-Meyerhof-Parnas and the pentose-phosphate pathways and contained high levels of phosphoenolpyruvate (PEP) carboxykinase, malate dehydrogenase, fumarase, fumarate reductase, pyruvate kinase, pyruvate formate-lyase, phosphotransacetylase, acetate kinase, malic enzyme, and oxaloacetate decarboxylase. The levels of PEP carboxykinase, malate dehydrogenase, and fumarase were significantly higher in Actinobacillus sp. 130Z than in Escherichia coli K-12 and accounted for the differences in succinate production. Key enzymes in end product formation in Actinobacillus sp. 130Z were regulated by the energy substrates.

  17. Use of bean husk as an easily digestible fiber source for activating the fibrolytic rumen bacterium Fibrobacter succinogenes and rice straw digestion.

    PubMed

    Fuma, Ryosuke; Oyaizu, Shinya; Nukui, Yoko; Ngwe, Tin; Shinkai, Takumi; Koike, Satoshi; Kobayashi, Yasuo

    2012-10-01

    A series of in sacco and in vitro studies were carried out to evaluate bean husks for activation of fibrolytic rumen bacteria and rice straw digestion. First, lablab bean husk, chickpea husk and rice straw were suspended in the rumen of sheep to analyze the bacterial consortium developed on each fiber source. Known members of fiber-associating bacteria were found on both lablab bean husk and rice straw, but some of these bacteria were lacking on chickpea husk. Second, a pure culture study was carried out using six strains of Fibrobacter succinogenes. Both husks stimulated the growth of all tested strains, including a strain that did not grow on rice straw. The strain OS128 that showed the highest growth on rice straw displayed even higher growth on lablab bean husk without a time lag. Finally, two-step incubations were carried out to determine whether prior incubation of rumen fluid with husks stimulates subsequent rice straw digestion. Higher digestibility of rice straw was recorded in the second-round incubation following the first incubation with bean husks. These results suggest that the tested bean husks improve the digestion of rice straw by activating fibrolytic F. succinogenes and other associated bacteria.

  18. Multifocal suppurative granuloma caused by Actinobacillus lignieresii in the peritoneum of a beef steer

    PubMed Central

    KASUYA, Kazufumi; MANCHANAYAKE, Tilusha; UENOYAMA, Kei; KAWA, Sayaka; TAKAYAMA, Kou; IMAI, Naoto; SHIBAHARA, Tomoyuki

    2016-01-01

    An imported crossbred Angus beef steer aged eight to twelve months died suddenly on the eighth day of a quarantine period in Japan. Gross examination showed the peritoneum and mesentery consisted of numerous nodules of various sizes. Histological examination revealed chronic suppurative granulomatous peritonitis with eosinophilic rosettes surrounding colonies of Gram-negative bacilli. The bacteria isolated from the nodules were confirmed to be Actinobacillus lignieresii based on the results of 16S rRNA gene sequencing and immunohistochemistry. Antibiotic sensitivity testing showed that the isolate was resistant to penicillin. Thus, a diagnosis of atypical actinobacillosis caused by A. lignieresii was made. PMID:27773882

  19. Actinobacillus actinomycetemcomitans strains Y4 and N27 adhere to hydroxyapatite by distinctive mechanisms.

    PubMed Central

    Kagermeier, A S; London, J

    1985-01-01

    Actinobacillus actinomycetemcomitans strains Y4 and N27 absorb to spheroidal hydroxyapatite in roughly the same numbers per milligram of substrate and with the same tenacity as two previously tested Cytophaga species. Although the two strains of A. actinomycetemcomitans exhibited similar affinities and number of binding sites for SHA, their response to enzyme treatment and heating were very different. The capacity of strain Y4 to attach to spheroidal hydroxyapatite was diminished by treatment with proteases and phospholipases and was unaffected by neuraminidase, while strain N27 was unaffected by proteases and phospholipases and lost its binding capabilities when treated with neuraminidase. Images PMID:3972445

  20. The presence of phage-infected Actinobacillus actinomycetemcomitans in localized juvenile periodontitis patients.

    PubMed

    Preus, H R; Olsen, I; Namork, E

    1987-11-01

    Electron microscopy revealed 2 different types of bacteriophages isolated from Actinobacillus actinomycetemcomitans colonizing exclusively diseased sites in 4 patients with localized juvenile periodontitis (LJP). All sites infected with phage were undergoing periodontal destruction, as judged from consecutive routine radiographs. The phages isolated had a wide host range as assessed from their ability to infect a series of reference strains of A. actinomycetemcomitans. A 5th patient harboured non-infected A. actinomycetemcomitans in a surgically treated site which had undergone no bone destruction during the last 12 months. The present findings suggested that the pathogenic potential of A. actinomycetemcomitans in LJP may increase due to phage infection.

  1. Cloning and sequencing of part of the S10 operon from Actinobacillus actinomycetemcomitans FDC Y4.

    PubMed

    Hayashida, H; Hotokezaka, H; Ohara, N; Kimura, M; Takagi, O; Yamada, T

    1997-06-01

    We have cloned and sequenced the 5.2 kb EcoRI fragment that contained part of the S10 operon from Actinobacillus actinomycetemcomitans FDC Y4. The order of the ribosomal protein genes was identical to that of the S10 operon of Haemophilus influenzae and Escherichia coli. The deduced amino acid sequences of ribosomal proteins in this operon displayed significant homologies (65.3%-100%) to those of H. influenzae, E. coli, Yersinia enterocolitica and Yersinia pseudotuberculosis. Phylogenetic trees obtained for these ribosomal proteins were similar to that obtained for 16S rRNA.

  2. Transformation of jervine by Cunninghamella elegans ATCC 9245.

    PubMed

    El Sayed, K A; Halim, A F; Zaghloul, A M; Dunbar, D C; McChesney, J D

    2000-09-01

    Preparative-scale fermentation of the known C-nor-D-homosteroidal jerveratrum alkaloid jervine with Cunninghamella elegans (ATCC 9245) has resulted in the isolation of (-)-jervinone as the major metabolite. In addition, C. elegans ATCC 9245 was able to epimerize C-3 of jervine, producing 3-epi-jervine. This epimerization reaction was similar to that reported for tomatidine, the known spirosolane-type Solanum alkaloid. The structure elucidation of both metabolites was based primarily on 1D- and 2D-NMR analyses.

  3. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions.

    PubMed

    Kim, H W; Matin, A; Rhee, M S

    2014-04-01

    The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.

  4. Microgravity Alters the Physiological Characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under Different Nutrient Conditions

    PubMed Central

    Kim, H. W.; Matin, A.

    2014-01-01

    The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies. PMID:24487539

  5. Characterization of total deoxyribonucleic acid of Mycobacterium paratuberculosis (ATCC 19698) and of M. avium complex (ATCC 25291) using restriction enzymes.

    PubMed

    Labidi, A

    1988-01-01

    Total DNA was extracted from M. paratuberculosis (ATCC 19698) and from M. avium complex (ATCC 25291) cultivated on RVB-10 enriched liquid media. Restriction endonuclease analysis was conducted of Total DNA using 34 enzymes and DNA digestion profiles were compared. Fifteen enzymes revealed important differences between the two species. Two pairs of enzymes (EcoRII, BstNI) and (MboI, Sau3AI) provide evidence for the presence of dcmI and dam methylation in DNA of M. avium complex and M. paratuberculosis. The differences in DNA fragments of these two species could be of potential value in differentiating these clinically significant mycobacteria.

  6. Draft Genome Sequence of Vibrio (Listonella) anguillarum ATCC 14181

    PubMed Central

    Grim, Christopher J.

    2016-01-01

    We report the draft genome sequence of Vibrio anguillarum ATCC 14181, a Gram-negative, hemolytic, O2 serotype marine bacterium that causes mortality in mariculture species. The availability of this genome sequence will add to our knowledge of diversity and virulence mechanisms of Vibrio anguillarum as well as other pathogenic Vibrio spp. PMID:27795288

  7. Draft Genome Sequence of Rhodococcus rhodochrous Strain ATCC 21198

    SciTech Connect

    Shields-Menard, Sara A.; Brown, Steven D; Klingeman, Dawn Marie; Indest, Karl; Hancock, Dawn; Wewalwela, Jayani; French, Todd; Donaldson, Janet

    2014-01-01

    Rhodococcus rhodochrous is a Gram-positive red-pigmented bacterium commonly found in the soil. The draft genome sequence for R. rhodochrous strain ATCC 21198 is presented here to provide genetic data for a better understanding of its lipid-accumulating capabilities.

  8. Complete genome sequence of Campylobacter gracilis ATCC 33236T

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human oral pathogen Campylobacter gracilis has been isolated from periodontal and endodontal infections, and also from non-oral head, neck or lung infections. This study describes the whole-genome sequence of the human periodontal isolate ATCC 33236T (=FDC 1084), which is the first closed genome...

  9. Chitin oligosaccharide deacetylase from Shewanella baltica ATCC BAA-1091.

    PubMed

    Hirano, Takako; Shiraishi, Haruka; Ikejima, Masafumi; Uehara, Rie; Hakamata, Wataru; Nishio, Toshiyuki

    2017-03-01

    Chitin oligosaccharide deacetylase (COD) from bacteria that have been examined so far typically comprise two carbohydrate-binding domains (CBDs) and one polysaccharide deacetylase domain. In contrast, Shewanella baltica ATCC BAA-1091 COD (Sb-COD) has only one CBD, yet exhibits chitin-binding properties and substrate specificities similar to those of other CODs.

  10. Crystallization and preliminary X-ray crystallographic analysis of MacA from Actinobacillus actinomycetemcomitans

    SciTech Connect

    Piao, Shunfu; Xu, Yongbin; Ha, Nam-Chul

    2008-05-01

    A periplasmic membrane-fusion protein MacA from Actinobacillus actinomycetemcomitans, an essential component of the multidrug efflux pump in Gram-negative bacteria, was crystallized. Periplasmic membrane-fusion proteins (MFPs) are an essential component of the multidrug efflux pump in Gram-negative bacteria. They play a crucial role in bridging the outer membrane porin TolC and two distinct types of inner membrane transporters. The MFP MacA bridges the inner membrane ABC-type multidrug transporter MacB and the outer membrane porin TolC. MacA from the pathogenic bacterium Actinobacillus actinomycetemcomitans was expressed in Escherichia coli B834 (DE3) and the recombinant protein was purified using Ni–NTA affinity, Q anion-exchange and gel-filtration chromatography. The purified MacA protein was crystallized using the vapour-diffusion method. A MAD diffraction data set was collected to a resolution of 3.0 Å at 100 K. The crystal belongs to space group P622, with unit-cell parameters a = b = 109.2, c = 255.4 Å, α = β = 90, γ = 120°, and contains one molecule in the asymmetric unit.

  11. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    PubMed

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  12. Changes in antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from pigs in Spain during the last decade.

    PubMed

    Gutiérrez-Martín, César B; del Blanco, Noemí García; Blanco, Mónica; Navas, Jesús; Rodríguez-Ferri, Elías F

    2006-06-15

    A total of 229 Spanish Actinobacillus pleuropneumoniae isolates recovered from diseased pigs with pleuropneumonia from 1997 to 2004 was tested for their susceptibility to 11 antimicrobials in a broth microdilution method. All the isolates were susceptible to florfenicol and most of them to cephalothin; however, a high rate of resistance was observed to tetracycline. A bimodal or multimodal distribution of isolates over the MIC range were observed for penicillins, tetracycline, trimethoprim, sulfisoxazole and nalidixic acid, suggesting the development of acquired resistance. Eight resistance patterns were established, and 21.1% of the isolates were resistant to at least two antimicrobials. In addition, a considerable increase in the resistance to tetracyclines was observed during the last decade in Spain, when compared with other A. pleuropneumoniae strains isolated during 1987-1988 (Gutiérrez, C.B., Píriz, S., Vadillo, S., Rodríguez Ferri, E.F., 1993. In vitro susceptibility of Actinobacillus pleuropneumoniae strains to 42 antimicrobial agents. Am. J. Vet. Res. 54, 546-550); this finding was also observed for gentamicin in minor percentage.

  13. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture.

    PubMed

    Weimer, P J

    1993-01-01

    The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014-0.076 h-1) and extracellular pH (6.11-6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentration to response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07-0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04-0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11-0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determine that maintenance coefficient (0.04-0.06 g cellulose/g cells.h) and true growth yield (0.23-0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower mu max on microcrystalline cellulose.

  14. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.

  15. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  16. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used...

  17. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, William S.; Thomas, Steven R.; Nieves, Rafael A.; Himmel, Michael E.

    1994-01-01

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C.sub.1, and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81.degree. C. at pH's from about 2 to about 9, and at a inactivation temperature of about 100.degree. C. at pH's from about 2 to about 9.

  18. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  19. Extraction and isolation of a leukotoxin from Actinobacillus actinomycetemcomitans with polymyxin B.

    PubMed Central

    Tsai, C C; Shenker, B J; DiRienzo, J M; Malamud, D; Taichman, N S

    1984-01-01

    A leukotoxin from Actinobacillus actinomycetemcomitans was isolated by a procedure that includes polymyxin B extraction, ion-exchange chromatography, and gel filtration chromatography. The procedure resulted in the recovery of 48% of the toxin with a 99-fold increase in specific activity. The isolated toxin has a molecular mass of 180,000 daltons by gel filtration and 115,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It retains all the major biological characteristics previously documented for crude leukotoxin preparations, including susceptibility to heat and proteolytic enzymes and neutralization by sera from patients with juvenile periodontitis. The isolated leukotoxin destroys human but not rat or guinea pig polymorphonuclear leukocytes and has no apparent effect on human erythrocytes. The availability of the A. actinomycetemcomitans leukotoxin should facilitate studies on its chemistry and mode of action as well as its role in the pathogenesis of human periodontal disease. Images PMID:6319288

  20. The heat-modifiable outer membrane protein of Actinobacillus actinomycetemcomitans: relationship to OmpA proteins.

    PubMed Central

    Wilson, M E

    1991-01-01

    The outer membrane of Actinobacillus actinomycetemcomitans contains a 29-kDa protein which exhibits heat modifiability on sodium dodecyl sulfate-polyacrylamide gels and represents a major target for immunoglobulin G antibody in sera of periodontitis patients colonized by this organism. In the present study, the N-terminal amino acid sequence of the 29-kDa outer membrane protein was determined and compared with reported sequences for other known proteins. The heat-modifiable outer membrane protein of A. actinomycetemcomitans was found to exhibit significant N-terminal homology with the OmpA proteins of other gram-negative bacteria. Moreover, this protein reacted with antiserum raised against the purified OmpA protein of Escherichia coli K-12. Whether the heat-modifiable OMP of A. actinomycetemcomitans also shares functional properties of OmpA proteins, particularly with respect to bacteriophage receptor activity, is presently under investigation. Images PMID:2050416

  1. Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Meyer, D H; Sreenivasan, P K; Fives-Taylor, P M

    1991-01-01

    Actinobacillus actinomycetemcomitans, an oral bacterial species associated with periodontal disease, was found to invade human cell lines. Invasion was demonstrated by recovery of viable organisms from gentamicin-treated KB cell monolayers and by light and electron microscopy. Internalization occurred through a cytochalasin D-sensitive process. Invasion efficiencies of some A. actinomycetemcomitans strains were comparable to those of invasive members of the family Enterobacteriaceae. Differences in invasiveness were correlated with bacterial colonial morphology. Smooth variants invaded more proficiently than rough variants. A. actinomycetemcomitans can undergo a smooth-to-rough colonial morphology shift which results in the loss of invasiveness. Coordinated regulation of genes involved in the rough-to-smooth phenotypic transitions may play a role in the episodic nature of periodontal disease. Images PMID:1855989

  2. Identification of Actinobacillus actinomycetemcomitans by leukotoxin gene-specific hybridization and polymerase chain reaction assays.

    PubMed Central

    Tønjum, T; Haas, R

    1993-01-01

    Eleven strains of Actinobacillus actinomycetemcomitans isolated from cases of systemic infections, local abscesses, and periodontitis were identified by genetic assays using the leukotoxin gene as the target. We have developed a polymerase chain reaction (PCR) assay, based on the leukotoxin structural gene of this pathogen, which clearly identified all tested strains of A. actinomycetemcomitans and separated them from the closely related Haemophilus aphrophilus as well as other bacterial species. Furthermore, DNA-DNA hybridization was performed with the cloned partial leukotoxin structural gene (lktA) as a probe, which again clearly distinguished A. actinomycetemcomitans from H. aphrophilus, parts of the normal oral flora, and species harboring RTX (repeats in toxin) family-related cytotoxins. The PCR fragment amplified from the leukotoxin structural gene gave results similar to those given by the cloned leukotoxin gene when used as a probe in hybridization experiments. The hybridization and PCR assays described here are fundamental improvements for the identification of A. actinomycetemcomitans. Images PMID:8349764

  3. Update on Actinobacillus Actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease.

    PubMed

    Slots, J

    1999-10-01

    Actinobacillus actinomycetemcomitans is an important pathogen of periodontitis in young individuals. Porphyromonas gingivalis is a major pathogen of severe adult periodontitis. A. actinomycetemcomitans and P. gingivalis can be transmitted from family member to family member and may cause periodontitis in the recipient individual. In the USA, A. actinomycetemcomitans occurs more frequently in Hispanics and Asians than in Caucasians. P. gingivalis is more common in Hispanics, Asians and Blacks than in Caucasians. A. actinomycetemcomitans and P. gingivalis strains differ in genotype, serotype, toxin and enzyme production, and cellular invasiveness. Variation in virulence may help explain differing clinical outcomes of periodontal A. actinomycetemcomitans and P. gingivalis infections. A. actinomycetemcomitans and P. gingivalis cannot be eradicated from the great majority of deep periodontal pockets by mechanical debridement alone. A. actinomycetemcomitans may be removed from subgingival sites by adjunctive systemic amoxicillin-metronidazole or other appropriate antibiotic therapies. Subgingival eradication of P. gingivalis may require periodontal surgery as well as antibiotic therapy.

  4. Agents of the "suis-ide diseases" of swine: Actinobacillus suis, Haemophilus parasuis, and Streptococcus suis.

    PubMed Central

    MacInnes, J I; Desrosiers, R

    1999-01-01

    In recent years, Actinobacillus suis, Haemophilus parasuis, and Streptococcus suis have emerged as important pathogens of swine, particularly in high health status herds. Their association with a wide range of serious clinical conditions and has given rise to the moniker "suis-ide diseases." These organisms are early colonizers and, for that reason, are difficult to control by management procedures such as segregated early weaning. Vaccination, serodiagnostic testing, and even serotyping are complicated by the presence of multiple serotypes, cross-reactive antigens, and the absence of clear markers for virulence. In this review, we discuss our current understanding of the pathogenesis, epidemiology, and management of the causative agents of the "suis-ide diseases" of swine. Images Figure 1. Figure 2. Figure 3. PMID:10369563

  5. Isolation of Actinobacillus seminis from a goat with clinical epididymo-orchitis in Brazil.

    PubMed

    dos Santos, Fabrine Alexandre; de Azevedo, Edísio Oliveira; de Azevedo, Sérgio Santos; Garino Júnior, Felício; Mota, Rinaldo Aparecido; de Cássia Peixoto Kim, Pomy; Gomes, Ana Lisa Vale; Alves, Clebert José

    2014-01-01

    The present study reports the first isolation of Actinobacillus seminis from a goat in Brazil. A four-year-old Moxotó breeding goat in a flock of 70 goats and 65 sheep reared together in the county of Patos, semiarid region of Northeastern Brazil, showed clinical signs of unilateral orchitis and epididymitis. Diagnosis of A. seminis infection was confirmed by association of clinical findings, bacterial isolation and 16S rRNA gene sequencing. This result suggests that A. seminis may be an additional cause of infertility in goats, and that sheep may be the source of infection because the mixed farming system allows the contact between sheep and goats in the semiarid region of Northeastern Brazil.

  6. Isolation of Actinobacillus seminis from a goat with clinical epididymo-orchitis in Brazil

    PubMed Central

    dos Santos, Fabrine Alexandre; de Azevedo, Edísio Oliveira; de Azevedo, Sérgio Santos; Júnior, Felício Garino; Mota, Rinaldo Aparecido; de Cássia Peixoto Kim, Pomy; Gomes, Ana Lisa Vale; Alves, Clebert José

    2014-01-01

    The present study reports the first isolation of Actinobacillus seminis from a goat in Brazil. A four-year-old Moxotó breeding goat in a flock of 70 goats and 65 sheep reared together in the county of Patos, semiarid region of Northeastern Brazil, showed clinical signs of unilateral orchitis and epididymitis. Diagnosis of A. seminis infection was confirmed by association of clinical findings, bacterial isolation and 16S rRNA gene sequencing. This result suggests that A. seminis may be an additional cause of infertility in goats, and that sheep may be the source of infection because the mixed farming system allows the contact between sheep and goats in the semiarid region of Northeastern Brazil. PMID:24948932

  7. Serological characterisation and antimicrobial susceptibility of Actinobacillus pleuropneumoniae strains isolated from pigs in Spain.

    PubMed

    Gutiérrez, C B; Rodríguez Barbosa, J I; Tascón, R I; Costa, L; Riera, P; Rodríguez Ferri, E F

    1995-07-15

    Seventy-one isolates of Actinobacillus pleuropneumoniae isolated from the lungs of pigs in outbreaks of pleuropneumonia in Spain were serotyped by indirect haemagglutination. Serotype 4 (42.2 per cent), serotype 7 (22.5 per cent) and serotype 2 (12.8 per cent) were predominant, whereas serotypes 1, 3, 6, 8, 9, 12 and untypable isolates were present only in small numbers. Serotypes 1, 2, 4 and 7 originated mainly from cases of acute pleuropneumonia, whereas serotypes 3, 6, 8, 9 and 12 were associated with chronically infected herds. The susceptibility of the isolates to 20 antimicrobial agents was determined by agar disc diffusion. Most were susceptible to cefuroxime, cefaclor, cefazolin, kanamycin, tobramycin, gentamicin, oxolinic acid, ciprofloxacin, enoxacin, thiamphenicol, colistin and trimethoprim/sulphamethoxazole. Marked resistance was found with amoxicillin, ticarcillin, oxytetracycline, doxycycline and metronidazole. Rifampicin, fosfomycin and tiamulin were the agents most effective against the isolates tested.

  8. Genetic Diversity of Actinobacillus pleuropneumoniae Assessed by Amplified Fragment Length Polymorphism Analysis▿

    PubMed Central

    Kokotovic, Branko; Angen, Øystein

    2007-01-01

    Amplified fragment length polymorphism (AFLP) was evaluated as a method for genotypic characterization and subtyping within the bacterial species Actinobacillus pleuropneumoniae. A total of 155 isolates of A. pleuropneumoniae, representing the serotypic variation described to occur within this species, were analyzed. In order to elucidate the species boundaries, six strains of the phylogenetically closely related species Actinobacillus lignieresii were also included. Furthermore, the ability of AFLP to subtype was studied using 42 isolates of serovar 2 and the performance compared to that obtained by pulsed-field gel electrophoresis (PFGE). AFLP analysis provided a clear separation of A. lignieresii and A. pleuropneumoniae and divided the isolates of A. pleuropneumoniae into 20 clusters. Most of the serovars of A. pleuropneumoniae were represented by single and quite homogeneous clusters. The exceptions were serovars 10, K2:O7, and K1:O7, which were represented by two clusters each. In the cases where the serovars were represented by more than one cluster, the existence of these clusters was supported by additional phenotypic or genotypic properties. Furthermore, AFLP typing was able to allocate serologically nontypeable isolates to appropriate genetic groups within the species. Further investigations are needed to determine whether some of the clusters revealed through AFLP analysis represent additional serovars. When evaluated as a method for subtyping within serovar 2 of A. pleuropneumoniae, AFLP was found to achieve a degree of separation among isolates superior to that obtained by PFGE. However, a higher degree of separation between serovar 2 isolates was obtained by a combination of the two methods. PMID:17959758

  9. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    PubMed

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles.

  10. Use of 16S rRNA Sequencing for Identification of Actinobacillus ureae Isolated from a Cerebrospinal Fluid Sample

    PubMed Central

    Whitelaw, A. C.; Shankland, I. M.; Elisha, B. G.

    2002-01-01

    Actinobacillus ureae, previously Pasteurella ureae, has on rare occasions been described as a cause of human infection. Owing to its rarity, it may not be easily identified in clinical microbiology laboratories by standard tests. This report describes a patient with acute bacterial meningitis due to A. ureae. The identity of the isolate was determined by means of DNA sequence analysis of a portion of the 16S rRNA gene. PMID:11825992

  11. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  12. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895

    PubMed Central

    Kim, H. W.

    2016-01-01

    ABSTRACT We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, −1.9- to −3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. IMPORTANCE Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results

  13. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  14. Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895

    PubMed Central

    Chen, Bi-Shuang; Otten, Linda G.; Resch, Verena; Muyzer, Gerard; Hanefeld, Ulf

    2013-01-01

    Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. PMID:24501654

  15. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  16. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  17. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  18. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  19. Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Rose, M; Menge, M; Bohland, C; Zschiesche, E; Wilhelm, C; Kilp, S; Metz, W; Allan, M; Röpke, R; Nürnberger, M

    2013-04-01

    The pharmacokinetics of tildipirosin (Zuprevo(®) 40 mg/mL solution for injection for pigs), a novel 16-membered-ring macrolide for the treatment for swine respiratory disease (SRD), was investigated in studies collecting blood plasma and postmortem samples of lung tissue and bronchial fluid (BF) from swine. In view of factors influencing the in vitro activity of macrolides, and for the interpretation of tildipirosin pharmacokinetics in relation to minimum inhibitory concentrations (MIC), additional experiments were conducted to study the effects of pH, carbon dioxide-enriched atmosphere, buffers, and serum on tildipirosin MICs for various reference strains and Actinobacillus (A.) pleuropneumoniae field isolates. After single intramuscular (i.m.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.9 μg/mL observed within 23 min (Tmax ). Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half-life (T1/2) both were about 4 days. A dose-response relationship with no significant sex effect is observed for area under the plasma concentration-time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. However, linear dose proportionality could not be proven with statistical methods. The time-concentration profile of tildipirosin in BF and lung far exceeded that in blood plasma. In lung, tildipirosin concentrations reached 3.1 μg/g at 2 h, peaked at 4.3 μg/g at day 1, and slowly declined to 0.8 μg/g at day 17. In BF, tildipirosin levels were 14.3, 7.0, and 6.5 μg/g at days 5, 10, and 14. T1/2 in lung was ∼7 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination. Culture media pH and carbon dioxide-enriched atmosphere (CO2 -EA) had a marked impact on in vitro activity of tildipirosin in reference strains of various rapidly growing aerobic and

  20. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran.

    PubMed

    Liu, Ziyong; Ying, Yu; Li, Fuli; Ma, Cuiqing; Xu, Ping

    2010-05-01

    Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l(-1) h(-1). This study suggests that wheat bran can be a potential renewable resource for ABE fermentation.

  1. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    PubMed

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater.

  2. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    PubMed Central

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  3. Ionizing radiation sensitivity of Listeria monocytogenes ATCC 49594 and Listeria innocua ATCC 51742 inoculated on endive (Cichorium endiva).

    PubMed

    Niemira, Brendan A; Fan, Xuetong; Sokorai, Kimberly J B; Sommers, Christopher H

    2003-06-01

    Ionizing radiation inactivates the pathogenic bacteria that can contaminate leafy green vegetables. Leaf pieces and leaf homogenate of endive (Cichorium endiva) were inoculated with the pathogen Listeria monocytogenes (ATCC 49594) or Listeria innocua (ATCC 51742), a nonpathogenic surrogate bacterium. The radiation sensitivity of the two strains was similar, although L. innocua was more sensitive to the type of suspending leaf preparation. During refrigerated storage after irradiation, the population of L. monocytogenes on inoculated endive was briefly suppressed by 0.42 kilogray (kGy), a dose calibrated to achieve a 99% reduction. However, the pathogen regrew after 5 days until it exceeded the bacterial levels on the control after 19 days in storage. Treatment with 0.84 kGy, equivalent to a 99.99% reduction, suppressed L. monocytogenes throughout refrigerated storage. Doses up to 1.0 kGy had no significant effect on the color of endive leaf material, regardless of whether taken from the leaf edge or the leaf midrib. The texture of leaf edge material was unaffected by doses up to 1.0 kGy, whereas the maximum dose tolerated by leaf midrib material was 0.8 kGy. These results show that endive leaves may be treated with doses sufficient to achieve at least a 99.99% reduction of L. monocytogenes with little or no impact on the product's texture or color.

  4. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    PubMed

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  5. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  6. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791)

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  7. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791).

    PubMed

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J; Payne, Justin; Allard, Marc W; Hoffmann, Maria

    2016-03-17

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791).

  8. Distinctive characteristics of transcriptional profiles from two epithelial cell lines upon interaction with Actinobacillus actinomycetemcomitans.

    PubMed

    Mans, J J; Baker, H V; Oda, D; Lamont, R J; Handfield, M

    2006-08-01

    Transcriptional profiling and gene ontology analyses were performed to investigate the unique responses of two different epithelial cell lines to an Actinobacillus actinomycetemcomitans challenge. A total of 2867 genes were differentially regulated among all experimental conditions. The analysis of these 2867 genes revealed that the predominant specific response to infection in HeLa cells was associated with the regulation of enzyme activity, RNA metabolism, nucleoside and nucleic acid transport and protein modification. The predominant specific response in immortalized human gingival keratinocytes (IHGK) was associated with the regulation of angiogenesis, chemotaxis, transmembrane receptor protein tyrosine kinase signaling, cell differentiation, apoptosis and response to stress. Of particular interest, stress response genes were significantly - yet differently - affected in both cell lines. In HeLa cells, only three regulated genes impacted the response to stress, and the response to unfolded protein was the only term that passed the ontology filters. This strikingly contrasted with the profiles obtained for IHGK, in which 61 regulated genes impacted the response to stress and constituted an extensive network of cell responses to A. actinomycetemcomitans interaction (response to pathogens, oxidative stress, unfolded proteins, DNA damage, starvation and wounding). Hence, while extensive similarities were found in the transcriptional profiles of these two epithelial cell lines, significant differences were highlighted. These differences were predominantly found in pathways that are associated with host-pathogen interactions.

  9. Identification of Actinobacillus pleuropneumoniae biovars 1 and 2 in pigs using a PCR assay.

    PubMed

    Serrano-Rubio, Luis E; Tenorio-Gutiérrez, Víctor; Suárez-Güemes, Francisco; Reyes-Cortés, Ruth; Rodríguez-Mendiola, Martha; Arias-Castro, Carlos; Godínez-Vargas, Delfino; de la Garza, Mireya

    2008-01-01

    Actinobacillus pleuropneumoniae causes swine pleuropneumonia worldwide. Previously, we described a gene sequence of approximately 800bp in A. pleuropneumoniae serotype 1 that encodes a metalloprotease of 24kDa, (Genbank accession no. AY217757). We selected primers carrying the forward and reverse 5'-terminal sequences of this region of the gene for the development of a species-specific PCR assay. The primers amplified an 800bp sequence from isolated DNA and lysed bacteria of the 13 A. pleuropneumoniae biovar 1 serotypes, with the exception of subtype 1b. The primers also amplified the sequence in nasal secretion cultures from pigs with chronic and acute experimental pleuropneumonia. No PCR products were detected when A. pleuropneumoniae serotypes of biovar 2 were used. Internal primers from this gene sequence detected biovar 2 and subtype 1b, leading to the production of a 350bp PCR product. The primers did not amplify DNA from other related species from the Pasteurellaceae family. The 800bp PCR assay was sensitive in vitro, with a detection limit of 5.5pg of extracted DNA, and an average of 120CFU. The specificity and sensitivity of this PCR assay make it a useful method for the rapid identification and diagnosis of A. pleuropneumoniae.

  10. Actinobacillus actinomycetemcomitans adheres to human gingival fibroblasts and modifies cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Kawasaki-Cárdenas, Perla; Garcés, Carla Portillo; Román-Alvárez, Patricia; Barajas-Torres, Carolina; Contreras-Marmolejo, Luis Arturo

    2007-09-01

    Adherence of Actinobacillus actinomycetemcomitans to human gingival fibroblast cells induces cytoskeletal reorganization. A. actinomycetemcomitans is considered a pathogenic bacteria involved in localized aggressive periodontitis. Studies with epithelial cells have shown an adherent capacity of bacteria that is increased under anaerobic conditions. For adherence to take place, there is a need for interaction between extracellular vesicles and bacterial fimbriae. However, molecular events associated with the adherence process are still unknown. The aim of this study was to investigate whether A. actinomycetemcomitans adherence to human gingival fibroblasts promotes cytoskeletal reorganization. Adherence was determined with light microscopy and scanning electron microscopy. For F-actin visualization, cells were treated with fluorescein-isothiocyanate-phalloidin and samples were examined with epifluorescence optics. Fluorescent was recorded on Kodak T-Max 400 film. We showed that A. actinomycetemcomitans adheres to human gingival fibroblast primary cultures, this property stimulating an increase in the intracellular calcium levels. In human gingival fibroblast primary cultures, we observed that maximal A. actinomycetemcomitans adherence took place 1.5h after culture infection occurred and remained for 6h. The adherence was associated with morphologic alterations and an increased in the intracellular calcium levels. These experiments suggest that A. actinomycetemcomitans adherence cause morphological alterations, induce actin stress fibers and recruitment of intracellular calcium levels.

  11. Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection.

    PubMed

    Pereira, Monalessa Fábia; Rossi, Ciro César; de Queiroz, Marisa Vieira; Martins, Gustavo Ferreira; Isaac, Clement; Bossé, Janine T; Li, Yanwen; Wren, Brendan W; Terra, Vanessa Sofia; Cuccui, Jon; Langford, Paul R; Bazzolli, Denise Mara Soares

    2015-02-01

    Actinobacillus pleuropneumoniae is responsible for swine pleuropneumonia, a respiratory disease that causes significant global economic loss. Its virulence depends on many factors, such as capsular polysaccharides, RTX toxins and iron-acquisition systems. Analysis of virulence may require easy-to-use models that approximate mammalian infection and avoid ethical issues. Here, we investigate the potential use of the wax moth Galleria mellonella as an informative model for A. pleuropneumoniae infection. Genotypically distinct A. pleuropneumoniae clinical isolates were able to kill larvae at 37 °C but had different LD50 values, ranging from 10(4) to 10(7) c.f.u. per larva. The most virulent isolate (1022) was able to persist and replicate within the insect, while the least virulent (780) was rapidly cleared. We observed a decrease in haemocyte concentration, aggregation and DNA damage post-infection with isolate 1022. Melanization points around bacterial cells were observed in the fat body and pericardial tissues of infected G. mellonella, indicating vigorous cell and humoral immune responses close to the larval dorsal vessel. As found in pigs, an A. pleuropneumoniae hfq mutant was significantly attenuated for infection in the G. mellonella model. Additionally, the model could be used to assess the effectiveness of several antimicrobial agents against A. pleuropneumoniae in vivo. G. mellonella is a suitable inexpensive alternative infection model that can be used to study the virulence of A. pleuropneumoniae, as well as assess the effectiveness of antimicrobial agents against this pathogen.

  12. Nuclease-sensitive binding of an Actinobacillus actinomycetemcomitans leukotoxin to the bacterial cell surface.

    PubMed Central

    Ohta, H; Kato, K; Kokeguchi, S; Hara, H; Fukui, K; Murayama, Y

    1991-01-01

    A leukotoxin of Actinobacillus actinomycetemcomitans 301-b was solubilized from cell-associated membrane vesicles by treatment with externally added DNase and RNase and was further purified by a procedure which included ammonium sulfate fractionation, gel filtration chromatography, and ion-exchange chromatography. The purified toxin had a molecular mass of 113,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a high isoelectric point (approximately 8.8). From these characteristics, it was to be expected that the membrane vesicle toxin was almost identical to the leukotoxin extracted with polymyxin B in an earlier study (C.-C. Tsai, B. J. Shenker, J. M. DiRienzo, D. Malamud, and N. S. Taichman, Infect, Immun. 43:700-705, 1984). The treatment with DNase and RNase was also highly effective for solubilizing the leukotoxin directly from whole cells, suggesting that the toxin is secreted extracellularly but retained in nucleic acids on the outermost surface of bacterial cells. Images PMID:1937819

  13. In vitro susceptibilities of Actinobacillus actinomycetemcomitans to a number of antimicrobial combinations.

    PubMed Central

    Pavicić, M J; van Winkelhoff, A J; de Graaff, J

    1992-01-01

    The in vitro susceptibilities of Actinobacillus actinomycetemcomitans to 14 antimicrobial combinations were studied by using the checkerboard titration technique. The results, expressed as the range of the fractional inhibitory concentration indices, were as follows: for metronidazole or its hydroxymetabolite combined with cefixime, 0.2 to 0.6; for moxalactam, 0.2 to 0.6; for penicillin G, 0.3 to 0.6; for tobramycin, 0.8 to 2.0; for erythromycin, 0.8 to 1.7; for ciprofloxacin, 0.2 to 0.6; for tetracycline, 0.8 to 1.2. Our observations indicated that the beta-lactam antibiotics as well as ciprofloxacin act synergistically with both metronidazole and its hydroxymetabolite against A. actinomycetemcomitans. Synergistic interactions were independent of the individual MICs of the antibiotics tested. Erythromycin, tobramycin, and tetracycline combined with either metronidazole or its hydroxymetabolite showed additive to indifferent effects against the five strains of A. actinomycetemcomitans, with the fractional inhibitory concentration indices ranging from 0.8 to 2.0. A. actinomycetemcomitans was found to be highly susceptible to ciprofloxacin (MIC of ciprofloxacin for 90% of strains tested, 0.010 micrograms/ml) and cefixime (MIC of cefixime for 90% of strains tested, 0.8 micrograms/ml). The results indicate that in patients who are allergic to penicillin, cefixime and ciprofloxacin may be useful alternative antibiotics in combination with metronidazole for the treatment of A. actinomycetemcomitans-associated periodontitis. PMID:1482130

  14. Identification of genomic clonal types of Actinobacillus actinomycetemcomitans by restriction endonuclease analysis.

    PubMed Central

    Han, N; Hoover, C I; Winkler, J R; Ng, C Y; Armitage, G C

    1991-01-01

    To evaluate its utility in discriminating different strains, restriction endonuclease analysis was applied to 12 strains of Actinobacillus actinomycetemcomitans (3 serotype a, 5 serotype b, and 4 serotype c strains). DNA isolated from each strain was digested by 12 different restriction endonucleases, and the electrophoretic banding patterns of the resulting DNA fragments were compared. The DNA fragment patterns produced by SalI, XhoI, and XbaI for the 12 A. actinomycetemcomitans strains were simple (less than 30 bands) and allowed us to recognize easily 10 distinct genomic clonal types. The three serotype a strains exhibited distinctly different clonal types from one another, the five serotype b strains exhibited an additional four distinct clonal types, and the four serotype c strains showed another three different clonal types. The other endonucleases tested were less useful in typing A. actinomycetemcomitans. We conclude that restriction endonuclease analysis is a powerful tool for typing and discerning genetic heterogeneity and homogeneity among A. actinomycetemcomitans strains. It should, therefore, be very useful for epidemiologic studies. Images PMID:1761677

  15. Purification and characterization of the serotype c antigen from Actinobacillus actinomycetemcomitans.

    PubMed Central

    Zambon, J J; Slots, J; Miyasaki, K; Linzer, R; Cohen, R; Levine, M; Genco, R J

    1984-01-01

    The serotype c antigen from Actinobacillus actinomycetemcomitans was purified with fractional ethanol precipitation of cell-free culture supernatant, sequential ion-exchange chromatography, and gel filtration chromatography. The preparation obtained demonstrated a single precipitin line in immunodiffusion, immunoelectrophoresis, and crossed immunoelectrophoresis when rabbit antisera to serotype c whole bacterial cells were used. No immunological reaction was detected with antisera to serotype c lipopolysaccharide, indicating that lipopolysaccharide was not present in the preparation. The serotype c antigen was composed of 95% carbohydrate, 2% protein, and 3.1% phosphate. Gas chromatographic analysis of the antigen obtained from growth in either complex or chemically defined media revealed that the carbohydrate constituent was composed of 84 to 90.1% mannose, 4.8 to 16% glucose, 1.9% N-acetylglucosamine, 1.4% fucose, and 0.2% galactose. The present data suggest that A. actinomycetemcomitans serotype c antigen is predominantly a mannose-containing carbohydrate suggestive of a mannan. Images PMID:6423542

  16. Opsonic antibody activity against Actinobacillus actinomycetemcomitans in patients with rapidly progressive periodontitis.

    PubMed Central

    Sjöström, K; Darveau, R; Page, R; Whitney, C; Engel, D

    1992-01-01

    Actinobacillus actinomycetemcomitans has been closely associated with early-onset, severe periodontitis, and such patients often have serum immunoglobulin G (IgG) antibodies reactive with antigens of this gram-negative pathogen. We examined the functionality and potential importance of these antibodies. The opsonic activity against A. actinomycetemcomitans of sera from 30 patients with rapidly progressive periodontitis (RPP) and from 28 periodontally normal subjects was tested by using polymorphonuclear leukocyte (PMN) chemiluminescence and bactericidal assays. Peak chemiluminescence values correlated strongly with killing observed in the PMN-dependent bactericidal assay (r = 0.88; P < 0.001). Neither the mean IgG titer nor the mean peak chemiluminescence differed significantly between the two groups. However, when the relationship between chemiluminescence and titer was examined, regression analysis showed that antibodies present in low-titer normal sera were significantly more effective at opsonizing A. actinomycetemcomitans than antibodies present in low-titer RPP patient sera (P = 0.04). Thus, periodontally normal individuals may be better able than RPP patients to clear A. actinomycetemcomitans in early stages of colonization, and anti-A. actinomycetemcomitans antibodies in RPP patients may be relatively ineffective in preventing infection by this organism. PMID:1398993

  17. Identification and characterization of the major cell envelope proteins of oral strains of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Di Rienzo, J M; Spieler, E L

    1983-01-01

    The major cell envelope protein compositions of seven Actinobacillus actinomycetemcomitans strains of human origin were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope polypeptides were homogeneous, in relation to molecular weight, in all of the strains that were examined. The characterization of the five major proteins, designated Env1 through Env5, in the leukotoxic strain Y4 revealed that proteins Env2 to -5 may reside in the outer membrane as suggested by differential detergent extractions and 125I-labeling experiments. The proteins did not demonstrate covalent or ionic interactions with the peptidoglycan; however, one protein, Env2, displayed heat-modifiable properties, having apparent molecular weights of 32,000 and 45,000 when heated in sodium dodecyl sulfate at 50 and 100 degrees C, respectively. The protein composition of the extracellular "bleb" material, normally released by strain Y4, was determined, and proteins Env1 to -4 were the predominant protein species found. A comparison of the cell envelope proteins of strain Y4 with those of other members of the human oral flora, including species within the genera Capnocytophaga, Bacteroides, and Fusobacterium, revealed distinct differences on the basis of molecular size and heat-modifiable properties. However, the membrane proteins of Haemophilus aphrophilus showed a remarkable degree of homology with those of A. actinomycetemcomitans. Images PMID:6401694

  18. Studies of leukotoxin from Actinobacillus actinomycetemcomitans using the promyelocytic HL-60 cell line.

    PubMed Central

    Zambon, J J; DeLuca, C; Slots, J; Genco, R J

    1983-01-01

    The promyelocytic HL-60 cell line was examined for susceptibility to leukotoxin from Actinobacillus actinomycetemcomitans. Strains of A. actinomycetemcomitans which caused lysis of human peripheral blood polymorphonuclear leukocytes also lysed HL-60 cells as determined by release of intracellular lactate dehydrogenase. The killing of HL-60 cells by A. actinomycetemcomitans was dose dependent and temperature dependent, reached maximal levels after 45 min of incubation, and was inhibited by rabbit antisera to A. actinomycetemcomitans. Of 100 oral isolates of A. actinomycetemcomitans from 55 subjects, 16% from 11 healthy subjects, 43% from 13 adult periodontitis patients, 75% from 4 insulin-dependent diabetics, 66% from 2 generalized juvenile periodontitis patients, and 55% from 25 localized juvenile periodontitis patients produced leukotoxin. The same subject could harbor both leukotoxin-producing and -nonproducing isolates. The significantly higher proportion of leukotoxin-producing isolates in the disease groups compared with the healthy group is consistent with the hypothesis that leukotoxin from A. actinomycetemcomitans is an important virulence factor in the pathogenesis of certain forms of periodontal disease. PMID:6572616

  19. Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae.

    PubMed Central

    Gerlach, G F; Anderson, C; Potter, A A; Klashinsky, S; Willson, P J

    1992-01-01

    An expression library was constructed from Actinobacillus pleuropneumoniae serotype 7. Escherichia coli transformants expressing recombinant proteins were identified by immunoscreening with porcine convalescent serum. One transformant expressing a 60-kDa protein (60K protein) in aggregated form was identified. Serum raised against the recombinant protein recognized a polypeptide with an indistinguishable electrophoretic mobility in the A. pleuropneumoniae wild type after iron-restricted growth only. The recombinant protein bound transferrin after blotting onto nitrocellulose. Using a competitive enzyme-linked immunosorbent assay (ELISA), the specificity of this binding for the amino-terminal half of iron-saturated porcine transferrin was established. Also, the 60K wild-type protein bound hemin as assessed by hemin-agarose chromatography. Hemin could inhibit transferrin binding of the recombinant protein in the competitive ELISA, whereas hemoglobin and synthetic iron chelators failed to do so. Southern blot analysis of several other A. pleuropneumoniae strains indicated that highly homologous sequence is present in eight of eight isolates of serotype 7 and in some isolates of serotypes 2, 3, and 4. Images PMID:1541562

  20. Renaturation and purification of ApxII toxin of Actinobacillus pleuropneumoniae.

    PubMed

    Wang, Chunlai; Liu, Siguo; Peng, Yonggang; Shao, Meili; Wang, Yong; Gong, Qiang; Chang, Yuehong; Liu, Jiandong; Liu, Huifang; Liu, Di; Kong, Xiangang

    2007-04-01

    ApxII toxin is the only Apx toxin that is produced by Actinobacillus pleuropneumoniae serotype 7. In order to determine whether the recombinant ApxII that derived from Escherichia coli (E. coli) expression is faithful to the natural ApxII so that can be used as additional component in vaccine preparation, the structure gene apxIIA of ApxII toxin was expressed in E. coli with prokaryotic expression vector pGEX-6p-1 (formed pGEX-6p-A). pGZRS-C which is A. pleuropneumoniae-E. coli shuttle vector pGZRS-38 expressing the post-transcriptional activation gene apxII C was co-expressed with pGEX-6p-A. The expression product of rApxII A formed inclusion. The inclusion protein was oxidized, refolded and restored hemolytic activity after denaturation, renaturation and purification. The result indicated that E. coli expressed recombinant ApxII toxin has good fidelity, which makes it possible to produce this valuable antigen for vaccine preparation or diagnosis.

  1. Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus.

    PubMed

    Kim, Mi-Young; Kim, Tae-Geum; Yang, Moon-Sik

    2017-04-01

    Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae.

  2. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain.

  3. Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A.

    PubMed Central

    Negrete-Abascal, E; Tenorio, V R; Serrano, J J; Garcia, C; de la Garza, M

    1994-01-01

    It was found that 48 hour cultures of Actinobacillus pleuropneumoniae secreted proteases into the medium. Electrophoresis in polyacrylamide gels (10%) copolymerized with porcine gelatin (0.1%), of the 70% (NH4)2SO4 precipitate from the culture supernatants, displayed protease activities of different molecular weights: > 200, 200, 90, 80, 70 and 50 kDa. They had activity over a broad range of pHs (4-8), with an optimal pH of 6-7. All were inhibited by 10 mM EDTA, and reactivated by 10 mM calcium. They were stable at -20 degrees C for more than a month. The proteases also degraded porcine IgA and porcine, human, and bovine hemoglobin, although they appeared to be less active against the hemoglobins. The IgA was totally cleaved in 48 h, using supernatants concentrated with polyvinyl pyrrolidone or the 70% (NH4)2SO4. Extracellular proteases could play a role in virulence. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:8004545

  4. Occurrence of temperate bacteriophages in different Actinobacillus actinomycetemcomitans serotypes isolated from periodontally healthy individuals.

    PubMed

    Willi, K; Sandmeier, H; Asikainen, S; Saarela, M; Meyer, J

    1997-02-01

    The occurrence of temperate bacteriophages was studied in 34 isolates of Actinobacillus actinomycetemcomitans derived from 27 periodontally healthy Finnish individuals both by lysis/plaque assays and by DNA hybridizations. In addition the serotype, the ribotype and the arbitrarily primed polymerase chain reaction (AP-PCR) profile were determined for each A. actinomycetemcomitans strain. Fourteen isolates showed hybridization patterns very similar to that of a known lysogen when probed with the genome of the previously characterized temperate phage Aa phi 23. Only 6 of these 14 strains had produced lysis or single plaques on suitable indicator strains. Phage Aa phi 247 derived from one of these lysogens was indistinguishable from Aa phi 23 by electron microscopy, and the genomes showed highly related DNA hybridization patterns. The remaining 20 isolates exhibited hybridization patterns very different from that of Aa phi 23 DNA. Seven of these strains also gave lysis or single plaques, suggesting that 21 of the 34 strains were lysogenic. These data indicate that the prophages per se do not represent a virulence factor exclusively associated with periodontal disease. Presence of an Aa phi 23-related prophage correlated with serotype a and AP-PCR type 1 of the bacterial host. This may indicate that Aa phi 23 and related phages have a limited host range.

  5. Presence of bacteriophage Aa phi 23 correlates with the population genetic structure of Actinobacillus actinomycetemcomitans.

    PubMed

    Haubek, D; Willi, K; Poulsen, K; Meyer, J; Kilian, M

    1997-02-01

    Several bacteriophages associated with the oral bacterium Actinobacillus actinomycetemcomitans have been identified. Lysogeny might affect the virulence of this bacterium, which has been implicated in the etiology of juvenile and adult periodontitis. We have determined the presence of bacteriophage Aa phi 23-related DNA sequences among 185 A. actinomycetemcomitans strains belonging to 2 well-characterized collections and have related the findings to the population genetic structure of the collections. 2 cloned Aa phi 23-specific DNA probes were used in Southern blot hybridization experiments to detect homologous sequences in whole-cell DNA of the strains. DNA from 65 (35%) of the 185 strains hybridized to either of the DNA probes. The majority (74%) of the hybridizing strains showed an identical hybridization pattern, indicating presence of phage Aa phi 23. Whole-cell DNA from the remaining hybridizing strains hybridized to the probes with different patterns, indicating that DNA sequences related to but different from phage Aa phi 23 occur in these strains. The majority (81%) of the strains which harbored phage Aa phi 23 were of serotype a, whereas serotype d strains appeared to be resistant to infection with this phage. There was a clear correlation between hybridization patterns and genetic subdivisions based on our previous population genetic analyses of A. actinomycetemcomitans. However, there was no significant correlation between occurrence of Aa phi 23 among A. actinomycetemcomitans strains and the periodontal status of the patients from whom the isolates were obtained, suggesting that this bacteriophage does not significantly influence the virulence of A. actinomycetemcomitans.

  6. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  7. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity

    PubMed Central

    Nguyen, Hien Anh; Durden, Donald L.; Lavie, Arnon

    2017-01-01

    Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity. PMID:28139703

  8. Crystallization and preliminary X-ray diffraction analysis of the 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes.

    PubMed

    Tsai, L C; Shyur, L F; Lin, S S; Yuan, H S

    2001-09-01

    The truncated 1,3-1,4-beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase; E.C. 3.2.1.73) from Fibrobacter succinogenes was crystallized in four different forms by the vapour-diffusion method. Form A crystals have the largest trigonal P321 unit cell, diffracting to 3.0 A resolution with four to six molecules per asymmetric unit. Form B and C crystals belong to the same monoclinic space group P2(1), but the form B unit cell is twice as large as the unit cell of form C. Form B crystals diffract to 2.5 A resolution and contain four molecules per asymmetric unit. Form C crystals diffract to 2.1 A resolution and contain two molecules per asymmetric unit. Form D crystals have the smallest orthorhombic P2(1)2(1)2(1) unit cell, containing only one molecule per asymmetric unit, and diffract beyond 2.1 A resolution. The crystallization conditions for form B and C crystals are almost identical, except that form C crystals were grown in the presence of 2 mM Ca(2+) ions. It is likely that Ca(2+) directly binds to the glucanase, leading to unit-cell shrinkage as observed in other Bacillus glucanase crystals. A self-rotation search identified non-crystallographic twofold axes that combine with the crystallographic twofold dyads to give 222 symmetry for both form A and form B crystals, indicating that the glucanase has a tendency to pack in 222 symmetry.

  9. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    SciTech Connect

    Tran, Timothy H.; Krishnamoorthy, Kalyanaraman; Begley, Tadhg P.; Ealick, Steven E.

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  10. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity.

    PubMed

    Nguyen, Hien Anh; Durden, Donald L; Lavie, Arnon

    2017-01-31

    Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity.

  11. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85.

    PubMed Central

    Zhu, H; Paradis, F W; Krell, P J; Phillips, J P; Forsberg, C W

    1994-01-01

    The xylanase XynC of Fibrobacter succinogenes S85 was recently shown to contain three distinct domains, A, B, and C (F. W. Paradis, H. Zhu, P. J. Krell, J. P. Phillips, and C. W. Forsberg, J. Bacteriol. 175:7666-7672, 1993). Domains A and B each bear an active site capable of hydrolyzing xylan, while domain C has no enzymatic activity. Two truncated proteins, each containing a single catalytic domain, named XynC-A and XynC-B were purified to homogeneity. The catalytic domains A and B had similar pH and temperature parameters of 6.0 and 50 degrees C for maximum hydrolytic activity and extensively degraded birch wood xylan to xylose and xylobiose. The Km and Vmax values, respectively, were 2.0 mg ml-1 and 6.1 U mg-1 for the intact enzyme, 1.83 mg ml-1 and 689 U mg-1 for domain A, and 2.38 mg ml-1 and 91.8 U mg-1 for domain B. Although domain A had a higher specific activity than domain B, domain B exhibited a broader substrate specificity and hydrolyzed rye arabinoxylan to a greater extent than domain A. Furthermore, domain B, but not domain A, was able to release xylose at the initial stage of the hydrolysis. Both catalytic domains cleaved xylotriose, xylotetraose, and xylopentaose but had no activity on xylobiose. Bond cleavage frequencies obtained from hydrolysis of xylo-alditol substrates suggest that while both domains have a strong preference for internal linkages of the xylan backbone, domain B has fewer subsites for substrate binding than domain A and cleaves arabinoxylan more efficiently. Chemical modification with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide and N-bromosuccinimide inactivated both XynC-A and XynC-B in the absence of xylan, indicating that carboxyl groups and tryptophan residues in the catalytic site of each domain have essential roles. Images PMID:8021170

  12. Complete genome sequence of Anabaena variabilis ATCC 29413

    SciTech Connect

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne A.; Copeland, A; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L; Kyrpides, Nikos C; Woyke, Tanja

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  13. Complete genome sequence of Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne; Copeland, Alex; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L.; Kyrpides, Nikos C; Woyke, Tanja

    2014-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40° C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. PMID:25197444

  14. Biotransformation of (-)beta-pinene by Aspergillus niger ATCC 9642.

    PubMed

    Toniazzo, Geciane; de Oliveira, Débora; Dariva, Cláudio; Oestreicher, Enrique Guillermo; Antunes, Octávio A C

    2005-01-01

    The main objective of this work was to investigate the biotransformations of (-)alpha-pinene, (-)beta-pinene, and (+) limonene by Aspergillus niger ATCC 9642. The culture conditions involved--concentration of cosolvent (EtOH), substrate applied, and sequential addition of substrates were--investigated. Adaptation of the precultures with small amounts of substrate was also studied. The experiments were performed in conical flasks with liquid cultures. This strain of A. niger was able to convert only (-)beta-pinene into alpha-terpineol. An optimum conversion of (-)beta-pinene into alpha-terpineol of about 4% was obtained when the substrate was applied as a diluted solution in EtOH and sequential addition of substrate was used.

  15. Xanthomonas campestris atcc 31601 and process for use

    SciTech Connect

    Weisrock, W.P.; McCarthy, E.F.

    1983-11-29

    A degenerative-resistant strain of Xanthomonas campestris has been developed and a process for using this strain to effectively overcome the problems of continuous xanthan production. This strain of X. campestris, designated X. campestris XCP-19 ATCC 31601, is capable of continuously producing xanthan at high specific productivities, i.e., 0.24 to 0.32 gm xanthan/gm cells/hr, for several hundred hours without culture degeneration from inexpensive aqueous nutrient media such as, for example, a minimal medium consisting primarily of inorganic salts, glucose, and NH4Cl. The medium may or may not also contain a yeast extract or yeast autolysate as a supplemental nitrogen source. Any medium having assimilable sources of carbon, nitrogen, and inorganic substances will serve satisfactorily for use with this new organism. 14 claims.

  16. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family.

    PubMed Central

    Kraig, E; Dailey, T; Kolodrubetz, D

    1990-01-01

    The leukotoxin produced by Actinobacillus actinomycetemcomitans has been implicated in the etiology of localized juvenile periodontitis. To initiate a genetic analysis into the role of this protein in disease, we have cloned its gene, lktA. We now present the complete nucleotide sequence of the lktA gene from A. actinomycetemcomitans. When the deduced amino acid sequence of the leukotoxin protein was compared with those of other proteins, it was found to be homologous to the leukotoxin from Pasteurella haemolytica and to the alpha-hemolysins from Escherichia coli and Actinobacillus pleuropneumoniae. Each alignment showed at least 42% identity. As in the other organisms, the lktA gene of A. actinomycetemcomitans was linked to another gene, lktC, which is thought to be involved in the activation of the leukotoxin. The predicted LktC protein was related to the leukotoxin/hemolysin C proteins from the other bacteria, since they shared a minimum of 49% amino acid identity. Surprisingly, although actinobacillus species are more closely related to pasteurellae than to members of the family Enterobacteriaciae, LktA and LktC from A. actinomycetemcomitans shared significantly greater sequence identity with the E. coli alpha-hemolysin proteins than with the P. haemolytica leukotoxin proteins. Despite the overall homology to the other leukotoxin/hemolysin proteins, the LktA protein from A. actinomycetemcomitans has several unique properties. Most strikingly, it is a very basic protein with a calculated pI of 9.7; the other toxins have estimated pIs around 6.2. The unusual features of the A. actinomycetemcomitans protein are discussed in light of the different species and target-cell specificities of the hemolysins and the leukotoxins. Images PMID:2318535

  17. Identification of the Exported Proteins of the Oral Opportunistic Pathogen Actinobacillus actinomycetemcomitans by Using Alkaline Phosphatase Fusions

    PubMed Central

    Ward, John; Fletcher, Julie; Nair, Sean P.; Wilson, Michael; Williams, Rachel J.; Poole, Stephen; Henderson, Brian

    2001-01-01

    A phoA fusion library of Actinobacillus actinomycetemcomitans genomic DNA has been screened to identify genes encoding exported and secreted proteins. A total of 8,000 colonies were screened, and 80 positive colonies were detected. From these, 48 genes were identified with (i) more than half having homology to known or hypothetical Haemophilus influenzae genes, (ii) 14 having no ascribed function, and (iii) 4 having very limited or no homology to known genes. The proteins encoded by these genes may, by virtue of their presence on the cell surface, be novel virulence determinants. PMID:11254647

  18. Microevolution and Patterns of Dissemination of the JP2 Clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans▿

    PubMed Central

    Haubek, Dorte; Poulsen, Knud; Kilian, Mogens

    2007-01-01

    The natural history, microevolution, and patterns of interindividual transmission and global dissemination of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans were studied by population genetic analysis. The JP2 clone is strongly associated with aggressive periodontitis in adolescents of African descent and differs from other clones of the species by several genetic peculiarities, including a 530-bp deletion in the promoter region of the leukotoxin gene operon, which results in increased leukotoxic activity. Multilocus sequence analysis of 82 A. actinomycetemcomitans strains, 66 of which were JP2 clone strains collected over a period of more than 20 years, confirmed that there is a clonal population structure with evolutionary lineages corresponding to serotypes. Although genetically highly conserved, as shown by alignment of sequences of eight housekeeping genes, strains belonging to the JP2 clone had a number of point mutations, particularly in the pseudogenes hbpA and tbpA. Characteristic mutations allowed isolates from individuals from the Mediterranean area and from West Africa, including the Cape Verde Islands, to be distinguished. The patterns of mutations indicate that the JP2 clone initially emerged as a distinct genotype in the Mediterranean part of Africa approximately 2,400 years ago and subsequently spread to West Africa, from which it was transferred to the American continents during the transatlantic slave trade. The sustained exclusive colonization of individuals of African descent despite geographical separation for centuries suggests that the JP2 clone has a distinct host tropism. The colonization of family members by JP2 clone strains with unique point mutations provides strong evidence that there is intrafamilial transmission and suggests that dissemination of the JP2 clone is restricted to close contacts. PMID:17353281

  19. Serum antibody in Actinobacillus actinomycetemcomitans-infected patients with periodontal disease.

    PubMed Central

    Ebersole, J L; Sandoval, M N; Steffen, M J; Cappelli, D

    1991-01-01

    This study was designed to (i) delineate the characteristics of serum antibody responses to Actinobacillus actinomycetemcomitans in patients with periodontitis who are infected with A. actinomycetemcomitans; irrespective of disease classification; (ii) assess the relationship of the elevated antibody levels to colonization of the oral cavity by A. actinomycetemcomitans; and (iii) describe the serotype distribution of A. actinomycetemcomitans and antibodies to the microorganism in infected patients with various clinical classifications. To compare the levels of various isotype-specific antibodies to the different antigens, studies were performed that allowed quantitation of each isotype-specific antibody in a human reference standard. By using this reference standard, it was shown that the levels of immunoglobulin G (IgG), IgM, and IgA responses to A. actinomycetemcomitans were similar among the infected patients, irrespective of disease classification. Also, we demonstrated that the serum antibody response to serotype b was quantitatively greater in all isotypes. Our findings indicate that b was the most frequent A. actinomycetemcomitans serotype detected in the patients and appears to be capable of initiating a substantial serum IgG antibody response that may contain cross-reactive antibodies to other serotypes of A. actinomycetemcomitans. Generally, in cases in which the response to a single serotype was elevated, only that type of A. actinomycetemcomitans was detected in the plaque. Individuals exhibiting elevated antibodies to multiple serotypes were most consistently colonized by the serotype b microorganism. This study represents the first report detailing the distribution of IgG subclass antibodies to A. actinomycetemcomitans in periodontal disease. The results demonstrated that the primary responses of patients with periodontitis to A. actinomycetemcomitans were of the IgG1 and IgG3 subclasses, which is consistent with elicited responses to protein antigens

  20. Immunoglobulin G subclass response of localized juvenile periodontitis patients to Actinobacillus actinomycetemcomitans Y4 lipopolysaccharide.

    PubMed Central

    Wilson, M E; Hamilton, R G

    1992-01-01

    Sera from patients with localized juvenile periodontitis (LJP) often contain markedly elevated immunoglobulin G (IgG) antibody titers to serospecific determinants of the lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans. The objective of the present study was to define the subclass distribution of the IgG antibody response of LJP patients to this key cell envelope antigen. IgG subclass antibody responses to A. actinomycetemcomitans LPS were quantified in an enzyme-linked immunosorbent assay with human IgG subclass-restricted monoclonal antibodies. Serum antibody concentrations were calculated by heterologous interpolation of a dose-response curve constructed by using human-mouse chimeric antibodies. Sixteen of 17 LJP serum samples tested contained significantly greater concentrations of IgG2 than IgG1 antibodies reactive toward A. actinomycetemcomitans LPS. Geometric mean antibody concentrations of IgG1 and IgG2 were 7.8 and 136.5 micrograms/ml, respectively, among LJP patients with elevated IgG titers to LPS (94% of whom were black). However, both IgG1 and IgG2 antibody concentrations were significantly greater than the corresponding values obtained from sera from LJP patients with low IgG titers to LPS. Among LJP patients with elevated IgG titers to A. actinomycetemcomitans LPS, serum IgG2 concentration and total IgG concentration were also significantly elevated compared with both low-titered LJP sera and sera from periodontally healthy race-matched controls. The results of this study indicate that the humoral response of a predominantly black population of LJP patients to A. actinomycetemcomitans includes the production of LPS-reactive IgG antibodies which are primarily of the IgG2 subclass. PMID:1563768

  1. Antigens of Actinobacillus actinomycetemcomitans recognized by patients with juvenile periodontitis and periodontally normal subjects.

    PubMed Central

    Sims, T J; Moncla, B J; Darveau, R P; Page, R C

    1991-01-01

    Most juvenile periodontitis patients respond to infection by Actinobacillus actinomycetemcomitans by producing serum antibodies. Specific antigens inducing the humoral immune response have not been identified, nor has the role of the resulting antibodies in disease progression been determined. Adsorbed and unadsorbed sera from juvenile periodontitis patients and normal subjects were analyzed by enzyme-linked immunosorbent assay and Western blots (immunoblots), using digested and undigested bacterial sonicates and French pressure cell fractions to determine the biochemical class, cross-reactivity, and cellular location of the antigens in different A. actinomycetemcomitans serotypes. Antigens detected by using high-titer sera included the following: (i) serotype-specific nonprotein material located on the cell surface, (ii) soluble-fraction proteins showing highly variable antibody binding, (iii) cross-reactive proteins, and (iv) a protein present in soluble and cell wall fractions and immunopositive for all sera tested. In addition, one apparently nonprotein component that was enriched in the cell wall fraction was observed. Sera with high immunoglobulin G titers to one, two, three, or none of the three A. actinomycetemcomitans serotypes were observed. There was a high degree of variation from one patient to another in the humoral immune response to serotype-specific and cross-reactive antigens. As demonstrated by whole-cell adsorption experiments, the serotype-specific surface antigen accounted for approximately 72 to 90% of the total antibody-binding activity for sera with titers greater than 100-fold above background, while cross-reactive antigen accounted for less than 28%. Antibody binding the whole-cell sonicate for high-titer sera was inhibited 90% by lipopolysaccharide from the same serotype, strongly suggesting that lipopolysaccharide is the immunodominant antigen class. Images PMID:1705243

  2. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon.

    PubMed Central

    Jansen, R; Briaire, J; Kamp, E M; Gielkens, A L; Smits, M A

    1993-01-01

    Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI), an important virulence factor, is secreted by serotypes 1, 5, 9, 10, and 11 of A. pleuropneumoniae. However, sequences homologous to the secretion genes apxIBD of the ApxI operon are present in all 12 serotypes except serotype 3. The purpose of this study was to determine and compare the structures of the ApxI operons of the 12 A. pleuropneumoniae serotypes. We focused on the nucleotide sequence comparison of the ApxI-coding genes, the structures of the ApxI operons, and the transcription of the ApxI operons. We determined the nucleotide sequences of the toxin-encoding apxICA genes of serotype 9 and found that the gene for the structural toxin, apxIA, was almost identical to the apxIA gene of serotype 1. The toxin-encoding genes of the other serotypes are also similar for the main part; nevertheless, two variants were identified, one in serotypes 1, 9, and 11 and one in serotypes 5 and 10. The two apxIA variants differ mainly within the distal 110 nucleotides. Structural analysis demonstrated that intact ApxI operons, consisting of the four contiguous genes apxICABD, are present in serotypes 1, 5, 9, 10, and 11. ApxI operons with a major deletion in the apxICA genes are present in serotypes 2, 4, 6, 7, 8, and 12. Serotype 3 does not contain ApxI operon sequences. We found that all ApxI operons are transcriptionally active despite the partial deletion of the operon in some serotypes. The implications of these data for the expression and secretion of ApxI and the other Apx-toxins, ApxII and ApxIII, as well as for the development of a subunit vaccine against A. pleuropneumoniae will be discussed. Images PMID:8359891

  3. Immune suppression induced by Actinobacillus actinomycetemcomitans: effects on immunoglobulin production by human B cells.

    PubMed Central

    Shenker, B J; Vitale, L A; Welham, D A

    1990-01-01

    Actinobacillus actinomycetemcomitans produces an immunosuppressive factor (ISF) which has been shown to suppress mitogen- and antigen-induced DNA, RNA, and protein synthesis in human T lymphocytes. In this study, we examined purified A. actinomycetemcomitans ISF for its ability to alter immunoglobulin production by human B cells. The ISF caused a dose-dependent inhibition of pokeweed mitogen (PWM)-induced immunoglobulin G (IgG) and IgM production. Preexposure to ISF was not required to achieve maximal inhibition of immunoglobulin synthesis, as previously observed for its effect on T-cell activation. Nevertheless, the ISF appeared to act by irreversibly affecting the early stages of cell activation. While PWM-induced immunoglobulin production is under the influence of T-regulatory circuits, it appears that the ISF interacts directly with B cells. First, ISF failed to alter either the synthesis of interleukin-2 (IL-2) or the expression of IL-2 receptors on T cells. Second, experiments in which individual purified populations of cells were exposed to ISF, washed, and placed back into tissue culture indicated that when all cells (i.e., T cells, B cells, and monocytes) were exposed to ISF, significant suppression was observed. However, when only one cell population was treated with ISF, suppression of both IgG and IgM synthesis was observed only when the B-cell-enriched population was exposed to ISF. These results in conjunction with our earlier findings suggest that the ISF functions via the activation of a regulatory subpopulation of B lymphocytes, which in turn either directly or indirectly (via suppressor T cells) downregulate both B- and T-cell responsiveness. Furthermore, it is hypothesized that patients who harbor A. actinomycetemcomitans could suffer from local or systemic immune suppression. This suppression may enhance the pathogenicity of A. actinomycetemcomitans itself or that of some other opportunistic organism. Images PMID:2254014

  4. Effect of adoptive transfer of cloned Actinobacillus actinomycetemcomitans-specific T helper cells on periodontal disease.

    PubMed Central

    Yamashita, K; Eastcott, J W; Taubman, M A; Smith, D J; Cox, D S

    1991-01-01

    Previously we isolated several Actinobacillus actinomycetemcomitans-specific T-cell clones from the spleens and lymph nodes of immunized Rowett rats. These clones were characterized as W3/13+, W3/25+, OX8-, and OX22-, suggesting a T helper (Th) phenotype. In the current experiments, 10(6) cells from a single A. actinomycetemcomitans-specific clone (A3) were adoptively transferred to a group (AaTh; n = 13) of normal heterozygous rats (rnu/+) at 28 days of age. A second group received no T cells (AaNT; n = 15), and a third group also received no T cells (NAaNT, n = 11). Beginning 1 day after transfer, the first and second groups were infected orally with A. actinomycetemcomitans for 5 consecutive days. The presence of infection was confirmed immediately after challenge and after 5 months, when the experiments were ended. Significantly higher numbers of lymphocytes were recovered from the gingival tissues of the first group than from those of either of the other groups. Also, this group showed significantly elevated (P less than 0.01) serum immunoglobulin G and immunoglobulin M antibody to A. actinomycetemcomitans in an enzyme-linked immunosorbent assay when compared with both other groups. Bone loss was significantly lower (P less than 0.01) in recipients of A. actinomycetemcomitans-specific cloned cells when compared with the other infected group and was approximately equal to the bone loss of the uninfected group. These results are consistent with the hypothesis that T-cell regulation can affect periodontal disease. In this regulation, T helper cells appear to interfere with periodontal bone loss. PMID:1825991

  5. Regulation of leukotoxin in leukotoxic and nonleukotoxic strains of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Spitznagel, J; Kraig, E; Kolodrubetz, D

    1991-01-01

    Actinobacillus actinomycetemcomitans is a gram-negative bacterium that has been implicated in the etiology of several forms of periodontitis, especially localized juvenile periodontitis. A potent leukotoxin (Lkt) is produced by most A. actinomycetemcomitans isolates from patients with periodontal disease, but some isolates are leukotoxin nonproducing (Lkt-). The molecular bases for the differences in leukotoxin expression are being explored to clarify the role of leukotoxin in pathogenesis. We have previously cloned the leukotoxin structural gene, lktA, from the leukotoxin-producing (Lkt+) strain JP2 and have shown that it is linked to three other genes, lktB, lktC, and lktD, whose gene products are thought to be required for activation and localization of the leukotoxin. These genes have now been used in Southern blot analysis to demonstrate that Lkt- strains, like Lkt+ strains, contain all four genes of the lkt gene cluster. While restriction fragment length polymorphisms were detected, they did not correlate with toxin phenotype. RNA blot analysis demonstrated that Lkt+ strains produced two transcripts, one 9.3 kb in length and the other 4.3 kb. They encode lktCABD and lktCA. respectively. Lkt- strains contained significantly lower levels of the 4.3-kb transcript with no discernible 9.3-kb message. The leukotoxic activity of the A. actinomycetemcomitans strains, measured by chromium release assays, correlated with the lkt RNA content. Therefore, a major component of leukotoxin regulation is at the level of RNA transcription or stability. Interestingly, the lkt RNAs in JP2 are regulated during growth phase, being greatly reduced in cells approaching stationary phase. Thus, the regulation of lkt RNA can be affected by both genotype and environment. Images PMID:2004819

  6. Identification and characterization of genetic cluster groups of Actinobacillus actinomycetemcomitans isolated from the human oral cavity.

    PubMed Central

    DiRienzo, J M; McKay, T L

    1994-01-01

    Actinobacillus actinomycetemcomitans is recognized as a primary pathogen in localized juvenile periodontitis (LJP). Restriction fragment length polymorphisms (RFLP) within a collection of subgingival plaque isolates of this bacterium were identified and characterized as the first step in understanding the pathogenesis of LJP. Over 800 isolates, from members of 18 families (LJP families) with at least one member with active LJP or a documented history of the disease and one or more siblings, less than 13 years of age, having no clinical evidence of LJP and 32 healthy control subjects, were assigned to one of 13 distinct RFLP groups (II to XIV) by using a previously characterized 4.7-kb DNA probe cloned from the reference strain FDC Y4. Isolates belonging to RFLP groups II, IV, V, and XIII predominated subgingival sites in the subjects. Members of RFLP groups II, IV, VII, VIII, X, and XI were recovered only from LJP family subjects, while group XIII and XIV variants were found exclusively in healthy controls. A synthetic oligonucleotide, homologous to the 5' end of the leukotoxin gene (lktA), and the A. actinomycetemcomitans plasmid, pVT745, were tested for their abilities to subdivide the 13 RFLP groups. The leukotoxin probe specifically identified all RFLP group II variants because of the absence of a HindIII site in the upstream noncoding region of the lkt gene complex. The plasmid probe was not as selective but may be useful for identifying clinical isolates belonging to RFLP group I. The use of these probes for the identification of genetic variants of A. actinomycetemcomitans that may be preferentially colonize diseased and healthy subjects will facilitate the study of the role of this important pathogen in periodontal diseases. Images PMID:7907346

  7. A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae

    PubMed Central

    Rossi, Ciro C.; Bossé, Janine T.; Li, Yanwen; Witney, Adam A.; Gould, Kate A.; Langford, Paul R.; Bazzolli, Denise M.S.

    2016-01-01

    Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies. PMID:27402897

  8. Actinobacillus actinomycetemcomitans serotype e--biotypes, genetic diversity and distribution in relation to periodontal status.

    PubMed

    Doğan, B; Saarela, M H; Jousimies-Somer, H; Alaluusua, S; Asikainen, S

    1999-04-01

    Actinobacillus actinomycetemcomitans isolates from 356 individuals were screened for identification of serotype e in order to investigate its distribution in relation to periodontal status. From subjects with serotype e, 1-6 isolates per subject (n = 61) were genotyped using arbitrarily primed-polymerase chain reaction (AP-PCR) and apaH gene polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) analysis to determine the genetic heterogeneity within the serotype. Furthermore, one serotype e strain per subject was tested for fermentation of 8 carbohydrates for biotyping. Among patients with adult periodontitis (n = 219), localized juvenile periodontitis (n = 55) and other forms of early-onset periodontitis (n = 18) serotypes b, a and c, respectively, were the most frequently detected serotypes. Non-periodontitis subjects (n = 64) were predominantly colonized with serotype c. Serotype e was found in 30 (14%) adult periodontitis patients, 2 (11%) early-onset periodontitis patients and in 5 (8%) non-periodontitis individuals, but in none of the 55 localized juvenile periodontitis patients. AP-PCR distinguished 3 and apaH gene PCR-RFLP analysis 2 genotypes among the 61 A. actinomycetemcomitans serotype e isolates, one genotype per subject. The AP-PCR genotypes 1 and 3 represented the apaH genotype 1 and the AP-PCR genotype 2 the apaH genotype 2. On the basis of variable fermentation of galactose and xylose, 3 biotypes among A. actinomycetemcomitans serotype e were established. Contrary to the absence of A. actinomycetemcomitans serotype e in localized juvenile periodontitis patients, its detection frequency was comparable among other forms of periodontitis and periodontal health. Clinical serotype e isolates form at least 2 genetic types and 3 biotypes.

  9. Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8

    PubMed Central

    Li, Gang; Xie, Fang; Zhang, Yanhe; Bossé, Janine T.; Langford, Paul R.; Wang, Chunlai

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and the cause of porcine pleuropneumonia. When the bacterium encounters nutritional starvation, the relA-dependent (p)ppGpp-mediated stringent response is activated. The modified nucleotides guanosine 5’-diphosphate 3’-diphosphate (ppGpp) and guanosine 5’-triphosphate 3’-diphosphate (pppGpp) are known to be signaling molecules in other prokaryotes. Here, to investigate the role of (p)ppGpp in A. pleuropneumoniae, we created a mutant A. pleuropneumoniae strain, S8ΔrelA, which lacks the (p)ppGpp-synthesizing enzyme RelA, and investigated its phenotype in vitro. S8ΔrelA did not survive after stationary phase (starvation condition) and grew exclusively as non-extended cells. Compared to the wild-type (WT) strain, the S8ΔrelA mutant had an increased ability to form a biofilm. Transcriptional profiles of early stationary phase cultures revealed that a total of 405 bacterial genes were differentially expressed (including 380 up-regulated and 25 down-regulated genes) in S8ΔrelA as compared with the WT strain. Most of the up-regulated genes are involved in ribosomal structure and biogenesis, amino acid transport and metabolism, translation cell wall/membrane/envelope biogenesis. The data indicate that (p)ppGpp coordinates the growth, viability, morphology, biofilm formation and metabolic ability of A. pleuropneumoniae in starvation conditions. Furthermore, S8ΔrelA could not use certain sugars nor produce urease which has been associated with the virulence of A. pleuropneumoniae, suggesting that (p)ppGpp may directly or indirectly affect the pathogenesis of A. pleuropneumoniae during the infection process. In summary, (p)ppGpp signaling represents an essential component of the regulatory network governing stress adaptation and virulence in A. pleuropneumoniae. PMID:26509499

  10. Sub-inhibitory concentrations of penicillin G induce biofilm formation by field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Hathroubi, S; Fontaine-Gosselin, S-È; Tremblay, Y D N; Labrie, J; Jacques, M

    2015-09-30

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and causative agent of porcine pleuropneumonia. This is a highly contagious disease that causes important economic losses to the swine industry worldwide. Penicillins are extensively used in swine production and these antibiotics are associated with high systemic clearance and low oral bioavailability. This may expose A. pleuropneumoniae to sub-inhibitory concentrations of penicillin G when the antibiotic is administered orally. Our goal was to evaluate the effect of sub-minimum inhibitory concentration (MIC) of penicillin G on the biofilm formation of A. pleuropneumoniae. Biofilm production of 13 field isolates from serotypes 1, 5a, 7 and 15 was tested in the presence of sub-MIC of penicillin G using a polystyrene microtiter plate assay. Using microscopy techniques and enzymatic digestion, biofilm architecture and composition were also characterized after exposure to sub-MIC of penicillin G. Sub-MIC of penicillin G significantly induced biofilm formation of nine isolates. The penicillin G-induced biofilms contained more poly-N-acetyl-D-glucosamine (PGA), extracellular DNA and proteins when compared to control biofilms grown without penicillin G. Additionally, penicillin G-induced biofilms were sensitive to DNase which was not observed with the untreated controls. Furthermore, sub-MIC of penicillin G up-regulated the expression of pgaA, which encodes a protein involved in PGA synthesis, and the genes encoding the envelope-stress sensing two-component regulatory system CpxRA. In conclusion, sub-MICs of penicillin G significantly induce biofilm formation and this is likely the result of a cell envelope stress sensed by the CpxRA system resulting in an increased production of PGA and other matrix components.

  11. Actinobacillus hominis osteomyelitis: First reported case in the English language medical literature

    PubMed Central

    O’Neill, Gavin; Mohammed, Aslam; Karcher, Anne Marie

    2016-01-01

    Introduction: Actinobacillus hominis is currently a rarely reported pathogen. It has previously been associated with respiratory tract infections and bacteraemia in debilitated patients. However, under-reporting may occur due to misidentification by commonly used laboratory bacterial identification systems. This case is, to the best of our knowledge, the first reported case of A. hominis osteomyelitis in the English language medical literature. Case presentation: A 37-year-old male presented with a painful foot. He had no previous foot problems, history of injury or animal contact. Osteomyelitis was confirmed by magnetic resonance imaging (MRI), and blood cultures were positive for Gram-variable bacilli. The organism was identified initially as Pasteurella pneumotropica by the local routine diagnostic laboratory and as a Pasteurella species by the UK National Reference Laboratory (Colindale, London, UK), using standard operating procedures at the time. It was finally identified as an A. hominis using 16S rRNA gene sequence analysis. Difficulties in the accurate identification of this organism remain current, as other biochemical identification systems have also resulted in misidentifications. The patient refused admission and intravenous antibiotics. He was successfully treated using an 8-week course of oral ciprofloxacin and amoxicillin based on antibiotic disc susceptibility testing resulting in clinical, serological and radiological resolution. Conclusion: Laboratories should maintain a high index of suspicion for A. hominis as several commonly used bacterial identification systems may not accurately identify the organism. Colonial morphology and absence of animal contact should prompt consideration of this organism in appropriate clinical situations. Oral ciprofloxacin and amoxicillin treatment was successful in this case. PMID:28348754

  12. Actinobacillus pleuropneumoniae Possesses an Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Labrie, Josée; Hernandez Reyes, Yenney; Burciaga Nava, Jorge A.; Gagnon, Carl A.; Jacques, Mario

    2014-01-01

    Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (<1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon γ. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools. PMID:24878741

  13. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores.

    PubMed

    Diarra, M S; Dolence, J A; Dolence, E K; Darwish, I; Miller, M J; Malouin, F; Jacques, M

    1996-03-01

    Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae.

  14. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  15. Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae.

    PubMed

    Bossé, Janine T; Li, Yanwen; Rogers, Jon; Fernandez Crespo, Roberto; Li, Yinghui; Chaudhuri, Roy R; Holden, Matthew T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2017-01-01

    The aim of this study was to evaluate the correlation between antimicrobial resistance (AMR) profiles of 96 clinical isolates of Actinobacillus pleuropneumoniae, an important porcine respiratory pathogen, and the identification of AMR genes in whole genome sequence (wgs) data. Susceptibility of the isolates to nine antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, and tylosin) was determined by agar dilution susceptibility test. Except for the macrolides tested, elevated MICs were highly correlated to the presence of AMR genes identified in wgs data using ResFinder or BLASTn. Of the isolates tested, 57% were resistant to tetracycline [MIC ≥ 4 mg/L; 94.8% with either tet(B) or tet(H)]; 48% to sulfisoxazole (MIC ≥ 256 mg/L or DD = 6; 100% with sul2), 20% to ampicillin (MIC ≥ 4 mg/L; 100% with blaROB-1), 17% to trimethoprim (MIC ≥ 32 mg/L; 100% with dfrA14), and 6% to enrofloxacin (MIC ≥ 0.25 mg/L; 100% with GyrAS83F). Only 33% of the isolates did not have detectable AMR genes, and were sensitive by MICs for the antimicrobial agents tested. Although 23 isolates had MIC ≥ 32 mg/L for tylosin, all isolates had MIC ≤ 16 mg/L for both erythromycin and tilmicosin, and no macrolide resistance genes or known point mutations were detected. Other than the GyrAS83F mutation, the AMR genes detected were mapped to potential plasmids. In addition to presence on plasmid(s), the tet(B) gene was also found chromosomally either as part of a 56 kb integrative conjugative element (ICEApl1) in 21, or as part of a Tn7 insertion in 15 isolates. Our results indicate that, with the exception of macrolides, wgs data can be used to accurately predict resistance of A. pleuropneumoniae to the tested antimicrobial agents and provides added value for routine surveillance.

  16. Tissue reaction and immunity in swine immunized with Actinobacillus pleuropneumoniae vaccines.

    PubMed Central

    Willson, P J; Rossi-Campos, A; Potter, A A

    1995-01-01

    These studies were done to develop a subunit vaccine for swine that would protect against disease, but not create unacceptable tissue reactions at the immunization site. Swine were used to evaluate the local effects of subunit vaccines prepared from extracts of Actinobacillus pleuropneumoniae serotype 1 containing one of a wide variety of adjuvants. The antigen was an anionic fraction of a saline extract of A. pleuropneumoniae (ANEX). The adjuvants used were vegetable oils (peanut, sesame, canola, or corn oils, vitamin E, or Lipposyn II emulsion); mineral oil (Marcol-52) and other materials (aluminum hydroxide, polyethylene glycol, Quil-A, Amphigen, or Emulsigen-Plus). Two types of experiments were done. In the 1st set of experiments, pigs were given multiple simultaneous injections in different sites and euthanized on days 1, 3, 7, 14, 21, or 28. Tissues were examined for gross and histopathological lesions. In the 2nd set of experiments, 48 pigs were allocated to 6 groups and vaccinated twice with a vaccine containing ANEX antigen combined with one of various adjuvants. Antibody responses and protection from challenge were evaluated. Among the adjuvants that were tested, mineral oils induced protective immunity, although the mineral oil Marcol-52 resulted in severe tissue reactions. The vegetable oils induced little protective immunity, and some of them were quite irritating. The response to the other materials ranged from little irritation or protection induced by the vaccine containing aluminum hydroxide to effective protection without irritation after vaccination with ANEX/Amphigen or ANEX/Emulsigen-Plus combinations. In conclusion, swine were protected against disease by a subunit vaccine that did not create unacceptable tissue reaction at the immunization site. PMID:8548692

  17. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine.

    PubMed

    Huter, V; Hensel, A; Brand, E; Lubitz, W

    2000-09-29

    Pigs immunized with Actinobacillus pleuropneumoniae ghosts or a formalin-inactivated bacterin were found to be protected against clinical disease in both vaccination groups, whereas colonization of the lungs with A. pleuropneumoniae was only prevented in ghost-vaccinated pigs. Bacterial ghosts are empty cell envelopes created by the expression of a cloned bacteriophage lysis gene and, unlike formalin-inactivated bacteria, suffer no denaturing steps during their production. This quality may lead to a superior presentation of surface antigens to the immune system. Analysis by SDS-PAGE and immunoblotting of the two vaccine preparations revealed different contents of antigenic proteins. In order to better understand the immunogenic properties of A. pleuropneumoniae ghosts and formalin-inactivated bacteria, we compared the serum antibody response induced in both treatment groups. Immune sera were tested on whole cell antigen or purified virulence factors including outer membrane protein preparations (OMPs), outer membrane lipoprotein OmlA1, transferrin binding proteins (TfbA1, TfbA7 and TfbB) and Apx toxins (ApxI, II and III). SDS-PAGE and immunoblots revealed no specific antibody response against the single virulence factors tested in any vaccinated animal. The two vaccination groups showed different recognition patterns of whole cell antigen and OMP-enriched preparations. A 100 kDa protein was recognized significantly stronger by ghost-vaccinated pigs than convalescent pigs. This unique antibody population induced by ghosts could play a determining role in the prevention of lung colonization. The same 100 kDa antigen was recognized by ghost-sera in homologous as well as heterologous serotype A. pleuropneumoniae protein preparations. Indications for a crossprotective potential in the ghost vaccine were supported by studies on rabbit hyperimmune sera.

  18. The RNA Chaperone Hfq Promotes Fitness of Actinobacillus pleuropneumoniae during Porcine Pleuropneumonia

    PubMed Central

    Subashchandrabose, Sargurunathan; Leveque, Rhiannon M.; Kirkwood, Roy N.; Kiupel, Matti

    2013-01-01

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-β-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10−5). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia. PMID:23732171

  19. The RNA chaperone Hfq promotes fitness of Actinobacillus pleuropneumoniae during porcine pleuropneumonia.

    PubMed

    Subashchandrabose, Sargurunathan; Leveque, Rhiannon M; Kirkwood, Roy N; Kiupel, Matti; Mulks, Martha H

    2013-08-01

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-β-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10(-5)). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia.

  20. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.

  1. Comparison of conventional and long-acting oxytetracyclines in prevention of induced Actinobacillus (Haemophilus) pleuropneumoniae infection of growing swine.

    PubMed Central

    Kiorpes, A L; Bäckström, L R; Collins, M T; Kruse, G O

    1989-01-01

    These experiments tested the hypothesis that long-acting oxytetracycline (oxytetracycline-LA) was more effective than regular oxytetracycline in preventing porcine pleuropneumonia when administered either 24 or 48 h prior to experimental challenge with virulent strains of Actinobacillus pleuropneumoniae. Two experiments (1 and 2) were conducted using growing pigs (average weight 12-15 kg). Antibiotic treatments were administered once intramuscularly at 20 mg/kg body weight; controls received an equivalent volume of saline. Clinical signs were recorded over seven days, and mortality rates and pathological lesions were analyzed using analysis of variance. Serum oxytetracycline levels were compared 48 and 72 h postinjection. All pigs developed clinical disease following experimental infection. Actinobacillus pleuropneumoniae was recovered from 42% of experiment 1 pigs and all of experiment 2 pigs. The data showed that both oxytetracycline and oxytetracycline-LA given at the same dose protected pigs against experimental infection when given 24 h prior to challenge, and there was no difference between the efficacy of the two drugs in this experiment. When administered 48 h prior to challenge, only oxytetracycline-LA reduced the clinical signs and pathological changes following A. pleuropneumoniae challenge. Between 48 and 72 h postinjection, oxytetracycline-LA blood levels were significantly greater compared to oxytetracycline-treated pigs. PMID:2531629

  2. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for adhesion and has potential use in glycoengineering

    PubMed Central

    Bossé, Janine T.; Abouelhadid, Sherif; Li, Yanwen; Lin, Chia-Wei; Vohra, Prerna; Tucker, Alexander W.; Rycroft, Andrew N.; Maskell, Duncan J.; Aebi, Markus; Langford, Paul R.

    2017-01-01

    Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing contagious porcine pleuropneumonia. Pathogenesis studies have demonstrated a major role for the capsule, exotoxins and outer membrane proteins. Actinobacillus pleuropneumoniae can also glycosylate proteins, using a cytoplasmic N-linked glycosylating enzyme designated NGT, but its transcriptional arrangement and role in virulence remains unknown. We investigated the NGT locus and demonstrated that the putative transcriptional unit consists of rimO, ngt and a glycosyltransferase termed agt. From this information we used the A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within Escherichia coli, with a hexose polymer that reacted with an anti-dextran antibody. Mass spectrometry analysis of a truncated protein revealed that this operon could add up to 29 repeat units to the appropriate sequon. We demonstrated the importance of NGT in virulence, by creating deletion mutants and testing them in a novel respiratory cell line adhesion model. This study demonstrates the importance of the NGT glycosylation system for pathogenesis and its potential biotechnological application for glycoengineering. PMID:28077594

  3. Experimental Identification of Actinobacillus pleuropneumoniae Strains L20 and JL03 Heptosyltransferases, Evidence for a New Heptosyltransferase Signature Sequence

    PubMed Central

    Merino, Susana; Knirel, Yuriy A.; Regué, Miguel; Tomás, Juan M.

    2013-01-01

    We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D261 for S261, being unique. PMID:23383222

  4. Whole-Genome Sequence for Methicillin-Resistant Staphylococcus aureus Strain ATCC BAA-1680.

    PubMed

    Daum, Luke T; Bumah, Violet V; Masson-Meyers, Daniela S; Khubbar, Manjeet; Rodriguez, John D; Fischer, Gerald W; Enwemeka, Chukuka S; Gradus, Steve; Bhattacharyya, Sanjib

    2015-03-12

    We report here the whole-genome sequence of the USA300 strain of methicillin-resistant Staphylococcus aureus (MRSA), designated ATCC BAA-1680, and commonly referred to as community-associated MRSA (CA-MRSA). This clinical MRSA isolate is commercially available from the American Type Culture Collection (ATCC) and is widely utilized as a control strain for research applications and clinical diagnosis. The isolate was propagated in ATCC medium 18, tryptic soy agar, and has been utilized as a model S. aureus strain in several studies, including MRSA genetic analysis after irradiation with 470-nm blue light.

  5. Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. mobilis Lectotype Strain ATCC 10988 ▿

    PubMed Central

    Pappas, Katherine M.; Kouvelis, Vassili N.; Saunders, Elizabeth; Brettin, Thomas S.; Bruce, David; Detter, Chris; Balakireva, Mariya; Han, Cliff S.; Savvakis, Giannis; Kyrpides, Nikos C.; Typas, Milton A.

    2011-01-01

    Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. PMID:21725006

  6. Periplasmic nitrate reduction in Wolinella succinogenes: cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment.

    PubMed

    Kern, Melanie; Simon, Jörg

    2009-08-01

    Various nitrate-reducing bacteria produce proteins of the periplasmic nitrate reductase (Nap) system to catalyse electron transport from the membraneous quinol pool to the periplasmic nitrate reductase NapA. The composition of the corresponding nap gene clusters varies but, in addition to napA, genes encoding at least one membrane-bound quinol dehydrogenase module (NapC and/or NapGH) are regularly present. Moreover, some nap loci predict accessory proteins such as the iron-sulfur protein NapF, whose function is poorly understood. Here, the role of NapF in nitrate respiration of the Epsilonproteobacterium Wolinella succinogenes was examined. Immunoblot analysis showed that NapF is located in the membrane fraction in nitrate-grown wild-type cells whereas it was found to be a soluble cytoplasmic protein in a napH deletion mutant. This finding indicates the formation of a membrane-bound NapGHF complex that is likely to catalyse NapH-dependent menaquinol oxidation and electron transport to the iron-sulfur adaptor proteins NapG and NapF, which are located on the periplasmic and cytoplasmic side of the membrane, respectively. The cysteine residues of a CX(3)CP motif and of the C-terminal tetra-cysteine cluster of NapH were found to be required for interaction with NapF. A napF deletion mutant accumulated the catalytically inactive cytoplasmic NapA precursor, suggesting that electron flow or direct interaction between NapF and NapA facilitated NapA assembly and/or export. On the other hand, NapA maturation and activity was not impaired in the absence of NapH, demonstrating that soluble NapF is functional. Each of the four tetra-cysteine motifs of NapF was modified but only one motif was found to be essential for efficient NapA maturation. It is concluded that the NapGHF complex plays a multifunctional role in menaquinol oxidation, electron transfer to periplasmic NapA and maturation of the cytoplasmic NapA precursor.

  7. New insights into chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712.

    PubMed

    Fernández-Martínez, Lorena T; Borsetto, Chiara; Gomez-Escribano, Juan Pablo; Bibb, Maureen J; Al-Bassam, Mahmoud M; Chandra, Govind; Bibb, Mervyn J

    2014-12-01

    Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916-sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway.

  8. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  9. Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399

    SciTech Connect

    Dermoun, Z.; Belaich, J.P.

    1985-07-01

    A newly designed batch calorimeter was used to investigate the degradability of some celluloses having varying degrees of crystallinity. The PTC of an aerobic culture of Cellulomonas uda ATCC 21399 obtained revealed a diauxic growth which is attributed to the presence of hemicellulose contaminating Avicel and MN300 cellulose. The microcrystalline celluloses used were not completely utilized, whereas amorphous cellulose was easily metabolized, indicating that under the growth conditions used here, the physical structure of cellulose strongly influenced its microbial degradability. An equivalent growth yield of ca. 0.44 g/g was found with all the substrates used. The heat evolved by metabolism of one g cellulose was - 5.86 kJ/g, a value similar to that obtained with glucose culture. The growth rate was the only variable parameter. The data obtained showed as expected that the hydrolysis product of cellulose was consumed in the same way as that of glucose and that the only limiting factor to the biodegradability of cellulose was the breakdown of the polymeric substrate. It is concluded that data obtained with glucose metabolism can be used to evaluate the extent of cellulose degradation.

  10. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374

    PubMed Central

    Oliveira, Luciana M.; Resende, Daniela M.; Dorneles, Elaine M. S.; Horácio, Elvira C. A.; Alves, Fernanda L.; Gonçalves, Leilane O.; Tavares, Grace S.; Stynen, Ana Paula R.; Lage, Andrey P.

    2016-01-01

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here. PMID:27979934

  11. Draft Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621.

    PubMed

    Poehlein, Anja; Najdenski, Hristo; Simeonova, Diliana D

    2017-03-23

    We present here the 5.561-Mbp assembled draft genome sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621, a phosphite- and organophosphonate-assimilating Gammaproteobacterium. The genome harbors 5,179 predicted protein-coding genes.

  12. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374.

    PubMed

    Oliveira, Luciana M; Resende, Daniela M; Dorneles, Elaine M S; Horácio, Elvira C A; Alves, Fernanda L; Gonçalves, Leilane O; Tavares, Grace S; Stynen, Ana Paula R; Lage, Andrey P; Ruiz, Jeronimo C

    2016-12-15

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here.

  13. Synthesis of a tetrasaccharide glycosyl glycerol. Precursor to glycolipids of Meiothermus taiwanensis ATCC BAA-400.

    PubMed

    Ren, Chien-Tai; Tsai, Yu-Hsuan; Yang, Yu-Liang; Zou, Wei; Wu, Shih-Hsiung

    2007-07-06

    Synthesis of a tetrasaccharide glycosyl glycerol, the core structure of glycoglycerolipid from Meiothermus taiwanensis ATCC BAA-400, was described. A one-pot glycosylation with three components was employed as a key step.

  14. Draft Genome Sequence of an Enterococcus faecalis ATCC 19433 Siphovirus Isolated from Raw Domestic Sewage

    PubMed Central

    Ly, Melissa; Pride, David T.; Toranzos, Gary A.

    2017-01-01

    ABSTRACT We previously isolated and characterized an Enterococcus faecalis ATCC 19433 siphovirus from raw domestic sewage as a viral indicator of human fecal pollution. Here, we report the draft genome sequence of this bacteriophage. PMID:28104647

  15. Draft Genome Sequence of an Enterococcus faecalis ATCC 19433 Siphovirus Isolated from Raw Domestic Sewage.

    PubMed

    Santiago-Rodriguez, Tasha M; Ly, Melissa; Pride, David T; Toranzos, Gary A

    2017-01-19

    We previously isolated and characterized an Enterococcus faecalis ATCC 19433 siphovirus from raw domestic sewage as a viral indicator of human fecal pollution. Here, we report the draft genome sequence of this bacteriophage.

  16. Engineering of a functional thermostable kanamycin resistance marker for use in Moorella thermoacetica ATCC39073.

    PubMed

    Iwasaki, Yuki; Kita, Akihisa; Sakai, Shinsuke; Takaoka, Kazue; Yano, Shinichi; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Murakami, Katsuji; Nakashimada, Yutaka

    2013-06-01

    A transformation system for Moorella thermoacetica ATCC39073 was developed using thermostable kanamycin resistant gene (kanR) derived from the plasmid pJH1 that Streptococcus faecalis harbored. When kanR with its native promoter was introduced into uracil auxotrophic mutant of M. thermoacetica ATCC39073 together with a gene to complement the uracil auxotrophy as a selection marker, it did not give kanamycin resistance due to poor transcription level of kanR. However, the use of glyceraldehyde-3-phosphate dehydrogenase promoter cloned from M. thermoacetica ATCC39073 significantly improved transcription level of kanR and resulted in the cell growth in the presence of more than 150 μg mL(-1) kanamycin. It was also demonstrated that kanR with G3PD promoter can be used as a selection marker for transformation of wild-type strain of M. thermoacetica ATCC39073.

  17. Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae

    PubMed Central

    Bossé, Janine T.; Li, Yanwen; Rogers, Jon; Fernandez Crespo, Roberto; Li, Yinghui; Chaudhuri, Roy R.; Holden, Matthew T. G.; Maskell, Duncan J.; Tucker, Alexander W.; Wren, Brendan W.; Rycroft, Andrew N.; Langford, Paul R.

    2017-01-01

    The aim of this study was to evaluate the correlation between antimicrobial resistance (AMR) profiles of 96 clinical isolates of Actinobacillus pleuropneumoniae, an important porcine respiratory pathogen, and the identification of AMR genes in whole genome sequence (wgs) data. Susceptibility of the isolates to nine antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, and tylosin) was determined by agar dilution susceptibility test. Except for the macrolides tested, elevated MICs were highly correlated to the presence of AMR genes identified in wgs data using ResFinder or BLASTn. Of the isolates tested, 57% were resistant to tetracycline [MIC ≥ 4 mg/L; 94.8% with either tet(B) or tet(H)]; 48% to sulfisoxazole (MIC ≥ 256 mg/L or DD = 6; 100% with sul2), 20% to ampicillin (MIC ≥ 4 mg/L; 100% with blaROB-1), 17% to trimethoprim (MIC ≥ 32 mg/L; 100% with dfrA14), and 6% to enrofloxacin (MIC ≥ 0.25 mg/L; 100% with GyrAS83F). Only 33% of the isolates did not have detectable AMR genes, and were sensitive by MICs for the antimicrobial agents tested. Although 23 isolates had MIC ≥ 32 mg/L for tylosin, all isolates had MIC ≤ 16 mg/L for both erythromycin and tilmicosin, and no macrolide resistance genes or known point mutations were detected. Other than the GyrAS83F mutation, the AMR genes detected were mapped to potential plasmids. In addition to presence on plasmid(s), the tet(B) gene was also found chromosomally either as part of a 56 kb integrative conjugative element (ICEApl1) in 21, or as part of a Tn7 insertion in 15 isolates. Our results indicate that, with the exception of macrolides, wgs data can be used to accurately predict resistance of A. pleuropneumoniae to the tested antimicrobial agents and provides added value for routine surveillance. PMID:28321207

  18. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin

    PubMed Central

    Sager, Martin; Benten, W. Peter M.; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  19. Intra- and Interspecies Regulation of Gene Expression by Actinobacillus actinomycetemcomitans LuxS

    PubMed Central

    Fong, Karen P.; Chung, Whasun O.; Lamont, Richard J.; Demuth, Donald R.

    2001-01-01

    The cell density-dependent control of gene expression is employed by many bacteria for regulating a variety of physiological functions, including the generation of bioluminescence, sporulation, formation of biofilms, and the expression of virulence factors. Although periodontal organisms do not appear to secrete acyl-homoserine lactone signals, several species, e.g., Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, have recently been shown to secrete a signal related to the autoinducer II (AI-2) of the signal system 2 pathway in Vibrio harveyi. Here, we report that the periodontal pathogen Actinobacillus actinomycetemcomitans expresses a homolog of V. harveyi luxS and secretes an AI-2-like signal. Cell-free conditioned medium from A. actinomycetemcomitans or from a recombinant Escherichia coli strain (E. coli AIS) expressing A. actinomycetemcomitans luxS induced luminescence in V. harveyi BB170 >200-fold over controls. AI-2 levels peaked in mid-exponential-phase cultures of A. actinomycetemcomitans and were significantly reduced in late-log- and stationary-phase cultures. Incubation of early-log-phase A. actinomycetemcomitans cells with conditioned medium from A. actinomycetemcomitans or from E. coli AIS resulted in a threefold induction of leukotoxic activity and a concomitant increase in leukotoxin polypeptide. In contrast, no increase in leukotoxin expression occurred when cells were exposed to sterile medium or to conditioned broth from E. coli AIS−, a recombinant strain in which luxS was insertionally inactivated. A. actinomycetemcomitans AI-2 also induced expression of afuA, encoding a periplasmic iron transport protein, approximately eightfold, suggesting that LuxS-dependent signaling may play a role in the regulation of iron acquisition by A. actinomycetemcomitans. Finally, A. actinomycetemcomitans AI-2 added in trans complemented a luxS knockout mutation in P. gingivalis by modulating the expression of the lux

  20. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq

    PubMed Central

    Su, Zhipeng; Zhu, Jiawen; Xu, Zhuofei; Xiao, Ran; Zhou, Rui; Li, Lu; Chen, Huanchun

    2016-01-01

    Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumoniae, a highly contagious respiratory disease of swine. Although the genome of A. pleuropneumoniae was sequenced several years ago, limited information is available on the genome-wide transcriptional analysis to accurately annotate the gene structures and regulatory elements. High-throughput RNA sequencing (RNA-seq) has been applied to study the transcriptional landscape of bacteria, which can efficiently and accurately identify gene expression regions and unknown transcriptional units, especially small non-coding RNAs (sRNAs), UTRs and regulatory regions. The aim of this study is to comprehensively analyze the transcriptome of A. pleuropneumoniae by RNA-seq in order to improve the existing genome annotation and promote our understanding of A. pleuropneumoniae gene structures and RNA-based regulation. In this study, we utilized RNA-seq to construct a single nucleotide resolution transcriptome map of A. pleuropneumoniae. More than 3.8 million high-quality reads (average length ~90 bp) from a cDNA library were generated and aligned to the reference genome. We identified 32 open reading frames encoding novel proteins that were mis-annotated in the previous genome annotations. The start sites for 35 genes based on the current genome annotation were corrected. Furthermore, 51 sRNAs in the A. pleuropneumoniae genome were discovered, of which 40 sRNAs were never reported in previous studies. The transcriptome map also enabled visualization of 5'- and 3'-UTR regions, in which contained 11 sRNAs. In addition, 351 operons covering 1230 genes throughout the whole genome were identified. The RNA-Seq based transcriptome map validated annotated genes and corrected annotations of open reading frames in the genome, and led to the identification of many functional elements (e.g. regions encoding novel proteins, non-coding sRNAs and operon structures). The transcriptional units described in this study

  1. Actinobacillus actinomycetemcomitans and localized juvenile periodontitis. Clinical, microbiologic and histologic studies.

    PubMed

    Christersson, L A

    1993-01-01

    The present studies examined Actinobacillus actinomycetemcomitans and its role in localized juvenile periodontitis (LJP). The distribution of the bacteria was studied in healthy normals, patients with adult periodontitis, diabetics, and those with LJP. Over 95% of the LJP patients harbored A. actinomycetemcomitans, whereas only 17% of healthy subjects, 21% of adult periodontitis patients, and 5% of diabetics were positive. All members of a LJP family harboring the organism yielded isolates of the same biotype and serotype. The transmission of the bacteria was studied after transfer of the bacteria, with periodontal probes from infected to healthy gingival sites, within the oral cavity of LJP patients. Newly colonized gingival sites, 50% of those involved, became free of A. actinomycetemcomitans after only 3 weeks. A purposely forceful inoculation contributed to a more predictable colonization (89%), but only prolonged the colonization with one week. Treatment of LJP lesions with scaling and root planing resulted in minimal clinical and microbiological changes during a 16 week follow-up period. However, gingival curettage and modified Widman flap surgery suppressed A. actinomycetemcomitans in 75% and 89% of the sites, and resulted in resolution of periodontal pocket depth and gain in attachment level. Gingival tissue specimens, from 35 LJP sites, 3 control sites, and one monkey biopsy, were studied to verify the hypothesis of gingival infiltration of A. actinomycetemcomitans. Bacteria were identified immunohistologically with rabbit antisera serospecific to the three A. actinomycetemcomitans serotypes. Positive staining was observed in the tissue from all but one LJP patient. Twenty-eight (80%) lesions were positive for A. actinomycetemcomitans antigens in the gingival connective tissue, often with antigens located both between and within cells. The specimen from a culture positive control demonstrated no signs of invasion, similar to the monkey specimen

  2. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    PubMed

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  3. Actinobacillus pleuropneumoniae infections in closed swine herds: infection patterns and serological profiles.

    PubMed

    Chiers, Koen; Donné, Eef; Van Overbeke, Ingrid; Ducatelle, Richard; Haesebrouck, Freddy

    2002-04-02

    Many farrow-to-finish herds are endemically infected with Actinobacillus pleuropneumoniae. In order to control the disease efficiently, a better knowledge of the ages at which pigs become infected is necessary. Furthermore, no information is available concerning the influence of maternally derived antibodies on the colonization of the upper respiratory tract. Therefore, A. pleuropneumoniae infection patterns were studied in five farrow-to-finish pig herds (A-E) with a history of pleuropneumonia. A longitudinal study was carried out in herds A and B. In these herds, piglets from sows carrying A. pleuropneumoniae in their noses or tonsils were sampled. Nasal and tonsillar swabs as well as sera, were collected from these animals at the age of 4, 8, 12, 16 (herds A and B) and 23 weeks (herd B). At these ages other pigs from the same sows were euthanized. The lungs were macroscopically examined and samples from nose, tonsils and lungs were collected at necropsy. A cross-sectional study was performed in herds C-E. In these herds nasal and tonsillar swabs, as well as sera, were taken from 10 animals of 4, 8, 12 and 16 weeks of age. Lung, nasal and tonsillar samples were tested for the presence of A. pleuropneumoniae by routine bacteriology and PCR with mixed bacterial cultures. The sera were examined for the presence of Apx toxin neutralizing antibodies. In herd A, A. pleuropneumoniae serotype 2 and 10 strains were isolated, whereas serotype 2, 3, 5b and 8 strains were demonstrated in herd B. In most herds, A. pleuropneumoniae was detected in mixed bacterial cultures of tonsillar and/or nasal samples by PCR from the age of 4 weeks onwards. Colonization of the lungs and development of lung lesions was observed in 12- and 16-week-old animals of herd A and 23-week-old animals of herd B. In most herds, high antibody titres were detected in 4-week-old piglets. These titres decreased during the first 12 weeks of age, but thereafter, increased. It was concluded that PCR with

  4. Differential regulation of the leukotoxin operon in highly leukotoxic and minimally leukotoxic strains of Actinobacillus actinomycetemcomitans.

    PubMed Central

    Hritz, M; Fisher, E; Demuth, D R

    1996-01-01

    The expression of the leukotoxin (ltx) operon varies significantly among Actinobacillus actinomycetemcomitans strains. The dual promoters driving ltx expression in the highly toxic strain JP2 have been previously characterized (J. M. Brogan, E. T. Lally, K. Poulsen, M. Kilian, and D. R. Demuth, Infect. Immun. 62:501-508, 1994), and genetic analyses of A. actinomycetemcomitans suggest that highly toxic strains like JP2 arose from minimally toxic strains, presumably by deletion of a 530-bp domain within the ltx promoter region (K. Poulsen, E. Theilade, E.T. Lally, D. R. Demuth, and M. Kilian, Microbiology 140:2049-2060, 1994). However, the ltx promoter of minimally toxic A. actinomycetemcomitans strains has not been well characterized. In this study, deletion and primer extension analyses showed that the ltx promoter of A. actinomycetemcomitans 652 is situated approximately 150 bp upstream of the ltxC gene and initiates transcription 138 nucleotides upstream of ltxC. In contrast to strain JP2, only a single promoter appears to drive ltx expression in 652. The 652 promoter resides within the 530-bp region that is absent from the JP2 promoter sequence, suggesting that the specific sequences controlling ltx expression differ in highly toxic and minimally toxic A. actinomycetemcomitans strains. In addition, ltx expression in strain 652 was shown to be induced three- to fourfold when cells were grown under anaerobic conditions. The induction of whole cell leukotoxicity, was accompanied by increases in the levels of Ltx polypeptide and the steady-state levels of ltx mRNA, suggesting that regulation occurred at the level of transcription. In contrast, the levels of leukotoxicity, Ltx polypeptide, and fix mRNA in strain JP2 were unaffected by anaerobic growth. These results suggest that the ltx operon is differentially regulated in highly toxic and minimally toxic A. actinomycetemcomitans strains and that the sequences controlling the oxygen-dependent regulation of ltx

  5. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    PubMed

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are

  6. Comparative in vitro activity of 16 antimicrobial agents against Actinobacillus pleuropneumoniae.

    PubMed

    Yoshimura, H; Takagi, M; Ishimura, M; Endoh, Y S

    2002-01-01

    Sixteen antimicrobial agents were tested for their activity against 68 isolates of Actinobacillus pleuropneumoniae by determining the minimum inhibitory concentrations (MICs). Ceftiofur and the fluoroquinolones danofloxacin and enrofloxacin were the most active compounds, with a MIC for 90% of the isolates (MIC90) of (0.05 microg/ml. The MIC90 values of benzylpenicillin, amoxicillin and aspoxicillin were 0.78 units/ml, 0.39 microg/ml and < or = 0.05 microg/ml, respectively. Three isolates (4.4%) were resistant to penicillins, but aspoxicillin was as active as ceftiofur against the susceptible isolates, with MICs of < or = 0.05 microg/ml for all isolates. Resistance to oxytetracycline, chloramphenicol and thiamphenicol occurred in 22 (32.4%), 14 (20.6%) and 15 (22.1%) of the isolates, respectively. Doxycycline was more active than oxytetracycline, with a MIC90 of 1.56 microg/ml as against 25 microg/ml. Florfenicol was not only as active as thiamphenicol, with a MIC for 50% of the isolates (MIC50) of 0.39 microg/ml, but also active against thiamphenicol-resistant isolates. All the isolates were susceptible to florfenicol. All the isolates were also susceptible to gentamicin, spectinomycin, tilmicosin, colistin and tiamulin. Of these, spectinomycin was the least active, with a MIC50 of 25 microg/ml, followed by tiamulin, with a MIC50 of 6.25 microg/ml. Of the 68 isolates tested, 49 (72.0%) were of serotype 2; 14 (20.5%) were of serotype 1; 2 each (3.0%) were of serotypes 5 and 6; and one was of serotype 7. Of the isolates, 23 (33.8%) were resistant to one or more of the major antibiotics. Antibiotic resistance was found only infrequently among serotype 2, with 5 (10.2%) of 49 isolates being resistant to chloramphenicol and/or oxytetracycline, while it occurred in 18 (94.7%) of the 19 isolates of other serotypes.

  7. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    2017-01-20

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively.

  8. A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay

    PubMed Central

    Li, Yanwen; Sárközi, Rita; Gottschalk, Marcelo; Angen, Øystein; Nedbalcova, Katerina; Rycroft, Andrew N.; Fodor, László

    2017-01-01

    ABSTRACT Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar—designated serovar 16—of A. pleuropneumoniae. PMID:28053219

  9. A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay.

    PubMed

    Bossé, Janine T; Li, Yanwen; Sárközi, Rita; Gottschalk, Marcelo; Angen, Øystein; Nedbalcova, Katerina; Rycroft, Andrew N; Fodor, László; Langford, Paul R

    2017-03-01

    Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar-designated serovar 16-of A. pleuropneumoniae.

  10. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  11. Morphological, biochemical, antigenic, and cytochemical relationships among Haemophilus somnus, Haemophilus agni, Haemophilus haemoglobinophilus, Histophilus ovis, and Actinobacillus seminis.

    PubMed Central

    Stephens, L R; Humphrey, J D; Little, P B; Barnum, D A

    1983-01-01

    Morphology, biochemical reactions, pigmentation, antigens, and cell envelope proteins were examined in 12 strains of Haemophilus somnus, Haemophilus agni, Histophilus ovis, and Actinobacillus seminis. All of the strains except A. seminis are related and are considered as a single Haemophilus-Histophilus (HH) group. In immunodiffusion tests, HH group bacteria had at least two antigens common to all members of the group, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that they have similar cell envelope protein profiles. A quantitatively variable yellow pigment with absorption maxima of 430 to 435 nm was present in strains of H. somnus and H. agni. The HH group did not produce catalase and grew only in air containing 10% CO2. Of 10 HH group bacteria, 9 required thiamine monophosphate for growth. A. seminis was distinguished from the HH group by its lack of yellow pigment, production of catalase, growth in air, lack of a thiamine monophosphate requirement, and different cell envelope protein profile. In gel immunodiffusion tests, A. seminis antigens produced two lines of partial identity with the HH group when antiserum against H. somnus was used. Reference strains of Haemophilus influenzae, Actinobacillus lignieresii, and Haemophilus haemoglobinophilus were compared with the test strains. In immunodiffusion tests, a single antigen was found to be common to H. haemoglobinophilus, A. seminis, and the HH group. No similarities between any of the test strains and H. influenzae or A. lignieresii were noted. The close relationship of H. somnus, H. agni, and Histophilus ovis suggests that these unofficially named bacteria may belong to a single taxon. Images PMID:6408118

  12. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  13. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.

    PubMed

    Grosso-Becerra, María-Victoria; González-Valdez, Abigail; Granados-Martínez, María-Jessica; Morales, Estefanía; Servín-González, Luis; Méndez, José-Luis; Delgado, Gabriela; Morales-Espinosa, Rosario; Ponce-Soto, Gabriel-Yaxal; Cocotl-Yañez, Miguel; Soberón-Chávez, Gloria

    2016-12-01

    Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.

  14. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures.

    PubMed

    Dams, Rosemeri I; Guilherme, Alexandre A; Vale, Maria S; Nunes, Vanja F; Leitão, Renato C; Santaella, Sandra T

    2016-12-01

    The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.

  15. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

  16. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  17. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  18. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas alcaligenes ATCC 14909.

    PubMed

    Santiago, Manuel F; West, Thomas P

    2003-01-01

    The effect of carbon source on the regulation of the de novo pyrimidine biosynthetic enzymes in Pseudomonas alcaligenes ATCC 14909 was investigated. The de novo pyrimidine biosynthetic enzymes were measured in extracts of P. alcaligenes ATCC 14909 cells and of cells from an auxotroph deficient for orotate phosphoribosyltransferase activity. Pyrimidine biosynthetic enzyme activities in ATCC 14909 were influenced by pyrimidine supplementation to the culture medium but not by the carbon source present. Pyrimidine limitation of the auxotroph elevated the de novo enzyme activities indicating that this pathway may be controlled at the transcriptional level by a pyrimidine-related compound. Its regulation seemed to be subject to less transcriptional control by a pyrimidine-related compound than what was observed in the closely related species Pseudomonas pseudoalcaligenes.

  19. Restriction endonuclease analysis of total deoxyribonucleic acid of Mycobacterium tuberculosis H37RV (ATCC 27294) and of M. bovis (ATCC 19210).

    PubMed

    Labidi, A

    1988-01-01

    Total DNA from two slowly-growing pathogenic mycobacterial species propagated in vitro was isolated, digested with each of 34 restriction endonucleases and analyzed by agarose gel electrophoresis. The most distinct profiles for M. tuberculosis (ATCC 27294) and for M. bovis (ATCC 19210) were obtained respectively using (BamHI, DraI, ClaI, EcoRI, EcoRV, HindIII, HpaI, SalI, SmaI, XbaI, and XmaI). The patterns produced for these strains were reproducible and distinguishable from each other. However, with several enzymes the patterns for M. tuberculosis and M. bovis were similar. Evidence was obtained for the presence of dam and dcmI methylations in the DNA of each mycobacterial species.

  20. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  1. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response.

  2. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139.

  3. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-01-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  4. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-03-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  5. Draft Genome Sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., Strains OUH 308042T (= ATCC BAA-2681T) and OUH 334697 (= ATCC BAA-2682), Isolated from Blood Cultures from Two Different Patients.

    PubMed

    Sydenham, Thomas Vognbjerg; Hasman, Henrik; Justesen, Ulrik Stenz

    2015-03-26

    We announce here the draft genome sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., strains OUH 308042(T) (= DSM 28342(T) = ATCC BAA-2681(T)) and OUH 334697 (= DSM 28341 = ATCC BAA-2682), isolated from blood cultures from two different patients and composed of 51 and 39 contigs for totals of 3,385,516 and 3,410,672 bp, respectively.

  6. Agar disk diffusion (Bauer-Kirby) tests with various fastidious and nonfastidious reference (ATCC) strains: comparison of several agar media.

    PubMed

    Traub, W H; Leonhard, B

    1994-01-01

    Several agar media (Mueller-Hinton agar, MHA; diagnostic sensitivity test agar, DSTA; Schaedler agar, SchA; Todd-Hewitt agar with added yeast extract, THYA; Wilkins-Chalgren agar, WCA) were compared using the Bauer-Kirby agar disk diffusion test against six nonfastidious quality control strains: Staphylococcus aureus ATCC 25923 and ATCC 29213, Escherichia coli ATCC 25922 and ATCC 35218, Pseudomonas aeruginosa ATCC 27853, and Enterococcus faecalis ATCC 29212. MHA, DSTA, and THYA yielded essentially comparable inhibition zones. However, WCA and SchA antagonized cotrimoxazole and aminoglycoside antibiotics; furthermore, SchA antagonized polymyxin B, and both WCA and SchA antagonized imipenem against the P. aeruginosa strain, but not against the E. coli strains. Sheep blood-MHA (Bl-MHA), WCA, THYA, and DSTA were examined with Streptococcus pyogenes ATCC 19615, Streptococcus agalactiae ATCC 13813, and Streptococcus pneumoniae ATCC 6306. In comparison with Bl-MHA, both WCA and THYA yielded comparable inhibition zones against S. pyogenes; DSTA afforded suboptimal growth. DSTA yielded larger inhibition zones with the majority of antimicrobial drugs against S. agalactiae, whereas WCA and THYA enhanced the activity of oxacillin and penicillin G against this strain. S. pneumoniae strain ATCC 6306 grew well on Bl-MHA, yielded suboptimal growth on WCA and faint growth on THYA, and failed to grow on DSTA. Chocolate-supplemented sheep blood-MHA (CHOC-MHA) was compared with Haemophilus test medium (HTM), WCA with added NAD, and THYA with added hematin and NAD against Haemophilus influenzae strains ATCC 35056 and ATCC 49247. The activities of doxycycline and rifampin were enhanced against both strains by HTM, WCA+NAD, and THYA+hematin+NAD. Only WCA+NAD antagonized cotrimoxazole against both H. influenzae strains, an effect due to thymidine; however, HTM antagonized cotrimoxazole against S. aureus ATCC 25923 and E. coli ATCC 25922. It was concluded that Bl-MHA performed best for

  7. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    PubMed Central

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  8. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  9. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-03-24

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  10. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.

    PubMed

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-06-16

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain.

  11. Draft Genome Sequence of a Metronidazole-Resistant Derivative of Gardnerella vaginalis Strain ATCC 14019

    PubMed Central

    Schuyler, Jessica A.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.

    2015-01-01

    We report the genome sequence of a metronidazole-resistant derivative of Gardnerella vaginalis ATCC 14019. This strain was obtained after serial selection to increase the MIC from 4 to ≥500 µg/ml. Two coding changes, in genes encoding a response regulator and an NAD+ synthetase, arose during selection. PMID:26564054

  12. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  13. Full-Genome Assembly of Reference Strain Providencia stuartii ATCC 33672.

    PubMed

    Frey, K G; Bishop-Lilly, K A; Daligault, H E; Davenport, K W; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Jaissle, J; Koroleva, G I; Ladner, J T; Minogue, T D; Palacios, G F; Redden, C L; Xu, Y; Johnson, S L

    2014-10-23

    A member of the normal human gut microflora, Providencia stuartii is of clinical interest due to its role in nosocomial infections of the urinary tract and because it readily acquires antibiotic resistance. Here, we present the complete genome of P. stuartii strain ATCC 33672, consisting of a 4.28-Mbp chromosome and a 48.9-kbp plasmid.

  14. Genome Sequence of Actinomyces naeslundii Strain ATCC 27039, Isolated from an Abdominal Wound Abscess

    PubMed Central

    Yamane, Kazuyoshi; Yamanaka, Takeshi; Maruyama, Hugo; Wang, Pao-Li; Komasa, Satoshi; Okazaki, Joji

    2016-01-01

    Here, we present the complete genome sequence of Actinomyces naeslundii strain ATCC 27039, isolated from an abdominal wound abscess. This strain is genetically transformable and will thus provide valuable information related to its crucial role in oral multispecies biofilm development. PMID:28034855

  15. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    PubMed Central

    Davis, Jennifer R.; Goodwin, Lynne; Teshima, Hazuki; Detter, Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass-degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized component of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism. PMID:23833133

  16. Complete Genome Sequence of the Beer Spoilage Organism Pediococcus claussenii ATCC BAA-344T

    PubMed Central

    Pittet, Vanessa; Abegunde, Teju; Marfleet, Travis; Haakensen, Monique; Morrow, Kendra; Jayaprakash, Teenus; Schroeder, Kristen; Trost, Brett; Byrns, Sydney; Bergsveinson, Jordyn; Kusalik, Anthony

    2012-01-01

    Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism. PMID:22328764

  17. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  18. Draft Genome Sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621

    PubMed Central

    Najdenski, Hristo

    2017-01-01

    ABSTRACT We present here the 5.561-Mbp assembled draft genome sequence of Klebsiella pneumoniae subsp. pneumoniae ATCC 9621, a phosphite- and organophosphonate-assimilating Gammaproteobacterium. The genome harbors 5,179 predicted protein-coding genes. PMID:28336608

  19. Draft Genome Sequence of Veillonella tobetsuensis ATCC BAA-2400T Isolated from Human Tongue Biofilm.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2015-08-20

    Here, we report the draft genome sequence of Veillonella tobetsuensis ATCC-BAA 2400(T). This bacterium has the remarkable ability to form oral biofilms. The genome is predicted to encode the necessary enzymes involved in the pathway that facilitates the conversion of lactate to propionate.

  20. Whole-genome sequence of Nocardiopsis alba strain ATCC BAA-2165, associated with honeybees.

    PubMed

    Qiao, Jianjun; Chen, Lei; Li, Yongli; Wang, Jiangxin; Zhang, Weiwen; Chen, Shawn

    2012-11-01

    The actinomycete Nocardiopsis alba was reportedly associated with honeybees in separate occurrences. We report the complete genome of Nocardiopsis alba ATCC BAA-2165 isolated from honeybee guts. It will provide insights into the metabolism and genetic regulatory networks of this genus of bacteria that enable them to live in a range of environments.

  1. Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T.

    PubMed

    Pittet, Vanessa; Abegunde, Teju; Marfleet, Travis; Haakensen, Monique; Morrow, Kendra; Jayaprakash, Teenus; Schroeder, Kristen; Trost, Brett; Byrns, Sydney; Bergsveinson, Jordyn; Kusalik, Anthony; Ziola, Barry

    2012-03-01

    Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism.

  2. Complete genome sequence of Helicobacter cinaedi type strain ATCC BAA-847.

    PubMed

    Miyoshi-Akiyama, Tohru; Takeshita, Nozomi; Ohmagari, Norio; Kirikae, Teruo

    2012-10-01

    Here we report the completely annotated genome sequence of the Helicobacter cinaedi type strain (ATCC BAA-847), which is an emerging pathogen that causes cellulitis and bacteremia. The genome sequence will provide new insights into the diagnosis, pathogenic mechanisms, and drug resistance of H. cinaedi.

  3. Complete Genome Sequences for Three Chromosomes of the Burkholderia stabilis Type Strain (ATCC BAA-67).

    PubMed

    Bugrysheva, Julia V; Cherney, Blake; Sue, David; Conley, Andrew B; Rowe, Lori A; Knipe, Kristen M; Frace, Michael A; Loparev, Vladimir N; Avila, Julie R; Anderson, Kevin; Hodge, David R; Pillai, Segaran P; Weigel, Linda M

    2016-11-17

    We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%. These characteristics closely resemble the genomes of other sequenced members of the Burkholderia cepacia complex.

  4. Draft Genome Sequence of the Oleaginous Yeast Cryptococcus curvatus ATCC 20509

    PubMed Central

    Ojumu, John

    2016-01-01

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. Here, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential. PMID:27811111

  5. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    SciTech Connect

    Davis, Jennifer R.; Goodwin, Lynne A.; Teshima, Hazuki; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Szeto, Ernest; Markowitz, Victor; Ivanova, N; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam L; Sello, Jason K.

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  6. Draft Genome Sequence of the Rodent Opportunistic Pathogen Pasteurella pneumotropica ATCC 35149T.

    PubMed

    Sasaki, Hiraku; Ishikawa, Hiroki; Asano, Ryoki; Ueshiba, Hidehiro; Matsumoto, Tetsuya; Boot, Ron; Kawamoto, Eiichi

    2014-08-07

    Pasteurella pneumotropica is an opportunistic pathogen in rodents that is commonly isolated from upper respiratory tracts in laboratory rodents. Here, we report the draft genome sequence of the P. pneumotropica type strain ATCC 35149, which was first isolated and characterized as biotype Jawetz.

  7. Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1

    PubMed Central

    Hawkins, Shawn A; Layton, Alice C; Ripp, Steven; Williams, Dan; Sayler, Gary S

    2008-01-01

    The genome of a fecal pollution indicator phage, Bacteroides fragilis ATCC 51477-B1, was sequenced and consisted of 44,929 bases with a G+C content of 38.7%. Forty-six putative open reading frames were identified and genes were organized into functional clusters for host specificity, lysis, replication and regulation, and packaging and structural proteins. PMID:18710568

  8. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    NASA Astrophysics Data System (ADS)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun

    2014-06-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  9. Interactions of Bacillus licheniformis ATCC 10716 and normal flora of human skin.

    PubMed

    Bibel, D J; Smiljanic, R J; Lovell, D J

    1978-06-01

    To determine whether antibiotic production might be ecologically advantageous in the survival of Bacillus species on human skin, we applied spores of a bacitracin-producing strain of Bacillus licheniformis (ATCC 10716) to the forearms of 11 volunteers. Three additional strains of B. licheniformis which did not synthesize antibiotics, including a mutant of ATCC 10716, were used in subsequent control trials. Samples of flora were taken from inoculated and control (opposite forearm) sites during the colonization period, generally 3 weeks. Although population densities were unaltered, changes in the carriage, composition, and bacitracin sensitivity of resident flora were related with the presence of ATCC 10716 only, which suggests that microbial interactions are important in bacillus colonization and in maintenance of normal flora. Interactions were examined in vitro by comparing growth curves of representative skin bacteria, including isolates of Staphylococcus epidermidis, Staphylococcus saprophyticus, Micrococcus luteus, and a large-colony diphtheroid, grown individually, in mixed culture with each other, and together in presence of each test strain of B. licheniformis. We observed some diminution of growth of M. luteus and the diphtheroid in the first mixed culture, and the diphtheroid was completely retarded in common culture with ATCC 10716. Lesser antibiotic effects were seen on the cocci, whose rank of sensitivity was similar to that in vivo. The growth of the diphtheroid was enhanced in mixed culture with those strains of bacilli which lack antibiotic activity.

  10. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    SciTech Connect

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  11. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE PAGES

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  12. Biochemical and morphological characterization of the killing of human monocytes by a leukotoxin derived from Actinobacillus actinomycetemcomitans.

    PubMed Central

    Taichman, N S; Dean, R T; Sanderson, C J

    1980-01-01

    A potent, heat-labile leukotoxic material was extracted from Actinobacillus actinomycetemcomitans (strain Y4), an anaerobic gram-negative microorganism originally isolated from subgingival plaque in a patient with juvenile periodontitis. The cytopathic effects of Y4 toxin on purified monocytes were studied by the extracellular release of radioactive cytoplasmic markers and cell enzymes and by time-lapse microcinematography. Y4 toxin rapidly bound to the cells, producing dose- and time-dependent alterations culminating in cell death and release of intracellular constituents into the culture medium. The evidence to be presented suggests that the cell membrane of the monocyte may be the primary target in the development of these phenomena. Previous studies have shown that Y4 toxin also kills human polymorphonuclear leukocytes but not other cell types. It is conceivable that disruption of polymorphonuclear leukocytes and monocytes by Y4 toxin in the gingival crevice area may be relevant in the pathogenesis of juvenile periodontitis. Images Fig. 1 PMID:6155347

  13. Resistance of Actinobacillus actinomycetemcomitans and differential susceptibility of oral Haemophilus species to the bactericidal effects of hydrogen peroxide.

    PubMed Central

    Miyasaki, K T; Wilson, M E; Reynolds, H S; Genco, R J

    1984-01-01

    We compared the sensitivities of oral and nonoral isolates of Actinobacillus actinomycetemcomitans, Haemophilus segnis, H. aphrophilus, and H. paraphrophilus to the bactericidal action of reagent hydrogen peroxide (H2O2). Susceptibility to a range of H2O2 concentrations (10(-6) to 10(-3) M) was assessed by incubating bacterial suspensions for 1 h at 37 degrees C in the presence of H2O2 and plating on chocolate agar to determine the concentration of H2O2 that would produce a 50% reduction in CFU (50% lethal dose). As a group, A. actinomycetemcomitans was more resistant to H2O2 than the oral haemophili, and H. aphrophilus was much more sensitive than all other organisms tested. The range of 50% lethal dose values for A. actinomycetemcomitans was between 8.5 X 10(-5) and 10(-3) M H2O2 or above. In contrast, H. aphrophilus exhibited 50% lethal dose values from below 1 X 10(-6) to 3.4 X 10(-4) M H2O2. The resistance of A. actinomycetemcomitans to H2O2 may be sufficient to protect these organisms from direct H2O2-mediated killing by host phagocytes. PMID:6500706

  14. ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae

    PubMed Central

    Bossé, Janine T.; Li, Yanwen; Fernandez Crespo, Roberto; Chaudhuri, Roy R.; Rogers, Jon; Holden, Matthew T. G.; Maskell, Duncan J.; Tucker, Alexander W.; Wren, Brendan W.; Rycroft, Andrew N.; Langford, Paul R.

    2016-01-01

    ICEApl1 was identified in the whole genome sequence of MIDG2331, a tetracycline-resistant (MIC = 8 mg/L) serovar 8 clinical isolate of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. PCR amplification of virB4, one of the core genes involved in conjugation, was used to identify other A. pleuropneumoniae isolates potentially carrying ICEApl1. MICs for tetracycline were determined for virB4 positive isolates, and shotgun whole genome sequence analysis was used to confirm presence of the complete ICEApl1. The sequence of ICEApl1 is 56083 bp long and contains 67 genes including a Tn10 element encoding tetracycline resistance. Comparative sequence analysis was performed with similar integrative conjugative elements (ICEs) found in other members of the Pasteurellaceae. ICEApl1 is most similar to the 59393 bp ICEHin1056, from Haemophilus influenzae strain 1056. Although initially identified only in serovar 8 isolates of A. pleuropneumoniae (31 from the UK and 1 from Cyprus), conjugal transfer of ICEApl1 to representative isolates of other serovars was confirmed. All isolates carrying ICEApl1 had a MIC for tetracycline of 8 mg/L. This is, to our knowledge, the first description of an ICE in A. pleuropneumoniae, and the first report of a member of the ICEHin1056 subfamily in a non-human pathogen. ICEApl1 confers resistance to tetracycline, currently one of the more commonly used antibiotics for treatment and control of porcine pleuropneumonia. PMID:27379024

  15. Adhesion Protein ApfA of Actinobacillus pleuropneumoniae Is Required for Pathogenesis and Is a Potential Target for Vaccine Development

    PubMed Central

    Zhou, Yang; Li, Lu; Chen, Zhaohui; Yuan, Hong; Chen, Huanchun

    2013-01-01

    Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia, which causes serious economic losses in the pig farming industry worldwide. Due to a lack of knowledge of its virulence factors and a lack of effective vaccines able to confer cross-serotype protection, it is difficult to place this disease under control. By analyzing its genome sequences, we found that type IV fimbrial subunit protein ApfA is highly conserved among different serotypes of A. pleuropneumoniae. Our study shows that ApfA is an adhesin since its expression was greatly upregulated (135-fold) upon contact with host cells, while its deletion mutant attenuated its capability of adhesion. The inactivation of apfA dramatically reduced the ability of A. pleuropneumoniae to colonize mouse lung, suggesting that apfA is a virulence factor. Purified recombinant ApfA elicited an elevated humoral immune response and conferred robust protection against challenges with A. pleuropneumoniae serovar 1 strain 4074 and serovar 7 strain WF83 in mice. Importantly, the anti-ApfA serum conferred significant protection against both serovar 1 and serovar 7 in mice. These studies indicate that ApfA promotes virulence through attachment to host cells, and its immunogenicity renders it a promising novel subunit vaccine candidate against infection with A. pleuropneumoniae. PMID:23269417

  16. Evaluation of a multiplex PCR to identify and serotype Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15.

    PubMed

    Turni, C; Singh, R; Schembri, M A; Blackall, P J

    2014-10-01

    The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and impact of the study: A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease.

  17. Identification and characterization of a DNA region involved in the export of capsular polysaccharide by Actinobacillus pleuropneumoniae serotype 5a.

    PubMed Central

    Ward, C K; Inzana, T J

    1997-01-01

    Actinobacillus pleuropneumoniae synthesizes a serotype-specific capsular polysaccharide that acts as a protective barrier to phagocytosis and complement-mediated killing. To begin understanding the role of A. pleuropneumoniae capsule in virulence, we sought to identify the genes involved in capsular polysaccharide export and biosynthesis. A 5.3-kb XbaI fragment of A. pleuropneumoniae serotype 5a J45 genomic DNA that hybridized with DNA probes specific for the Haemophilus influenzae type b cap export region was cloned and sequenced. This A. pleuropneumoniae DNA fragment encoded four open reading frames, designated cpxDCBA. The nucleotide and predicted amino acid sequences of cpxDCBA contained a high degree of homology to the capsule export genes of H. influenzae type b bexDCBA, Neisseria meningitidis group B ctrABCD, and, to a lesser extent, Escherichia coli K1 and K5 kpsE and kpsMT. When present in trans, the cpxDCBA gene cluster complemented kpsM::TnphoA or kpsT::TnphoA mutations, determined by enzyme immunoassay and by restored sensitivity to a K5-specific bacteriophage. A cpxCB probe hybridized to genomic DNA from all A. pleuropneumoniae serotypes tested, indicating that this DNA was conserved among serotypes. These data suggest that A. pleuropneumoniae produces a group II family capsule similar to those of related mucosal pathogens. PMID:9169799

  18. ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae.

    PubMed

    Bossé, Janine T; Li, Yanwen; Fernandez Crespo, Roberto; Chaudhuri, Roy R; Rogers, Jon; Holden, Matthew T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2016-01-01

    ICEApl1 was identified in the whole genome sequence of MIDG2331, a tetracycline-resistant (MIC = 8 mg/L) serovar 8 clinical isolate of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. PCR amplification of virB4, one of the core genes involved in conjugation, was used to identify other A. pleuropneumoniae isolates potentially carrying ICEApl1. MICs for tetracycline were determined for virB4 positive isolates, and shotgun whole genome sequence analysis was used to confirm presence of the complete ICEApl1. The sequence of ICEApl1 is 56083 bp long and contains 67 genes including a Tn10 element encoding tetracycline resistance. Comparative sequence analysis was performed with similar integrative conjugative elements (ICEs) found in other members of the Pasteurellaceae. ICEApl1 is most similar to the 59393 bp ICEHin1056, from Haemophilus influenzae strain 1056. Although initially identified only in serovar 8 isolates of A. pleuropneumoniae (31 from the UK and 1 from Cyprus), conjugal transfer of ICEApl1 to representative isolates of other serovars was confirmed. All isolates carrying ICEApl1 had a MIC for tetracycline of 8 mg/L. This is, to our knowledge, the first description of an ICE in A. pleuropneumoniae, and the first report of a member of the ICEHin1056 subfamily in a non-human pathogen. ICEApl1 confers resistance to tetracycline, currently one of the more commonly used antibiotics for treatment and control of porcine pleuropneumonia.

  19. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation.

    PubMed

    Li, Lu; Zhu, Jiawen; Yang, Kui; Xu, Zhuofei; Liu, Ziduo; Zhou, Rui

    2014-06-01

    Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress.

  20. Evaluation of a single dose versus a divided dose regimen of amoxycillin in treatment of Actinobacillus pleuropneumoniae infection in pigs.

    PubMed

    Lauritzen, B; Lykkesfeldt, J; Friis, C

    2005-08-01

    The theory of a time-dependent effect of amoxycillin was examined in a model of porcine Actinobacillus pleuropneumoniae (Ap)-infection using clinically relevant dosage regimens. Twenty hours after infection of fourteen pigs, when clinical signs of pneumonia were present, one group of pigs received a single dose of amoxycillin (20 mg/kg, i.m.), whereas another group received four doses of 5 mg/kg injected at 8-h intervals. A similar AUC of the plasma amoxycillin concentration versus time curve was obtained in the two groups, whereas the maximum concentration was threefold higher using the single high dose. Plasma amoxycillin was above the MIC for twice as long using the fractionated dosage scheme. The condition of the animals was evaluated by clinical and haematological observations combined with quantification of biochemical infection markers: C-reactive protein, zinc and ascorbic acid. Within 48 h of treatment, the pigs in both treatment groups recovered clinically. No significant differences in the time-course of clinical observations or plasma concentrations of the biomarkers of infection were observed between the two treatments. In conclusion, the efficacy of these two dosage regimens of amoxycillin was not significantly different in treatment of acute Ap-infection in pigs.

  1. A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation

    PubMed Central

    Li, Ying; Cao, Sanjie; Zhang, Luhua; Lau, Gee W.; Wen, Yiping; Wu, Rui; Zhao, Qin; Huang, Xiaobo; Yan, Qigui; Huang, Yong; Wen, Xintian

    2016-01-01

    Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance (MDR) in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux pump inhibitor (EPI), suggesting a role for EPI in antibacterial strategies toward drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the MDR machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516. PMID:27822201

  2. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  3. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  4. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  5. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    PubMed

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system.

  6. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    SciTech Connect

    Stroemberg, N.K.; Karlsson, K.A. )

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose were active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.

  7. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.

    PubMed

    West, Thomas P; Nemmers, Beth

    2008-02-01

    The production of the polysaccharide curdlan from the ethanol processing coproduct condensed corn distillers solubles by the bacterium Agrobacterium sp. ATCC 31749 was investigated. It was found that curdlan could be produced by the bacterium using condensed corn distillers solubles as a source of carbon and nitrogen. As the concentration of condensed corn distillers solubles was increased from 50 g l(-1) to 400 g l(-1), the concentration of curdlan increased but not proportionally. The highest curdlan concentration was produced by the strain on 400 g l(-1 )condensed corn distillers solubles after 120 h and its level was higher than was observed for glucose-based curdlan production. Biomass production by ATCC 31749 was also highest after 120 h of growth on 400 g l(-1 )condensed corn distillers solubles and was higher than found for glucose-based biomass production.

  8. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    PubMed

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium.

  9. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750.

    PubMed Central

    Yamamoto, K; Oishi, K; Fujimatsu, I; Komatsu, K

    1991-01-01

    R-(-)-Mandelic acid was produced from racemic mandelonitrile by Alcaligenes faecalis ATCC 8750. Ammonium acetate or L-glutamic acid as the carbon source and n-butyronitrile as the inducer in the culture medium were effective for bacterial growth and the induction of R-(-)-mandelic acid-producing activity. The R-(-)-mandelic acid formed from mandelonitrile by resting cells was present in a 100% enantiomeric excess. A. faecalis ATCC 8750 has an R-enantioselective nitrilase for mandelonitrile and an amidase for mandelamide. As R-(-)-mandelic acid was produced from racemic mandelonitrile in a yield of 91%, whereas no S-mandelonitrile was left, the S-mandelonitrile remaining in the reaction is spontaneously racemized because of the chemical equilibrium and is used as the substrate. Consequently, almost all the mandelonitrile is consumed and converted to R-(-)-mandelic acid. R-(-)-Mandelic acid was also produced when benzaldehyde plus HCN was used as the substrate. PMID:1660699

  10. Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis.

    PubMed

    Kawahara, Kazuyoshi; Tanaka, Atsushi; Yoon, Jaewoo; Yokota, Akira

    2010-06-01

    A parathione-degrading bacterium isolated from rice field in the Philippines, Flavobacterium sp. ATCC 27551 (Sethunathan and Yoshida, 1973, Can. J. Microbiol., 19, 873-875), was re-examined chemotaxonomically and phylogenetically. The strain contained 2-hydroxymyristic acid (2-OH 14 : 0), cis-vaccenic acid (18 : 1 omega7c), and palmitic acid (16 : 0) as major cellular fatty acids, two kinds of glycosphingolipids, and ubiquinone-10 as a sole quinone component. The G+C content of genomic DNA of the strain was 65.9 mol%. The phylogenetic analyses of the 16S rRNA gene indicated that the strain was included in the family Sphingomonadaceae, and most closely related to Sphingobium fuliginis (98.0% similarity) and Sphingobium herbicidovorans (97.3%). The strain showed similar physiological characteristics and a moderate value of DNA-DNA relatedness to S. fuliginis. These data suggested it reasonable to conclude that strain ATCC 27551 was identified as S. fuliginis.

  11. Complete Genome Sequence of Pseudomonas syringae pv. lapsa Strain ATCC 10859, Isolated from Infected Wheat

    PubMed Central

    Kong, Jun; Jiang, Hongshan; Li, Baiyun; Zhao, Wenjun

    2016-01-01

    Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence. PMID:26941133

  12. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum.

  13. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice.

    PubMed

    Wang, Bao-gui; Xu, Hai-bo; Xu, Feng; Zeng, Zhe-ling; Wei, Hua

    2016-03-01

    This study aimed to examine whether Bifidobacterium bifidum ATCC 29521, a species of colonic microflora in humans, is involved in the intestinal tract of mice. This study was also conducted to determine the antioxidant activity of this species by evaluating different microbial populations and reactive oxygen species isolated from feces and intestinal contents for 28 days of oral administration. Microbial diversities were assessed through bacterial culture techniques, PCR-DGGE, and real-time PCR. This study showed that the intake of B. bifidum ATCC 29521 significantly (p < 0.05) improved the ecosystem of the intestinal tract of BALB/c mice by increasing the amount of probiotics (Lactobacillus intestinalis and Lactobacillus crispatus) and by reducing unwanted bacterial populations (Enterobacter, Escherichia coli). Antioxidative activities of incubated cell-free extracts were evaluated through various assays, including the scavenging ability of DPPH radical (64.5% and 67.54% (p < 0.05), respectively, at 21 days in nutrients and 28 days in MRS broth), superoxide anion, and hydroxyl radical (85% and 61.5% (p < 0.05), respectively, at intestinal contents in nutrients and 21 days in MRS broth). Total reducing power (231.5 μmol/L (p < 0.05), 14 days in MRS broth) and mRNA level of genes related to oxidative stress were also determined. Results indicated that B. bifidum ATCC 29521 elicits a beneficial effect on murine gut microbiota and antioxidant activities compared with the control samples. This species can be considered as a potential bioresource antioxidant to promote health. Bifidobacterium bifidum ATCC 29521 may also be used as a promising material in microbiological and food applications.

  14. Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer.

    PubMed

    Thibessard, Annabelle; Haas, Drago; Gerbaud, Claude; Aigle, Bertrand; Lautru, Sylvie; Pernodet, Jean-Luc; Leblond, Pierre

    2015-11-20

    Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3 Mbp linear chromosome and a 89 kb circular plasmid. The complete genome sequence reported here will enable us to investigate Streptomyces genome evolution and to discover new secondary metabolites with potential applications notably in human medicine.

  15. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  16. Draft Genome Sequence of the Fast-Growing Marine Bacterium Vibrio natriegens Strain ATCC 14048

    PubMed Central

    Wang, Zheng; Lin, Baochuan; Hervey, W. Judson

    2013-01-01

    Vibrio natriegens bacteria are Gram-negative aquatic microorganisms that are found primarily in coastal seawater and sediments and are perhaps best known for their high growth rates (generation time of <10 min). In this study, we report the first sequenced genome of this species, that of the type strain Vibrio natriegens ATCC 14048, a salt marsh mud isolate from Sapelo Island, GA. PMID:23929482

  17. Draft Genome Sequence of the Fast-Growing Marine Bacterium Vibrio natriegens Strain ATCC 14048.

    PubMed

    Wang, Zheng; Lin, Baochuan; Hervey, W Judson; Vora, Gary J

    2013-08-08

    Vibrio natriegens bacteria are Gram-negative aquatic microorganisms that are found primarily in coastal seawater and sediments and are perhaps best known for their high growth rates (generation time of <10 min). In this study, we report the first sequenced genome of this species, that of the type strain Vibrio natriegens ATCC 14048, a salt marsh mud isolate from Sapelo Island, GA.

  18. Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder.

    PubMed

    Cheng, Teng; Li, Rui; Kou, Xiaoxi; Wang, Shaojin

    2017-06-01

    Heat controlled atmosphere (CA) treatments hold potential to pasteurize Salmonella enteritidis PT 30 in almonds. Nonpathogenic Escherichia coli ATCC 25922 was used as a surrogate species of pathogenic Salmonella for validation of thermal pasteurization to meet critical safety requirements. A controlled atmosphere/heating block system (CA-HBS) was used to rapidly determine thermal inactivation of E. coli ATCC 25922. D- and z-values of E. coli ATCC 25922 inoculated in almond powder were determined at four temperatures between 65 °C and 80 °C under different gas concentrations and heating rates. The results showed that D- and z-values of E. coli under CA treatment were significantly (P < 0.05) lower than those under regular atmosphere (RA) treatment at 4 given temperatures. Relatively higher CO2 concentrations (20%) and lower O2 concentrations (2%) were more effective to reduce thermal inactivation time. There were no significant differences in D-values of E. coli when heating rates were above 1 °C/min both in RA and CA treatments. But D-values significantly (P < 0.05) increased under RA treatment and decreased under CA treatment at lower heating rates. Combination of rapid heat and CA treatments could be a promising method for thermal inactivation of S. enteritidis PT 30 in almond powder.

  19. Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367.

    PubMed

    Moreno-Arribas, V; Lonvaud-Funel, A

    1999-11-01

    Tyramine, a frequent amine in wines, is produced from tyrosine by the tyrosine decarboxylase (TDC) activity of bacteria. The tyramine-producing strain Lactobacillus brevis IOEB 9809 isolated from wine and the reference strain L. brevis ATCC 367 were studied. At the optimum pH, 5.0, K(m) values of IOEB 9809 and ATCC 367 crude extracts for L-tyrosine were 0.58 mM and 0.67 mM, and V(max) was higher for the wine strain (115 U) than the ATCC 367 (66 U). TDC exhibited a preference for L-tyrosine over L-DOPA as substrate. Enzyme activity was pyridoxal-5'-phosphate (PLP)-dependent and it was stabilized by the substrate and coenzyme. In contrast, glycerol and beta-mercaptoethanol strongly inhibited TDC. Tyramine competitively inhibited TDC for both strains. Citric acid, lactic acid and ethanol had an inhibitory effect on cells and crude extracts, but none could inhibit TDC at the usual concentrations in wines.

  20. The fur transcription regulator and fur-regulated genes in Clostridium botulinum A ATCC 3502.

    PubMed

    Zhang, Weibin; Ma, Junhua; Zang, Chengyuan; Song, Yingying; Liu, Peipei

    2011-01-01

    Clostridium botulinum is a spore-forming bacterium that can produce a very powerful neurotoxin that causes botulism. In this study, we have investigated the Fur transcription regulators in Clostridium botulinum and Fur-regulated genes in Clostridium botulinum A ATCC 3502. We found that gene loss may be the main cause leading to the different numbers of Fur transcription regulators in different Clostridium botulinum strains. Meanwhile, 46 operons were found to be regulated by the Fur transcription regulator in Clostridium botulinum A ATCC 3502, involved in several functional classifications, including iron acquisition, iron utilization, iron transport, and transcription regulator. Under an iron-restricted medium, we experimentally found that a Fur transcription regulator (CBO1372) and two operons (DedA, CBO2610-CBO2614 and ABC transporter, CBO0845-CBO0847) are shown to be differentially expressed in Clostridium botulinum A ATCC 3502. This study has provided-us novel insights into the diversity of Fur transcription regulators in different Clostridium botulinum strains and diversity of Fur-targeted genes, as well as a better understanding of the dynamic changes in iron restriction occurring in response to this stress.

  1. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  2. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  3. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    PubMed

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-03-23

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10(8)g(-1) wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level.

  4. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  5. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  6. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541.

    PubMed

    Giacomucci, L; Toja, F; Sanmartín, P; Toniolo, L; Prieto, B; Villa, F; Cappitelli, F

    2012-09-01

    Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.

  7. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  8. Effects of penicillin G on morphology and certain physiological parameters of Lactobacillus acidophilus ATCC 4356.

    PubMed

    Khaleghi, M; Kasra Kermanshahi, R; Zarkesh-Esfahani, S H

    2011-08-01

    Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, H₂O₂ formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of H₂O₂ formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.

  9. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  10. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  11. Experimental infection of SPF pigs with Actinobacillus pleuropneumoniae serotype 9 alone or in association with Mycoplasma hyopneumoniae.

    PubMed

    Marois, Corinne; Gottschalk, Marcelo; Morvan, Hervé; Fablet, Christelle; Madec, François; Kobisch, Marylène

    2009-03-30

    The purpose of this study was to compare in SPF pigs, the pathogenicity of an Actinobacillus pleuropneumoniae serotype 9 strain 21 (isolated from the palatine tonsils of a healthy gilt on a French nucleus pig farm, with no clinical signs or lung lesions but a highly positive reaction to A. pleuropneumoniae serotype 9 antibodies) with a pathogenic A. pleuropneumoniae strain 4915 serotype 9 (isolated in France from an outbreak of porcine pleuropneumonia). The pathogenicity of one Mycoplasma hyopneumoniae strain alone or associated with A. pleuropneumoniae strain 21 was also compared. Eight groups of 7 pigs were infected (at 6 or 10 weeks of age) and a control group was kept non-infected. Results showed that sensitivity to A. pleuropneumoniae was related to the age of the pig (6 weeks vs 10 weeks) whatever the strain. Surviving pigs infected at 6 weeks of age developed severe clinical signs, lung lesions typical of A. pleuropneumoniae and they seroconverted. In contrast, symptoms and lung lesions were almost non-existent in pigs infected with strain 21 at 10 weeks of age, but a seroconversion was observed with very high ELISA titres. These results were in accordance with those observed in the nucleus pig farm. Infection with M. hyopneumoniae alone induced typical mycoplasmal symptoms, pneumonia and seroconversion. Symptoms and lung lesions were the most noticeable in pigs infected with M. hyopneumoniae at 6 weeks of age and with A. pleuropneumoniae 4 weeks later. Our results show that the presence of A. pleuropneumoniae serotype 9 in a pig herd may be clinically unnoticed and that M. hyopneumoniae may potentiate A. pleuropneumoniae infection.

  12. Immunoprotective Efficacy of Six In vivo-Induced Antigens against Actinobacillus pleuropneumoniae as Potential Vaccine Candidates in Murine Model

    PubMed Central

    Zhang, Fei; Cao, Sanjie; Zhu, Zhuang; Yang, Yusheng; Wen, Xintian; Chang, Yung-Fu; Huang, Xiaobo; Wu, Rui; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Zhao, Qin

    2016-01-01

    Six in vivo-induced (IVI) antigens—RnhB, GalU, GalT, Apl_1061, Apl_1166, and HflX were selected for a vaccine trial in a mouse model. The results showed that the IgG levels in each immune group was significantly higher than that of the negative control (P < 0.001). Except rRnhB group, proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was observed in rGalU and rGalT groups (P < 0.05). In the rGalT vaccinated group, the proportion of CD4+ T cells in spleen was significant higher than that of negative control (P < 0.05). Moreover, proportions of CD4+ T cells in other vaccinated groups were all up-regulated to varying degrees. Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected. A survival rate of 87.5, 62.5, and 62.5% were obtained among rGalT, rAPL_1166, and rHflX group, respectively while the remaining three groups was only 25%. Histopathological analyses of lungs indicated that surviving animals from the vaccinated groups showed relatively normal pulmonary structure alveoli. These findings confirm that IVI antigens used as vaccine candidates provide partial protection against Actinobacillus pleuropneumoniae infection in a mouse model, which could be used as potential vaccine candidates in piglets. PMID:27818646

  13. Oral immunization against porcine pleuropneumonia using the cubic phase of monoolein and purified toxins of Actinobacillus pleuropneumoniae.

    PubMed

    Lopez-Bermudez, Jorge; Quintanar-Guerrero, David; Lara Puente, Horacio; Tórtora Perez, Jorge; Suárez Güemez, Francisco; Ciprián Carrasco, Abel; Mendoza Elvira, Susana

    2014-11-28

    The main goal of this work was to obtain an orally administered immunogen that would protect against infections by Actinobacillus pleuropneumoniae. The Apx I, II and III toxins were obtained from the supernatants of cultures of serotypes 1 and 3 of A. pleuropneumoniae. The capacity of monoolein gel to trap and protect the Apx toxins, and the effect of their incorporation on the stability of the cubic phase were evaluated. The gel was capable of trapping a 400-μg/ml concentration of the antigen with no effects on its structure. Approximately 60% of the protein molecules were released from the gel within 4h. Four experimental groups were formed, each one with four pigs. All challenges were conducted in a nebulization chamber. Group A: Control (-) not vaccinated and not challenged; Group B: Control (+) not vaccinated but challenged; Group C: vaccinated twice intramuscularly with ToxCom (a commercial toxoid) at an interval of 15 days and then challenged; and Group D: vaccinated orally twice a week for 4 weeks with ToxOral (an oral toxoid) and challenged on day 28 of the experiment with a same dose of 2.0 × 10(4) UFC of A. pleuropneumoniae serotypes 1 and 3. The lesions found in group B covered 27.7-43.1% of the lungs; the pigs in group C had lesions over 12.3-28%; and those in group D over 15.4-32.3%. No lesions were found in the Group A pigs. A. pleuropneumoniae induced macroscopic lesions characteristic of infection by and lesions microscopic detected by histopathology. The etiologic agent was recovered from the infected lungs, tonsils and spleen. The serotypes identified were 1 and 3. An indirect ELISA test identified the antibodies against the Apx toxins in the serum of the animals immunized orally.

  14. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections

    PubMed Central

    2014-01-01

    Background In this study, four lung lesion scoring methods (Slaughterhouse Pleurisy Evaluation System [SPES], Consolidation Lung Lesion Score [LLS], Image analyses [IA] and Ratio of lung weight/body weight [LW/BW]) were compared for the assessment of the different pathological outcomes derived from an Actinobacillus pleuropneumoniae (App) experimental infection model. Moreover, pathological data was coupled with clinical (fever, inappetence and clinical score), production (average daily weigh gain [ADWG]) and diagnostic (PCR, ELISA and bacterial isolation) parameters within the four infection outcomes (peracute, acute, subclinically infected and non-infected). Results From the 61 inoculated animals, 9 were classified as peracute (presence of severe App-like clinical signs and lesions and sudden death or euthanasia shortly after inoculation), 31 as acutely affected (presence of App-like clinical signs and lesions and survival until the end of the experiment), 12 as subclinically infected (very mild or no clinical signs but App infection confirmed) and 9 as non-infected animals (lack of App-like clinical signs and lack of evidence of App infection). A significant correlation between all lung lesion scoring systems was found with the exception of SPES score versus LW/BW. SPES showed a statistically significant association with all clinical, production and diagnostic (with the exception of PCR detection of App in the tonsil) variables assessed. LLS and IA showed similar statistically significant associations as SPES, with the exception of seroconversion against App at necropsy. In contrast, LW/BW was statistically associated only with App isolation in lungs, presence of App-like lesions and ELISA OD values at necropsy. Conclusions In conclusion, SPES, LLS and IA are economic, fast and easy-to-perform lung scoring methods that, in combination with different clinical and diagnostic parameters, allow the characterization of different outcomes after App infection. PMID

  15. Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes.

    PubMed Central

    Negrete-Abascal, E; Tenorio, V R; Guerrero, A L; García, R M; Reyes, M E; de la Garza, M

    1998-01-01

    A high molecular-mass proteolytic enzyme of Actinobacillus pleuropneumoniae serotype 1, was purified from culture supernatants (CSN) by using DEAE-cellulose and sepharose-4B-gelatin chromatography. In 10% SDS-polyacrylamide gels copolymerized with porcine gelatin, the protease showed a single band of activity of > 200 kDa. However, minor molecular-mass proteolytic bands were observed when the protease was electrophoresed in the presence of either 5% beta-mercaptoethanol, 50 mM dithiothreitol, or 0.25 M urea. Furthermore, when the > 200-kDa purified protein was passed through a sucrose gradient, several bands with proteolytic activity were found: 62, 90, 190, and 540 kDa. The proteolytic activity was increased in the presence of calcium or zinc and was not affected after being heated at 90 degrees C for 5 min. Proteolytic activities were also observed in CSN from all A. pleuropneumoniae serotypes and biotypes. The purified protease hydrolyzed porcine IgA and IgG in vitro. In addition, by immunoblot the protease was recognized by serum of naturally infected pigs with serotypes 1 and 5, and by serum of pigs experimentally infected with serotypes 1, 2, 8, or 9. Serum of a pig vaccinated with CSN of a serotype 3 strain also recognized the protease, but not sera of pigs vaccinated with a bacterin (serotype 1). Proteins from CSN of all the serotypes, which were precipitated with 70% (NH4)2SO4, were recognized by a polyclonal antibody raised against the purified protease. Taken together these results indicate that an antigenic protease is produced in vivo by all the serotypes of A. pleuropneumoniae. The results indicate that proteases could have a role in the disease and in the immune response of pigs infected with A. pleuropneumoniae. Images Figure 2A. Figure 2B. Figure 3. Figure 4. Figure 5A. Figure 5B. Figure 6A. Figure 6B. PMID:9684047

  16. Macrophages largely contribute to heterologous anti-Propionibacterium acnes antibody-mediated protection from Actinobacillus pleuropneumoniae infection in mice.

    PubMed

    Ma, Qiuyue; Sun, Changjiang; Yang, Feng; Wang, Lei; Qin, Wanhai; Xia, Xiaojing; Feng, Xin; Du, Chongtao; Gu, Jingmin; Han, Wenyu; Lei, Liancheng

    2015-03-01

    Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuropneumonia. Propionibacterium acnes is a facultative anaerobic gram-positive corynebacterium. We have previously found that anti-P. acnes antibodies can prevent A. pleuropneumoniae infections in mice. To investigate the role of macrophages in this process, affinity-purified anti-P. acnes IgG and anti-A. pleuropneumoniae IgG were used in opsonophagocytosis assays. Additionally, the efficacy of passive immunization with P. acnes serum against A. pleuropneumoniae was tested in macrophage-depleted mice. It was found that anti-P. acnes IgG had an effect similar to that of anti-A. pleuropneumoniae IgG (P > 0.05), which significantly promotes phagocytosis of A. pleuropneumoniae by macrophages (P < 0.01). It was also demonstrated that, after passive immunization with anti-P. acnes serum, macrophage-replete mice had the highest survival rate (90%), whereas the survival rate of macrophage-depleted mice was only 40% (P < 0.05). However, macrophage-depleted mice that had been passively immunized with naïve serum had the lowest survival rate (20%), this rate being lower than that of macrophage-replete mice that had been passively immunized with naïve serum. Overall, anti-P. acnes antibodies did not prevent A. pleuropneumoniae infection under conditions of macrophage depletion (P > 0.05). Furthermore, in mice that had been passively immunized with anti-P. acnes serum, macrophage depletion resulted in a greater A. pleuropneumoniae burden and more severe pathological features of pneumonia in lung tissues than occurred in macrophage-replete mice. It was concluded that macrophages are essential for the process by which anti-P. acnes antibody prevents A. pleuropneumoniae infection in mice.

  17. Branched-Chain Amino Acids Are Required for the Survival and Virulence of Actinobacillus pleuropneumoniae in Swine▿

    PubMed Central

    Subashchandrabose, Sargurunathan; LeVeque, Rhiannon M.; Wagner, Trevor K.; Kirkwood, Roy N.; Kiupel, Matti; Mulks, Martha H.

    2009-01-01

    In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and that A. pleuropneumoniae mutants unable to synthesize BCAA would be attenuated in a porcine infection model. Quantitation of free amino acids in porcine pulmonary epithelial lining fluid showed concentrations of BCAA ranging from 8 to 30 μmol/liter, which is 10 to 17% of the concentration in plasma. The expression of both ilvI and lrp, a global regulator that is required for ilvI expression, was strongly upregulated in CDM containing concentrations of BCAA similar to those found in pulmonary secretions. Deletion-disruption mutants of ilvI and lrp were both auxotrophic for BCAA in CDM and attenuated compared to wild-type A. pleuropneumoniae in competitive index experiments in a pig infection model. Wild-type A. pleuropneumoniae grew in CDM+BCAA but not in CDM−BCAA in the presence of sulfonylurea AHAS inhibitors. These results clearly demonstrate that BCAA availability is limited in the lungs and support the hypothesis that A. pleuropneumoniae, and potentially other pulmonary pathogens, uses limitation of BCAA as a cue to regulate the expression of genes required for survival and virulence. These results further suggest a potential role for AHAS inhibitors as antimicrobial agents against pulmonary pathogens. PMID:19703979

  18. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107.

    PubMed

    Sosio, Margherita; Gallo, Giuseppe; Pozzi, Roberta; Serina, Stefania; Monciardini, Paolo; Bera, Agnieska; Stegmann, Evi; Weber, Tilmann

    2014-01-23

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and 7,860 protein-coding genes.

  19. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107

    PubMed Central

    Gallo, Giuseppe; Pozzi, Roberta; Serina, Stefania; Monciardini, Paolo; Bera, Agnieska; Stegmann, Evi; Weber, Tilmann

    2014-01-01

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and 7,860 protein-coding genes. PMID:24459268

  20. Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472.

    PubMed

    Morohoshi, Tomohiro; Fukamachi, Katsumasa; Kato, Masashi; Kato, Norihiro; Ikeda, Tsukasa

    2010-01-01

    Chromobacterium violaceum produces the purple pigment violacein by quorum-sensing regulation. 20-bp of the lux box-like sequence was found upstream of vioA in C. violaceum ATCC 12472. CviR received C10-HSL and C6-HSL and activated the transcription of vioA in Escherichia coli. However, in strain ATCC 12472, C6-HSL inhibited both C10-HSL-mediated violacein production and the transcription of vioA.

  1. A 24-kDa cloned zinc metalloprotease from Actinobacillus pleuropneumoniae is common to all serotypes and cleaves actin in vitro.

    PubMed Central

    García-Cuéllar, C; Montañez, C; Tenorio, V; Reyes-Esparza, J; Durán, M J; Negrete, E; Guerrero, A; de la Garza, M

    2000-01-01

    Actinobacillus pleuropneumoniae causes pleuropneumonia in swine. This bacterium secretes proteases that degrade porcine hemoglobin and IgA in vitro. To further characterize A. pleuropneumoniae proteases, we constructed a genomic library expressed in Escherichia coli DH5alpha, and selected a clone that showed proteolytic activity. The recombinant plasmid carries an 800-base pair A. pleuropneumoniae gene sequence that.codes for a 24-kDa polypeptide. A 350-base pair PstI fragment from the sequence hybridized at high stringency with DNA from 12 serotypes of A. pleuropneumoniae, but not with DNA from Actinobacillus suis, Haemophilus parasuis, Pasteurella haemolytica, Pasteurella multocida A or D, or E. coli DH5alpha, thus showing specificity for A. pleuropneumoniae. The expressed polypeptide was recognized as an antigen by convalescent-phase pig sera. Furthermore, a polyclonal antiserum developed against the purified polypeptide recognized an A. pleuropneumoniae oligomeric protein in both crude-extract and cell-free culture media. This recombinant polypeptide cleaved azocoll, gelatin, and actin. Inhibition of the proteolytic activity by diethylpyrocarbonate suggests that this polypeptide is a zinc metalloprotease. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 6. Figure 7. PMID:10805246

  2. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    PubMed

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  3. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    SciTech Connect

    Robas, N.; Zouheiry, H.; Branlant, G.; Branlant, C. )

    1993-01-05

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.

  4. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    PubMed Central

    2011-01-01

    Background Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions. Results To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N2-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that Cyanothece ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. Conclusion This study provides a deeper systems level insight into how Cyanothece ATCC51142

  5. Extraction, purification, and characterization of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Holt, S C

    1991-01-01

    The outer membrane of Wolinella recta ATCC 33238 was isolated by French pressure cell disruption and differential centrifugation. Outer membrane proteins (OMPs) were solubilized by Zwittergent 3.14 extraction and separated by DEAE-Sephacel ion-exchange chromatography. The major OMPs that were found in W. recta ATCC 33238 and in several other Wolinella spp. consisted of proteins with apparent molecular masses of 51, 45, and 43 kDa. These three conserved proteins were purified to essential homogeneity by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and characterized chemically. Heating at between 75 and 100 degrees C revealed both the 43- and 51-kDa proteins to be heat modified from apparent molecular masses of 32 and 38 kDa, respectively. The 45-kDa protein was unmodified at all temperatures tested. Two-dimensional isoelectric focusing-SDS-PAGE revealed the 51-kDa protein to be composed of multiple pIs between a pH of 5.0 and greater than 8.0 while the 43- and 45-kDa proteins had a pI of approximately 6.0. N'-terminal amino acid sequence analysis of the first 30 to 40 amino acids and search of the Protein Identification Resource data base for similar proteins only revealed the 43-kDa protein to be similar to the P.69 OMP of Bordetella pertussis; however, the homology was weak (33%). Amino acid analysis revealed the 43-kDa protein to be noncharged and the 45- and 51-kDa proteins to be hydrophilic, containing between 38 to 42% polar residues but no cysteine. This study reports the purification and partial characterization of three conserved proteins in W. recta ATCC 33238. Images PMID:1894372

  6. Solid state fermentation production of chitin deacetylase by Colletotrichum lindemuthianum ATCC 56676 using different substrates.

    PubMed

    Suresh, P V; Sachindra, N M; Bhaskar, N

    2011-06-01

    Production of extracellular chitin deacetylase by Colletotrichum lindemuthianum ATCC 56676 under solid substrate fermentation was studied. The suitability of shrimp shell chitin waste (SSCW) and commercial wheat bran (CWB) was evaluated for maximal enzyme production. CWB medium (pH 6.4 ± 0.2) supplemented with chitosan favoured maximal chitin deacetylase yield of 460.4 ± 14.7 unit/g initial dry substrate (U/g IDS) at 96 h as compared to maximal yield of 392.0 ± 6.4 U/g IDS at 192 h in SSCW medium (pH 8.7 ± 0.2) at 25 °C incubation temperature and 60% (w/w) initial moisture content of medium. Along with chitin deacetylase, C. lindemuthianum ATCC 56676 produced maximum endo-chitinase (0.28 ± 0.03 U/g IDS at 144 h) and β-N-acetylhexosaminidase (0.79 ± 0.009 U/g IDS at 192 h) in CWB medium and 0.49 ± 0.05 U/g IDS of endo-chitinase at 264 h and 0.38 ± 0.04 U/g IDS of β-N-acetylhexosaminidase at 96 h of incubation in SSCW medium. SEM studies indicated the difference in the morphology of mycelia and hyphae of C. lindemuthianum ATCC 56676 when grown on different solid substrates. Production of chitin deacetylase by SSF is being reported for the first time.

  7. Immunoglobulin class and subclass distribution of antibodies reactive with the immunodominant antigen of Actinobacillus actinomycetemcomitans serotype b.

    PubMed Central

    Lu, H; Califano, J V; Schenkein, H A; Tew, J G

    1993-01-01

    The aims of this study were to determine the immunodominant antigens of Actinobacillus actinomycetemcomitans serotype b (Aab) for the different immunoglobulin (Ig) classes and subclasses and to determine the relative levels of these different Igs in serum. Seropositive early-onset periodontitis patients were sampled, and the Ig classes IgG, IgA, and IgM and subclasses IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2 were studied. Reactivity with Aab antigens was assessed by using the Western blot (immunoblot) in limiting dilution analysis and radioimmunoassay with sera from 13 early-onset periodontitis subjects. A smeared antigen in the upper portion of the immunoblots, typical of high-molecular-weight LPS, was immunodominant for IgG, IgA, IgM, IgG1, IgG2, IgG3, IgA1, and IgA2. This smeared antigen was present in every patient for all of these Igs at the endpoint. A few additional antigens were also present at the endpoint in some patients, but none were present in more than half of the subjects. The distribution of antibody titers by Ig classes reactive with the Aab immunodominant antigen was IgG > IgA > IgM. The distribution of antibody titers by IgG subclass was IgG2 > IgG1 approximately IgG3. Further quantitation by radioimmunoassay revealed that the mean concentration of IgG2 (65.7 micrograms/ml) was significantly greater than that of IgG1 (8.8 micrograms/ml). The IgA subclass distribution was IgA1 >> IgA2, with IgA1 apparently being second only to IgG2. Therefore, the Aab antigen eliciting the highest antibody level in virtually all Ig classes and subclasses appeared to be lipopolysaccharide, and IgG2 was markedly elevated over all other serum Ig classes or subclasses reactive with Aab. Images PMID:8500879

  8. Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis.

    PubMed

    Ghimire, Gopal Prasad; Koirala, Niranjan; Sohng, Jae Kyung

    2015-05-01

    Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalenehopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/ mass spectrometry.

  9. Multicenter Investigation of Gepotidacin (GSK2140944) Agar Dilution Quality Control Determinations for Neisseria gonorrhoeae ATCC 49226

    PubMed Central

    Fedler, Kelley A.; Scangarella-Oman, Nicole E.; Ross, James E.; Flamm, Robert K.

    2016-01-01

    Gepotidacin, a novel triazaacenaphthylene antibacterial agent, is the first in a new class of type IIA topoisomerase inhibitors with activity against many biothreat and conventional pathogens, including Neisseria gonorrhoeae. To assist ongoing clinical studies of gepotidacin to treat gonorrhea, a multilaboratory quality assurance investigation determined the reference organism (N. gonorrhoeae ATCC 49226) quality control MIC range to be 0.25 to 1 μg/ml (88.8% of gepotidacin MIC results at the 0.5 μg/ml mode). PMID:27161642

  10. Evaluating Chemical Mitigation of Salmonella Typhimurium ATCC 14028 in Animal Feed Ingredients.

    PubMed

    Cochrane, Roger A; Huss, Anne R; Aldrich, Gregory C; Stark, Charles R; Jones, Cassandra K

    2016-04-01

    Salmonella Typhimurium is a potential feed safety hazard in animal feed ingredients. Thermal mitigation of Salmonella spp. during rendering is effective but does not eliminate the potential for cross-contamination. Therefore, the objective of this experiment was to evaluate the effectiveness of chemicals to mitigate postrendering Salmonella Typhimurium ATCC 14028 contamination in rendered proteins over time. Treatments were arranged in a 6 × 4 factorial with six chemical treatments and four rendered protein meals. The chemical treatments included (i) control without chemical treatment, (ii) 0.3% commercial formaldehyde product, (iii) 2% essential oil blend, (iv) 2% medium chain fatty acid blend, (v) 3% organic acid blend, and (vi) 1% sodium bisulfate. The four rendered protein meals included (i) feather meal, (ii) blood meal, (iii) meat and bone meal, and (iv) poultry by-product meal. After matrices were chemically treated, they were inoculated with Salmonella Typhimurium ATCC 14028, stored at room temperature, and enumerated via plate counts on days 0, 1, 3, 7, 14, 21, and 42 postinoculation. The Salmonella concentration in ingredients treated with medium chain fatty acid and commercial formaldehyde were similar to one another (P = 0.23) but were 2 log lower than the control (P < 0.05). Ingredients treated with organic acids and essential oils also had lower Salmonella concentrations than the control (P < 0.05). Time also played a significant role in Salmonella mitigation, because all days except days 14 and 21 (P = 0.92) differed from one another. Rendered protein matrix also affected Salmonella stability, because concentrations in meat and bone meal and blood meal were similar to one another (P = 0.36) but were greater than levels in feather meal and poultry by-product meal (P < 0.05). In summary, chemical treatment and time both mitigated Salmonella Typhimurium ATCC 14028, but their effectiveness was matrix dependent. Time and chemical treatment with medium

  11. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    PubMed Central

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacterial strain without previous selection for glyphosate utilization as a source of phosphorus. PMID:16347639

  12. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T).

    PubMed

    Darvish Alipour Astaneh, Shakiba; Rasooli, Iraj; Mousavi Gargari, Seyed Latif

    2014-09-01

    Filamentous hemagglutinin adhesins (FHA) are key factors for bacterial attachment and subsequent cell accumulation on substrates. Here an FHA-like Outer membrane (OM) adhesin of Acinetobacter baumannii ATCC19606(T) was displayed on Escherichia coli. The candidate autotransporter (AT) genes were identified in A. baumannii ATCC19606(T) genome. The exoprotein (FhaB1) and transporter (FhaC1) were produced independently within the same cell (FhaB1C1). The fhaC1 was mutated. In vitro adherence to epithelial cells of the recombinant FhaB1C1 and the mutant strains were compared with A. baumanni ATCC19606(T). A bivalent chimeric protein (K) composed of immunologically important portions of fhaB1 (B) and fhaC1 (C) was constructed. The mice vaccinated with chimeric protein were challenged with A. baumannii ATCC19606(T) and FhaB1C1 producing recombinant E. coli. Mutations in the fhaC1 resulted in the absence of FhaB1 in the OM. Expression of FhaB1C1 enhanced the adherence of recombinant bacteria to A546 bronchial cell line. The results revealed association of FhaB1 with bacterial adhesion and biofilm formation. Immunization with a combination of recombinant B and K proteins proved protective against A. baumanni ATCC19606(T). The findings may be applied in active and passive immunization strategies against A. baumannii.

  13. Immunological study of an attenuated Salmonella Typhimurium expressing ApxIA, ApxIIA, ApxIIIA and OmpA of Actinobacillus pleuropneumoniae in a mouse model.

    PubMed

    Hur, Jin; Eo, Seong Kug; Park, Sang-Youel; Choi, Yoonyoung; Lee, John Hwa

    2016-01-01

    Salmonella Typhimurium strain expressing the Actinobacillus pleuropneumoniae antigens, ApxIA, ApxIIA, ApxIIIA and OmpA, was previously constructed as a vaccine candidate for porcine pleuropneumonia. This strain was a live attenuated (∆lon∆cpxR∆asd)Salmonella as a delivery host and contained a vector containing asd. An immunological study of lymphocyte proliferation, T-lymphocyte subsets and cytokines in the splenocytes of a mouse model was carried out after stimulation with the candidate Salmonella Typhimurium by intranasal inoculation. The splenic lymphocyte proliferation and the levels of IL-4, IL-6 and IL-12 of the inoculated mice were significantly increased, and the T- and B-cell populations were also elevated. Collectively, the candidate may efficiently induce the Th1- and Th2-type immune responses.

  14. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides.

    PubMed

    Biondi, Natascia; Piccardi, Raffaella; Margheri, M Cristina; Rodolfi, Liliana; Smith, Geoffrey D; Tredici, Mario R

    2004-06-01

    The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed.

  15. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  16. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs.

  17. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress.

    PubMed

    Babu, Malli Mohan Ganesh; Sridhar, Jayavel; Gunasekaran, Paramasamy

    2011-11-10

    Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524) of the total genes (n = 5234) represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL), nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs.

  18. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  19. Characterization of monoclonal antibodies that recognize common epitopes located on O antigen of lipopolysaccharide of serotypes 1, 9 and 11 of Actinobacillus pleuropneumoniae.

    PubMed

    Rodríguez Barbosa, J I; Gutiérrez Martín, C B; Tascón, R I; González, O R; Mittal, K R; Rodríguez Ferri, E F

    1996-12-31

    Seven murine monoclonal antibodies (mAbs) against serotype 1 of Actinobacillus (Haemophilus) pleuropneumoniae (reference strain Shope 4074) were produced and characterized. All hybridomas secreting mAbs were reactive with whole-cell antigens from reference strains of serotypes 1, 9 and 11, except for mAb 5D6 that failed to recognized serotype 9. They did not react with other taxonomically related Gram-negative organisms tested. The predominant isotype was immunoglobulin (Ig) M, although IgG2a, IgG2b, and IgG3 were also obtained. The epitopes identified by these mAbs were resistant to proteinase K treatment and boiling in the presence of sodium dodecyl sulfate and reducing conditions; however, they were sensitive to sodium periodate treatment. Enhanced chemiluminescence-immunodetection assay showed that mAbs could be divided in two groups according to the patterns of immunoreaction observed. Group 1 (mAbs 3E10, 4B7, 9H5 and 11C3) recognized a ladder-like banding profile consistent with the O antigen of lipopolysaccharide (LPS) from smooth strains. Group II (mAbs 3B10 and 9H1) recognized a long smear of high molecular weight which ranged from 60 to 200 kDa. The mAbs were tested against 96 field isolates belonging to serotypes 1, 5, 9, 11 and 12, which had previously been classified by a combination of serological techniques based on polyclonal rabbit sera (counterimmunoelectrophoresis, immunodiffusion and coagglutination). The panel of mAbs identified all isolates of serotypes 9 and 11, but only 66% of those belonging to serotype 1. This may suggest the existence of antigenic heterogeneity among isolates of A. pleuropneumoniae serotype 1. These mAbs reacted with epitopes common to serotypes 1, 9 and 11 of Actinobacillus pleuropneumoniae which were located on the O antigen of LPS.

  20. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912.

    PubMed

    Sun, W Q; Meng, M; Kumar, G; Geelhaar, L A; Payne, G F; Speedie, M K; Stacy, J R

    1996-05-01

    In previous studies, bacterial cultures were isolated that had the ability to degrade the nitrate ester glyceryl trinitrate (i.e., nitroglycerin). The goal of the present study was to examine the ability of resting cells and cell-free extracts of the isolate Bacillus sp. ATCC 51912 to degrade the more recalcitrant nitrate ester propylene glycol dinitrate (PGDN). It was observed that the PGDN-denitrating activity was expressed during growth even when cells were cultured in the absence of nitrate esters. This indicates that nitrate esters are not required for expression of denitration activity. Using cell-free extracts, PGDN was observed to be sequentially denitrated to propylene glycol mononitrate (PGMN) and propylene glycol with the second denitration step proceeding more slowly than the first. Also it was observed that dialysis of the cell-free extracts did not affect denitration activity indicating that regenerable cofactors [e.g., NAD(P)H or ATP] are not required for denitration.

  1. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.

    PubMed

    Tajima, K; Nakajima, K; Yamashita, H; Shiba, T; Munekata, M; Takai, M

    2001-12-31

    The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.

  2. The teichuronic acid from the walls of Bacillus licheniformis A.T.C.C. 9945.

    PubMed Central

    Lifely, M R; Tarelli, E; Baddiley, J

    1980-01-01

    The teichuronic acid of Bacillus licheniformis A.T.C.C. 9945 grown under phosphate limitation was isolated from the cell walls and purified by ion-exchange and Sephadex chromatography. The detailed structure of the polysaccharide was established by methylation analysis, periodate oxidation and partial acid hydrolysis. The polymer is composed of tetrasaccharide repeating units with the structure [GlcA beta(1 leads to 4)GlcA beta(1 leads to 3)GalNAc beta(1 leads to 6)GalNAc alpha(1 leads to 4)n. 13C n.m.r. analysis has confirmed most of the structural features of the polysaccharide and, in particular, the anomeric configurations and linkage positions of substituents. The teichuronic acid from glucose-limited cells was identical with that from cells grown under phosphate limitation. PMID:6263243

  3. Closing the Carbon Balance for Fermentation by Clostridium thermocellum (ATCC 27405)

    SciTech Connect

    Ellis, Lucas D; Holwerda, Evert K; Hogsett, David; Rogers, Steve; Shao, Xiongjun; Tschaplinski, Timothy J; Thorne, Phil; Lynd, L.

    2012-01-01

    Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, {>=}92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.

  4. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, D; Todescato, D; Moritz, D E; Oliveira, J Vladimir; Oliveira, D; Ulson de Souza, A A; Guelli Souza, S M A

    2015-08-01

    Some of the noxious atmospheric pollutants such as nitrogen and sulfur dioxides come from the fossil fuel combustion. Biodesulfurization and biodenitrogenation are processes which remove those pollutants through the action of microorganisms. The ability of sulfur and nitrogen removal by the strain Rhodococcus erythropolis ATCC 4277 was tested in a biphasic system containing different heavy gas oil concentrations in a batch reactor. Heavy gas oil is an important fraction of petroleum, because after passing through, the vacuum distillation is incorporated into diesel oil. This strain was able to remove about 40% of the nitrogen and sulfur present in the gas heavy oil. Additionally, no growth inhibition occurred even when in the presence of pure heavy gas oil. Results present in this work are considered relevant for the development of biocatalytic processes for nitrogen and sulfur removal toward building feasible industrial applications.

  5. Complete annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono).

    PubMed

    Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo

    2015-01-01

    We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models.

  6. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163.

    PubMed

    Mohedano, María de la Luz; Russo, Pasquale; de Los Ríos, Vivian; Capozzi, Vittorio; Fernández de Palencia, Pilar; Spano, Giuseppe; López, Paloma

    2014-02-26

    Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.

  7. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174

    PubMed Central

    Rattray, F. P.; Bockelmann, W.; Fox, P. F.

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH(inf2)-Ala-Lys-Asn-Asp-Ala-Val-Gly-Gly-Met-Gly-Tyr-Leu-Ser-Met-Ile-Pro-Se r-Gln-Pro-Gly. PMID:16535130

  8. Specificity of Salmonella Typhimurium strain (ATCC 14028) growth responses to Salmonella serovar-generated spent media.

    PubMed

    Calo, Juliany Rivera; Park, Si Hong; Baker, Christopher A; Ricke, Steven C

    2015-01-01

    Salmonella enterica is one of the most prevalent pathogens responsible for foodborne illness worldwide. Numerous Salmonella serovars have been associated with the consumption of a variety of products, and limiting food-borne illness due to Salmonella serovars is a continuing problem for food producers and public health. The emergence and prevalence of Salmonella serovars has been studied but the predominant serovars have varied somewhat over the years. The aims of this research were to compare the aerobic growth responses of selected predominant foodborne Salmonella serovars, and evaluate how the spent media from different serovars affects the growth of a well-characterized Salmonella Typhimurium strain. Growth responses were similar for most strains in spent media except for S. Typhimurium (ATCC 14028), which exhibited a decrease in growth in the presence of Salmonella Heidelberg (ARI-14) spent media. This research will provide a better understanding of the growth differences among several Salmonella serovars in nutrient limited spent media.

  9. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    PubMed

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  10. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633

    PubMed Central

    Borisova, Svetlana A.; Circello, Benjamin T.; Zhang, Jun Kai; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Rhizocticins are phosphonate oligopeptide antibiotics containing the C-terminal non-proteinogenic amino acid (Z)-l-2-amino-5-phosphono-3-pentenoic acid (APPA). Here we report the identification and characterization of the rhizocticin biosynthetic gene cluster (rhi) in Bacillus subtilis ATCC6633. Rhizocticin B was heterologously produced in the non-producer strain Bacillus subtilis 168. A biosynthetic pathway is proposed based on bioinformatics analysis of the rhi genes. One of the steps during the biosynthesis of APPA is an unusual aldol reaction between phosphonoacetaldehyde and oxaloacetate catalyzed by an aldolase homolog RhiG. Recombinant RhiG was prepared and the product of an in vitro enzymatic conversion was characterized. Access to this intermediate allows for biochemical characterization of subsequent steps in the pathway. PMID:20142038

  11. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174.

    PubMed

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-09-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH(inf2)-Ala-Lys-Asn-Asp-Ala-Val-Gly-Gly-Met-Gly-Tyr-Leu-Ser-Met-Ile-Pro-Se r-Gln-Pro-Gly.

  12. Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175.

    PubMed

    Cholet, Orianne; Hénaut, Alain; Bonnarme, Pascal

    2007-04-01

    The expression of genes possibly involved in L-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added L-methionine. The expression of 27 genes of 39 selected genes differed significantly in L-methionine-enriched cultures. The expression of the gene encoding L-methionine gamma-lyase (MGL) is high in L-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding alpha-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by L-methionine, and are probably involved in the catabolism of alpha-ketobutyrate, the primary degradation product of L-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for L-methionine in B. linens and their possible regulation by L-methionine.

  13. Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies

    PubMed Central

    Venkataraman, Sowmyalakshmi; Narayan, Shoba; Chadha, Anju

    2016-01-01

    Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC. PMID:27739423

  14. Pore-forming ability of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Egli, C; Hancock, R E; Holt, S C

    1992-01-01

    Three major outer membrane proteins with apparent molecular masses of 43, 45, and 51 kDa were purified from Wolinella recta ATCC 33238, and their pore-forming abilities were determined by the black lipid bilayer method. The non-heat-modifiable 45-kDa protein (Omp 45) showed no pore-forming activity even at high KCl concentrations. The single-channel conductances in 1 M KCl of the heat-modifiable proteins with apparent molecular masses of 43 kDa (Omp 43) and 51 kDa (Omp 51) were 0.49 and 0.60 nS, respectively. The proteins formed nonselective channels and, as determined by experiments of ion selectivity and zero-current potential, were weakly anion selective. Images PMID:1370429

  15. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    West, Thomas P

    2009-12-01

    A mutant strain of the curdlan-producing bacterium Agrobacterium sp. ATCC 31749, isolated by ethylmethane sulfonate mutagenesis and resistance to ampicillin, was capable of elevated curdlan synthesis. Using 2.5% corn syrup, glucose or maltose as a carbon source, the mutant strain was shown to produce a 1.5-fold, 1.5-fold or 1.5-fold higher level of curdlan, respectively, than its parent strain after 120 h of growth. The mutant strain produced higher curdlan levels after 96 or 120 h of growth on glucose or maltose as a carbon source than it did on corn syrup. Biomass production by the mutant strain grown on the carbon sources studied was slightly elevated compared to its parent strain. It was concluded that the elevated curdlan production observed for the mutant strain grown on corn syrup or glucose was not due to an increase in biomass production.

  16. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.

    PubMed

    Wang, Pingping; Wu, Zhen; Wu, Jing; Pan, Daodong; Zeng, Xiaoqun; Cheng, Kemeng

    2016-10-01

    Lactic acid bacteria are widely used in fermented foods, especially cheese products. In this study, we observed the salt tolerance of Lactobacillus plantarum ATCC 14917 after exposure to different concentrations of NaCl in MRS medium. Quantitative proteomic profiles using two-dimensional electrophoresis identified 384 proteins, of which 26 were upregulated and 31 downregulated. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry was then used to identify 11 proteins, of which three were linked to carbohydrate metabolism. The downregulation of carbamoyl phosphate synthase in carbohydrate metabolism revealed a bacterial regulation mechanism to save energy in order to survive during the salt tolerance. Other proteins were found involved in transcription-translation processes, fatty acid biosynthesis, and the primary metabolic process.

  17. Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense-phase carbon dioxide.

    PubMed

    Gunes, Gurbuz; Blum, L K; Hotchkiss, J H

    2006-01-01

    Dense-phase carbon dioxide (CO2) treatments in a continuous flow through system were applied to apple cider to inactivate Escherichia coli (ATCC 4157). A response surface design with factors of the CO2/product ratio (0, 70, and 140 g/kg), temperature (25, 35, and 45 degrees C), and pressure (6.9, 27.6, and 48.3 MPa) were used. E. coli was very sensitive to dense CO2 treatment, with a more than 6-log reduction in treatments containing 70 and 140 g/kg CO2, irrespective of temperature and pressure. The CO2/product ratio was the most important factor affecting inactivation rate of E. coli. No effect of temperature and pressure was detected because of high sensitivity of the cells to dense CO2. Dense CO2 could be an alternative pasteurization treatment for apple cider. Further studies dealing with the organoleptic quality of the product are needed.

  18. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461.

    PubMed

    Harding, Nancy E; Patel, Yamini N; Coleman, Russell J

    2004-02-01

    Sphingomonas elodea ATCC 31461 produces gellan, a capsular polysaccharide that is useful as a gelling agent for food and microbiological media. Complementation of nonmucoid S. elodea mutants with a gene library resulted in identification of genes essential for gellan biosynthesis. A cluster of 18 genes spanning 21 kb was isolated. These 18 genes are homologous to genes for synthesis of sphingan polysaccharide S-88 from Sphingomonas sp. ATCC 31554, with predicted amino acid identities varying from 61% to 98%. Both polysaccharides have the same tetrasaccharide repeat unit, comprised of [-->4)-alpha- l-rhamnose-(1-->3)-beta- d-glucose-(1-->4)-beta- d-glucuronic acid-(1-->4)-beta- d-glucose-(1-->]. Polysaccharide S-88, however, has mannose or rhamnose in the fourth position and has a rhamnosyl side chain, while gellan has no sugar side chain but is modified by glyceryl and acetyl substituents. Genes for synthesis of the precursor dTDP- l-rhamnose were highly conserved. The least conserved genes in this cluster encode putative glycosyl transferases III and IV and a gene of unknown function, gelF. Three genes ( gelI, gelM, and gelN) affected the amount and rheology of gellan produced. Four additional genes present in the S-88 sphingan biosynthetic gene cluster did not have homologs in the gene cluster for gellan biosynthesis. Three of these gene homologs, gelR, gelS, and gelG, were found in an operon unlinked to the main gellan biosynthetic gene cluster. In a third region, a gene possibly involved in positive regulation of gellan biosynthesis was identified.

  19. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    SciTech Connect

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.; Charania, Moiz A.; Hill, Eric A.; Anderson, Lindsey N.; Monroe, Matthew E.; Smith, Richard D.; Beliaev, Alexander S.; Wright, Aaron T.; Nojiri, H.

    2016-10-14

    ABSTRACT

    Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2production, a highly perplexing phenomenon because H2evolving enzymes are O2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK.

    IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment

  20. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of th...

  1. Alternative sigma factor SigK has a role in stress tolerance of group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Dahlsten, Elias; Kirk, David; Lindström, Miia; Korkeala, Hannu

    2013-06-01

    The role of the alternative sigma factor SigK in cold and osmotic stress tolerance of Clostridium botulinum ATCC 3502 was demonstrated by induction of sigK after temperature downshift and exposure to hyperosmotic conditions and by impaired growth of the sigK mutants under the respective conditions.

  2. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Stein, Lisa Y; Kozlowski, Jessica; Bollmann, Annette; Klotz, Martin G; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T B K; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-03-16

    Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

  3. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose

    PubMed Central

    Pfeffer, Sarah; Mehta, Kalpa

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  4. Genome sequence of n-alkane-degrading Hydrocarboniphaga effusa strain AP103T (ATCC BAA-332T).

    PubMed

    Chang, Hung-Kuang; Zylstra, Gerben J; Chae, Jong-Chan

    2012-09-01

    Hydrocarboniphaga effusa strain AP103(T) (ATCC BAA-332(T)) is a member of the Gammaproteobacteria utilizing n-alkanes as the sole source of carbon and energy. Here we report the draft genome sequence of AP103(T), which consists of 5,193,926 bp with a G + C content of 65.18%.

  5. Genome Sequence of Streptococcus phocae subsp. phocae Strain ATCC 51973T Isolated from a Harbor Seal (Phoca vitulina)

    PubMed Central

    Poblete-Morales, Matías

    2015-01-01

    Streptococcus phocae subsp. phocae is a pathogen that affects different pinniped and mammalian species. This announcement reports the genome sequence of the type strain ATCC 51973 isolated in Norway from clinical specimens of harbor seal (Phoca vitulina), revealing interesting genes related to possible virulence factors. PMID:26586875

  6. A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334.

    PubMed

    Cooney, Meagan A; Steele, James L; Steinberg, Howard; Talaat, Adel M

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) the causative agent of Johne's disease, is one of the most serious infectious diseases in dairy cattle worldwide. Due to the chronic nature of this disease and no feasible control strategy, it is essential to have an efficient animal model which is representative of the natural route of infection as well as a viable treatment option. In this report, we evaluated the effect of different doses of M. paratuberculosis in their ability to colonize murine tissues following oral delivery and the ability of Lactobacillus casei ATCC 334, a nascent probiotic, to combat paratuberculosis. Oral inoculation of mice was able to establish paratuberculosis in a dose-dependent manner. Two consecutive doses of approximately 10(9) CFU per mouse resulted in a disseminated infection, whereas lower doses were not efficient to establish infection. All inoculated mice were colonized with M. paratuberculosis, maintained infection for up to 24 weeks post infection and generated immune responses that reflect M. paratuberculosis infection in cattle. Notably, oral administration of L. casei ATCC 334 did not reduce the level of M. paratuberculosis colonization in treated animals. Interestingly, cytokine responses and histology indicated a trend for the immunomodulation and reduction of pathology in animals receiving L. casei ATCC 334 treatment. Overall, a reproducible oral model of paratuberculosis in mice was established that could be used for future vaccine experiments. Although the L. casei ATCC 334 was not a promising candidate for controlling paratuberculosis, we established a protocol to screen other probiotic candidates.

  7. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    PubMed Central

    Rice, Marlen C.; Stein, Lisa Y.; Kozlowski, Jessica; Bollmann, Annette; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T. B. K.; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-01-01

    ABSTRACT Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified. PMID:28302769

  8. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.

  9. Altered Composition of Ralstonia eutropha Poly(hydroxyalkanoate) through Expression of PHA Synthase from Allochromatium vinosum ATCC 35206

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The class III poly(hydroxyalkanoate) synthase (PHAS) genes (phaC and phaE) of a photosynthetic bacterium, Allochromatium vinosum ATCC 35206, were cloned, sequenced and expressed in a heterologous host. We employed a PCR technique coupled with a chromosomal gene-walking method to clone and subsequen...

  10. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  11. Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)

    PubMed Central

    Robson, Robert L.; Jones, Robert; Robson, R. Moyra; Schwartz, Ariel; Richardson, Toby H.

    2015-01-01

    The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these

  12. Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727

    PubMed Central

    Lo Grasso, Letizia; Maffioli, Sonia; Sosio, Margherita; Bibb, Mervyn; Puglia, Anna Maria

    2015-01-01

    ABSTRACT The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the dbv gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of dbv6 had no effect. In addition, overexpression of dbv3 led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons, dbv14-dbv8 and dbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4, dbv29, dbv36, and dbv37) and of six operons (dbv2-dbv1, dbv14-dbv8, dbv17-dbv15, dbv21-dbv20, dbv24-dbv28, and dbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of dbv4 and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation. IMPORTANCE This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete Nonomuraea sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis

  13. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  14. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    PubMed Central

    Fleige, Christian; Meyer, Florian

    2016-01-01

    ABSTRACT The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for the central vanillin catabolism enzyme, vanillin dehydrogenase. This mutation resulted in improvement of the final concentration of vanillin by more than 2.2 g/liter, with a molar yield of 80.9%. Further improvement was achieved with constitutive expression of the vanillin anabolism genes ech and fcs, coding for the enzymes feruloyl-coenzyme A (CoA) synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech). The transcription of both genes was shown to be induced by ferulic acid, which explains the unwanted adaptation phase in the fermentation process before vanillin was efficiently produced by the wild-type cells. Through the constitutive and enhanced expression of the two genes, the adaptation phase was eliminated and a final vanillin concentration of 19.3 g/liter, with a molar yield of 94.9%, was obtained. Moreover, an even higher final vanillin concentration of 22.3 g/liter was achieved, at the expense of a lower molar yield, by using an improved feeding strategy. This is the highest reported vanillin concentration reached in microbial fermentation processes without extraction of the product. Furthermore, the vanillin was produced almost without by-products, with a molar yield that nearly approached the theoretical maximum. IMPORTANCE Much effort has been put into optimization of the biotechnological production of natural vanillin. The demand for this compound is growing due to increased consumer concerns regarding chemically produced food additives. Since this

  15. Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin

    PubMed Central

    2011-01-01

    Background Teicoplanin is a glycopeptide antibiotic used clinically in Europe and in Japan for the treatment of multi-resistant Gram-positive infections. It is produced by fermenting Actinoplanes teichomyceticus. The pharmaceutically active principle is teicoplanin A2, a complex of compounds designated T-A2-1-A2-5 differing in the length and branching of the fatty acid moiety linked to the glucosamine residue on the heptapeptide scaffold. According to European and Japanese Pharmacopoeia, components of the drug must be reproduced in fixed amounts to be authorized for clinical use. Results We report our studies on optimizing the fermentation process to produce teicoplanin A2 in A. teichomyceticus ATCC 31121. Robustness of the process was assessed on scales from a miniaturized deep-well microtiter system to flasks and 3-L bioreactor fermenters. The production of individual factors T-A2-1-A2-5 was modulated by adding suitable precursors to the cultivation medium. Specific production of T-A2-1, characterized by a linear C10:1 acyl moiety, is enhanced by adding methyl linoleate, trilinoleate, and crude oils such as corn and cottonseed oils. Accumulation of T-A2-3, characterized by a linear C10:0 acyl chain, is stimulated by adding methyl oleate, trioleate, and oils such as olive and lard oils. Percentages of T-A2-2, T-A2-4, and, T-A2-5 bearing the iso-C10:0, anteiso-C11:0, and iso-C11:0 acyl moieties, respectively, are significantly increased by adding precursor amino acids L-valine, L-isoleucine, and L-leucine. Along with the stimulatory effect on specific complex components, fatty acid esters, oils, and amino acids (with the exception of L-valine) inhibit total antibiotic productivity overall. By adding industrial oils to medium containing L-valine the total production is comparable, giving unusual complex compositions. Conclusions Since the cost and the quality of teicoplanin production depend mainly on the fermentation process, we developed a robust and scalable

  16. Antimicrobial susceptibility testing of aquatic bacteria: quality control disk diffusion ranges for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28 degrees C.

    PubMed

    Miller, R A; Walker, R D; Baya, A; Clemens, K; Coles, M; Hawke, J P; Henricson, B E; Hsu, H M; Mathers, J J; Oaks, J L; Papapetropoulou, M; Reimschuessel, R

    2003-09-01

    Quality control (QC) ranges for disk diffusion susceptibility testing of aquatic bacterial isolates were proposed as a result of a multilaboratory study conducted according to procedures established by the National Committee for Clinical Laboratory Standards (NCCLS). Ranges were proposed for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28 degrees C for nine different antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, gentamicin, oxolinic acid, oxytetracycline, ormetoprim-sulfadimethoxine, and trimethoprim-sulfamethoxazole). All tests were conducted on standard Mueller-Hinton agar. With >/=95% of all data points fitting within the proposed QC ranges, the results from this study comply with NCCLS guidelines and have been accepted by the NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing. These QC guidelines will permit greater accuracy in interpreting results and, for the first time, the ability to reliably compare susceptibility test data between aquatic animal disease diagnostic laboratories.

  17. Antimicrobial Susceptibility Testing of Aquatic Bacteria: Quality Control Disk Diffusion Ranges for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28°C

    PubMed Central

    Miller, R. A.; Walker, R. D.; Baya, A.; Clemens, K.; Coles, M.; Hawke, J. P.; Henricson, B. E.; Hsu, H. M.; Mathers, J. J.; Oaks, J. L.; Papapetropoulou, M.; Reimschuessel, R.

    2003-01-01

    Quality control (QC) ranges for disk diffusion susceptibility testing of aquatic bacterial isolates were proposed as a result of a multilaboratory study conducted according to procedures established by the National Committee for Clinical Laboratory Standards (NCCLS). Ranges were proposed for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28°C for nine different antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, gentamicin, oxolinic acid, oxytetracycline, ormetoprim-sulfadimethoxine, and trimethoprim-sulfamethoxazole). All tests were conducted on standard Mueller-Hinton agar. With ≥95% of all data points fitting within the proposed QC ranges, the results from this study comply with NCCLS guidelines and have been accepted by the NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing. These QC guidelines will permit greater accuracy in interpreting results and, for the first time, the ability to reliably compare susceptibility test data between aquatic animal disease diagnostic laboratories. PMID:12958263

  18. No overall relationship between average daily weight gain and the serological response to Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae in eight chronically infected Danish swine herds.

    PubMed

    Andreasen, M; Mousing, J; Thomsen, L K

    2001-04-13

    The association between the average daily weight gain (from approximately 4 to 20 weeks of age) and the serological responses to respiratory infections was examined in a longitudinal study including 825 pigs from eight chronically infected herds. Pigs were bled every 4th week (starting from approximately 4 weeks of age), and sera were analyzed for antibodies to Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae serotypes 2, 5-7 and 12.Mixed analysis of covariance analyzed the relationship between the average daily weight gain and a categorical variable defining seroconversion as none, early or late as compared to the median time (estimated across herds) of seroconversion for the particular pathogen. The variables "gender", "weight at an approximate age of 4 weeks" and "time" (defining the exact length of the follow-up period), were included as explanatory variables, and "litter" and "herd" were included as explanatory random variables. The individual pig was the unit of concern. The variable defining time at seroconversion was not significantly associated with the average daily weight gain, when evaluating models across all eight herds. The apparent lack of effect could be because most pigs included in the study were subclinically infected, or because a temporary negative influence of the infections is hidden due to an increased growth in the period following infection. In conclusion, at least in these eight herds, seroresponses to M. hyopneumoniae and A. pleuropneumoniae could not be used to predict the effect of the pathogens on the daily weight gain.

  19. Specific genetic variants of Actinobacillus actinomycetemcomitans correlate with disease and health in a regional population of families with localized juvenile periodontitis.

    PubMed Central

    DiRienzo, J M; Slots, J; Sixou, M; Sol, M A; Harmon, R; McKay, T L

    1994-01-01

    A geographically homogeneous population of 83 subjects, from 21 families with localized juvenile periodontitis (LJP), and 35 healthy control subjects was monitored, over a 5-year period, for the presence of the periodontal pathogen Actinobacillus actinomycetemcomitans. Restriction fragment length polymorphism (RFLP) analysis was used to monitor the distribution of genetic variants of this bacterium in LJP-susceptible subjects that converted from a healthy to a diseased periodontal status. A. actinomycetemcomitans was cultured from 57% of the LJP family members accessioned into the study. Nine of 36 LJP-susceptible subjects, in seven families, developed signs of periodontal destruction. All but one of these conversion subjects harbored A. actinomycetemcomitans. Bacterial variants representative of a single RFLP group (II) showed the strongest correlation with conversion (P < 0.002). Six of nine conversion subjects were infected with A. actinomycetemcomitans from this group. RFLP group II variants also prevailed in 8 of 22 probands but were absent in the 35 healthy control subjects. In contrast to the selective distribution of group II variants is diseased individuals, variants belonging to RFLP groups XIII and XIV were found exclusively in the control subjects. Thus, the use of RFLP to type clinical isolates of A. actinomycetemcomitans has resulted in the identification of genetic variants that predominate in LJP and health. These results indicate that studies concerned with the pathogenicity of this bacterium in LJP should be focused on the group II variants. PMID:7913695

  20. Human immune responses to oral micro-organisms. I. Association of localized juvenile periodontitis (LJP) with serum antibody responses to Actinobacillus actinomycetemcomitans.

    PubMed Central

    Ebersole, J L; Taubman, M A; Smith, D J; Genco, R J; Frey, D E

    1982-01-01

    The association between periodontal disease in humans and serum and salivary antibody to Actinobacillus actinomycetemcomitans strain Y4 was determined. An Elisa was used to examine anti-Y4 antibody of the IgM, IgG, IgA and IgE isotypes in serum from 127 individuals and IgA in parotid saliva. Patients diagnosed as having localized juvenile periodontitis (n = 37) had significantly higher levels and frequency of serum IgG antibodies to Y4 than all other groups. Serum and salivary IgA and serum IgE antibody levels were significantly increased in patients with both localized and generalized types of juvenile periodontitis (n = 48) when compared to all other patient groups. Specificity studies suggested that the antigenic determinants that were differentiating the group responses were unique to the Y4 organism. These results indicate that serum antibodies to Y4 may reflect an infectious process with this micro-organism and that these responses may provide some diagnostic value in delineating different types of periodontal diseases. PMID:7094425

  1. Variation in the Antimicrobial Susceptibility of Actinobacillus pleuropneumoniae Isolates in a Pig, Within a Batch of Pigs, and Among Batches of Pigs from One Farm.

    PubMed

    Dayao, Denise Ann E; Dawson, Susan; Kienzle, Marco Jean-Paul; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2015-08-01

    Antimicrobial resistance in bacterial porcine respiratory pathogens has been shown to exist in many countries. However, little is known about the variability in antimicrobial susceptibility within a population of a single bacterial respiratory pathogen on a pig farm. This study examined the antimicrobial susceptibility of Actinobacillus pleuropneumoniae using multiple isolates within a pig and across the pigs in three different slaughter batches. Initially, the isolates from the three batches were identified, serotyped, and subsample genotyped. All the 367 isolates were identified as A. pleuropneumoniae serovar 1, and only a single genetic profile was detected in the 74 examined isolates. The susceptibility of the 367 isolates of A. pleuropneumoniae to ampicillin, tetracycline and tilmicosin was determined by a disc diffusion technique. For tilmicosin, the three batches were found to consist of a mix of susceptible and resistant isolates. The zone diameters of the three antimicrobials varied considerably among isolates in the second sampling. In addition, the second sampling provided statistically significant evidence of bimodal populations in terms of zone diameters for both tilmicosin and ampicillin. The results support the hypothesis that the antimicrobial susceptibility of one population of a porcine respiratory pathogen can vary within a batch of pigs on a farm.

  2. Gene cloning of an Actinobacillus actinomycetemcomitans Y4 antigen which reacts with peripheral blood sera in patients with advanced destructive periodontitis.

    PubMed

    Arakawa, S; Hata, S; Ishikawa, I; Tsuchida, N

    1990-01-01

    Actinobacillus actinomycetemcomitans has been implicated in the aetiology of juvenile periodontitis and advanced destructive periodontitis. Levels of IgG antibody against A. actinomycetemcomitans in peripheral blood sera of patients with advanced destructive periodontitis are high, as are those against Bacteroides gingivalis. To clone the genes of antigens reactive with sera of such patients, a library of the A. actinomycetemcomitans strain Y4 DNA in lambda L47 was constructed and then screened, using an immunochemical detection method, with serum from a patient with the advanced disease. Six clones from among nearly 1000 reacted with the serum and also with that of another patient. They were designated 3, 4, 6, 7, 8 and 9. Restriction enzyme and Southern blot analyses indicated that clones 8 and 9 were identical and that all the clones were overlapping because they shared in common the 4 and 5 kbp HincII DNA fragments of A. actinomycetemcomitans. The cloned DNA fragment hybridized to the DNA of two other strains of A. actinomycetemcomitans but not to those of six periodontopathic bacteria examined. These findings suggest that a DNA sequence encoding an A. actinomycetemcomitans strain Y4 antigen strongly reactive with sera of patients with advanced destructive periodontitis was cloned. This sequence is present specifically in A. actinomycetemcomitans but not in other bacteria isolated from patients with periodontal diseases. Thus, the cloned DNA could serve as a probe for the diagnosis of periodontitis.

  3. Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release.

    PubMed

    Wang, Lei; Qin, Wanhai; Zhang, Jing; Bao, Chuntong; Zhang, Hu; Che, Yanyi; Sun, Changjiang; Gu, Jingmin; Feng, Xin; Du, Chongtao; Han, Wenyu; Richard, Paul Langford; Lei, Liancheng

    2016-04-05

    Members of the Trimeric Autotransporter Adhesin (TAA) family play a crucial role in the adhesion of Gram-negative pathogens to host cells, but the immunopathogenesis of TAAs remains unknown. Our previous studies demonstrated that Adh from Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is required for full bacterial pathogenicity. Alveolar macrophages are the first line of defense against respiratory infections. This study compared the interactions between porcine alveolar macrophages (PAMs) and wild-type A. pleuropneumoniae (5b WT) or an Adh-deletion strain (5b ΔAdh) via gene microarray, immunoprecipitation and other technologies. We found that Adh was shown to interact with the PAMs membrane protein OR5M11, an olfactory receptor, resulting in the high-level secretion of IL-8 by activation of p38 MAPK signaling pathway. Subsequently, PAMs apoptosis via the activation of the Fax and Bax signaling pathways was observed, followed by activation of caspases 8, 9, and 3. The immunological pathogenic roles of Adh were also confirmed in both murine and piglets infectious models in vivo. These results identify a novel immunological strategy for TAAs to boost the pathogenicity of A. pleuropneumoniae. Together, these datas reveal the high versatility of the Adh protein as a virulence factor and provide novel insight into the immunological pathogenic role of TAAs.

  4. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages.

    PubMed

    Wu, Chi-Ming; Chen, Zeng-Weng; Chen, Ter-Hsin; Liao, Jiunn-Wang; Lin, Cheng-Chung; Chien, Maw-Sheng; Lee, Wei-Cheng; Hsuan, Shih-Ling

    2011-08-05

    Actinobacillus pleuropneumoniae exotoxins (Apx) are major virulence factors that play important roles in the pathogenesis of pleuropneumonia in swine. A previous study has demonstrated that native ApxI at low concentrations induces apoptosis in primary porcine alveolar macrophages (PAMs) via a caspase-3-dependent pathway. However, the molecular mechanisms underlying ApxI-induced apoptosis remain largely unknown. In this study, it was shown that ApxI treatment in PAMs rapidly induced phosphorylation of both p38 and JNK, members of the mitogen-activated protein kinase family. Application of a selective p38 or JNK inhibitor significantly reduced ApxI-induced apoptosis, indicating the involvement of p38 and JNK pathways in this event. Furthermore, activation of both caspase-8 and -9 were observed in ApxI-stimulated PAMs. Inhibition of caspase-8 and caspase-9 activity significantly protected PAMs from ApxI-induced apoptosis. In addition, Bid activation was also noted in ApxI-treated PAMs, and inhibition of caspase-8 suppressed the activation of Bid and caspase-9, suggesting that ApxI was able to activate the caspases-8-Bid-caspase-9 pathway. Notably, inhibition of p38 or JNK pathway greatly attenuated the activation of caspases-3, -8, and -9. This study is the first to demonstrate that ApxI-induced apoptosis of PAMs involves the activation of p38 and JNK, and engages the extrinsic and intrinsic apoptotic pathways.

  5. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin in the treatment of Haemophilus parasuis and Actinobacillus pleuropneumoniae infections in nursery and fattener pigs using Monte Carlo simulations.

    PubMed

    Vilalta, C; Giboin, H; Schneider, M; El Garch, F; Fraile, L

    2014-12-01

    This study evaluated the theoretical clinical outcome of three marbofloxacin posology regimens in two groups of pigs (weaners and fatteners) for the treatment of Actinobacillus pleuropneumoniae (App) and Haemophilus parasuis (Hp) infection and the appearance of resistant bacteria due to the antibiotic treatment. The probability of target attainment (PTA) for pharmacokinetic/pharmacodynamics (PK/PD) ratios associated with clinical efficacy and with the appearance of antimicrobial resistance for fluoroquinolones at each minimum inhibitory concentration (MIC) or mutant prevention concentration (MPC) were calculated, respectively. The cumulative fraction of response (CFR) was calculated for the three posology regimens against App and they ranged from 91.12% to 96.37% in weaners and from 93% to 97.43% in fatteners, respectively. In the case of Hp, they ranged from 80.52% to 85.14% in weaners and from 82.01% to 88.49% in fatteners, respectively. Regarding the PTA of the PK/PD threshold associated with the appearance of antimicrobial resistance, results showed that marbofloxacin would prevent resistances in most of the animals up to the MPC value of 1 μg/mL.

  6. Development of two real-time polymerase chain reaction assays to detect Actinobacillus pleuropneumoniae serovars 1-9-11 and serovar 2.

    PubMed

    Marois-Créhan, Corinne; Lacouture, Sonia; Jacques, Mario; Fittipaldi, Nahuel; Kobisch, Marylène; Gottschalk, Marcelo

    2014-01-01

    Two real-time, or quantitative, polymerase chain reaction (qPCR) assays were developed to detect Actinobacillus pleuropneumoniae serovars 1-9-11 (highly related serovars with similar virulence potential) and serovar 2, respectively. The specificity of these assays was verified on a collection of 294 strains, which included all 16 reference A. pleuropneumoniae strains (including serovars 5a and 5b), 263 A. pleuropneumoniae field strains isolated between 1992 and 2009 in different countries, and 15 bacterial strains other than A. pleuropneumoniae. The detection levels of both qPCR tests were evaluated using 10-fold dilutions of chromosomal DNA from reference strains of A. pleuropneumoniae serovars 1 and 2, and the detection limit for both assays was 50 fg per assay. The analytical sensitivities of the qPCR tests were also estimated by using pure cultures and tonsils experimentally spiked with A. pleuropneumoniae. The detection threshold was 2.5 × 10(4) colony forming units (CFU)/ml and 2.9 × 10(5) CFU/0.1 g of tonsil, respectively, for both assays. These specific and sensitive tests can be used for the serotyping of A. pleuropneumoniae in diagnostic laboratories to control porcine pleuropneumonia.

  7. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Nair, R V; Bennett, G N; Papoutsakis, E T

    1994-01-01

    A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images PMID:8300540

  8. Unexpected talaroenamine derivatives and an undescribed polyester from the fungus Talaromyces stipitatus ATCC10500.

    PubMed

    Zang, Yi; Genta-Jouve, Grégory; Sun, Tithnara Anthony; Li, Xuwen; Didier, Buisson; Mann, Stéphane; Mouray, Elisabeth; Larsen, Annette K; Escargueil, Alexandre E; Nay, Bastien; Prado, Soizic

    2015-11-01

    Chemical investigation of the fungus Talaromyces stipitatus ATCC 10500, whose genome has been sequenced, led to the isolation of four undescribed talaroenamines B-E along with the known talaroenamine A. Their structures were elucidated on the basis of spectroscopic studies including mass spectrometry, extensive 2D NMR and electronic circular dichroism (ECD). Interestingly, talaroenamine A had previously been isolated from the strain of T. stipitatus Δtrop C, a strain knocked out for the gene encoding a non-heme Fe(II)-dependent dioxygenase catalyzing the oxidative ring expansion leading to the tropolone, but never from a wild-type strain. All talaroenamines were evaluated for their antiplasmodial activity and Talaroenamine D exhibited the best inhibition against the chloroquine-resistant Plasmodium falciparum (FcB1 strain) without noticeable toxicity on HeLa and preadipose cell lines. In the course of the chemical investigation of T. stipitatus, an undescribed polyester was also isolated and its absolute configuration was determined by hydrolysis and transesterification followed by gas chromatography on chiral column.

  9. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  10. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.

  11. Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953.

    PubMed

    Song, Eun-Kyung; Kim, Hyunjin; Sung, Hee-Kyung; Cha, Jaeho

    2002-05-29

    An extracellular levanbiohydrolase gene, levM, from Microbacterium laevaniformans ATCC 15953 was cloned and its nucleotide sequence was determined. Nucleotide sequence analysis of this gene revealed a 1863 bp open reading frame coding for a protein of 621 amino acids. The deduced amino acid sequence of the levM gene exhibited 28-47% sequence identities with levanases, levanfructotransferases, and inulinases. The LevM was overexpressed by using a T7 promoter in Escherichia coli BL21 (DE3) and purified 24-fold from culture supernatant. The molecular weight of this enzyme was 68,800 Da based on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of this enzyme for levan degradation was pH 6.0 and 30 degrees C, respectively. Thin-layer and high-performance liquid chromatography analyses proved that the enzyme produced mostly levanbiose from levan in an exo-acting manner. The recombinant enzyme also hydrolyzed inulin, 1-kestose, and nystose, indicating that the enzyme cleaves not only beta-2,6-linkage of levan but also beta-2,1-linkage of fructooligosaccharides. This is the first report on a gene encoding a levanbiohydrolase that produces levanbiose as a major degradation product.

  12. Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642.

    PubMed

    Miyazaki, Takatsugu; Matsumoto, Yuji; Matsuda, Kana; Kurakata, Yuma; Matsuo, Ichiro; Ito, Yukishige; Nishikawa, Atsushi; Tonozuka, Takashi

    2011-12-01

    A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%.

  13. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  14. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses.

    PubMed

    Ai, Hongxia; Liu, Min; Yu, Pingru; Zhang, Shaozhi; Suo, Yukai; Luo, Ping; Li, Shuang; Wang, Jufang

    2015-09-20

    Welan gum production by Alcaligenes sp. ATCC31555 from cane molasses was studied in batch fermentation to reduce production costs and enhance gum production. The pretreatment of cane molasses, agitation speed and the addition of supplements were investigated to optimize the process. Sulfuric acid hydrolysis was found to be the optimal pretreatment, resulting in a maximum gum concentration of 33.5 g/L, which is 50.0% higher than those obtained from the molasses' mother liquor. Agitation at 600 rpm at 30°C and addition of 10% n-dodecane following fermentation for 36 h increased the maximum gum production up to 41.0 ± 1.41 g/L, which is 49.1% higher than the greatest welan gum concentration in the literature so far. The welan gum product showed an acceptable molecular weight, similar rheological properties and better thermal stability to that obtained from glucose. These results indicate that cane molasses may be a suitable and inexpensive substrate for cost-effective industrial-scale welan gum production.

  15. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; Nielsen, S. S.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.

  16. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  17. Production of Surfactant from Bacillus subtilis ATCC 21332 using Potato substrates

    SciTech Connect

    Fox, Sandra Lynn; Bala, Greg Alan

    2000-12-01

    Surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis is known to reduce the surface tension of water from 72 to 27 mN/m. Potato substrates were evaluated as a carbon source for surfactant production by B. subtilis ATCC 21332. An established potato medium, simulated liquid and solid potato waste media, and a commercially prepared potato starch in a mineral salts medium were evaluated in shake flask experiments to verify growth, surface tension reduction, and carbohydrate reduction capabilities. Total carbohydrate assays and glucose monitoring indicated that B. subtilis was able to degrade potato substrates to produce surfactant. Surface tensions dropped from 71.3±0.1 to 28.3±0.3 mN/m (simulated solid potato medium) and to 27.5±0.3 mN/m (mineral salts medium). A critical micelle concentration (CMC) of 0.10 g/l was obtained from a methylene chloride extract of the simulated solid potato medium.

  18. Immunobiological activities of a porin fraction isolated from Fusobacterium nucleatum ATCC 10953.

    PubMed Central

    Takada, H; Ogawa, T; Yoshimura, F; Otsuka, K; Kokeguchi, S; Kato, K; Umemoto, T; Kotani, S

    1988-01-01

    From Fusobacterium nucleatum ATCC 10953 cell envelope fraction whose inner membranes had been removed by treatment with sodium N-lauroyl sarcosinate, an outer membrane protein (37,000 Mr in a native state) was prepared by extraction with lithium dodecyl sulfate. The protein thus obtained showed distinct porin activity, namely, the ability to form hydrophilic diffusion pores by incorporation into the artificial liposome membrane. The porin fraction exhibited strong immunobiological activities in the in vitro assays: B-cell mitogenicity and polyclonal B-cell activation on murine splenocytes, stimulatory effects on guinea pig peritoneal macrophages, and enhancement of the migration of human blood monocytes. The porin fraction also exhibited immunoadjuvant activity to increase the antibody production against sheep erythrocytes in the spleen of mice that were immunized by sheep erythrocytes with porin. Although chemical analyses revealed that the test porin fraction contained a considerable amount of lipopolysaccharide (LPS) (around 12% of the fraction), the studies with LPS-nonresponding C3H/HeJ mice and on the inhibitory effects of polymyxin B strongly suggest that most of the above bioactivities are due to porin protein itself, not to coexistent LPS in the porin fraction. Images PMID:2831155

  19. Influence of commercial sanitizers on lipopolysaccharide production by Salmonella Enteritidis ATCC 13076.

    PubMed

    Venter, P; Abraham, M; Lues, J F R; Ivanov, I

    2006-12-01

    The effect of typical sanitizers on the composition and toxicity of lipopolysaccharides (LPSs) produced by Salmonella Enteritidis ATCC 13076 was analyzed. Salmonella Enteritidis was propagated up to the late exponential phase in the presence of commercial sanitizing solutions. LPS was extracted and derivatized with trifluoroacetylation, and gas chromatography-mass spectrometry analysis and the chromogenic Limulus amoebocyte lysate assay were used to assess the ultrastructure and toxicity of the LPS. The viability and debris formation during growth were evaluated to verify the bactericidal and bacteriostatic effects of the sanitizers and to assess sanitizer effects on LPS formation. The LPSs produced were quantified at 1.7 x 10(4), 1.2 x 10(4), 3.6 x 10(3), and 9.6 x 10(4) [KDO] x OD(620nm)(-1) for the controls and the organisms grown in the presence of a chlorinated sanitizer, a heavy-duty alkaline cleaner, and a phenolic hand wash solution, respectively. In response to these treatments, the short-chain polysaccharide fractions of the LPSs in the Salmonella Enteritidis cells increased. This finding suggests that this organism increases the low-molecular-weight fraction of the LPS in relation to the high-molecular-weight fraction to survive these unfavorable conditions. The cumulative change in the LPS in response to the sanitizers influenced the toxicity of the LPS; however, this change could not be related to an individual compound within any of the assessed fractions.

  20. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products.

    PubMed

    Probst, Kyle V; Vadlani, Praveen V

    2015-12-01

    Single cell oil (SCO) is a valuable noncrop-based renewable oil source. Hemicellulose derived sugars can be utilized to produce SCO using the oleaginous yeast Lipomyces starkeyi ATCC 56304. Bran by-products were tested as hemicellulose-rich feedstocks for the production of SCO. Whole and destarched corn and wheat bran hydrolysates were produced using hydrothermal and dilute sulfuric acid (0%, 0.5%, 1.0%, v/v) pretreatment along with enzymatic hydrolysis. Whole bran hydrolysates produced from hydrothermal pretreatment generated the highest average oil yields of 126.7 and 124.3 mg oil/g sugar for both wheat and corn bran, respectively. 1.0% acid pretreatment was effective for the destarched bran generating a hemicellulose hydrolysis efficiency of 94% and 84% for wheat and corn bran, respectively, resulting in the highest oil yield of 70.7 mg oil/g sugar. The results indicate pretreated corn and wheat bran hydrolysates can serve as viable feedstocks for oleaginous yeast SCO bioconversion.

  1. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  2. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.

    PubMed

    Meyer, Daniel Derrossi; Andrino, Felipe Gabriel; Possedente de Lira, Simone; Fornaro, Adalgiza; Corção, Gertrudes; Brandelli, Adriano

    2016-01-01

    One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.

  3. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  4. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  5. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    McDermott, Jason E; Oehmen, Christopher S; McCue, Lee Ann; Hill, Eric; Choi, Daniel M; Stöckel, Jana; Liberton, Michelle; Pakrasi, Himadri B; Sherman, Louis A

    2011-08-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism.

  6. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.

    PubMed

    Rojas-Rosas, Oscar; Villafaña-Rojas, Juan; López-Dellamary, Fernando A; Nungaray-Arellano, Jesús; González-Reynoso, Orfil

    2007-07-01

    The production and characterization of polyhydroxyalkanoic acids (PHAs) from glucose in Pseudomonas aeruginosa ATCC 9027 is described. We determined that the synthesis of PHAs was not due to a complete lack of nitrogen source, as previously reported for other microorganisms. The synthesis of PHAs was observed during exponential growth and it depended on the carbon/nitrogen ratio in the culture. More significantly, the specific PHA accumulation rate in this phase was higher than that observed in the storage phase. This phenomenon was a consequence of higher extracellular production rates of gluconate and 2-ketogluconate detected during the storage phase. Therefore, the production of those acids decreased the synthesis of PHAs in P. aeruginosa. The maximum percentage of PHA accumulation obtained was 10.8% of the cell dry matter when all the glucose was consumed. The monomer composition of this PHA consisted only of saturated 3-hydroxy fatty acids (octanoic, decanoic, and dodecanoic acids) as shown by gas chromatography - mass spectroscopy and nuclear magnetic resonance analyses, where 3-hydroxydecanoic acid was the main component because of the high affinity of its PhaC synthase for this monomer. The physical properties of this PHA were determined by differential scanning calorimetry and gel permeation chromatography.

  7. Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae.

    PubMed

    Brzuszkiewicz, Elzbieta; Schulz, Tino; Rydzewski, Kerstin; Daniel, Rolf; Gillmaier, Nadine; Dittmann, Christine; Holland, Gudrun; Schunder, Eva; Lautner, Monika; Eisenreich, Wolfgang; Lück, Christian; Heuner, Klaus

    2013-12-01

    Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.

  8. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637.

    PubMed

    Szabados, Florian; Kleine, Britta; Anders, Agnes; Kaase, Martin; Sakinç, Türkân; Schmitz, Inge; Gatermann, Sören

    2008-08-01

    Invasion of bacteria into nonphagocytic host cells is an important pathogenicity factor for escaping the host defence system. Gram-positive organisms, for example Staphylococcus aureus and Listeria monocytogenes, are invasive in nonphagocytic cells, and this mechanism is discussed as an important part of the infection process. Uropathogenic Escherichia coli and Staphylococcus saprophyticus can cause acute and recurrent urinary tract infections as well as bloodstream infections. Staphylococcus saprophyticus shows strong adhesion to human urinary bladder carcinoma and Hep2 cells and expresses the 'Microbial Surface Components Recognizing Adhesive Matrix molecule' (MSCRAMM)-protein SdrI with collagen-binding activity. MSCRAMMs are responsible for adhesion and collagen binding in S. aureus and are discussed as an important pathogenicity factor for invasion. To investigate internalization in S. aureus, several fluorescence activated cell sorting (FACS) assays have been described recently. We used a previously described FACS assay, with slight modifications, in addition to an antibiotic protection assay and transmission electron microscopy to show that S. saprophyticus ATCC 15305 and the wild-type strain 7108 were internalized into the human urinary bladder carcinoma cell line 5637. The discovery of the internalization of S. saprophyticus may be an important step for understanding the pathogenicity of recurrent infections caused by this organism.

  9. Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472.

    PubMed

    Azevedo, Juliana Simão Nina de; Silva-Rocha, Rafael; Silva, Artur; Peixe Carepo, Marta Sofia; Cruz Schneider, Maria Paula

    2008-02-01

    Chromobacterium violaceum ATCC 12472 presents an arsRCB-type operon, which is involved in arsenic resistance. The regulating protein of this resistance system (ArsR) does not have the small conserved site (ELCVDCL) to link to the metalloid, as observed in Escherichia coli, and is thus considered to be an atypical ArsR protein, like that observed in Acidithiobacillus ferrooxidans. In the present study, the gene expression profile of the ars operon under induction at different concentrations of arsenite - As(III) - was obtained via real-time PCR (TaqMan), by correlating the threshold cycle (Ct) values of induced and uninduced (control) samples. Through linear regression analysis (R2 = 0.9926), the gene expression profile of the ars operon showed clearly that the 0.125 micromol/L concentration of As(III) was sufficient to provoke a 4-fold increase in the resistance system, and a further increase in concentration resulted in an increase of up to 53-fold in transcription rates. The relation between resistance and induction of the ars operon indicates that the increased resistance to As(III) is associated with the increase in the number of transcripts.

  10. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    PubMed Central

    Rattray, F P; Fox, P F; Healy, A

    1996-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and either Gln-172-Tyr-173 or Phe-23-Phe-24 were the first, second, and third bonds cleaved, respectively. Other cleavage sites included Asn-19-Leu-20, Phe-32-Gly-33, Tyr-104-Lys-105, Leu-142-Ala-143, Phe-150-Arg-151, Gln-152-Phe-153, Leu-169-Gly-170, and Thr-171-Gln-172. The proteinase had a broad specificity for the amino acid residues at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions. PMID:8593051

  11. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    PubMed Central

    Rattray, F P; Fox, P F; Healy, A

    1997-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, Leu-77-Thr-78, Ala-101-Met-102, Phe-119-Thr-120, Leu-139-Leu-140, Ser-142-Trp-143, His-145-Gln-146, Gln-167-Ser-168, Gln-175-Lys-176, Tyr-180-Pro-181, and Phe-190-Leu-191. The proteinase had a broad specificity for the amino acid residues present at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions. PMID:9172371

  12. Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress.

    PubMed

    Longhi, Catia; Ammendolia, Maria Grazia; Conte, Maria Pia; Seganti, Lucilla; Iosi, Francesca; Superti, Fabiana

    2014-09-01

    It has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host. In these conditions, L. ivanovii evidenced a different behaviour compared to L. monocytogenes exposed to similar conditions. L. ivanovii was not able to mount an acid tolerance response (ATR) even if, upon entry into the stationary phase in iron-loaded medium, growth phase-dependent acid resistance (AR) was evidenced. Moreover, bacteria grown in iron excess and acidic pH showed the higher invasion value in Caco-2 cells, even though it was not able to efficiently multiply. On the contrary, low iron and acidic conditions improved invasion ability in amniotic WISH cells.

  13. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  14. Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli.

    PubMed

    Kwak, Yunyoung; Rhee, In-Koo; Shin, Jae-Ho

    2013-09-01

    Concerned with the influence of tagging system on the expression of heterogeneous protein in Escherichia coli, we attempted to express the organophosphorus hydrolase (OPH) of Flavobacterium sp. ATCC 27551 in E. coli. Recombinant OPH was overproduced successfully in E. coli when modified without the use of a tobacco etch virus (TEV) protease cleavage sequence. In addition, though there has never been a report on the extracellular secretion of recombinant OPH harboring native Tat signal peptides in E. coli, the produced protein was observed to be secreted extracellularly. Through the use of reverse transcriptional quantitative real-time PCR and comparison of the predicted folding rate, it was determined that OPH expression may be affected by the existence of a TEV protease cleavage sequence at the C-terminus during the process of translated protein folding, leading to the suppressed OPH activity. With the potential compatibility between native Tat signal peptides of OPH and E. coli Tat pathway secretion system, we report a successful expression of recombinant OPH harboring native Tat signal peptides in E. coli, for the first time.

  15. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.

    PubMed

    Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika

    2017-03-16

    Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.

  16. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  17. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759.

    PubMed

    Zhu, Chengjun; Nomura, Christopher T; Perrotta, Joseph A; Stipanovic, Arthur J; Nakas, James P

    2010-01-01

    Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value-added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly-3-hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (M(n) and M(w)) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. (1)H-NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end-capping). However, melting temperature and glass transition temperature of the end-capped polymers showed no significant difference when compared to the xylose-based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively.

  18. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    PubMed

    Rattray, F P; Fox, P F; Healy, A

    1997-06-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, Leu-77-Thr-78, Ala-101-Met-102, Phe-119-Thr-120, Leu-139-Leu-140, Ser-142-Trp-143, His-145-Gln-146, Gln-167-Ser-168, Gln-175-Lys-176, Tyr-180-Pro-181, and Phe-190-Leu-191. The proteinase had a broad specificity for the amino acid residues present at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions.

  19. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    PubMed

    Rattray, F P; Fox, P F; Healy, A

    1996-02-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and either Gln-172-Tyr-173 or Phe-23-Phe-24 were the first, second, and third bonds cleaved, respectively. Other cleavage sites included Asn-19-Leu-20, Phe-32-Gly-33, Tyr-104-Lys-105, Leu-142-Ala-143, Phe-150-Arg-151, Gln-152-Phe-153, Leu-169-Gly-170, and Thr-171-Gln-172. The proteinase had a broad specificity for the amino acid residues at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions.

  20. Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media.

    PubMed

    das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Penna, Thereza Christina Vessoni; Converti, Attilio

    2007-04-01

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35 degrees C for 24 h on glucose-and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B(max)=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  1. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

    SciTech Connect

    Khajamohiddin, Syed; Babu, Pakala Suresh; Chakka, Deviprasanna; Merrick, Mike; Bhaduri, Anirban; Sowdhamini, Ramanathan; Siddavattam, Dayananda . E-mail: sdsl@uohyd.ernet.in

    2006-12-22

    The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

  2. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  3. Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245.

    PubMed

    Norouzian, D; Farhangi, A; Tolooei, S; Saffari, Z; Mehrabi, M R; Chiani, M; Ghassemi, S; Farahnak, M; Akbarzadeh, A

    2011-08-01

    Bacterial Celluloses (BC) are gaining importance in research and commerce due to numerous factors affecting the bacterial cellulose characteristics and application in different industries. The aim of the present study was to produce bacterial cellulose in different media using different cultivation vessels. Bacterial cellulose was produced by static cultivation of Glucanacetobacter xylinum ATCC 10245 in different culture media such as Brain Heart Agar, Luria Bertani Agar /Broth, Brain Heart Infusion, Hestrin-Schramm and medium no. 125. Cultivation of bacterium was conducted in various culture vessels with different surface area. The cellulose membrane was treated and purified with a 0.1 M NaOH solution at 90 degreesC for 30 min and dried by a freeze- drier at -40 degreesC to obtain BC. The prepared bacterial cellulose was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). The amount of produced BC was related directly to the surface area of culture vessels.

  4. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    PubMed Central

    Song, D D; Jacques, N A

    1999-01-01

    The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the purified mutated forms of the enzyme showed that Asp-312 was most likely an essential amino acid involved in determining acceptor recognition and/or stabilizing a beta-turn in the protein. In contrast, when the Asp-397 of the Ftf present in the conserved triplet RDP motif of all 60 bacterial and plant family-32 glycosylhydrolases was mutated to a Ser residue, both sucrose hydrolysis and polymerization ceased. Tryptophan emission spectra confirmed that this mutation did not alter protein structure. Comparison of published data from other site-directed mutated enzymes implicated the Asp residue in the RDP motif as the one that may form a transient covalent fructosyl intermediate during the catalysis of sucrose by the Ftf of S. salivarius. PMID:10548559

  5. Genome Sequence Alterations Detected upon Passage of Burkholderia mallei ATCC 23344 in Culture and in Mammalian Hosts

    DTIC Science & Technology

    2006-09-05

    genome sequence of B. mallei ATCC 23344: nine in the laboratory culture passaged isolate, eight in the mouse spleen isolate, eight in the horse lung...mouse spleen isolate and 8 in the lab culture and indels 3 in the human liver isolate and 3 in the human blood isolate, were different. Intergenic...8 CTGTCGTG 21 22 no no BMAA0376 Transporter 9 GTGCGAT 19 20 no no BMAA1878 Transcriptional regulator Mouse Spleen 1 GAGGCGT 26 25 no no BMA2774

  6. Draft Genome Sequence of Escherichia coli O157:H7 ATCC 35150 and a Nalidixic Acid-Resistant Mutant Derivative

    PubMed Central

    Markell, James A.; Koziol, Adam G.

    2015-01-01

    Shiga toxin-producing Escherichia coli strains, occasionally isolated from food, are of public health importance. Here, we report on the 5.30-Mbp draft genome sequence of E. coli O157:H7 EDL931 (strain ATCC 35150) and the 5.32-Mbp draft genome sequence of a nalidixic acid-resistant mutant derivative used as a distinguishable control strain in food-testing laboratories. PMID:26205873

  7. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  8. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.

    PubMed

    Harper, L L; McDaniel, C S; Miller, C E; Wild, J R

    1988-10-01

    The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.

  9. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.

    PubMed Central

    Harper, L L; McDaniel, C S; Miller, C E; Wild, J R

    1988-01-01

    The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources. Images PMID:3202637

  10. Characterization of Streptomyces venezuelae ATCC 10595 rRNA gene clusters and cloning of rrnA.

    PubMed Central

    La Farina, M; Stira, S; Mancuso, R; Grisanti, C

    1996-01-01

    Streptomyces venezuelae ATCC 10595 harbors seven rRNA gene clusters which can be distinguished by BglII digestion. The three rRNA genes present in each set are closely linked with the general structure 16S-23S-5S. We cloned rrnA and sequenced the 16S-23S spacer region and the region downstream of the 5S rRNA gene. No tRNA gene was found in these regions. PMID:8631730

  11. Salmonella Typhimurium Strain ATCC14028 Requires H2-Hydrogenases for Growth in the Gut, but Not at Systemic Sites

    PubMed Central

    Maier, Lisa; Barthel, Manja; Stecher, Bärbel; Maier, Robert J.; Gunn, John S.; Hardt, Wolf-Dietrich

    2014-01-01

    Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization. PMID:25303479

  12. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  13. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  14. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  15. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.

    PubMed

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2014-05-16

    The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.

  16. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.

    PubMed

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source.

  17. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    PubMed

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  18. The two-component system CBO2306/CBO2307 is important for cold adaptation of Clostridium botulinum ATCC 3502.

    PubMed

    Derman, Yağmur; Isokallio, Marita; Lindström, Miia; Korkeala, Hannu

    2013-10-01

    Clostridium botulinum is a notorious foodborne pathogen. Its ability to adapt to and grow at low temperatures is of interest for food safety. Two-component systems (TCSs) have been reported to be involved in cold-shock and growth at low temperatures. Here we show the importance of TCS CBO2306/CBO2307 in the cold-shock response of C. botulinum ATCC 3502. The relative expression levels of the cbo2306 and cbo2307 were up to 4.4-fold induced in the cold-shocked cultures but negatively regulated in the late-log and stationary growth phase in relation to early logarithmic growth phase in non-shocked cultures. Importance of the CBO2306/CBO2307 in the cold stress was further demonstrated by impaired growth of insertional cbo2306 or cbo2307 knockout mutants in relation to the wild-type strain ATCC 3502. The results suggest that the TCS CBO2306/CBO2307 is important for cold-shock response and adaptation of C. botulinum ATCC 3502 to low temperature.

  19. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  20. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.

    PubMed

    Hoogewerf, Arlene J; Dyk, Lisa A Van; Buit, Tyler S; Roukema, David; Resseguie, Emily; Plaisier, Christina; Le, Nga; Heeringa, Lee; Griend, Douglas A Vander

    2015-02-01

    Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to other metal ions. After growth in media containing 20 µg ml(-1) cadmium sulfate, cadC-mutant cells contained more intracellular cadmium than cadC-positive ATCC12600 cells, suggesting that cadC absence results in impaired cadmium efflux. Electrophoretic mobility shift assays were performed with CadC proteins encoded by the S. aureus ATCC12600 plasmid and by the cadC gene of pI258, which is known to act as a transcriptional repressor and shares only 47% protein sequence identity with ATCC12600 CadC. Mobility shifts occurred when pI258 CadC protein was incubated with the promoter DNA-regions from the pI258 and S. aureus ATCC12600 cadCA operons, but did not occur with S. aureus ATCC12600 CadC protein, indicating that the ATCC12600 CadC protein does not interact with promoter region DNA. This cadCA operon, found in MRSA strains and previously functionally uncharacterized, increases resistance to cadmium and zinc by an efflux mechanism, and CadC does not function as a transcriptional repressor.

  1. Sensitive and specific modified Hodge test for KPC and metallo-beta- lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603.

    PubMed

    Pasteran, Fernando; Veliz, Omar; Rapoport, Melina; Guerriero, Leonor; Corso, Alejandra

    2011-12-01

    We evaluated the ability of the modified Hodge test to discriminate between KPC- and metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa isolates and carbapenemase nonproducers. With Escherichia coli ATCC 25922 as the indicator strain, the MHT resulted in low sensitivity, specificity, and repeatability. Replacing the indicator strain with Klebsiella pneumoniae ATCC 700603 led to an improved performance (100%, 97%, 0%, and 100% sensitivity, specificity, indeterminate results and repeatability, respectively).

  2. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec.

  3. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    PubMed

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  4. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se(4+)∙L(-1)) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.(-1)) was obtained after a 48-h culture in media containing 30 mg Se(4+)∙L(-1). The highest content of selenomethionine (238.8 μg∙gd.w.(-1)) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se(4+)∙L(-1). Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L(-1). The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  5. Cronobacter sakazakii ATCC 29544 Autoaggregation Requires FliC Flagellation, Not Motility

    PubMed Central

    Hoeflinger, Jennifer L.; Miller, Michael J.

    2017-01-01

    Cronobacter sakazakii is an opportunistic nosocomial and foodborne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. Little is known about the pathogenesis mechanism of this pathogen and if there are any consequences of C. sakazakii colonization in healthy individuals. In this study, we characterized the mechanisms of autoaggregation in C. sakazakii ATCC 29544 (CS29544). Autoaggregation in CS29544 occurred rapidly, within 30 min, and proceeded to a maximum of 70%. Frameshift mutations in two flagellum proteins (FlhA and FliG) were identified in two nonautoaggregating CS29544 clonal variant isolates. Strategic gene knockouts were generated to determine if structurally intact and functional flagella were required for autoaggregation in CS29544. All structural knockouts (ΔflhA, ΔfliG, and ΔfliC) abolished autoaggregation, whereas the functional knockout (ΔmotAB) did not prevent autoaggregation. Complementation with FliC (ΔfliC/cfliC) restored autoaggregation. Autoaggregation was also disrupted by the addition of exogenous wild-type CS29544 filaments in a dose-dependent manner. Finally, filament supercoils tethering neighboring wild-type CS29544 cells together were observed by transmission electron microscopy. In silico analyses suggest that direct interactions of neighboring CS29544 FliC filaments proceed by hydrophobic bonding between the externally exposed hypervariable regions of the CS29544 FliC flagellin protein. Further research is needed to confirm if flagella-mediated autoaggregation plays a prominent role in C. sakazakii pathogenesis. PMID:28293226

  6. Physiological and Transcriptional Response of Lactobacillus casei ATCC 334 to Acid Stress▿ †§

    PubMed Central

    Broadbent, Jeff R.; Larsen, Rebecca L.; Deibel, Virginia; Steele, James L.

    2010-01-01

    This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P < 0.05) higher total percentages of saturated and cyclopropane fatty acids than did control cells. Specifically, large increases in the percentages of C14:0, C16:1n(9), C16:0, and C19:0(11c) were noted in the CMFAs of acid-adapted and acid-adapted, acid-challenged cells, while C18:1n(9) and C18:1n(11) showed the greatest decrease. Comparison of the transcriptome from control cells (grown at pH 6.0) against that from cells acid adapted for 20 min at pH 4.5 indicated that acid adaption invoked a stringent-type response that was accompanied by other functions which likely helped these cells resist acid damage, including malolactic fermentation and intracellular accumulation of His. Validation of microarray data was provided by experiments that showed that L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance. PMID:20207759

  7. Genome Sequence and Analysis of the Oral Bacterium Fusobacterium nucleatum Strain ATCC 25586

    PubMed Central

    Kapatral, Vinayak; Anderson, Iain; Ivanova, Natalia; Reznik, Gary; Los, Tamara; Lykidis, Athanasios; Bhattacharyya, Anamitra; Bartman, Allen; Gardner, Warren; Grechkin, Galina; Zhu, Lihua; Vasieva, Olga; Chu, Lien; Kogan, Yakov; Chaga, Oleg; Goltsman, Eugene; Bernal, Axel; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite (http://www.integratedgenomics.com). The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H2S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth. PMID:11889109

  8. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  9. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707†

    PubMed Central

    Klotz, Martin G.; Arp, Daniel J.; Chain, Patrick S. G.; El-Sheikh, Amal F.; Hauser, Loren J.; Hommes, Norman G.; Larimer, Frank W.; Malfatti, Stephanie A.; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa M.; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type). PMID:16957257

  10. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states

    PubMed Central

    Sánchez, MC.; Ribeiro-Vidal, H.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M.

    2017-01-01

    Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression. PMID:28369099

  11. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  12. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  13. Cloning, expression and characterization of D-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173.

    PubMed

    Wang, Wei; Xi, Huange; Bi, Qirui; Hu, Ying; Zhang, Yang; Ni, Mengxiang

    2013-07-19

    D-Aminoacylase catalyzes the conversion of N-acyl-D-amino acids to d-amino acids and fatty acids. The aim of this study was to identify the D-aminoacylase gene from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173 and investigate the biochemical characterization of the enzyme. A previously uncharacterized D-aminoacylase gene (ADdan) from this organism was cloned and sequenced. The open reading frame (ORF) of ADdan was 1467 bp in size encoding a 488-amino acid polypeptide. ADdan, with a high amino acid similarity to N-acyl-D-aspartate amidohydrolase from Alcaligenes A6, showed relatively low sequence similarities to other characterized D-aminoacylases. The recombinant ADdan protein was expressed in Escherichia coli BL21 (DE3) using pET-28a with a T7 promoter. The enzyme was purified in a single chromatographic step using nickel affinity gel column. The molecular mass of the expressed protein, calculated by SDS-PAGE, was about 52 kDa. The purified ADdan showed optimal activity at pH 8.0 and 50°C, and was stable at pH 6.0-8.0 and up to 45°C. Its activity was inhibited by Cu(2+), Fe(2+), Ca(2+), Mn(2+), Ni(2+), Zn(2+) and Hg(2+), whereas Mg(2+) had no significant influence on this recombinant D-aminoacylase. This is the first report on the characterization of D-aminoacylase with activity towards both N-acyl derivatives of neutral D-amino acids and N-acyl-D-aspartate. The characteristics of ADdan could prove to be of interest in industrial production of D-amino acids.

  14. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  15. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.

  16. Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates the phosphorylation of p44 and p42 MAP kinases through CD14 and TLR-4 receptor activation in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Kawasaki-Cárdenas, Perla; Cruz-Arroyo, Santa Rita; Pérez-Garzón, Miguel; Maldonado-Frías, Silvia

    2006-04-25

    Tyrosine phosphorylation is an early step in lipopolysaccharide (LPS) stimulated monocytes and macrophages that appears to play a key role in signal transduction. We have demonstrated that LPS purified from Actinobacillus actinomycetemcomitans also increases protein tyrosine phosphorylation in human gingival fibroblasts (HGF). This effect was elicited rapidly after LPS stimulation at concentrations that stimulate anti-bacterial responses in human gingival fibroblasts. Two main proteins, with an apparent molecular weight of 44 and 42 kDa, were phosphorylated after LPS stimulation of the human gingival fibroblasts. The phosphorylation was detected after 5 to 15 min and reached the maximum at 30 min of treatment. The increase in tyrosine phosphorylation was apparent following stimulation with LPS at 10 ng/ml and the response was dose dependent up to 10 microg/ml. Pretreatment with the tyrosine kinase inhibitors, herbimycin A and genistein inhibited the LPS-stimulated phosphorylation of p44 and p42 MAP kinases in a dose dependent manner. Pretreatment of human gingival fibroblasts with antibodies anti-CD14 or anti-TLR-4 but not anti-TLR-2 inhibited the LPS-induced tyrosine phosphorylation of p44 and p42. Additionally, LPS-induced p44 and p42 phosphorylation was inhibited by polymyxin treatment. These findings demonstrate that LPS from A. actinomycetemcomintans increases rapidly p44 and p42 phosphorylation (ERK 1 and ERK 2, respectively) in human gingival fibroblasts. Our data also suggest that CD14 and TLR-4 receptors are involved in the LPS effects in human gingival fibroblasts.

  17. The immunodominant outer membrane antigen of Actinobacillus actinomycetemcomitans is located in the serotype-specific high-molecular-mass carbohydrate moiety of lipopolysaccharide.

    PubMed Central

    Page, R C; Sims, T J; Engel, L D; Moncla, B J; Bainbridge, B; Stray, J; Darveau, R P

    1991-01-01

    Most patients with juvenile periodontitis manifest serum antibodies, sometimes at very high titers, to antigens of Actinobacillus actinomycetemcomitans, but the antigens inducing the immune response have been only partly characterized. We separated A. actinomycetemcomitans serotype b cells into protein, lipopolysaccharide (LPS), and soluble polysaccharide fractions and characterized them. Coomassie blue- and silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels were used to detect protein and LPS components, and gas-liquid chromatography was used to determine their carbohydrate and fatty acid composition. Western blots, dot blots, and enzyme-linked immunosorbent assay inhibition with high-titer sera from juvenile periodontitis patients revealed which components were highest in antibody binding activity. These results showed that the major portion of the immunoglobulin G binding activity resides in the purified mannan-free LPS, with lesser amounts in the total protein fraction. Using Sephacryl S-300 chromatography, we separated LPS into high-molecular-mass components with high carbohydrate contents by gas-liquid chromatography and a low-molecular-mass component consisting mainly of lipid A and the inner core sugar heptulose. The results of quantitative dot blot assays and enzyme-linked immunosorbent assay inhibition show that the serotype-specific antibody binding activity is highly concentrated in the high-molecular-mass carbohydrate-rich LPS fraction and is almost completely absent in the low-molecular-weight lipid-rich fraction. Our observations contrast with previous reports that the predominant serotype antigen of A. actinomycetemcomitans resides in a mannan-rich polysaccharide isolated from spent culture medium. These observations support the conclusion that the immunodominant antigen of the outer membrane is the O antigen of the LPS. Images PMID:1716610

  18. Actinobacillus pleuropneumoniae is impaired by the garlic volatile allyl methyl sulfide (AMS) in vitro and in-feed garlic alleviates pleuropneumonia in a pig model.

    PubMed

    Becker, Petra M; van Wikselaar, Piet G; Mul, Monique F; Pol, Arjan; Engel, Bas; Wijdenes, Jan W; van der Peet-Schwering, Carola M C; Wisselink, Henk J; Stockhofe-Zurwieden, Norbert

    2012-01-27

    Decomposition products of ingested garlic are to a certain extent excreted via the lungs. If the supposed health-supporting capacities associated with garlic extend to these exhaled sulfurous compounds, they could have an effect on the course of pneumonia. In this study, the garlic-derived volatile allyl methyl sulfide (AMS) as a lead compound of volatile garlic metabolites was shown to exhibit an antibacterial effect against the pig pathogen Actinobacillus pleuropneumoniae serotype 9. AMS caused a delay in the appearance of the optical density-monitored growth of A. pleuropneumoniae in medium when compared to unaffected growth curves, yet without lowering the stationary phase yield at the concentration range tested. At 1.1mM, AMS impaired the in vitro growth rate of A. pleuropneumoniae serotype 9 by 8% compared to unimpeded growth. In an animal trial, a garlic-fed group of 15 pigs that received a diet with 5% garlic feed component and a control group of 15 pigs that received a diet without garlic were infected with A. pleuropneumoniae serotype 2 via an aerosol and subsequently followed for 4 days. At the day of the challenge, blood AMS in the garlic-fed group amounted to 0.32 ± 0.13 μM. A beneficial, alleviating effect of garlic on the course and severity of an A. pleuropneumoniae infection in pigs was indicated by the reduced occurrence of characteristic pleuropneumonia lesions (27% of the lungs affected in the garlic-fed group vs. 47% in the control group) and a near to significant (p=0.06) lower relative lung weight post mortem in the garlic-fed group.

  19. Involvement of Ganglioside GM3 in G2/M Cell Cycle Arrest of Human Monocytic Cells Induced by Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin

    PubMed Central

    Mise, Koji; Akifusa, Sumio; Watarai, Shinobu; Ansai, Toshihiro; Nishihara, Tatsuji; Takehara, Tadamichi

    2005-01-01

    Actinobacillus actinomycetemcomitans produces a toxin called cytolethal distending toxin (CDT), which causes host cell DNA damage leading to the induction of DNA damage checkpoint pathways. CDT consists of three subunits, CdtA, CdtB, and CdtC. CdtB is the active subunit of CDT and exerts its effect as a nuclease that damages nuclear DNA, triggering cell cycle arrest. In the present study, we confirmed that the only combination of toxin proteins causing cell cycle arrest was that of all three recombinant CDT (rCDT) protein subunits. Furthermore, in order for rCDT to demonstrate toxicity, it was necessary for CdtA and CdtC to access the cell before CdtB. The coexistence of CdtA and CdtC was necessary for these subunits to bind to the cell. Cells treated with the glucosylceramide synthesis inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol showed resistance to the cytotoxicity induced by rCDT. Furthermore, LY-B cells, which are deficient in the biosynthesis of sphingolipid, also showed resistance to the cytotoxicity induced by rCDT. To evaluate the binding of each subunit for glucosylceramides, we performed thin-layer chromatography immunostaining. The results indicated that each subunit reacted with the glycosphingolipids GM1, GM2, GM3, Gb3, and Gb4. The rCDT mixture incubated with liposomes containing GM3 displayed partially reduced toxicity. These results indicate that GM3 can act as a CDT receptor. PMID:16040998

  20. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge.

    PubMed

    Lu, Yu-Chun; Li, Min-Chen; Chen, Yi-Min; Chu, Chun-Yen; Lin, Shuen-Fuh; Yang, Wen-Jen

    2011-10-13

    Actinobacillus pleuropneumoniae is a gram-negative bacterial pathogen that causes swine pleuropneumonia, a highly contagious and often fatal disease that occurs worldwide. Our previous study showed that DNA vaccines encoding Apx exotoxin structural proteins ApxIA and/or ApxIIA, are a promising novel approach for immunization against the lethal challenge of A. pleuropneumoniae serotype 1. Vaccination against A. pleuropneumoniae is impeded by the lack of vaccines inducing reliable cross-serotype protection. Type IV fimbrial protein ApfA has been shown to be present and highly conserved in various serotypes of A. pleuropneumoniae. A novel DNA vaccine encoding ApfA (pcDNA-apfA) was constructed to evaluate the protective efficacy against infection with A. pleuropneumoniae serotype 2. A significant antibody response against pilin was generated following pcDNA-apfA immunization, suggesting that it was expressed in vivo. The IgG subclass (IgG1 and IgG2a) analysis indicates that the pcDNA-apfA vaccine induces both Th1 and Th2 immune responses. The IgA analysis shows that mucosal immunity could be enhanced by this DNA vaccine. Nevertheless, the strong antibody response induced by pcDNA-apfA vaccine only provided limited 30% protective efficacy against the serotype 2 challenge. These results in this study do not coincide with that the utility of type IV pilin is a good vaccine candidate against other infectious pathogens. It indicates that pilin should play a limited role in the development of a vaccine against A. pleuropneumoniae infection.

  1. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  2. Zinc and Arsenic Immobilization and Magnetite Formation Upon Maghemite Reduction by Shewanella putrefaciens ATCC 8071

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Ona-Nguema, G.; Bonnin, D.; Menguy, N.; Brown, G. E.

    2007-12-01

    Dissimilatory reduction of ferric iron oxides is recognized as an important component of the iron biogeochemical cycle, causing the dissolution of iron oxide minerals and the possible formation of Fe(II)-bearing minerals such as magnetite, green rusts, siderite, etc. These mineralogical transformations affect the mobility of surface- associated toxic metal(loid)s, which may be released into solution, adsorbed, or incorporated into newly formed minerals. Maghemite (γ-Fe2O3) is an iron oxide mineral that is found in certain tropical soils and as isolated deposits in more temperate regions. In these settings, maghemite may play an important role in the biogeochemical cycling of iron and of surface-associated trace metal(loids). However, the reduction of maghemite by iron-respiring bacteria, the impact of reductive dissolution on the release of associated contaminants, and the nature of biogenic Fe(II)-containing reaction products are not well documented. In the present study, we incubated samples of pure maghemite and As(V)- and Zn-adsorbed maghemite with an iron reducing bacterium, Shewanella putrefaciens strain ATCC 8071, in a batch system under anoxic conditions. As a result of Fe(III) bioreduction, all mineral suspensions turned from brown to black during the first hour of incubation, indicating the onset of magnetite formation. The presence of this mineral was confirmed by transmission Mössbauer spectroscopy at room temperature, which showed the formation of an almost stoichiometric magnetite. High-resolution transmission electron microscopy images indicate that the parent maghemite and the biogenic magnetite particles are octahedral in shape and of similar size (5 to 20 nm). The presence of 50 mg/L adsorbed Zn(II) did not affect the initial rate of iron reduction with respect to the Zn-free maghemite sample (0.62 mM Fe(II)/h and 0.66 mM Fe(II)/h, respectively). However, adsorption of 50 and 100 mg/L As(V) on maghemite decreased the initial iron reduction rate

  3. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  4. Design and production of functionalized biopolyesters by Methylobacterium extorquens ATCC 55366: Toward new tissue engineering materials

    NASA Astrophysics Data System (ADS)

    Hoefer, Heinrich Friedrich Philipp Till Nikolaus

    Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C ≤ 5) and unsaturated medium-chain-length (mcl, 6 ≤ C ≤ 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 ≤ C ≤ 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl

  5. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.

    PubMed

    Buch, Aditi D; Archana, G; Kumar, G Naresh

    2009-08-01

    Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant approximately 2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525

  6. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  7. Development of real-time PCR primer and probe sets for detecting degenerated and non-degenerated forms of the butanol-producing bacterium Clostridium acetobutylicum ATCC 824.

    PubMed

    Lee, Sun-Mi; Cho, Min Ok; Um, Youngsoon; Sang, Byoung-In

    2010-05-01

    Degeneration is one of the limiting factors in butanol fermentation, and it must be monitored and prevented for stable butanol production. In Clostridium acetobutylicum ATCC 824, the most well-known butanol-producing microorganism, degeneration is caused by the loss of the pSOL1 plasmid that carries essential genes involved in solvent production. In this study, we designed two specific primer and probe sets for real-time qPCR (RT-qPCR) detection of C. acetobutylicum ATCC 824 (the C. aceto set) and pSOL1-possessing C. acetobutylicum ATCC 824 (the DGS set). Specific primer and probe sets were designed on the basis of the 16S rDNA sequence and pSOL1 sequence. The number of degenerated C. acetobutylicum could be quantified by subtracting the number of C. acetobutylicum ATCC 824 containing pSOL1 from the total number of C. acetobutylicum ATCC 824. The primer and probe sets permitted the specific detection and quantification of degenerated C. acetobutylicum and total butanol-producing C. acetobutylicum by RT-qPCR.

  8. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  9. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.

    PubMed

    Liang, Ying; Zhu, Li; Ding, Han; Gao, Minjie; Zheng, Zhiyong; Wu, Jianrong; Zhan, Xiaobei

    2017-02-10

    A coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442 (AT-CFS) with wheat bran as the optimal nitrogen source was established for producing low-molecular-weight curdlan with high production, which can potentially reduce the cost of low-molecular-weight curdlan biosynthesis. The initial inoculate ratio, pH and the fermentation time were optimized. Compared with the curdlan from the single fermentation system of Agrobacterium sp. ATCC 31749 (A-SFS), the molecular weight (Mw) of the curdlan produced from AT-CFS decreased by 34.01% (from 110.85kDa to 73.15kDa), and the curdlan production (47.9g/L) and conversion rate of glucose to curdlan (0.60gg(-1)) increased by 119.93% and 36.36%, respectively. The results of RT-PCR showed high curdlan production in AT-CFS was highly correlated with aerobic respiration intensity and curdlan synthase activity. The structure of the curdlan from AT-CFS was the same as that from A-SFS.

  10. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    Yu, Li-Jun; Wu, Jian-Rong; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi Chung

    2011-07-01

    The regulatory function of global regulator NtrC on curdlan biosynthesis and nitrogen consumption under nitrogen-limited condition in Agrobacterium sp. ATCC 31749 was investigated. The ntrC mutant of Agrobacterium sp. was constructed by homologous recombination. The ability to utilize NH4Cl and KNO3 was impaired in the mutant. Other nitrogenous compounds, such as glutamic acid and glutamine, were utilized normally. Curdlan production capability was impaired severely in the mutant. Curdlan production was 5-fold lower than the wild type strain in batch fermentation with NH4Cl as the sole nitrogen source. However, up to 6.5 g l(-1) of a newly found alkali-insoluble biopolymer was produced by the ntrC mutant when glutamic acid was used as nitrogen source. The new biopolymer had glycosidic bond and hydroxyl group but no β-configuration absorption peak on IR spectrum was found as different from curdlan. In addition, the mutant exhibited a rapid morphological change from the dot to rod form. These results deduced that the global regulator NtrC was involved in curdlan and other biopolymer biosynthesis in Agrobacterium sp. ATCC 31749 in response to nitrogen-limited condition.

  11. Development of a potential functional food prepared with pigeon pea (Cajanus cajan), oats and Lactobacillus reuteri ATCC 55730.

    PubMed

    Barboza, Yasmina; Márquez, Enrique; Parra, Katynna; Piñero, M Patricia; Medina, Luis M

    2012-11-01

    The purpose of this study was to investigate the survival of Lactobacillus reuteri ATCC 55730 in creams, prepared with pigeon peas and oat. Products were analysed to determine their content of protein, fibre, fat, carbohydrates and degree of likeness. Viable numbers of L. reuteri and pH were determined after 1, 7, 14, 21 and 28 days of storage at 4°C. Results showed significant differences (P < 0.05) in protein, fat, fibre and carbohydrate content between creams. No significant differences (P > 0.05) were found on sensory quality between control and creams with L. reuteri. After 28 days, the cell viability was above 7 log cfu/g in all creams. L. reuteri ATCC 55730 had the highest viability in cream with 40% pigeon pea and 20% oat (8.16 log cfu/g). In conclusion, due to its acceptability and highly nutritious value, the product could be used so as to support the growth of L. reuteri.

  12. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN.

  13. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride.

    PubMed

    Lee, H Y; Chai, L C; Pui, C F; Mustafa, S; Cheah, Y K; Nishibuchi, M; Radu, S

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1-10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.

  14. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Schneegurt, M A; Sherman, D M; Nayar, S; Sherman, L A

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms. Images PMID:8132452

  15. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  16. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance.

  17. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    PubMed

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

  18. Efficacy of vaccination against Actinobacillus pleuropneumoniae in two Belgian farrow-to-finish pig herds with a history of chronic pleurisy.

    PubMed

    Del Pozo Sacristán, R; Michiels, A; Martens, M; Haesebrouck, F; Maes, D

    2014-03-22

    The efficacy of an Actinobacillus pleuropneumoniae subunit vaccine based on ApxIA, ApxIIA, ApxIIIA and OMP-2 (Porcilis App, MSD) was investigated in two farrow-to-finish pig herds (A and B) affected by chronic pleurisy. In total, 1161 pigs were included. At three weeks of age, the pigs were randomly allocated to non-vaccinated control (NV; n=580) and vaccinated (V; n=581) groups. At 6 and 10 weeks of age, pigs were injected with Porcilis-APP (V group) or adjuvant (NV group). At slaughter (26 weeks), pleurisy and pneumonia lesions were assessed. All pigs were weighed individually at 6 and 26 weeks of age, and average daily weight gain (ADG; g/pig/day) was calculated. Mortality and days of additional treatment (DAT) were registered during the whole experiment. Data were analysed using binary logistic regression or analysis of variance for proportions or continuous variables, respectively. The prevalence of pleurisy and pneumonia was (NV-A=19.3, V-A=7.9, (P=0.000); NV-B=17.9, V-B=0.7, (P=0.000)) and (NV-A=42.4, V-A=21.2, (P=0.000); NV-B=46.7, V-B=19.0, (P=0.000)), respectively. The ADG was NV-A=632±157, V-A=647±91, (P=0.162); NV-B=660±115, V-B=670±82, (P=0.232). The mortality during the experiment was NV-A=5.7, V-A=1.8, (P=0.015); NV-B=2.3, V-B=1.0, (P=0.170) per cent. The DAT was: NV-A=15.04±1.41, V-A=14.95±0.67, (P=0.010); NV-B=21.68±2.43, V-B=16.99±0.62, (P=0.000). The present study showed a significant reduction of the prevalence of pleurisy and pneumonia, and antimicrobial use in V pigs from both herds, and in mortality in V pigs from one herd.

  19. Mouse interleukin-1 receptor antagonist induced by Actinobacillus actinomycetemcomitans lipopolysaccharide blocks the effects of interleukin-1 on bone resorption and osteoclast-like cell formation.

    PubMed Central

    Nishihara, T; Ohsaki, Y; Ueda, N; Saito, N; Mundy, G R

    1994-01-01

    We have reported that P388D1 cell line murine macrophages stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans release interleukin-1 (IL-1) inhibitor. The IL-1 inhibitor was purified from conditioned media of P388D1 cells stimulated with A. actinomycetemcomitans LPS for 72 h to homogeneity by a four-step procedure: acetic acid extraction from conditioned media; Bio-Gel P-60 gel filtration chromatography; DEAE-Sepharose CL-6B column chromatography; and reverse-phase high-performance liquid chromatography on a C18 hydrophobic support. The purified IL-1 inhibitor gave a single band of protein with a molecular mass of 26 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified IL-1 inhibitor was a heat- and acid-stable protein that was inactivated by digestion with trypsin and reduction with dithiothreitol. This inhibitory factor suppressed the proliferation of C3H/HeJ mouse thymocytes and the proliferation of IL-1-dependent cell lines, D10.G4.1 and RPMI 1788, induced by IL-1. However, this inhibitor did not affect the proliferation of IL-2-dependent CTLL-2 cells induced by IL-2, the proliferation of C3H/HeJ mouse thymocytes stimulated with a mitogenic dose of concanavalin A, and the proliferation of IL-6-dependent B9 cells induced by IL-6. Furthermore, the IL-1 inhibitor significantly blocked stimulation of bone resorption in organ cultures of newborn mouse calvaria and inhibited the osteoclast-like cell formation in mouse marrow cultures. A monoclonal antibody prepared against the purified IL-1 inhibitor reacted with mouse recombinant IL-1 receptor antagonist (rIL-1ra), and a polyclonal antibody to mouse rIL-1ra reacted with the IL-1 inhibitor by Western blot (immunoblot) analysis. These results indicate that the IL-1 inhibitor is an identical molecule to rIL-1ra, suggesting that the IL-1 inhibitor (IL-1ra) released by macrophages stimulated with LPS from A. actinomycetemcomitans may play an important mediative role

  20. Evidence obtained with monoclonal antibodies that O antigen is the major antigen responsible for the cross-reactivities between serotypes 4 and 7 of Actinobacillus (Haemophilus) pleuropneumoniae.

    PubMed Central

    Rodríguez Barbosa, J I; Gutiérrez Martín, C B; Tascón, R I; Suárez, J; Rodríguez Ferri, E F

    1995-01-01

    Monoclonal antibodies (MAbs) against Actinobacillus (Haemophilus) pleuropneumoniae serotype 4 (reference strain M62 and field isolate F6) were produced and characterized. Three hybridoma clones were raised against strain M62, and 13 were raised against strain F6. The predominant antibody class was immunoglobulin M (IgM), although IgG2a and IgG2b were also obtained. Three of the MAbs produced to field isolate F6 (5C5, 1E10, and 5H7) did not recognize the reference strain of serotype 4, another (6F7) was reactive with both reference strains of serotypes 4 and 7, and the remaining 12 MAbs reacted only with the reference strain of the homologous serotype. All epitopes recognized by MAbs, except for one (6F7), were sensitive to periodic acid oxidation, and all of them were resistant to boiling in the presence of sodium dodecyl sulfate and reducing conditions, as evidenced by immunodot. Enhanced chemioluminiscence-immunoblot assays revealed that 10 MAbs (3E12, 5B8, 7C3, 6F7, 7F5, 7E6, 5G4, 4F1, 7E10, and 4B8) recognized a ladder-like banding pattern, which is in accordance with the O side chain antigen of lipopolysaccharide (LPS), while the remaining 6 MAbs (5C5, 5H7, 1E10, 6D11, 6B4, and 5E4) blotted with high-molecular-weight regions composed of a single banding pattern. The suitability of MAbs for serotyping of 78 field isolates was also examined. A high correlation was found between the results previously established by indirect hemagglutination with polyclonal sera and those obtained by enzyme-linked immunosorbent assay with MAbs. According to the different immunoreactivity of MAbs, three groups were established: group I (MAbs 3E12, 5B8, 7C3, 6F7, and 7F5), group II (MAbs 7E6, 5G4, 4F1, 7E10, and 4B8), and group III (MAbs 5C5, 5H7, and 1E10). MAbs 6D11, 6B4, and 5E4 could not be included in any of the described above. At least six different immunodominant epitopes on the O antigen of the A. pleuropneumoniae serotype 4 LPS were identified. Finally, the implications