Science.gov

Sample records for actinobacteria bacteroidetes chloroflexi

  1. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    PubMed

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children.

  2. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children.

    PubMed

    Barczynska, Renata; Slizewska, Katarzyna; Litwin, Mieczyslaw; Szalecki, Mieczyslaw; Kapusniak, Janusz

    2016-01-01

    Currently, there is a search for substances that would be very well tolerated by an organism and which could contribute to the activation of the growth of Bacteroidetes and Actinobacteria strains, with simultaneous inhibition of the growth of Firmicutes. High expectations in this regard are raised with the use of fiber preparations from starch - resistant corn dextrins, branched dextrins, resistant maltodextrins and soluble corn fiber. In this paper, the influence of fiber preparations made from corn starch was evaluated on growth and activity of Bacteroidetes, Actinobacteria and Firmicutes strains isolated from obese children. It was demonstrated that in the stool of obese children Firmicutes strains predominate, while Bacteroidetes and Actinobacteria strains were in the minority. A supplementation of fecal culture with fiber preparations did not cause any significant changes in the number of strains of Bacteroidetes and Firmicutes. Addition of fiber preparations to the fecal samples of obese children increased the amount of short-chain fatty acids, especially acetic (p < 0.01), propionic, butyric (p = 0.05) and lactic acid (p < 0.01).

  3. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal.

    PubMed

    Björnsson, Lovisa; Hugenholtz, Philip; Tyson, Gene W; Blackall, Linda L

    2002-08-01

    Most filamentous bacteria in biological nutrient removal (BNR) processes have not been identified beyond their morphotype and simple staining reactions. Furthermore, the majority of sludge filaments observed under the microscope do not hybridize to commonly used phylogenetic probes for well characterized bacterial phyla such as the Proteobacteria, Actinobacteria, Firmicutes and BACTEROIDETES: Specific 16S rRNA-targeted oligonucleotide probes were designed for the phylum Chloroflexi (green non-sulfur bacteria) and optimized for use in fluorescence in situ hybridization. Chloroflexi have been implicated in BNR systems by phylogenetic identification of filamentous bacteria isolated by micromanipulation from sludge and culture-independent molecular phylogenetic surveys. The predominant morphotype responding to the probes was filamentous and these filaments were generally abundant in 10 Australian full-scale and two laboratory-scale BNR samples examined. Filamentous bacteria responding to a subdivision 1 Chloroflexi probe were rare in the samples, whereas subdivision 3 Chloroflexi filaments were very common in some sludges. This is in direct contrast to results obtained from molecular phylogenetic surveys of BNR systems where most sludge 16S rDNA clones belong to subdivision 1 and only a few to subdivision 3. It is suggested that filamentous bacteria belonging to the Chloroflexi phylum account for a large fraction of phylogenetically uncharacterized filaments in BNR systems and are likely to be abundant in such systems on a global scale.

  4. Natural Niche for Organohalide-Respiring Chloroflexi

    PubMed Central

    Krzmarzick, Mark J.; Crary, Benjamin B.; Harding, Jevon J.; Oyerinde, Oyenike O.; Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle. PMID:22101035

  5. Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi 'subphylum i' with natural and biotechnological relevance.

    PubMed

    Yamada, Takeshi; Sekiguchi, Yuji

    2009-01-01

    Cultivation-independent molecular surveys have shown members of the bacterial phylum Chloroflexi to be ubiquitous in various natural and artificial ecosystems. Among the subphylum-level taxa of the Chloroflexi known to date, the formerly uncultured 'subphylum I' had well been recognized as a typical group that contains a number of environmental gene clones with no culture representatives. In order to reveal their ecophysiology, attempts were made over the past decade to domesticate them into laboratory cultures, and significant advances have been made in cultivating strains belonging to the group. The microorganisms characterized so far include seven species in six genera, i.e., Anaerolinea, Levilinea, Leptolinea, Bellilinea, Longilinea, and Caldilinea, and were proposed to represent two classes, Anaerolineae and Caldilineae, providing solid insights into the phenotypic and genetic properties common to the group. Another subphylum-level uncultured group of the Chloroflexi, i.e., the class Ktedonobacteria, has also been represented recently by a cultured strain. In addition to the results from these tangible cultures, data obtained from functional analyses of uncultured Chloroflexi populations by assessing substrate uptake patterns are accumulating at an encouraging rate. In this review, recent findings on the ecological significance and possible ecophysiological roles of 'Chloroflexi subphylum I' are discussed based on findings from both the characteristics of the cultured Chloroflexi and molecular-based analyses.

  6. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions

    PubMed Central

    Camanocha, Anuj; Dewhirst, Floyd E.

    2014-01-01

    Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful

  7. Emerging biopharmaceuticals from marine actinobacteria.

    PubMed

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016.

  8. Siderophore production by actinobacteria.

    PubMed

    Wang, Wenfeng; Qiu, Zhiqi; Tan, Hongming; Cao, Lixiang

    2014-08-01

    Produced by bacteria, fungi and plants, siderophores are low-molecular-weight chelating agents (200-2,000 Da) to facilitate uptake of iron (Fe). They play an important role in extracellular Fe solubilization from minerals to make it available to microorganisms. Siderophores have various chemical structures and form a family of at least 500 different compounds. Some antibiotics (i.e., albomycins, ferrimycins, danomycins, salmycins, and tetracyclines) can bind Fe and some siderophores showed diverse biological activities. Functions and applications of siderophores derived from actinobacteria were reviewed to better understand the diverse metabolites.

  9. Environmental and Gut Bacteroidetes: The Food Connection

    PubMed Central

    Thomas, François; Hehemann, Jan-Hendrik; Rebuffet, Etienne; Czjzek, Mirjam; Michel, Gurvan

    2011-01-01

    Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals’ symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health. PMID:21747801

  10. New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions.

    PubMed

    Zhang, Xiaojun; Ma, Xiaojun; Wang, Ninglian; Yao, Tandong

    2009-01-01

    We recovered microorganisms from five ice core samples from three glaciers (Puruogangri, Malan, and Dunde) located in the Tibetan Plateau in China and analyzed their small subunit rRNA gene sequences. Most of the bacterial sequences were unknown previously; the most closely related known sequences were from bacteria of the Proteobacteria, Bacteroidetes, and Actinobacteria phyla. Chlorophyta, Streptophyta, Ciliophora, and fungal groups were represented among the 18S rRNA gene sequences that we obtained. The most abundantly represented glacial bacteria were Bacteroidetes, and Chlamydomonas was the predominant eukaryote. Comparative analysis showed that the Bacteroidetes sequences obtained from this study were highly similar to one another but most were only distantly related to previously characterized Bacteroidetes (<92% identity). We propose that our Bacteroidetes sequences represent two novel subgroups: one at the family level and one at the genus level. The unique ice environment and the high abundance of Bacteroidetes, combined with the coexistence of a high abundance of psychrophilic Chlamydomonas, strongly suggests that there is a viable ecosystem on the surface of Tibetan glaciers. Comparisons of microbial community structures in the five ice samples showed distinct differences, likely due to environmental differences in the locations in which the samples were obtained.

  11. Cytoskeletal Proteins of Actinobacteria

    PubMed Central

    Letek, Michal; Fiuza, María; Villadangos, Almudena F.; Mateos, Luís M.; Gil, José A.

    2012-01-01

    Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of the basic physiology of certain bacterial models, little is known about Actinobacteria, an ancient group of Eubacteria. Here we review current knowledge on the cytoskeletal elements required for bacterial cell growth and cell division, focusing on actinobacterial genera such as Mycobacterium, Corynebacterium, and Streptomyces. These include some of the deadliest pathogens on earth but also some of the most prolific producers of antibiotics and antitumorals. PMID:22481946

  12. Genome-Based Taxonomic Classification of Bacteroidetes.

    PubMed

    Hahnke, Richard L; Meier-Kolthoff, Jan P; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N; Woyke, Tanja; Kyrpides, Nikos C; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.

  13. Genome-Based Taxonomic Classification of Bacteroidetes

    PubMed Central

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved. PMID:28066339

  14. Brazilian Cerrado Soil Actinobacteria Ecology

    PubMed Central

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production. PMID:23555089

  15. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes.

    PubMed

    Johnson, Elizabeth L; Heaver, Stacey L; Walters, William A; Ley, Ruth E

    2017-01-01

    Bacterial species composition in the gut has emerged as an important factor in obesity and its related metabolic diseases such as type 2 diabetes. Out of thousands of bacterial species-level phylotypes inhabiting the human gut, the majority belong to two dominant phyla, the Bacteroidetes and Firmicutes. Members of the Bacteroidetes in particular have been associated with human metabolic diseases. However, their associations with disease are not always consistent between studies. Delving deeper into the diversity within the Bacteroidetes reveals a vast diversity in genomes and capacities, which partly explain how not all members respond equally to similar environmental conditions in their hosts. Here, we discuss the Bacteroidetes phylum, associations of its members with metabolic phenotypes, and efforts to characterize functionally their interactions with their hosts. Harnessing the Bacteroidetes to promote metabolic health will require a nuanced understanding of how specific strains interact with their microbial neighbors and their hosts under various conditions.

  16. [Biologically active metabolites of the marine actinobacteria].

    PubMed

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  17. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges.

    PubMed

    Schmitt, Susanne; Deines, Peter; Behnam, Faris; Wagner, Michael; Taylor, Michael W

    2011-12-01

    Some marine sponges harbor dense and phylogenetically complex microbial communities [high microbial abundance (HMA) sponges] whereas others contain only few and less diverse microorganisms [low microbial abundance (LMA) sponges]. We focused on the phylum Chloroflexi that frequently occurs in sponges to investigate the different associations with three HMA and three LMA sponges from New Zealand. By applying a range of microscopical and molecular techniques a clear dichotomy between HMA and LMA sponges was observed: Chloroflexi bacteria were more abundant and diverse in HMA than in LMA sponges. Moreover, different HMA sponges contain similar Chloroflexi communities whereas LMA sponges harbor different and more variable communities which partly resemble Chloroflexi seawater communities. A comprehensive phylogenetic analysis of our own and publicly available sponge-derived Chloroflexi 16S rRNA gene sequences (> 780 sequences) revealed the enormous diversity of this phylum within sponges including 29 sponge-specific and sponge-coral clusters (SSC/SCC) as well as a 'supercluster' consisting of > 250 sponge-derived and a single nonsponge-derived 16S rRNA gene sequence. Interestingly, the majority of sequences obtained from HMA sponges, but only a few from LMA sponges, fell into SSC/SCC clusters. This indicates a much more specific association of Chloroflexi bacteria with HMA sponges and suggests an ecologically important role for these prominent bacteria.

  18. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota

    PubMed Central

    Campbell, Alisha G.; Schwientek, Patrick; Vishnivetskaya, Tatiana; Woyke, Tanja; Levy, Shawn; Beall, Clifford J.; Griffen, Ann; Leys, Eugene; Podar, Mircea

    2014-01-01

    SUMMARY Many microbial phyla that are widely distributed in open environments have few or no representatives within animal-associated microbiota. Among them, the Chloroflexi comprises taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach we obtained the first draft genomic reconstruction for these organisms and compared their inferred metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities, similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue. The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade the host defense system and colonize the subgingival space. As with other low-abundance but persistent members of the microbiota, discerning community and host factors that influence the proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the microbiota dynamics in health and disease states. PMID:24738594

  19. From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists

    PubMed Central

    Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Rodriguez, Francisco; Capella-Gutiérrez, Salvador; Gabaldón, Toni; Rosselló-Móra, Ramon; Meseguer, Inmaculada; Antón, Josefa

    2015-01-01

    The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group. PMID:24926861

  20. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae

    PubMed Central

    2014-01-01

    Background Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host’s intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah’s intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members. Results Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses. Conclusions This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids. PMID:24548488

  1. From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists.

    PubMed

    Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Rodriguez, Francisco; Capella-Gutiérrez, Salvador; Gabaldón, Toni; Rosselló-Móra, Ramon; Meseguer, Inmaculada; Antón, Josefa

    2015-01-01

    The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group.

  2. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  3. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere

    PubMed Central

    Fullerton, Heather

    2016-01-01

    ABSTRACT Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi. Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi. These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a

  4. Production of Enzymes from Marine Actinobacteria.

    PubMed

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies.

  5. Biomedical Applications of Enzymes From Marine Actinobacteria.

    PubMed

    Kamala, K; Sivaperumal, P

    2017-01-01

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.

  6. Marine actinobacteria as a drug treasure house.

    PubMed

    Hassan, Syed Shams Ul; Shaikh, Abdul Lateef

    2017-03-01

    Marine actinobacteria have been considered as a gold mine with respect to great potential regarding their secondary metabolites. Most of the researches have been conducted on actinobacteria's derived secondary metabolites to examine its pharmacological properties. Actinobacteria have a potential to provide future drugs against crucial diseases, such as drug-resistance bacteria, cancer, a range of viral illnesses, malaria, several infections and inflammations. Although, the mode of action of many bio molecules are still untapped, for a tangible number of compounds by which they interfere with human pathogenesis are reported here with detailed diagrammed illustrations. This knowledge is one of the basic vehicles to be known especially for transforming bio medicinal molecules to medicines. Actinobacteria produce a different kind of biochemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. Different diseases have the capability to fight at different sites inside the body can lead to a new wave of increasing the chances to produce targeted medicines.

  7. Taxonomy, Physiology, and Natural Products of Actinobacteria.

    PubMed

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P

    2016-03-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.

  8. Taxonomy, Physiology, and Natural Products of Actinobacteria

    PubMed Central

    Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder

    2015-01-01

    SUMMARY Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. PMID:26609051

  9. An unusual primary sigma factor in the Bacteroidetes phylum.

    PubMed

    Vingadassalom, Didier; Kolb, Annie; Mayer, Claudine; Rybkine, Tania; Collatz, Ekkehard; Podglajen, Isabelle

    2005-05-01

    The presence of housekeeping gene promoters with a unique consensus sequence in Bacteroides fragilis, previously described by Bayley et al. (2000, FEMS Microbiol Lett 193: 149-154), suggested the existence of a particular primary sigma factor. The single rpoD-like gene observed in the B. fragilis genome, and similarly in those of other members of the Bacteroidetes phylum, was found to be essential. It encodes a protein, sigma(ABfr), of only 32.7 kDa that is produced with equal abundance during all phases of growth and was concluded to be the primary sigma factor. sigma(ABfr) and its orthologues in the Bacteroidetes are unusual primary sigma factors in that they lack region 1.1, have a unique signature made up of 29 strictly identical amino acids and are the only RpoD factors that cluster with the RpoS factors. Although binding to the Escherichia coli core RNA polymerase, sigma(ABfr) does not support transcription initiation from any promoter when it is part of the heterologous holoenzyme, while in the reconstituted homologous holoenzyme it does so only from typical B. fragilis, including rrs, promoters but not from the lacUV5 or RNA I promoters.

  10. Recent advances in genetic modification systems for Actinobacteria.

    PubMed

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  11. Penicillin-binding proteins in Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2015-04-01

    Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

  12. The obligate respiratory supercomplex from Actinobacteria.

    PubMed

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity.

  13. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications.

    PubMed

    Shivlata, L; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  14. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions.

    PubMed

    Zanaroli, Giulio; Balloi, Annalisa; Negroni, Andrea; Borruso, Luigimaria; Daffonchio, Daniele; Fava, Fabio

    2012-03-30

    We investigated the reductive dechlorination of Aroclor 1254 PCBs by a coplanar PCB-dechlorinating microbial community enriched from an actual site contaminated marine sediment of the Venice lagoon in sterile slurry microcosms of the same sediment suspended in its site water, i.e., under biogeochemical conditions that closely mime those occurring in situ. The culture dechlorinated more than 75% of the penta- through hepta-chlorinated biphenyls to tri- and tetra-chlorinated congeners in 30 weeks. The dechlorination rate was reduced by the addition of H(2) and short chain fatty acids, which stimulated sulfate-reduction and methane production, and markedly increased by the presence of vancomycin or ampicillin. DGGE analysis of 16S rRNA genes on PCB-spiked and PCB-free cultures ruled out sulfate-reducing and methanogenic bacteria and revealed the presence of a single Chloroflexi phylotype closely related to the uncultured bacteria m-1 and SF1 associated to PCB dechlorination. These findings suggest that a single dechlorinator is responsible for the observed extensive dechlorination of Aroclor 1254 and that a Chloroflexi species similar to those already detected in freshwater and estuarine contaminated sediments mediates PCB dechlorination in the marine sediment adopted in this study under biogeochemical conditions resembling those occurring in situ in the Brentella Canal of Venice Lagoon.

  15. Ruminant feces harbor diverse uncultured symbiotic actinobacteria.

    PubMed

    Tan, Hongming; Deng, Qingli; Cao, Lixiang

    2014-03-01

    To isolate actinobacteria from ruminant feces and elucidate their correlations with ruminants, the actinobacterial community in sheep (Ovis aries) and cattle (Bos taurus) feces was determined by cultivation and clone library methods. Most of actinobacteria isolated belonged to Streptomyces, Amycolatopsis, Micromonospora, and Cellulosimicrobium genera. The strains showed above 99 % similarity with the type strains, respectively. All the strains isolated could grow on media containing pectin, cellulose, or xylan as the sole carbon sources. However, most antibacterial and antifungal activities were found in Streptomyces species. Clone library analysis revealed that the genera Mycobacterium, Aeromicrobium, Rhodococcus, Cellulomonas were present in cattle and sheep feces. In contrast, the 16S rRNA genes showed less than 98 % similarity with the type strains. The analysis of actinobacterial community in ruminant feces by clone library and cultivation yielded a total of 10 actinobacterial genera and three uncultured actinobacterial taxa. The ruminant feces harbored diverse actinobacterial community. Ruminants may represent an underexplored reservoir of novel actinomycetes of potential interest for probiotics and drug discovery.

  16. Genome Sequences of 11 Human Vaginal Actinobacteria Strains.

    PubMed

    Lewis, Amanda L; Deitzler, Grace E; Ruiz, Maria J; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G

    2016-09-29

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences.

  17. Variability of Actinobacteria, a minor component of rumen microflora.

    PubMed

    Suľák, M; Sikorová, L; Jankuvová, J; Javorský, P; Pristaš, P

    2012-07-01

    Actinobacteria (Actinomycetes) are a significant and interesting group of gram-positive bacteria. They are regular, though infrequent, members of the microbial life in the rumen and represent up to 3 % of total rumen bacteria; there is considerable lack of information about ecology and biology of rumen actinobacteria. During the characterization of variability of rumen treponemas using non-cultivation approach, we also noted the variability of rumen actinobacteria. By using Treponema-specific primers a specific 16S rRNA gene library was prepared from cow and sheep rumen total DNA. About 10 % of recombinant clones contained actinobacteria-like sequences. Phylogenetic analyses of 11 clones obtained showed the high variability of actinobacteria in the ruminant digestive system. While some sequences are nearly identical to known sequences of actinobacteria, we detected completely new clusters of actinobacteria-like sequences, representing probably new, as yet undiscovered, group of rumen Actinobacteria. Further research will be necessary for understanding their nature and functions in the rumen.

  18. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    PubMed Central

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  19. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    PubMed Central

    Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

    2013-01-01

    Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

  20. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    PubMed Central

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  1. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  2. Diversity of integrating conjugative elements in actinobacteria

    PubMed Central

    Bordeleau, Eric; Ghinet, Mariana Gabriela; Burrus, Vincent

    2012-01-01

    Conjugation is certainly the most widespread and promiscuous mechanism of horizontal gene transfer in bacteria. During conjugation, DNA translocation across membranes of two cells forming a mating pair is mediated by two types of mobile genetic elements: conjugative plasmids and integrating conjugative elements (ICEs). The vast majority of conjugative plasmids and ICEs employ a sophisticated protein secretion apparatus called type IV secretion system to transfer to a recipient cell. Yet another type of conjugative DNA translocation machinery exists and to date appears to be unique to conjugative plasmids and ICEs of the Actinomycetales order, a sub-group of high G + C Gram-positive bacteria. This conjugative system is reminiscent of the machinery that allows segregation of chromosomal DNA during bacterial cell division and sporulation, and relies on a single FtsK-homolog protein to translocate double-stranded DNA molecules to the recipient cell. Recent thorough sequence analyses reveal that while this latter strategy appears to be used by the majority of ICEs in Actinomycetales, the former is also predicted to be important in exchange of genetic material in actinobacteria. PMID:22934248

  3. Marine actinobacteria: an important source of bioactive natural products.

    PubMed

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms.

  4. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria.

    PubMed

    Ghai, Rohit; Mehrshad, Maliheh; Megumi Mizuno, Carolina; Rodriguez-Valera, Francisco

    2017-01-01

    Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.

  5. [Identification of environmental Actinobacteria representing an occupational health risk].

    PubMed

    Skóra, Justyna; Szponar, Bogumiła; Paściak, Mariola; Gutarowska, Beata

    2013-12-06

    Actinobacteria, the etiologic agents of tuberculosis, actinomycosis, respiratory infections and pathological skin lesions, are also classified as hazardous biological agents at the workplace. An increased number of Actinobacteria primarily occurs at the workplaces in composting plants, agriculture, waste management facilities, libraries and museums. Robust identification of Actinobacteria requires a polyphasic diagnostic strategy including an assessment of morphological, physiological, biochemical and chemotaxonomic features as well as genotyping. Commercially available diagnostic kits often do not include bacteria isolated from the environment and therefore analyses of chemotaxonomic markers--components of peptidoglycan, fatty acids, polar lipids (phospho- and glycolipids) and isoprenoid quinones are recommended. The paper discusses a comprehensive approach to the isolation and identification of Actinobacteria, with emphasis on chemotaxonomic methods. A diagnostic procedure is exemplified by environmental strains obtained from composting plants and libraries.

  6. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity.

    PubMed

    Mohammadipanah, Fatemeh; Wink, Joachim

    2015-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  7. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    PubMed Central

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  8. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  9. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    PubMed

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted.

  10. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    PubMed

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications.

  11. Water and temperature relations of soil Actinobacteria.

    PubMed

    Stevenson, Andrew; Hallsworth, John E

    2014-12-01

    Actinobacteria perform essential functions within soils, and are dependent on available water to do so. We determined the water-activity (aw ) limits for cell division of Streptomyces albidoflavus, Streptomyces rectiviolaceus, Micromonospora grisea and Micromonospora (JCM 3050) over a range of temperatures, using culture media supplemented with a biologically permissive solute (glycerol). Each species grew optimally at 0.998 aw (control; no added glycerol) and growth rates were near-optimal in the range 0.971-0.974 (1 M glycerol) at permissive temperatures. Each was capable of cell division at 0.916-0.924 aw (2 M glycerol), but only S. albidoflavus grew at 0.895 or 0.897 aw (3 M glycerol, at 30 and 37°C respectively). For S. albidoflavus, however, no growth occurred on media at ≤ 0.870 (4 M glycerol) during the 40-day assessment period, regardless of temperature, and a theoretical limit of 0.877 aw was derived by extrapolation of growth curves. This level of solute tolerance is high for non-halophilic bacteria, but is consistent with reported limits for the growth and metabolic activities of soil microbes. The limit, within the range 0.895-0.870 aw , is very much inferior to those for obligately halophilic bacteria and extremely halophilic or xerophilic fungi, and is inconsistent with earlier reports of cell division at 0.500 aw . These findings are discussed in relation to planetary protection policy for space exploration and the microbiology of arid soils.

  12. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile.

    PubMed

    Engel, Annette Summers; Johnson, Lindsey R; Porter, Megan L

    2013-03-01

    Arsenic concentrations (450-600 μmol L(-1)) at the El Tatio Geyser Field in northern Chile are an order of magnitude greater than at other natural geothermal sites, making El Tatio an ideal location to investigate unique microbial diversity and metabolisms associated with the arsenic cycle in low sulfide, > 50 °C, and circumneutral pH waters. 16S rRNA gene and arsenite oxidase gene (aioA) diversities were evaluated from biofilms and microbial mats from two geyser-discharge stream transects. Chloroflexi was the most prevalent bacterial phylum at flow distances where arsenite was converted to arsenate, corresponding to roughly 60 °C. Among aioA-like gene sequences retrieved, most had homology to whole genomes of Chloroflexus aurantiacus, but others were homologous to alphaproteobacterial and undifferentiated beta- and gammaproteobacterial groups. No Deinococci, Thermus, Aquificales, or Chlorobi aioA-like genes were retrieved. The functional importance of amino acid sites was evaluated from evolutionary trace analyses of all retrieved aioA genes. Fifteen conserved residue sites identified across all phylogenetic groups highlight a conserved functional core, while six divergent sites demonstrate potential differences in electron transfer modes. This research expands the known distribution and diversity of arsenite oxidation in natural geothermal settings, and provides information about the evolutionary history of microbe-arsenic interactions.

  13. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  14. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum.

    PubMed

    Rodionova, Irina A; Li, Xiaoqing; Plymale, Andrew E; Motamedchaboki, Khatereh; Konopka, Allan E; Romine, Margaret F; Fredrickson, James K; Osterman, Andrei L; Rodionov, Dmitry A

    2015-04-01

    Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genes for the respective uptake transporters pointed to B vitamin cross-feeding as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.

  15. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum

    SciTech Connect

    Rodionova, Irina A.; Li, Xiaoqing; Plymale, Andrew E.; Motamedchaboki, Khatereh; Konopka, Allan; Romine, Margaret F.; Fredrickson, Jim K.; Osterman, Andrei; Rodionov, Dmitry A.

    2015-04-01

    Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B-group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genes for the respective uptake transporters pointed to B vitamin exchange as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.

  16. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi

    PubMed Central

    Sorokin, Dimitry Y; Lücker, Sebastian; Vejmelkova, Dana; Kostrikina, Nadezhda A; Kleerebezem, Robbert; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Le Paslier, Denis; Muyzer, Gerard; Wagner, Michael; van Loosdrecht, Mark C M; Daims, Holger

    2012-01-01

    Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, a major process of the biogeochemical nitrogen cycle, but the recognized diversity of this guild is surprisingly low and only two bacterial phyla contain known NOB. Here, we report on the discovery of a chemolithoautotrophic nitrite oxidizer that belongs to the widespread phylum Chloroflexi not previously known to contain any nitrifying organism. This organism, named Nitrolancetus hollandicus, was isolated from a nitrifying reactor. Its tolerance to a broad temperature range (25–63 °C) and low affinity for nitrite (Ks=1 mℳ), a complex layered cell envelope that stains Gram positive, and uncommon membrane lipids composed of 1,2-diols distinguish N. hollandicus from all other known nitrite oxidizers. N. hollandicus grows on nitrite and CO2, and is able to use formate as a source of energy and carbon. Genome sequencing and analysis of N. hollandicus revealed the presence of all genes required for CO2 fixation by the Calvin cycle and a nitrite oxidoreductase (NXR) similar to the NXR forms of the proteobacterial nitrite oxidizers, Nitrobacter and Nitrococcus. Comparative genomic analysis of the nxr loci unexpectedly indicated functionally important lateral gene transfer events between Nitrolancetus and other NOB carrying a cytoplasmic NXR, suggesting that horizontal transfer of the NXR module was a major driver for the spread of the capability to gain energy from nitrite oxidation during bacterial evolution. The surprising discovery of N. hollandicus significantly extends the known diversity of nitrifying organisms and likely will have implications for future research on nitrification in natural and engineered ecosystems. PMID:22763649

  17. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  18. Actinobacteria in indoor environments: exposures and respiratory health effects.

    PubMed

    Rintala, Helena

    2011-06-01

    Actinobacteria are a large group of Gram-positive bacteria common in the environment, especially in the soil. They are morphologically diverse and extremely versatile in their metabolic activities. They produce tens of thousands of secondary metabolites with different biological activities. Exposure to actinobacteria in indoor environments is probably continuous, since they are both common environmental bacteria and human normal flora. However, the occurrence of some species of spore-forming filamentous actinomycetes has been associated with abnormal and health-hazardous situations, such as moisture damage of the building. The measured concentrations of actinobacteria indoors are low. Higher concentrations have been reported during the remediation work of moisture damaged buildings and in agricultural environments. Exposure to high concentrations of actinobacteria can cause allergic alveolitis. Other respiratory disorders have been reported, too and although the measured concentrations are low, the indoor exposure is always a mixture of many different agents, which may have synergistic effects. In vitro and in vivo studies have shown that actinobacteria are very immunoactive and hence, potential causative agents for respiratory and other disorders.

  19. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    PubMed Central

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  20. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    PubMed

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  1. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    PubMed

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-08

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.

  2. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    PubMed

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed.

  3. Fluorescence in situ hybridization probes targeting members of the phylum Candidatus Saccharibacteria falsely target Eikelboom type 1851 filaments and other Chloroflexi members.

    PubMed

    Nittami, Tadashi; Speirs, Lachlan B M; Fukuda, Junji; Watanabe, Masatoshi; Seviour, Robert J

    2014-12-01

    The FISH probe TM7-305 is thought to target the filamentous Eikelboom morphotype 0041 as a member of the Candidatus ‘Saccharibacteria’ (formerly TM7) phylum. However, with activated sludge samples in both Japan and Australia, this probe hybridized consistently with filamentous bacteria fitting the description of the morphotype 1851, which also responded positively to the CHL1851 FISH probe designed to target Chloroflexi members of this morphotype. 16S rRNA clone libraries from samples containing type 1851 TM7-305-positive filaments yielded Chloroflexi clones with high sequence similarity to Kouleothrix aurantiaca. These contained a variant TM7-305 probe target site possessing weakly destabilizing mismatches insufficient to prevent probe hybridization. Furthermore, the TM7-905 FISH probe, designed to target members of the entire Candidatus ‘Saccharibacteria’ phylum, also hybridized with the filament morphotypes 0041/0675, which responded also to the phylum level Chloroflexi probes. Many Chloroflexi sequences have only a single base mismatch to the TM7-905 probe target sequence. When competitor probes for both the TM7-305 and TM7-905 Chloroflexi non-target sites were applied, no fluorescent signal was seen in any of the filamentous organisms also hybridizing with the aforementioned Chloroflexi probes. These data indicate that these competitor probes must be included in hybridizations when both the TM7-905 and TM7-305 FISH probes are applied, to minimize potential false positive FISH results.

  4. Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm*

    PubMed Central

    Martens, Eric C.; Koropatkin, Nicole M.; Smith, Thomas J.; Gordon, Jeffrey I.

    2009-01-01

    Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems. PMID:19553672

  5. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.

  6. Unexpected Stability of Bacteroidetes and Firmicutes Communities in Laboratory Biogas Reactors Fed with Different Defined Substrates

    PubMed Central

    Ratering, S.; Kramer, I.; Schmidt, M.; Zerr, W.; Schnell, S.

    2012-01-01

    In the present study, bacterial communities in 200-liter biogas reactors containing liquid manure consecutively fed with casein, starch, and cream were investigated over a period of up to 33 days. A 16S rRNA gene clone library identified Bacteroidetes and Firmicutes as the most abundant bacterial groups in the starting material, at 58.9% and 30.1% of sequences, respectively. The community development of both groups was monitored by real-time PCR and single-strand conformation polymorphism (SSCP) analysis. The Firmicutes and Bacteroidetes communities were unexpectedly stable and hardly influenced by batch-feeding events. The continuous feeding of starch led to community shifts that nevertheless contributed to a stable reactor performance. A longer starving period and a change in the pH value resulted in further community shifts within the Bacteroidetes but did not influence the Firmicutes. Predominant DNA bands from SSCP gels were cloned and sequenced. Sequences related to Peptococcaceae, Cytophagales, and Petrimonas sulfuriphila were found in all samples from all experiments. Real-time PCR demonstrated the abundance of members of the phylum Bacteroidetes and also reflected changes in gene copy numbers in conjunction with a changing pH value and acetate accumulation. PMID:22247168

  7. Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorador, Cristina; Meneses, Daniela; Urtuvia, Viviana; Demergasso, Cecilia; Vila, Irma; Witzel, Karl-Paul; Imhoff, Johannes F.

    2009-06-01

    The phylum Bacteroidetes represents one of the most abundant bacterial groups of marine and freshwater bacterioplankton. We investigated the diversity of Bacteroidetes in water and sediment samples from three evaporitic basins located in the highlands of northern Chile. We used both 16S rRNA gene clone libraries created with targeted Bacteroidetes-specific primers and separation of specifically amplified gene fragments by denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed a reduced richness of these organisms in samples from Salar de Huasco (two to four DGGE bands) increasing in Salar de Ascotán (two to seven DGGE bands) and Laguna Tebenquiche at Salar de Atacama (four to eight DGGE bands). Cluster analysis (WPGMA) of DGGE bands showed that bands from Salar de Huasco and Salar de Ascotán grouped together and samples from Salar de Atacama formed separate clusters in water and sediment samples, reflecting different Bacteroidetes communities between sites. Most of the sequences analyzed belonged to the family Flavobacteriaceae and clustered with the genera Psychroflexus, Gillisia, Maribacter, Muricauda, Flavobacterium, and Salegentibacter. The most abundant phylotype was highly related to Psychroflexus spp. and was recovered from all three study sites. The similarity of the analyzed sequences with their closest relatives in GenBank was typically <97% and notably lower when compared with type strains, demonstrating the unique character of these sequences. Culture efforts will be necessary to get a better description of the diversity of this group in saline evaporitic basins of northern Chile.

  8. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    PubMed

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  9. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment.

    PubMed

    Costello, Elizabeth K; Schmidt, Steven K

    2006-08-01

    Cold, water-saturated soils play important biogeochemical roles, yet almost nothing is known about the identity and habitat of microbes active under such conditions. We investigated the year-round microenvironment of an alpine tundra wet meadow soil in the Colorado Rocky Mountains, focusing on the biogeochemistry and microbial diversity of spring snowmelt--a dynamic time for alpine ecosystems. In situ measurements revealed spring and autumn periods of long-term temperature stability near 0 degrees C, and that deeper soil (30 cm) was more stable than surface soil, with more moderate summers and winters, and longer isothermal phases. The soil was saturated and water availability was limited by freezing rather than drying. Analyses of bioavailable redox species showed a shift from Mn reduction to net Fe reduction at 2-3 cm depth, elevated SO4(2-) and decreased soluble Zn at spring snowmelt. Terminal restriction fragment length polymorphism profiles detected a correlated shift in bacterial community composition at the surface to subsurface transition. Bacterial and archaeal small-subunit rRNA genes were amplified from saturated spring soil DNA pooled along a depth profile. The most remarkable feature of these subsurface-biased libraries was the high relative abundance of novel, uncultivated Chloroflexi-related sequences comprising the third largest bacterial division sampled, and representing seven new Chloroflexi subdivisions, thereby dramatically expanding the known diversity of this bacterial division. We suggest that these novel Chloroflexi are active at near -0 degrees C temperatures, under likely anoxic conditions, and utilize geochemical inputs such as sulfide from upslope weathering.

  10. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.

    PubMed

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2014-12-01

    Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin-derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes.

  11. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    PubMed

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  12. Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria

    PubMed Central

    Venancio, Thiago M; Aravind, L

    2009-01-01

    Reconstruction of transcriptional regulatory networks of uncharacterized bacteria is a main challenge for the post-genomic era. Recent studies, including one in BMC Systems Biology, address this problem in the relatively underexplored actinobacteria clade, which includes major pathogenic and economically relevant taxa. PMID:19435474

  13. Littoral lichens as a novel source of potentially bioactive Actinobacteria

    PubMed Central

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T.

    2015-01-01

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria. PMID:26514347

  14. Characterization of actinobacteria associated with three ant-plant mutualisms.

    PubMed

    Hanshew, Alissa S; McDonald, Bradon R; Díaz Díaz, Carol; Djiéto-Lordon, Champlain; Blatrix, Rumsaïs; Currie, Cameron R

    2015-01-01

    Ant-plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant-plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant-plant-fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant-plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant-plant-fungi niches.

  15. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.

    PubMed

    Xue, Bin; Xie, Jinli; Huang, Jiachen; Chen, Long; Gao, Lijuan; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2016-03-01

    The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P < 0.01) and Firmicutes (P < 0.01) while at the same time down-regulate the ratio of Bacteroidetes to Firmicutes (P < 0.01). But the fecal bacteria could maintain the ability to hydrolyze fructo-oligosaccharide (FOS) in vitro. Among the tested polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P < 0.05). In conclusion, plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.

  16. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis.

    PubMed

    Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin

    2016-11-01

    In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content.

  17. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age

    PubMed Central

    2009-01-01

    Background In humans, the intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Applying current molecular methods is necessary to surmount the limitations of classical culturing techniques in order to obtain an accurate description of the microbiota composition. Results Here we report on the comparative assessment of human fecal microbiota from three age-groups: infants, adults and the elderly. We demonstrate that the human intestinal microbiota undergoes maturation from birth to adulthood and is further altered with ageing. The counts of major bacterial groups Clostridium leptum, Clostridium coccoides, Bacteroidetes, Bifidobacterium, Lactobacillus and Escherichia coli were assessed by quantitative PCR (qPCR). By comparing species diversity profiles, we observed age-related changes in the human fecal microbiota. The microbiota of infants was generally characterized by low levels of total bacteria. C. leptum and C. coccoides species were highly represented in the microbiota of infants, while elderly subjects exhibited high levels of E. coli and Bacteroidetes. We observed that the ratio of Firmicutes to Bacteroidetes evolves during different life stages. For infants, adults and elderly individuals we measured ratios of 0.4, 10.9 and 0.6, respectively. Conclusion In this work we have confirmed that qPCR is a powerful technique in studying the diverse and complex fecal microbiota. Our work demonstrates that the fecal microbiota composition evolves throughout life, from early childhood to old age. PMID:19508720

  18. Phylum-wide general protein O-glycosylation system of the Bacteroidetes.

    PubMed

    Coyne, Michael J; Fletcher, C Mark; Chatzidaki-Livanis, Maria; Posch, Gerald; Schaffer, Christina; Comstock, Laurie E

    2013-05-01

    The human gut symbiont Bacteroides fragilis has a general protein O-glycosylation system in which numerous extracytoplasmic proteins are glycosylated at a three amino acid motif. In B. fragilis, protein glycosylation is a fundamental and essential property as mutants with protein glycosylation defects have impaired growth and are unable to competitively colonize the mammalian intestine. In this study, we analysed the phenotype of B. fragilis mutants with defective protein glycosylation and found that the glycan added to proteins is comprised of a core glycan and an outer glycan. The genetic region encoding proteins for the synthesis of the outer glycan is conserved within a Bacteroides species but divergent between species. Unlike the outer glycan, an antiserum raised to the core glycan reacted with all Bacteroidetes species tested, from all four classes of the phylum. We found that diverse Bacteroidetes species synthesize numerous glycoproteins and glycosylate proteins at the same three amino acid motif. The wide-spread conservation of this protein glycosylation system within the phylum suggests that this system of post-translational protein modification evolved early, before the divergence of the four classes of Bacteroidetes, and has been maintained due to its physiological importance to the diverse species of this phylum.

  19. Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria

    PubMed Central

    Anderson, Iain; Abt, Birte; Lykidis, Athanasios; Klenk, Hans-Peter; Kyrpides, Nikos; Ivanova, Natalia

    2012-01-01

    Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms. PMID:22723998

  20. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes.

    PubMed

    Gupta, Radhey S

    2004-01-01

    Fibrobacteres, Chlorobi, and Bacteroidetes (FCB group) comprise three main bacterial phyla recognized on the basis of 16S rRNA trees. Presently, there are no distinctive biochemical or molecular characteristics known that can distinguish these bacteria from other bacterial phyla. The relationship of these bacteria to other phyla is also not known. This review describes many signatures, consisting of defined and conserved inserts in widely distributed proteins, that provide distinctive molecular markers for these groups of bacteria. These signatures serve to clarify the evolutionary relationship between members of the FCB group, and to other bacterial phyla. A 4 aa insert in DNA Gyrase B (GyrB) and a 45 aa insert in the SecA proteins are uniquely shared by various Bacteroidetes species. The insert in GyrB is present in all Bacteroidetes species (>100) covering different orders and families, indicating that it is a distinctive characteristic of the group. Three signatures consisting of an 18 aa insert in ATPase alpha-subunit, an 8-9 aa insert in the FtsK protein and a 1 aa insert in the UvrB protein are commonly shared only by the Bacteroidetes and Chlorobi homologs providing evidence that these two groups are specifically related to each other. Two additional inserts in the RNA polymerase beta'-subunit (5-7 aa) and Serine hydroxymethyl-transferase (14-16 aa), which are commonly present in various Bacteroidetes, Chlorobi, and Fibrobacteres homologs, but not any other bacteria, provide evidence that these groups shared a common ancestor exclusive of all other bacteria. The FCB groups of bacteria are indicated to have diverged from this common ancestor in the following order: Fibrobacteres --> Chlorobi --> Bacteriodetes. The inferences from signature sequences are strongly supported by phylogenetic analyses. These observations suggest that the FCB groups of bacteria should be placed in a single phylum rather than three distinct phyla. Signature sequences in a number of

  1. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea.

    PubMed

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater.

  2. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    PubMed Central

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166

  3. No Ancient DNA Damage in Actinobacteria from the Neanderthal Bone

    PubMed Central

    Zaremba-Niedźwiedzka, Katarzyna; Andersson, Siv G. E.

    2013-01-01

    Background The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. Principal Findings Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. Conclusions/Significance Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the sample. PMID:23658776

  4. Ecophysiology of the Actinobacteria in activated sludge systems.

    PubMed

    Seviour, Robert J; Kragelund, Caroline; Kong, Yunhong; Eales, Katherine; Nielsen, Jeppe L; Nielsen, Per H

    2008-06-01

    This review considers what is known about the Actinobacteria in activated sludge systems, their abundance and their functional roles there. Participation in processes leading to the microbiological removal of phosphate and in the operational problems of bulking and foaming are discussed in terms of their ecophysiological traits. We consider critically whether elucidation of their nutritional requirements and other physiological properties allow us to understand better what might affect their survival capabilities in these highly competitive systems. Furthermore, how this information might allow us to improve how these processes work is discussed.

  5. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  6. Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes.

    PubMed

    McBride, Mark J; Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, "Gramella forsetii," Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility.

  7. Distribution and evolution of nitrogen fixation genes in the phylum Bacteroidetes.

    PubMed

    Inoue, Jun-ichi; Oshima, Kenshiro; Suda, Wataru; Sakamoto, Mitsuo; Iino, Takao; Noda, Satoko; Hongoh, Yuichi; Hattori, Masahira; Ohkuma, Moriya

    2015-01-01

    Diazotrophs had not previously been identified among bacterial species in the phylum Bacteroidetes until the rapid expansion of bacterial genome sequences, which revealed the presence of nitrogen fixation (nif) genes in this phylum. We herein determined the draft genome sequences of Bacteroides graminisolvens JCM 15093(T) and Geofilum rubicundum JCM 15548(T). In addition to these and previously reported 'Candidatus Azobacteroides pseudotrichonymphae' and Paludibacter propionicigenes, an extensive survey of the genome sequences of diverse Bacteroidetes members revealed the presence of a set of nif genes (nifHDKENB) in strains of Dysgonomonas gadei, Dysgonomonas capnocytophagoides, Saccharicrinis fermentans, and Alkaliflexus imshenetskii. These eight species belonged to and were distributed sporadically within the order Bacteroidales. Acetylene reduction activity was detected in the five species examined, strongly suggesting their diazotrophic nature. Phylogenetic analyses showed monophyletic clustering of the six Nif protein sequences in the eight Bacteroidales species, implying that nitrogen fixation is ancestral to Bacteroidales and has been retained in these species, but lost in many other lineages. The identification of nif genes in Bacteroidales facilitates the prediction of the organismal origins of related sequences directly obtained from various environments.

  8. Prospects of using marine actinobacteria as probiotics in aquaculture.

    PubMed

    Das, Surajit; Ward, Louise R; Burke, Chris

    2008-12-01

    Chemotherapeutic agents have been banned for disease management in aquaculture systems due to the emergence of antibiotic resistance gene and enduring residual effects in the environments. Instead, microbial interventions in sustainable aquaculture have been proposed, and among them, the most popular and practical approach is the use of probiotics. A range of microorganisms have been used so far as probiotics, which include Gram-negative and Gram-positive bacteria, yeast, bacteriophages, and unicellular algae. The results are satisfactory and promising; however, to combat the latest infectious diseases, the search for a new strain for probiotics is essential. Marine actinobacteria were designated as the chemical factory a long time ago, and quite a large number of chemical substances have been isolated to date. The potent actinobacterial genera are Streptomyces; Micromonospora; and a novel, recently described genus, Salinispora. Despite the existence of all the significant features of a good probiont, actinobacteria have been hardly used as probiotics in aquaculture. However, this group of bacteria promises to supply the most potential probiotic strains in the future.

  9. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves.

    PubMed

    Riquelme, Cristina; Enes Dapkevicius, Maria de Lurdes; Miller, Ana Z; Charlop-Powers, Zachary; Brady, Sean; Mason, Cohord; Cheeptham, Naowarat

    2017-01-01

    Caves are regarded as extreme habitats with appropriate conditions for the development of Actinobacteria. In comparison with other habitats, caves have not yet been the target of intensive screening for bioactive secondary metabolites produced by actinomycetes. As a primary screening strategy, we conducted a metagenomic analysis of the diversity and richness of a key gene required for non-ribosomal peptide (NRP) biosynthesis, focusing on cave-derived sediments from two Canadian caves (a lava tube and a limestone cave) to help us predict whether different types of caves may harbor drug-producing actinobacteria. Using degenerate PCR primers targeting adenylation domains (AD), a conserved domain in the core gene in NRP biosynthesis, a number of amplicons were obtained that mapped back to biomedically relevant NRP gene cluster families. This result guided our culture-dependent sampling strategy of actinomycete isolation from the volcanic caves of Canada (British Columbia) and Portugal (Azores) and subsequent characterization of their antibacterial and enzymatic activities. Multiple enzymatic and antimicrobial activities were identified from bacterial of the Arthrobacter and Streptomyces genera demonstrating that actinomycetes from volcanic caves are promising sources of antibacterial, antibiofilm compounds and industrially relevant enzymes.

  10. Lantibiotics produced by Actinobacteria and their potential applications (a Review).

    PubMed

    Gomes, Karen; Duarte, Rafael Silva; Bastos, Maria do Carmo de Freire

    2016-11-22

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally-synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumor cells, and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  11. Lantibiotics produced by Actinobacteria and their potential applications (a review).

    PubMed

    Gomes, Karen Machado; Duarte, Rafael Silva; de Freire Bastos, Maria do Carmo

    2017-02-01

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  12. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane.

    PubMed

    Yan, J; Rash, B A; Rainey, F A; Moe, W M

    2009-04-01

    Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.

  13. Transcriptomic Analyses of Xylan Degradation by Prevotella bryantii and Insights into Energy Acquisition by Xylanolytic Bacteroidetes*

    PubMed Central

    Dodd, Dylan; Moon, Young-Hwan; Swaminathan, Kankshita; Mackie, Roderick I.; Cann, Isaac K. O.

    2010-01-01

    Enzymatic depolymerization of lignocellulose by microbes in the bovine rumen and the human colon is critical to gut health and function within the host. Prevotella bryantii B14 is a rumen bacterium that efficiently degrades soluble xylan. To identify the genes harnessed by this bacterium to degrade xylan, the transcriptomes of P. bryantii cultured on either wheat arabinoxylan or a mixture of its monosaccharide components were compared by DNA microarray and RNA sequencing approaches. The most highly induced genes formed a cluster that contained putative outer membrane proteins analogous to the starch utilization system identified in the prominent human gut symbiont Bacteroides thetaiotaomicron. The arrangement of genes in the cluster was highly conserved in other xylanolytic Bacteroidetes, suggesting that the mechanism employed by xylan utilizers in this phylum is conserved. A number of genes encoding proteins with unassigned function were also induced on wheat arabinoxylan. Among these proteins, a hypothetical protein with low similarity to glycoside hydrolases was shown to possess endoxylanase activity and subsequently assigned to glycoside hydrolase family 5. The enzyme was designated PbXyn5A. Two of the most similar proteins to PbXyn5A were hypothetical proteins from human colonic Bacteroides spp., and when expressed each protein exhibited endoxylanase activity. By using site-directed mutagenesis, we identified two amino acid residues that likely serve as the catalytic acid/base and nucleophile as in other GH5 proteins. This study therefore provides insights into capture of energy by xylanolytic Bacteroidetes and the application of their enzymes as a resource in the biofuel industry. PMID:20622018

  14. Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c

    PubMed Central

    Barton, Hazel A.; Giarrizzo, Juan G.; Suarez, Paula; Robertson, Charles E.; Broering, Mark J.; Banks, Eric D.; Vaishampayan, Parag A.; Venkateswaran, Kasthisuri

    2014-01-01

    The majority of caves are formed within limestone rock and hence our understanding of cave microbiology comes from carbonate-buffered systems. In this paper, we describe the microbial diversity of Roraima Sur Cave (RSC), an orthoquartzite (SiO4) cave within Roraima Tepui, Venezuela. The cave contains a high level of microbial activity when compared with other cave systems, as determined by an ATP-based luminescence assay and cell counting. Molecular phylogenetic analysis of microbial diversity within the cave demonstrates the dominance of Actinomycetales and Alphaproteobacteria in endolithic bacterial communities close to the entrance, while communities from deeper in the cave are dominated (82–84%) by a unique clade of Ktedonobacterales within the Chloroflexi. While members of this phylum are commonly found in caves, this is the first identification of members of the Class Ktedonobacterales. An assessment of archaeal species demonstrates the dominance of phylotypes from the Thaumarchaeota Group I.1c (100%), which have previously been associated with acidic environments. While the Thaumarchaeota have been seen in numerous cave systems, the dominance of Group I.1c in RSC is unique and a departure from the traditional archaeal community structure. Geochemical analysis of the cave environment suggests that water entering the cave, rather than the nutrient-limited orthoquartzite rock, provides the carbon and energy necessary for microbial community growth and subsistence, while the poor buffering capacity of quartzite or the low pH of the environment may be selecting for this unusual community structure. Together these data suggest that pH, imparted by the geochemistry of the host rock, can play as important a role in niche-differentiation in caves as in other environmental systems. PMID:25505450

  15. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals.

    PubMed

    Alvarez, Analia; Saez, Juliana Maria; Davila Costa, José Sebastian; Colin, Veronica Leticia; Fuentes, María Soledad; Cuozzo, Sergio Antonio; Benimeli, Claudia Susana; Polti, Marta Alejandra; Amoroso, María Julia

    2017-01-01

    Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants. This ability is the reason why actinobacteria have received special attention as candidates for bioremediation, which has gained importance because of the widespread release of contaminants into the environment. Among organic contaminants, pesticides are widely used for pest control, although the negative impact of these chemicals in the environmental balance is increasingly becoming apparent. Similarly, the extensive application of heavy metals in industrial processes lead to highly contaminated areas worldwide. Several studies focused in the use of actinobacteria for cleaning up the environment were performed in the last 15 years. Strategies such as bioaugmentation, biostimulation, cell immobilization, production of biosurfactants, design of defined mixed cultures and the use of plant-microbe systems were developed to enhance the capabilities of actinobacteria in bioremediation. In this review, we compiled and discussed works focused in the study of different bioremediation strategies using actinobacteria and how they contributed to the improvement of the already existing strategies. In addition, we discuss the importance of omic studies to elucidate mechanisms and regulations that bacteria use to cope with pollutant toxicity, since they are still little known in actinobacteria. A brief account of sources and harmful effects of pesticides and heavy metals is also given.

  16. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  17. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  18. High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces

    PubMed Central

    Vierheilig, Julia; Farnleitner, Andreas H.; Kollanur, Denny; Blöschl, Günter; Reischer, Georg H.

    2012-01-01

    Two frequently applied genetic Bacteroidetes markers for total fecal pollution (AllBac and BacUni) were found in high numbers in pristine soil samples of two alpine catchment areas casting doubt on their value as fecal indicators. This finding underlines the necessity to evaluate assays locally and against non-intestinal samples before application. PMID:22285854

  19. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.

    2016-01-01

    ABSTRACT Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae. PMID:27578753

  20. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences.

    PubMed

    Verma, Mansi; Lal, Devi; Kaur, Jaspreet; Saxena, Anjali; Kaur, Jasvinder; Anand, Shailly; Lal, Rup

    2013-09-01

    Actinobacteria constitute one of the largest and ancient taxonomic phylum within the domain bacteria and are well known for their secondary metabolites. Considerable variation in the metabolic properties, genome size and GC content of the members of this phylum has been observed. Therefore, the placement of new or existing species based on 16S rRNA gene sometimes becomes problematic due to the low congruence level. In the present study, phylogeny of ninety actinobacterial genomes was reconstructed using single gene and whole genome based data. Where alignment-free phylogenetic method was found to be more robust, the concatenation of 94 proteins improved the resolution which all single gene based phylogenies failed to resolve. The comprehensive analysis of 94 conserved proteins resulted in a total of 42,447 informative sites, which is so far the largest meta-alignment obtained for this phylum. But the ultimate resolved phylogeny was obtained by generating a consensus tree by combining the information from single gene and genome based phylogenies. The present investigation clearly revealed that the consensus approach is a useful tool for phylogenetic inference and the taxonomic affiliations must be based on this approach. The consensus approach suggested that there is a need for taxonomic amendments of the orders Frankiales and Micrococcales.

  1. A trap for in situ cultivation of filamentous actinobacteria

    PubMed Central

    Gavrish, Ekaterina; Bollmann, Annette; Epstein, Slava; Lewis, Kim

    2008-01-01

    The approach of growing microorganisms in situ, or in a simulated natural environment is appealing, and different versions of it have been described by several groups. The major difficulties with these approaches are that they are not selective for actinomycetes – a group of gram-positive bacteria well known as a rich source of antibiotics. In order to efficiently access actinomycetes, a trap for specifically capturing and cultivating these microorganisms in situ has been developed, based on the ability of these bacteria to form hyphae and penetrate solid environments. The trap is formed by two semi-permeable membranes (0.2 – 0.6 μm pore-size bottom membrane and 0.03 μm pore-size top membrane) glued to a plastic washer with sterile agar or gellan gum inside. The trap is placed on top of soil, and filamentous microorganisms selectively penetrate into the device and form colonies. Decreasing the size of the pores of the lower membrane to 0.2 μm restricted penetration of fungi. The trap produced more filamentous actinobacteria, and a higher variety of them, as compared to a conventional Petri dish cultivation from the same soil sample. Importantly, the trap cultivation resulted in the isolation of unusual and rare actinomycetes. PMID:18255181

  2. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  3. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella.

    PubMed Central

    Hunter, Martha S; Perlman, Steve J; Kelly, Suzanne E

    2003-01-01

    Vertically transmitted symbionts of arthropods have been implicated in several reproductive manipulations of their hosts. These include cytoplasmic incompatibility (CI), parthenogenesis induction in haplodiploid species (PI), feminization and male killing. One symbiont lineage in the alpha-Proteobacteria, Wolbachia, is the only bacterium known to cause all of these effects, and has been thought to be unique in causing CI, in which the fecundity of uninfected females is reduced after mating with infected males. Here, we provide evidence that an undescribed symbiont in the Bacteroidetes group causes CI in a sexual population of the parasitic wasp Encarsia pergandiella. Wasps were crossed in all four possible combinations of infected and uninfected individuals. In the cross predicted to be incompatible, infected (I) males x uninfected (U) females, progeny production was severely reduced, with these females producing only 12.6% of the number of progeny in other crosses. The incompatibility observed in this haplodiploid species was the female mortality type; dissections showed that most progeny from the incompatible cross died as eggs. The 16S rDNA sequence of this symbiont is 99% identical to a parthenogenesis-inducing symbiont in other Encarsia, and 96% identical to a feminizing symbiont in haplodiploid Brevipalpus mites. Thus, this recently discovered symbiont lineage is capable of inducing three of the four principal manipulations of host reproduction known to be caused by Wolbachia. PMID:14561283

  4. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    PubMed Central

    Solden, Lindsey M; Hoyt, David W; Collins, William B; Plank, Johanna E; Daly, Rebecca A; Hildebrand, Erik; Beavers, Timothy J; Wolfe, Richard; Nicora, Carrie D; Purvine, Sam O; Carstensen, Michelle; Lipton, Mary S; Spalinger, Donald E; Firkins, Jeffrey L; Wolfe, Barbara A; Wrighton, Kelly C

    2017-01-01

    Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment. PMID:27959345

  5. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    SciTech Connect

    Solden, Lindsey M.; Hoyt, David W.; Collins, William B.; Plank, Johanna E.; Daly, Rebecca A.; Hildebrand, Erik; Beavers, Timothy J.; Wolfe, Richard; Nicora, Carrie D.; Purvine, Sam O.; Carstensen, Michelle; Lipton, Mary S.; Spalinger, Donald E.; Firkins, Jeffrey L.; Wolfe, Barbara A.; Wrighton, Kelly C.

    2016-12-13

    Ruminants have co-evolved with their gastrointestinal microbial communities that aid in the digestion of plant materials, providing energy for the host. The ability of this microbiome to adapt to altered host diets may dramatically impact the survival of wild ruminant populations, especially under future climate change scenarios. To identify microorganisms capable of degrading climatedriven increases in woody biomass in arctic and boreal regions, we sampled rumen fluids from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. Our findings show that the BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals, including humans. Metagenomic reconstruction yielded the first five BS11 genomes, phylogenetically resolving two genera within this taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for degrading hemicellulose sugars to short-chain fatty acids, metabolites vital for ruminant energy. Active hemicellulosic fermentation, as well as butyrate and acetate production, were validated by shotgun proteomics and rumen metabolite detection using NMR, illuminating the vital role BS11 play in carbon transformations within the rumen. These results demonstrate that woody biomass selects for BS11 members, providing arctic herbivores with metabolic redundancy to sustain energy generation in a changing vegetative environment.

  6. A protein secretion system linked to bacteroidete gliding motility and pathogenesis.

    PubMed

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J; Rhodes, Ryan G; Nakayama, Koji

    2010-01-05

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum.

  7. Flavobacterium aquaticum sp. nov., a member of the Bacteroidetes isolated from a freshwater reservoir.

    PubMed

    Lee, Siwon; Lee, Jungnam; Ahn, Tae-Young

    2013-06-01

    A novel bacterial strain, designated ARSA-111(T), was isolated from a freshwater reservoir in Cheonan, Korea. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the isolate belonged to the genus Flavobacterium of phylum Bacteroidetes. The 16S rRNA gene sequence of strain ARSA-111(T) showed a high degree of sequence similarity to those of Flavobacteium cheonanense KACC 14972(T) (97.3%), F. aquatile JCM 20475(T) (97.1%), and other type strains of the genus Flavobacterium (< 97.0%). The phylogenetic tree and network analysis (i.e. median-joining) based on 16S rRNA gene sequences showed that strain ARSA-111(T) is most closely related to F. aquatile JCM 20475(T). DNA-DNA hybridization experiment revealed 70% of genomic relatedness among strain ARSA-111(T), F. aquatile JCM 20475(T) and F. cheonanense KACC 14972(T). The isolate had iso-C15:1, iso-C15:0, and iso-C15:0 3-OH as predominant cellular fatty acids and MK-6 as a predominant menaquinone. The genomic DNA G+C content of the isolate was 35.6 mol%. On the basis of these data, strain ARSA-111(T) is considered to be a novel species of the genus Flavobacterium, for which the name Flavobacterium aquaticum sp. nov. is proposed. The type strain is strain ARSA-111(T) (=KACC 14973(T) =KCTC 23185(T) = JCM 17070(T)).

  8. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria.

    PubMed

    Gao, Beile; Gupta, Radhey S

    2012-03-01

    The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.

  9. Actinobacteria Associated with the Marine Sponges Cinachyra sp., Petrosia sp., and Ulosa sp. and Their Culturability

    PubMed Central

    Khan, Shams Tabrez; Takagi, Motoki; Shin-ya, Kazuo

    2012-01-01

    Actinobacteria associated with 3 marine sponges, Cinachyra sp., Petrosia sp., and Ulosa sp., were investigated. Analyses of 16S rRNA gene clone libraries revealed that actinobacterial diversity varied greatly and that Ulosa sp. was most diverse, while Cinachyra sp. was least diverse. Culture-based approaches failed to isolate actinobacteria from Petrosia sp. or Ulosa sp., but strains belonging to 10 different genera and 3 novel species were isolated from Cinachyra sp. PMID:22214828

  10. Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites.

    PubMed

    Arango, R A; Carlson, C M; Currie, C R; McDonald, B R; Book, A J; Green, F; Lebow, N K; Raffa, K F

    2016-09-28

    Subterranean termites need to minimize potentially pathogenic and competitive fungi in their environment in order to maintain colony health. We examined the ability of Actinobacteria isolated from termite guts in suppressing microorganisms commonly encountered in a subterranean environment. Guts from two subterranean termite species, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, were extracted and plated on selective chitin media. A total of 38 Actinobacteria isolates were selected for in vitro growth inhibition assays. Target microbes included three strains of Serratia marcescens Bizio, two mold fungi (Trichoderma sp. and Metarhizium sp.), a yeast fungus (Candida albicans (C.P. Robin) Berkhout), and four basidiomycete fungi (Gloeophyllum trabeum (Persoon) Murrill, Tyromyces palustris (Berkeley & M.A. Curtis) Murrill, Irpex lacteus (Fries) Fries, and Trametes versicolor (L.) Lloyd). Results showed both broad and narrow ranges of antimicrobial activity against the mold fungi, yeast fungus, and S. marcescens isolates by the Actinobacteria selected. This suggests that termite gut-associated Actinobacteria produce secondary antimicrobial compounds that may be important for pathogen inhibition in termites. Basidiomycete fungi were strongly inhibited by the selected Actinobacteria isolates, with G. trabeum and T. versicolor being most inhibited, followed by I. lacteus and T. palustris The degree of inhibition was correlated with shifts in pH caused by the Actinobacteria. Nearly all Actinobacteria isolates raised pH of the growth medium to basic levels (i.e. pH ∼8.0-9.5). We summarize antimicrobial activity of these termite gut-associated Actinobacteria and examine the implications of these pH shifts.

  11. Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites.

    PubMed

    Arango, R A; Carlson, C M; Currie, C R; McDonald, B R; Book, A J; Green, F; Lebow, N K; Raffa, K F

    2016-12-01

    Subterranean termites need to minimize potentially pathogenic and competitive fungi in their environment in order to maintain colony health. We examined the ability of Actinobacteria isolated from termite guts in suppressing microorganisms commonly encountered in a subterranean environment. Guts from two subterranean termite species, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, were extracted and plated on selective chitin media. A total of 38 Actinobacteria isolates were selected for in vitro growth inhibition assays. Target microbes included three strains of Serratia marcescens Bizio, two mold fungi (Trichoderma sp. and Metarhizium sp.), a yeast fungus (Candida albicans (C.P. Robin) Berkhout), and four basidiomycete fungi (Gloeophyllum trabeum (Persoon) Murrill, Tyromyces palustris (Berkeley & M.A. Curtis) Murrill, Irpex lacteus (Fries) Fries, and Trametes versicolor (L.) Lloyd). Results showed both broad and narrow ranges of antimicrobial activity against the mold fungi, yeast fungus, and S. marcescens isolates by the Actinobacteria selected. This suggests that termite gut-associated Actinobacteria produce secondary antimicrobial compounds that may be important for pathogen inhibition in termites. Basidiomycete fungi were strongly inhibited by the selected Actinobacteria isolates, with G. trabeum and T. versicolor being most inhibited, followed by I. lacteus and T. palustris The degree of inhibition was correlated with shifts in pH caused by the Actinobacteria. Nearly all Actinobacteria isolates raised pH of the growth medium to basic levels (i.e. pH ∼8.0-9.5). We summarize antimicrobial activity of these termite gut-associated Actinobacteria and examine the implications of these pH shifts.

  12. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  13. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    PubMed

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  14. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling

    PubMed Central

    Cooper, Myriel; Schreiber, Lars; Lloyd, Karen G.; Baker, Brett J.; Petersen, Dorthe G.; Jørgensen, Bo Barker; Stepanauskas, Ramunas; Reinhardt, Richard; Schramm, Andreas; Loy, Alexander; Adrian, Lorenz

    2016-01-01

    ABSTRACT The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi. The presence of genes encoding dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many of the amplified dsrAB sequences were affiliated with the DEH Dsr clade, which we propose equates to a family-level clade. This provides supporting evidence for the potential for sulfite reduction by diverse DEH species. DEH-C11 also harbored genes encoding reductases for arsenate, dimethyl sulfoxide, and halogenated organics. The reductive dehalogenase homolog (RdhA) forms a monophyletic clade along with RdhA sequences from various DEH-derived contigs retrieved from available metagenomes. Multiple facts indicate that this RdhA may not be a terminal reductase. The presence of other genes indicated that nutrients and energy may be derived from the oxidation of substituted homocyclic and heterocyclic aromatic compounds. Together, these results suggest that marine DEH play a previously unrecognized role in sulfur cycling and reveal the potential for expanded catabolic and respiratory functions among subsurface DEH. PMID:27143384

  15. [Actinobacteria and their odor-producing capacities in a surface water in Shanghai].

    PubMed

    Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi

    2014-10-01

    The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.

  16. Phylogenetic ecology of the freshwater Actinobacteria acI lineage.

    PubMed

    Newton, Ryan J; Jones, Stuart E; Helmus, Matthew R; McMahon, Katherine D

    2007-11-01

    The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with > or =97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes.

  17. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  18. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

    PubMed Central

    Larsbrink, Johan; Rogers, Theresa E.; Hemsworth, Glyn R.; McKee, Lauren S.; Tauzin, Alexandra S.; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A.; Urs, Karthik; Koropatkin, Nicole M.; Creagh, A. Louise; Haynes, Charles A.; Kelly, Amelia G.; Cederholm, Stefan Nilsson; Davies, Gideon J.; Martens, Eric C.; Brumer, Harry

    2014-01-01

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed “dietary fibre,” from the cell walls of diverse fruits and vegetables.1 Due to a paucity of alimentary enzymes encoded by the human genome,2 our ability to derive energy from dietary fibre depends on saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut.3,4 The xyloglucans (XyGs), in particular, are a ubiquitous family of highly branched plant cell wall polysaccharides5,6 whose mechanism(s) of degradation in the human gut and consequent importance in nutrition was heretofore unknown.1,7,8 Here, we demonstrate that a single, complex gene locus in Bacteroides ovatus confers xyloglucan catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous xyloglucan utilization loci (XyGULs) serve as genetic markers of xyloglucan catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.9–12 PMID:24463512

  19. A Polysaccharide Utilization Locus from an Uncultured Bacteroidetes Phylotype Suggests Ecological Adaptation and Substrate Versatility

    PubMed Central

    Mackenzie, A. K.; Naas, A. E.; Kracun, S. K.; Schückel, J.; Fangel, J. U.; Agger, J. W.; Willats, W. G. T.; Eijsink, V. G. H.

    2014-01-01

    Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen microbiome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endoglucanases (GH5_g and GH5_h) demonstrated activity against β-glucans, xylans, and xyloglucan, whereas GH5_h and the third enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein revealed an affinity toward β-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously characterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available polysaccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome. PMID:25326301

  20. A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility.

    PubMed

    Mackenzie, A K; Naas, A E; Kracun, S K; Schückel, J; Fangel, J U; Agger, J W; Willats, W G T; Eijsink, V G H; Pope, P B

    2015-01-01

    Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen microbiome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endoglucanases (GH5_g and GH5_h) demonstrated activity against β-glucans, xylans, and xyloglucan, whereas GH5_h and the third enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein revealed an affinity toward β-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously characterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available polysaccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome.

  1. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia.

    PubMed

    Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica

    2015-10-01

    The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.

  2. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism.

    PubMed

    Cui, C; Shen, C J; Jia, G; Wang, K N

    2013-05-23

    The ratio of Bacteroidetes and Firmicutes bacterial groups in the gut can affect the ability to absorb nutrients. We investigated the effect of probiotic Bacillus subtilis supplementation of diets on growth performance, fat deposition, blood lipids, copy numbers, and percentage of Bacteroidetes and Firmicutes in cecal contents, as well as mRNA expression of key lipid metabolism enzymes in the liver and adipose tissue of finishing pigs. Twenty-four Duroc x Meishan crossbreed 8-week-old pigs (10.28 ± 0.59 kg) were randomly allocated to two dietary treatments: maize-soybean meal-based diets with B. subtilis (probiotic group) and without B. subtilis (control group). The probiotic diet led to a significant increase in the average daily gain and feed conversion ratio of pigs weighing 10 to 110 kg. The mean backfat depth was increased while leaf lard weights were decreased by probiotic supplementation. Ingestion of probiotics decreased the serum triglyceride and glucose concentrations, but did not change the levels of total cholesterol and free fatty acids in the serum. The mRNA expressions of fatty acid synthase (FAS) and acetyl-CoA carboxylase α (ACCα) in the liver were down-regulated by the dietary probiotic supplement. Conversely, the gene expressions of FAS and ACCα in the adipose tissue increased. The probiotic diet decreased the copy numbers and percentage of Bacteroidetes, while it increased the percentage of Firmicutes in the cecal contents. We conclude that the addition of B. subtilis improves growth performance and up-regulates lipid metabolism in subcutaneous fat of finishing pigs. We conclude that B. subtilis affects lipid metabolism through regulation of the proportion of Bacteroidetes and Firmicutes in the gut.

  3. The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species.

    PubMed

    Goldberg, E; Amir, I; Zafran, M; Gophna, U; Samra, Z; Pitlik, S; Bishara, J

    2014-03-01

    We aimed to assess differences in bacterial intensities of Bacteroidetes phylum and different clostridial species in the human intestines with respect to C. difficile infection. Patients with a stool assay for C. difficile toxin were identified via the microbiology laboratory in our institute. Bacterial populations were quantified from stool samples of four groups of patients: Group I-patients with C. difficile associated diarrhea (CDAD); Group II-asymptomatic C. difficile carriers; Group III-patients with non-C. difficile diarrhea; Group IV-patients with no diarrhea and negative stool samples for the C. difficile toxin (control group). Stool was examined for three genes-C. difficile toxin A gene, 16S rRNA gene from Clostridium thermocellum representing other clostridial species, and 16S rRNA gene from Bacteroides fragilis representing the Bacteroidetes phylum. Fifty-nine patients underwent analysis of the stool (CDAD group 14, carriers group 14, non-C. difficile diarrhea group 16, control group 15). C. difficile concentration was highest in the CDAD group, followed by the carriers group. Higher concentrations of both clostridial species and Bacteriodetes were observed in the control and non-C. difficile diarrhea groups compared to the CDAD and carriers groups. We demonstrated an inverse association between infection with C. difficile and the abundance of Bacteroidetes phylum and other clostridial species in human intestines. Studies with larger samples and broader diagnostic procedures are needed in order to better explore and understand this association.

  4. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets.

    PubMed

    Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin

    2013-09-21

    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.

  5. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    PubMed Central

    Sathish, Kumar SR; Kokati, Venkata Bhaskara Rao

    2012-01-01

    Objective To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Methods Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Results Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusions The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms. PMID:23569848

  6. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  7. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    PubMed Central

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  8. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria.

    PubMed

    Polkade, Ashish V; Mantri, Shailesh S; Patwekar, Umera J; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  9. Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the "Fleming" strain, and actinobacteria.

    PubMed

    Rokem, J Stefan; Vongsangnak, Wanwipa; Nielsen, Jens

    2011-11-01

    Putative gene predictions of the Gram positive actinobacteria Micrococcus luteus (NCTC 2665, "Fleming strain") was used to construct a genome scale reconstruction of the metabolic network for this organism. The metabolic network comprises 586 reactions and 551 metabolites, and accounts for 21% of the genes in the genome. The reconstruction was based on the annotated genome and available biochemical information. M. luteus has one of the smallest genomes of actinobacteria with a circular chromosome of 2,501,097 base pairs and a GC content of 73%. The metabolic pathways required for biomass production in silico were determined based on earlier models of actinobacteria. The in silico network is used for metabolic comparison of M. luteus with other actinomycetes, and hence provides useful information for possible future biotechnological exploitation of this organism, e.g., for production of biofuels.

  10. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria.

    PubMed

    Qin, Sheng; Xing, Ke; Jiang, Ji-Hong; Xu, Li-Hua; Li, Wen-Jun

    2011-02-01

    Endophytic actinobacteria, which exist in the inner tissues of living plants, have attracted increasing attention among taxonomists, ecologists, agronomists, chemists and evolutionary biologists. Numerous studies have indicated that these prolific actinobacteria appear to have a capacity to produce an impressive array of secondary metabolites exhibiting a wide variety of biological activity, such as antibiotics, antitumor and anti-infection agents, plant growth promoters and enzymes, and may contribute to their host plants by promoting growth and enhancing their ability of withstanding the environmental stresses. These microorganisms may represent an underexplored reservoir of novel species of potential interest in the discovery of novel lead compounds and for exploitation in pharmaceutical, agriculture and industry. This review focuses on new findings in the isolation methods, bio- and chemical diversity of endophytic actinobacteria and reveals the potential biotechnological application. The facing problems and strategies for biodiversity research and bioactive natural products producing are also discussed.

  11. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2016-01-01

    Nanotechnology is gaining tremendous attention in the present century due to its expected impact on many important areas such as medicine, energy, electronics, and space industries. In this context, actinobacterial biosynthesis of nanoparticles is a reliable, eco-friendly, and important aspect of green chemistry approach that interconnects microbial biotechnology and nanobiotechnology. Antibiotics produced by actinobacteria are popular in almost all the therapeutic measures and it is known that these microbes are also helpful in the biosynthesis of nanoparticles with good surface and size characteristics. In fact, actinobacteria are efficient producers of nanoparticles that show a range of biological properties, namely, antibacterial, antifungal, anticancer, anti-biofouling, anti-malarial, anti-parasitic, antioxidant, etc. This review describes the potential use of the actinobacteria as the novel sources for the biosynthesis of nanoparticles with improved biomedical applications.

  12. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal.

    PubMed

    Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy

    2016-03-01

    The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases.

  13. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes.

    PubMed

    Moran, Nancy A; Tran, Phat; Gerardo, Nicole M

    2005-12-01

    Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 mum in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. "Candidatus Sulcia muelleri" is proposed as the name of the new symbiont.

  14. Draft Genome Sequence of Microbacterium sp. Strain UCD-TDU (Phylum Actinobacteria)

    PubMed Central

    Bendiks, Zachary A.; Lang, Jenna M.; Darling, Aaron E.; Coil, David A.

    2013-01-01

    Here, we present the draft genome sequence of Microbacterium sp. strain UCD-TDU, a member of the phylum Actinobacteria. The assembly contains 3,746,321 bp (in 8 scaffolds). This strain was isolated from a residential toilet as part of an undergraduate student research project to sequence reference genomes of microbes from the built environment. PMID:23516225

  15. Anti-Candida properties of urauchimycins from actinobacteria associated with trachymyrmex ants.

    PubMed

    Mendes, Thais D; Borges, Warley S; Rodrigues, Andre; Solomon, Scott E; Vieira, Paulo C; Duarte, Marta C T; Pagnocca, Fernando C

    2013-01-01

    After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications.

  16. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production.

    PubMed

    Lee, Learn-Han; Cheah, Yoke-Kqueen; Mohd Sidik, Shiran; Ab Mutalib, Nurul-Syakima; Tang, Yi-Li; Lin, Hai-Peng; Hong, Kui

    2012-05-01

    The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231(T), Staphylococcus aurues ATCC 51650(T), methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44(T) and Pseudomonas aeruginosa ATCC 10145(T), respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.

  17. Anti-Candida Properties of Urauchimycins from Actinobacteria Associated with Trachymyrmex Ants

    PubMed Central

    Mendes, Thais D.; Borges, Warley S.; Solomon, Scott E.; Vieira, Paulo C.; Duarte, Marta C. T.; Pagnocca, Fernando C.

    2013-01-01

    After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications. PMID:23586060

  18. Draft Genome Sequence of Kocuria sp. Strain UCD-OTCP (Phylum Actinobacteria)

    PubMed Central

    Coil, David A.; Doctor, Jessica I.; Lang, Jenna M.; Darling, Aaron E.

    2013-01-01

    Here, we present the draft genome of Kocuria sp. strain UCD-OTCP, a member of the phylum Actinobacteria, isolated from a restaurant chair cushion. The assembly contains 3,791,485 bp (G+C content of 73%) and is contained in 68 scaffolds. PMID:23661474

  19. Actinobacteria and Myxobacteria-Two of the Most Important Bacterial Resources for Novel Antibiotics.

    PubMed

    Landwehr, Wiebke; Wolf, Corinna; Wink, Joachim

    2016-01-01

    Bacteria have been by far the most promising resource for antibiotics in the past decades and will in all undoubtedly remain an important resource of innovative bioactive natural products in the future. Actinobacteria have been screened for many years, whereas the Myxobacteria have been underestimated in the past. Even though Actinobacteria belong to the Gram-positive and Myxobacteria to the Gram-negative bacteria both groups have a number of similar characters, as they both have huge genomes with in some cases more than 10kB and a high GC content and they both can differentiate and have often cell cycles including the formation of spores. Actinobacteria have been used for the antibiotic research for many years, hence it is often discussed whether this resource has now been exhaustively exploited but most of the screening programs from pharmaceutical companies were basing on the cultivation mainly of members of the genus Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora, Amycolatopsis or Actinomadura species) by use of standard methods so that many of the so called "neglected" Actinobacteria were overlooked the whole time. The present review gives an overview on the state of the art regarding new bioactive compounds with a focus on the marine habitats. Furthermore, the evaluation of Myxobacteria in our ongoing search for novel anti-infectives is highlighted.

  20. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small mole...

  1. Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes.

    PubMed

    Solans, Mariana; Scervino, Jose Martin; Messuti, María Inés; Vobis, Gernot; Wall, Luis Gabriel

    2016-11-01

    Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications.

  2. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul.

    PubMed

    Silva-Lacerda, G R; Santana, R C F; Vicalvi-Costa, M C V; Solidônio, E G; Sena, K X F R; Lima, G M S; Araújo, J M

    2016-03-04

    Actinobacteria are known to produce various secondary metabolites having antibiotic effects. This study assessed the antimicrobial potential of actinobacteria isolated from the rhizosphere of Caesalpinia pyramidalis Tul. from the Caatinga biome. Sixty-eight actinobacteria isolates were evaluated for antimicrobial activity against different microorganisms by disk diffusion and submerged fermentation, using different culture media, followed by determination of minimum inhibitory concentration (MIC) and chemical prospecting of the crude extract. Of the isolates studied, 52.9% of those isolated at 37°C and 47.05% of those isolated at 45°C had activity against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Fusarium moniliforme, and Candida albicans. When compared with others actinobacteria, the isolate C1.129 stood out with better activity and was identified by 16S rDNA gene analysis as Streptomyces parvulus. The crude ethanol extract showed an MIC of 0.97 μg/mL for MRSA and B. subtilis, while the ethyl acetate extract showed MIC of 3.9 μg/mL for S. aureus and MRSA, showing the greatest potential among the metabolites produced. Chemical prospecting revealed the presence of mono/sesquiterpenes, proanthocyanidin, triterpenes, and steroids in both crude extracts. This study evaluates S. parvulus activity against multi-resistant microorganisms such as MRSA. Thus, it proves that low-fertility soil, as is found in the Caatinga, may contain important microorganisms for the development of new antimicrobial drugs.

  3. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    PubMed

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live.

  4. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  5. Isolation and characterization of actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus (Hymenoptera, Formicidae).

    PubMed

    Zucchi, Tiago D; Guidolin, Aline S; Cônsoli, Fernando L

    2011-01-20

    The ectosymbiont actinobacterium Pseudonocardia was isolated from the integument of Acromyrmex leaf-cutter ants and seems to play a crucial role in maintaining asepsis of the nest. Currently, there has been an intensive search for Pseudonocardia associated with several attine species, but few studies have indicated that other actinobacteria may be associated with these ants as well. We therefore characterized the culturable actinobacteria community associated with the integument of the fungus-growing ant Acromyrmex subterraneus brunneus Forel, 1893 (Hymenoptera: Formicidae). Ectosymbionts were isolated using four different media and characterized by morphological and molecular (16S rDNA) methods. A total of 20 strains were isolated, of which 17 were characterized as Streptomyces spp., and one isolate each as Pseudonocardia, Kitassatospora and Propionicimonas. Unlike other Acromyrmex species, A. subterraneus brunneus is associated with a diversity of actinobacteria. Even though Pseudonocardia is present on this leaf-cutting ant's integument, the number and diversity of Streptomyces spp. found differs from those of previous studies with other attine ants and suggest that different culturing approaches are needed to characterize the true diversity of microbes colonizing the integument of attine ants. Moreover, understanding the diversity of the culturable actinobacteria associated with A. subterraneus brunneus should increase our knowledge of the evolutionary relationship of this intricate symbiotic association.

  6. Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds.

    PubMed

    Klausen, Cecilie; Nicolaisen, Mette H; Strobel, Bjarne W; Warnecke, Falk; Nielsen, Jeppe L; Jørgensen, Niels O G

    2005-04-01

    Occurrence of the odours geosmin and 2-methylisoborneol (MIB) in freshwater environments indicates that odour-producing organisms are commonly occurring. In the present study, we assumed actinomycetes to be a major source of the odours. Seasonal concentrations of odours and abundance of Actinobacteria, which includes actinomycetes and other G+ and high GC bacteria, were determined in one oligotrophic and two eutrophic freshwater streams, as well as in aquacultures connected to these streams, in Denmark. Concentrations of geosmin and MIB ranged from 2 to 9 ng l(-1) and were lowest in the winter. Passage of stream water in the aquacultures increased the amount of geosmin and MIB by up to 55% and 110%, respectively. Densities of actinobacteria were determined by fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) technique and were found to make up from 4 to 38 x 10(7) cells l(-1), corresponding to 3-9% of the total bacterial populations. The lowest densities of actinobacteria occurred in the winter. Filamentous bacteria targeted by the FISH probe made up about 2.7-38% (average was 22%) of the actinobacteria and were expected to be actinomycetes. Combined microautoradiography and CARD-FISH demonstrated that 10-38% (incorporation of 3H-thymidine) and 41-65% (incorporation of 3H-leucine) of the actinobacteria were metabolically active. The proportion of active actinobacteria increased up to 2-fold during passage of stream water in the aquacultures, and up to 98% of the cells became active. Sequencing of 16S rRNA genes in 8 bacterial isolates with typical actinomycete morphology from the streams and ponds demonstrated that most of them belonged to the genus Streptomyces. The isolated actinomycetes produced geosmin at rates from 0.1 to 35 aggeosmin bacterium(-1)h(-1). MIB was produced at similar rates in 5 isolates, whereas no MIB was produced by three of the isolates. Addition of the odours to stream water demonstrated that indigenous stream

  7. Metagenomic Classification and Characterization Marine Actinobacteria from the Gulf of Maine without Representative Genomes

    NASA Astrophysics Data System (ADS)

    Sachdeva, R.; Heidelberg, J.

    2012-12-01

    Actinobacteria represent one of the largest and most diverse bacterial phyla and unlike most marine prokaryotes are gram-positive. This phylum encompasses a broad range of physiologies, morphologies, and metabolic properties with a broad array of lifestyles. The marine actinobacterial assemblage is dominated by the orders Actinomycetales and Acidimicrobiales (also known as the marine Actinobacteria clade). The Acidimicrobiales bacteria typically outnumber the Actinomycetales bacteria and are mostly represented by the OCS155 group. Although bacteria of the order Acidimicrobiales make up ~7.6% of the 16S matches from the Global Ocean Survey shotgun metagenomic libraries; very little is known about their potential function and role in biogeochemical cycling. Samples were collected from surface seawater samples in the Gulf of Maine (GOM) from the summer and winter of 2006. Sanger sequences were generated from the 0.1-0.8 μm fractions using paired-end medium insert shotgun libraries. The resulting 2.2 Gb were assembled using the Celera Assembler package into 280 Mb of non-redundant scaffolds. Putative actinobacterial assemblies were identified using (1) ribosomal RNA genes (16S and 23S), (2) phylogenetically informative non-ribosomal core genes thought to be resistant to horizontal gene transfer (e.g. RecA and RpoB) and (3) compositional binning using oligonucleotide frequency pattern based hierarchical clustering. Binning resulted in 3.6 Mb (4.2X coverage) of actinobacterial scaffolds that were comprised of 15.1 Mb of unassembled reads. Putative actinobacterial assemblies included both summer and winter reads demonstrating that the Actinobacteria are abundant year round. Classification reveals that all of the sampled Actinobacteria are from the orders Acidimicrobiales and Actinomycetales and are similar to those found in the global ocean. The GOM Actinobacteria show a broad range of G+C % content (32-66%) indicating a high level of genomic diversity. Those assemblies

  8. Uncovering the Prevalence and Diversity of Integrating Conjugative Elements in Actinobacteria

    PubMed Central

    Beaudin, Julie; Brzezinski, Ryszard; Roy, Sébastien; Burrus, Vincent

    2011-01-01

    Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many

  9. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  10. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India.

    PubMed

    Arumugam, T; Senthil Kumar, P; Kameshwar, R; Prapanchana, K

    2017-03-30

    The importance of the current research is to investigate the different types of samples from the various mangrove sediments; as source of actinobacteria from the mangrove wet soil. Potential isolate screening by antimicrobial activity and identified actinobacteria was characterized based on cultural morphology, physiological and biochemical characteristics. Three different types of media were used to isolate actinobacteria from various geographical region of mangrove soil sediment and the genotype locus was recognized by 16S rDNA. Totally 144 actinobacteria isolates were recovered from 10 samples using three media. The most active culture media in the isolation of actinobacteria were ISP2 and Glycerol Yeast Extract Agar. Among 144 isolates, 38 isolates (26.38%) exhibited antimicrobial activity. Out of 38 isolates, potentially active 2 cultures were further supported for morphological and biochemical characterization analysis. Most of the isolates were produced pharmaceutically important enzymes such as protease, amylase, lipase, cellulose and also revealed antimicrobial activity against tested microorganism. The enriched salt, pH and temperature tolerance of the actinobacteria isolates to discharge commercially valuable primary and secondary bioactive metabolites. The present results functionally characterize novel mangrove actinobacteria and their metabolites for commercial interest in pharmaceutical industry.

  11. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile.

    PubMed

    Claverías, Fernanda P; Undabarrena, Agustina; González, Myriam; Seeger, Michael; Cámara, Beatriz

    2015-01-01

    Marine-derived Actinobacteria are a source of a broad variety of secondary metabolites with diverse biological activities, such as antibiotics and antitumorals; many of which have been developed for clinical use. Rare Actinobacteria represent an untapped source of new bioactive compounds that have been scarcely recognized. In this study, rare Actinobacteria from marine sediments were isolated from the Valparaíso bay, Chile, and their potential to produce antibacterial compounds was evaluated. Different culture conditions and selective media that select the growth of Actinobacteria were used leading to the isolation of 68 bacterial strains. Comparative analysis of the 16S rRNA gene sequences led to identifying isolates that belong to the phylum Actinobacteria with genetic affiliations to 17 genera: Aeromicrobium, Agrococcus, Arthrobacter, Brachybacterium, Corynebacterium, Dietzia, Flaviflexus, Gordonia, Isoptericola, Janibacter, Microbacterium, Mycobacterium, Ornithinimicrobium, Pseudonocardia, Rhodococcus, Streptomyces, and Tessaracoccus. Also, one isolate could not be consistently classified and formed a novel phylogenetic branch related to the Nocardiopsaceae family. The antimicrobial activity of these isolates was evaluated, demonstrating the capability of specific novel isolates to inhibit the growth of Gram-positive and Gram-negative bacteria. In conclusion, this study shows a rich biodiversity of culturable Actinobacteria, associated to marine sediments from Valparaíso bay, highlighting novel rare Actinobacteria, and their potential for the production of biologically active compounds.

  12. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile

    PubMed Central

    Claverías, Fernanda P.; Undabarrena, Agustina; González, Myriam; Seeger, Michael; Cámara, Beatriz

    2015-01-01

    Marine-derived Actinobacteria are a source of a broad variety of secondary metabolites with diverse biological activities, such as antibiotics and antitumorals; many of which have been developed for clinical use. Rare Actinobacteria represent an untapped source of new bioactive compounds that have been scarcely recognized. In this study, rare Actinobacteria from marine sediments were isolated from the Valparaíso bay, Chile, and their potential to produce antibacterial compounds was evaluated. Different culture conditions and selective media that select the growth of Actinobacteria were used leading to the isolation of 68 bacterial strains. Comparative analysis of the 16S rRNA gene sequences led to identifying isolates that belong to the phylum Actinobacteria with genetic affiliations to 17 genera: Aeromicrobium, Agrococcus, Arthrobacter, Brachybacterium, Corynebacterium, Dietzia, Flaviflexus, Gordonia, Isoptericola, Janibacter, Microbacterium, Mycobacterium, Ornithinimicrobium, Pseudonocardia, Rhodococcus, Streptomyces, and Tessaracoccus. Also, one isolate could not be consistently classified and formed a novel phylogenetic branch related to the Nocardiopsaceae family. The antimicrobial activity of these isolates was evaluated, demonstrating the capability of specific novel isolates to inhibit the growth of Gram-positive and Gram-negative bacteria. In conclusion, this study shows a rich biodiversity of culturable Actinobacteria, associated to marine sediments from Valparaíso bay, highlighting novel rare Actinobacteria, and their potential for the production of biologically active compounds. PMID:26284034

  13. Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria

    PubMed Central

    Dey, Abhinav; Adithi, V.R.; Chatterji, Dipankar

    2012-01-01

    The role of RbpA in the backdrop of M. smegmatis showed that it rescues mycobacterial RNA polymerase from rifampicin-mediated inhibition (Dey et al., 2010; Dey et al., 2011). Paget and co-workers (Paget et al., 2001; Newell et al., 2006) have revealed that RbpA homologs occur exclusively in actinobacteria. Newell et al. (2006) showed that MtbRbpA, when complemented in a ∆rbpA mutant of S. coelicolor, showed a low recovery of MIC (from 0.75 to 2 μg/ml) as compared to complementation by native RbpA of S. coelicolor (MIC increases from 0.75 to 11 μg/ml). Our studies on MsRbpA show that it is a differential marker for M. smegmatis RNA polymerase as compared to E. coli RNA polymerase at IC50 levels of rifampicin. A recent sequence-based analysis by Lane and Darst (2010) has shown that RNA polymerases from Proteobacteria and Actinobacteria have had a divergent evolution. E. coli is a representative of Proteobacteria and M. smegmatis is an Actinobacterium. RbpA has an exclusive occurrence in Actinobacteria. Since protein–protein interactions might not be conserved across different species, therefore, the probable reason for the indifference of MsRbpA toward E. coli RNA polymerase could be the lineage-specific differences between actinobacterial and proteobacterial RNA polymerases. These observations led us to ask the question as to whether the evolution of RbpA in Actinobacteria followed the same route as that of RNA polymerase subunits from actinobacterial species. We show that the exclusivity of RbpA in Actinobacteria and the unique evolution of RNA polymerase in this phylum share a co-evolutionary link. We have addressed this issue by a blending of experimental and bioinformatics based approaches. They comprise of induction of bacterial cultures coupled to rifampicin-tolerance, transcription assays and statistical comparison of phylogenetic trees for different pairs of proteins in actinobacteria. PMID:27896048

  14. Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach

    PubMed Central

    Tang, Kai; Lin, Yingfan; Han, Yu; Jiao, Nianzhi

    2017-01-01

    Members of phylum Bacteroidetes are distributed across diverse marine niches and Flavobacteria is often the predominant bacterial class decomposing algae-derived polysaccharides. Here, we report the complete genome of Gramella flava JLT2011 (Flavobacteria) isolated from surface water of the southeastern Pacific. A remarkable genomic feature is that the number of glycoside hydrolase (GH) genes in the genome of G. flava JLT2011 is more than 2-fold higher than that of other Gramella species. The functional profiles of the GHs suggest extensive variation in Gramella species. Growth experiments revealed that G. flava JLT2011 has the ability to utilize a wide range of polysaccharides for growth such as xylan and homogalacturonan in pectin. Nearly half of all GH genes were located on the multi-gene polysaccharide utilization loci (PUL) or PUL-like systems in G. flava JLT2011. This species was also found to harbor the two xylan PULs and a pectin PUL, respectively. Gene expression data indicated that more GHs and sugar-specific outer-membrane susC-susD systems were found in the presence of xylan than in the presence of pectin, suggesting a different strategy for heteropolymeric xylan and homoglacturonan utilization. Multi-omics data (transcriptomics, proteomics, and metabolomics) indicated that xylan PULs and pectin PUL are respectively involved in the catabolism of their corresponding polysaccharides. This work presents a comparison of polysaccharide decomposition within a genus and expands current knowledge on the diversity and function of PULs in marine Bacteroidetes, thereby deepening our understanding of their ecological role in polysaccharide remineralization in the marine system. PMID:28261179

  15. Identification and antimicrobial activity of actinobacteria from soils in southern Thailand.

    PubMed

    Sripreechasak, P; Tanasupawat, S; Matsumoto, A; Inahashi, Y; Suwanborirux, K; Takahashi, Y

    2013-03-01

    The aim of this research was to study on the identification and antimicrobial activity of actinobacteria from six soil samples collected around Krung Ching waterfall, Nakhon Si Thammarat province, the southern part of Thailand. Thirty-one isolates of actinobacteria were isolated using the dilution plating method on modified starch casein nitrate agar plates and potato starch-glycerol agar plates. On the primary screening, 9 isolates exhibited the antimicrobial activity against Bacillus subtilis, 8 isolates against Kocuria rhizophila, 6 isolates against Mucor racemosus, 2 isolates against Escherichia coli and Candida albicans and 5 isolates against Xanthomonas campestris pv. oryzae. All the isolates were identified based on their morphological and cultural characteristics including the 16S rRNA gene sequence analysis. Eighteen isolates were identified as Streptomyces, 8 isolates as Nocardia, 2 isolates as Kitasatospora, one of each isolate as Amycolatopsis, Rhodococcus and Gordonia.

  16. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    PubMed

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  17. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR.

    PubMed

    Blazejak, Anna; Schippers, Axel

    2010-05-01

    Sequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria. In contrast, in deeply buried sediments below approximately 1 m depth, similar quantities of the 16S rRNA gene copies of these specific groups and Bacteria were found. This finding indicates that JS-1 and Anaerolineae- and Caldilineae-related Bacteria might dominate the bacterial community in deeply buried marine sediments and thus seem to play an important ecological role in the deep biosphere.

  18. Biogeography of bacterial communities in hot springs: a focus on the actinobacteria.

    PubMed

    Valverde, Angel; Tuffin, Marla; Cowan, Don A

    2012-07-01

    Actinobacteria are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the microbial ecology of this phylum, data are scant on the ecology of actinobacteria endemic to hot springs. Here, we have investigated the molecular diversity of eubacteria, with specific focus on the actinobacteria in hot springs in Zambia, China, New Zealand and Kenya. Temperature and pH values at sampling sites ranged between 44.5 and 86.5 °C and 5-10, respectively. Non-metric multidimensional scaling analysis of 16S rRNA gene T-RFLP patterns showed that samples could be separated by geographical location. Multivariate analysis showed that actinobacterial community composition was best predicted by changes in pH and temperature, whereas temperature alone was the most important variable explaining differences in bacterial community structure. Using 16S rRNA gene libraries, 28 major actinobacterial OTUs were found. Both molecular techniques indicated that many of the actinobacterial phylotypes were unique and exclusive to the respective sample. Collectively, these results support the view that both actinobacterial diversity and endemism are high in hot spring ecosystems.

  19. Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia

    PubMed Central

    Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan

    2014-01-01

    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135T that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites. PMID:25162061

  20. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia.

    PubMed

    Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan

    2014-01-01

    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.

  1. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    PubMed

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (<0.5) for most genes; and 5) GCC-GCC, GCC-GGC, GCC-GAG and CUC-GAC are the frequent context sequences among codons. This study highlights the fact that: 1) in Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species.

  2. Use of Metagenomics and Isolation of Actinobacteria in Brazil's Atlantic Rainforest Soil for Antimicrobial Prospecting

    PubMed Central

    Assis, Danyelle Alves Martins; Rezende, Rachel Passos; Dias, João Carlos Teixeira

    2014-01-01

    Modern techniques involving molecular biology, such as metagenomics, have the advantage of exploiting a higher number of microorganisms; however, classic isolation and culture methods used to obtain antimicrobials continue to be promising, especially in the isolation of Actinobacteria, which are responsible for the production of many of these compounds. In this work, two methodologies were used to search for antimicrobial substances—isolation of Actinobacteria and metagenomics of the Atlantic Rainforest soil and of the cultivation of cocoa intercropped with acai berry in the Atlantic Rainforest. The metagenomic libraries were constructed with the CopyControl Fosmid Library kit EPICENTRE, resulting in a total of 2688 clones, 1344 of each soil sample. None of the clones presented antimicrobial activity against the microorganisms tested: S. aureus, Bacillus subtilis, and Salmonella choleraesuis. A total of 46 isolates were obtained from the isolation of soil Actinobacteria: 24 isolates from Atlantic Rainforest soil and 22 isolates from the intercrop cultivation soil. Of these, two Atlantic Rainforest soil isolates inhibited the growth of S. aureus including a clinical isolate of S. aureus MRSA—a promising result, since it is an important multidrug-resistant human pathogen. PMID:25937991

  3. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    SciTech Connect

    Gao, B.; Sugiman-Marangos, S; Junop, M; Gupta, R

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  4. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.

    PubMed

    Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang

    2013-05-01

    Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

  5. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    PubMed

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  6. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum 'Chloroflexi' isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov.

    PubMed

    Kawaichi, Satoshi; Ito, Norihiro; Kamikawa, Ryoma; Sugawara, Tatsuya; Yoshida, Takashi; Sako, Yoshihiko

    2013-08-01

    A novel thermophilic, chemoheterotrophic, Gram-negative-staining, multicellular filamentous bacterium, designated strain 110S(T), was isolated from an iron-rich coastal hydrothermal field in Japan. The isolate is facultatively aerobic and chemoheterotrophic. Phylogenetic analysis using 16S rRNA gene sequences nested strain 110S(T) in a novel class-level clone cluster of the phylum 'Chloroflexi'. The isolate grows by dissimilatory iron- and nitrate-reduction under anaerobic conditions, which is the first report of these abilities in the phylum 'Chloroflexi'. The organism is capable of growth with oxygen, ferric iron and nitrate as a possible electron acceptor, has a wide range of growth temperatures, and tolerates higher NaCl concentrations for growth compared to the other isolates in the phylum. Using phenotypic and phylogenetic data, strain 110S(T) (= JCM 17282(T) = NBRC 107679(T) = DSM 23922(T) = KCTC 23289(T) = ATCC BAA-2145(T)) is proposed as the type strain of a novel species in a new genus, Ardenticatena maritima gen. nov., sp. nov. In addition, as strain 110S(T) apparently constitutes a new class of the phylum 'Chloroflexi' with other related uncultivated clone sequences, we propose Ardenticatenia classis nov. and the subordinate taxa Ardenticatenales ord. nov. and Ardenticatenaceae fam. nov.

  7. SPECIFICITY AND SENSITIVITY OF FECAL BACTEROIDETES HUMAN-SPECIFIC PRIMERS WITH FECAL AND WASTEWATER SAMPLES FROM THE U.S. MIDWEST AND NORTHEAST REGIONS

    EPA Science Inventory

    Numerous watersheds throughout the United States are impaired due to fecal contamination. Fecal Bacteroidetes is a group of anaerobic bacteria present in high concentrations in animal feces that has shown promise as a microbial source tracking indicator of human and othe...

  8. Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes

    PubMed Central

    Dick, Linda K.; Field, Katharine G.

    2004-01-01

    Assessment of health risk associated with fecal pollution requires a reliable fecal indicator and a rapid quantification method. We report the development of a Taq nuclease assay for enumeration of 16S rRNA genes of Bacteroidetes. Sensitivity and correlation with standard fecal indicators provide experimental evidence for application of the assay in monitoring fecal pollution. PMID:15345463

  9. Chloroflexi CL500-11 Populations That Predominate Deep-Lake Hypolimnion Bacterioplankton Rely on Nitrogen-Rich Dissolved Organic Matter Metabolism and C1 Compound Oxidation

    PubMed Central

    Mueller, Ryan S.; Chiang, Edna; Liebig, James R.; Vanderploeg, Henry A.

    2015-01-01

    The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat. PMID:26682860

  10. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  11. Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria, Bacteroidetes

    PubMed Central

    Edwards, Jennifer L.; Smith, Darren L.; Connolly, John; McDonald, James E.; Cox, Michael J.; Joint, Ian; Edwards, Clive; McCarthy, Alan J.

    2010-01-01

    Polysaccharides are an important source of organic carbon in the marine environment, degradation of the insoluble, globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes, degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers, functional genes,, showed that the community was dominated by members of the Gammaproteobacteria, Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize, degrade cellulose in the marine environment, to evaluate the glycoside hydrolase (cellulase, chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques. PMID:24710093

  12. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone

    PubMed Central

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line. PMID:27047461

  13. Termite Nests as an Abundant Source of Cultivable Actinobacteria for Biotechnological Purposes

    PubMed Central

    Sujada, Nikhom; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (<99% similarity in the 16S rRNA gene sequence) was also observed in the termite nests examined. Each type of termite nest housed >20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10−4–1.25 mg mL−1) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs. PMID:24909709

  14. The Role of Actinobacteria in Biochar Decomposition in a Mediterranean Grassland Soil

    NASA Astrophysics Data System (ADS)

    Brodie, E. L.; Lim, H.; Bill, M.; Castanha, C.; Conrad, M. E.; Schmidt, M. W.; Abiven, S.; Jansson, J. K.; Torn, M. S.

    2012-12-01

    Biochar addition to soil has been proposed as an attractive approach for carbon sequestration, particularly in concert with bioenergy biomass production and conversion. Biochar, partially combusted organic material, is assumed to be recalcitrant in soil but studies show significant variation in residence times. The controls on biochar C stabilization are likely complex interactions among the substrate, microbial activities, and the soil chemical and physical environment. However, there is a lack of understanding regarding the impact of biochar on soil microbial populations, the organisms that may be responsible for its mineralization or the factors regulating the rate of biochar mineralization. In this study we amended a Mediterranean grassland soil (Ultic Haploxeralf) with biochar (dried chestnut pyrolized at 450°C for 5h) or non-pyrolized oak at ratios of either 1:9 or 1:2 relative to native organic carbon. Both wood and biochar resulted in a significant and dose dependent alteration of microbial community composition within 1 week relative to controls. The rate of change of microbial composition was slower for biochar than for non-pyrolized wood but in both cases Actinobacteria showed significant enrichment relative to controls. From the same grassland soils, we then isolated bacteria capable of subsisting on biochar as a sole C or N source, many of which were Actinobacteria. We selected one Streptomyces isolate and confirmed using 13C-labeled biochar that this strain was capable of biochar mineralization, and show that mineralization was accelerated in the presence of an additional carbon source. We also detected significant abiotic CO2 loss from biochar during incubations. This study demonstrates that some soil Actinobacteria can subsist on biochar as a sole C source, mineralizing it to CO2, our data also shows that priming of biochar decomposition can occur. Overall this highlights the important roles that microbial composition and resource availability may

  15. Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes.

    PubMed

    Sujada, Nikhom; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (<99% similarity in the 16S rRNA gene sequence) was also observed in the termite nests examined. Each type of termite nest housed >20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10(-4)-1.25 mg mL(-1)) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs.

  16. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota.

    PubMed

    Jami, Mansooreh; Ghanbari, Mahdi; Kneifel, Wolfgang; Domig, Konrad J

    2015-06-01

    The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated

  17. A Walk into the LuxR Regulators of Actinobacteria: Phylogenomic Distribution and Functional Diversity

    PubMed Central

    Santos, Catarina Lopes; Correia-Neves, Margarida; Moradas-Ferreira, Pedro; Mendes, Marta Vaz

    2012-01-01

    LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH) transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS) mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on Gram-negative organisms, and the presence of LuxR regulators in the Gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53%) this domain was REC (receiver domain), suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field. PMID:23056438

  18. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone.

    PubMed

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1-YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line.

  19. Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts

    PubMed Central

    2013-01-01

    Background Andaman and Nicobar Islands situated in the eastern part of Bay of Bengal are one of the distinguished biodiversity hotspot. Even though number of studies carried out on the marine flora and fauna, the studies on actinobacteria from Andaman and Nicobar Islands are meager. The aim of the present study was to screen the actinobacteria for their characterization and identify the potential sources for industrial and pharmaceutical byproducts. Results A total of 26 actinobacterial strains were isolated from the marine sediments collected from various sites of Port Blair Bay where no collection has been characterized previously. Isolates were categorized under the genera: Saccharopolyspora, Streptomyces, Nocardiopsis, Streptoverticillium, Microtetraspora, Actinopolyspora, Actinokineospora and Dactylosporangium. Majority of the isolates were found to produce industrially important enzymes such as amylase, protease, gelatinase, lipase, DNase, cellulase, urease and phosphatase, and also exhibited substantial antibacterial activity against human pathogens. 77% of isolates exhibited significant hemolytic activity. Among 26 isolates, three strains (NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26) were found to generate appreciable extent of surfactant, amylase, cellulase and protease enzyme. NIOT-VKKMA02 produced surfactant using kerosene as carbon source and emulsified upto E24–63.6%. Moreover, NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26 synthesized 13.27 U/ml, 9.85 U/ml and 8.03 U/ml amylase; 7.75 U/ml, 5.01 U/ml and 2.08 U/ml of cellulase and 11.34 U/ml, 6.89 U/ml and 3.51 U/ml of protease enzyme, respectively. Conclusions High diversity of marine actinobacteria was isolated and characterized in this work including undescribed species and species not previously reported from emerald Andaman and Nicobar Islands, including Streptomyces griseus, Streptomyces venezuelae and Saccharopolyspora salina. The enhanced salt, pH and temperature tolerance of the actinobacterial

  20. Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria.

    PubMed

    Wu, Qian; Zhu, Liying; Jiang, Ling; Xu, Xian; Xu, Qing; Zhang, Zhidong; Huang, He

    2015-09-01

    Paenibacillus dauci sp. nov., a new kind of endophytic actinobacteria, is separated from the inner tissues of carrot sample, which forms intimated associations with carrot acting as biological control agents. Here we report a 5.37-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for biological processes such as antibiotic metabolic process, antimicrobial metabolism, anaerobic regulation and the biosynthesis of vitamin B and polysaccharide. This novel strain can be a potential source of novel lead products for exploitation in the field of pharmaceutical, agriculture and industry.

  1. Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria

    PubMed Central

    Wu, Qian; Zhu, Liying; Jiang, Ling; Xu, Xian; Xu, Qing; Zhang, Zhidong; Huang, He

    2015-01-01

    Paenibacillus dauci sp. nov., a new kind of endophytic actinobacteria, is separated from the inner tissues of carrot sample, which forms intimated associations with carrot acting as biological control agents. Here we report a 5.37-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for biological processes such as antibiotic metabolic process, antimicrobial metabolism, anaerobic regulation and the biosynthesis of vitamin B and polysaccharide. This novel strain can be a potential source of novel lead products for exploitation in the field of pharmaceutical, agriculture and industry. PMID:26484263

  2. Isolation, Diversity, and Antimicrobial Activity of Rare Actinobacteria from Medicinal Plants of Tropical Rain Forests in Xishuangbanna, China▿ †

    PubMed Central

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-01-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds. PMID:19648362

  3. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  4. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria.

    PubMed

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-28

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.

  5. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates.

    PubMed

    Baz, M; Lahbabi, D; Samri, S; Val, F; Hamelin, G; Madore, I; Bouarab, K; Beaulieu, C; Ennaji, M M; Barakate, Mustapha

    2012-01-01

    Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65-94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.

  6. Genomes of Planktonic Acidimicrobiales: Widening Horizons for Marine Actinobacteria by Metagenomics

    PubMed Central

    Mizuno, Carolina Megumi; Ghai, Rohit

    2015-01-01

    ABSTRACT The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. PMID:25670777

  7. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  8. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    PubMed Central

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  9. A Eukaryote-like Cardiolipin Synthase Is Present in Streptomyces coelicolor and in Most Actinobacteria*

    PubMed Central

    Sandoval-Calderón, Mario; Geiger, Otto; Guan, Ziqiang; Barona-Gómez, Francisco; Sohlenkamp, Christian

    2009-01-01

    Cardiolipin (CL) is an anionic membrane lipid present in bacteria, plants, and animals, but absent from archaea. It is generally thought that bacteria use an enzyme belonging to the phospholipase D superfamily as cardiolipin synthase (Cls) catalyzing a reversible phosphatidyl group transfer from one phosphatidylglycerol (PG) molecule to another PG to form CL and glycerol. In contrast, in eukaryotes a Cls of the CDP-alcohol phosphatidyltransferase superfamily uses cytidine diphosphate-diacylglycerol (CDP-DAG) as the donor of the phosphatidyl group, which is transferred to a molecule of PG to form CL. Searching the genome of the actinomycete Streptomyces coelicolor A3(2) we identified a gene coding for a putative Cls of the CDP-alcohol phosphatidyltransferase superfamily (Sco1389). Here we show that expression of Sco1389 in a CL-deficient Rhizobium etli mutant restores CL formation. In an in vitro assay Sco1389 condenses CDP-DAG with PG to form CL and therefore catalyzes the same reaction as eukaryotic cardiolipin synthases. This is the first time that a CDP-alcohol phosphatidyltransferase from bacteria is shown to be responsible for CL formation. The broad occurrence of putative orthologues of Sco1389 among the actinobacteria suggests that CL synthesis involving a eukaryotic type Cls is common in actinobacteria. PMID:19439403

  10. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products.

    PubMed

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J

    2016-04-13

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects.

  11. Carbonate Mineral Formation under the Influence of Limestone-Colonizing Actinobacteria: Morphology and Polymorphism.

    PubMed

    Cao, Chengliang; Jiang, Jihong; Sun, Henry; Huang, Ying; Tao, Faxiang; Lian, Bin

    2016-01-01

    Microorganisms and their biomineralization processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralization to allow a better understanding of bacterial contributions to carbonate mineralization in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP) during mineralization. When using the culture supernatant, doughnut-like vaterite was favored by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralization abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments.

  12. Carbonate Mineral Formation under the Influence of Limestone-Colonizing Actinobacteria: Morphology and Polymorphism

    PubMed Central

    Cao, Chengliang; Jiang, Jihong; Sun, Henry; Huang, Ying; Tao, Faxiang; Lian, Bin

    2016-01-01

    Microorganisms and their biomineralization processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralization to allow a better understanding of bacterial contributions to carbonate mineralization in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP) during mineralization. When using the culture supernatant, doughnut-like vaterite was favored by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralization abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments. PMID:27148166

  13. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria.

    PubMed

    Meredith, Laura K; Rao, Deepa; Bosak, Tanja; Klepac-Ceraj, Vanja; Tada, Kendall R; Hansel, Colleen M; Ono, Shuhei; Prinn, Ronald G

    2014-06-01

    Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of atmospheric hydrogen (H2 ). The diversity and ecophysiological role of soil microorganisms that can consume low atmospheric abundances of H2 with high-affinity [NiFe]-hydrogenases is unknown. We expanded the library of atmospheric H2 -consuming strains to include four soil Harvard Forest Isolate (HFI) Streptomyces spp., Streptomyces cattleya and Rhodococcus equi by assaying for high-affinity hydrogenase (hhyL) genes and quantifying H2 uptake rates. We find that aerial structures (hyphae and spores) are important for Streptomyces H2 consumption; uptake was not observed in S. griseoflavus Tu4000 (deficient in aerial structures) and was reduced by physical disruption of Streptomyces sp. HFI8 aerial structures. H2 consumption depended on the life cycle stage in developmentally distinct actinobacteria: Streptomyces sp. HFI8 (sporulating) and R. equi (non-sporulating, non-filamentous). Strain HFI8 took up H2 only after forming aerial hyphae and sporulating, while R. equi only consumed H2 in the late exponential and stationary phase. These observations suggest that conditions favouring H2 uptake by actinobacteria are associated with energy and nutrient limitation. Thus, H2 may be an important energy source for soil microorganisms inhabiting systems in which nutrients are frequently limited.

  14. Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by Soil Actinobacteria

    PubMed Central

    Větrovský, Tomáš; Steffen, Kari Timo; Baldrian, Petr

    2014-01-01

    While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide. PMID:24551229

  15. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    PubMed Central

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  16. Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci

    PubMed Central

    Fu, Ge-yi; Zhang, Chong-ya; Hu, Jing; Xu, Lin; Wang, Rui-jun; Su, Yue; Han, Shuai-bo; Yu, Xiao-yun; Zhang, Xin-qi; Huo, Ying-yi

    2016-01-01

    The members of the phylum Bacteroidetes are recognized as some of the most important specialists for the degradation of polysaccharides. However, in contrast to research on Bacteroidetes in the human gut, research on polysaccharide degradation by marine Bacteroidetes is still rare. The genus Algibacter belongs to the Flavobacteriaceae family of the Bacteroidetes, and most species in this genus are isolated from or near the habitat of algae, indicating a preference for the complex polysaccharides of algae. In this work, a novel brown-seaweed-degrading strain designated HZ22 was isolated from the surface of a brown seaweed (Laminaria japonica). On the basis of its physiological, chemotaxonomic, and genotypic characteristics, it is proposed that strain HZ22 represents a novel species in the genus Algibacter with the proposed name Algibacter alginolytica sp. nov. The genome of strain HZ22, the type strain of this species, harbors 3,371 coding sequences (CDSs) and 255 carbohydrate-active enzymes (CAZymes), including 104 glycoside hydrolases (GHs) and 18 polysaccharide lyases (PLs); this appears to be the highest proportion of CAZymes (∼7.5%) among the reported strains in the class Flavobacteria. Seventeen polysaccharide utilization loci (PUL) are predicted to be specific for marine polysaccharides, especially algal polysaccharides from red, green, and brown seaweeds. In particular, PUL N is predicted to be specific for alginate. Taking these findings together with the results of assays of crude alginate lyases, we prove that strain HZ22T can completely degrade alginate. This work reveals that strain HZ22T has good potential for the degradation of algal polysaccharides and that the structure and related mechanism of PUL in strain HZ22T are worth further research. PMID:26969704

  17. Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33(T) and comparison with related Actinobacteria.

    PubMed

    Corretto, Erika; Antonielli, Livio; Sessitsch, Angela; Compant, Stéphane; Höfer, Christoph; Puschenreiter, Markus; Brader, Günter

    2017-01-01

    Agromyces aureus AR33(T) is a Gram-positive, rod-shaped and motile bacterium belonging to the Microbacteriaceae family in the phylum Actinobacteria that was isolated from a former zinc/lead mining and processing site in Austria. In this study, the whole genome was sequenced and assembled combining sequences obtained from Illumina MiSeq and Sanger sequencing. The assembly resulted in the complete genome sequence which is 4,373,124 bp long and has a GC content of 70.1%. Furthermore, we performed a comparative genomic analysis with other related organisms: 6 Agromyces spp., 4 Microbacteriaceae spp. and 2 other members of the class Actinobacteria.

  18. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  19. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  20. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  1. Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus.

    PubMed

    Karthik, L; Gaurav, K; Rao, K V Bhaskara; Rajakumar, G; Rahuman, A Abdul

    2011-06-01

    The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC(50) = 108.08 ppm and LC(90) = 609.15 ppm) against the larvae of C. gelidus and (LC(50) = 146.24 ppm and LC(90) = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.

  2. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria.

    PubMed

    Horbal, Liliya; Fedorenko, Victor; Luzhetskyy, Andriy

    2014-10-01

    Inducible expression is a versatile genetic tool for controlling gene transcription, determining gene functions and other uses. Herein, we describe our attempts to create several inducible systems based on a cumate or a resorcinol switch, a hammerhead ribozyme, the LacI repressor, and isopropyl β-d-thiogalactopyranoside (IPTG). We successfully developed a new cumate (p-isopropylbenzoic acid)-inducible gene switch in actinobacteria that is based on the CymR regulator, the operator sequence (cmt) from the Pseudomonas putida cumate degradation operon and P21 synthetic promoter. Resorcinol-inducible expression system is also functional and is composed of the RolR regulator and the PA3 promoter fused with the operator (rolO) from the Corynebacterium glutamicum resorcinol catabolic operon. Using the gusA (β-glucuronidase) gene as a reporter, we showed that the newly generated expression systems are tightly regulated and hyper-inducible. The activity of the uninduced promoters is negligible in both cases. Whereas the induction factor reaches 45 for Streptomyces albus in the case of cumate switch and 33 in the case of resorcinol toggle. The systems are also dose-dependent, which allows the modulation of gene expression even from a single promoter. In addition, the cumate system is versatile, given that it is functional in different actinomycetes. Finally, these systems are nontoxic and inexpensive, as these are characteristics of cumate and resorcinol, and they are easy to use because inducers are water-soluble and easily penetrate cells. Therefore, the P21-cmt-CymR and PA3-rolO-RolR systems are powerful tools for engineering actinobacteria.

  3. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    PubMed

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju

  4. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India.

    PubMed

    Dastager, Syed G; Damare, Samir

    2013-05-01

    The occurrence and distribution of an actinobacteria group of bacteria capable of dissolving insoluble phosphates were investigated in this study in marine environments, especially in sediments of Chorao Island, Goa Province, India. A total of 200 bacterial isolates of actinobacteria was isolated. All isolates were screened for phosphate-solubilizing activity on Pikovskaya's agar. Thirteen different isolates exhibiting maximum formation of halos (zone of solubilization) around the bacterial colonies were selected for quantitative estimations of P-solubilization. Quantitative estimations for P-solubilization were analyzed for up to 10 days at intervals of 24 h. Maximum solubilization from 89.3 ± 3.1 to 164.1 ± 4.1 μg ml(-1) was observed after 6 days of incubation in six of all isolates, while the isolate NII-1020 showed maximum P-solubilization. The increase in solubilization coincided with the drop in pH. Many of these species showed wide range of tolerance to temperature, pH, and salt concentrations. Further, 16S rRNA gene sequence analyses were carried to identify the bacterial groups which are actively solubilized phosphate in vitro. Gene sequencing results reveal that all isolates were clustered into six different actinobacterial genera: Streptomyces, Microbacterium, Angustibacter, Kocuria, Isoptericola, and Agromyces. The presence of phosphate-solubilizing microorganisms and their ability to solubilize phosphate were indicative of the important role played by bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  5. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria.

    PubMed

    Dubeau, Marie-Pierre; Ghinet, Mariana Gabriela; Jacques, Pierre-Etienne; Clermont, Nancy; Beaulieu, Carole; Brzezinski, Ryszard

    2009-02-01

    We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.

  6. Potential for biocontrol of melanized fungi by actinobacteria isolated from intertidal region of Ilha Do Mel, Paraná, Brazil.

    PubMed

    Dalitz, Camila de Araújo; Porsani, Mariana Vieira; Figel, Izabel Cristina; Pimentel, Ida C; Dalzoto, Patrícia R

    Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances.

  7. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  8. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale

    NASA Astrophysics Data System (ADS)

    Zhang, Binglin; Wu, Xiukun; Zhang, Gaosen; Li, Shuyan; Zhang, Wei; Chen, Ximing; Sun, Likun; Zhang, Baogui; Liu, Guangxiu; Chen, Tuo

    2016-05-01

    Glacier forelands, where the initially exposed area is unvegetated with minimal human influence, are an ideal place for research on the distributions and biogeography of microbial communities. Actinobacteria produce many bioactive substances and have important roles in soil development and biogeochemical cycling. However, little is known about the distribution and biogeography of Actinobacteria in glacier forelands. Therefore, we investigated the patterns of diversity and the biogeography of actinobacterial communities of the inhabited forefields of 5 glaciers in China. Of the bacteria, the mean relative abundance of Actinobacteria was 13.1%, and 6 classes were identified in the phylum Actinobacteria. The dominant class was Actinobacteria (57%), which was followed in abundance by Acidimicrobiia (19%) and Thermoleophilia (19%). When combined, the relative abundance of the other three classes, the MB-A2-108, Nitriliruptoria and Rubrobacteria, was only 2.4%. A biogeographic pattern in the forelands of the 5 glaciers in China was not detected for actinobacterial communities. Compared with 7 other actinobacterial communities found in the forelands of glaciers globally, those in the Southern Hemisphere were significantly different from those in the Northern Hemisphere. Moreover, the communities were significantly different on the separate continents of the Northern Hemisphere. The dissimilarity of the actinobacterial communities increased with geographic distance (r = 0.428, p = 0.0003). Because of environmental factors, the effect of geography was clear when the distance exceeded a certain continent-level threshold. With the analysis of indicator species, we found that each genus had a geographic characteristic, which could explain why the communities with greater diversity were more strongly affected by biogeography.

  9. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge

    PubMed Central

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  10. Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor

    PubMed Central

    Gao, Beile; Sugiman-Marangos, Seiji; Junop, Murray S; Gupta, Radhey S

    2009-01-01

    Background The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known. Results Here we report the first characterization of one of the 5 actinobacteria-specific proteins, ASP1 (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP1 was determined at 2.2 Ǻ. The overall structure of ASP1 retains a similar fold to the large NP-1 family of nucleoside phosphorylase enzymes; however, the function is not related. Further comparative analysis revealed two regions expected to be important for protein function: a central, divalent metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus. Sequence analyses revealed that ASP1 is paralogous to another actinobacteria-specific protein ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function. Conclusion Our structural data in combination with sequence analysis supports the idea that two of the 5 actinobacteria-specific proteins, ASP1 and ASP2, mediate similar function. This function is predicted to be novel since the structures of these proteins do not match any known protein with or without known function. Our results suggest that this function could involve divalent metal ion binding/transport. PMID:19515238

  11. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge.

    PubMed

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662-4000 m below water surface. Actinobacterial sequences represented 1.2-9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.

  12. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    PubMed

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  13. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile.

    PubMed

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P; González, Myriam; Moore, Edward R B; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.

  14. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    PubMed Central

    2013-01-01

    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882

  15. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential.

    PubMed

    Becerril-Espinosa, Amayaly; Freel, Kelle C; Jensen, Paul R; Soria-Mercado, Irma E

    2013-04-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1-38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26-56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98-100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites.

  16. Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea.

    PubMed

    Schneemann, Imke; Nagel, Kerstin; Kajahn, Inga; Labes, Antje; Wiese, Jutta; Imhoff, Johannes F

    2010-06-01

    Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products.

  17. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria.

    PubMed

    Chen, Yunqiu; Ntai, Ioanna; Ju, Kou-San; Unger, Michelle; Zamdborg, Leonid; Robinson, Sarah J; Doroghazi, James R; Labeda, David P; Metcalf, William W; Kelleher, Neil L

    2012-01-01

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small molecule products of these gene clusters still unknown. Here, we employed a "protein-first" method called PrISM (Proteomic Investigation of Secondary Metabolism) to screen 26 unsequenced actinomycetes using mass spectrometry-based proteomics for the targeted detection of expressed nonribosomal peptide synthetases or polyketide synthases. Improvements to the original PrISM screening approach (Nat. Biotechnol. 2009, 27, 951-956), for example, improved de novo peptide sequencing, have enabled the discovery of 10 NRPS/PKS gene clusters from 6 strains. Taking advantage of the concurrence of biosynthetic enzymes and the secondary metabolites they generate, two natural products were associated with their previously "orphan" gene clusters. This work has demonstrated the feasibility of a proteomics-based strategy for use in screening for NRP/PK production in actinomycetes (often >8 Mbp, high GC genomes) versus the bacilli (2-4 Mbp genomes) used previously.

  18. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria.

    PubMed

    Zhang, Qi; Doroghazi, James R; Zhao, Xiling; Walker, Mark C; van der Donk, Wilfred A

    2015-07-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.

  19. Polyphasic taxonomy of novel actinobacteria showing macromolecule degradation potentials in Bigeum Island, Korea.

    PubMed

    Dastager, Syed G; Pandey, Ashok; Lee, Jae-Chan; Li, Wen-Jun; Kim, Chang-Jin

    2009-07-01

    Aerobic, alkaliphilic to alkalitolerant and mesophilic bacteria were isolated and characterized from soil and sediment samples collected from Bigeum Island, South Korea. The total numbers of microorganisms in the soil and sediment samples were found to be 10(3)-10(5) cfu/g and 10(2)-10(7) cfu/g, respectively. A total of 163 isolates were isolated and subjected to further characterization on the basis of pH, temperature and salt tolerance. Among the 163 isolates, 54 were selected based on their tolerance attributes to temperature, pH and NaCl. Out of the 54 isolates, 27 were further selected based on their multiple tolerance ability and enzyme profile and were subjected to 16S rRNA gene sequencing and phylogenetic analysis. The latter indicated that most of the Bigeum Island isolates were related to the phylum Actinobacteria. The phylogenetic tree based on 16S rRNA gene sequences placed the 27 isolates into 9 different major bacterial genera, each genus comprising pure cultures that shared < or =97% sequence identity and 18 putative novel species. Most of the strains were alkalitolerant and mesophilic, and produced biotechnologically important enzymes at alkaline pH.

  20. T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions

    PubMed Central

    Sherwood, Anna V.; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5′ untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine–Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNAIle and tRNAIle-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch. PMID:25583497

  1. Comprehensive Investigation of Marine Actinobacteria Associated with the Sponge Halichondria panicea▿ †

    PubMed Central

    Schneemann, Imke; Nagel, Kerstin; Kajahn, Inga; Labes, Antje; Wiese, Jutta; Imhoff, Johannes F.

    2010-01-01

    Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products. PMID:20382810

  2. A Proteomic Survey of Nonribosomal Peptide and Polyketide Biosynthesis in Actinobacteria

    PubMed Central

    Chen, Yunqiu; Ntai, Ioanna; Ju, Kou-San; Unger, Michelle; Zamdborg, Leonid; Robinson, Sarah J.; Doroghazi, James R.; Labeda, David P.; Metcalf, William W.; Kelleher, Neil L.

    2011-01-01

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small molecule products of these gene clusters still unknown. Here, we employed a “protein-first” method called PrISM (Proteomic Investigation of Secondary Metabolism) to screen 26 unsequenced actinomycetes using mass spectrometry-based proteomics for the targeted detection of expressed nonribosomal peptide synthetases or polyketide synthases. Improvements to the original PrISM screening approach (Nature Biotechnology, 2009, 27, 951 – 956), e.g. improved de novo peptide sequencing, have enabled the discovery of ten NRPS/PKS gene clusters from six strains. Taking advantage of the concurrence of biosynthetic enzymes and the secondary metabolites they generate, two natural products were associated with their previously ‘orphan’ gene clusters. This work has demonstrated the feasibility of a proteomics-based strategy for use in screening for NRP/PK production in actinomycetes (often >8 Mbp, high GC genomes) versus the bacilli (2–4 Mbp genomes) used previously. PMID:21978092

  3. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    PubMed Central

    Graña, Martin; Bellinzoni, Marco; Miras, Isabelle; Fiez-Vandal, Cedric; Haouz, Ahmed; Shepard, William; Buschiazzo, Alejandro; Alzari, Pedro M.

    2009-01-01

    The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family. PMID:19851001

  4. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  5. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria

    PubMed Central

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2013-01-01

    We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes. PMID:23959135

  6. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  7. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence

    PubMed Central

    Eisenlord, Sarah D; Zak, Donald R; Upchurch, Rima A

    2012-01-01

    It is uncertain whether the same ecological forces that structure plant and animal communities also shape microbial communities, especially those residing in soil. We sought to uncover the relative importance of present-day environmental characteristics, climatic variation, and historical contingencies in shaping soil actinobacterial communities in a long-term chronosequence. Actinobacteria communities were characterized in surface soil samples from four replicate forest stands with nearly identical edaphic and ecological properties, which range from 9500 to 14,000 years following glacial retreat in Michigan. Terminal restriction fragment length polymorphism (TRFLP) profiles and clone libraries of the actinobacterial 16S rRNA gene were constructed in each site for phenetic and phylogenetic analysis to determine whether dispersal limitation occurred following glacial retreat, or if community composition was determined by environmental heterogeneity. At every level of examination, actinobacterial community composition most closely correlated with distance, a surrogate for time, than with biogeochemical, plant community, or climatic characteristics. Despite correlation with leaf litter C:N and annual temperature, the significant and consistent relationship of biological communities with time since glacial retreat provides evidence that dispersal limitation is an ecological force structuring actinobacterial communities in soil over long periods of time. PMID:22822433

  8. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10.

    PubMed

    Baba, Mohd Shukri; Zin, Noraziah Mohamad; Hassan, Zainal Abidin Abu; Latip, Jalifah; Pethick, Florence; Hunter, Iain S; Edrada-Ebel, RuAngelie; Herron, Paul R

    2015-12-01

    Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.

  9. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  10. An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility.

    PubMed

    Paściak, Mariola; Pawlik, Krzysztof; Gamian, Andrzej; Szponar, Bogumiła; Skóra, Justyna; Gutarowska, Beata

    2014-01-01

    Actinobacteria are widely distributed in many environments and represent the most important trigger to the occupant respiratory health. Health complaints, including hypersensitivity pneumonitis of the workers, were recorded in a mushroom compost facility (MCF). The studies on the airborne bacteria were carried out to find a possible microbiological source of these symptoms. Culture analysis of compost bioaerosols collected in different location of the MCF was performed. An assessment of the indoor microbial exposure revealed bacterial flora of bioaerosol in the mushroom compost facility represented by Bacillus, Geobacillus, Micrococcus, Pseudomonas, Staphylococcus spp., and actinobacterial strain with white aerial mycelium. The thermotolerant actinobacterial strain of the same morphology was repeatedly isolated from many locations in MCF: air, compost sample, and solid surface in production hall. On the base of complex morphological, chemotaxonomic, and phylogenetic characteristics, the isolate has been classified as Nocardiopsis alba. Dominant position of N. alba in microbial environment of the mushroom compost facility may represent an indicator microorganism in compost bioaerosol. The bioavailability of N. alba in mushroom compost facility creates potential risk for the health of workers, and the protection of respiratory tract and/or skin is strongly recommended.

  11. In silico discovery of the dormancy regulons in a number of Actinobacteria genomes

    SciTech Connect

    Gerasimova, Anna; Dubchak, Inna; Arkin, Adam; Gelfand, Mikhail

    2010-11-16

    Mycobacterium tuberculosis is a dangerous Actinobacteria infecting nearly one third of the human population. It becomes dormant and phenotypically drug resistant in response to stresses. An important feature of the M. tuberculosis pathogenesis is the prevalence of latent infection without disease, making understanding of the mechanisms used by the bacteria to exist in this state and to switch to metabolically active infectious form a vital problem to consider. M. tuberculosis dormancy is regulated by the three-component regulatory system of two kinases (DosT and DevS) and transcriprional regulator (DevR). DevR activates transcription of a set of genes, which allow the bacteria to survive long periods of anaerobiosis, and may be important for long-term survival within the host during latent infection. The DevR-regulon is studied experimentally in M. tuberculosis and few other phylogenetically close Mycobacteria spp. As many other two-component systems, the devRS operon is autoregulated. However, the mechanism of the dormancy is not completely clear even for these bacteria and there is no data describing the dormancy regulons in other species.

  12. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential

    PubMed Central

    Becerril-Espinosa, Amayaly; Freel, Kelle C.; Jensen, Paul R.

    2015-01-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1–38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26–56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98–100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites. PMID:23229438

  13. Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria.

    PubMed

    Komeil, Doaa; Simao-Beaunoir, Anne-Marie; Beaulieu, Carole

    2013-05-01

    Streptomyces scabiei causes common scab, an economically important disease of potato tubers. Some authors have previously suggested that S. scabiei penetration into host plant tissue is facilitated by secretion of esterase enzymes degrading suberin, a lipidic biopolymer of the potato periderm. In the present study, S. scabiei EF-35 showed high esterase activity in suberin-containing media. This strain also exhibited esterase activity in the presence of other biopolymers, such as lignin, cutin, or xylan, but at a much lower level. In an attempt to identify the esterases involved in suberin degradation, translated open reading frames of S. scabiei 87-22 were examined for the presence of protein sequences corresponding to extracellular esterases of S. scabiei FL1 and of the fungus Coprinopsis cinerea VTT D-041011, which have previously been shown to be produced in the presence of suberin. Two putative extracellular suberinase genes, estA and sub1, were identified. The presence of these genes in several actinobacteria was investigated by Southern blot hybridization, and both genes were found in most common-scab-inducing strains. Moreover, reverse transcription - polymerase chain reaction performed with S. scabiei EF-35 showed that estA was expressed in the presence of various biopolymers, including suberin, whereas the sub1 gene appeared to be specifically expressed in the presence of suberin and cutin.

  14. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov.

    SciTech Connect

    Dodsworth, Jeremy A.; Gevorkian, Jonathan; Despujos, Fairuz; Cole, Jesse; Murugapiran, Senthil K.; Ming, Hong; Li, Wen J.; Zhang, Gengxin; Dohnalkova, Alice; Hedlund, Brian P.

    2014-06-06

    A thermophilic, filamentous, heterotrophic bacterium designated strain JAD2T was isolated from sediment of Great Boiling Spring in Nevada, USA. Cells had an average diameter of 0.3 µm and length of 4.0 µm, and formed filaments typically ranging in length from 20 µm to 200 µm. Filaments were negative for the Gram stain reaction, spores were not formed, and motility was not observed. The optimum temperature for growth was 75 °C with a range from 67.5-75 °C, and the optimum pH for growth was 6.75 with a range from 6.5-7.75. Peptone, tryptone or yeast extract were able to support growth when supplemented with a vitamin solution, but no growth was observed using a variety of defined organic substrates. Strain JAD2T was a facultative microaerophile, with optimal growth at 1% v/v O2 and an upper limit of 8% O2, and anaerobic growth was stimulated by fumarate but inhibited by sulfite and elemental sulfur. The major cellular fatty acids (>5%) were C16:0, C19:0, C18:0, C20:0, and C19:1. The genomic DNA G+C content was 69.3%. Phylogenetic and phylogenomic analyses using 16S rRNA gene sequences and other conserved genes placed JAD2T and other members of the yet-uncultivated GAL35 group within the phylum Chloroflexi, but not within any existing class in this phylum. These results indicate that strain JAD2T is the first cultivated representative of a new lineage within the phylum Chloroflexi, for which we propose the name Thermoflexus hugenholtzii gen. nov., sp. nov., type strain JAD2T, within Thermoflexia classis nov., Thermoflexales ord. nov., and Thermoflexaceae fam. nov.

  15. Actinotetraoses I-K: tetrasaccharide metabolites produced by an insect-derived actinobacteria, Amycolatopsis sp. HCa1.

    PubMed

    Guo, Zhi-Kai; Jiao, Rui-Hua; Dai, Hao-Fu; Mei, Wen-Li; Tan, Ren-Xiang; Ge, Hui-Ming

    2013-02-01

    An isolate of rare actinobacteria strain Amycolatopsis sp. HCa1 obtained from the gut of grasshopper produced seven different metabolites in vitro. The metabolites isolated from its mycelia cakes were characterized by NMR and MS analyses. Actinotetraose hexatiglate (or tigloside; 1) with nonreducing glucotetraose skeleton was isolated as a major constituent; three new tetrasaccharide derivatives actinotetraoses I-K (2-4, resp.) and three known actinotetraoses A-C (5-7, resp.) were also isolated.

  16. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    PubMed

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-06

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.

  17. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  18. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    PubMed

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.

  19. Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy.

    PubMed

    Sathya, Arumugam; Vijayabharathi, Rajendran; Srinivas, Vadlamudi; Gopalakrishnan, Subramaniam

    2016-12-01

    The present study was evaluated to test the potential of plant growth-promoting actinobacteria in increasing seed mineral density of chickpea under field conditions. Among the 19 isolates of actinobacteria tested, significant (p < 0.05) increase of minerals over the uninoculated control treatments was noticed on all the isolates for Fe (10-38 %), 17 for Zn (13-30 %), 16 for Ca (14-26 %), 9 for Cu (11-54 %) and 10 for Mn (18-35 %) and Mg (14-21 %). The increase might be due to the production of siderophore-producing capacity of the tested actinobacteria, which was confirmed in our previous studies by q-RT PCR on siderophore genes expressing up to 1.4- to 25-fold increased relative transcription levels. The chickpea seeds were subjected to processing to increase the mineral availability during consumption. The processed seeds were found to meet the recommended daily intake of FDA by 24-28 % for Fe, 25-28 % for Zn, 28-35 % for Cu, 12-14 % for Ca, 160-167 % for Mn and 34-37 % for Mg. It is suggested that the microbial inoculum can serve as a complementary sustainable tool for the existing biofortification strategies and substantially reduce the chemical fertilizer inputs.

  20. 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas.

    PubMed

    Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali

    2014-03-28

    Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.

  1. Sequence-Based Analysis of Secondary-Metabolite Biosynthesis in Marine Actinobacteria ▿ ‡

    PubMed Central

    Gontang, Erin A.; Gaudêncio, Susana P.; Fenical, William; Jensen, Paul R.

    2010-01-01

    A diverse collection of 60 marine-sediment-derived Actinobacteria representing 52 operational taxonomic units was screened by PCR for genes associated with secondary-metabolite biosynthesis. Three primer sets were employed to specifically target adenylation domains associated with nonribosomal peptide synthetases (NRPSs) and ketosynthase (KS) domains associated with type I modular, iterative, hybrid, and enediyne polyketide synthases (PKSs). In total, two-thirds of the strains yielded a sequence-verified PCR product for at least one of these biosynthetic types. Genes associated with enediyne biosynthesis were detected in only two genera, while 88% of the ketosynthase sequences shared greatest homology with modular PKSs. Positive strains included representatives of families not traditionally associated with secondary-metabolite production, including the Corynebacteriaceae, Gordoniaceae, Intrasporangiaceae, and Micrococcaceae. In four of five cases where phylogenetic analyses of KS sequences revealed close evolutionary relationships to genes associated with experimentally characterized biosynthetic pathways, secondary-metabolite production was accurately predicted. Sequence clustering patterns were used to provide an estimate of PKS pathway diversity and to assess the biosynthetic richness of individual strains. The detection of highly similar KS sequences in distantly related strains provided evidence of horizontal gene transfer, while control experiments designed to amplify KS sequences from Salinispora arenicola strain CNS-205, for which a genome sequence is available, led to the detection of 70% of the targeted PKS pathways. The results provide a bioinformatic assessment of secondary-metabolite biosynthetic potential that can be applied in the absence of fully assembled pathways or genome sequences. The rapid identification of strains that possess the greatest potential to produce new secondary metabolites along with those that produce known compounds can be used

  2. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  3. Phylogenetic Ecology of the Freshwater Actinobacteria acI Lineage▿ †

    PubMed Central

    Newton, Ryan J.; Jones, Stuart E.; Helmus, Matthew R.; McMahon, Katherine D.

    2007-01-01

    The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with ≥97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes. PMID:17827330

  4. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees.

    PubMed

    Kaewkla, Onuma; Franco, Christopher M M

    2013-02-01

    In recent years, new actinobacterial species have been isolated as endophytes of plants and shrubs and are sought after both for their role as potential producers of new drug candidates for the pharmaceutical industry and as biocontrol inoculants for sustainable agriculture. Molecular-based approaches to the study of microbial ecology generally reveal a broader microbial diversity than can be obtained by cultivation methods. This study aimed to improve the success of isolating individual members of the actinobacterial population as pure cultures as well as improving the ability to characterise the large numbers obtained in pure culture. To achieve this objective, our study successfully employed rational and holistic approaches including the use of isolation media with low concentrations of nutrients normally available to the microorganism in the plant, plating larger quantities of plant sample, incubating isolation plates for up to 16 weeks, excising colonies when they are visible and choosing Australian endemic trees as the source of the actinobacteria. A hierarchy of polyphasic methods based on culture morphology, amplified 16S rRNA gene restriction analysis and limited sequencing was used to classify all 576 actinobacterial isolates from leaf, stem and root samples of two eucalypts: a Grey Box and Red Gum, a native apricot tree and a native pine tree. The classification revealed that, in addition to 413 Streptomyces spp., isolates belonged to 16 other actinobacterial genera: Actinomadura (two strains), Actinomycetospora (six), Actinopolymorpha (two), Amycolatopsis (six), Gordonia (one), Kribbella (25), Micromonospora (six), Nocardia (ten), Nocardioides (11), Nocardiopsis (one), Nonomuraea (one), Polymorphospora (two), Promicromonospora (51), Pseudonocardia (36), Williamsia (two) and a novel genus Flindersiella (one). In order to prove novelty, 12 strains were characterised fully to the species level based on polyphasic taxonomy. One strain represented a novel

  5. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans.

    PubMed

    Anasane, N; Golińska, P; Wypij, M; Rathod, D; Dahm, H; Rai, M

    2016-03-01

    Superficial mycoses are limited to the most external part of the skin and hair and caused by Malassezia sp., Trichophyton sp. and Candida sp. We report extracellular biosynthesis of silver nanoparticles (AgNPs) by acidophilic actinobacteria (SF23, C9) and its in vitro antifungal activity against fungi-causing superficial mycoses. The phylogenetic analysis based on the 16S rRNA gene sequence of strains SF23 and C9 showed that they are most closely related to Pilimelia columellifera subsp. pallida GU269552(T). The detection of AgNPs was confirmed by visual observation of colour changes from colourless to brown, and UV-vis spectrophotometer analysis, which showed peaks at 432 and 427 nm, respectively. These AgNPs were further characterised by nanoparticle tracking analysis (NTA), Zeta potential, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The FTIR analysis exhibited the presence of proteins as capping agents. The TEM analysis revealed the formation of spherical and polydispersed nanoparticles in the size range of 4-36 nm and 8-60 nm, respectively. The biosynthesised AgNPs were screened against fungi-causing superficial mycoses viz., Malassezia furfur, Trichophyton rubrum, Candida albicans and C. tropicalis. The highest antifungal activity of AgNPs from SF23 and C9 against T. rubrum and the least against M. furfur and C. albicans was observed as compared to other tested fungi. The biosynthesised AgNPs were found to be potential anti-antifungal agent against fungi-causing superficial mycoses.

  6. Mass spectrometric approaches for the identification of anthracycline analogs produced by actinobacteria.

    PubMed

    Bauermeister, Anelize; Zucchi, Tiago Domingues; Moraes, Luiz Alberto Beraldo

    2016-06-01

    Anthracyclines are a well-known chemical class produced by actinobacteria used effectively in cancer treatment; however, these compounds are usually produced in few amounts because of being toxic against their producers. In this work, we successfully explored the mass spectrometry versatility to detect 18 anthracyclines in microbial crude extract. From collision-induced dissociation and nuclear magnetic resonance spectra, we proposed structures for five new and identified three more anthracyclines already described in the literature, nocardicyclins A and B and nothramicin. One new compound 8 (4-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]oxy-2,5,7,12-tetrahydroxy-3,10-dimethoxy-2-methyl-3,4-dihydrotetracene-1,6,11-trione) was isolated and had its structure confirmed by (1) H nuclear magnetic resonance. The anthracyclines identified in this work show an interesting aminoglycoside, poorly found in natural products, 3-methyl-rhodosamine and derivatives. This fact encouraged to develop a focused method to identify compounds with aminoglycosides (rhodosamine, m/z 158; 3-methyl-rhodosamine, m/z 172; 4'-O-acethyl-3-C-methyl-rhodosamine, m/z 214). This method allowed the detection of four more anthracyclines. This focused method can also be applied in the search of these aminoglycosides in other microbial crude extracts. Additionally, it was observed that nocardicyclin A, nothramicin and compound 8 were able to interact to DNA through a DNA-binding study by mass spectrometry, showing its potential as anticancer drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture.

    PubMed

    Pernthaler, J; Posch, T; Simek, K; Vrba, J; Pernthaler, A; Glöckner, F O; Nübel, U; Psenner, R; Amann, R

    2001-05-01

    We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the class Actinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacterium sp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community.

  8. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community.

    PubMed

    Li, Xin; Sun, Minglong; Zhang, Huihui; Xu, Nan; Sun, Guangyu

    2016-05-01

    Diverse intercropping system has been used to control disease and improve productivity in the field. In this research, the bacterial communities in salt-alkali soils of monoculture and intercropping mulberry and soybean were studied using 454-pyrosequencing of the 16S rDNA gene. The dominant taxonomic groups were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Gemmatimonadetes and these were present across all samples. However, the diversity and composition of bacterial communities varied between monoculture and intercropping samples. The estimated bacterial diversity (H') was higher with intercropping soybean than in monoculture soybean, whereas H' showed an opposite pattern in monoculture and intercropping mulberry. Populations of Actinobacteria, Acidobacteria, and Proteobacteria were variable, depending on growth of plants as monoculture or intercropped. Most of Actinobacteria and Chloroflexi were found in intercropping samples, while Acidobacteria and Proteobacteria were present at a higher percentage in monoculture samples. The plant diversity of aboveground and microbial diversity of belowground was linked and soil pH seemed to influence the bacterial community. Finally, the specific plant species was the major factor that determined the bacterial community in the salt-alkali soils.

  9. Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum

    PubMed Central

    Huang, Xiaoluo; Pinto, Daniela; Fritz, Georg

    2015-01-01

    ABSTRACT Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify

  10. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    PubMed

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  11. Haloalkalitolerant Actinobacteria with capacity for anthracene degradation isolated from soils close to areas with oil activity in the State of Veracruz, Mexico.

    PubMed

    Lara-Severino, Reyna Del C; Camacho-López, Miguel A; Casanova-González, Edgar; Gómez-Oliván, Leobardo M; Sandoval-Trujillo, Ángel H; Isaac-Olivé, Keila; Ramírez-Durán, Ninfa

    2016-03-01

    The use of native strains of microorganisms from soils is an excellent option for bioremediation. To our knowledge, until now there has been no other group working on the isolation of Actinobacteria from contaminated soils in Mexico. In this study, samples of soils close to areas with oil activity in the State of Veracruz, Mexico, were inoculated for the isolation of Actinobacteria. The strains isolated were characterized morphologically, and the concentrations of NaCl and pH were determined for optimal growth. Strain selection was performed by the detection of a phylogenetic marker for Actinobacteria located at the 23S rRNA gene, followed by species identification by sequencing the 16S rRNA gene. Several haloalkalitolerant Actinobacteria were isolated and identified as: Kocuria rosea, K. palustris, Microbacterium testaceum, Nocardia farcinica and Cellulomonas denverensis. Except for C. denverensis, the biomass of all strains increased in the presence of anthracene. The strains capacity to metabolize anthracene (at 48 h), determined by fluorescence emission, was in the range of 46-54%. During this time, dihydroxy aromatic compounds formed, characterized by attenuated total reflectance Fourier transform infrared spectroscopy bands of 1205 cm-1 and 1217 cm-1. Those Actinobacteria are potentially useful for the bioremediation of saline and alkaline environments contaminated with polycyclic aromatic hydrocarbon compounds. [Int Microbiol 2016; 19(1):15-26].

  12. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea.

    PubMed

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria

    2017-02-01

    Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.

  13. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum "Chloroflexi", isolated from a deep hot aquifer in the Aquitaine Basin.

    PubMed

    Grégoire, Patrick; Fardeau, Marie-Laure; Joseph, Manon; Guasco, Sophie; Hamaide, Francette; Biasutti, Sandra; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard

    2011-11-01

    A new strictly anaerobic thermophilic multicellular filamentous bacterium (0.2-0.3μm×>100μm), designated GNS-1(T), was isolated from a deep hot aquifer in France. It was non-motile, and stained Gram-negative. Optimal growth was observed at 65°C, pH 7.0, and 2gL(-1) of NaCl. Strain GNS-1(T) was chemoorganotrophic fermenting ribose, glucose, galactose, arabinose, fructose, mannose, maltose, sucrose, xylose, raffinose, pyruvate, and xylan. Yeast extract was required for growth. The end products of glucose fermentation were lactate, acetate, CO(2), and H(2). The G+C content of the DNA was 57.6mol%. Its closest phylogenetic relative was Bellilinea caldifistulae with 92.5% similarity. Based on phylogenetic, genotypic and phenotypic characteristics, strain GNS-1(T) (DSM 23592(T), JCM 16980(T)) is proposed to be assigned to a novel species of a novel genus within the class Anaerolineae (subphylum I), phylum "Chloroflexi", Thermanaerothrix daxensis gen. nov., sp. nov. The GenBank accession number is HM596746.

  14. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production.

    PubMed

    Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S

    2016-02-01

    Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide.

  15. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage

    PubMed Central

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-01-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits. PMID:25093637

  16. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    PubMed

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  17. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants

    PubMed Central

    Trujillo, Martha E.; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  18. Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria

    PubMed Central

    2013-01-01

    Background Actinobacteria have adapted to contrasted ecological niches such as the soil, and among others to plants or animals as pathogens or symbionts. Mycobacterium genus contains mostly pathogens that cause a variety of mammalian diseases, among which the well-known leprosy and tuberculosis, it also has saprophytic relatives. Streptomyces genus is mostly a soil microbe known for its secondary metabolites, it contains also plant pathogens, animal pathogens and symbionts. Frankia, a nitrogen-fixing actinobacterium establishes a root symbiosis with dicotyledonous pionneer plants. Pathogens and symbionts live inside eukaryotic cells and tissues and interact with their cellular environment through secreted proteins and effectors transported through transmembrane systems; nevertheless they also need to avoid triggering host defense reactions. A comparative genome analysis of the secretomes of symbionts and pathogens allows a thorough investigation of selective pressures shaping their evolution. In the present study, the rates of silent mutations to non-silent mutations in secretory proteins were assessed in different strains of Frankia, Streptomyces and Mycobacterium, of which several genomes have recently become publicly available. Results It was found that secreted proteins as a whole have a stronger purifying evolutionary rate (non-synonymous to synonymous substitutions or Ka/Ks ratio) than the non-secretory proteins in most of the studied genomes. This difference becomes statistically significant in cases involving obligate symbionts and pathogens. Amongst the Frankia, secretomes of symbiotic strains were found to have undergone evolutionary trends different from those of the mainly saprophytic strains. Even within the secretory proteins, the signal peptide part has a higher Ka/Ks ratio than the mature part. Two contrasting trends were noticed amongst the Frankia genomes regarding the relation between selection strength (i.e. Ka/Ks ratio) and the codon adaptation

  19. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    NASA Astrophysics Data System (ADS)

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to

  20. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants.

    PubMed

    Trujillo, Martha E; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  1. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce.

    PubMed

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-28

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  2. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce

    NASA Astrophysics Data System (ADS)

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-01

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3‑-N, and NH4+-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  3. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce

    PubMed Central

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-01-01

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3−-N, and NH4+-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem. PMID:27121918

  4. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds.

    PubMed

    Axenov-Gribanov, Denis V; Axenov-Gibanov, Denis V; Voytsekhovskaya, Irina V; Tokovenko, Bogdan T; Protasov, Eugeniy S; Gamaiunov, Stanislav V; Rebets, Yuriy V; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans.

  5. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds

    PubMed Central

    Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168

  6. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China.

    PubMed

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  7. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China

    PubMed Central

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  8. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence dorée in Vitis vinifera.

    PubMed

    Marzorati, Massimo; Alma, Alberto; Sacchi, Luciano; Pajoro, Massimo; Palermo, Simona; Brusetti, Lorenzo; Raddadi, Noura; Balloi, Annalisa; Tedeschi, Rosemarie; Clementi, Emanuela; Corona, Silvia; Quaglino, Fabio; Bianco, Piero Attilio; Beninati, Tiziana; Bandi, Claudio; Daffonchio, Daniele

    2006-02-01

    Flavescence dorée (FD) is a grapevine disease that afflicts several wine production areas in Europe, from Portugal to Serbia. FD is caused by a bacterium, "Candidatus Phytoplasma vitis," which is spread throughout the vineyards by a leafhopper, Scaphoideus titanus (Cicadellidae). After collection of S. titanus specimens from FD-contaminated vineyards in three different areas in the Piedmont region of Italy, we performed a survey to characterize the bacterial microflora associated with this insect. Using length heterogeneity PCR with universal primers for bacteria we identified a major peak associated with almost all of the individuals examined (both males and females). Characterization by denaturing gradient gel electrophoresis confirmed the presence of a major band that, after sequencing, showed a 97 to 99% identity with Bacteroidetes symbionts of the "Candidatus Cardinium hertigii" group. In addition, electron microscopy of tissues of S. titanus fed for 3 months on phytoplasma-infected grapevine plants showed bacterial cells with the typical morphology of "Ca. Cardinium hertigii." This endosymbiont, tentatively designated ST1-C, was found in the cytoplasm of previtellogenic and vitellogenic ovarian cells, in the follicle cells, and in the fat body and salivary glands. In addition, cell morphologies resembling those of "Ca. Phytoplasma vitis" were detected in the midgut, and specific PCR assays indicated the presence of the phytoplasma in the gut, fat body and salivary glands. These results indicate that ST1-C and "Ca. Phytoplasma vitis" have a complex life cycle in the body of S. titanus and are colocalized in different organs and tissues.

  9. Structure-Function Analysis of a Mixed-linkage β-Glucanase/Xyloglucanase from the Key Ruminal Bacteroidetes Prevotella bryantii B14*

    PubMed Central

    McGregor, Nicholas; Morar, Mariya; Fenger, Thomas Hauch; Stogios, Peter; Lenfant, Nicolas; Yin, Victor; Xu, Xiaohui; Evdokimova, Elena; Cui, Hong; Henrissat, Bernard; Savchenko, Alexei; Brumer, Harry

    2016-01-01

    The recent classification of glycoside hydrolase family 5 (GH5) members into subfamilies enhances the prediction of substrate specificity by phylogenetic analysis. However, the small number of well characterized members is a current limitation to understanding the molecular basis of the diverse specificity observed across individual GH5 subfamilies. GH5 subfamily 4 (GH5_4) is one of the largest, with known activities comprising (carboxymethyl)cellulases, mixed-linkage endo-glucanases, and endo-xyloglucanases. Through detailed structure-function analysis, we have revisited the characterization of a classic GH5_4 carboxymethylcellulase, PbGH5A (also known as Orf4, carboxymethylcellulase, and Cel5A), from the symbiotic rumen Bacteroidetes Prevotella bryantii B14. We demonstrate that carboxymethylcellulose and phosphoric acid-swollen cellulose are in fact relatively poor substrates for PbGH5A, which instead exhibits clear primary specificity for the plant storage and cell wall polysaccharide, mixed-linkage β-glucan. Significant activity toward the plant cell wall polysaccharide xyloglucan was also observed. Determination of PbGH5A crystal structures in the apo-form and in complex with (xylo)glucan oligosaccharides and an active-site affinity label, together with detailed kinetic analysis using a variety of well defined oligosaccharide substrates, revealed the structural determinants of polysaccharide substrate specificity. In particular, this analysis highlighted the PbGH5A active-site motifs that engender predominant mixed-linkage endo-glucanase activity vis à vis predominant endo-xyloglucanases in GH5_4. However the detailed phylogenetic analysis of GH5_4 members did not delineate particular clades of enzymes sharing these sequence motifs; the phylogeny was instead dominated by bacterial taxonomy. Nonetheless, our results provide key enzyme functional and structural reference data for future bioinformatics analyses of (meta)genomes to elucidate the biology of

  10. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats.

    PubMed

    Parnell, Jill A; Reimer, Raylene A

    2012-02-01

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P < 0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity.

  11. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P<0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity. PMID:21767445

  12. Kenaf biomass biodecomposition by basidiomycetes and actinobacteria in submerged fermentation for production of carbohydrates and phenolic compounds.

    PubMed

    Brzonova, Ivana; Kozliak, Evguenii; Kubátová, Alena; Chebeir, Michelle; Qin, Wensheng; Christopher, Lew; Ji, Yun

    2014-12-01

    The efficiency and dynamics of simultaneous kenaf biomass decomposition by basidiomycetous fungi and actinobacteria were investigated. After 8weeks of incubation, up to 34wt.% of the kenaf biomass was degraded, with the combination of fungi and bacteria being the most efficient. Lignin decomposition accounted for ∼20% of the observed biomass reduction, regardless of the culture used. The remaining 80% of biomass degradation was due to carbohydrate based polymers. Major monosaccharides were produced in tangible yields (26-38%) at different times. Glucose, fructose and xylose were then fully consumed by day 25 while some galactose persisted until day 45. Once monosaccharides were depleted, the production of laccase, manganese-dependent peroxidase and lignin peroxidase enzymes, essential for lignin decomposition, was induced. The products of lignin biodecomposition were shown to be water-soluble and characterized by thermal desorption-pyrolysis-gas chromatography.

  13. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    PubMed

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.

  14. The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogen’s lifestyle

    PubMed Central

    2013-01-01

    Background Nocardia cyriacigeorgica is recognized as one of the most prevalent etiological agents of human nocardiosis. Human exposure to these Actinobacteria stems from direct contact with contaminated environmental matrices. The full genome sequence of N. cyriacigeorgica strain GUH-2 was studied to infer major trends in its evolution, including the acquisition of novel genetic elements that could explain its ability to thrive in multiple habitats. Results N. cyriacigeorgica strain GUH-2 genome size is 6.19 Mb-long, 82.7% of its CDS have homologs in at least another actinobacterial genome, and 74.5% of these are found in N. farcinica. Among N. cyriacigeorgica specific CDS, some are likely implicated in niche specialization such as those involved in denitrification and RuBisCO production, and are found in regions of genomic plasticity (RGP). Overall, 22 RGP were identified in this genome, representing 11.4% of its content. Some of these RGP encode a recombinase and IS elements which are indicative of genomic instability. CDS playing part in virulence were identified in this genome such as those involved in mammalian cell entry or encoding a superoxide dismutase. CDS encoding non ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) were identified, with some being likely involved in the synthesis of siderophores and toxins. COG analyses showed this genome to have an organization similar to environmental Actinobacteria. Conclusion N. cyriacigeorgica GUH-2 genome shows features suggesting a diversification from an ancestral saprophytic state. GUH-2 ability at acquiring foreign DNA was found significant and to have led to functional changes likely beneficial for its environmental cycle and opportunistic colonization of a human host. PMID:23622346

  15. Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities.

    PubMed

    Parveen, Bushra; Reveilliez, Jean-Philippe; Mary, Isabelle; Ravet, Viviane; Bronner, Gisèle; Mangot, Jean-François; Domaizon, Isabelle; Debroas, Didier

    2011-09-01

    The diversity of attached and free-living Actinobacteria and Betaproteobacteria, based on 16S rRNA gene sequences, was investigated in a mesotrophic lake during two periods of contrasting phytoplankton dominance. Comparison analyses showed a phylogenetic difference between attached and free-living communities for the two bacterial groups. For Betaproteobacteria, the betaI clade was detected at all sampling dates in free-living and attached bacterial communities and was the dominant clade contributing to 57.8% of the total retrieved operational taxonomic units (OTUs). For Actinobacteria, the acIV cluster was found to be dominant, followed by acI contributing to 45% and 25% of the total retrieved OTUs, respectively. This study allows the determination of eight new putative clades among the Betaproteobacteria termed lbI-lbVIII and a new putative clade named acLBI belonging to the Actinobacteria. The seasonal dynamics of phytoplankton and zooplankton communities have been reflected as changes in distinct bacterial phylotypes for both attached and free-living communities. For attached communities, relationships were observed between Actinobacteria and Chrysophyceae, and between Betaproteobacteria and Dinophyceae and Chlorophyceae biomass. On the other hand, within free-living communities, few actinobacterial clades were found to be dependent on either nutrients or phytoplankton communities, whereas Betaproteobacteria were mainly associated with biological parameters (i.e. phytoplankton and copepod communities).

  16. Anaerocella delicata gen. nov., sp. nov., a strictly anaerobic bacterium in the phylum Bacteroidetes isolated from a methanogenic reactor of cattle farms.

    PubMed

    Abe, Kunihiro; Ueki, Atsuko; Ohtaki, Yoshimi; Kaku, Nobuo; Watanabe, Kazuya; Ueki, Katsuji

    2012-01-01

    A strictly anaerobic bacterial strain (WN081(T)) was isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. Cells were Gram-staining negative, non-motile, non-spore-forming straight rods. The strain grew rather well on PY agar slants supplemented with a B-vitamin mixture as well as sugars (PYV4S medium) and made translucent and glossy colonies. Growth in liquid medium with the same composition, however, was scanty, and growth was not improved in spite of various additives to the medium. Strain WN081(T) produced small amounts of acetate, propionate, isobutyrate, butyrate, isovalerate and H(2) from PYV liquid medium. The strain did not use carbohydrates or organic acids. The pH range for growth was narrow (pH 6.8-8.2), having a pH optimum at 6.8-7.5. The temperature range for growth was 10-37°C, the optimum being 25-30°C. The strain was sensitive to bile, and did not have catalase or oxidase activities. Hydrogen sulfide was produced from L-cysteine and L-methionine as well as peptone. Indole was produced from L-tryptophan and peptone. The strain had iso-C(15:0) as the exclusively predominant cellular fatty acid (70%) together with some branched chain components (such as iso-C(15:0) DMA, iso-C(17:0) 3-OH and iso-C(15:0) aldehyde) as minor components. The genomic DNA G+C content was 32.3 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain WN081(T) in the phylum Bacteroidetes with rather low sequence similarities with the related species such as Rikenella microfusus (85.7% sequence similarity), Alistipes putredinis (85.5%) and Alistipes finegoldii (85.5%) in the family Rikenellaceae. Based on the phylogenetic, physiological and chemotaxonomic analyses, the novel genus and species Anaerocella delicata gen. nov., sp. nov. is proposed to accommodate the strain. The type strain is WN081(T) (= JCM 17049(T) = DSM 23595(T)).

  17. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.

  18. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand.

    PubMed

    Stott, Matthew B; Crowe, Michelle A; Mountain, Bruce W; Smirnova, Angela V; Hou, Shaobin; Alam, Maqsudul; Dunfield, Peter F

    2008-08-01

    We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi, Proteobacteria and candidate division OP10. Aerobic, thermophilic, organotrophic bacteria were isolated using cultivation protocols that involved extended incubation times, low-pH media and gellan as a replacement gelling agent to agar. Isolates represented previously uncultured species, genera, classes, and even a new phylum of bacteria. They included members of the commonly cultivated phyla Proteobacteria, Firmicutes, Thermus/Deinococcus, Actinobacteria and Bacteroidetes, as well as more-difficult-to-cultivate groups. Isolates possessing < 85% 16S rRNA gene sequence identity to any cultivated species were obtained from the phyla Acidobacteria, Chloroflexi and the previously uncultured candidate division OP10. Several isolates were prevalent in 16S rRNA gene clone libraries constructed directly from the soils. A key factor facilitating isolation was the use of gellan-solidified plates, where the gellan itself served as an energy source for certain bacteria. The results indicate that geothermal soils are a rich potential source of novel bacteria, and that relatively simple cultivation techniques are practical for isolating bacteria from these habitats.

  19. Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore.

    PubMed

    Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-10-01

    Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.

  20. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  1. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    PubMed Central

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  2. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    PubMed

    Betancur, Luz A; Naranjo-Gaybor, Sandra J; Vinchira-Villarraga, Diana M; Moreno-Sarmiento, Nubia C; Maldonado, Luis A; Suarez-Moreno, Zulma R; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  3. Genome Sequence of “Candidatus Aquiluna” sp. Strain IMCC13023, a Marine Member of the Actinobacteria Isolated from an Arctic Fjord

    PubMed Central

    Kang, Ilnam; Lee, Kiyoung; Yang, Seung-Jo; Choi, Ahyoung; Kang, Dongmin; Lee, Yoo Kyoung

    2012-01-01

    We report the genome sequence of actinobacterial strain IMCC13023, isolated from arctic fjord seawater. Phylogenetic analysis of 16S rRNA gene showed that the strain is related to “Candidatus Aquiluna rubra.” The genome information suggests that strain IMCC13023 is a photoheterotroph carrying actinorhodopsin, with the smallest genome ever reported for a free-living member of the Actinobacteria. PMID:22689238

  4. De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany).

    PubMed

    Srivastava, Abhishek; McMahon, Katherine D; Stepanauskas, Ramunas; Grossart, Hans-Peter

    2015-12-01

    The National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average ~1.3 x 10 6 bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. [Int Microbiol 2016; 19(1):39-47].

  5. Ichthyobacterium seriolicida gen. nov., sp. nov., a member of the phylum 'Bacteroidetes', isolated from yellowtail fish (Seriola quinqueradiata) affected by bacterial haemolytic jaundice, and proposal of a new family, Ichthyobacteriaceae fam. nov.

    PubMed

    Takano, Tomokazu; Matsuyama, Tomomasa; Sakai, Takamitsu; Nakamura, Yoji; Kamaishi, Takashi; Nakayasu, Chihaya; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Sorimachi, Minoru; Iida, Takaji

    2016-02-01

    A novel Gram-stain-negative, rod-shaped (0.3 × 4-6 μm), non-flagellated, aerobic strain with gliding motility, designated JBKA-6T, was isolated in 1991 from a yellowtail fish, Seriola quinqueradiata, showing symptoms of bacterial haemolytic jaundice. 16S rRNA gene sequence analysis showed that strain JBKA-6T was related most closely to members of the family Flavobacteriaceae in the phylum 'Bacteroidetes'. Furthermore, based on gyrB gene sequence analysis, JBKA-6T was classified into a single clade within the order Flavobacteriales, which was distinct from the known clades of the families Flavobacteriaceae, Blattabacteriaceae and Cryomorphaceae. The predominant isoprenoid quinone was identified as MK-6 (97.9 %), and the major cellular fatty acids (>10 %) were C14 : 0 and iso-C15 : 0. The main polar lipids were phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. The DNA G+C content of JBKA-6T, as derived from its whole genome, was 33.4 mol%. The distinct phylogenetic position and phenotypic traits of strain JBKA-6T distinguish it from all other described species of the phylum 'Bacteroidetes', and therefore it was concluded that strain JBKA-6T represents a new member of the phylum 'Bacteroidetes', and the name Ichthyobacterium seriolicida gen. nov., sp. nov. is proposed. The type strain of Ichthyobacterium seriolicida is JBKA-6T ( = ATCC BAA-2465T = JCM 18228T). We also propose that Icthyobacterium gen. nov. is the type genus of a novel family, Ichthyobacteriaceae fam. nov.

  6. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    PubMed

    Miranda, Lilibeth N; Hutchison, Keith; Grossman, Arthur R; Brawley, Susan H

    2013-01-01

    Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected

  7. Cataloguing the bacterial diversity of the Sundarbans mangrove, India in the light of metagenomics

    PubMed Central

    Basak, Pijush; Pramanik, Arnab; Roy, Ranita; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-01-01

    In this present study we report the profile of bacterial community at variable depth of soil sediment in the world's largest tropical mangrove sediments of Sundarbans, India using 16S rRNA gene amplicon sequencing. Metagenome of three samples consisted of 61301 sequences with 32.0 Mbp and 55.6% G + C content. Metagenome data of this study are available at NCBI under the Biosample data base accession no. SRX883521. The taxonomic analysis of 2746 species belonged to 33 different phyla revealing the dominance of Proteobacteria, Firmicutes, Chloroflexi, Bacteroidetes, Acidobacteria, Nitrospirae and Actinobacteria respectively. Remarkably less than 5.0% sequences belong to a poorly characterized group. Our pyrosequencing data report unfolds the bacterial community profile at different depth of soil sediment indicating the changing community pattern, in the light of specific chronology. PMID:26484187

  8. Microbial diversity in hypersaline wastewater: the example of tanneries.

    PubMed

    Lefebvre, O; Vasudevan, N; Thanasekaran, K; Moletta, R; Godon, J J

    2006-12-01

    In contrast to conventional wastewater treatment plants and saline environments, little is known regarding the microbial diversity of hypersaline wastewater. In this study, the microbial communities of a hypersaline tannery effluent, and those of three treatment systems operating with the tannery effluent, were investigated using 16S rDNA phylogenetic markers. The comparative analysis of 377 bacterial sequences revealed the high diversity of this type of hypersaline environment, clustering within 193 phylotypes (> or = 97% similarity) and covering 14 of the 52 divisions of the bacterial domain, i.e. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chlorobi, Planctomycetes, Spirochaetes, Synergistes, Chloroflexi, Thermotogae, Verrucomicrobia, OP3, OP11 and TM7. Most of the phylotypes were related to halophilic and pollutant-degrading bacteria. Using statistical analysis, the diversity of this type of environment was compared to that of other environmental samples selected on the basis of their salinity, oxygen content and organic load.

  9. Differential microbial communities in hot spring mats from Western Thailand.

    PubMed

    Portillo, M C; Sririn, V; Kanoksilapatham, W; Gonzalez, J M

    2009-03-01

    The microbial communities of freshwater hot spring mats from Boekleung (Western Thailand) were studied. Temperatures ranged from over 50 up to 57 degrees C. Green-, red-, and yellow colored mat layers were analyzed. In order to detect the major components of the microbial communities constituting the mat as well as the microorganisms showing significant metabolic activity, samples were analyzed using DNA- and RNA-based molecular techniques, respectively. Microbial community fingerprints, performed by denaturing gradient gel electrophoresis (DGGE), revealed clear differences among mat layers. Thermophilic phototrophic microorganisms, Cyanobacteria and Chloroflexi, constituted the major groups in these communities (on average 65 and 51% from DNA and RNA analyses, respectively). Other bacteria detected in the mat were Bacteroidetes, members of the Candidate Division OP10, Actinobacteria, and Planctomycetes. Differently colored mat layers showed characteristic bacterial communities and the major components of the metabolically active fraction of these communities have been identified.

  10. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Kim, Ji Hyun; Ha, Jeong Hyub; Park, Jong Moon

    2014-08-01

    Single-stage anaerobic digestion (AD) was operated to treat high-strength food wastewater (FWW) derived from food waste recycling facilities at two different organic loading rates (OLRs) of 3.5 (Phase I) and 7 (Phase II) kgCOD/m(3)d. Changes in composition of microbial communities were investigated using quantitative real-time PCR (qPCR) and barcoded-pyrosequencing. At the high FWW loading rate, AD showed efficient performance (i.e., organic matter removal and methane production). Bacterial communities were represented by the phyla Bacteroidetes, Firmicutes, Synergistetes and Actinobacteria. During the entire digestion process, the relative abundance phylum Chloroflexi decreased significantly. The qPCR analysis demonstrated that the methanogenic communities shifted from aceticlastic (Methanosarcinales) to hydrogenotrophic methanogens (Methanobacteriales and Methanomicrobiales) with high increase in the proportion of syntrophic bacterial communities. Canonical correspondence analysis revealed a strong relationship between reactor performance and microbial community shifts.

  11. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes

    PubMed Central

    Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan

    2015-01-01

    In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes. PMID:25583346

  12. Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process.

    PubMed

    Bae, H; Chung, Y-C; Jung, J-Y

    2010-01-01

    The enrichment of anaerobic ammonium oxidizing (anammox) bacteria using an upflow anaerobic sludge bioreactor was successfully conducted for 400 days of continuous operation. The bacterial community structure of anammox bioreactor included Proteobacteria (42%), Chloroflexi (22%), Planctomycetes (20%), Chlorobi (7%), Bacteroidetes (5%), Acidobacteria (2%), and Actinobacteria (2%). All clones of Planctomycetes were affiliated with the anammox bacteria, Planctomycete KSU-1 (AB057453). The presence and diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) were identified by terminal restriction fragment length polymorphism (T-RFLP) based on the amoA gene sequences. The AOB in anammox bioreactor were affiliated with the Nitrosomonas europaea cluster. The T-RFLP result of AOA showed the diverse microbial community structure of AOA with three terminal restriction fragments (T-RFs).

  13. Classification of thermophilic actinobacteria isolated from arid desert soils, including the description of Amycolatopsis deserti sp. nov.

    PubMed

    Busarakam, Kanungnid; Brown, Ros; Bull, Alan T; Tan, Geok Yuan Annie; Zucchi, Tiago D; da Silva, Leonardo José; de Souza, Wallace Rafael; Goodfellow, Michael

    2016-02-01

    The taxonomic position of 26 filamentous actinobacteria isolated from a hyper-arid Atacama Desert soil and 2 from an arid Australian composite soil was established using a polyphasic approach. All of the isolates gave the diagnostic amplification product using 16S rRNA oligonucleotide primers specific for the genus Amycolatopsis. Representative isolates had chemotaxonomic and morphological properties typical of members of the genus Amycolatopsis. 16S rRNA gene analyses showed that all of the isolates belong to the Amycolatopsis methanolica 16S rRNA gene clade. The Atacama Desert isolates were assigned to one or other of two recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba, based on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended descriptions are given for these species. In contrast, the two strains from the arid Australian composite soil, isolates GY024(T) and GY142, formed a distinct branch at the periphery of the A. methanolica 16S rRNA phyletic line, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. These strains shared a high degree of DNA:DNA relatedness and have many phenotypic properties in common, some of which distinguished them from all of the constituent species classified in the A. methanolica 16S rRNA clade. Isolates GY024(T) and GY142 merit recognition as a new species within the A. methanolica group of thermophilic strains. The name proposed for the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024(T) (=NCIMB 14972(T) = NRRL B-65266(T)).

  14. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria.

    PubMed

    Wang, Wenfeng; Cao, Lixiang; Tan, Hongming; Zhang, Renduo

    2016-11-01

    The aim of this study was to investigate the effects of single and mixed culture of denitrifying fungi, bacteria, and actinobacteria on nitrogen removal and N2O emission in treatment of wastewater. Denitrifying endophytes of Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 isolated from rice plants were utilized for treatment of synthetic wastewater containing nitrate and nitrite. Experiments were conducted under shaking and static conditions. Results showed that under the static condition, more than 97 % of nitrate removal efficiencies were reached in all the treatments containing B2. The nitrate removal rates within the first 12 h in the treatments of B2, B2+A9, B2+F3, and B2+A9+F3 were 7.3, 9.8, 11, and 11 mg L(-1) h(-1), respectively. Under the shaking condition, 100 % of nitrite was removed in all the treatments containing B2. The presence of A9 and F3 with B2 increased the nitrite removal rates under both the shaking and static conditions. Compared to the B2 system, the mixed systems of B2+A9, B2+F3, and B2+A9+F3 reduced N2O emission (78.4 vs. 19.4, 1.80, and 0.03 μM in 4 weeks, respectively). Our results suggested that B2 is an important strain that enhances nitrogen removal from wastewater. Mixed cultures of B2 with A9 and F3 can remove more nitrate and nitrite from wastewater and reduce nitrite accumulation and N2O emission in the denitrification process.

  15. Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: A comparative study.

    PubMed

    Islam, Ekramul; Dhal, Paltu K; Kazy, Sufia K; Sar, Pinaki

    2011-01-01

    Bacterial community structure of heavy metal rich- uranium ores and surrounding soils was explored using 16S rRNA gene based clone library analysis and denaturing gradient gel electrophoresis (DGGE) to provide baseline microbial diversity data on autochthonous communities. Sequence analysis of major ribotypes and/or DGGE bands revealed Proteobacteria and Acidobacteria as the two most frequently present bacterial phyla across the samples, although relative abundance of each phyla and identity of their members at lower taxonomic level showed marked difference. Gammaproteobacteria (Pseudomonas and Escherichia) was most abundant in U-ore samples along with the lineages of β-Proteobacteria (Burkholderia and Janthinobacterium), α-Proteobacteria (Brevundimonas), Bacteroidetes (Spingobacterium), Firmicutes (Peptoniphilus), Actinobacteria (Corynebacterium), uncultured -Acidobacteria, -Chloroflexi and -Cyanobacterium. In contrast to this soil communities were represented by mixed populations predominated by uncultured Acidobacteria along with Gammaproteobacteria (Succinivibrio, Cellovibrio and Legionella), β-Proteobacteria (Rhodocyclus), α-Proteobacteria (Methylocystis and Phenylobacterium), δ-Proteobacteria, unclassified bacteria, uncultured Bacteroidetes, Firmicutes (Bacillus), Cyanobacteria (Scytonema), Actinobacteria (Actinomadura) and candidate division TM7. Principle Component Analyis (PCA) of geochemical data and UPGMA cluster analysis of DGGE profiles were in close agreement showing characteristic relatedness of samples obtained from either ores or soils. Our analysis indicated that soils surrounding the ore deposit bear specific geochemical as well as microbiologial characteristics distinct from the ore deposit and therefore these data obtained at the onset of mining could serve as a baseline of information to gauge the subsequent environmnetal impact of U-mining.

  16. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay.

    PubMed

    Allen, M A; Goh, F; Burns, B P; Neilan, B A

    2009-01-01

    The bacterial, archaeal and eukaryotic populations of nonlithifying mats with pustular and smooth morphology from Hamelin Pool, Shark Bay were characterised using small subunit rRNA gene analysis and microbial isolation. A highly diverse bacterial population was detected for each mat, with 16S rDNA clones related to Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonas, Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia and candidate division TM6 present in each mat. Spirochaetes were detected in the smooth mat only, whereas candidate division OP11 was only detected in the pustular mat. Targeting populations with specific primers revealed additional cyanobacterial diversity. The archaeal population of the pustular mat was comprised purely of Halobacteriales, whereas the smooth mat contained 16S rDNA clones from the Halobacteriales, two groups of Euryarchaea with no close characterised matches, and the Thaumarchaea. Nematodes and fungi were present in each mat type, with diatom 18S rDNA clones only obtained from the smooth mat, and tardigrade and microalgae clones only retrieved from the pustular mat. Cultured isolates belonged to the Firmicutes, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Halobacteriales. The mat populations were significantly more diverse than those previously reported for Hamelin Pool stromatolites, suggesting specific microbial populations may be associated with the nonlithifying and lithifying microbial communities of Hamelin Pool.

  17. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T).

  18. Extremozymes from Marine Actinobacteria.

    PubMed

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    2016-01-01

    Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications.

  19. Comparative 16S rRNA Analysis of Lake Bacterioplankton Reveals Globally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria

    PubMed Central

    Glöckner, Frank Oliver; Zaichikov, Evgeny; Belkova, Natalia; Denissova, Ludmilla; Pernthaler, Jakob; Pernthaler, Annelie; Amann, Rudolf

    2000-01-01

    In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the α, four were affiliated with the β, and one was affiliated with the γ subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 × 105 cells ml−1 in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems. PMID:11055963

  20. Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere.

    PubMed

    Chauhan, Puneet Singh; Chaudhry, Vasvi; Mishra, Sandhya; Nautiyal, Chandra Shekhar

    2011-02-01

    Structure of maize (Zea mays L.) rhizosphere bacteria was evaluated to explore the feasibility of identifying novel rhizosphere bacteria using culture-independent method based on direct amplification and analysis of 16S rRNA gene (rRNA) sequences and especially to obtain a better understanding of bacterial community structure and diversity from maize. A total of 274 sequences were analyzed and assigned 48.00% Proteobacteria, 10.30% Actinobacteria, 9.90% Bacteroidetes, 6.60% Verrucomicrobia, 4.80% Acidobacteria, 1.80% Firmicutes, 1.50% Chloroflexi, 1.50% TM7, 1.10% Deinococcus-Thermus, 0.70% Planctomycetes, 0.70% Gemmatimonadetes and 0.40% Cyanobacteria. Economically important phyla Actinobacteria was second most dominant group after Proteobacteria, in our clone library. It would be interesting to hypothesize that root exudates from maize rhizosphere favors growth of Actinobacteria like microbes to eliminate pathogenic bacteria and decompose plant matter, for enhanced plant and soil health. An additional 12.8% of clone library (35 operational taxonomical units (OTUs) from 43 clones) with less than 94% similarity to any GenBank sequence could not be assigned to any known phylum and may represent unidentified bacterial lineages and suggests that a large amount of the rhizobacterial diversity remains to be characterized by culturing.

  1. Pyrosequencing analysis of a bacterial community associated with lava-formed soil from the Gotjawal forest in Jeju, Korea

    PubMed Central

    Kim, Jong-Shik; Lee, Keun Chul; Kim, Dae-Shin; Ko, Suk-Hyung; Jung, Man-Young; Rhee, Sung-Keun; Lee, Jung-Sook

    2015-01-01

    In this study, we analyzed the bacterial diversity in soils collected from Gyorae Gotjawal forest, where globally unique topography, geology, and ecological features support a forest grown on basalt flows from 110,000 to 120,000 years ago and 40,000 to 50,000 years ago. The soils at the site are fertile, with rocky areas, and are home to endangered species of plants and animals. Rainwater penetrates to the groundwater aquifer, which is composed of 34% organic matter containing rare types of soil and no soil profile. We determined the bacterial community composition using 116,475 reads from a 454-pyrosequencing analysis. This dataset included 12,621 operational taxonomic units at 3% dissimilarity, distributed among the following groups: Proteobacteria (56.2%) with 45.7% of α-Proteobacteria, Actinobacteria (25%), Acidobacteria (10.9%), Chloroflexi (2.4%), and Bacteroidetes (0.9%). In addition, 16S rRNA gene sequences were amplified using polymerase chain reaction and domain-specific primers to construct a clone library based on 142 bacterial clones. These clones were affiliated with the following groups: Proteobacteria (56%) with 51% of α-Proteobacteria, Acidobacteria (7.8%), Actinobacteria (17.6%), Chloroflexi (2.1%), Bacilli (1.4%), Cyanobacteria (2.8%), and Planctomycetes (1.4%). Within the phylum Proteobacteria, 56 of 80 clones were tentatively identified as 12 unclassified genera. Several new genera and a new family were discovered within the Actinobacteria clones. Results from 454-pyrosequencing revealed that 57% and 34% of the sequences belonged to undescribed genera and families, respectively. The characteristics of Gotjawal soil, which are determined by lava morphology, vegetation, and groundwater penetration, might be reflected in the bacterial community composition. PMID:25604185

  2. A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis

    PubMed Central

    Sivakumar, K.; Krupa, A.; Srinivasan, N.

    2004-01-01

    Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms. PMID:18629044

  3. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents.

    PubMed

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.

  4. Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean.

    PubMed

    West, Nyree J; Lepère, Cécile; Manes, Carmem-Lara de O; Catala, Philippe; Scanlan, David J; Lebaron, Philippe

    2016-01-01

    Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA-DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to "Candidatus Actinomarinidae" were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM.

  5. Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean

    PubMed Central

    West, Nyree J.; Lepère, Cécile; Manes, Carmem-Lara de O.; Catala, Philippe; Scanlan, David J.; Lebaron, Philippe

    2016-01-01

    Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA–DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to “Candidatus Actinomarinidae” were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM. PMID:27014192

  6. Isolation and antimicrobial activities of actinobacteria closely associated with liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza inflate BAT. in Xinjiang, China.

    PubMed

    Zhao, Ke; Zhao, Chong; Liao, Ping; Zhang, Qin; Li, Yanbing; Liu, Maoke; Ao, Xiaoling; Gu, Yunfu; Liao, Decong; Xu, Kaiwei; Yu, Xiumei; Xiang, Quanju; Huang, Chengyi; Chen, Qiang; Zhang, Lili; Zhang, Xiaoping; Penttinen, Petri

    2016-07-01

    A total of 218 actinobacteria strains were isolated from wild perennial liquorice plants Glycyrrhiza glabra L. and Glycyrrhiza. inflate BAT. Based on morphological characteristics, 45 and 32 strains from G. inflate and G. glabra, respectively, were selected for further analyses. According to 16S rRNA sequence analysis, most of the strains belonged to genus Streptomyces and a few strains represented the rare actinobacteria Micromonospora, Rhodococcus and Tsukamurella. A total of 39 strains from G. inflate and 27 strains from G. glabra showed antimicrobial activity against at least one indicator organism. The range of the antimicrobial activity of the strains isolated from G. glabra and G. inflate was similar. A total of 34 strains from G. inflate and 29 strains from G. glabra carried at least one of the genes encoding polyketide synthases, non-ribosomal peptide synthetase and FADH2-dependent halogenase. In the type II polyketide synthase KSα gene phylogenetic analysis, the strains were divided into two major clades: one included known spore pigment production-linked KSα sequences and other sequences were linked to the production of different types of aromatic polyketide antibiotics. Based on the antimicrobial range, the isolates that carried different KSα types were not separated from each other or from the isolates that did not carry KSα. The incongruent phylogenies of 16S rRNA and KSα genes indicated that the KSα genes were possibly horizontally transferred. In all, the liquorice plants were a rich source of biocontrol agents that may produce novel bioactive compounds.

  7. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents

    PubMed Central

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957

  8. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution.

    PubMed

    Mayer, R E; Bofill-Mas, S; Egle, L; Reischer, G H; Schade, M; Fernandez-Cassi, X; Fuchs, W; Mach, R L; Lindner, G; Kirschner, A; Gaisbauer, M; Piringer, H; Blaschke, A P; Girones, R; Zessner, M; Sommer, R; Farnleitner, A H

    2016-03-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml(-1)) and biologically treated wastewater samples (median log10 6.2-6.5 ME 100 ml(-1)), irrespective of plant size, type and time of the season (n = 53-65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3-3.0) and treated wastewater (s* = 3.7-4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support

  9. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution

    PubMed Central

    Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.

    2016-01-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if

  10. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data.

  11. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing.

    PubMed

    Guo, Feng; Zhang, Tong

    2013-05-01

    Standardization of DNA extraction is a fundamental issue of fidelity and comparability in investigations of environmental microbial communities. Commercial kits for soil or feces are often adopted for studies of activated sludge because of a lack of specific kits, but they have never been evaluated regarding their effectiveness and potential biases based on high throughput sequencing. In this study, seven common DNA extraction kits were evaluated, based on not only yield/purity but also sequencing results, using two activated sludge samples (two sub-samples each, i.e. ethanol-fixed and fresh, as-is). The results indicate that the bead-beating step is necessary for DNA extraction from activated sludge. The two kits without the bead-beating step yielded very low amounts of DNA, and the least abundant operational taxonomic units (OTUs), and significantly underestimated the Gram-positive Actinobacteria, Nitrospirae, Chloroflexi, and Alphaproteobacteria and overestimated Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, and the rare phyla whose cell walls might have been readily broken. Among the other five kits, FastDNA(@) SPIN Kit for Soil extracted the most and the purest DNA. Although the number of total OTUs obtained using this kit was not the highest, the abundant OTUs and abundance of Actinobacteria demonstrated its efficiency. The three MoBio kits and one ZR kit produced fair results, but had a relatively low DNA yield and/or less Actinobacteria-related sequences. Moreover, the 50 % ethanol fixation increased the DNA yield, but did not change the sequenced microbial community in a significant way. Based on the present study, the FastDNA SPIN kit for Soil is recommended for DNA extraction of activated sludge samples. More importantly, the selection of the DNA extraction kit must be done carefully if the samples contain dominant lysing-resistant groups, such as Actinobacteria and Nitrospirae.

  12. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis.

    PubMed

    Gupta, Radhey S; Khadka, Bijendra

    2016-02-01

    Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the

  13. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses.

    PubMed

    Sanz, Jose Luis; Rojas, Patricia; Morato, Ana; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2017-02-01

    Microalgae biomasses are considered promising feedstocks for biofuel and methane productions. Two Continuously Stirred Tank Reactors (CSTR), fed with fresh (CSTR-C) and heat pre-treated (CSTR-T) Chlorella biomass were run in parallel in order to determine methane productions. The methane yield was 1.5 times higher in CSTR-T with regard to CSTR-C. Aiming to understand the microorganism roles within of the reactors, the sludge used as an inoculum (I), plus raw (CSTR-C) and heat pre-treated (CSTR-T) samples were analyzed by high-throughput pyrosequencing. The bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. Spirochaetae and Actinobacteria were only detected in sample I. Proteobacteria, mainly Alfaproteobacteria, were by far the dominant phylum within of the CSTR-C bioreactor. Many of the sequences retrieved were related to bacteria present in activated sludge treatment plants and they were absent after thermal pre-treatment. Most of the sequences affiliated to the Bacteroidetes were related to uncultured groups. Anaerolineaceae was the sole family found of the Chloroflexi phylum. All of the genera identified of the Firmicutes phylum carried out macromolecule hydrolysis and by-product fermentation. The proteolytic bacteria were prevalent over the saccharolytic microbes. The percentage of the proteolytic genera increased from the inoculum to the CSTR-T sample in a parallel fashion with an available protein increase owing to the high protein content of Chlorella. To relate the taxa identified by high-throughput sequencing to their functional roles remains a future challenge.

  14. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    PubMed Central

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning. PMID:26274496

  15. Same, same but different: symbiotic bacterial associations in GBR sponges.

    PubMed

    Webster, N S; Luter, H M; Soo, R M; Botté, E S; Simister, R L; Abdo, D; Whalan, S

    2012-01-01

    Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR) sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65-100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira, and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs) common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral) specific sequence clusters (SC). These SC spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira, and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0 to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental perturbation.

  16. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  17. New Insights into the Microbiota of the Svalbard Reindeer Rangifer tarandus platyrhynchus.

    PubMed

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M

    2016-01-01

    Svalbard reindeer (Rangifer tarandus platyrhynchus) is a non-migratory subspecies of reindeer inhabiting the high-arctic archipelago of Svalbard. In contrast to other Rangifer tarandus subspecies, Svalbard reindeer graze exclusively on natural sources of food and have no chance of ingestion of any crops. We report the use of a non-invasive method for analysis of fecal microbiome by means of sequencing the 16S rDNA extracted from the fecal microbiota of R. tarandus platyrhynchus from a small, isolated population in Hornsund, South Spitsbergen National Park. Analyses of all samples showed that 99% of the total reads were represented by Bacteria. Taxonomy-based analysis showed that fecal bacterial communities consisted of 14 phyla. The most abundant phyla across the population were Firmicutes and Bacteroidetes, and those phyla jointly accounted for more than 95% of total bacterial sequences (ranging between 90.14 and 98.19%). Specifically, Firmicutes comprised 56.53% (42.98-63.64%) and Bacteroidetes comprised 39.17% (34.56-47.16%) of the total reads. The remaining 5% of the population reads comprised of Tenericutes, Cyanobacteria, TM7, Actinobacteria, Proteobacteria, Verrucomicrobia, Elusimicrobia, Planctomycetes, Fibrobacteres, Spirochaetes, Chloroflexi, and Deferribacteres. Differences in the fecal bacteria composition between particular reindeer were not statistically significant which may reflect the restricted location and similar diet of all members of the local population.

  18. Molecular-based environmental risk assessment of three varieties of genetically engineered cows.

    PubMed

    Xu, Jianxiang; Zhao, Jie; Wang, Jianwu; Zhao, Yaofeng; Zhang, Lei; Chu, Mingxing; Li, Ning

    2011-10-01

    The development of animal biotechnology has led to an increase in attention to biosafety issues. Here we evaluated the impact of genetically engineered cows on the environment. The probability of horizontal gene transfer and the impact on the microbial communities in cow gut and soil were tested using three varieties of genetically engineered cows that were previously transformed with a human gene encoding lysozyme, lactoferrin, or human alpha lactalbumin. The results showed that the transgenes were not detectable by polymerase chain reaction (PCR) or quantitative real-time PCR in gut microbial DNA extracts of manure or microbial DNA extracts of topsoil. In addition, the transgenes had no impact on the microbial communities in cow gut or soil as assessed by PCR-denaturing gradient gel electrophoresis or 16S rDNA sequencing. Furthermore, phylogenetic analyses showed that the manure bacteria sampled during each of the four seasons belonged primarily to two groups, Firmicutes and Bacteroidetes, and the soil bacteria belonged to four groups, Firmicutes, Bacteroidetes, Actinobacteria, and α-proteobacteria. Other groups, such as β-proteobacteria, γ-proteobacteria, δ-proteobacteria, ε-proteobacteria, Spirochaetes, Acidobacteria, Chloroflexi, and Nitrospira, were not dominant in the manure or soil.

  19. New Insights into the Microbiota of the Svalbard Reindeer Rangifer tarandus platyrhynchus

    PubMed Central

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M.

    2016-01-01

    Svalbard reindeer (Rangifer tarandus platyrhynchus) is a non-migratory subspecies of reindeer inhabiting the high-arctic archipelago of Svalbard. In contrast to other Rangifer tarandus subspecies, Svalbard reindeer graze exclusively on natural sources of food and have no chance of ingestion of any crops. We report the use of a non-invasive method for analysis of fecal microbiome by means of sequencing the 16S rDNA extracted from the fecal microbiota of R. tarandus platyrhynchus from a small, isolated population in Hornsund, South Spitsbergen National Park. Analyses of all samples showed that 99% of the total reads were represented by Bacteria. Taxonomy-based analysis showed that fecal bacterial communities consisted of 14 phyla. The most abundant phyla across the population were Firmicutes and Bacteroidetes, and those phyla jointly accounted for more than 95% of total bacterial sequences (ranging between 90.14 and 98.19%). Specifically, Firmicutes comprised 56.53% (42.98–63.64%) and Bacteroidetes comprised 39.17% (34.56–47.16%) of the total reads. The remaining 5% of the population reads comprised of Tenericutes, Cyanobacteria, TM7, Actinobacteria, Proteobacteria, Verrucomicrobia, Elusimicrobia, Planctomycetes, Fibrobacteres, Spirochaetes, Chloroflexi, and Deferribacteres. Differences in the fecal bacteria composition between particular reindeer were not statistically significant which may reflect the restricted location and similar diet of all members of the local population. PMID:26941714

  20. Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world.

    PubMed

    Srinivas, T N R; Singh, S M; Pradhan, Suman; Pratibha, M S; Kishore, K Hara; Singh, Ashish K; Begum, Z; Prabagaran, S R; Reddy, G S N; Shivaji, S

    2011-11-01

    Two 16S rRNA gene clone libraries (KF and KS) were constructed using two soil samples (K7s and K8s) collected near Kafni Glacier, Himalayas. The two libraries yielded a total of 648 clones. Phyla Actinobacteria, Bacteroidetes, Chloroflexi Firmicutes, Proteobacteria, Spirochaetae, Tenericutes and Verrucomicrobia were common to the two libraries. Phyla Acidobacteria, Chlamydiae and Nitrospirae were present only in KF library, whereas Lentisphaerae and TM7 were detected only in KS. In the two libraries, clones belonging to phyla Bacteroidetes and Proteobacteria were the most predominant. Principal component analysis (PCA) revealed that KF and KS were different and arsenic content influenced the differences in the percentage of OTUs. PCA indicated that high water content in the K8s sample results in high total bacterial count. PCA also indicated that bacterial diversity of KF and KS was similar to soils from the Pindari Glacier, Himalayas; Samoylov Island, Siberia; Schrimacher Oasis, Antarctica and Siberian tundra. The eleven bacterial strains isolated from the above two soil samples were phylogenetically related to six different genera. All the isolates were psychro-, halo- and alkalitolerant. Amylase, lipase and urease activities were detected in the majority of the strains. Long chain, saturated, unsaturated and branched fatty acids were predominant in the psychrotolerant bacteria.

  1. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status.

    PubMed

    Dai, Yu; Yang, Yuyin; Wu, Zhen; Feng, Qiuyuan; Xie, Shuguang; Liu, Yong

    2016-05-01

    Both planktonic and sediment bacterial assemblages are the important components of freshwater lake ecosystems. However, their spatiotemporal shift and the driving forces remain still elusive. Eutrotrophic Dianchi Lake and mesotrophic Erhai Lake are the largest two freshwater lakes on the Yunnan Plateau (southwestern China). The present study investigated the spatiotemporal shift in both planktonic and sediment bacterial populations in these two plateau freshwater lakes at different trophic status. For either lake, both water and sediment samples were collected from six sampling locations in spring and summer. Bacterioplankton community abundance in Dianchi Lake generally far outnumbered that in Erhai Lake. Sediment bacterial communities in Erhai Lake were found to have higher richness and diversity than those in Dianchi Lake. Sediments had higher bacterial community richness and diversity than waters. The change patterns for both planktonic and sediment bacterial communities were lake-specific and season-specific. Either planktonic or sediment bacterial community structure showed a distinct difference between in Dianchi Lake and in Erhai Lake, and an evident structure difference was also found between planktonic and sediment bacterial communities in either of these two lakes. Planktonic bacterial communities in both Dianchi Lake and Erhai Lake mainly included Proteobacteria (mainly Alpha-, Beta-, and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Cyanobacteria, and Firmicutes, while sediment bacterial communities were mainly represented by Proteobacteria (mainly Beta- and Deltaproteobacteria), Bacteroidetes, Chlorobi, Nitrospirae, Acidobacteria, and Chloroflexi. Trophic status could play important roles in shaping both planktonic and sediment bacterial communities in freshwater lakes.

  2. Soil bacterial diversity changes in response to agricultural land use in semi-arid soils

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-04-01

    Natural scrublands in semi-arid deserts are increasingly being converted into agricultural lands. The long-term effect of such a transition in land use on soil bacterial communities was explored at two sites typical of semi-arid deserts in Mexico (Baja California). Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods - denaturing gradient gel electrophoresis (DGGE) and PhyloChip hybridization -employed to analyze 16S rRNA gene fragments amplified from total community DNA. DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. Soil parameters that differed between land uses were highly correlated with the community composition of taxa responding to land use. Variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses. The long term use for agriculture resulted in profound changes in the bacterial community composition and physicochemical characteristics of former scrublands, which may affect various soil ecosystem functions.

  3. Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem

    PubMed Central

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-01-01

    Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem. PMID:23527207

  4. Microbial communities and bacterial diversity of spruce, hemlock and grassland soils of Tatachia Forest, Taiwan.

    PubMed

    Selvam, Ammaiyappan; Tsai, Shu-Hsien; Liu, Ching-Piao; Chen, I-Chu; Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2010-07-01

    To evaluate the bacterial diversity of Tatachia Forest soils, 16S rDNA clone libraries of the spruce, hemlock and grassland soils were constructed. Further, the influence of physicochemical and biological properties of soil on microbial ecology, pH, moisture content, microbial population and biomass were also analyzed. The soil pH increased with the increasing of soil depth; whereas the microbial population, biomass, moisture content, total organic carbon and total nitrogen were reverse. Microbial populations were the highest in the summer season which also correlated with the highest moisture content. The phylogenetic analyses revealed that the clones from nine 16S rDNA clone libraries represented Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, candidate division TG1 and candidate division TM7. Members of Proteobacteria, Acidobacteria and Actinobacteria constituted 42.2, 35.1 and 7.8 % of the clone libraries, respectively; whereas the remaining bacterial divisions each comprised <3 %. The spruce site had the highest bacterial diversity among the tested sites, followed by the hemlock sites and the grassland sites with the least. The bacterial community is the more diverse in the organic layer than that in deeper horizons. Further, bacterial diversity through the gradient horizons was different, indicating that the bacterial diversity in the deeper horizons is not simply the diluted analogs of the surface soils and some microbes dominate only in the deeper horizons.

  5. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions.

    PubMed

    López, J L; Golemba, M; Hernández, E; Lozada, M; Dionisi, H M; Jansson, J; Carroll, J; Lundgren, L; Sjöling, S; Cormack, W P Mac

    2016-11-03

    Rhodopsins are broadly distributed. In this work we analyzed 23 metagenomes corresponding to marine sediment samples from four regions which share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral-rodopsins, an initial set of 6224 bacterial rhodopsins sequences according COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment 123 viral (51) and non-viral (72) sequences (>50 aminoacids) were finally included in further analysis. Viral rhodopsin genes were homologues of Phaeocystis globosa virus and Organic lake Phycodnavirus Non-viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus as well as Cryptophyta and Fungi. A re-screening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 aminoacids). Phylogeographic analysis revealed a geographycal clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsins (PAVR) genes related to Actinobacteria and Chloroflexi This is the first report about the existence of a phylogeographic association of the viral rhodopsins sequences from marine sediments.

  6. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    PubMed

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings.

  7. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures.

    PubMed

    Kang, Ilnam; Kim, Suhyun; Islam, Md Rashedul; Cho, Jang-Cheon

    2017-02-10

    The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes.

  8. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures

    PubMed Central

    Kang, Ilnam; Kim, Suhyun; Islam, Md. Rashedul; Cho, Jang-Cheon

    2017-01-01

    The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes. PMID:28186143

  9. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    PubMed

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens.

  10. Mooreia alkaloidigena gen. nov., sp. nov. and Catalinimonas alkaloidigena gen. nov., sp. nov., alkaloid-producing marine bacteria in the proposed families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. in the phylum Bacteroidetes

    PubMed Central

    Choi, Eun Ju; Beatty, Deanna S.; Paul, Lauren A.; Fenical, William

    2013-01-01

    Bacterial strains CNX-216T and CNU-914T were isolated from marine sediment samples collected from Palmyra Atoll and off Catalina Island, respectively. Both strains were Gram-negative and aerobic and produce deep-orange to pink colonies and alkaloid secondary metabolites. Cells of strain CNX-216T were short, non-motile rods, whereas cells of strain CNU-914T were short, curved rods with gliding motility. The DNA G+C contents of CNX-216T and CNU-914T were respectively 57.7 and 44.4 mol%. Strains CNX-216T and CNU-914T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1ω5c as the major fatty acids. Phylogenetic analyses revealed that both strains belong to the order Cytophagales in the phylum Bacteroidetes. Strain CNX-216T exhibited low 16S rRNA gene sequence identity (87.1 %) to the nearest type strain, Cesiribacter roseus 311T, and formed a well-supported lineage that is outside all currently described families in the order Cytophagales. Strain CNU-914T shared 97.6 % 16S rRNA gene sequence identity with ‘Porifericola rhodea’ N5EA6-3A2B and, together with ‘Tunicatimonas pelagia’ N5DB8-4 and four uncharacterized marine bacteria isolated as part of this study, formed a lineage that is clearly distinguished from other families in the order Cytophagales. Based on our polyphasic taxonomic characterization, we propose that strains CNX-216T and CNU-914T represent novel genera and species, for which we propose the names Mooreia alkaloidigena gen. nov., sp. nov. (type strain CNX-216T  = DSM 25187T  = KCCM 90102T) and Catalinimonas alkaloidigena gen. nov., sp. nov. (type strain CNU-914T  = DSM 25186T  = KCCM 90101T) within the new families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. PMID:22753528

  11. WhiB7, an Fe-S-dependent Transcription Factor That Activates Species-specific Repertoires of Drug Resistance Determinants in Actinobacteria*

    PubMed Central

    Ramón-García, Santiago; Ng, Carol; Jensen, Pernille R.; Dosanjh, Manisha; Burian, Jan; Morris, Rowan P.; Folcher, Marc; Eltis, Lindsay D.; Grzesiek, Stephan; Nguyen, Liem; Thompson, Charles J.

    2013-01-01

    WhiB-like (Wbl) proteins are well known for their diverse roles in actinobacterial morphogenesis, cell division, virulence, primary and secondary metabolism, and intrinsic antibiotic resistance. Gene disruption experiments showed that three different Actinobacteria (Mycobacterium smegmatis, Streptomyces lividans, and Rhodococcus jostii) each exhibited a different whiB7-dependent resistance profile. Heterologous expression of whiB7 genes showed these resistance profiles reflected the host's repertoire of endogenous whiB7-dependent genes. Transcriptional activation of two resistance genes in the whiB7 regulon, tap (a multidrug transporter) and erm(37) (a ribosomal methyltransferase), required interaction of WhiB7 with their promoters. Furthermore, heterologous expression of tap genes isolated from Mycobacterium species demonstrated that divergencies in drug specificity of homologous structural proteins contribute to the variation of WhiB7-dependent drug resistance. WhiB7 has a specific tryptophan/glycine-rich region and four conserved cysteine residues; it also has a peptide sequence (AT-hook) at its C terminus that binds AT-rich DNA sequence motifs upstream of the promoters it activates. Targeted mutagenesis showed that these motifs were required to provide antibiotic resistance in vivo. Anaerobically purified WhiB7 from S. lividans was dimeric and contained 2.1 ± 0.3 and 2.2 ± 0.3 mol of iron and sulfur, respectively, per protomer (consistent with the presence of a 2Fe-2S cluster). However, the properties of the dimer's absorption spectrum were most consistent with the presence of an oxygen-labile 4Fe-4S cluster, suggesting 50% occupancy. These data provide the first insights into WhiB7 iron-sulfur clusters as they exist in vivo, a major unresolved issue in studies of Wbl proteins. PMID:24126912

  12. Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov., actinobacteria isolated from soil and dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; Li, Zhilei; Piao, Chenyu; Li, Yao; Li, Jiansong; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2016-06-01

    Two novel actinobacteria, designated strains NEAU-Jh1-4T and NEAU-Wp2-0T, were isolated from muddy soil collected from a riverbank in Jiaohe and a dandelion root collected from Harbin, respectively. A polyphasic study was carried out to establish the taxonomic positions of these two strains. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-Jh1-4T and NEAU-Wp2-0T indicated that strain NEAU-Jh1-4T clustered with Streptosporangium nanhuense NEAU-NH11T (99.32 % 16S rRNA gene sequence similarity), Streptosporangium purpuratum CY-15110T (98.30 %) and Streptosporangium yunnanense CY-11007T (97.95 %) and strain NEAU-Wp2-0T clustered with 'Streptosporangium sonchi  ' NEAU-QS7 (99.39 %), 'Streptosporangium kronopolitis' NEAU-ML10 (99.26 %), 'Streptosporangium shengliense' NEAU-GH7 (98.85 %) and Streptosporangium longisporum DSM 43180T (98.69 %). Moreover, morphological and chemotaxonomic properties of the two isolates also confirmed their affiliation to the genus Streptosporangium. However, the low level of DNA-DNA hybridization and some phenotypic characteristics allowed the isolates to be differentiated from the most closely related species. Therefore, it is proposed that strains NEAU-Jh1-4T and NEAU-Wp2-0T represent two novel species of the genus Streptosporangium, for which the name Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov. are proposed. The type strains are NEAU-Jh1-4T (=CGMCC 4.7213T=JCM 30348T) and NEAU-Wp2-0T (=CGMCC 4.7217T=JCM 30349T), respectively.

  13. Streptosporangium sonchi sp. nov. and Streptosporangium kronopolitis sp. nov., two novel actinobacteria isolated from a root of common sowthistle (Sonchus oleraceus L.) and a millipede (Kronopolites svenhedind Verhoeff).

    PubMed

    Ma, Zhaoxu; Liu, Hui; Liu, Chongxi; He, Hairong; Zhao, Junwei; Wang, Xin; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2015-06-01

    Two novel actinobacteria, designated strains NEAU-QS7(T) and NEAU-ML10(T), were isolated from a root of Sonchus oleraceus L. and a Kronopolites svenhedind Verhoeff specimen, respectively, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic positions of these strains. The two strains were observed to form abundant aerial hyphae that differentiated into spherical spore vesicles. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-QS7(T) and NEAU-ML10(T) showed that the two novel isolates exhibited 99.7 % 16S rRNA gene sequence similarity with each other and that they are most closely related to Streptosporangium shengliense NEAU-GH7(T) (99.1, 99.0 %) and Streptosporangium longisporum DSM 43180(T) (99.1, 99.0 %). However, the DNA-DNA hybridization value between strains NEAU-QS7(T) and NEAU-ML10(T) was 46.5 %, and the values between the two strains and their closest phylogenetic relatives were also below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, the two strains can be distinguished from each other and their closest phylogenetic relatives. Thus, strains NEAU-QS7(T) and NEAU-ML10(T) represent two novel species of the genus Streptosporangium, for which the names Streptosporangium sonchi sp. nov. and Streptosporangium kronopolitis sp. nov. are proposed. The type strains are NEAU-QS7(T) (=CGMCC 4.7142(T) =DSM 46717(T)) and NEAU-ML10(T) (=CGMCC 4.7153(T) =DSM 46720(T)), respectively.

  14. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  15. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.

    PubMed

    Schellenberger, Stefanie; Kolb, Steffen; Drake, Harold L

    2010-04-01

    Cellulose is the most abundant biopolymer in terrestrial ecosystems and is degraded by microbial communities in soils. However, relatively little is known about the diversity and function of soil prokaryotes that might participate in the overall degradation of this biopolymer. The active cellulolytic and saccharolytic Bacteria in an agricultural soil were evaluated by 16S rRNA (13)C-based stable isotope probing. Cellulose, cellobiose and glucose were mineralized under oxic conditions in soil slurries to carbon dioxide. Under anoxic conditions, these substrates were converted primarily to acetate, butyrate, carbon dioxide, hydrogen and traces of propionate and iso-butyrate; the production of these fermentation end-products was concomitant with the apparent reduction of iron(III). [(13)C]-cellulose was mainly degraded under oxic conditions by novel family-level taxa of the Bacteroidetes and Chloroflexi, and a known family-level taxon of Planctomycetes, whereas degradation under anoxic conditions was facilitated by the Kineosporiaceae (Actinobacteria) and cluster III Clostridiaceae and novel clusters within Bacteroidetes. Active aerobic sub-communities in oxic [(13)C]-cellobiose and [(13)C]-glucose treatments were dominated by Intrasporangiaceae and Micrococcaceae (Actinobacteria) whereas active cluster I Clostridiaceae (Firmicutes) were prevalent in anoxic treatments. A very large number (i.e. 28) of the detected taxa did not closely affiliate with known families, and active Archaea were not detected in any of the treatments. These collective findings suggest that: (i) a large uncultured diversity of soil Bacteria was involved in the utilization of cellulose and products of its hydrolysis, (ii) the active saccharolytic community differed phylogenetically from the active cellulolytic community, (iii) oxygen availability impacted differentially on the activity of taxa and (iv) different redox guilds (e.g. fermenters and iron reducers) compete or interact during

  16. Catellatospora vulcania sp. nov. and Catellatospora paridis sp. nov., two novel actinobacteria isolated from volcanic sediment and the rhizosphere of Paris polyphylla.

    PubMed

    Jia, Feiyu; Guo, Siyu; Shen, Yue; Gao, Meiyue; Liu, Chongxi; Zhou, Shuyu; Li, Jiansong; Guan, Xuejiao; Wang, Xiangjing; Xiang, Wensheng

    2016-01-01

    Two novel actinobacteria, designated strains NEAU-JM1(T) and NEAU-CL2(T), were isolated from volcanic sediment and the rhizosphere soil of Paris polyphylla, respectively, collected from Jiling and Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic positions of these strains. The 16S rRNA gene sequence analysis showed that the two novel isolates exhibit 99.5 % 16S rRNA gene sequence similarity with each other. The phylogenetic analysis based on 16S rRNA gene sequence of strain NEAU-JM1(T) showed it to be closely related to Catellatospora methionotrophica JCM 7543(T) (99.4 % sequence similarity), Catellatospora coxensis DSM 44901(T) (99.4 %), Catellatospora citrea DSM 44097(T) (99.3 %) and Catellatospora chokoriensis JCM 12950(T) (99.2 %), and that of strain NEAU-CL2(T) to C. citrea DSM 44097(T) (99.4 %), C. methionotrophica JCM 7543(T) (99.3 %), C. chokoriensis JCM 12950(T) (99.3 %) and C. coxensis DSM 44901(T) (99.2 %). However, the DNA-DNA hybridization value between strains NEAU-JM1(T) and NEAU-CL2(T) was 62.2 %, and the values between the two strains and their close phylogenetic relatives were also below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, the two strains can be distinguished from each other and their close phylogenetic relatives. Thus, strains NEAU-JM1(T) and NEAU-CL2(T) can be concluded to represent two novel species of the genus Catellatospora, for which the names Catellatospora vulcania sp. nov. and Catellatospora paridis sp. nov. are proposed. The type strains are NEAU-JM1(T) (=CGMCC 4.7174(T) = JCM 30054(T)) and NEAU-CL2(T) (=CGMCC 4.7236(T) = DSM 100519(T)), respectively.

  17. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events.

    PubMed

    Maki, Teruya; Kurosaki, Yasunori; Onishi, Kazunari; Lee, Kevin C; Pointing, Stephen B; Jugder, Dulam; Yamanaka, Norikazu; Hasegawa, Hiroshi; Shinoda, Masato

    2017-01-01

    Asian dust events transport the airborne bacteria in Chinese desert regions as well as mineral particles and influence downwind area varying biological ecosystems and climate changes. However, the airborne bacterial dynamics were rarely investigated in the Gobi desert area, where dust events are highly frequent. In this study, air samplings were sequentially performed at a 2-m high above the ground at the sampling site located in desert area (Tsogt-Ovoo of Gobi desert; Mongolia 44.2304°N, 105.1700°E). During the dust event days, the bacterial cells and mineral particles increased to more than tenfold of concentrations. MiSeq sequencing targeting 16S ribosomal DNA revealed that the airborne bacteria in desert area mainly belonged to the classes Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Bacilli, Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. The bacterial community structures were different between dust events and non-dust events. The air samples collected at the dust events indicated high abundance rates of Alpha-proteobacteria, which were reported to dominate on the leaf surfaces of plants or in the saline lake environments. After the dust events, the members of Firmicutes (Bacilli) and Bacteroidetes, which are known to form endospore and attach with coarse particles, respectively, increased their relative abundances in the air samples. Presumably, the bacterial compositions and diversities in atmosphere significantly vary during dust events, which carry some particles from grassland (phyllo-sphere), dry lake, and sand surfaces, as well as some bacterial populations such as Firmicutes and Bacteroidetes maintain in the atmosphere for longer time.

  18. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils.

    PubMed

    Han, Jiwon; Jung, Jaejoon; Hyun, Seunghun; Park, Hyun; Park, Woojun

    2012-12-01

    Pollution of Antarctic soils may be attributable to increased nutritional input and diesel contamination via anthropogenic activities. To investigate the effect of these environmental changes on the Antarctic terrestrial ecosystem, soil enzyme activities and microbial communities in 3 types of Antarctic soils were evaluated. The activities of alkaline phosphomonoesterase and dehydrogenase were dramatically increased, whereas the activities of β-glucosidase, urease, arylsulfatase, and fluorescein diacetate hydrolysis were negligible. Alkaline phosphomonoesterase and dehydrogenase activities in the 3 types of soils increased 3- to 10-fold in response to nutritional input, but did not increase in the presence of diesel contamination. Consistent with the enzymatic activity data, increased copy numbers of the phoA gene, encoding an alkaline phosphomonoesterase, and the 16S rRNA gene were verified using quantitative real-time polymerase chain reaction. Interestingly, dehydrogenase activity and 16S rRNA gene copy number increased slightly after 30 days, even under diesel contamination, probably because of adaptation of the bacterial population. Intact Antarctic soils showed a predominance of Actinobacteria phylum (mostly Pseudonorcarida species) and other phyla such as Proteobacteria, Chloroflexi, Planctomycetes, Firmicutes, and Verrucomicrobia were present in successively lower proportions. Nutrient addition might act as a selective pressure on the bacterial community, resulting in the prevalence of Actinobacteria phylum (mostly Arthrobacter species). Soils contaminated by diesel showed a predominance of Proteobacteria phylum (mostly Phyllobacterium species), and other phyla such as Actinobacteria, Bacteroidetes, Planctomycetes, and Gemmatimonadetes were present in successively lower proportions. Our data reveal that nutritional input has a dramatic impact on bacterial communities in Antarctic soils and that diesel contamination is likely toxic to enzymes in this

  19. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification.

    PubMed

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-06-17

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  20. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A.

    PubMed

    Peng, Xingxing; Zhang, Zaili; Zhao, Ziling; Jia, Xiaoshan

    2012-05-01

    Microorganisms able to rapidly degrade tetrabromobisphenol A (TBBPA) were domesticated in an anaerobic reactor and added to gradually increased concentrations of TBBPA. After 240 days of domestication, the degradation rate reached 96.0% in cultivated batch experiments lasting 20 days. The optimum cultivating temperature and pH were 30°C and 7.0. The bacterial community's composition and diversity in the reactor was studied by comparative analysis with 16S ribosomal DNA clone libraries. Amplified rDNA restriction analysis of 200 clones from the library indicate that the rDNA richness was high (Coverage C 99.5%) and that evenness was not high (Shannon-Weaver index 2.42). Phylogenetic analysis of 63 bacterial sequences from the reactor libraries demonstrated the presence of Betaproteobacteria (33.1%), Gammaproteobacteria (18.7%), Bacteroidetes (13.9%), Firmicutes (11.4%), Chloroflexi (3.6%), Actinobacteria (0.6%), the candidate division TM7 (4.2%) and other unknown, uncultured bacterial groups (14.5%). Comamonas, Achromobacter, Pseudomonas and Flavobacterium were the dominant types.

  1. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure.

    PubMed

    Ju, Feng; Wang, Yubo; Lau, Frankie T K; Fung, W C; Huang, Danping; Xia, Yu; Zhang, Tong

    2016-10-01

    The effectiveness and treatment conditions of FeCl3- and AlCl3-coagulated municipal sewage sludge from chemically enhanced primary treatment (CEPT) using anaerobic digestion (AD) and the structure of microbial community were investigated. The results based on 297 measurements under different operational conditions demonstrate good average AD performance of CEPT sludge, that is, percent volatile solid reduction of 58 %, specific biogas production (or biogas yield) of 0.92 m(3)/kg volatile solids (VS) destroyed, and methane content of 65.4 %. FeCl3 dosing, organic loading rate, temperature, and hydraulic retention time all significantly affected AD performance. FeCl3 dosing greatly improved specific methane production (methane yield) by 38-54 % and significantly reduced hydrogen sulfide (H2S) content in biogas (from up to 13,250 to <200 ppm), contributing to higher methane recovery and simplified biogas cleaning for power generation. Metagenomic analysis suggested that anaerobic digesters of both CEPT sludge and combined primary and secondary sludge were dominated by Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, Thermotogae, and Chloroflexi. However, Methanomicrobia methanogens were better enriched in the anaerobic digesters of CEPT sludge than in the combined sludge. Further, different sources of CEPT sludge with various chemical properties nurtured shared and unique microbial community composition. Combined, this study supports AD as an efficient technology for CEPT sludge treatment and poses first insights into the microbial community structure.

  2. Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedarius).

    PubMed

    Samsudin, Anjas A; Evans, Paul N; Wright, André-Denis G; Al Jassim, Rafat

    2011-11-01

    The molecular diversity of the foregut bacterial community in the dromedary camel (Camelus dromedarius) in Central Australia was investigated through comparative analyses of 16S rRNA gene sequences prepared from the foregut contents of 12 adult feral camels fed on native vegetation. A total of 267 full-length 16S rRNA gene clones were examined, with 151 operational taxonomic units (OTUs) identified at a 99% species-level identity cut-off criterion. The prediction of actual diversity in the foregut of the dromedary camel using the Chaol approach was 238 OTUs, while the richness and evenness of the diversity estimated using Shannon index was 4.84. The majority of bacteria in the current study were affiliated with the bacterial phylum Firmicutes (67% of total clones) and were related to the classes Clostridia, Bacilli and Mollicutes, followed by the Bacteroidetes (25%) that were mostly represented by the family Prevotellaceae. The remaining phyla were represented by Actinobacteria, Chloroflexi, Cynophyta, Lentisphaerae, Planctomycetes, Proteobacteria and Sphirochaetes. Moreover, 11 clones of cultivated bacteria were identified as Brevundimonas sp., Butyrivibrio fibrisolvens, Prevotella sp. and Ruminococcus flavefaciens. The novelty in this foregut environment is remarkable where 97% of the OTUs were distantly related to any known sequence in the public database.

  3. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge.

    PubMed

    Forget, Nathalie L; Kim Juniper, S

    2013-04-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus-Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities.

  4. Microbial communities associated with the invasive Hawaiian sponge Mycale armata.

    PubMed

    Wang, Guangyi; Yoon, Sang-Hwal; Lefait, Emilie

    2009-03-01

    Microbial symbionts are fundamentally important to their host ecology, but microbial communities of invasive marine species remain largely unexplored. Clone libraries and Denaturing gradient gel electrophoresis analyses revealed diverse microbial phylotypes in the invasive marine sponge Mycale armata. Phylotypes were related to eight phyla: Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Acidobacteria, Chloroflexi, Crenarchaeota and Firmicutes, with predominant alphaproteobacterial sequences (>58%). Three Bacterial Phylotype Groups (BPG1--associated only with sequence from marine sponges; BPG2--associated with sponges and other marine organisms and BPG3--potential new phylotypes) were identified in M. armata. The operational taxonomic units (OTU) of cluster BPG2-B, belonging to Rhodobacteraceae, are dominant sequences of two clone libraries of M. armata, but constitute only a small fraction of sequences from the non-invasive sponge Dysidea sp. Six OTUs from M. armata were potential new phylotypes because of their low sequence identity with their reference sequences. Our results suggest that M. armata harbors both sponge-specific phylotypes and bacterial phylotypes from other marine organisms.

  5. Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica.

    PubMed

    Kim, Mincheol; Cho, Ahnna; Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment.

  6. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes

    PubMed Central

    Li, Meng; Jain, Sunit; Dick, Gregory J.

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389

  7. Manure Refinement Affects Apple Rhizosphere Bacterial Community Structure: A Study in Sandy Soil

    PubMed Central

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality. PMID:24155909

  8. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge

    PubMed Central

    Forget, Nathalie L; Kim Juniper, S

    2013-01-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293

  9. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas

    PubMed Central

    Lu, Yingying; Chen, Jing; Zheng, Junyuan; Hu, Guoyong; Wang, Jingjing; Huang, Chunlan; Lou, Lihong; Wang, Xingpeng; Zeng, Yue

    2016-01-01

    Recent reports have suggested that the gut microbiota is involved in the progression of colorectal cancer (CRC). The composition of gut microbiota in CRC precursors has not been adequately described. To characterize the structure of adherent microbiota in this disease, we conducted pyrosequencing-based analysis of 16S rRNA genes to determine the bacterial profile of normal colons (healthy controls) and colorectal adenomas (CRC precursors). Adenoma mucosal biopsy samples and adjacent normal colonic mucosa from 31 patients with adenomas and 20 healthy volunteers were profiled using the Illumina MiSeq platform. Principal coordinate analysis (PCoA) showed structural segregation between colorectal adenomatous tissue and control tissue. Alpha diversity estimations revealed higher microbiota diversity in samples from patients with adenomas. Taxonomic analysis illustrated that abundance of eight phyla (Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Cyanobacteria, Candidate-division TM7, and Tenericutes) was significantly different. In addition, Lactococcus and Pseudomonas were enriched in preneoplastic tissue, whereas Enterococcus, Bacillus, and Solibacillus were reduced. However, both PCoA and cluster tree analyses showed similar microbiota structure between adenomatous and adjacent non-adenoma tissues. These present findings provide preliminary experimental evidence supporting that colorectal preneoplastic lesion may be the most important factor leading to alterations in bacterial community composition. PMID:27194068

  10. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.

    PubMed

    Li, Meng; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.

  11. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method.

    PubMed

    Xu, Hui-Juan; Li, Shun; Su, Jian-Qiang; Nie, San'an; Gibson, Valerie; Li, Hu; Zhu, Yong-Guan

    2014-01-01

    Although the geographical distribution patterns of microbes have been studied for years, few studies have focused on urban soils. Urbanization may have detrimental effects on the soil ecosystem through pollution discharge and changes in urban climate. It is unclear whether urbanization-related factors have any effect on soil bacterial communities. Therefore we investigated geographical patterns of soil microbial communities in parks in 16 representative Chinese cities. The microbial communities in these 95 soil samples were revealed by 454-pyrosequencing. There were 574,442 effective sequences among the total of 980,019 16S rRNA gene sequences generated, showing the diversity of the microbial communities. Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi and Bacteroidetes were found to be the six dominant phyla in all samples. Canonical correspondence analysis showed that pH, followed by annual average precipitation, annual average temperature, annual average relative humidity and city sunshine hours, Mn and Mg were the factors most highly correlated with the bacterial community variance. Urbanization did have an effect on bacterial community composition of urban park soils but it contributed less to the total variance compared with geographical locations and soil properties, which explained 6.19% and 16.78% of the variance, respectively.

  12. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  13. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    PubMed Central

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-01-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3–64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7–25.4%), Firmicutes (3.0–20.1%), Acidobacteria (2.7–15.7%), Actinobacteria (2.2–8.7%), Bacteroidetes (0.5–9.7%), and Verrucomicrobia (2.4–5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen. PMID:27782192

  14. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    NASA Astrophysics Data System (ADS)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3–64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7–25.4%), Firmicutes (3.0–20.1%), Acidobacteria (2.7–15.7%), Actinobacteria (2.2–8.7%), Bacteroidetes (0.5–9.7%), and Verrucomicrobia (2.4–5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  15. Role of Bacteria, Archaea and fungi involved in methane release

    NASA Astrophysics Data System (ADS)

    Beckmann, Sabrina; Krüger, Martin; Engelen, Bert; Cypionka, Heribert

    2010-05-01

    Abandoned coal mines release substantial amounts of methane which is largely biogenic. The aim of this study was to understand the microbial processes involved in mine-gas formation in two abandoned coal mines in Germany. Therefore, untreated coal- and mine timber samples and anaerobic enrichment cultures derived from them were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). Original samples and enrichment cultures harboured a broad spectrum of facultative aerobes, fermenters, nitrate- and sulfate reducers belonging to all five groups (α - ɛ) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi. Only two groups of Archaea (representing 0.01% of the bacterial abundance) were detected. Based on specific 16 S-rRNA primer sets Methanosarcinales comprised 34% of these, corresponding to 45% detected with primers specific for the mcrA gene. The second group (55%) were uncultivated Crenarchaeota with an unknown metabolism. The detected Fungi (Ascomycetes and Basidiomycetes) were typical wood degraders. To get a perception ofdevelop a metabolic model for the ongoing processes, we linked the detected phylogenetic groups to possible activities promoting methane release.

  16. Unearthing the Ecology of Soil Microorganisms Using a High Resolution DNA-SIP Approach to Explore Cellulose and Xylose Metabolism in Soil.

    PubMed

    Pepe-Ranney, Charles; Campbell, Ashley N; Koechli, Chantal N; Berthrong, Sean; Buckley, Daniel H

    2016-01-01

    We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either (13)C-xylose or (13)C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for (13)C-incorporation into DNA from (13)C-xylose and (13)C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated (13)C in the (13)C-xylose treatment changed over time being predominantly Firmicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These (13)C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chloroflexi, and Planctomycetes.

  17. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-01-01

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities. PMID:26090607

  18. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen (NH4+-N, p < 0.01), silicate silicon (SiO42--Si, p < 0.01), nitrite nitrogen (NO2--N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  19. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    PubMed Central

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  20. Unearthing the Ecology of Soil Microorganisms Using a High Resolution DNA-SIP Approach to Explore Cellulose and Xylose Metabolism in Soil

    PubMed Central

    Pepe-Ranney, Charles; Campbell, Ashley N.; Koechli, Chantal N.; Berthrong, Sean; Buckley, Daniel H.

    2016-01-01

    We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatment changed over time being predominantly Firmicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chloroflexi, and Planctomycetes. PMID:27242725

  1. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  2. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.

    PubMed

    Fracchia, Letizia; Dohrmann, Anja B; Martinotti, Maria Giovanna; Tebbe, Christoph C

    2006-08-01

    Bacterial communities are important catalysts in the production of composts. Here, it was analysed whether the diversity of bacteria in finished composts is stable and specific for the production process. Single-strand conformation polymorphism (SSCP) based on polymerase chain reaction amplified partial 16S rRNA genes was used to profile and analyse bacterial communities found in total DNA extracted from finished composts. Different batches of compost samples stored over a period of 12 years and a 1-year-old vermicompost were compared to each other. According to digital image analysis, clear differences could be detected between the profiles from compost and vermicompost. Differences between three different periods of compost storage and between replicate vermicompost windrows were only minor. A total of 41 different 16S rRNA genes were identified from the SSCP profiles by DNA sequencing, with the vast majority related to yet-uncultivated bacteria. Sequences retrieved from compost mainly belonged to the phyla Actinobacteria and Firmicutes. In contrast, vermicompost was dominated by bacteria related to uncultured Chloroflexi, Acidobacteria, Bacteroidetes and Gemmatimonadetes. The differences were underscored with specific gene probes and Southern blot hybridizations. The results confirmed that different substrates and composting processes selected for specific bacterial communities in the finished products. The specificity and consistency of the bacterial communities inhabiting the compost materials suggest that cultivation-independent bacterial community analysis is a potentially useful indicator to characterize the quality of finished composts in regard to production processes and effects of storage conditions.

  3. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    PubMed Central

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-01-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing. PMID:27934957

  4. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy.

  5. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure.

  6. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  7. Rapid qualitative characterization of bacterial community in eutrophicated wastewater stabilization plant by T-RFLP method based on 16S rRNA genes.

    PubMed

    Belila, Abdelaziz; Snoussi, Mejdi; Hassan, Abdennaceur

    2012-01-01

    Waste stabilization ponds are a simple, low-cost extensive process for treating wastewater, and well adapted to low socio-economic conditions in developing countries where the microbial populations in these systems are not well characterized. The phylogenetic bacterial community structure within a Tunisian wastewater stabilization plant treating domestic wastewater was assessed by Terminal Restriction Fragment Length Polymorphism method targeting 16S rRNA genes and by the APLAUS+ software of the Microbial Community Analysis (MiCA) web based tool. The dimeric enzymatic digestion with HaeIII and HinfI restriction enzymes revealed high bacterial diversity within the plant where 11 bacterial phyla were identified. The total bacterial community structure includes bacteria catalysing nitrogen and phosphorus removal and bacteria involved in the sulfur cycle. The bacterial community was characterized by the dominance of Proteobacteria which was the most populous phylum (60%) followed by the Actinobacteria (20%), the Firmicutes (10.3%), the Bacteroidetes (2.3%), the Nitrospira (2.2%). Minor bacterial phyla groups occupied smaller fractions such as Chloroflexi, Deferribacteres and Verrumicrobia. T-RFLP analysis revealed also that The Proteobacteria phylum was characterized by the dominance of bacteria of The Gammaproteobacteria class.

  8. Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes.

    PubMed

    Sánchez, Olga; Ferrera, Isabel; González, Jose M; Mas, Jordi

    2013-07-01

    The bacterial community composition of activated sludge from a wastewater treatment plant (Almería, Spain) with the particularity of using seawater was investigated by applying 454-pyrosequencing. The results showed that Deinococcus-Thermus, Proteobacteria, Chloroflexi and Bacteroidetes were the most abundant retrieved sequences, while other groups, such as Actinobacteria, Chlorobi, Deferribacteres, Firmicutes, Planctomycetes, Spirochaetes and Verrumicrobia were reported at lower proportions. Rarefaction analysis showed that very likely the diversity is higher than what could be described despite most of the unknown microorganisms probably correspond to rare diversity. Furthermore, the majority of taxa could not be classified at the genus level and likely represent novel members of these groups. Additionally, the nitrifiers in the sludge were characterized by pyrosequencing the amoA gene. In contrast, the nitrifying bacterial community, dominated by the genera Nitrosomonas, showed a low diversity and rarefaction curves exhibited saturation. These results suggest that only a few populations of low abundant but specialized bacteria are responsible for removal of ammonia in these saline wastewater systems.

  9. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania.

    PubMed

    Coman, Cristian; Chiriac, Cecilia M; Robeson, Michael S; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  10. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    SciTech Connect

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Åžtefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal

  11. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    PubMed Central

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  12. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    PubMed

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.

  13. Environmental heterogeneity and microbial inheritance influence sponge-associated bacterial composition of Spongia lamella.

    PubMed

    Noyer, Charlotte; Casamayor, Emilio O; Becerro, Mikel A

    2014-10-01

    Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.

  14. Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy).

    PubMed

    Quéméneur, Marianne; Palvadeau, Alexandra; Postec, Anne; Monnin, Christophe; Chavagnac, Valérie; Ollivier, Bernard; Erauso, Gaël

    2015-09-01

    The Voltri Massif is an ophiolitic complex located in the Ligurian Alps close to the city of Genova (Northern Italy) where several springs discharge high pH (up to 11.7), low salinity waters produced by the active serpentinization of the ultramafic basement. Mixing of these hyperalkaline waters with the river waters along with the uptake of atmospheric carbon dioxide forms brownish carbonate precipitates covering the bedrock at the springs. Diverse archaeal and bacterial communities were detected in these carbonate precipitates using 454 pyrosequencing analyses of 16S ribosomal RNA (rRNA) genes. Archaeal communities were dominated by members of potential methane-producing and/or methane-oxidizing Methanobacteriales and Methanosarcinales (Euryarchaeota) together with ammonia-oxidizing Nitrososphaerales (Thaumarchaeota) similar to those found in other serpentinization-driven submarine and terrestrial ecosystems. Bacterial communities consisted of members of the Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, and Verrucomicrobia phyla, altogether accounting for 92.2% of total retrieved bacterial 16S rRNA gene sequences. Amongst Bacteria, potential chemolithotrophy was mainly associated with Alpha- and Betaproteobacteria classes, including nitrogen-fixing, methane-oxidizing or hydrogen-oxidizing representatives of the genera Azospirillum, Methylosinus, and Hydrogenophaga/'Serpentinomonas', respectively. Besides, potential chemoorganotrophy was attributed mainly to representatives of Actinobacteria and Planctomycetales phyla. The reported 16S rRNA gene data strongly suggested that hydrogen, methane, and nitrogen-based chemolithotrophy can sustain growth of the microbial communities inhabiting the carbonate precipitates in the hyperalkaline springs of the Voltri Massif, similarly to what was previously observed in other serpentinite-hosted ecosystems.

  15. Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime Antarctica).

    PubMed

    Gugliandolo, Concetta; Michaud, Luigi; Lo Giudice, Angelina; Lentini, Valeria; Rochera, Carlos; Camacho, Antonio; Maugeri, Teresa Luciana

    2016-02-01

    Byers Peninsula (Livingston Island, Antarctica), the largest seasonally ice-free region of the Maritime Antarctica, holds a large number of lakes, ponds, and streams. The prokaryotic structure and bacterial diversity in sediment samples collected during the 2008-2009 austral summer from five inland lakes, two coastal lakes, and an estuarine site were analyzed by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and 16S rRNA 454 tag pyrosequencing techniques, respectively. Differently from inland lakes, which range around the oligotrophic status, coastal lakes are eutrophic environments, enriched by nutrient inputs from marine animals. Although the prokaryotic abundances (estimated as DAPI stained cells) in sediment samples were quite similar among inland and coastal lakes, Bacteria always far dominated over Archaea. Despite the phylogenetic analysis indicated that most of sequences were affiliated to a few taxonomic groups, mainly referred to Proteobacteria, Bacteroidetes, and Actinobacteria, their relative abundances greatly differed from each site. Differences in bacterial composition showed that lacustrine sediments were more phyla rich than the estuarine sediment. Proteobacterial classes in lacustrine samples were dominated by Betaproteobacteria (followed by Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), while in the estuarine sample, they were mainly related to Gammaproteobacteria (followed by Deltaproteobacteria, Epsilonproteobacteria, Alphaproteobacteria, and Betaproteobacteria). Higher number of sequences of Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, and Planctomycetes were observed in sediments of inland lakes compared to those of coastal lakes, whereas Chloroflexi were relatively more abundant in the sediments of coastal eutrophic lakes. As demonstrated by the great number of dominant bacterial genera, bacterial diversity was higher in the sediments of inland lakes than that in coastal lakes

  16. Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea.

    PubMed

    Polymenakou, Paraskevi N; Lampadariou, Nikolaos; Mandalakis, Manolis; Tselepides, Anastasios

    2009-02-01

    This study is the first culture-independent report on the regional variability of bacterial diversity in oxic sediments from the unexplored southern Cretan margin (SCM). Three main deep basins (water column depths: 2670-3603m), located at the mouth of two submarine canyons (Samaria Gorge and Paximades Channel) and an adjacent slope system, as well as two shallow upper-slope stations (water column depths: 215 and 520m), were sampled. A total of 454 clones were sequenced and the bacterial richness, estimated through five clone libraries using rarefaction analysis, ranged from 71 to 296 unique phylotypes. The average sequence identity of the retrieved Cretan margin sequences compared to the >1,000,000 known rRNA sequences was only 93.5%. A diverse range of prokaryotes was found in the sediments, which were represented by 15 different taxonomic groups at the phylum level. The phylogenetic analysis revealed that these new sequences grouped with the phyla Acidobacteria, Planctomycetes, Actinobacteria, Gamma-, Alpha- and Delta-proteobacteria. Only a few bacterial clones were affiliated with Chloroflexi, Bacteroidetes, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Nitrospirae, Beta-proteobacteria, Lentisphaerae and Dictyoglomi. A large fraction of the retrieved sequences (12%) did not fall into any taxonomic division previously characterized by molecular criteria, whereas four novel division-level lineages, termed candidate division SCMs, were identified. Bacterial community composition demonstrated significant differences in comparison to previous phylogenetic studies. This divergence was mainly triggered by the dominance of Acidobacteria and Actinobacteria and reflected a bacterial community different from that currently known for oxic and pristine marine sediments.

  17. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    NASA Astrophysics Data System (ADS)

    Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

    2012-09-01

    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age

  18. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa.

    PubMed

    Zhi, Xiao-Yang; Li, Wen-Jun; Stackebrandt, Erko

    2009-03-01

    The higher ranks of the class Actinobacteria were proposed and described in 1997. At each rank, the taxa were delineated from each other solely on the basis of 16S rRNA gene sequence phylogenetic clustering and taxon-specific 16S rRNA signature nucleotides. In the past 10 years, many novel members have been assigned to this class while, at the same time, some members have been reclassified. The new 16S rRNA gene sequence information and the changes in phylogenetic positions of some taxa influence decisions about which 16S rRNA nucleotides to define as taxon-specific. As a consequence, the phylogenetic relationships of Actinobacteria at higher levels may need to be reconstructed. Here, we present new 16S rRNA signature nucleotide patterns of taxa above the family level and indicate the affiliation of genera to families. These sets replace the signatures published in 1997. In addition, Actinopolysporineae subord. nov. and Actinopolysporaceae fam. nov. are proposed to accommodate the genus Actinopolyspora, Kineosporiineae subord. nov. and Kineosporiaceae fam. nov. are proposed to accommodate the genera Kineococcus, Kineosporia and Quadrisphaera, Beutenbergiaceae fam. nov. is proposed to accommodate the genera Beutenbergia, Georgenia and Salana and Cryptosporangiaceae fam. nov. is proposed to accommodate the genus Cryptosporangium. The families Nocardiaceae and Gordoniaceae are proposed to be combined in an emended family Nocardiaceae. Emended descriptions are also proposed for most of the other higher taxa.

  19. Pyrosequencing Investigation into the Bacterial Community in Permafrost Soils along the China-Russia Crude Oil Pipeline (CRCOP)

    PubMed Central

    Yang, Sizhong; Wen, Xi; Jin, Huijun; Wu, Qingbai

    2012-01-01

    The China-Russia Crude Oil Pipeline (CRCOP) goes through 441 km permafrost soils in northeastern China. The bioremediation in case of oil spills is a major concern. So far, little is known about the indigenous bacteria inhabiting in the permafrost soils along the pipeline. A pilot 454 pyrosequencing analysis on the communities from four selected sites which possess high environment risk along the CRCOP is herein presented. The results reveal an immense bacterial diversity than previously anticipated. A total of 14448 OTUs with 84834 reads are identified, which could be assigned into 39 different phyla, and 223 families or 386 genera. Only five phyla sustain a mean OTU abundance more than 5% in all the samples, but they altogether account for 85.08% of total reads. Proteobacteria accounts for 41.65% of the total OTUs or 45% of the reads across all samples, and its proportion generally increases with soil depth, but OTUs numerically decline. Among Proteobacteria, the abundance of Beta-, Alpha-, Delta- and Gamma- subdivisions average to 38.7% (2331 OTUs), 37.5% (2257 OTUs), 10.35% (616 OTUs), and 6.21% (374 OTUs), respectively. Acidobacteria (esp. Acidobacteriaceae), Actinobacteria (esp. Intrasporangiaceae), Bacteroidetes (esp. Sphingobacteria and Flavobacteria) and Chloroflexi (esp. Anaerolineaceae) are also very common, accounting for 8.56% (1237 OTUs), 7.86% (1136 OTUs); 7.35% (1063 OTUs) and 8.27% (1195 OTUs) of total libraries, respectively. The ordination analysis indicates that bacteria communities in the upper active layer cluster together (similar), while bacterial consortia from the lower active layer and permafrost table scatter (less similar). The abundance of Rhodococcus (12 OTUs), Pseudomonas (71 OTUs) and Sphingomonas (87 OTUs) is even less (<0.01%). This effort to profile the background diversity may set the first stage for better evaluating the bacterial dynamics in response to accidental oil spills. PMID:23300754

  20. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea.

    PubMed

    Keshri, Jitendra; Yousuf, Basit; Mishra, Avinash; Jha, Bhavanath

    2015-06-01

    The Gulf of Cambay is a trumpet-shaped inlet of the Arabian Sea, located along the west coast of India and confronts a high tidal range with strong water currents. The region belongs to a semi-arid zone and saline alkaline intertidal soils are considered biologically extreme. The selected four soil types (S1-S4) were affected by salinity, alkalinity and sodicity. Soil salinity ranged from 20 to 126 dS/m, soil pH 8.6-10.0 with high sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP). Abundance of the key functional genes like cbbL, nifH, amoA and apsA involved in biogeochemical cycling were targeted using qPCR, which varied from (2.36 ± 0.03) × 10(4) to (2.87 ± 0.26) × 10(8), (1.18 ± 0.28) × 10(6) to (1.01 ± 0.26) × 10(9), (1.41 ± 0.21) × 10(6) to (1.29 ± 0.05) × 10(8) and (8.47 ± 0.23) × 10(4) to (1.73 ± 0.01) × 10(6) per gram dry weight, respectively. The microbial community structure revealed that soils S1 and S3 were dominated by phylum Firmicutes whereas S4 and S2 showed an abundance of Proteobacterial clones. These soils also represented Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Acidobacteria clones. Molecular phylogeny showed a significant variation in the bacterial community distribution among the intertidal soil types. A high number of novel taxonomic units were observed which makes the intertidal zone a unique reservoir of unidentified bacterial taxa that may be explored further.

  1. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station.

    PubMed

    Muangchinda, C; Chavanich, S; Viyakarn, V; Watanabe, K; Imura, S; Vangnai, A S; Pinyakong, O

    2015-03-01

    Hydrocarbon catabolic genes were investigated in soils and sediments in nine different locations around Syowa Station, Antarctica, using conventional PCR, real-time PCR, cloning, and sequencing analysis. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD)-coding genes from both Gram-positive and Gram-negative bacteria were observed. Clone libraries of Gram-positive RHD genes were related to (i) nidA3 of Mycobacterium sp. py146, (ii) pdoA of Terrabacter sp. HH4, (iii) nidA of Diaphorobacter sp. KOTLB, and (iv) pdoA2 of Mycobacterium sp. CH-2, with 95-99% similarity. Clone libraries of Gram-negative RHD genes were related to the following: (i) naphthalene dioxygenase of Burkholderia glathei, (ii) phnAc of Burkholderia sartisoli, and (iii) RHD alpha subunit of uncultured bacterium, with 41-46% similarity. Interestingly, the diversity of the Gram-positive RHD genes found around this area was higher than those of the Gram-negative RHD genes. Real-time PCR showed different abundance of dioxygenase genes between locations. Moreover, the PCR-denaturing gradient gel electrophoresis (DGGE) profile demonstrated diverse bacterial populations, according to their location. Forty dominant fragments in the DGGE profiles were excised and sequenced. All of the sequences belonged to ten bacterial phyla: Proteobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Cyanobacteria, Chlorobium, and Acidobacteria. In addition, the bacterial genus Sphingomonas, which has been suggested to be one of the major PAH degraders in the environment, was observed in some locations. The results demonstrated that indigenous bacteria have the potential ability to degrade PAHs and provided information to support the conclusion that bioremediation processes can occur in the Antarctic soils and sediments studied here.

  2. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    PubMed

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-03-31

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments.

  3. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    PubMed Central

    Saghaï, Aurélien; Zivanovic, Yvan; Zeyen, Nina; Moreira, David; Benzerara, Karim; Deschamps, Philippe; Bertolino, Paola; Ragon, Marie; Tavera, Rosaluz; López-Archilla, Ana I.; López-García, Purificación

    2015-01-01

    Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes) or other metabolisms (e.g., anoxygenic photosynthesis, sulfate reduction), may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico) by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W) and Northern (AL-N) shores of the lake and, at the latter site, along a depth gradient (1, 5, 10, and 15 m depth). The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria), Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM) observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at

  4. Detection of microbial communities in continuous and discontinuous membrane bioreactor using high-density oligonucleotide Microarray

    NASA Astrophysics Data System (ADS)

    Duan, Liang; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W.

    2010-11-01

    This study compared the whole composition of microbial communities in continuous-flow (MBR) and batch-fed (discontinuous) (MSBR) aerobic membrane bioreactors using high-density universal 16S rRNA Microarray. The array includes 506,944 probes targeted to 8935 clusters in 16S rRNA gene sequences. The Microarray results showed that both MBR and MSBR had high microbial diversity. 1126 and 1002 bacterial subfamilies were detected and can separate as 37 and 32 phyla in MBR and MSBR, respectively. Proteobacteria was the predominant phylum, 703 and 597 subfamilies were found in two systems, which constituted 62.4% and 59.6% of the whole bacteria. Gamma- and Alpha-were the dominant classes in Proteobacteria. It occupied 38.1% and 26.3%, 31.2% and 39.2% for MBR and MSBR, respectively. Bacteroidetes, Firmicutes and Actinobacteria were the subdominant groups, occupying around 9.4% and 7.6%, 6.1% and 6.5%, 6.0% and 9.0% of the total bacteria in two reactors. Some bacterial groups such as Acidobacteria, Chloroflexi, Cyanobacteria, Verrucomicrobia and Spirochaetes also found more than 15 subfamilies. All the results indicated that the MBR system had more bacteria community diversity than MSBR's. Moreover, it was very interested that MBR and MSBR had almost the same bacterial composition except Enterobacteriaceae. 63 OTUs of Enterobacteriaceae were detected in MBR, while just 10 OTUs were found in MSBR. That's one of the reasons leading to the difference of the bacterial diversity between two bioreactors.

  5. Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands.

    PubMed

    Peralta, Rita M; Ahn, Changwoo; Gillevet, Patrick M

    2013-01-15

    We used multi-tag pyrosequencing of 16S ribosomal DNA to characterize bacterial communities of wetland soils collected from created and natural wetlands located in the Virginia piedmont. Soils were also evaluated for their physicochemical properties [i.e., percent moisture, pH, soil organic matter (SOM), total organic carbon (TOC), total nitrogen (TN), and C:N ratio]. Soil moisture varied from 15% up to 55% among the wetlands. Soil pH ranged between 4.2 and 5.8, showing the typical characteristic of acidic soils in the Piedmont region. Soil organic matter contents ranged from 3% up to 6%. Soil bacterial community structures and their differences between the wetlands were distinguished by pyrosequencing. Soil bacterial communities in the created wetlands were less dissimilar to each other than to those of either natural wetland, with little difference in diversity (Shannon's H') between created and natural wetlands, except one natural wetland consistently showing a lower H'. The greatest difference of bacterial community structure was observed between the two natural wetlands (R=0.937, p<0.05), suggesting these two natural wetlands were actually quite different reflecting differences in their soil physicochemistry. The major phylogenic groups of all soils included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatinomadetes, Nitrospira, and Proteobacteria with Proteobacteria being the majority of the community composition. Acidobacteria group was more abundant in natural wetlands than in created wetlands. We found a significant association between bacterial community structures and physicochemical properties of soils such as C:N ratio (ρ=0.43, p<0.01) and pH (ρ=0.39, p<0.01). The outcomes of the study show that the development of ecological functions, mostly mediated by microbial communities, is connected with the development of soil properties in created wetlands. Soil properties should be carefully monitored to examine the progress of

  6. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai

  7. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.).

    PubMed

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  8. Temperature thresholds for bacterial symbiosis with a sponge.

    PubMed

    Webster, Nicole S; Cobb, Rose E; Negri, Andrew P

    2008-08-01

    The impact of elevated seawater temperature on bacterial communities within the marine sponge Rhopaloeides odorabile was assessed. Sponges were exposed to temperatures ranging between 27 and 33 degrees C. No differences in bacterial community composition or sponge health were detected in treatments between 27 and 31 degrees C. In contrast, sponges exposed to 33 degrees C exhibited a complete loss of the primary cultivated symbiont within 24 h and cellular necrosis after 3 days. Furthermore, denaturing gradient gel electrophoresis (DGGE) and clone sequence analysis detected a dramatic shift in bacterial community composition between 31 and 33 degrees C. Within the first 24 h most of the DGGE bands detected in samples from 27 to 31 degrees C were absent from the 33 degrees C sponges whereas eight bands were detected exclusively in the 33 degrees C sponges. The 16S rRNA sequencing revealed that most of the microbes from sponges exposed to 27-31 degrees C had highest homology to known sponge-associated bacteria. In contrast, many of the microbes from sponges exposed to 33 degrees C were similar to sequences previously retrieved from diseased and bleached corals. The 16S rRNA clone library analysis also detected a significant shift in bacterial community structure. The 27 degrees C library was composed of Proteobacteria, Actinobacteria, Nitrospira, Acidobacteria and Chloroflexi whereas the 33 degrees C library contained sequences from the Proteobacteria, Bacteroidetes and Firmicutes. The clear shifts in community composition at elevated temperatures can be attributed to the loss of symbionts and to the establishment of alien microbial populations including potential pathogens. Breakdown of symbioses and stress in the sponge occurred at temperatures identical to those reported for coral bleaching, indicating that sponges may be similarly threatened by climate change.

  9. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    PubMed Central

    Badhai, Jhasketan; Ghosh, Tarini S.; Das, Subrata K.

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40–58°C; pH: 7.2–7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria. PMID:26579081

  10. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils

    PubMed Central

    Winder, Richard S.; Lamarche, Josyanne; Constabel, C. Peter; Hamelin, Richard C.

    2013-01-01

    The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in

  11. Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters▿ †

    PubMed Central

    Hardoim, C. C. P.; Costa, R.; Araújo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  12. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure.

    PubMed

    Berg, Jeanette; Brandt, Kristian K; Al-Soud, Waleed A; Holm, Peter E; Hansen, Lars H; Sørensen, Søren J; Nybroe, Ole

    2012-10-01

    Toxic metal pollution affects the composition and metal tolerance of soil bacterial communities. However, there is virtually no knowledge concerning the responses of members of specific bacterial taxa (e.g., phyla or classes) to metal toxicity, and contradictory results have been obtained regarding the impact of metals on operational taxonomic unit (OTU) richness. We used tag-coded pyrosequencing of the 16S rRNA gene to elucidate the impacts of copper (Cu) on bacterial community composition and diversity within a well-described Cu gradient (20 to 3,537 μg g(-1)) stemming from industrial contamination with CuSO(4) more than 85 years ago. DNA sequence information was linked to analysis of pollution-induced community tolerance (PICT) to Cu, as determined by the [(3)H]leucine incorporation technique, and to chemical characterization of the soil. PICT was significantly correlated to bioavailable Cu, as determined by the results seen with a Cu-specific bioluminescent biosensor strain, demonstrating a specific community response to Cu. The relative abundances of members of several phyla or candidate phyla, including the Proteobacteria, Bacteroidetes, Verrumicrobia, Chloroflexi, WS3, and Planctomycetes, decreased with increasing bioavailable Cu, while members of the dominant phylum, the Actinobacteria, showed no response and members of the Acidobacteria showed a marked increase in abundance. Interestingly, changes in the relative abundances of classes frequently deviated from the responses of the phyla to which they belong. Despite the apparent Cu impacts on Cu resistance and community structure, bioavailable Cu levels did not show any correlation to bacterial OTU richness (97% similarity level). Our report highlights several bacterial taxa responding to Cu and thereby provides new guidelines for future studies aiming to explore the bacterial domain for members of metal-responding taxa.

  13. Selection for Cu-Tolerant Bacterial Communities with Altered Composition, but Unaltered Richness, via Long-Term Cu Exposure

    PubMed Central

    Berg, Jeanette; Brandt, Kristian K.; Al-Soud, Waleed A.; Holm, Peter E.; Hansen, Lars H.; Sørensen, Søren J.

    2012-01-01

    Toxic metal pollution affects the composition and metal tolerance of soil bacterial communities. However, there is virtually no knowledge concerning the responses of members of specific bacterial taxa (e.g., phyla or classes) to metal toxicity, and contradictory results have been obtained regarding the impact of metals on operational taxonomic unit (OTU) richness. We used tag-coded pyrosequencing of the 16S rRNA gene to elucidate the impacts of copper (Cu) on bacterial community composition and diversity within a well-described Cu gradient (20 to 3,537 μg g−1) stemming from industrial contamination with CuSO4 more than 85 years ago. DNA sequence information was linked to analysis of pollution-induced community tolerance (PICT) to Cu, as determined by the [3H]leucine incorporation technique, and to chemical characterization of the soil. PICT was significantly correlated to bioavailable Cu, as determined by the results seen with a Cu-specific bioluminescent biosensor strain, demonstrating a specific community response to Cu. The relative abundances of members of several phyla or candidate phyla, including the Proteobacteria, Bacteroidetes, Verrumicrobia, Chloroflexi, WS3, and Planctomycetes, decreased with increasing bioavailable Cu, while members of the dominant phylum, the Actinobacteria, showed no response and members of the Acidobacteria showed a marked increase in abundance. Interestingly, changes in the relative abundances of classes frequently deviated from the responses of the phyla to which they belong. Despite the apparent Cu impacts on Cu resistance and community structure, bioavailable Cu levels did not show any correlation to bacterial OTU richness (97% similarity level). Our report highlights several bacterial taxa responding to Cu and thereby provides new guidelines for future studies aiming to explore the bacterial domain for members of metal-responding taxa. PMID:22904046

  14. Diverse microbial communities in non-aerated compost teas suppress bacterial wilt.

    PubMed

    Mengesha, W K; Powell, S M; Evans, K J; Barry, K M

    2017-03-01

    Non-aerated compost teas (NCTs) are water extracts of composted organic materials and are used to suppress soil borne and foliar disease in many pathosystems. Greenhouse trials were used to test the effectiveness of NCTs to suppress potato bacterial wilt caused by Ralstonia solanacearum on plants grown in soils inoculated with a virulent isolate of the pathogen (biovar II). NCTs prepared from matured compost sources: agricultural waste (AWCT), vermicompost (VCT) and solid municipal waste (SMWCT) were evaluated at three initial application times (7 days before inoculation, at time of inoculation and 7 days after inoculation) prior to weekly applications, in a randomized complete-block design. AWCT applied initially at the time of inoculation resulted in the greatest disease suppression, with the disease severity index 2.5-fold less than the non-treated plants and the "area under the disease progress curve" (AUDPC) 3.2-fold less. VCT and SMWCT were less suppressive than AWCT regardless of initial application time. Next generation sequencing of the v4 region of 16S rRNA gene and the internal transcribed spacer region (ITS1) revealed that diversity and composition of the bacterial and fungal communities across the NCTs varied significantly. Dominant bacterial phyla such as Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, Chloroflexi, Planctomycetes, Acidobacteria, and a fungal phylum Ascomycota were detected in all NCTs. AWCT had optimum physico-chemical measurements with higher bacterial Shannon diversity indices (H) and fungal richness (S) than the other treatments. We conclude that bacterial wilt of potatoes grown in controlled conditions can be suppressed by a non-aerated compost tea with a high microbial diversity when applied at planting and weekly thereafter.

  15. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  16. Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing

    PubMed Central

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the

  17. Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China

    PubMed Central

    Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting

    2014-01-01

    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important

  18. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones.

    PubMed

    Shivaji, S; Pratibha, M S; Sailaja, B; Hara Kishore, K; Singh, Ashish K; Begum, Z; Anarasi, Uttam; Prabagaran, S R; Reddy, G S N; Srinivas, T N R

    2011-01-01

    Three 16S rRNA gene clone libraries (P1L, P4L and P8L) were constructed using three soil samples (P1S, P4S and P8S) collected near Pindari glacier, Himalayas. The three libraries yielded a total of 703 clones. Actinobacteria, Firmicutes and Proteobacteria were common to the three libraries. In addition to the above P1L and P8L shared the phyla Acidobacteria, Bacteroidetes, Gemmatimonadetes and Planctomycetes. Phyla Chlamydiae, Chlorobi, Chloroflexi, Dictyoglomi, Fibrobacteres, Nitrospirae, Verrucomicrobia, candidate division SPAM and candidate TM7s TM7a phylum were present only in P1L. Rarefaction analysis indicated that the bacterial diversity in P4S and P8S soil samples was representative of the sample. Principal component analysis (PCA) revealed that P1S and P8S were different from P4S soil sample. PCA also indicated that arsenic content, pH, Cr and altitude influence the observed differences in the percentage of specific OTUs in the three 16S rRNA gene clone libraries. The observed bacterial diversity was similar to that observed for other Himalayan and non-polar cold habitats. A total of 40 strains of bacteria were isolated from the above three soil samples and based on the morphology 20 bacterial strains were selected for further characterization. The 20 bacteria belonged to 12 different genera. All the isolates were psychro-, halo- and alkalitolerant. Amylase and urease activities were detected in majority of the strains but lipase and protease activities were not detected. Long chain, saturated, unsaturated and branched fatty acids were predominant in the psychrotolerant bacteria.

  19. Microbial Precipitation and Diagenesis in Salt Ponds from Little Darby Island, Exumas, Bahamas.

    NASA Astrophysics Data System (ADS)

    Piggot, A. M.; Klaus, J.; Swart, P. K.; Reid, P.

    2014-12-01

    Microbial activity is responsible for the majority of carbonate precipitation and early diagenesis in restricted hypersaline ponds on Little Darby Island, Bahamas. The four ponds on Little Darby exhibit a range of salinities (10-69) and sedimentary deposits that record the evolution of ponds from restricted shallow marine embayments to isolated hypersaline ponds. Only the largest and most hypersaline pond, Anaconda, was covered by a classically defined multi-layered microbial mat (3 cm thick) with calcium carbonate precipitates. Microbial laminations and organosedimentary layers were preserved throughout the 90cm sediment core. The brackish ponds had thinner (< 0.5cm) microbial mats and appeared to be non-carbonate precipitating, with no preserved laminated mats in the subsurface. Despite differences in observed precipitation, molecular and geochemical evidence for microbially induced carbonate precipitation and diageneiss was observed in all four ponds. High-throughput 454 pyrosequencing and phylogenetic analysis of 16S rRNA genes identified the same dominant bacterial groups in all four ponds, such as Actinobacteria, Alphaproteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Deltaproteobacteria, Gammaproteobacteria and Planctomycetes, with metabolisms previously linked to carbonate producing mat systems. Sulfate reduction and heterotrophic degradation of exopolymeric substances were identified as the primary mechanism for microbial carbonate precipitation. The δ13C values of carbonate sediments ranged from -5.5‰ to 3‰, with the more negative values representing the heterotrophic involvement in carbonate precipitation. The more positive values (0-3‰) were associated with the deeper sediments deposited in a marine environment before the ponds were isolated. Pore fluid chemical ratios of Ca2+/Cl-, Mg2+/Cl-, and Sr2+/Cl- ratios also suggest that precipitation and recrystallization of carbonate minerals is occurring in the buried sediments and indicates

  20. Microbial Community Structure of Relict Niter-Beds Previously Used for Saltpeter Production

    PubMed Central

    Narihiro, Takashi; Tamaki, Hideyuki; Akiba, Aya; Takasaki, Kazuto; Nakano, Koichiro; Kamagata, Yoichi; Hanada, Satoshi; Maji, Taizo

    2014-01-01

    From the 16th to the 18th centuries in Japan, saltpeter was produced using a biological niter-bed process and was formed under the floor of gassho-style houses in the historic villages of Shirakawa-go and Gokayama, which are classified as United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Sites. The relict niter-beds are now conserved in the underfloor space of gassho-style houses, where they are isolated from destabilizing environmental factors and retain the ability to produce nitrate. However, little is known about the nitrifying microbes in such relict niter-bed ecosystems. In this study, the microbial community structures within nine relict niter-bed soils were investigated using 454 pyrotag analysis targeting the 16S rRNA gene and the bacterial and archaeal ammonia monooxygenase gene (amoA). The 16S rRNA gene pyrotag analysis showed that members of the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes were major microbial constituents, and principal coordinate analysis showed that the NO3−, Cl−, K+, and Na+ contents were potential determinants of the structures of entire microbial communities in relict niter-bed soils. The bacterial and archaeal amoA libraries indicated that members of the Nitrosospira-type ammonia-oxidizing bacteria (AOB) and “Ca. Nitrososphaera”-type ammonia-oxidizing archaea (AOA), respectively, predominated in relict niter-bed soils. In addition, soil pH and organic carbon content were important factors for the ecological niche of AOB and AOA in relict niter-bed soil ecosystems. PMID:25111392

  1. Abiotic Factors Shape Microbial Diversity in Sonoran Desert Soils

    PubMed Central

    Fitak, Robert R.; Munguia-Vega, Adrian; Racolta, Adriana; Martinson, Vincent G.; Dontsova, Katerina

    2012-01-01

    High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments. PMID:22885757

  2. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity.

    PubMed

    Zul, Delita; Denzel, Sabine; Kotz, Andrea; Overmann, Jörg

    2007-11-01

    Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that

  3. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content.

    PubMed

    Wüst, Pia K; Horn, Marcus A; Drake, Harold L

    2011-01-01

    The earthworm gut provides ideal in situ conditions for ingested heterotrophic soil bacteria capable of anaerobiosis. High amounts of mucus- and plant-derived saccharides such as glucose are abundant in the earthworm alimentary canal, and high concentrations of molecular hydrogen (H(2)) and organic acids in the alimentary canal are indicative of ongoing fermentations. Thus, the central objective of this study was to resolve potential links between fermentations and active fermenters in gut content of the anecic earthworm Lumbricus terrestris by 16S ribosomal RNA (rRNA)-based stable isotope probing, with [(13)C]glucose as a model substrate. Glucose consumption in anoxic gut content microcosms was rapid and yielded soluble organic compounds (acetate, butyrate, formate, lactate, propionate, succinate and ethanol) and gases (carbon dioxide and H(2)), products indicative of diverse fermentations in the alimentary canal. Clostridiaceae and Enterobacteriaceae were users of glucose-derived carbon. On the basis of the detection of 16S rRNA, active phyla in gut contents included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia, taxa common to soils. On the basis of a 16S rRNA gene similarity cutoff of 87.5%, 82 families were detected, 17 of which were novel family-level groups. These findings (a) show the large diversity of soil taxa that might be active during gut passage, (b) show that Clostridiaceae and Enterobacteriaceae (fermentative subsets of these taxa) are selectively stimulated by glucose and might therefore be capable of consuming mucus- and plant-derived saccharides during gut passage and (c) indicate that ingested obligate anaerobes and facultative aerobes from soil can concomitantly metabolize the same source of carbon.

  4. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands

    PubMed Central

    Kuske, Cheryl R; Yeager, Chris M; Johnson, Shannon; Ticknor, Lawrence O; Belnap, Jayne

    2012-01-01

    The impact of 10 years of annual foot trampling on soil biocrusts was examined in replicated field experiments at three cold desert sites of the Colorado Plateau, USA. Trampling detrimentally impacted lichens and mosses, and the keystone cyanobacterium, Microcoleus vaginatus, resulting in increased soil erosion and reduced C and N concentrations in surface soils. Trampled biocrusts contained approximately half as much extractable DNA and 20–52% less chlorophyll a when compared with intact biocrusts at each site. Two of the three sites also showed a decline in scytonemin-containing, diazotrophic cyanobacteria in trampled biocrusts. 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses of soil bacteria from untrampled and trampled biocrusts demonstrated a reduced proportion (23–65% reduction) of M. vaginatus and other Cyanobacteria in trampled plots. In parallel, other soil bacterial species that are natural residents of biocrusts, specifically members of the Actinobacteria, Chloroflexi and Bacteroidetes, became more readily detected in trampled than in untrampled biocrusts. Replicate 16S rRNA T-RFLP profiles from trampled biocrusts at all three sites contained significantly more fragments (n=17) than those of untrampled biocrusts (n⩽6) and exhibited much higher variability among field replicates, indicating transition to an unstable disturbed state. Despite the dramatic negative impacts of trampling on biocrust physical structure and composition, M. vaginatus could still be detected in surface soils after 10 years of annual trampling, suggesting the potential for biocrust re-formation over time. Physical damage of biocrusts, in concert with changing temperature and precipitation patterns, has potential to alter performance of dryland ecosystems for decades. PMID:22113374

  5. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring.

    PubMed

    Klatt, Christian G; Liu, Zhenfeng; Ludwig, Marcus; Kühl, Michael; Jensen, Sheila I; Bryant, Donald A; Ward, David M

    2013-09-01

    Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B'. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.

  6. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring

    PubMed Central

    Klatt, Christian G; Liu, Zhenfeng; Ludwig, Marcus; Kühl, Michael; Jensen, Sheila I; Bryant, Donald A; Ward, David M

    2013-01-01

    Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle. PMID:23575369

  7. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    DOE PAGES

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; ...

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbialmore » mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along

  8. Fecal bacterial diversity in a wild gorilla.

    PubMed

    Frey, Julie C; Rothman, Jessica M; Pell, Alice N; Nizeyi, John Bosco; Cranfield, Michael R; Angert, Esther R

    2006-05-01

    We describe the bacterial diversity in fecal samples of a wild gorilla by use of a 16S rRNA gene clone library and terminal-restriction fragment length polymorphism (T-RFLP). Clones were classified as Firmicutes, Verrucomicrobia, Actinobacteria, Lentisphaerae, Bacteroidetes, Spirochetes, and Planctomycetes. Our data suggest that fecal populations did not change temporally, as determined by T-RFLP.

  9. Lindane removal by pure and mixed cultures of immobilized actinobacteria.

    PubMed

    Saez, Juliana M; Benimeli, Claudia S; Amoroso, María J

    2012-11-01

    Lindane (γ-HCH) is an organochlorine insecticide that has been widely used in developing countries. It is known to persist in the environment and can cause serious health problems. One of the strategies adopted to remove lindane from the environment is bioremediation using microorganisms. Immobilized cells present advantages over free suspended cells, like their high degradation efficiency and protection against toxins. The aims of this work were: (1) To evaluate the ability of Streptomyces strains immobilized in four different matrices to remove lindane, (2) To select the support with optimum lindane removal by pure cultures, (3) To assay the selected support with consortia and (4) To evaluate the reusability of the immobilized cells. Four Streptomyces sp. strains had previously shown their ability to grow in the presence of lindane. Lindane removal by microorganisms immobilized was significantly higher than in free cells. Specifically immobilized cells in cloth sachets showed an improvement of around 25% in lindane removal compared to the abiotic control. Three strains showed significantly higher microbial growth when they were entrapped in silicone tubes. Strains immobilized in PVA-alginate demonstrated lowest growth. Mixed cultures immobilized inside cloth sachets showed no significant enhancement compared to pure cultures, reaching a maximum removal of 81% after 96 h for consortium I, consisting of the four immobilized strains together. Nevertheless, the cells could be reused for two additional cycles of 96 h each, obtaining a maximum removal efficiency of 71.5% when each of the four strains was immobilized in a separate bag (consortium III).

  10. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    PubMed

    Raveh, Avi; Delekta, Phillip C; Dobry, Craig J; Peng, Weiping; Schultz, Pamela J; Blakely, Pennelope K; Tai, Andrew W; Matainaho, Teatulohi; Irani, David N; Sherman, David H; Miller, David J

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.

  11. Microhabitats within venomous cone snails contain diverse actinobacteria.

    PubMed

    Peraud, Olivier; Biggs, Jason S; Hughen, Ronald W; Light, Alan R; Concepcion, Gisela P; Olivera, Baldomero M; Schmidt, Eric W

    2009-11-01

    Actinomycetes can be symbionts in diverse organisms, including both plants and animals. Some actinomycetes benefit their host by producing small molecule secondary metabolites; the resulting symbioses are often developmentally complex. Actinomycetes associated with three cone snails were studied. Cone snails are venomous tropical marine gastropods which have been extensively examined because of their production of peptide-based neurological toxins, but no microbiological studies have been reported on these organisms. A microhabitat approach was used in which dissected tissue from each snail was treated as an individual sample in order to explore bacteria in the tissues separately. Our results revealed a diverse, novel, and highly culturable cone snail-associated actinomycete community, with some isolates showing promising bioactivity in a neurological assay. This suggests that cone snails may represent an underexplored reservoir of novel actinomycetes of potential interest for drug discovery.

  12. Metabolic engineering of natural product biosynthesis in actinobacteria.

    PubMed

    Bilyk, Oksana; Luzhetskyy, Andriy

    2016-12-01

    Actinomycetes are known to produce over two-thirds of all known secondary metabolites. We review here recent progress in the metabolic engineering of streptomycetes for natural product biosynthesis. Several examples of the yield improvement of polyketides (mithramycin and tylactone) and non-ribosomal peptides (balhimycin and daptomycin) demonstrate the power of precursor supply engineering. Another example is the manipulation of a regulatory network for increased production of nystatin and teicoplanin. The second part highlights new approaches in the derivatization of natural products via combination of mutasynthesis and genomic engineering.

  13. A novel nucleoid-associated protein specific to the actinobacteria

    PubMed Central

    Swiercz, Julia P.; Nanji, Tamiza; Gloyd, Melanie; Guarné, Alba; Elliot, Marie A.

    2013-01-01

    Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF–DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules. PMID:23427309

  14. Competitive strategies differentiate closely related species of marine actinobacteria.

    PubMed

    Patin, Nastassia V; Duncan, Katherine R; Dorrestein, Pieter C; Jensen, Paul R

    2016-02-01

    Although competition, niche partitioning, and spatial isolation have been used to describe the ecology and evolution of macro-organisms, it is less clear to what extent these principles account for the extraordinary levels of bacterial diversity observed in nature. Ecological interactions among bacteria are particularly challenging to address due to methodological limitations and uncertainties over how to recognize fundamental units of diversity and link them to the functional traits and evolutionary processes that led to their divergence. Here we show that two closely related marine actinomycete species can be differentiated based on competitive strategies. Using a direct challenge assay to investigate inhibitory interactions with members of the bacterial community, we observed a temporal difference in the onset of inhibition. The majority of inhibitory activity exhibited by Salinispora arenicola occurred early in its growth cycle and was linked to antibiotic production. In contrast, most inhibition by Salinispora tropica occurred later in the growth cycle and was more commonly linked to nutrient depletion or other sources. Comparative genomics support these differences, with S. arenicola containing nearly twice the number of secondary metabolite biosynthetic gene clusters as S. tropica, indicating a greater potential for secondary metabolite production. In contrast, S. tropica is enriched in gene clusters associated with the acquisition of growth-limiting nutrients such as iron. Coupled with differences in growth rates, the results reveal that S. arenicola uses interference competition at the expense of growth, whereas S. tropica preferentially employs a strategy of exploitation competition. The results support the ecological divergence of two co-occurring and closely related species of marine bacteria by providing evidence they have evolved fundamentally different strategies to compete in marine sediments.

  15. Diversity of Actinobacteria Associated with the Marine Ascidian Eudistoma toealensis.

    PubMed

    Steinert, Georg; Taylor, Michael W; Schupp, Peter J

    2015-08-01

    Ascidians have yielded a wide variety of bioactive natural products. The colonial ascidian Eudistoma toealensis from Micronesia has been identified as the source of a series of staurosporine derivatives, though the exact origin of these derivatives is still unknown. To identify known staurosporine-producing microbes associated with E. toealensis, we analyzed with 16S rRNA gene tag pyrosequencing the overall bacterial community and focused on potential symbiotic bacteria already known from other ascidians or other marine hosts, such as sponges. The described microbiota was one of very high diversity, comprising 43 phyla: two from archaea, 34 described bacterial phyla, and seven candidate bacterial phyla. Many bacteria, which are renowned community members of other ascidians and marine holobionts, such as sponges and corals, were also part of the E. toealensis microbial community. Furthermore, two known producers of indolocarbazoles, Salinispora and Verrucosispora, were found with high abundance exclusively in the ascidian tissue, suggesting that microbial symbionts and not the organism itself may be the true producers of the staurosporines in E. toealensis.

  16. Competitive strategies differentiate closely related species of marine actinobacteria

    PubMed Central

    Patin, Nastassia V; Duncan, Katherine R; Dorrestein, Pieter C; Jensen, Paul R

    2016-01-01

    Although competition, niche partitioning, and spatial isolation have been used to describe the ecology and evolution of macro-organisms, it is less clear to what extent these principles account for the extraordinary levels of bacterial diversity observed in nature. Ecological interactions among bacteria are particularly challenging to address due to methodological limitations and uncertainties over how to recognize fundamental units of diversity and link them to the functional traits and evolutionary processes that led to their divergence. Here we show that two closely related marine actinomycete species can be differentiated based on competitive strategies. Using a direct challenge assay to investigate inhibitory interactions with members of the bacterial community, we observed a temporal difference in the onset of inhibition. The majority of inhibitory activity exhibited by Salinispora arenicola occurred early in its growth cycle and was linked to antibiotic production. In contrast, most inhibition by Salinispora tropica occurred later in the growth cycle and was more commonly linked to nutrient depletion or other sources. Comparative genomics support these differences, with S. arenicola containing nearly twice the number of secondary metabolite biosynthetic gene clusters as S. tropica, indicating a greater potential for secondary metabolite production. In contrast, S. tropica is enriched in gene clusters associated with the acquisition of growth-limiting nutrients such as iron. Coupled with differences in growth rates, the results reveal that S. arenicola uses interference competition at the expense of growth, whereas S. tropica preferentially employs a strategy of exploitation competition. The results support the ecological divergence of two co-occurring and closely related species of marine bacteria by providing evidence they have evolved fundamentally different strategies to compete in marine sediments. PMID:26241505

  17. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds. PMID:24349254

  18. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The architecture of the human distal gut microbiota (microbiota) is sculpted by the complex carbohydrates delivered in the diet. Yeasts, which are among the earliest domesticated microorganisms and have been a component of the human diet for at least 7000 years, possess an elaborate cell wall alpha-...

  19. Bacterial isolates from polysaccharide enrichments cluster by host origin for Firmicutes but not Bacteroidetes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intestinal microbiota allows mammals to recover energy stored in plant biomass through fermentation of plant cell walls, primarily cellulose and hemicellulose. Bacteria were isolated from 8 week continuous culture enrichments with cellulose and xylan/pectin from cow (C, n=4), goat (G, n=4), huma...

  20. Analysis of bacterial diversity in sponges collected from Chuuk and Kosrae Islands in Micronesia.

    PubMed

    Jeong, In-Hye; Kim, Kyoung-Ho; Lee, Hyi-Seung; Park, Jin-Sook

    2014-01-01

    The bacteria resident in sponges collected from Chuuk Lagoon and Kosrae Island of Micronesia were investigated using the 16S rRNA gene PCR-tagged pyrosequencing method. These sponges were clustered into 5 groups based on their bacterial composition. Diversity indexes and cumulative rank abundance curves showed the different compositions of bacterial communities in the various groups of sponges. Reads related to the phylum Chloroflexi were observed predominantly (9.7-68.2%) in 9 sponges of 3 groups and unobserved in the other 2 groups. The Chloroflexi-containing group had similar bacterial patterns at the phylum and lower taxonomic levels, for example, significant proportions of Acidobacteria, Gemmatimonadetes, SBR1093, and PAUC34f were observed in most members of this group. The three groups in the Chloroflexi-containing group, however, showed some minor differences in the composition and diversity. The other two groups contained high proportions of Proteobacteria (>87%) or Bacteroidetes (>61%) and different composition and diversity compared to the Chloroflexi-containing group and each other. Four pairs of specimens with the same species showed similar bacterial profiles, but, the bacteria in sponges were highly specific at the individual level.

  1. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4.

    PubMed

    Liang, Quan; Zhang, Xiaoping; Lee, Khui Hung; Wang, Yibing; Yu, Kan; Shen, Wenying; Fu, Luoqin; Shu, Miaoan; Li, Weifen

    2015-11-01

    This experiment was designed to study the effects of Bacillus licheniformis BSK-4 on nitrogen removal and microbial community structure in a grass carp (Ctenopharyngodon idellus) culture. The selected strain Bacillus licheniformis BSK-4 significantly decreased nitrite, nitrate and total nitrogen levels in water over an extended, whereas increased ammonia level. Pyrosequencing showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were dominant in grass carp culture water. Compared with the control group, the number of Proteobacteria and Firmicutes were increased, while Actinobacteria and Bacteroidetes decreased in treatment group. At the genus level, some genera, such as Bacillus, Prosthecobacter, Enterococcus, etc., appear only in the treatment, while many other genera exist only in the control group; Lactobacillus, Luteolibacter, Phenylobacterium, etc. were increased in treatment group compared to those in control group. As above, the results suggested that supplementation with B. licheniformis BSK-4 could remove some nitrogen and cause alterations of the microbial composition in grass carp water.

  2. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis.

    PubMed

    Costa, Rodrigo; Keller-Costa, Tina; Gomes, Newton C M; da Rocha, Ulisses Nunes; van Overbeek, Leo; van Elsas, Jan Dirk

    2013-01-01

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and

  3. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    PubMed Central

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  4. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity.

    PubMed

    Yasir, Muhammad; Aslam, Zubair; Kim, Seon Won; Lee, Seon-Woo; Jeon, Che Ok; Chung, Young Ryun

    2009-10-01

    Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi.

  5. Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil.

    PubMed

    Prasad, Sathish; Manasa, B Poorna; Buddhi, Sailaja; Pratibha, Mambatta S; Begum, Zareena; Bandi, Sunil; Tirunagari, Preethi; Shivaji, Sisinthy

    2013-05-01

    In the course of a study aimed at isolating bacteria from Arctic soils by a method that selectively enriches for rare bioactive actinomycetes, a Gram-stain-negative, pigmented, non-motile rod, designated MN12-7(T), was isolated. The salmon-pink strain was, based on 16S rRNA gene sequence similarity, found to be affiliated with the family Sphingobacteriaceae. Strain MN12-7(T) was catalase-, oxidase- and cellulase-positive and lacked gelatinase, urease, lipase and pectinase. The predominant cellular fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and C15 : 1ω6c. The major respiratory quinone of strain MN12-7(T) was MK-7, and the major polar lipid was phosphatidylethanolamine in addition to phosphatidylserine, seven unidentified lipids and six unidentified aminolipids. The DNA G+C content of strain MN12-7(T) was 38 mol%. Strain MN12-7(T) formed a separate lineage in a cluster containing 'Candidatus comitans', with which it shared 92.3 % 16S rRNA gene sequence similarity. Based on the phenotypic characteristics and phylogenetic inference, strain MN12-7(T) is proposed as a representative of a novel species in a new genus, Arcticibacter svalbardensis gen. nov., sp. nov. The type strain of the type species is MN12-7(T) ( = KCTC 32015(T) = CIP 110422(T)).

  6. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    PubMed Central

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  7. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China.

    PubMed

    Zhang, Lei; Gao, Guang; Tang, Xiangming; Shao, Keqiang; Gong, Yi

    2016-06-01

    The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater-brackish water gradient and (ii) oligotrophic-mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes.

  8. Identification and Environmental Distribution of dcpA, Which Encodes the Reductive Dehalogenase Catalyzing the Dichloroelimination of 1,2-Dichloropropane to Propene in Organohalide-Respiring Chloroflexi

    PubMed Central

    Padilla-Crespo, Elizabeth; Yan, Jun; Swift, Cynthia; Wagner, Darlene D.; Chourey, Karuna; Hettich, Robert L.; Ritalahti, Kirsti M.

    2014-01-01

    Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 107 ± 0.1 × 107 and 1.4 × 107 ± 0.5 × 107 cells per μmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites. PMID:24242248

  9. Identification and environmental distribution of dcpA encoding the 1,2-dichloropropane-to-propene reductive dehalogenase in organohalide-respiring Chloroflexi

    SciTech Connect

    Padilla-Crespo, Elizabeth; Yan, Jun; Swift, Cynthia M; Chourey, Karuna; Hettich, Robert {Bob} L; Ritalahti, Kirsti M; Loeffler, Frank E

    2014-01-01

    Dehalococcoides mccartyi (Dhc) strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated Dhc cell increase during growth with 1,2-D and suggested that both Dhc strains carried a single dcpA gene copy per genome. Dhc strain RC and strain KS produced 1.8 0.1 x 107 and 1.4 0.5 x 107 cells per mole of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which the dcpA gene-targeted qPCR assay captured, suggesting the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.

  10. 454 Pyrosequencing Analysis on Faecal Samples from a Randomized DBPC Trial of Colicky Infants Treated with Lactobacillus reuteri DSM 17938

    PubMed Central

    Roos, Stefan; Dicksved, Johan; Tarasco, Valentina; Locatelli, Emanuela; Ricceri, Fulvio; Grandin, Ulf; Savino, Francesco

    2013-01-01

    Objective To analyze the global microbial composition, using large-scale DNA sequencing of 16 S rRNA genes, in faecal samples from colicky infants given L. reuteri DSM 17938 or placebo. Methods Twenty-nine colicky infants (age 10–60 days) were enrolled and randomly assigned to receive either Lactobacillus reuteri (108 cfu) or a placebo once daily for 21 days. Responders were defined as subjects with a decrease of 50% in daily crying time at day 21 compared with the starting point. The microbiota of faecal samples from day 1 and 21 were analyzed using 454 pyrosequencing. The primers: Bakt_341F and Bakt_805R, complemented with 454 adapters and sample specific barcodes were used for PCR amplification of the 16 S rRNA genes. The structure of the data was explored by using permutational multivariate analysis of variance and effects of different variables were visualized with ordination analysis. Results The infants’ faecal microbiota were composed of Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the four main phyla. The composition of the microbiota in infants with colic had very high inter-individual variability with Firmicutes/Bacteroidetes ratios varying from 4000 to 0.025. On an individual basis, the microbiota was, however, relatively stable over time. Treatment with L. reuteri DSM 17938 did not change the global composition of the microbiota, but when comparing responders with non-responders the group responders had an increased relative abundance of the phyla Bacteroidetes and genus Bacteroides at day 21 compared with day 0. Furthermore, the phyla composition of the infants at day 21 could be divided into three enterotype groups, dominated by Firmicutes, Bacteroidetes, and Actinobacteria, respectively. Conclusion L. reuteri DSM 17938 did not affect the global composition of the microbiota. However, the increase of Bacteroidetes in the responder infants indicated that a decrease in colicky symptoms was linked to changes of the microbiota

  11. Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China.

    PubMed

    Niu, Yuan; Shen, Hong; Chen, Jun; Xie, Ping; Yang, Xi; Tao, Min; Ma, Zhimei; Qi, Min

    2011-08-01

    PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between succession of phytoplankton community and temporal variation of bacterioplankton community composition (BCC) in the eutrophic Lake Taihu. Serious Microcystis bloom was observed in July-December 2008 and Bacillariophyta and Cryptophyta dominated in January-June 2009. BCC was characterized by DGGE of 16S rRNA gene with subsequent sequencing. The DGGE banding patterns revealed a remarkable seasonality which was closely related to phytoplankton community succession. Variation trend of Shannon-Wiener diversity index in bacterioplankton community was similar to that of phytoplankton community. CCA revealed that temperature and phytoplankton played key roles in structuring BCC. Sequencing of DGGE bands suggested that the majority of the sequences were affiliated with common phylogenetic groups in freshwater: Alphaproteobacteria, Betaproteobacteria, Bacteroidetes and Actinobacteria. The cluster STA2-30 (affiliated with Actinobacteria) was found almost across the sampling time at the two study sites. We observed that the family Flavobacteriaceae (affiliated with Bacteroidetes) tightly coupled to diatom bloom and the cluster ML-5-51.2 (affiliated with Actinobacteria) dominated the bacterioplankton communities during Microcystis bloom. These results were quite similar at the two sampling sites, indicating that BCC changes were not random but with fixed pattern. Our study showed insights into relationships between phytoplankton and bacterioplankton communities at species level, facilitating a better understanding of microbial loop and ecosystem functioning in the lake.

  12. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria.

    PubMed

    Selengut, Jeremy D; Haft, Daniel H

    2010-11-01

    Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and a combination of three or more drugs. An increase in drug-resistant strains of M. tuberculosis demonstrates the need for additional TB-specific drugs. A notable feature of M. tuberculosis is coenzyme F(420), which is distributed sporadically and sparsely among prokaryotes. This distribution allows for comparative genomics-based investigations. Phylogenetic profiling (comparison of differential gene content) based on F(420) biosynthesis nominated many actinobacterial proteins as candidate F(420)-dependent enzymes. Three such families dominated the results: the luciferase-like monooxygenase (LLM), pyridoxamine 5'-phosphate oxidase (PPOX), and deazaflavin-dependent nitroreductase (DDN) families. The DDN family was determined to be limited to F(420)-producing species. The LLM and PPOX families were observed in F(420)-producing species as well as species lacking F(420) but were particularly numerous in many actinobacterial species, including M. tuberculosis. Partitioning the LLM and PPOX families based on an organism's ability to make F(420) allowed the application of the SIMBAL (sites inferred by metabolic background assertion labeling) profiling method to identify F(420)-correlated subsequences. These regions were found to correspond to flavonoid cofactor binding sites. Significantly, these results showed that M. tuberculosis carries at least 28 separate F(420)-dependent enzymes, most of unknown function, and a paucity of flavin mononucleotide (FMN)-dependent proteins in these families. While prevalent in mycobacteria, markers of F(420) biosynthesis appeared to be absent from the normal human gut flora. These findings suggest that M. tuberculosis relies heavily on coenzyme F(420) for its redox reactions. This dependence and the cofactor's rarity may make F(420)-related proteins promising drug targets.

  13. Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria.

    PubMed

    Colin, Verónica Leticia; Pereira, Claudia Elizabeth; Villegas, Liliana Beatriz; Amoroso, Maria Julia; Abate, Carlos Mauricio

    2013-01-01

    Surface-active compounds such as synthetic emulsifiers have been used for several decades, both for the degradation of hydrocarbons and increasing desorption of soil-bound metals. However, due to their high toxicity, low degradability, and production costs unaffordable for use in larger ecosystems, synthetic emulsifiers have been gradually replaced by those derived from natural sources such as plants or microbes. In previous studies, the bacterium Streptomyces sp. MC1 has shown the ability to reduce and/or accumulate Cr(VI), a highly promising advance in the development of methods for environmental clean-up of sites contaminated with chromium. Here, new studies on the production of emulsifier from this strain are presented. The cultivation factors that have a significant influence on emulsifier biosynthesis, as well as the interactions among them, were studied by factorial design. Based upon optimization studies, maximum bioemulsifier production was detected in the culture medium having an initial pH of 8 with phosphate 2.0 g L(-1) and Ca(+2) 1.0 g L(-1) added, with an emulsification index about 3.5 times greater compared to the basal value. Interestingly, in the presence of 5.0 g L(-1) Cr(VI), Streptomyces sp. MC1 retained about 65% of its emulsifier production ability. Partially purified emulsifier presented high thermo-stability and partial water solubility. These findings could have promising future prospects for the remediation of organic- and metal-contaminated sites.

  14. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes

    PubMed Central

    Sghaier, Haïtham; Hezbri, Karima; Ghodhbane-Gtari, Faten; Pujic, Petar; Sen, Arnab; Daffonchio, Daniele; Boudabous, Abdellatif; Tisa, Louis S; Klenk, Hans-Peter; Armengaud, Jean; Normand, Philippe; Gtari, Maher

    2016-01-01

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including ‘molecular tinkering/opportunism' as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively. PMID:26125681

  15. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound.

    PubMed

    Karthik, L; Kumar, Gaurav; Keswani, Tarun; Bhattacharyya, Arindam; Chandar, S Sarath; Bhaskara Rao, K V

    2014-01-01

    The study was planned to screen the marine actinobacterial extract for the protease inhibitor activity and its anti- Pf activity under in vitro and in vivo conditions. Out of 100 isolates, only 3 isolates exhibited moderate to high protease inhibitor activities on trypsin, chymotrypsin and proteinase K. Based on protease inhibitor activity 3 isolates were chosen for further studies. The potential isolate was characterized by polyphasic approach and identified as Streptomyces sp LK3 (JF710608). The lead compound was identified as peptide from Streptomyces sp LK3. The double-reciprocal plot displayed inhibition mode is non-competitive and it confirms the irreversible nature of protease inhibitor. The peptide from Streptomyces sp LK3 extract showed significant anti plasmodial activity (IC50: 25.78 µg/ml). In in vivo model, the highest level of parasitemia suppression (≈ 45%) was observed in 600 mg/kg of the peptide. These analyses revealed no significant changes were observed in the spleen and liver tissue during 8 dpi. The results confirmed up-regulation of TGF-β and down regulation of TNF-α in tissue and serum level in PbA infected peptide treated mice compared to PbA infection. The results obtained infer that the peptide possesses anti- Pf activity activity. It suggests that the extracts have novel metabolites and could be considered as a potential source for drug development.

  16. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes.

    PubMed

    Sghaier, Haïtham; Hezbri, Karima; Ghodhbane-Gtari, Faten; Pujic, Petar; Sen, Arnab; Daffonchio, Daniele; Boudabous, Abdellatif; Tisa, Louis S; Klenk, Hans-Peter; Armengaud, Jean; Normand, Philippe; Gtari, Maher

    2016-01-01

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including 'molecular tinkering/opportunism' as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively.

  17. Draft Genome Sequence of Curtobacterium sp. Strain UCD-KPL2560 (Phylum Actinobacteria).

    PubMed

    Klein, Brian A; Lemon, Katherine P; Faller, Lina L; Jospin, Guillaume; Eisen, Jonathan A; Coil, David A

    2016-10-06

    Here, we present the draft genome sequence of the actinobacterium Curtobacterium sp. strain UCD-KPL2560, which was isolated from the running surface of an indoor track field house in Medford, MA, USA (42.409716°N, -71.115169°W). The genome assembly contains 3,480,487 bp in 156 contigs.

  18. Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa).

    PubMed

    Thanaboripat, Dusanee; Thawai, Chitti; Kittiwongwattana, Chokchai; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak

    2015-11-01

    An actinobacterial strain, DCWR9-8-2(T), was isolated from a leaf of Thai upland rice (Oryza sativa) collected in Chumporn province, Thailand. Strain DCWR9-8-2(T) is Gram-stain-positive aerobic bacteria that produce single spores directly on the vegetative hypha. Cell wall peptidoglycan of this strain exhibits meso-diaminopimelic acid and glycine, the reducing sugars of whole-cell hydrolysate are arabinose, glucose, ribose, xylose and small amount of mannose. The phospholipid profiles in the membrane are comprised of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides. The major menaquinones are MK-9(H4) and MK-10(H6). The diagnostic cellular fatty acids are iso-C16:0 and iso-C15:0. The G+C content of the genomic DNA is 72.5 mol%. The result of 16S rRNA sequence analysis of the strain revealed that this strain was closely related to Micromonospora auratinigra TT1-11(T) (99.25%). On the other hand, the result of gyrB gene sequence analysis revealed that this strain was closed to M. eburnea JCM 12345(T) (96.30%). In addition, a combination of DNA-DNA hybridization results and some phenotypic properties supported that this strain should be judged as a novel species of the genus Micromonospora, for which the name M. endophytica sp. nov. is proposed. The type strain is DCWR9-8-2(T) (=BCC 67267(T)=NBRC 110008(T)).

  19. Draft Genome Sequence of Arthrobacter sp. Strain UCD-GKA (Phylum Actinobacteria).

    PubMed

    Kincheloe, Gregory N; Eisen, Jonathan A; Coil, David A

    2017-02-09

    Here we present the draft genome of Arthrobacter sp. strain UCD-GKA. The assembly contains 4,930,274 bp in 33 contigs. This strain was isolated from the handle of a weight bar in the UC Davis Activities and Recreation Center.

  20. Draft Genome Sequence of Leucobacter sp. Strain UCD-THU (Phylum Actinobacteria)

    PubMed Central

    Holland-Moritz, Hannah E.; Bevans, Dakota R.; Lang, Jenna M.; Darling, Aaron E.; Coil, David A.

    2013-01-01

    Here we present the draft genome of Leucobacter sp. strain UCD-THU. The genome contains 3,317,267 bp in 11 scaffolds. This strain was isolated from a residential toilet as part of an undergraduate project to sequence reference genomes of microbes from the built environment. PMID:23792744

  1. Draft Genome Sequence of Dietzia sp. Strain UCD-THP (Phylum Actinobacteria)

    PubMed Central

    Diep, Amanda L.; Lang, Jenna M.; Darling, Aaron E.; Coil, David A.

    2013-01-01

    Here, we present the draft genome sequence of an actinobacterium, Dietzia sp. strain UCD-THP, isolated from a residential toilet handle. The assembly contains 3,915,613 bp. The genome sequences of only two other Dietzia species have been published, those of Dietzia alimentaria and Dietzia cinnamea. PMID:23661480

  2. Draft Genome Sequence of Gordonia sp. Strain UCD-TK1 (Phylum Actinobacteria)

    PubMed Central

    Koenigsaecker, Tynisha M.; Coil, David A.

    2016-01-01

    Here, we present the draft genome of Gordonia sp. strain UCD-TK1. The assembly contains 5,470,576 bp in 98 contigs. This strain was isolated from a disinfected ambulatory surgery center. PMID:27738036