Science.gov

Sample records for actinobacterial strain designated

  1. Cultural, Transcriptomic, and Proteomic Analyses of Water-Stressed Cells of Actinobacterial Strains Isolated from Compost: Ecological Implications in the Fed-Batch Composting Process

    PubMed Central

    Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira

    2016-01-01

    This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts. PMID:27246805

  2. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor.

    PubMed

    Sarkar, Sreyashi; Saha, Malay; Roy, Debashis; Jaisankar, Parasuraman; Das, Satadal; Gauri Roy, Lalita; Gachhui, Ratan; Sen, Tuhinadri; Mukherjee, Joydeep

    2008-01-01

    A novel reactor system, the rotating disk bioreactor (RDBR), was used to mimic the niche environmental conditions of three salt-tolerant estuarine actinobacteria isolated from the Sundarbans region off the Bay of Bengal, designated MS310 (99% similar in its 16S rRNA gene sequence to Streptomyces parvallus), MS3/20 and MS1/7. The RDBR, operated at a rotational speed of one revolution per day, 50% submergence of discs, aeration rate of 1.0 vvm, and with a sucrose-containing medium, faithfully mimicked the intertidal estuarine habitat of these marine isolates, and supported biofilm formation and production of antimicrobial metabolites-in particular, actinomycin D by MS310. Onset of antibiotic production by MS310 occurs at 20 h in the RDBR compared to 55 h in a conventional stirred-tank bioreactor (STBR). Furthermore, peak antimicrobial activity is attained much earlier in the RDBR with MS310 (at 45 h) than that reported with a terrestrial strain of S. parvallus grown in a STBR (at 144 h). Peak antimicrobial activity of metabolites produced by MS1/7 and MS3/20 were also attained earlier in the RDBR (at 25 and 12 h, respectively) than in a STBR (at 80 and 28 h, respectively). Antibiotic synthesis in the three isolates, in general, appears to be associated with their growth. Overall, the RDBR may be considered the preferred alternative to the STBR for production of antimicrobials by biofilm-forming estuarine bacteria for its much higher surface/volume ratio, lower costs, and easy operability.

  3. Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism.

    PubMed

    Conn, Vanessa M; Franco, Christopher M M

    2004-11-01

    The effect of single actinobacterial endophyte seed inoculants and a mixed microbial soil inoculant on the indigenous endophytic actinobacterial population in wheat roots was investigated by using the molecular technique terminal restriction fragment length polymorphism (T-RFLP). Wheat was cultivated either from seeds coated with the spores of single pure actinobacterial endophytes of Microbispora sp. strain EN2, Streptomyces sp. strain EN27, and Nocardioides albus EN46 or from untreated seeds sown in soil with and without a commercial mixed microbial soil inoculant. The endophytic actinobacterial population within the roots of 6-week-old wheat plants was assessed by T-RFLP. Colonization of the wheat roots by the inoculated actinobacterial endophytes was detected by T-RFLP, as were 28 to 42 indigenous actinobacterial genera present in the inoculated and uninoculated plants. The presence of the commercial mixed inoculant in the soil reduced the endophytic actinobacterial diversity from 40 genera to 21 genera and reduced the detectable root colonization by approximately half. The results indicate that the addition of a nonadapted microbial inoculum to the soil disrupted the natural actinobacterial endophyte population, reducing diversity and colonization levels. This was in contrast to the addition of a single actinobacterial endophyte to the wheat plant, where the increase in colonization level could be confirmed even though the indigenous endophyte population was not adversely affected.

  4. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    PubMed

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  5. A guide to successful bioprospecting: informed by actinobacterial systematics.

    PubMed

    Goodfellow, Michael; Fiedler, Hans-Peter

    2010-08-01

    New structurally diverse natural products are discovered when novel screening procedures are introduced or when high quality biological materials from new sources are examined in existing screens, hence it is important to foster these two aspects of novelty in drug discovery programmes. Amongst prokaryotes, actinomycetes, notably streptomycetes, remain a rich source of new natural products though it has become increasingly difficult to find such metabolites from common actinomycetes as screening 'old friends' leads to the costly rediscovery of known compounds. The bioprospecting strategy which is the subject of this review is based upon the premise that new secondary metabolites can be found by screening relatively small numbers of dereplicated, novel actinomycetes isolated from marine sediments. The success of the strategy is exemplified by the discovery of a range of novel bioactive compounds, notably atrop-abyssomicin C and proximicins A, B and C from Verrucosispora strains isolated from sediment samples taken from the Sea of Japan and the Raune Fjord, respectively, and the dermacozines derived from Dermacoccus strains isolated from the Challenger Deep of the Mariana Trench in the Pacific Ocean. The importance of current advances in prokaryotic systematics in work of this nature is stressed and a plea made that resources be sought to train, support and employ the next generation of actinobacterial systematists.

  6. Kineosphaera nakaumiensis sp. nov., a novel actinobacterial species of the genus Kineosphaera isolated from sediments in Lake Nakaumi.

    PubMed

    Yamada, Chihaya; Matsuo, Yoshihide; Kasai, Hiroaki; Yokota, Akira; Yoon, Jaewoo

    2013-01-01

    A novel actinobacterial strain, designated YM16-381(T), was isolated from sediments of Lake Nakaumi in Shimane Prefecture, Japan. The cell of the strain was motile, non-spore-forming and Gram-positive. The colony was gray-pink and circular on marine agar 2216 medium. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Dermatophilaceae of the suborder Micrococcineae. The highest sequence similarity value of the isolate was 96.2% against Kineosphaera limosa. The diaminopimelic acid in the cell wall was meso-A2pm. The major menaquinone was MK-8(H4). The DNA G+C contents were 70.5 mol%. The major cellular fatty acids were C17:1ω8c, C16:0, C15:0 and C18:1ω9c. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and ninhydrin-positive phosphoglycolipid. On the basis of polyphasic taxonomic studies, strain YM16-381(T) represents a novel species of the genus Kineosphaera within the family Dermatophilaceae, for which the name Kineosphaera nakaumiensis sp. nov. is proposed. The type strain is YM16-381(T) (=KCTC 29138(T)=NBRC 109121(T)).

  7. Marine actinobacterial metabolites: current status and future perspectives.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2013-07-19

    Marine actinobacteriology is one of the major emerging areas of research in tropics. Marine actinobacteria are the most economically as well as biotechnologically valuable prokaryotes. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Among the actinobacteria, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinobacteria in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of novel actinobacteria are of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. In this review an evaluation is made on the present state of research on marine actinobacterial metabolites and its perspectives. The highlights include the production and biotechnological applications of metabolites such as antibiotics, anticancer compounds, melanins, enzymes and enzyme inhibitors, single cell protein and as probiotics in aquaculture. With increasing advancement in science and technology, there would be greater demands in future for new bioactive compounds synthesized by actinobacteria from various marine sources.

  8. Actinobacterial community dynamics in long term managed grasslands.

    PubMed

    Jenkins, Sasha N; Waite, Ian S; Blackburn, Adrian; Husband, Rebecca; Rushton, Steven P; Manning, David C; O'Donnell, Anthony G

    2009-05-01

    Palace Leas, a long-term experiment at Cockle Park Farm, Northumberland, UK was established in winter 1896-1897 since when the 13 plots have received regular and virtually unchanged mineral fertiliser and farm yard manure inputs. Fertilisers have had a profound impact on soil pH with the organically fertilised plots showing a significantly higher pH than those receiving mineral fertiliser where ammonium sulphate has led to soil acidification. Here, we investigate the impact of organic and mineral fertilisers on the actinobacterial community structure of these soils using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene analysis. To differentiate fertiliser effects from seasonal variation, soils were sampled three times over one growing season between May and September 2004 and January 2005. Community profiles obtained using T-RFLP were analysed using multivariate statistics to investigate the relationship between community structure, seasonality and fertiliser management. Soil pH was shown to be the most significant edaphic factor influencing actinobacterial communities. Canonical correspondence analysis, used to investigate the relationship between the 16S rRNA gene community profiles and the environmental parameters, showed that actinobacterial communities also responded to soil water content with major changes evident over the summer months between May and September. Quantitative PCR of the actinobacterial and fungal 16S and 18S rRNA genes, respectively suggested that fungal rRNA gene copy numbers were negatively correlated (P = 0.0131) with increasing actinobacterial signals. A similar relationship (P = 0.000365) was also evident when fatty acid methyl esters indicative of actinobacterial biomass (10-methyloctadecanoic acid) were compared with the amounts of fungal octadecadienoic acid (18:2omega9,12). These results show clearly that soil pH is a major driver of change in actinobacterial communities and that genera such as

  9. Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau

    PubMed Central

    Yang, Jian; Li, Xiaoyan; Huang, Liuqin; Jiang, Hongchen

    2015-01-01

    The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs. PMID:26648925

  10. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities.

    PubMed

    Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K; Ningthoujam, Debananda S; Li, Wen-Jun

    2015-01-01

    Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites.

  11. Diversity and distribution of the bioactive actinobacterial genus Salinispora from sponges along the Great Barrier Reef.

    PubMed

    Vidgen, M E; Hooper, J N A; Fuerst, J A

    2012-03-01

    Isolates from the marine actinobacterial genus Salinispora were cultured from marine sponges collected from along the length of the Great Barrier Reef (GBR), Queensland, Australia. Strains of two species of Salinispora, Salinispora arenicola and "Salinispora pacifica", were isolated from GBR sponges Dercitus xanthus, Cinachyrella australiensis and Hyattella intestinalis. Phylogenetic analysis of the 16S rRNA gene sequences of representative strains, selected via BOX-PCR screening, identified previously unreported phylotypes of the species "S. pacifica". The classification of these microdiverse 16S rRNA groups was further confirmed by analysis of the ribonuclease P RNA (RNase P RNA) gene through both phylogenetic and secondary structure analysis. The use of RNase P RNA sequences combined with 16S rRNA sequences allowed distinction of six new intraspecies phylotypes of "S. pacifica" within the geographical area of the GBR alone. One of these new phylotypes possessed a localised regional distribution within the GBR.

  12. Actinobacterial melanins: current status and perspective for the future.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2013-10-01

    Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of bacteria and fungi. Melanins are biological macromolecules with multiple important functions, yet their structures are not well understood. Melanins are frequently used in medicine, pharmacology, and cosmetics preparations. Melanins also have great application potential in agriculture industry. They have several biological functions including photoprotection, thermoregulation, action as free radical sinks, cation chelators, and antibiotics. Plants and insects incorporate melanins as cell wall and cuticle strengtheners, respectively. Actinobacteria are the most economically as well as biotechnologically valuable prokaryotes. However, the melanin properties are, in general, poorly understood. In this review an evaluation is made on the present state of research on actinobacterial melanins and its perspectives. The highlights include the production and biotechnological applications of melanins in agriculture, food, cosmetic and medicinal fields. With increasing advancement in science and technology, there would be greater demands in the future for melanins produced by actinobacteria from various sources.

  13. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966

  14. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    PubMed Central

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  15. NASA LaRC Strain Gage Balance Design Concepts

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1999-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.

  16. Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians.

    PubMed

    Peng, Jiang; Zhang, Xiaoyong; Xu, Xinya; He, Fei; Qi, Shuhua

    2013-04-01

    The diversity of culturable non-actinobacterial (NA) bacteria associated with four species of South China Sea gorgonians was investigated using culture-dependent methods followed by analysis of the bacterial 16S rDNA sequence. A total of 76 bacterial isolates were recovered and identified, which belonged to 21 species of 7 genera, and Bacillus was the most diverse genus. Fifty-one percent of the 76 isolates displayed antibacterial activities, and most of them belonged to the Bacillus genus. From the culture broth of gorgonian-associated Bacillus methylotrophicus SCSGAB0092 isolated from gorgonian Melitodes squamata, 11 antimicrobial lipopeptides including seven surfactins and four iturins were obtained. These results imply that Bacillus strains associated with gorgonians play roles in coral defense mechanisms through producing antimicrobial substances. This study, for the first time, compares the diversity of culturable NA bacterial communities among four species of South China Sea gorgonians and investigates the secondary metabolites of gorgonian-associated B. methylotrophicus SCSGAB0092.

  17. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841

  18. Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism

    PubMed Central

    Horn, Hannes; Hentschel, Ute

    2015-01-01

    Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes. PMID:26430030

  19. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  20. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.

  1. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard

    2014-01-01

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs. PMID:24608010

  2. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.

    PubMed

    Hubin, Elizabeth A; Tabib-Salazar, Aline; Humphrey, Laurence J; Flack, Joshua E; Olinares, Paul Dominic B; Darst, Seth A; Campbell, Elizabeth A; Paget, Mark S

    2015-06-09

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.

  3. Actinobacterial diversity across a marine transgression in the deep subsurface off Shimokita Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Harrison, B. K.; Bailey, J. V.

    2013-12-01

    Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.

  4. Computational methods in metabolic engineering for strain design.

    PubMed

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms.

  5. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant.

    PubMed

    Persson, Tomas; Battenberg, Kai; Demina, Irina V; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T; Wilbanks, Elizabeth G; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.

  6. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  7. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities.

    PubMed

    Ramya, Suseenthar; Shanmugasundaram, Thangavel; Balagurunathan, Ramasamy

    2015-10-01

    Currently, there is an ever-increasing need to develop environmentally benign processes in place of synthetic protocols. As a result, researchers in the field of nanoparticle synthesis are focusing their attention on microbes from rare biological ecosystems. One potential actinobacterium, Streptomyces minutiscleroticus M10A62 isolated from a magnesite mine had the ability to synthesize selenium nanoparticles (SeNPs), extracellularly. Actinobacteria mediated SeNP synthesis were characterized by UV-visible, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and high resolution transmission electron microscopy (HR-TEM) analysis. The UV-spectral analysis of SeNPs indicated the maximum absorption at 510nm, FT-IR spectral analysis confirms the presence of capping protein, peptide, amine and amide groups. The selenium signals confirm the presence of SeNPs. All the diffraction peaks in the XRD pattern and HR-TEM confirm the size of SeNPs in the range of 10-250nm. Further, the anti-biofilm and antioxidant activity of the SeNPs increased proportionally with rise in concentration, and the test strains reduced to 75% at concentration of 3.2μg. Selenium showed significant anti-proliferative activity against HeLa and HepG2 cell lines. The wound healing activity of SeNPs reveals that 5% selenium oinment heals the excision wound of Wistar rats up to 85% within 18 days compared to the standard ointment. The biosynthesized SeNPs exhibited good antiviral activity against Dengue virus. The present study concludes that extremophilic actinobacterial strain was a novel source for SeNPs with versatile biomedical applications and larger studies are needed to quantify these observed effects of SeNPs.

  8. New design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; López-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-10-01

    A new smart structure based on fiber Bragg gratings (FBGs) embedded into composite laminates for temperature and strain simultaneous measurement has been designed and experimentally tested. Two holes have been drilled at preset locations in the composite plate to create different strain sensitivities at different locations. The proposed design has been compared to three reference sensing heads also based on embedding FBGs into composite materials. Experimental results agree remarkably well with mechanical simulations and validate all the tested designs for the temperature-strain discrimination. Based on the same principle, another sensing head with a long single FBG embedded has also been designed and experimentally tested, obtaining temperature independent strain measurement.

  9. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement

    PubMed Central

    Ravagnani, Adriana; Finan, Christopher L; Young, Michael

    2005-01-01

    Background In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf) is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria). The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria) and obtain information about how they may control bacterial growth and resuscitation. Results In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. Conclusions The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope. PMID:15774001

  10. In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production.

    PubMed

    Latha, Selvanathan; Vinothini, Gopal; John Dickson Calvin, Devadasan; Dhanasekaran, Dharumadurai

    2016-01-01

    The present study was undertaken to select exclusive indigenous actinobacterial probiont for broiler health improvement based on in vitro probiotic potentials. In total, 18 actinobacterial cultures isolated from chicken were screened for survivability (resistance to low pH, pepsin, bile and pancreatin), colonization (auto-aggregation, hydrophobicity and co-aggregation) and safety (antibiotic susceptibility and non-haemolytic activity). Ten cultures showed excellent viability at pH 2 and most of the acid-tolerant isolates exhibited resistance to pepsin (3 mg/mL), bile (0.3%) and pancreatin (1 mg/mL). Besides, the examined isolates displayed efficient adhesion properties. All the isolates were susceptible to 9 different antibiotics and none of them exhibited β-haemolytic activity. Moreover, the culture JD9 revealed remarkable probiotic features compared to the other isolates, which was identified as Streptomyces sp. JD9 (KF878075). Taken together, the present study suggests that the probiont Streptomyces sp. JD9 could potentially be used in broiler practices as a feed additive to facilitate enhanced broiler production.

  11. EMILiO: a fast algorithm for genome-scale strain design.

    PubMed

    Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan

    2011-05-01

    Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design.

  12. Materials design and processings for industrial high-strain-rate superplastic forming

    SciTech Connect

    Hosokawa, H.; Higashi, K.

    2000-07-01

    The optimum materials design in microstructural control could be developed for the high-strain-rate superplastic materials in the industrial scale. In the present work, it is reported that the high-performance-engine pistons with near-net-shape can be fabricated by the superplastic forging technology in the high-strain-rate superplastic PM Al-Si based alloy, which is produced by using this optimum materials design.

  13. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty.

    PubMed

    Cilla, Myriam; Checa, Sara; Duda, Georg N

    2017-02-08

    A large number of hip prosthesis with different designs have been developed. However, the influence of hip implant design changes on the strains induced in the bone remains unclear. The purpose of this study is to better understand the mechanics of short stem total hip arthroplasty. Specifically, it investigates whether strain shielding can be avoided by changing implant shape and/or material properties. It is hypothesized that the re-design of existing implant designs can result in further reduction of strain shielding and thus keep bone loss minimal following total hip replacement. Finite element methods were used to compare healthy and implanted models. The local mechanics strains/stresses in the intact and implanted femurs were determined under patient-specific muscle and joint contact forces. Results suggest that small changes in implant geometry and material properties have no major effect on strain shielding. Furthermore, it was found that improvement depends on a dramatic re-design of the original implant design. Whereas the benefit of this strategy of modification of the original geometry of a given short-stemmed hip consists in reduced bone remodeling, care should be taken with regard to long-term bone anchorage and implant fatigue strength. It is also shown that geometrical and material changes have a limited potential in avoiding strain shielding even in short-stemmed implants. Finally, it is suggested that an understanding of the influence of these changes on the strain distribution within the bone can guide in the process of optimizing the current stem designs toward minimal strain shielding effects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  14. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis

    PubMed Central

    Dhanda, Sandeep Kumar; Vir, Pooja; Singla, Deepak; Gupta, Sudheer; Kumar, Shailesh

    2016-01-01

    Development of an effective vaccine against drug-resistant Mycobacterium tuberculosis (Mtb) is crucial for saving millions of premature deaths every year due to tuberculosis. This paper describes a web portal developed for assisting researchers in designing vaccines against emerging Mtb strains using traditional and modern approaches. Firstly, we annotated 59 genomes of Mycobacterium species to understand similarity/dissimilarity between tuberculoid, non-tuberculoid and vaccine strains at genome level. Secondly, antigen-based vaccine candidates have been predicted in each Mtb strain. Thirdly, epitopes-based vaccine candidates were predicted/discovered in above antigen-based vaccine candidates that can stimulate all arms of immune system. Finally, a database of predicted vaccine candidates at epitopes as well at antigen level has been developed for above strains. In order to design vaccine against a newly sequenced genome of Mtb strain, server integrates three modules for identification of strain-, antigen-, epitope-specific vaccine candidates. We observed that 103522 unique peptides (9mers) had the potential to induce an antibody response and/or promiscuous binder to MHC alleles and/or have the capability to stimulate T lymphocytes. In summary, this web-portal will be useful for researchers working on designing vaccines against Mtb including drug-resistant strains. Availability: The database is available freely at http://crdd.osdd.net/raghava/mtbveb/. PMID:27096425

  15. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    SciTech Connect

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath E-mail: madhu.bhaskaran@gmail.com; Bhaskaran, Madhu E-mail: madhu.bhaskaran@gmail.com

    2014-01-13

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics.

  16. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    NASA Astrophysics Data System (ADS)

    Gawedzki, Waclaw; Tarnowski, Jerzy

    2015-10-01

    Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  17. Design, Evaluation and Experimental Effort Toward Development of a High Strain Composite Wing for Navy Aircraft

    NASA Technical Reports Server (NTRS)

    Bruno, Joseph; Libeskind, Mark

    1990-01-01

    This design development effort addressed significant technical issues concerning the use and benefits of high strain composite wing structures (Epsilon(sub ult) = 6000 micro-in/in) for future Navy aircraft. These issues were concerned primarily with the structural integrity and durability of the innovative design concepts and manufacturing techniques which permitted a 50 percent increase in design ultimate strain level (while maintaining the same fiber/resin system) as well as damage tolerance and survivability requirements. An extensive test effort consisting of a progressive series of coupon and major element tests was an integral part of this development effort, and culminated in the design, fabrication and test of a major full-scale wing box component. The successful completion of the tests demonstrated the structural integrity, durability and benefits of the design. Low energy impact testing followed by fatigue cycling verified the damage tolerance concepts incorporated within the structure. Finally, live fire ballistic testing confirmed the survivability of the design. The potential benefits of combining newer/emerging composite materials and new or previously developed high strain wing design to maximize structural efficiency and reduce fabrication costs was the subject of subsequent preliminary design and experimental evaluation effort.

  18. Effect of nickel titanium file design on the root surface strain and apical microcracks.

    PubMed

    Jamleh, Ahmed; Adorno, Carlos G; Ebihara, Arata; Suda, Hideaki

    2016-04-01

    The aim of this study was to determine the effect of nickel titanium file design on the root surface strain generated and apical microcracks caused during canal shaping. Thirty-three mandibular incisors were distributed into LightSpeed X, FlexMaster and a control group. A strain gauge was fixed apically on the proximal root surface to determine the maximum strain during canal shaping. Except for the control group, all root canals were enlarged to size 50. Images were taken after removing the apical 1 and 2 mm of the root end. Mean maximum strain values and presence of microcracks were statistically compared using the t-test and chi-square test, respectively. During canal shaping, the strain increased cumulatively with mean maximum strains of 808.2 ± 228.8 and 525.1 ± 168.9 microstrain in LightSpeed X and FlexMaster, respectively (P = 0.004). Both systems caused comparable microcracks. Although LightSpeed X produced higher maximum strain, no difference in microcrack development was found between both systems.

  19. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  20. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation.

    PubMed

    Schäfer, Caspar; Bommer, Martin; Hennig, Sandra E; Jeoung, Jae-Hun; Dobbek, Holger; Lenz, Oliver

    2016-02-02

    A novel group of bacterial [NiFe]-hydrogenases is responsible for high-affinity H2 uptake from the troposphere, and is therefore thought to play an important role in the global H2 cycle. Here we present the first crystal structure at 2.85-Å resolution of such an actinobacterial-type hydrogenase (AH), which was isolated from the dihydrogen oxidizing bacterium, Ralstonia eutropha. The enzyme has a dimeric structure carrying two active [NiFe] sites that are interconnected by six [4Fe4S] clusters over a range of approximately 90 Å. Unlike most other [NiFe]-hydrogenases, the [4Fe4S] cluster proximal to the [NiFe] site is coordinated by three cysteines and one aspartate. Mutagenesis experiments revealed that this aspartate residue is related to the apparent O2 insensitivity of the AH. Our data provide first structural insight into specialized hydrogenases that are supposed to consume atmospheric H2 under challenging conditions, i.e. at high O2 concentration and wide temperature and pH ranges.

  1. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  2. Genome Sequence of “Candidatus Aquiluna” sp. Strain IMCC13023, a Marine Member of the Actinobacteria Isolated from an Arctic Fjord

    PubMed Central

    Kang, Ilnam; Lee, Kiyoung; Yang, Seung-Jo; Choi, Ahyoung; Kang, Dongmin; Lee, Yoo Kyoung

    2012-01-01

    We report the genome sequence of actinobacterial strain IMCC13023, isolated from arctic fjord seawater. Phylogenetic analysis of 16S rRNA gene showed that the strain is related to “Candidatus Aquiluna rubra.” The genome information suggests that strain IMCC13023 is a photoheterotroph carrying actinorhodopsin, with the smallest genome ever reported for a free-living member of the Actinobacteria. PMID:22689238

  3. Novel design of dual-core microstructured fiber with enhanced longitudinal strain sensitivity

    NASA Astrophysics Data System (ADS)

    Szostkiewicz, Lukasz; Tenderenda, T.; Napierala, M.; Szymański, M.; Murawski, M.; Mergo, P.; Lesiak, P.; Marc, P.; Jaroszewicz, L. R.; Nasilowski, T.

    2014-05-01

    Constantly refined technology of manufacturing increasingly complex photonic crystal fibers (PCF) leads to new optical fiber sensor concepts. The ways of enhancing the influence of external factors (such as hydrostatic pressure, temperature, acceleration) on the fiber propagating conditions are commonly investigated in literature. On the other hand longitudinal strain analysis, due to the calculation difficulties caused by the three dimensional computation, are somehow neglected. In this paper we show results of such a 3D numerical simulation and report methods of tuning the fiber strain sensitivity by changing the fiber microstructure and core doping level. Furthermore our approach allows to control whether the modes' effective refractive index is increasing or decreasing with strain, with the possibility of achieving zero strain sensitivity with specific fiber geometries. The presented numerical analysis is compared with experimental results of the fabricated fibers characterization. Basing on the aforementioned methodology we propose a novel dual-core fiber design with significantly increased sensitivity to longitudinal strain for optical fiber sensor applications. Furthermore the reported fiber satisfies all conditions necessary for commercial applications like good mode matching with standard single-mode fiber, low confinement loss and ease of manufacturing with the stack-and-draw technique. Such fiber may serve as an integrated Mach-Zehnder interferometer when highly coherent source is used. With the optimization of single mode transmission to 850 nm, we propose a VCSEL source to be used in order to achieve a low-cost, reliable and compact strain sensing transducer.

  4. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    SciTech Connect

    Lower, Mark D.

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  5. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution

  6. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development.

    PubMed

    Chen, Zhen; Wilmanns, Matthias; Zeng, An-Ping

    2010-10-01

    The future of industrial biotechnology requires efficient development of highly productive and robust strains of microorganisms. Present praxis of strain development cannot adequately fulfill this requirement, primarily owing to the inability to control reactions precisely at a molecular level, or to predict reliably the behavior of cells upon perturbation. Recent developments in two areas of biology are changing the situation rapidly: structural biology has revealed details about enzymes and associated bioreactions at an atomic level; and synthetic biology has provided tools to design and assemble precisely controllable modules for re-programming cellular metabolic circuitry. However, because of different emphases, to date, these two areas have developed separately. A linkage between them is desirable to harness their concerted potential. We therefore propose structural synthetic biotechnology as a new field in biotechnology, specifically for application to the development of industrial microbial strains.

  7. Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21T)

    SciTech Connect

    Munk, Chris; Lapidus, Alla; Copeland, Alex; Jando, Marlen; Mayilraj, Shanmugam; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Bruce, David; Goodwin, Lynne; Chain, Patrick; Pitluck, Sam; Göker, Markus; Ovchinikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-12-30

    Stackebrandtia nassauensis Labeda and Kroppenstedt (2005) is the type species of the genus Stackebrandtia, and a member of the actinobacterial family Glycomycetaceae. Stackebrandtia currently contains two species, which are differentiated from Glycomyces spp. by cellular fatty acid and menaquinone composition. Strain LLR-40K-21T is Gram-positive, aerobic, and nonmotile, with a branched substrate mycelium and on some media an aerial mycelium. The strain was originally isolated from a soil sample collected from a road side in Nassau, Bahamas. We describe the features of this organism, together with the complete genome sequence and annotation. Lastly, this is the first complete genome sequence of the actinobacterial suborder Glycomycineae. The 6,841,557 bp long single replicon genome with its 6487 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Migration and strains induced by different designs of force-closed stems for THA☆

    PubMed Central

    Griza, Sandro; Gomes, Luiz Sérgio Marcelino; Cervieri, André; Strohaecker, Telmo Roberto

    2015-01-01

    Objectives Subtle differences in stem design can result in different mechanical responses of the total hip arthroplasty. Tests measuring migration of the stem relative to the femur, as well as the strains in the cement mantle and on the femur can detect different mechanical behavior between stems. Methods In this article, conical, double and triple tapered stems were implanted in composite femurs and subjected to static and cyclic loads. Stems differed mainly on taper angle, calcar radius and proximal stiffness. Stem migration and strains on the femur and in the cement mantle were achieved. Results Significant differences (p < 0.05) were noted in the permanent rotation between double and triple tapers, in the strains on the proximal medial femur between triple and both conical and double tapers, and in the strains on the lateral proximal femur between double tapers and both conical and triple tapers. Conclusion The proposed mechanical tests were able to detect significant differences in the behavior of these resembling stems. Stem proximal stiffness and the calcar radius of the stem influence its rotational stability and the strain transmission to the femur. PMID:27218081

  9. Multiscale Strain Analysis of Tissue Equivalents Using a Custom-Designed Biaxial Testing Device

    PubMed Central

    Bell, B.J.; Nauman, E.; Voytik-Harbin, S.L.

    2012-01-01

    Mechanical signals transferred between a cell and its extracellular matrix play an important role in regulating fundamental cell behavior. To further define the complex mechanical interactions between cells and matrix from a multiscale perspective, a biaxial testing device was designed and built. Finite element analysis was used to optimize the cruciform specimen geometry so that stresses within the central region were concentrated and homogenous while minimizing shear and grip effects. This system was used to apply an equibiaxial loading and unloading regimen to fibroblast-seeded tissue equivalents. Digital image correlation and spot tracking were used to calculate three-dimensional strains and associated strain transfer ratios at macro (construct), meso, matrix (collagen fibril), cell (mitochondria), and nuclear levels. At meso and matrix levels, strains in the 1- and 2-direction were statistically similar throughout the loading-unloading cycle. Interestingly, a significant amplification of cellular and nuclear strains was observed in the direction perpendicular to the cell axis. Findings indicate that strain transfer is dependent upon local anisotropies generated by the cell-matrix force balance. Such multiscale approaches to tissue mechanics will assist in advancement of modern biomechanical theories as well as development and optimization of preconditioning regimens for functional engineered tissue constructs. PMID:22455913

  10. Simplified sensor design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; Lopez-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-05-01

    Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the thermal drift in a real application keeping a simple manufacture process.

  11. Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast

    PubMed Central

    James, P.; Halladay, J.; Craig, E. A.

    1996-01-01

    The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections. PMID:8978031

  12. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs.

    PubMed

    Elsaadany, Mostafa; Harris, Matthew; Yildirim-Ayan, Eda

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo.

  13. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs

    PubMed Central

    Harris, Matthew

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo. PMID:28168197

  14. Design of atomic step networks on Si(111) through strain distribution control

    NASA Astrophysics Data System (ADS)

    Omi, Hiroo; Homma, Yoshikazu; Ogino, Toshio; Stoyanov, Stoyan; Tonchev, Vesselin

    2004-01-01

    We propose an alternative method to control atomic step networks on silicon for future wafer-scale integration of self-assembling nanostructures. The method is the strain-distribution-control method that we have recently proposed in [H. Omi, D. J. Bottomley, and T. Ogino, Appl. Phys. Lett. 80, 1073 (2002)], which we apply here to design atomic step networks on vicinal Si(111) wafer. Si(111) with its strain patterned by buried silicon oxide inclusions was annealed at 1230 °C in ultrahigh vacuum and observed by in situ secondary electron microscopy and ex situ atomic force microscopy. The images show that the method enables us to create the desired arrays of atomic step networks on an arbitrary area of planar silicon wafer. The arrays remain stable during the 1230 °C annealing.

  15. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-01-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  16. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  17. Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10T)

    SciTech Connect

    Lapidus, Alla; Pukall, Rudiger; LaButti, Kurt; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Johnathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Design of homo-organic acid producing strains using multi-objective optimization.

    PubMed

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk; Cho, Kwang Myung; Lee, Sang Yup

    2015-03-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic acids, while maintaining sufficiently high growth rate and minimizing the secretion of undesired byproducts. Homo-productions of acetic, lactic and succinic acids were targeted as examples. Engineered E. coli strains capable of producing homo-acetic and homo-lactic acids could be developed by taking this systems approach for the minimal identification of gene knockout targets. Also, failure to predict effective gene knockout targets for the homo-succinic acid production suggests that the multi-objective optimization is useful in assessing the suitability of a microorganism as a host strain for the production of a homo-organic acid. The systems metabolic engineering-based approach reported here should be applicable to the production of other industrially important organic acids.

  19. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.

    PubMed

    Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao

    2014-12-19

    To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.

  20. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao

    2014-12-01

    To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.

  1. Pathobiology of aging mice and GEM: background strains and experimental design.

    PubMed

    Brayton, C F; Treuting, P M; Ward, J M

    2012-01-01

    The use of induced and spontaneous mutant mice and genetically engineered mice (and combinations thereof) to study cancers and other aging phenotypes to advance improved functional human life spans will involve studies of aging mice. Genetic background contributes to pathology phenotypes and to causes of death as well as to longevity. Increased recognition of expected phenotypes, experimental variables that influence phenotypes and research outcomes, and experimental design options and rationales can maximize the utility of genetically engineered mice (GEM) models to translational research on aging. This review aims to provide resources to enhance the design and practice of chronic and longevity studies involving GEM. C57BL6, 129, and FVB/N strains are emphasized because of their widespread use in the generation of knockout, transgenic, and conditional mutant GEM. Resources are included also for pathology of other inbred strain families, including A, AKR, BALB/c, C3H, C57L, C58, CBA, DBA, GR, NOD.scid, SAMP, and SJL/J, and non-inbred mice, including 4WC, AB6F1, Ames dwarf, B6, 129, B6C3F1, BALB/c,129, Het3, nude, SENCAR, and several Swiss stocks. Experimental strategies for long-term cross-sectional and longitudinal studies to assess causes of or contributors to death, disease burden, spectrum of pathology phenotypes, longevity, and functional healthy life spans (health spans) are compared and discussed.

  2. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Li, J. Q.; Zhang, R.

    2006-10-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible.

  3. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  4. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.

    PubMed

    Unrean, Pornkamol

    2016-12-26

    We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.

  5. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design.

    PubMed

    Ramírez-Cavazos, Leticia I; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L; Hernández-Luna, Carlos; Agathos, Spiros N; Parra, Roberto

    2014-04-01

    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143,000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20,000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers.

  6. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design*

    PubMed Central

    Ramírez-Cavazos, Leticia I.; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L.; Hernández-Luna, Carlos; Agathos, Spiros N.; Parra, Roberto

    2014-01-01

    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143 000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20 000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers. PMID:24711355

  7. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.

    PubMed

    DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.

  8. Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model.

    PubMed

    Khodayari, Ali; Chowdhury, Anupam; Maranas, Costas D

    2014-01-01

    Computational strain-design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model of E. coli core metabolism constructed using the Ensemble Modeling (EM) method and parameterized using multiple mutant strains data under aerobic respiration with glucose as the carbon source. Minimal interventions are identified that improve succinate yield under both aerobic and anaerobic conditions to test the fidelity of model predictions under both genetic and environmental perturbations. Under aerobic condition, k-OptForce identifies interventions that match existing experimental strategies while pointing at a number of unexplored flux re-directions such as routing glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the identified interventions rely on the kinetic descriptions that would not be discoverable by a purely stoichiometric description. In contrast, under fermentative (anaerobic) condition, k-OptForce fails to identify key interventions including up-regulation of anaplerotic reactions and elimination of competitive fermentative products. This is due to the fact that the pathways activated under anaerobic condition were not properly parameterized as only aerobic flux data were used in the model construction. This study shed light on the importance of condition-specific model parameterization and provides insight on how to augment kinetic models so as to correctly respond to multiple environmental perturbations.

  9. Geomechanical Modeling to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Gomez, S. P.; Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Taha, M. R.; Stormont, J. C.

    2013-12-01

    A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. For the DOE-NETL project 'Wellbore Seal Repair Using Nanocomposite Materials,' we are especially interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Building on existing thermo-hydro-mechanical (THM) finite element modeling of wellbore casings subject to significant tensile and shear loads, we advance a conceptual and numerical methodology to assess responses of annulus cement and casing. Bench-scale models complement bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. Field scale models use the stratigraphy from a pilot CO2 injection operation to estimate the necessary mechanical properties needed for a successful repair material. We report on approaches used for adapting existing wellbore models and share preliminary results of field scale models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6241A.

  10. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction.

    PubMed

    Flowers, David; Thompson, R Adam; Birdwell, Douglas; Wang, Tsewei; Trinh, Cong T

    2013-05-01

    Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In this study, we report the development of a systematic multiple enzyme targeting method (SMET), to rationally design optimal strains for target chemical overproduction. The SMET method combines both elementary mode analysis and ensemble metabolic modeling to derive SMET metrics including l-values and c-values that can identify rate-limiting reaction steps and suggest which enzymes and how much of these enzymes to manipulate to enhance product yields, titers, and productivities. We illustrated, tested, and validated the SMET method by analyzing two networks, a simple network for concept demonstration and an Escherichia coli metabolic network for aromatic amino acid overproduction. The SMET method could systematically predict simultaneous multiple enzyme targets and their optimized expression levels, consistent with experimental data from the literature, without performing an iterative sequence of single-enzyme perturbation. The SMET method was much more efficient and effective than single-enzyme perturbation in terms of computation time and finding improved solutions.

  11. Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes

    PubMed Central

    Ju, Kou‐San; Parales, Rebecca E.

    2009-01-01

    Summary Widespread application of chloronitrobenzenes as feedstocks for the production of industrial chemicals and pharmaceuticals has resulted in extensive environmental contamination with these toxic compounds, where they pose significant risks to the health of humans and wildlife. While biotreatment in general is an attractive solution for remediation, its effectiveness is limited with chloronitrobenzenes due to the small number of strains that can effectively mineralize these compounds and their ability to degrade only select isomers. To address this need, we created engineered strains with a novel degradation pathway that reduces the total number of steps required to convert chloronitrobenzenes into compounds of central metabolism. We examined the ability of 2‐nitrotoluene 2,3‐dioxygenase from Acidovorax sp. strain JS42, nitrobenzene 1,2‐dioxygenase (NBDO) from Comamonas sp. strain JS765, as well as active‐site mutants of NBDO to generate chlorocatechols from chloronitrobenzenes, and identified the most efficient enzymes. Introduction of the wild‐type NBDO and the F293Q variant into Ralstonia sp. strain JS705, a strain carrying the modified ortho pathway for chlorocatechol metabolism, resulted in bacterial strains that were able to sustainably grow on all three chloronitrobenzene isomers without addition of co‐substrates or co‐inducers. These first‐generation engineered strains demonstrate the utility of nitroarene dioxygenases in expanding the metabolic capabilities of bacteria and provide new options for improved biotreatment of chloronitrobenzene‐contaminated sites. PMID:21261918

  12. Utilization of Genomic Variations Among Xylella fastidiosa Strains for Improved Diagnostic Design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa causes economically important diseases in grapevine, citrus and many other plant species. Our recent whole genome comparative analysis of the four sequenced strains has identified genomic variation among these strains. The...

  13. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-05-01

    In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally.

  14. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples.

    PubMed

    Maukonen, Johanna; Simões, Catarina; Saarela, Maria

    2012-03-01

    Recently several human health-related microbiota studies have had partly contradictory results. As some differences may be explained by methodologies applied, we evaluated how different storage conditions and commonly used DNA-extraction kits affect bacterial composition, diversity, and numbers of human fecal microbiota. According to our results, the DNA-extraction did not affect the diversity, composition, or quantity of Bacteroides spp., whereas after a week's storage at -20 °C, the numbers of Bacteroides spp. were 1.6-2.5 log units lower (P < 0.05). Furthermore, the numbers of predominant bacteria, Eubacterium rectale (Erec)-group, Clostridium leptum group, bifidobacteria, and Atopobium group were 0.5-4 log units higher (P < 0.05) after mechanical DNA-extraction as detected with qPCR, regardless of storage. Furthermore, the bacterial composition of Erec-group differed significantly after different DNA-extractions; after enzymatic DNA-extraction, the most prevalent genera detected were Roseburia (39% of clones) and Coprococcus (10%), whereas after mechanical DNA-extraction, the most prevalent genera were Blautia (30%), Coprococcus (13%), and Dorea (10%). According to our results, rigorous mechanical lysis enables detection of higher bacterial numbers and diversity from human fecal samples. As it was shown that the results of clostridial and actinobacterial populations are highly dependent on the DNA-extraction methods applied, the use of different DNA-extraction protocols may explain the contradictory results previously obtained.

  15. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels.

    PubMed

    Yuan, Rong; Tsaih, Shirng-Wern; Petkova, Stefka B; Marin de Evsikova, Caralina; Xing, Shuqin; Marion, Michael A; Bogue, Molly A; Mills, Kevin D; Peters, Luanne L; Bult, Carol J; Rosen, Clifford J; Sundberg, John P; Harrison, David E; Churchill, Gary A; Paigen, Beverly

    2009-06-01

    To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin-like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = -0.33, P = 0.01). This correlation became stronger if the short-lived strains with a median lifespan < 600 days were removed from the analysis (R = -0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.

  16. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels

    PubMed Central

    Yuan, Rong; Tsaih, Shirng-Wern; Petkova, Stefka B.; de Evsikova, Caralina Marin; Xing, Shuqin; Marion, Michael A.; Bogue, Molly A.; Mills, Kevin D.; Peters, Luanne L.; Bult, Carol J.; Rosen, Clifford J.; Sundberg, John P.; Harrison, David E.; Churchill, Gary A.; Paigen, Beverly

    2009-01-01

    Summary To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. We carried out clinical assessments every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, we carried out more invasive measurements followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, we describe the study design, median lifespans, and circulating IGF1 levels at 6, 12 and 18 months for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with median lifespan at 6 months (R=−0.33, P=0.01). This correlation became stronger if the short-lived strains with a median lifespan<600 days were removed from the analysis (R=−0.53, P<0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan. PMID:19627267

  17. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  18. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: Experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  19. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  20. Design and validation of high-precision wireless strain sensors for structural health monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jo, Hongki; Park, JongWoong; Spencer, B. F., Jr.; Jung, Hyung-Jo

    2012-04-01

    Due to their cost-effectiveness and ease of installation, smart wireless sensors have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for wireless smart sensors (WSS) due to A/D converter resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing the Wheatstone bridge, signal amplification of up to 2507-times can be obtained. Temperature compensation and shunt calibration are implemented. In addition to traditional foil-type strain gages, the sensor board has been designed to accommodate a friction-type magnet strain sensor, facilitating fast and easy deployment. The sensor board has been calibrated using lab-scale tests, and then deployed on a full-scale cable-stayed bridge to verify its performance.

  1. Design and optimisation of suspended strained germanium membranes for near-infrared lasing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Burt, Daniel; Aldeek, Waseem; Aldaghri, Osamah A.; Ikonic, Zoran; Querin, Oswaldo M.; Kelsall, Robert W.

    2016-05-01

    The development of a semiconductor laser compatible with silicon substrates and high-volume silicon integrated circuit manufacturing is a key requirement for monolithic silicon photonic transceivers. Tensile strained germanium is a promising material system which meets these criteria, and both optically pumped and electrically injected lasing have been reported[1,2]. It is well established that growth of thick (~1 micron) layers of germanium on silicon substrates by two-stage chemical vapour deposition followed by thermal annealing results in nearly-relaxed germanium with a residual biaxial tensile strain of typically 0.15-0.25% [3]. Several researchers have investigated methods of amplifying this built-in strain in order to increase the attainable optical gain. Increased uniaxial strain levels have been demonstrated in suspended linear bridge structures created by wet chemical underetching. However, uniaxial strain is less effective than biaxial strain in converting germanium from an indirect to a direct gap semiconductor and hence generating substantial optical gain. In this work, we have computationally investigated and optimised two-dimensional patterning and under-etching of germanium membranes in order to achieve biaxial strain amplification. Strain simulations were carried out using finite element methods and the shape of the suspended germanium structures was optimised to achieve the highest tensile strain whilst remaining below the empirically determined yield strength of the thin membranes. The net optical gain distribution across the membrane was calculated using 8 band k.p bandstructure to determine the full interband gain, the inter-valence-band absorption and the intervalley and intravalley phonon- and impurity-assisted free carrier absorption. Band-gap narrowing effects were included using empirical data. Biaxial strain values of ~1% can be achieved in the lasing region of the structure, which, although below the level required to convert germanium

  2. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    SciTech Connect

    Ivanova, Natalia; Sikorski, Johannes; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Pukall, Rudiger; Klenk, Hans-Peter; Kyrpides, Nikos

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Actinosynnema mirum type strain (101T)

    SciTech Connect

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Actinosynnema mirum type strain (101T)

    SciTech Connect

    Land, Miriam L; Lapidus, Alla L.; Mayilraj, Shanmugam; Chen, Feng; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, N; Mavromatis, K; Chen, Amy; Palaniappan, Krishna; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Brettin, Thomas S; Detter, J. Chris; Han, Cliff; Chain, Patrick S. G.; Tindall, Brian; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-01-01

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. General Strain Theory as a Basis for the Design of School Interventions

    ERIC Educational Resources Information Center

    Moon, Byongook; Morash, Merry

    2013-01-01

    The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…

  6. Complete genome sequence of Intrasporangium calvumtype strain (7 KIPT)

    SciTech Connect

    Glavina Del Rio, Tijana; Chertkov, Olga; Yasawong, Montri; Lucas, Susan; Deshpande, Shweta; Cheng, Jan-Fang; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Pukall, Rudiger; Sikorski, Johannes; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2010-01-01

    Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Functional elucidation of hypothetical proteins for their indispensable roles towards drug designing targets from Helicobacter pylori strain HPAG1.

    PubMed

    Singh, Gagandeep; Singh, Vikram

    2017-03-03

    Helicobacter pylori is a flagellated and slow growing gram-negative bacterium that persistently infects about half of the entire world population. In present study, we examined the proteome of Helicobacter pylori strain HPAG1 for identification of key uncharacterized proteins towards their novel regulatory functions. The complete proteome of this strain consists of 1539 proteins, out of which 520 proteins are annotated as hypothetical. Based on the functional motifs in their primary sequences, we were able to classify 254 of these hypothetical proteins into 6 functional categories. Further, KEGG database was used to find the roles of these hypothetical proteins in several pathways and structural prediction was done by homology modelling methods. 33 of these hypothetical proteins were found to have strong association in various pathways including signalling and defence mechanisms. We noted that 27 of these proteins are specific to H. pylori and can be selected for drug designing targets, based on their virulence and regulatory role. We were able to successfully model the 3D structures of 3 of these proteins: YP_626977.1, YP_626786.1 and YP_628146.1. The stability of these proteins was also validated using molecular dynamics simulations and their possible role in the regulation of different pathways was explained. These novel annotations may contribute to the understanding of disease mechanism at molecular level and provide novel potential targets for designing new drugs against H. pylori strain HPAG1.

  8. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    SciTech Connect

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  9. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    PubMed

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development.

  10. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439

    PubMed Central

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B.; Melançon, Charles E.

    2016-01-01

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally-derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  11. Design guidelines for GaSb/InAs TFET exploiting strain and device size

    NASA Astrophysics Data System (ADS)

    Visciarelli, Michele; Gnani, Elena; Gnudi, Antonio; Reggiani, Susanna; Baccarani, Giorgio

    2017-03-01

    A simulation study exploring the possibility of performance improvements for GaSb/InAs nanowire TFETs under appropriate stress conditions is carried out. It is demonstrated that biaxial tensile strain induces a remarkable enhancement of the on-state current thanks to bandgap reduction; however, a degradation of the ambipolar behavior is observed as well. Some stress intensity values and device geometry configurations are investigated. The best simulated device can achieve an on/off current ratio of about 3 ×107 with ION ≈ 0.33 mA/ μ m at VDD = 0.3 V.

  12. Strain Design of Ashbya gossypii for Single-Cell Oil Production

    PubMed Central

    Ledesma-Amaro, Rodrigo; Santos, María A.; Jiménez, Alberto

    2014-01-01

    Single-cell oil (SCO) represents a sustainable alternative for the oil industry. Accordingly, the identification of microorganisms with either higher lipidogenic ability or novel capacities for the transformation of raw materials constitutes a major challenge for the field of oil biotechnology. With this in mind, here, we were prompted to address the lipidogenic profile of the filamentous hemiascomycete Ashbya gossypii, which is currently used for the microbial production of vitamins. We found that A. gossypii mostly accumulates unsaturated fatty acids (FAs), with more than 50% of the total FA content corresponding to oleic acid. In addition, we engineered A. gossypii strains both lacking the beta-oxidation pathway and also providing ATP-citrate lyase (ACL) activity to block the degradation of FA and to increase the cytosolic acetyl-coenzyme A (CoA) content, respectively. The lipidogenic profile of the newly developed strains demonstrates that the mere elimination of the beta-oxidation pathway in A. gossypii triggers a significant increase in lipid accumulation that can reach 70% of cell dry weight. The use of A. gossypii as a novel and robust tool for the production of added-value oils is further discussed. PMID:24317081

  13. Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs

    NASA Astrophysics Data System (ADS)

    Weil, K. S.; Koeppel, B. J.

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seal in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the

  14. Complete genome sequence of Nakamurella multipartita type strain (Y-104).

    PubMed

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, Alex; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-03-30

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the monospecific genus Nakamurella in the actinobacterial suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is capable of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Evaluating a prototype device designed to alleviate night vision goggle induced neck strain among military personnel.

    PubMed

    Dibblee, Jenna; Worthy, Portia; Farrell, Philip; Hetzler, Markus; Reid, Susan; Stevenson, Joan; Fischer, Steven

    2015-01-01

    The purpose of this study was verify the design of a novel Helmet System Support Device (HSSD) that can be used by military aircrew to help intervene on and reduce the high prevalence of neck trouble. Twelve healthy participants repeated simulated helicopter aircrew tasks on 3 separate days. On each day they wore a different helmet configuration, where measures of performance, perceived demand/preference and muscular demand were recorded. The results showed that vigilance tasks were performed over 10% faster with the HSSD configuration compared to wearing the normal helmet configuration. Participants were able to maintain static (endurance) postures for 28% longer, and use of the HSSD helped to prevent neck muscle fatigue in the most demanding task. The results of this design verification study indicate that the HSSD may be a realistic, feasible near-term solution to intervene on the high prevalence of neck trouble among rotary-wing aircrew. Practitioner Summary: This paper verifies the effectiveness of the Helmet System Support Device (HSSD) as an on-body personal protective device to help control exposures associated with aircrew neck trouble. The HSSD reduced perceived demand, reduced cumulative muscle activity in select muscles and provided improved fatigue resistance, meeting its desired design objectives.

  16. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium.

    PubMed

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L(-1) starch, 30 g L(-1) soya bean and 9 g L(-1) sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view.

  17. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  18. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study

    PubMed Central

    AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.

    2016-01-01

    SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant

  19. Optimization of Magnetosome Production and Growth by the Magnetotactic Vibrio Magnetovibrio blakemorei Strain MV-1 through a Statistics-Based Experimental Design

    PubMed Central

    Silva, Karen T.; Leão, Pedro E.; Abreu, Fernanda; López, Jimmy A.; Gutarra, Melissa L.; Farina, Marcos; Bazylinski, Dennis A.; Freire, Denise M. G.

    2013-01-01

    The growth and magnetosome production of the marine magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 were optimized through a statistics-based experimental factorial design. In the optimized growth medium, maximum magnetite yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor were obtained. PMID:23396329

  20. Strain-driven and ultrasensitive resistive sensor/switch based on conductive alginate/nitrogen-doped carbon-nanotube-supported Ag hybrid aerogels with pyramid design.

    PubMed

    Zhao, Songfang; Zhang, Guoping; Gao, Yongju; Deng, Libo; Li, Jinhui; Sun, Rong; Wong, Ching-Ping

    2014-12-24

    Flexible strain-driven sensor is an essential component in the flexible electronics. Especially, high durability and sensitivity to strain are required. Here, we present an efficient and low-cost fabrication strategy to construct a highly sensitive and flexible pressure sensor based on a conductive, elastic aerogel with pyramid design. When pressure is loaded, the contact area between the interfaces of the conductive aerogel and the copper electrode as well as among the building blocks of the nitrogen-doped carbon-nanotube-supported Ag (N-CNTs/Ag) aerogel monoliths, changes in reversible and directional manners. This contact resistance mechanism enables the hybrid aerogels to act as strain-driven sensors with high sensitivity and excellent on/off swithching behavior, and the gauge factor (GF) is ∼15 under strain of 3%, which is superior to those reported for other aerogels. In addition, robust, elastomeric and conductive nanocomposites can be fabricated by injecting polydimethylsiloxane (PDMS) into alginate/N-CNTs/Ag aerogels. Importantly, the building blocks forming the aerogels retain their initial contact and percolation after undergoing large-strain deformation, PDMS infiltration, and cross-linking of PDMS, suggesting their potential applications as strain sensors.

  1. Synthetic Peptide Vaccine Development: Designing Dual Epitopes into a Single Pilin Peptide Immunogen Generates Antibody Cross-reactivity between Two Strains of Pseudomonas aeruginosa

    PubMed Central

    Hackbarth, Clifton; Hodges, Robert S.

    2010-01-01

    One of the main challenges of Pseudomonas aeruginosa (P. aeruginosa) vaccine development is the design of an antigen that elicits cross-reactive antibodies against multiple virulent strains. Using a rational design approach, we have developed a single 17-residue peptide immunogen that generates antibodies that target the receptor binding domain (RBD) of the type IV pilus of more than one strain of P. aeruginosa. Using the RBD sequence, of native strain PAO as a template, we have systematically changed up to five residues in the PAO sequence of the peptide immunogen, into that of the PAK sequence. We show by indirect and competitive ELISA, that the mutant peptide immunogens elicit the development of polyclonal sera that is cross-reactive to both native strain PAO and PAK pilin. We further show that there are at least two separate antibody populations in the polyclonal sera that possess closely-related epitopes but which are each strain specific. Moreover, part of the epitope for the PAO specific antibodies consists of several residues outside the disulfide loop of the receptor binding domain. This allows us to create two unique epitopes within the same receptor binding domain sequence. PMID:20807222

  2. Genes encoding ten newly designated OXA-63 group class D β-lactamases identified in strains of the pathogenic intestinal spirochaete Brachyspira pilosicoli.

    PubMed

    La, Tom; Neo, Eugene; Phillips, Nyree D; Hampson, David J

    2015-11-01

    The anaerobic spirochaete Brachyspira pilosicoli colonizes the large intestine of birds and mammals, including human beings, and may induce colitis and diarrhoea. B. pilosicoli has a recombinant population structure, and strains show extensive genomic rearrangements and different genome sizes. The resident chromosomal gene blaOXA-63 in B. pilosicoli encodes OXA-63, a narrow-spectrum group IV class D β-lactamase. Genes encoding four OXA-63 variants have been described in B. pilosicoli, and the current study was designed to investigate the distribution and diversity of such genes and proteins in strains of B. pilosicoli. PCRs were used to amplify blaOXA-63 group genes from 118 B. pilosicoli strains from different host species and geographical origins. One primer set was targeted externally to the gene and two sets were designed to amplify internal components. A total of 16 strains (13.6%) showed no evidence of possessing blaOXA-63 group genes, 44 (37.3%) had a full gene, 27 (22.9%) apparently had a gene but it failed to amplify with external primers, and 29 (24.6%) had only one or other of the two internal components amplified. Based on translation of the nucleotide sequences, ten new variants of the β-lactamase, designated OXA-470 through OXA-479, were identified amongst the 44 strains that had the full gene amplified. The 16 strains lacking blaOXA-63 group genes had a region of 1674 bp missing around where the gene was expected to reside. Despite apparent genomic rearrangements occurring in B. pilosicoli, positive selection pressures for conservation of blaOXA-63 group genes and OXA proteins appear to have been exerted.

  3. Complete genome sequence of Kytococcus sedentarius type strain (strain 541T)

    SciTech Connect

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrick; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Goker, Markus; Pukall, Rudiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells.

    PubMed

    Arold, Stephen P; Wong, Joyce Y; Suki, Bela

    2007-07-01

    The pulmonary epithelium is exposed to mechanical strains during normal breathing or mechanical ventilation. While important for the regulation of cellular processes, excessive strains damage epithelial cells. To investigate the effects of strain on the epithelium, we developed a stretching device to apply equi-biaxial strains to cells cultured on elastic membranes. Following device validation, we exposed a murine epithelial cell line (MLE-12) to 30 min of cyclic stretch with 0, 25, 50, 75 and 100% change in surface area on pronectin or type I collagen coated membranes. Following stretch, we assessed cell viability using fluorescent immunocytochemisty and surfactant secretion using [(3)H] labeled phosphatidylcholine (PC). Cell injury increased with increasing strain with cells on pronectin showing more injury than on type I collagen. Stretching had no effect on surfactant secretion on either substratum suggesting MLE-12 cells are a poor model for stretch-induced surfactant secretion. The cells grown on pronectin, however, demonstrated a 3-fold increase in surfactant secretion compared to those grown on type I collagen at all strains. This suggests that, while this cell line does not demonstrate stretch-induced surfactant secretion, the underlying extracellular matrix plays a crucial factor in both cell death and signal transduction in response to strain.

  5. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, Y.; Jiang, Z.

    2016-11-01

    When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10^° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.

  6. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    PubMed

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  7. A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire

    NASA Astrophysics Data System (ADS)

    Amin, Abdullah Al; Baig, Tanvir; Deissler, Robert J.; Yao, Zhen; Tomsic, Michael; Doll, David; Akkus, Ozan; Martens, Michael

    2016-05-01

    High temperature superconductors such as MgB2 focus on conduction cooling of electromagnets that eliminates the use of liquid helium. With the recent advances in the strain sustainability of MgB2, a full body 1.5 T conduction cooled magnetic resonance imaging (MRI) magnet shows promise. In this article, a 36 filament MgB2 superconducting wire is considered for a 1.5 T full-body MRI system and is analyzed in terms of strain development. In order to facilitate analysis, this composite wire is homogenized and the orthotropic wire material properties are employed to solve for strain development using a 2D-axisymmetric finite element analysis (FEA) model of the entire set of MRI magnet. The entire multiscale multiphysics analysis is considered from the wire to the magnet bundles addressing winding, cooling and electromagnetic excitation. The FEA solution is verified with proven analytical equations and acceptable agreement is reported. The results show a maximum mechanical strain development of 0.06% that is within the failure criteria of -0.6% to 0.4% (-0.3% to 0.2% for design) for the 36 filament MgB2 wire. Therefore, the study indicates the safe operation of the conduction cooled MgB2 based MRI magnet as far as strain development is concerned.

  8. Draft Genome Sequence of Brucella abortus S99: Designated Antigenic Smooth Reference Strain Used in Diagnostic Tests in India

    PubMed Central

    Shome, Rajeswari; Krithiga, Natesan; Padmashree, B. S.; Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S.; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rahman, Habibur

    2014-01-01

    Brucella abortus strain S99 is widely used for the preparation of colored, plain, recombinant and smooth lipopolysaccharide antigens for the preparation of Brucella diagnostic kits. The genome of this strain was sequenced and the length of the genome was 3,253,175 bp, with 57.2% G+C content. A total of 3,365 protein coding genes and 53 RNA genes were predicted. PMID:25146137

  9. Draft Genome Sequence of Brucella abortus S99: Designated Antigenic Smooth Reference Strain Used in Diagnostic Tests in India.

    PubMed

    Shome, Rajeswari; Krithiga, Natesan; Padmashree, B S; Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash; Rahman, Habibur

    2014-08-21

    Brucella abortus strain S99 is widely used for the preparation of colored, plain, recombinant and smooth lipopolysaccharide antigens for the preparation of Brucella diagnostic kits. The genome of this strain was sequenced and the length of the genome was 3,253,175 bp, with 57.2% G+C content. A total of 3,365 protein coding genes and 53 RNA genes were predicted.

  10. Fly's proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Wicaksono, D. H. B.; Zhang, L.-J.; Pandraud, G.; French, P. J.; Vincent, J. F. V.

    2006-04-01

    A new strain-sensing structure inspired from insect's (especially the Fly) propricoception sensor is devised. The campaniform sensillum is a strain-sensing microstructure with very high sensitivity despite its small dimension (diameter ~10 µm in a relatively stiff material of insect's exocuticle (E = ~109 Pa). Previous work shows that the high sensitivity of this structure towards strain is due to its membrane-in-recess- and strainconcentrating- hole- features. Based on this inspiration, we built similar structure using silicon micromachining technology. Then a simple characterisation setup was devised. Here, we present briefly, finite-element modeling and simulation based on this actual sample preparation for the characterisation. As comparison and also to understand mechanical features responsible for the strain-sensitivity, we performed the modeling on different mechanical structures: bulk chunk, blind-hole, thorugh-hole, surface membrane, and membrane-in-recess. The actual experimental characterisation was performed previously using optical technique to membranein- recess micromachined Si structure. The FEM simulation results confirm that the bending stress and strain are concentrated in the hole-vicinity. The membrane inside the hole acts as displacement transducer. The FEM is in conformity with previous analytical results, as well as the optical characterisation result. The end goal is to build a new type MEMS strain sensor.

  11. Design and proposal of dual line-of-defense perimeter watchdog incorporating optimally designed FBG based accelerometers and strain sensors using single optical fiber

    NASA Astrophysics Data System (ADS)

    Khan, Mohd. Mansoor; Sonkar, Ramesh Kumar

    2015-06-01

    Paper presents Opto-Mechanical intrusion sensor fence with FBGs attached to mechanical accelerometers and strain sensors, optimized on SolidWorks 2013 for desired frequency to 35 Hz, picking up accelerations/ strains and its deployment for perimeter security. The accelerometer structure consists of inertial mass supported by an L-shaped modified cantilever beam having non-uniform cross section area connected to base by a thin neck element which acts as strain concentrated centre hence an optimum zone for FBG sensors placement. Bragg wavelength shifts were obtained on Optigrating software for the obtained strain values on mechanical assembly of fence. CFD wind analysis is performed on the assembly to obtain the spot for accelerometer's placement to avoid false alarms up to wind velocities of 20 m/s.

  12. Effectiveness of a newly designed construction uniform for heat strain attenuation in a hot and humid environment.

    PubMed

    Yi, Wen; Chan, Albert P C; Wong, Francis K W; Wong, Del P

    2017-01-01

    This study aims to evaluate the effectiveness of a newly designed construction uniform in combating heat stress. Ten male volunteers performed treadmill running in a climatic chamber maintained at 34.5 °C temperature, 75% relative humidity, 0.3 m/s air velocity, and solar radiation of 450 W/m(2) that simulates typical summer working environment of construction sites in Hong Kong. The participants were tested while wearing two kinds of construction uniforms: a commonly worn uniform A, or a newly designed uniform B. It was found during exercise that Tc (38.34 ± 0.14 vs 38.45 ± 0.11 °C, p = 0.03), Tsk (36.01 ± 0.36 vs 36.27 ± 0.34 °C, p = 0.03), HR (162.7 ± 10.1 vs 172.5 ± 9.2 bpm, p < 0.01), PSI (7.0 ± 0.4 vs 7.5 ± 0.5, p = 0.04), thermal sensation (1.7 ± 0.9 vs 2.6 ± 0.7, p = 0.02), and wetness sensation (1.9 ± 0.9 vs 2.6 ± 0.8, p < 0.01) was lower when wearing uniform B than that of uniform A. It was found during recovery that Tc (37.89 ± 0.13 vs 38.06 ± 0.13 °C, p < 0.01), Tsk (35.68 ± 0.37 vs 36.02 ± 0.41 °C, p < 0.01), HR (104.2 ± 10.1 vs 112.6 ± 10.7 bpm, p < 0.01), PSI (3.3 ± 0.7 vs 4.1 ± 1.0, p < 0.01), thermal sensation (0.1 ± 0.9 vs 1.0 ± 0.8, p = 0.02), and wetness sensation (1.1 ± 1.0 vs 2.3 ± 0.8, p = 0.02) was lower when wearing uniform B than that of uniform A. The findings of this study suggested the newly designed construction uniform could reduce thermoregulatory and cardiovascular strain, and improve thermal comfort while exercising in a hot and humid environment.

  13. Complete genome sequence of Olsenella uli type strain (VPI D76D-27CT)

    SciTech Connect

    Goker, Markus; Held, Brittany; Lucas, Susan; Nolan, Matt; Yasawong, Montri; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Sikorski, Johannes; Pukall, Rudiger; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study has been isolated from human gingival crevices in 1982. This is the first completed sequence of the genus Olsenella and the fifth sequence from the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255T)

    SciTech Connect

    Saunders, Elizabeth H; Pukall, Rudiger; Birte, Abt; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Meincke, Linda; Sims, David; Brettin, Tom; Detter, J. Chris; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Han, Cliff

    2009-01-01

    Eggerthella lenta (Eggerth 1935) Wade et al. 1999, emended W rdemann et al. 2009 is the type species of the genus Eggerthella, which belongs to the actinobacterial family Coriobacteriaceae. E. lenta is a Gram-positive, non-motile, non-sporulating pathogenic bacterium that can cause severe bacteremia. The strain described in this study has been isolated from a rectal tumor in 1935. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Eggerthella, and the 3,632,260 bp long single replicon genome with its 3123 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Designing and exploring active N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against three Trypanosoma cruzi strains more prevalent in Chagas disease patients.

    PubMed

    Palace-Berl, Fanny; Pasqualoto, Kerly Fernanda Mesquita; Jorge, Salomão Dória; Zingales, Bianca; Zorzi, Rodrigo Rocha; Silva, Marcelo Nunes; Ferreira, Adilson Kleber; de Azevedo, Ricardo Alexandre; Teixeira, Sarah Fernandes; Tavares, Leoberto Costa

    2015-01-01

    Chagas disease affects around 8 million people worldwide and its treatment depends on only two nitroheterocyclic drugs, benznidazole (BZD) and nifurtimox (NFX). Both drugs have limited curative power in chronic phase of disease. Nifuroxazide (NF), a nitroheterocyclic drug, was used as lead to design a set of twenty one compounds in order to improve the anti-Trypanosoma cruzi activity. Lipinski's rules were considered in order to support drug-likeness designing. The set of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides was assayed against three T. cruzi strains, which represent the discrete typing units more prevalent in human patients: Y (TcII), Silvio X10 cl1 (TcI), and Bug 2149 cl10 (TcV). All the derivatives, except one, showed enhanced trypanocidal activity against the three strains as compared to BZD. In the Y strain 62% of the compounds were more active than NFX. The most active compound was N'-((5-nitrofuran-2-yl) methylene)biphenyl-4-carbohydrazide (C20), which showed IC50 values of 1.17 ± 0.12 μM; 3.17 ± 0.32 μM; and 1.81 ± 0.18 μM for Y, Silvio X10 cl1, and Bug 2149 cl10 strains, respectively. Cytotoxicity assays with human fibroblast cells have demonstrated high selectivity indices for several compounds. Exploratory data analysis indicated that primarily topological, steric/geometric, and electronic properties have contributed to the discrimination of the set of investigated compounds. The findings can be helpful to drive the designing, and subsequently, the synthesis of additional promising drugs against Chagas disease.

  16. Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect

    SciTech Connect

    Souma, Satofumi Ueyama, Masayuki; Ogawa, Matsuto

    2014-05-26

    We present a numerical study on the performance of strained graphene-based field-effect transistors. A local strain less than 10% is applied over a central channel region of the graphene to induce the shift of the Dirac point in the channel region along the transverse momentum direction. The left and the right unstrained graphene regions are doped to be either n-type or p-type. By using the atomistic tight-binding model and a Green's function method, we predict that the gate voltage applied to the central strained graphene region can switch the drain current on and off with an on/off ratio of more than six orders of magnitude at room temperature. This is in spite of the absence of a bandgap in the strained channel region. Steeper subthreshold slopes below 60 mV/decade are also predicted at room temperature because of a mechanism similar to the band-to-band tunneling field-effect transistors.

  17. Strain powered antennas

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Carman, Greg P.

    2017-01-01

    This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.

  18. Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity.

    PubMed

    Albarracín, Virginia Helena; Avila, Ana Lucía; Amoroso, María Julia; Abate, Carlos Mauricio

    2008-11-01

    Morphological, physiological and molecular characterization of three copper-resistant actinobacterial strains (AB2A, AB3 and AB5A) isolated from copper-polluted sediments of a drainage channel showed that they belonged to the genus Streptomyces. These characteristics plus their distinctive copper resistance phenotypes revealed considerable divergence among the isolates. Highly dissimilar growth patterns and copper removal efficiency were observed for the selected Streptomyces strains grown on minimal medium (MM) added with 0.5 mM of copper sulfate (MM(Cu)). Strain AB2A showed an early mechanism of copper uptake/retention (80% until day 3), followed by a drastic metal efflux process (days 5-7). In contrast, Streptomyces sp. AB3 and AB5A showed only copper retention phenotypes under the same culture conditions. Particularly, Streptomyces sp. AB5A showed a better efficiency in copper removal (94%), although a longer lag phase was observed for this microorganism grown for 7 days in MM(Cu). Cupric reductase activity was detected in both copper-adapted cells and nonadapted cells of all three strains but this activity was up to 100-fold higher in preadapted cells of Streptomyces sp. AB2A. To our knowledge, this is the first time that cupric reductase activity was demonstrated in Streptomyces strains.

  19. Non-radiative recombination in Ge{sub 1−y}Sn{sub y} light emitting diodes: The role of strain relaxation in tuned heterostructure designs

    SciTech Connect

    Gallagher, J. D.; Xu, C.; Smith, D. J.; Menéndez, J.; Senaratne, C. L.; Sims, P.; Kouvetakis, J.; Aoki, T.

    2015-06-28

    This paper describes the properties of Ge{sub 1−y}Sn{sub y} light emitting diodes with a broad range of Sn concentrations (y = 0.0–0.11). The devices are grown upon Si(100) platforms using ultra-low temperature deposition of highly reactive Ge and Sn hydrides. The device fabrication adopts two new photodiode designs which lead to optimized performance and enables a systematic study of the effects of strain relaxation on emission efficiency. In contrast with n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs, which in most cases contain two defected interfaces, our designs include a p-layer with composition Ge{sub 1−z}Sn{sub z} chosen to be z < y to facilitate light extraction, but with z close enough to y to guarantee no strain relaxation at the i/p interface. In addition, a Ge{sub 1−x}Sn{sub x} alloy is also used for the n layer, with compositions in the 0 ≤ x ≤ y range, so that defected and non-defected n/i interfaces can be studied. The electroluminescence spectra vs the Sn content y in the intrinsic layer of the diodes exhibit a monotonic shift in the emission wavelength from 1550 nm to 2500 nm. On the other hand, the emission intensities show a complex dependence that cannot be explained solely on the basis of Sn concentrations. Detailed theoretical modeling of these intensities makes it possible to extract recombination lifetimes that are found to be more than three times longer in samples in which strain relaxation has not occurred at the n-i interface, demonstrating the existence of a large non-radiative contribution from the relaxation defects. This finding is particularly significant for direct gap diodes with y > 0.09, for which it is practically impossible to avoid strain relaxation in n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs. The new designs introduced here open the door to the fabrication of highly efficient electrically pumped systems for applications in future generations of integrated photonics.

  20. Sprains and Strains

    MedlinePlus

    ... Typically, people with a strain experience pain, limited motion, muscle spasms, and possibly muscle weakness. They also ... program designed to prevent stiffness, improve range of motion, and restore the joint's normal flexibility and strength. ...

  1. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite

    PubMed Central

    Cochrane, Cédric; Koncar, Vladan; Lewandowski, Maryline; Dufour, Claude

    2007-01-01

    The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are “smart” because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene)/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor's electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.

  2. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  3. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  4. Comparative Finite Element Analysis of the Stress-Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs

    SciTech Connect

    Weil, K. Scott; Koeppel, Brian J.

    2008-05-15

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. We are currently developing a foil-based approach that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of interfacial stresses in either of the joint substrate materials, particulary the ceramic cell. Prior experimental work conducted on small-scale samples demonstrated the viability of the concept. Here we present recent results from computational analyses undertaken to investigate potential issues associated with scaling up the seal to full-scale pSOFC stack dimensions/geometry. Here we employ finite element modeling to assess the potential thermal cycling performance of this design, specifically as it pertains to sealing components with vastly different thermal expansion properties.

  5. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.

  6. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.

    PubMed

    Gold, Brian; Dudley, Gregory B; Alabugin, Igor V

    2013-01-30

    Recently, we have identified two strategies for selective transition state (TS) stabilization in catalyst-free azide/alkyne cycloadditions. In particular, the transition states for the formation of both 1,4- and 1,5-isomers can be stabilized via hyperconjugative assistance for the C···N bond formation, whereas the 1,5-TS can be stabilized via C-H···X H-bonding interactions. When the hyperconjugative assistance is maximized by the antiperiplanar arrangement of propargylic σ-acceptors relative to the forming bonds, the combination of these TS-stabilizing effects was predicted to lead to ~1 million fold acceleration of the cycloaddition with methyl azide. The present work investigated whether hyperconjugative assistance and H-bonding can be combined with strain activation for the design of even more reactive alkynes and whether reactivity can be turned "on demand." When stereoelectronic amplification is achieved by optimal positioning of σ-acceptors at the endocyclic bonds antiperiplanar to the breaking alkyne π-bonds, the stabilization of the bent alkyne geometry leads to a significant decrease in strain in cyclic alkynes without compromising their reactivity in alkyne-azide cycloadditions. The approach can be used in a modular fashion where the TS stabilizing effects are introduced sequentially until the desired level of reactivity is achieved. A significant increase in reactivity upon the protonation of an endocyclic NH-group suggests a new strategy for the design of click reactions triggered by a pH-change or introduction of an external Lewis acid.

  7. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  8. Intradermal application of Aujeszky's disease virus strain Begonia with tocopherol-based adjuvant and a novel design injection device.

    PubMed

    Visser, N; Egger, W; Lütticken, D

    1994-01-01

    Initially the use of intradermal application of Aujeszky's disease vaccines was shown to be very effective. However, for thus far unknown reasons the gI-deleted vaccines were much less efficacious by using this route of vaccination as compared to gI-positive vaccines. By the use of a tocopherol-based adjuvant and an improved design of the intradermal injection device it now appeared feasible to obtain the same efficacy both in specific pathogen free pigs and in pigs with material antibodies as found before when intramuscular administration was performed. With respect to safety we found a complete lack of skin lesions, no adverse systemic reactions (e.g. body temperatures) and no effect on growth rates. Last but not least, the easiness of intradermal injections is of great advantage in large-scale vaccination programs.

  9. Vehicular Causation Factors and Conceptual Design Modifications to Reduce Aortic Strain in Numerically Reconstructed Real World Nearside Lateral Automotive Crashes

    PubMed Central

    Belwadi, Aditya; Yang, King H.

    2015-01-01

    Aortic injury (AI) leading to disruption of the aorta is an uncommon but highly lethal consequence of trauma in modern society. Most recent estimates range from 7,500 to 8,000 cases per year from a variety of causes. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest cavity. It is evident that effective means of substantially improving the outcome of motor vehicle crash-induced AIs is by preventing the injury in the first place. In the current study, 16 design of computer experiments (DOCE) were carried out with varying levels of principal direction of force (PDOF), impact velocity, impact height, and impact position of the bullet vehicle combined with occupant seating positions in the case vehicle to determine the effects of these factors on aortic injury. Further, a combination of real world crash data reported in the Crash Injury Research and Engineering Network (CIREN) database, Finite Element (FE) vehicle models, and the Wayne State Human Body Model-II (WSHBM-II) indicates that occupant seating position, impact height, and PDOF, in that order play, a primary role in aortic injury. PMID:26448781

  10. Thin film strain transducer

    NASA Astrophysics Data System (ADS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  11. Non-linear visco-elastic analysis and the design of super-pressure balloons : stress, strain and stability

    NASA Astrophysics Data System (ADS)

    Wakefield, David

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation

  12. Isolation, identification and characterization of a novel Rhodococcus sp. strain in biodegradation of tetrahydrofuran and its medium optimization using sequential statistics-based experimental designs.

    PubMed

    Yao, Yanlai; Lv, Zhenmei; Min, Hang; Lv, Zhenhua; Jiao, Huipeng

    2009-06-01

    Statistics-based experimental designs were applied to optimize the culture conditions for tetrahydrofuran (THF) degradation by a newly isolated Rhodococcus sp. YYL that tolerates high THF concentrations. Single factor experiments were undertaken for determining the optimum range of each of four factors (initial pH and concentrations of K(2)HPO(4).3H(2)O, NH(4)Cl and yeast extract) and these factors were subsequently optimized using the response surface methodology. The Plackett-Burman design was used to identify three trace elements (Mg(2+), Zn(2+)and Fe(2+)) that significantly increased the THF degradation rate. The optimum conditions were found to be: 1.80 g/L NH(4)Cl, 0.81 g/L K(2)HPO(4).3H(2)O, 0.06 g/L yeast extract, 0.40 g/L MgSO(4).7H(2)O, 0.006 g/L ZnSO(4).7H(2)O, 0.024 g/L FeSO(4).7H(2)O, and an initial pH of 8.26. Under these optimized conditions, the maximum THF degradation rate increased to 137.60 mg THF h(-1) g dry weight in Rhodococcus sp. YYL, which was nearly five times of that by the previously described THF degrading Rhodococcus strain.

  13. Actinobacterial peroxidases: an unexplored resource for biocatalysis.

    PubMed

    le Roes-Hill, Marilize; Khan, Nuraan; Burton, Stephanie Gail

    2011-07-01

    Peroxidases are redox enzymes that can be found in all forms of life where they play diverse roles. It is therefore not surprising that they can also be applied in a wide range of industrial applications. Peroxidases have been extensively studied with particular emphasis on those isolated from fungi and plants. In general, peroxidases can be grouped into haem-containing and non-haem-containing peroxidases, each containing protein families that share sequence similarity. The order Actinomycetales comprises a large group of bacteria that are often exploited for their diverse metabolic capabilities, and with recent increases in the number of sequenced genomes, it has become clear that this metabolically diverse group of organisms also represents a large resource for redox enzymes. It is therefore surprising that, to date, no review article has been written on the wide range of peroxidases found within the actinobacteria. In this review article, we focus on the different types of peroxidases found in actinobacteria, their natural role in these organisms and how they compare with the more well-described peroxidases. Finally, we also focus on work remaining to be done in this research field in order for peroxidases from actinobacteria to be applied in industrial processes.

  14. The actinobacterial colonization of Etruscan paintings.

    PubMed

    Diaz-Herraiz, Marta; Jurado, Valme; Cuezva, Soledad; Laiz, Leonila; Pallecchi, Pasquino; Tiano, Piero; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2013-01-01

    The paintings from Tomba della Scimmia, in Tuscany, are representative of the heavy bacterial colonization experienced in most Etruscan necropolises. The tomb remained open until the late 70's when it was closed because of severe deterioration of the walls, ceiling and paintings after decades of visits. The deterioration is the result of environmental changes and impacts suffered since its discovery in 1846. We show scanning electron microscopy and molecular studies that reveal the extent and nature of the biodeterioration. Actinobacteria, mainly Nocardia and Pseudonocardia colonize and grow on the tomb walls and this process is linked to the availability of organic matter, phyllosilicates (e.g. clay minerals) and iron oxides. Nocardia is found metabolically active in the paintings. The data confirm the specialization of the genera Nocardia and Pseudonocardia in the colonization of subterranean niches.

  15. The Actinobacterial Colonization of Etruscan Paintings

    PubMed Central

    Diaz-Herraiz, Marta; Jurado, Valme; Cuezva, Soledad; Laiz, Leonila; Pallecchi, Pasquino; Tiano, Piero; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2013-01-01

    The paintings from Tomba della Scimmia, in Tuscany, are representative of the heavy bacterial colonization experienced in most Etruscan necropolises. The tomb remained open until the late 70′s when it was closed because of severe deterioration of the walls, ceiling and paintings after decades of visits. The deterioration is the result of environmental changes and impacts suffered since its discovery in 1846. We show scanning electron microscopy and molecular studies that reveal the extent and nature of the biodeterioration. Actinobacteria, mainly Nocardia and Pseudonocardia colonize and grow on the tomb walls and this process is linked to the availability of organic matter, phyllosilicates (e.g. clay minerals) and iron oxides. Nocardia is found metabolically active in the paintings. The data confirm the specialization of the genera Nocardia and Pseudonocardia in the colonization of subterranean niches. PMID:23486535

  16. Design of Indigenous ELISA Using Tachyzoites from the RH Strain of Toxoplasma gondii and Comparison with Commercial Kits in Ahvaz, Southwest of Iran, 2015

    PubMed Central

    Mohammadpour, Niloofar; Saki, Jasem; Rafiei, Abdollah; Khodadadi, Ali; Tavalla, Mehdi; Cheraghian, Bahman

    2016-01-01

    Background Toxoplasma gondii is one of the most common causes of latent infections in humans worldwide. Detecting anti-Toxoplasma antibodies in serum using serological tests is a common method to diagnose toxoplasmosis. Objectives In the present study, an indigenous ELISA kit was prepared using tachyzoites from the RH strain of T. gondii, and its sensitivity and specificity were compared with those of commercial kits. Methods To produce antigens, 0.02 mL of locally isolated T. gondii RH strain parasites along with 109 tachyzoites were injected into the peritoneal cavities of 50 laboratory mice (BALB/C). Parasites were collected after 4 days. After filtering and washing, the concentration of protein in sonicated tachyzoites was calculated using the Lowry protein assay. The dilution of antigen, serum and alkaline phosphatase conjugate was assessed in designing an indigenous ELISA method; then ELISA was performed based on these dilutions, and its sensitivity was determined using 200 serum samples. In addition, the specificity of the assay was evaluated using 40 serum samples from patients with tuberculosis, leukemia or hydatid cyst. Results Indigenous ELISA was used to examine 100 serum samples containing anti-T. gondii IgG, with a sensitivity of 98% (commercial kits: 100%). Another 100 serum samples containing anti-T. gondii IgM were also tested, with a sensitivity of 99% (commercial kits: 100%). When 40 serum samples from patients with leukemia, hydatid cyst or tuberculosis were examined using anti-T. gondii IgG, the specificity was 100%, identical to commercial kits. However, the specificity of a similar test with anti-T. gondii IgM was just 28.6% for serum samples from leukemia patients, 21.4% for hydatid cyst and 16.7% for tuberculosis. Conclusions We found that purified locally isolated soluble crude antigens of the RH strain of T. gondii from the peritoneal cavity of mice may be one of the most promising antigens for detection of human toxoplasmosis in routine

  17. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  18. Achieving high performance electric field induced strain: a rational design of hyperbranched aromatic polyamide functionalized graphene-polyurethane dielectric elastomer composites.

    PubMed

    Chen, Tian; Qiu, Jinhao; Zhu, Kongjun; Li, Jinhuan; Wang, Jingwen; Li, Shuqin; Wang, Xiaoliang

    2015-03-26

    Dielectric elastomers have great potentials as flexible actuators in micro-electromechanical systems (MEMS) due to their large deformation, light weight, mechanical compliancy, and low cost. The low dielectric constant of these elastomers requires a rather high voltage electric field, which has greatly limited their applications. In this work, a diaphragm-type flexible microactuator comprising a hyperbranched aromatic polyamide functionalized graphene (HAPFG) filler embedded into the polyurethane (PU) dielectric elastomer matrix is described. The rational designed HAPFG sheets exhibits uniform dispersion in PU matrix and strong adhesion with the matrix by hydrogen-bond coupling. Consequently, the HAPFG-PU composites possess high dielectric performance and low loss modulus. The effect of hyperbranched aromatic polyamide functionalized graphene on high voltage electric field induced strain was experimentally investigated using the Fotonic sensor. The high electric field response of the composite was discussed by applying different kinds of alternating-current field. In addition, a comparison of the breakdown strength between the HAPFG-PU composite and the pure PU was carried out.

  19. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  20. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  1. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  2. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  3. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  4. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species.

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-03-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities.

  5. Complete genome sequence of Jiangella gansuensis strain YIM 002(T) (DSM 44835(T)), the type species of the genus Jiangella and source of new antibiotic compounds.

    PubMed

    Jiao, Jian-Yu; Carro, Lorena; Liu, Lan; Gao, Xiao-Yang; Zhang, Xiao-Tong; Hozzein, Wael N; Lapidus, Alla; Huntemann, Marcel; Reddy, T B K; Varghese, Neha; Hadjithomas, Michalis; Ivanova, Natalia N; Göker, Markus; Pillay, Manoj; Eisen, Jonathan A; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Li, Wen-Jun

    2017-01-01

    Jiangella gansuensis strain YIM 002(T) is the type strain of the type species of the genus Jiangella, which is at the present time composed of five species, and was isolated from desert soil sample in Gansu Province (China). The five strains of this genus are clustered in a monophyletic group when closer actinobacterial genera are used to infer a 16S rRNA gene sequence phylogeny. The study of this genome is part of the GenomicEncyclopedia ofBacteria andArchaea project, and here we describe the complete genome sequence and annotation of this taxon. The genome of J. gansuensis strain YIM 002(T) contains a single scaffold of size 5,585,780 bp, which involves 149 pseudogenes, 4905 protein-coding genes and 50 RNA genes, including 2520 hypothetical proteins and 4 rRNA genes. From the investigation of genome sizes of Jiangella species, J. gansuensis shows a smaller size, which indicates this strain might have discarded too much genetic information to adapt to desert environment. Seven new compounds from this bacterium have recently been described; however, its potential should be higher, as secondary metabolite gene cluster analysis predicted 60 gene clusters, including the potential to produce the pristinamycin.

  6. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems.

    PubMed

    Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A

    2015-06-01

    In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.

  7. Strain Measurement - Unidirectional.

    DTIC Science & Technology

    1983-04-20

    a ballpoint pen or a rounded piece of brass rod. If critical alignment is not necessary, gage lines may be located outside the immediate gage location...supplemented as needed by tabulated values. If the test design includes specification limits for the values, they should be included on the plots. Plots of...enough baseline before the event to allow estimation of the noise and stability. If the strain is to be correlated to specific events, the events should

  8. Strain gage system evaluation program

    NASA Technical Reports Server (NTRS)

    Dolleris, G. W.; Mazur, H. J.; Kokoszka, E., Jr.

    1978-01-01

    A program was conducted to determine the reliability of various strain gage systems when applied to rotating compressor blades in an aircraft gas turbine engine. A survey of current technology strain gage systems was conducted to provide a basis for selecting candidate systems for evaluation. Testing and evaluation was conducted in an F 100 engine. Sixty strain gage systems of seven different designs were installed on the first and third stages of an F 100 engine fan. Nineteen strain gage failures occurred during 62 hours of engine operation, for a survival rate of 68 percent. Of the failures, 16 occurred at blade-to-disk leadwire jumps (84 percent), two at a leadwire splice (11 percent), and one at a gage splice (5 percent). Effects of erosion, temperature, G-loading, and stress levels are discussed. Results of a post-test analysis of the individual components of each strain gage system are presented.

  9. Design Considerations for Monolithic Beam Formers Based on Electro-Optic Polymer Phase Modulators and Strain-Induced Optical Waveguides - Postprint

    DTIC Science & Technology

    2015-01-01

    passive optical polymer is that it can provide low-loss optical waveguides and its mode can be made to match that of a 4.0~4.5 m small-core fiber ...on top of the polymer introduces a strain-induced refractive index change within the core layer thus providing better lateral optical mode ...induced optical waveguide technique to reduce optical propagation loss, 4) the TO switch in closely spaced parallel single- mode waveguides, and 5

  10. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains.

    PubMed

    Charrier, Thomas; Durand, Marie-José; Jouanneau, Sulivan; Dion, Michel; Pernetti, Mimma; Poncelet, Denis; Thouand, Gérald

    2011-05-01

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 °C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor.

  11. [Designing of hybrid human interferon alfa-2 strain-producers and the use of enteropeptidase for obtaining N-terminal methionine-free interferons].

    PubMed

    Shirokov, D A; Riabichenko, V V; Akishina, R I; Ospel'nikova, T P; Glazunov, A V; Chestukhina, G G; Veĭko, V P

    2011-01-01

    A system for production of human interferon-alpha2a (IFN-alpha2a) and IFN-alpha2b lacking N-terminal methionine has been developed. Plasmids containing genes of hybrid IFN-alpha2 under the control of different promoters were constructed; a sequence encoding the enteropeptidase hydrolysis site being introduced in proximal part of the genes. As the result, 4 strains of Escherichia coli producing hybrid IFN-alpha2 have been obtained. The methodology for IFN-alpha2 renaturation, hydrolysis of its N-terminal part, chromatographic purification of N-terminal methionine-free IFN-alpha2 has been developed.

  12. Design.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Provides an annotated bibliography of resources on this month's theme "Design" for K-8 language arts, art and architecture, music and dance, science, math, social studies, health, and physical education. Includes Web sites, CD-ROMs and software, videos, books, audiotapes, magazines, professional resources and classroom activities.…

  13. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  14. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  15. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  16. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  17. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  18. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  19. Pulsed Phase-Locked-Loop Strain Monitor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Stone, F. D.

    1982-01-01

    P2sup.L2sup. strain monitor measures strain by monitoring change in phase of acoustic signal that passes through stressed sample. Phase sample causes shift in frequency of VCO. As with other monitors of this type, instrument is only accurate in elastic range of material. Monitor is expected to have broad application in materials testing, structural design, fabrication and assembly.

  20. Medically Complex Home Care and Caregiver Strain

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  1. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  2. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  3. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    SciTech Connect

    Abt, Birte; Foster, Brian; Lapidus, Alla L.; Clum, Alicia; Sun, Hui; Pukall, Rudiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne A.; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Cellulomonas flavigena type strain (134).

    PubMed

    Abt, Birte; Foster, Brian; Lapidus, Alla; Clum, Alicia; Sun, Hui; Pukall, Rüdiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-07-29

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    PubMed Central

    Abt, Birte; Foster, Brian; Lapidus, Alla; Clum, Alicia; Sun, Hui; Pukall, Rüdiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304688

  6. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  7. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design.

    PubMed

    Virupakshappa, Praveen Kumar Siddalingappa; Krishnaswamy, Manjunatha Bukkambudhi; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R(2) as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil.

  8. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1985-01-01

    Materials were evaluated that could be used in manufacturing electrical resistance strain gages for static strain measurements at temperatures at or above 1273 K. Strain gage materials must have a characteristic response to strain, temperature and time that is reproducible or that varies in a predictable manner within specified limits. Several metallic alloys were evaluated, as well as a series of transition metal carbides, nitrides and silicides.

  9. Can a strain yield a qubit?

    NASA Astrophysics Data System (ADS)

    Benjamin, Colin

    2015-03-01

    A Josepshon qubit is designed via the application of a tensile strain to a topological insulator surface, sandwiched between two s-wave superconductors. The strain applied leads to a shift in Dirac point without changing the conducting states existing on the surface of a topological insulator. This strain applied can be tuned to form a π-junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in a doubly degenerate state- ``0'' and ``1'' states of the qubit. A qubit designed this way is easily controlled via the tunable strain. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived. This work was supported by funds from Dept. of Science and Technology (Nanomission), Govt. of India, Grant No. SR/NM/NS-1101/2011.

  10. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  11. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains.

  12. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Schütze, Andreas; Seelecke, Stefan

    2016-06-01

    This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  13. Heterogeneity of inelastic strain during creep of Carrara marble: Microscale strain measurement technique

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Evans, Brian

    2016-08-01

    We combined the split cylinder technique with microfabrication technology to observe strain heterogeneities that were produced during high-pressure transient creep of Carrara marble. Samples were patterned with a custom-designed grid of markers spaced 10 µm apart and containing an embedded coordinate system. The microscale strain measurement (MSSM) technique described here allowed us to analyze the local strain distribution with unprecedented detail over large regions. The description of the strain field is a function of the area over which strain is being computed. The scale at which the strain field can be considered homogeneous can provide insight into the deformation processes taking place. At 400-500°C, when twinning production is prolific, we observe highly strained bands that span several grains. One possible cause for the multigrain bands is the need to relieve strain incompatibilities that result when twins impinge on neighboring grains. At 600-700°C, the strain fields are still quite heterogeneous, and local strain varies substantially within grains and near grain boundaries, but the multigrain slip bands are not present. Deformation is concentrated in much smaller areas within grains and along some grain boundaries. The disappearance of the multigrain slip bands occurs when the deformation conditions allow additional slip systems to be activated. At 600°C, when the total strain is varied from 0.11 to 0.36, the spatial scale of the heterogeneity does not vary, but there are increases in the standard deviation of the distribution of local strains normalized by the total strain; thus, we conclude that the microstructure does not achieve a steady state in this strain interval.

  14. Statistical Approaches for Estimating Actinobacterial Diversity in Marine Sediments

    PubMed Central

    Stach, James E. M.; Maldonado, Luis A.; Masson, Douglas G.; Ward, Alan C.; Goodfellow, Michael; Bull, Alan T.

    2003-01-01

    Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpson's index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed. PMID:14532080

  15. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  16. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  17. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  18. Strain sensor comprising a strain sensitive, two-mode optical

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1994-01-01

    A strain sensor uses an optical fiber including a strain sensitive portion and at least one strain insensitive portion. The strain sensitive portion is mounted on the surface of a structure at a location where a strain is desired to be measured. The strain insensitive portion(s) may be fused to the strain sensitive portion to transmit light therethrough, so that the resulting pattern may be detected to determine the amount of strain by comparison with a similar fiber not subjected to strain, or with the light pattern produced when the fiber is not under strain.

  19. The Development of Electrical Strain Gages

    NASA Technical Reports Server (NTRS)

    De Forest, A V; Leaderman, H

    1940-01-01

    The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.

  20. High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a copper mine

    PubMed Central

    Castro, Daniel B.A.; Pereira, Letícia Bianca; Silva, Marcus Vinícius M. e; Silva, Bárbara P. da; Palermo, Bruna Rafaella Z.; Carlos, Camila; Belgini, Daiane R.B.; Limache, Elmer Erasmo G.; Lacerda, Gileno V. Jr; Nery, Mariana B.P.; Gomes, Milene B.; Souza, Salatiel S. de; Silva, Thiago M. da; Rodrigues, Viviane D.; Paulino, Luciana C.; Vicentini, Renato; Ferraz, Lúcio F.C.; Ottoboni, Laura M.M.

    2015-01-01

    An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest. PMID:26484219

  1. High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a copper mine.

    PubMed

    Castro, Daniel B A; Pereira, Letícia Bianca; Silva, Marcus Vinícius M E; Silva, Bárbara P da; Palermo, Bruna Rafaella Z; Carlos, Camila; Belgini, Daiane R B; Limache, Elmer Erasmo G; Lacerda, Gileno V Jr; Nery, Mariana B P; Gomes, Milene B; Souza, Salatiel S de; Silva, Thiago M da; Rodrigues, Viviane D; Paulino, Luciana C; Vicentini, Renato; Ferraz, Lúcio F C; Ottoboni, Laura M M

    2015-09-01

    An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest.

  2. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  3. A natural vaccine candidate strain against cholera.

    PubMed

    Liu, Y Q; Qi, G M; Wang, S X; Yu, Y M; Duan, G C; Zhang, L J; Gao, S Y

    1995-12-01

    E1 Tor Vibrio cholerae (EVC) strains may be classified into two kinds-epidemigenic (EEVC) strains and non-epidemigenic (NEEVC) strains-based on a phage-biotyping system. A large number of EEVC strains have been screened for toxigenic and putative colonization attributes. One such naturally occurring strains (designated IEM101) has been found which is devoid of genes encoding cholera toxin (CT), accessory cholera enterotoxin (ACE), zonula occludens toxin (ZOT), but possesses RS1 sequences and toxin-coregulated pilus A gene (icpA) although icpA is poorly expressed. It expresses type B pili but does not possess type C pili. It is an E1 Tor Ogawa strain and does not cause fluid accumulation in rabbit ilcal loop tests. Active immunization of rabbits with strain IEM101 elicited good protection against challenge with virulent strains of V. cholerae O1. Oral administration caused no side effects in 15 human volunteers, colonized the gut for four to ten days and elicited good immune responses.

  4. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  5. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  6. Screening of flocculant-producing strains by NTG mutagenesis.

    PubMed

    Huang, Xiao-Wu; Cheng, Wen; Hu, Yong-You

    2005-01-01

    Screening of new microorganism being able to produce efficiently flocculants was carried out. A new model for screening efficient flocculant-producing strains was designed and tested. The results showed that this model for screening efficient flocculant-producing strains is very reliable and can greatly shorten the screening period. 13 flocculant-producing strains were isolated from activated sludge by conventional method. A strain, designated as HHE6, produced the bioflocculant with the turbidity removal 98% for kaolin suspension. Six of 13 strains selected as the original strains were treated with NTG as mutagen, and five mutant strains (HHE-P7, HHE-A8, HHE-P21, HHE-P24, HHE-A26) with high flocculation efficiency was obtained by selection, which exhibited the flocculation rate for kaolin suspension above 90%. Strains HHE6, HHE-P7, and HHE-P24 were classified as Penicillium purpurogenum, HHE-P21 as Penicillium cyclopium, HHE-A26 as Aspergillus versicolor and HHE-A8 as Aspergillus fumigatus, and it is hitherto unreported for biofloccutant-producing strains of Penicillium. The growth of the six strains (HHE6, HHE-P7, HHE-A8, HHE-P21, HHE-P24, HHE-A26) had similar curves, i.e. firstly increasing rapidly, keeping relatively constant then and finally decreasing gradually with cultivation time. The production of bioflocculants by strains showed the similar pattern to strain growth.

  7. Si1-yGey or Ge1-zSnz Source/Drain Stressors on Strained Si1-xGex-Channel P-Type Field-Effect Transistors: A Technology Computer-Aided Design Study

    NASA Astrophysics Data System (ADS)

    Eneman, Geert; De Keersgieter, An; Witters, Liesbeth; Mitard, Jerome; Vincent, Benjamin; Hikavyy, Andriy; Loo, Roger; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron

    2013-04-01

    The interaction between two stress techniques, strain-relaxed buffers (SRBs) and epitaxial source/drain stressors, is studied on short, Si1-xGex- and Ge-channel planar transistors. This work focuses on the longitudinal channel stress generated by these two techniques. Unlike for unstrained silicon-channel transistors, for strained channels on top of a strain-relaxed buffer a source/drain stressor without recess generates similar longitudinal channel stress than source/drain stressors with a deep recess. The least efficient stress transfer is obtained for source/drain stressors with a small recess that removes only the strained channel, not the substrate underneath. These trends are explained by a trade-off between elastic relaxation of the strained-channel during source/drain recess and the increased stress generation of thicker source/drain stressors. For Ge-channel pFETs, GeSn source/drains and Si1-xGex strain-relaxed buffers are efficient stressors for mobility enhancement. The former is more efficient for gate-last schemes than for gate-first, while the stress generated by the SRB is found to be independent of the gate-scheme.

  8. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  9. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  10. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  11. Heat strain during explosive ordnance disposal.

    PubMed

    Stewart, Ian B; Rojek, Amanda M; Hunt, Andrew P

    2011-08-01

    Bomb technicians perform their work while encapsulated in explosive ordnance disposal suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body's natural mechanisms for heat dissipation. Consequently, bomb technicians are known to experience symptoms of heat illness while performing their work. This research provides the first field based analysis of heat strain in bomb technicians. Six participants undertook simulated operational tasks across 2 days of variable climate. All subjects demonstrated high levels of heat strain as evidenced by elevated heart rate, core body temperature, and physiological strain index. Participants also reported signs and symptoms associated with heat illness. These results were exacerbated by more intense physical activity despite being undertaken in a cooler environment. The universal experience of heat strain in this sample has significant implications for the health of bomb technicians and additional research examining methods to improve temperature regulation and performance is warranted.

  12. Strains and Sprains

    MedlinePlus

    ... in the joint or muscle swelling and bruising warmth and redness of the injured area difficulty moving ... looks "bent" or misshapen signs of infection (increased warmth, redness, streaks, swelling, and pain) a strain or ...

  13. Strain and magnetic remanence

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham John

    1993-05-01

    Experimental data may be compatible with the hypothesis that a single direction of magnetic remanence rotates as a rigid marker with strains up to 40% shortening in coaxial, perfect flattening ( X = Y > Z). Detailed agreement with the passive line model is relatively poor for the specimens in which remanance is carried by magnetite. However, for this range of strains the differences with the passive line model (Wettstein's equation) are so slight that the latter model may be more easily employed to de-strain or restore deformed remanance to its original attitude. In the case of hematite-bearing remanences, the differences between the passive line and rigid marker model are even smaller because of the higher aspect ratios of grains of hematite. Therefore it is suggested that Wettstein's equation may be safely used to restore remanence after even higher strains, where the remanence is carried by hematite.

  14. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  15. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.

    PubMed

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi

    2016-06-21

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology.

  16. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres

    PubMed Central

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  17. High temperature static strain measurement with an electrical resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  18. The genome of Shigella dysenteriae strain Sd1617 comparison to representative strains in evaluating pathogenesis

    PubMed Central

    Vongsawan, Ajchara A.; Kapatral, Vinayak; Vaisvil, Benjamin; Burd, Henry; Serichantalergs, Oralak; Venkatesan, Malabi M.; Mason, Carl J.

    2015-01-01

    We sequenced and analyzed Shigella dysenteriae strain Sd1617 serotype 1 that is widely used as model strain for vaccine design, trials and research. A combination of next-generation sequencing platforms and assembly yielded two contigs representing a chromosome size of 4.34 Mb and the large virulence plasmid of 177 kb. This genome sequence is compared with other Shigella genomes in order to understand gene complexity and pathogenic factors. PMID:25743074

  19. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-06-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials.

  1. Ultra-responsive soft matter from strain-stiffening hydrogels

    NASA Astrophysics Data System (ADS)

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F. J.; Mackintosh, Frederick C.; Rowan, Alan E.; Kouwer, Paul H. J.

    2014-12-01

    The stiffness of hydrogels is crucial for their application. Nature’s hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.

  2. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    PubMed Central

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  3. Ultra-responsive soft matter from strain-stiffening hydrogels

    PubMed Central

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F. J.; MacKintosh, Frederick C.; Rowan, Alan E.; Kouwer, Paul H. J.

    2014-01-01

    The stiffness of hydrogels is crucial for their application. Nature’s hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials. PMID:25510333

  4. Ultra-responsive soft matter from strain-stiffening hydrogels.

    PubMed

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F J; MacKintosh, Frederick C; Rowan, Alan E; Kouwer, Paul H J

    2014-12-16

    The stiffness of hydrogels is crucial for their application. Nature's hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.

  5. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains.

    PubMed Central

    Brett, P. J.; Deshazer, D.; Woods, D. E.

    1997-01-01

    Previous reports in the literature suggest that Burkholderia pseudomallei strains can be differentiated on the basis of animal virulence. Twenty environmentally and clinically derived isolates of Burkholderia pseudomallei were examined for the production of exoenzymes, morphological and biochemical phenotypes and virulence for Syrian golden hamsters. The partial sequence of the 16S ribosomal RNA [rRNA] genes from a number of these strains was also determined. Based upon these observations, it is suggested that highly virulent Burkholderia pseudomallei strains are true Burkholderia pseudomallei strains. The DNA sequences of the 16S rRNA genes of the true Burkholderia pseudomallei strains were identical to the published sequences for Burkholderia pseudomallei while differences were revealed between the published sequences and those of the lowly virulent strains. Thus, these latter strains have been designated as Burkholderia pseudomallei-like organisms since they demonstrate significant differences in exoenzyme production, hamster virulence and 16S rRNA gene sequences. PMID:9129590

  6. Genome Sequence of Human Rhinovirus A22, Strain Lancaster/2015

    PubMed Central

    Atkinson, Kate V.; Bishop, Lisa A.; Rhodes, Glenn; Salez, Nicolas; McEwan, Neil R.; Hegarty, Matthew J.; Robey, Julie; Harding, Nicola; Wetherell, Simon; Lauder, Robert M.; Pickup, Roger W.; Wilkinson, Mark

    2017-01-01

    ABSTRACT The genome of human rhinovirus A22 (HRV-A22) was assembled by deep sequencing RNA samples from nasopharyngeal swabs. The assembled genome is 8.7% divergent from the HRV-A22 reference strain over its full length, and it is only the second full-length genome sequence for HRV-A22. The new strain is designated strain HRV-A22/Lancaster/2015. PMID:28336607

  7. Design and evaluation of two-stage multiplex real-time PCR method for detecting O157:H7 and non-O157 STEC strains from beef samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: E. coli O157:H7 was first recognized as a human pathogen in 1982 and until recently was the only E. coli strain mandated for testing by the USDA. In June 2012, the USDA declared six additional Shiga-toxin producing E. coli serogroups (O26, O45, O103, O111, O121, and O145) as adulterant...

  8. The designated type strain of Pseudomonas halophila Fendrich 1989 is DSM 3051, the designated type strain of Halovibrio variabilis Fendrich 1989 is DSM 3050, the new name Halomonas utahensis (Fendrich 1989) Sorokin and Tindall 2006 is created for the species represented by DSM 3051 when treated as a member of the genus Halomonas, the combination Halomonas variabilis (Fendrich 1989) Dobson and Franzmann 1996 is rejected, and the combination Halovibrio denitrificans Sorokin et al. 2006 is validly published with an emendation of the description of the genus Halovibrio Fendrich 1989 emend. Sorokin et al. 2006. Opinion 93. Judicial Commission of the International Committee on Systematics of Prokaryotes.

    PubMed

    Tindall, B J

    2014-10-01

    The Judicial Commission affirms that, according to information presented to it, the designated type strain of Pseudomonas halophila Fendrich 1989 is DSM 3051 (replacing DSM 3050) and the designated type strain of Halovibrio variabilis Fendrich 1989 is DSM 3050 (replacing DSM 3051). A new name, Halomonas utahensis (Fendrich 1989) Sorokin and Tindall 2006 nom. nov., is created for the species represented by DSM 3051 when treated as a member of the genus Halomonas, because the combination Halomonas halophila (Quesada et al. 1984) Dobson and Franzmann 1996 has priority based on the fact that the epithet halophila in the combination Halomonas halophila (Quesada et al. 1984) Dobson and Franzmann 1996 ( BASOYNM: Deleya halophila Quesada et al. 1984) has priority over the epithet halophila should the taxon Pseudomonas halophila Fendrich 1989 be treated as a member of the genus Halomonas. The combination Halomonas variabilis (Fendrich 1989) Dobson and Franzmann 1996 is rejected. The combination Halovibrio denitrificans Sorokin et al. 2006 is validly published with an emendation of the description of the genus Halovibrio Fendrich 1989 emend. Sorokin et al. 2006.

  9. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  10. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  11. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  12. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    PubMed

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  13. Strain- and Temperature-Dependence of Electromagnetic Metamaterials

    DTIC Science & Technology

    2012-08-01

    Analytic Expressions are powerful tools for describing metamaterial strain/temp- dependence : - Provide insight into physics behind linkage; - Enable...strain/temp- dependence for unit cells in same design family. Analytic Expressions enable efficient determination of EM(Electromagnetic) performance of

  14. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  15. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  16. Development of a Strain-Specific Molecular Method for Quantitating Individual Campylobacter Strains in Mixed Populations▿

    PubMed Central

    Elvers, Karen T.; Helps, Christopher R.; Wassenaar, Trudy M.; Allen, Vivien M.; Newell, Diane G.

    2008-01-01

    The identification of sites resulting in cross-contamination of poultry flocks in the abattoir and determination of the survival and persistence of campylobacters at these sites are essential for the development of intervention strategies aimed at reducing the microbial burden on poultry at retail. A novel molecule-based method, using strain- and genus-specific oligonucleotide probes, was developed to detect and enumerate specific campylobacter strains in mixed populations. Strain-specific oligonucleotide probes were designed for the short variable regions (SVR) of the flaA gene in individual Campylobacter jejuni strains. A 16S rRNA Campylobacter genus-specific probe was also used. Both types of probes were used to investigate populations of campylobacters by colony lift hybridization. The specificity and proof of principle of the method were tested using strains with closely related SVR sequences and mixtures of these strains. Colony lifts of campylobacters were hybridized sequentially with up to two labeled strain-specific probes, followed by the generic 16S rRNA probe. SVR probes were highly specific, differentiating down to 1 nucleotide in the target sequence, and were sufficiently sensitive to detect colonies of a single strain in a mixed population. The 16S rRNA probe detected all Campylobacter spp. tested but not closely related species, such as Arcobacter skirrowi and Helicobacter pullorum. Preliminary field studies demonstrated the application of this technique to target strains isolated from poultry transport crate wash tank water. This method is quantitative, sensitive, and highly specific and allows the identification and enumeration of selected strains among all of the campylobacters in environmental samples. PMID:18281428

  17. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  18. Atmospheric corrosion sensor based on strain measurement

    NASA Astrophysics Data System (ADS)

    Kasai, Naoya; Hiroki, Masatoshi; Yamada, Toshirou; Kihira, Hiroshi; Matsuoka, Kazumi; Kuriyama, Yukihisa; Okazaki, Shinji

    2017-01-01

    In this paper, an in situ atmospheric corrosion sensor based on strain measurement is discussed. The theoretical background for measuring the reduction in thickness of low carbon steel is also presented. Based on the theoretical considerations, a test piece and apparatus for an atmospheric corrosion sensor were designed. Furthermore, in a dry-wet cyclic accelerated exposure experiment, the measured strain indicated thinning of the test piece, although the corrosion product generated on the surface of the test piece affected the results. The atmospheric corrosion sensor would be effective for evaluating atmospheric corrosion of many types of infrastructure.

  19. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2015-11-01

    Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

  20. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  1. Hamstring strain - aftercare

    MedlinePlus

    ... not to push yourself too hard or too fast. A hamstring strain can recur, or your hamstring may tear. Talk to your provider before returning to work or any physical activity. Returning to normal activity too early can cause re-injury.

  2. Repetitive strain injury.

    PubMed

    Al-Otaibi, S T

    2001-05-01

    Repetitive strain injury is a group of musculoskeletal disorders affecting muscles, tendons, nerves and blood vessels. These disorders could be attributed to occupational causes; however non-occupational causes should be excluded. The management of these cases required a multidisciplinary team approach.

  3. Balloon film strain measurement

    NASA Astrophysics Data System (ADS)

    Rand, James L.

    In order to understand the state of stress in scientific balloons, a need exists for the measurement of film deformation in flight. The results of a flight test program are reported where material strain was measured for the first time during the inflation, launch, ascent and float of a typical natural shape, zero pressure scientific balloon.

  4. A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells.

    PubMed

    Sotoudeh, M; Jalali, S; Usami, S; Shyy, J Y; Chien, S

    1998-01-01

    The objective of this study is to design a new apparatus to allow the control of the magnitude and frequency of dynamic stretch applied uniformly to cells cultured on a silicon elastic membrane. The apparatus is designed to produce equi-biaxial dynamic stretches with area changes ranging from 0% to 55% and frequencies ranging from 0 to 2 Hz. Homogeneous finite strain analysis using triangles of markers was performed to compute the symmetric two-dimensional Lagrangian strain tensor on the membrane. Measurements of strain in both static and dynamic conditions showed that the shear component of the strain tensor (Erc) was near zero, and that there was no significant difference between radial (Err) and circumferential (Ecc) components, indicating the attainment of equi-biaxial strain. Bovine aortic endothelial cells were transiently transfected with a chimeric construct in which the luciferase reporter is driven by TPA-responsive elements (TRE). The transfected cells cultured on the membrane were stretched. The luciferase activity increased significantly only when the cells were stretched by 15% or more in area. Cells in different locations of the membrane showed similar induction of luciferase activities, confirming that strain is uniform and equi-biaxial across the membrane.

  5. Forming blocks speed production of strain gage grids

    NASA Technical Reports Server (NTRS)

    Bonn, J. L.; Gardner, D. E.

    1965-01-01

    A tool is designed which facilitates the forming of wire grids used in manufacturing strain gage grids. Flattening the grid wire by a cold working process produces a stabilized grid which can be readily handled for storage or shipment.

  6. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  7. Strain phase separation: Formation of ferroelastic domain structures

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Li, Yongjun; Gu, Yijia; Zhang, Jinxing; Chen, Long-Qing

    2016-12-01

    Phase decomposition is a well-known process leading to the formation of two-phase mixtures. Here we show that a strain imposed on a ferroelastic crystal promotes the formation of mixed phases and domains, i.e., strain phase separation with local strains determined by a common tangent construction on the free energy versus strain curves. It is demonstrated that a domain structure can be understood using the concepts of domain/phase rule, lever rule, and coherent and incoherent strain phase separation, in a complete analogy to phase decomposition. The proposed strain phase separation model is validated using phase-field simulations and experimental observations of PbTi O3 and BiFe O3 thin films as examples. The proposed model provides a simple tool to guide and design domain structures of ferroelastic systems.

  8. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGES

    Song, Bo; Yao, Shurong; Nie, Xu; ...

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  9. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  10. Identification of Strain-Specific Sequences That Distinguish a Mycoplasma gallisepticum Vaccine Strain from Field Isolates

    PubMed Central

    Ricketts, Camir; Pickler, Larissa; Maurer, John; Ayyampalayam, Saravanaraj; García, Maricarmen

    2016-01-01

    ABSTRACT Despite attempts to control avian mycoplasmosis through management, vaccination, and surveillance, Mycoplasma gallisepticum continues to cause significant morbidity, mortality, and economic losses in poultry production. Live attenuated vaccines are commonly used in the poultry industry to control avian mycoplasmosis; unfortunately, some vaccines may revert to virulence and vaccine strains are generally difficult to distinguish from natural field isolates. In order to identify genome differences among vaccine revertants, vaccine strains, and field isolates, whole-genome sequencing of the M. gallisepticum vaccine strain ts-11 and several “ts-11-like” strains isolated from commercial flocks was performed using Illumina and 454 pyrosequencing and the sequenced genomes compared to the M. gallisepticum Rlow reference genome. The collective contigs for each strain were annotated using the fully annotated Mycoplasma reference genome. The analysis revealed genetic differences among vlhA alleles, as well as among genes annotated as coding for a cell wall surface anchor protein (mg0377) and a hypothetical protein gene, mg0359, unique to M. gallisepticum ts-11 vaccine strain. PCR protocols were designed to target 5 sequences unique to the M. gallisepticum ts-11 strain: vlhA3.04a, vlhA3.04b, vlhA3.05, mg0377, and mg0359. All ts-11 isolates were positive for the five gene alleles tested by PCR; however, 5 to 36% of field isolates were also positive for at least one of the alleles tested. A combination of PCR tests for vlhA3.04a, vlhA3.05, and mg0359 was able to distinguish the M. gallisepticum ts-11 vaccine strain from field isolates. This method will further supplement current approaches to quickly distinguish M. gallisepticum vaccine strains from field isolates. PMID:27847370

  11. Silicon Germanium Strained Layers and Heterostructures

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Jain, S. C.

    2004-01-01

    The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design

  12. Strain diversity and phage resistance in complex dairy starter cultures.

    PubMed

    Spus, M; Li, M; Alexeeva, S; Wolkers-Rooijackers, J C M; Zwietering, M H; Abee, T; Smid, E J

    2015-08-01

    The compositional stability of the complex Gouda cheese starter culture Ur is thought to be influenced by diversity in phage resistance of highly related strains that co-exist together with bacteriophages. To analyze the role of bacteriophages in maintaining culture diversity at the level of genetic lineages, simple blends of Lactococcus lactis strains were made and subsequently propagated for 152 generations in the absence and presence of selected bacteriophages. We first screened 102 single-colony isolates (strains) from the complex cheese starter for resistance to bacteriophages isolated from this starter. The collection of isolates represents all lactococcal genetic lineages present in the culture. Large differences were found in bacteriophage resistance among strains belonging to the same genetic lineage and among strains from different lineages. The blends of strains were designed such that 3 genetic lineages were represented by strains with different levels of phage resistance. The relative abundance of the lineages in blends with phages was not stable throughout propagation, leading to continuous changes in composition up to 152 generations. The individual resistance of strains to phage predation was confirmed as one of the factors influencing starter culture diversity. Furthermore, loss of proteolytic activity of initially proteolytic strains was found. Reconstituted blends with only 4 strains with a variable degree of phage resistance showed complex behavior during prolonged propagation.

  13. Brittle superconducting magnets: an equivilent strain model

    SciTech Connect

    Barzi, E.; Danuso, M.

    2010-08-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb{sub 3}Sn and Nb{sub 3}Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb{sub 3}Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  14. Strain patterns and strain accumulation along plate margins

    NASA Technical Reports Server (NTRS)

    Savage, J. C.

    1978-01-01

    Observations of strain accumulation along plate margins in Japan, New Zealand, and the United States indicate that: (1) a typical maximum rate of secular strain accumulation is on the order of 0.3 ppm/a, (2) a substantial part of the strain accumulation process can be attributed to slip at depth on the major plate boundary faults, and (3) some plastic deformation in a zone 100 km or more in width is apparently involved in the strain accumulation process.

  15. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  16. Strained Ring Energetic Binders

    DTIC Science & Technology

    1993-08-27

    polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report

  17. Strain Gage Signal Interpretation.

    DTIC Science & Technology

    1986-02-01

    blades and vanes in many engines have been collected, played back and examined. The engine types encompass GE’s stable of turbine engines from the small...aeromechanical engineer . 1.3 SUMMARY OF RESULTS Strain gage signals from vibrating rotor blades and vanes were collected, examined, classified, and generalized...turboprops, to turbojets and to the large high bypass turbofan engines . Test conditions include all the phases that are investigated

  18. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  19. The Complete Nucleotide Sequence of the Carbapenem Resistance-Conferring Conjugative Plasmid pLD209 from a Pseudomonas putida Clinical Strain Reveals a Chimeric Design Formed by Modules Derived from Both Environmental and Clinical Bacteria

    PubMed Central

    Marchiaro, Patricia M.; Brambilla, Luciano; Morán-Barrio, Jorgelina; Revale, Santiago; Pasteran, Fernando; Vila, Alejandro J.; Viale, Alejandro M.

    2014-01-01

    The complete sequence of the carbapenem-resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain is presented. pLD209 is formed by 3 well-defined regions: an adaptability module encompassing a Tn402-like class 1 integron of clinical origin containing blaVIM-2 and aacA4 gene cassettes, partitioning and transfer modules, and a replication module derived from plasmids of environmental bacteria. pLD209 is thus a mosaic of modules originating in both the clinical and environmental (nonclinical) microbiota. PMID:24395220

  20. What Are Sprains and Strains?

    MedlinePlus

    ... hands and arms a lot. Examples are gymnastics, tennis, rowing, and golf. People who play these sports sometimes strain their hand or arm. Elbow strains can also happen when playing sports. What ...

  1. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transition temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.

  2. Transient dynamic distributed strain sensing using photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Samad, Shafeek A.; Hegde, G. M.; Roy Mahapatra, D.; Hanagud, S.

    2014-02-01

    A technique to determine the strain field in one-dimensional (1D) photonic crystal (PC) involving high strain rate, high temperature around shock or ballistic impact is proposed. Transient strain sensing is important in aerospace and other structural health monitoring (SHM) applications. We consider a MEMS based smart sensor design with photonic crystal integrated on a silicon substrate for dynamic strain correlation. Deeply etched silicon rib waveguides with distributed Bragg reflectors are suitable candidates for miniaturization of sensing elements, replacing the conventional FBG. Main objective here is to investigate the effect of non-uniform strain localization on the sensor output. Computational analysis is done to determine the static and dynamic strain sensing characteristics of the 1D photonic crystal based sensor. The structure is designed and modeled using Finite Element Method. Dynamic localization of strain field is observed. The distributed strain field is used to calculated the PC waveguide response. The sensitivity of the proposed sensor is estimated to be 0.6 pm/μɛ.

  3. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  4. Unexpected strain-stiffening in crystalline solids.

    PubMed

    Jiang, Chao; Srinivasan, Srivilliputhur G

    2013-04-18

    Strain-stiffening--an increase in material stiffness at large strains--is a vital mechanism by which many soft biological materials thwart excessive deformation to protect tissue integrity. Understanding the fundamental science of strain-stiffening and incorporating this concept into the design of metals and ceramics for advanced applications is an attractive prospect. Using cementite (Fe3C) and aluminium borocarbide (Al3BC3) as prototypes, here we show via quantum-mechanical calculations that strain-stiffening also occurs, surprisingly, in simple inorganic crystalline solids and confers exceptionally high strengths to these two solids, which have anomalously low resistance to deformation near equilibrium. For Fe3C and Al3BC3, their ideal shear strength to shear modulus ratios attain remarkably high values of 1.14 and 1.34 along the (010)[001] and slip systems, respectively. These values are more than seven times larger than the original Frenkel value of 1/2π (refs 4, 5) and are the highest yet reported for crystalline solids. The extraordinary stiffening of Fe3C arises from the strain-induced reversible 'cross-linking' between weakly coupled edge- and corner-sharing Fe6C slabs. This new bond formation creates a strong, three-dimensional covalent bond network that resists large shear deformation. Unlike Fe3C, no new bond forms in Al3BC3 but stiffening still occurs because strong repulsion between Al and B in a compressed Al-B bond unsettles the existing covalent bond network. These discoveries challenge the conventional wisdom that large shear modulus is a reliable predictor of hardness and strength of materials, and provide new lessons for materials selection and design.

  5. High catalase production by Rhizobium radiobacter strain 2-1.

    PubMed

    Nakayama, Mami; Nakajima-Kambe, Toshiaki; Katayama, Hideki; Higuchi, Kazuhiko; Kawasaki, Yoshio; Fuji, Ryujiro

    2008-12-01

    To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater.

  6. Development of an Integrated Evaluation System for a Stretchable Strain Sensor

    PubMed Central

    Jeon, Hyungkook; Hong, Seong Kyung; Cho, Seong J.; Lim, Geunbae

    2016-01-01

    Recently, much research has been focused on stretchable or flexible electronic sensors for the measurement of strain or deformation on movable and variably shaped objects. In this research, to evaluate the performance of stretchable strain sensors, we have designed an integrated evaluation system capable of simultaneously measuring the change in stress and conductance of a strain sensor. Using the designed system, we have successfully evaluated the deformation characteristics, sensing range and sensing sensitivity of a stretchable strain sensor. We believe that the developed integrated evaluation system could be a useful tool for performance evaluation of stretchable strain sensors. PMID:27447639

  7. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  8. Repetitive strain injury.

    PubMed

    van Tulder, Maurits; Malmivaara, Antti; Koes, Bart

    2007-05-26

    Repetitive strain injury remains a controversial topic. The term repetitive strain injury includes specific disorders such as carpal tunnel syndrome, cubital tunnel syndrome, Guyon canal syndrome, lateral epicondylitis, and tendonitis of the wrist or hand. The diagnosis is usually made on the basis of history and clinical examination. Large high-quality studies using newer imaging techniques, such as MRI and ultrasonography are few. Consequently, the role of such imaging in diagnosis of upper limb disorders remains unclear. In many cases, no specific diagnosis can be established and complaints are labelled as non-specific. Little is known about the effectiveness of treatment options for upper limb disorders. Strong evidence for any intervention is scarce and the effect, if any, is mainly short-term pain relief. Exercise is beneficial for non-specific upper limb disorders. Immobilising hand braces and open carpal tunnel surgery release are beneficial for carpal tunnel syndrome, and topical and oral non-steroidal anti-inflammatory drugs, and corticosteroid injections are helpful for lateral epicondylitis. Exercise is probably beneficial for neck pain, as are corticosteroid injections and exercise for shoulder pain. Although upper limb disorders occur frequently in the working population, most trials have not exclusively included a working population or assessed effects on work-related outcomes. Further high-quality trials should aim to include sufficient sample sizes, working populations, and work-related outcomes.

  9. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    PubMed Central

    2009-01-01

    Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports

  10. Effect of anharmonicity of interatomic potential on strain distribution in semiconductor nanostructures

    NASA Technical Reports Server (NTRS)

    Lazarenkova, Olga L.; von Allmen, Paul; Oyafuso, Fabiano; Lee, Seungwoii; Klimeck, Gerhard

    2004-01-01

    Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore of utmost importance for the design of optical devices with prescribed light emission spectrum.

  11. Palladium-chromium static strain gage for high temperature propulsion systems

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1991-01-01

    The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.

  12. Strain engineering of nanowire multi-quantum well demonstrated by Raman spectroscopy.

    PubMed

    Wölz, Martin; Ramsteiner, Manfred; Kaganer, Vladimir M; Brandt, Oliver; Geelhaar, Lutz; Riechert, Henning

    2013-09-11

    An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial InxGa1-xN quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy. A detailed calculation of the strain distribution and LO phonon frequency shift shows that a uniform in-plane lattice constant in the nanowire segments satisfactorily describes the resonant Raman spectra, although in reality the three-dimensional strain profile at the periphery of the quantum wells is complex. Our strain analysis is applicable beyond the InxGa1-xN/GaN system under study, and we derive universal rules for strain engineering in nanowire heterostructures.

  13. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  14. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGES

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; ...

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength inmore » AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.« less

  15. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  16. Thermal strain analysis of optic fiber sensors.

    PubMed

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  17. Uncovering high-strain rate protection mechanism in nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-11-01

    Under high-strain-rate compression (strain rate ~103 s-1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10-3 s-1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  18. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  19. Uncovering high-strain rate protection mechanism in nacre.

    PubMed

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  20. Uncovering high-strain rate protection mechanism in nacre

    PubMed Central

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate ∼103 s−1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10−3 s−1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  1. Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring

    NASA Technical Reports Server (NTRS)

    Wang, A.

    2002-01-01

    The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.

  2. onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ ˜4.6 μm) based on a slightly diagonal active region design

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lösch, R.; Bronner, W.; Hugger, S.; Fuchs, F.; Aidam, R.; Wagner, J.

    2008-12-01

    Employing a "slightly diagonal" active region design for the quantum cascade lasers compared to a reference sample based on the conventional vertical transition design [R. Köhler et al., Appl. Phys. Lett. 76, 1092 (2000)], we have improved the maximum operation temperature, room-temperature maximum peak power per facet, and room-temperature slope efficiency from 320 K, 200 mW, and 570 mW/A to higher than 360 K, 3.2 W, and 2200 mW/A, respectively, for the device size of 16 μm×3 mm with as-cleaved facets operated in pulsed mode.

  3. Scaffold metamaterial and its application as strain sensor

    SciTech Connect

    Wu, Wei; Ren, Mengxin Pi, Biao; Cai, Wei Xu, Jingjun; Wu, Yang

    2015-08-31

    In this paper, strain sensors based on planar scaffold metamaterial design are demonstrated. The optical properties of such metamaterials are studied, which are proved to be highly dependent on the deformation of the structure. Fabricating such metamaterial on compliant polymeric substrate, the geometric parameters could be tuned with external strain and hence are found to control the reflection resonance condition of the metamaterial. Such mechanical tunability provides the opportunity to realize efficient strain sensors and about 27 nm resonance wavelength shift is observed by applying as much as 37% tensile strain. Furthermore, distinct from most of the previous works, our structures are based on “intaglio” design, which could be manufactured directly by one step fabrication using focused ion beam cutting, hence makes the fabrication process much simpler.

  4. Strain Pattern in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  5. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during

  6. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  7. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  8. Compressive strain measurement using RFID patch antenna sensors

    NASA Astrophysics Data System (ADS)

    Cho, Chunhee; Yi, Xiaohua; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2014-04-01

    In this research, two radiofrequency identification (RFID) antenna sensor designs are tested for compressive strain measurement. The first design is a passive (battery-free) folded patch antenna sensor with a planar dimension of 61mm × 69mm. The second design is a slotted patch antenna sensor, whose dimension is reduced to 48mm × 44mm by introducing slots on antenna conducting layer to detour surface current path. A three-point bending setup is fabricated to apply compression on a tapered aluminum specimen mounted with an antenna sensor. Mechanics-electromagnetics coupled simulation shows that the antenna resonance frequency shifts when each antenna sensor is under compressive strain. Extensive compression tests are conducted to verify the strain sensing performance of the two sensors. Experimental results confirm that the resonance frequency of each antenna sensor increases in an approximately linear relationship with respect to compressive strain. The compressive strain sensing performance of the two RFID antenna sensors, including strain sensitivity and determination coefficient, is evaluated based on the experimental data.

  9. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  10. Strain monitoring of a composite wing

    NASA Astrophysics Data System (ADS)

    Strathman, Joseph; Watkins, Steve E.; Kaur, Amardeep; Macke, David C.

    2016-04-01

    An instrumented composite wing is described. The wing is designed to meet the load and ruggedness requirements for a fixed-wing unmanned aerial vehicle (UAV) in search-and-rescue applications. The UAV supports educational systems development and has a 2.1-m wingspan. The wing structure consists of a foam core covered by a carbon-fiber, laminate composite shell. To quantify the wing characteristics, a fiber-optic strain sensor was surface mounted to measure distributed strain. This sensor is based on Rayleigh scattering from local index variations and it is capable of high spatial resolution. The use of the Rayleigh-scattering fiber-optic sensors for distributed measurements is discussed.

  11. Thin film strain transducer. [in-flight measurement of stress or strain in walls of high altitude balloons

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  12. Strain relaxation in nanopatterned strained silicon round pillars

    NASA Astrophysics Data System (ADS)

    Himcinschi, C.; Singh, R.; Radu, I.; Milenin, A. P.; Erfurth, W.; Reiche, M.; Gösele, U.; Christiansen, S. H.; Muster, F.; Petzold, M.

    2007-01-01

    Periodic arrays of strained Si (sSi) round nanopillars were fabricated on sSi layers deposited on SiGe virtual substrates by electron-beam lithography and subsequent reactive-ion etching. The strain in the patterned sSi nanopillars was determined using high-resolution UV micro-Raman spectroscopy. The strain relaxes significantly upon nanostructuring: from 0.9% in the unpatterned sSi layer to values between 0.22% and 0.57% in the round sSi pillars with diameters from 100 up to 500nm. The strain distribution in the sSi nanopillars was analyzed by finite element (FE) modeling. The FE calculations confirm the strain relaxation after patterning, in agreement with the results obtained from Raman spectroscopy.

  13. Adaptor for Measuring Principal Strains with Tuckerman Strain Gage

    NASA Technical Reports Server (NTRS)

    Mcpherson, A E

    1943-01-01

    An adapter is described which uses three Tuckerman optical strain gages to measure the displacement of the three vortices of an equilateral triangle along lines 120 degrees apart. These displacements are substituted in well-known equations in order to compute the magnitude and direction of the principal strains. Tests of the adaptor indicate that principal strains over a gage length of 1.42 inch may be measured with a systematic error not exceeding 4 percent and a mean observational error of the order of + or minus 0.000006. The maximum observed error in strain was of the order of 0.00006. The directions of principal strains for unidirectional stress were measured with the adaptor with an average error of the order of 1 degree.

  14. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    , velocity, and acceleration sensors. This research demonstrates the feasibility of obtaining induced drag and lift forces through the use of distributed sensor technology with measured strain data. An active induced drag control system thus can be designed using the two computed aerodynamic forces, induced drag and lift, to improve the fuel efficiency of an aircraft. Interpolation elements between structural finite element grids and the CFD grids and centroids are successfully incorporated with the unsteady aeroelastic computation scheme. The most critical technology for the success of the proposed approach is the robust on-line parameter estimator, since the least-squares curve fitting method depends heavily on aeroelastic system frequencies and damping factors.

  15. Strained graphene Hall bar

    NASA Astrophysics Data System (ADS)

    Milovanović, S. P.; Peeters, F. M.

    2017-02-01

    The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, R B, around zero-magnetic field and the occurrence of side-peaks in R B. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in R B are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.

  16. Biomechanical strain of goldsmiths.

    PubMed

    Cândido, Paula Emanuela Fernandes; Teixeira, Juliana Vieira Schmidt; Moro, Antônio Renato Pereira; Gontijo, Leila Amaral

    2012-01-01

    The work of the goldsmiths consists in the manufacture of jewelry. The piece, be it an earring, bracelet or necklace, is hand-assembled. This task requires precision, skill, kindness and patience. In this work, we make use of tools such as cuticle clippers and rounded tip, beads or precious stones and also pieces of metal. This type of activity requires a biomechanical stress of hands and wrists. In order to quantify the biomechanical stress, we performed a case study to measure the movements performed by an assembly of pieces of jewelry. As method for research, filming was done during assembly of parts to a paste, using a Nikon digital camera, for 1 (one) hour. The film was edited by Kinovea software, and the task was divided into cycles, each cycle corresponds to a complete object. In one cycle, there are four two movements of supination and pronation movements of the forearm. The cycle lasts approximately sixteen seconds, totaling 1800 cycles in eight hours. Despite the effort required of the wrists, the activity shows no complaints from the employees, but this fact does not mischaracterizes the ability of employees to acquire repetitive strain injuries and work-related musculoskeletal disorders.

  17. Characterization of Salmonella enteritidis strains.

    PubMed Central

    Poppe, C; McFadden, K A; Brouwer, A M; Demczuk, W

    1993-01-01

    A study was conducted to characterize 318 Salmonella enteritidis strains that were mainly isolated from poultry and their environment in Canada. Biotype, phagetype (PT), plasmid profile (PP), hybridization with a plasmid-derived virulence sequence probe, antibiotic resistance, outer membrane proteins (OMPs), and lipopolysaccharide (LPS) profiles were determined. Relationships of these properties to one another, and their diagnostic and pathogenic significance were assessed. Biotyping indicated that failure to ferment rhamnose was sometimes useful as a marker for epidemiologically related strains. Phagetyping was the most effective method for subdividing S. enteritidis; it distinguished 12 PTs. Phagetype 13 was occasionally associated with septicemia and mortality in chickens. The strains belonged to 15 PPs. A 36 megadalton (MDa) plasmid was found in 97% of the strains. Only the 36 MDa plasmid hybridized with the probe. Seventeen percent of the strains were drug resistant; all strains were sensitive to ciprofloxacin. Thirty-five of 36 strains possessed the same OMP profile, and 36 of 41 strains contained smooth LPS. Images Fig. 1. PMID:8358678

  18. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  19. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  20. Role of scaffold network in controlling strain and functionalities of nanocomposite films.

    PubMed

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-06-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface-strain-properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.

  1. Imported lassa fever in Germany: molecular characterization of a new lassa virus strain.

    PubMed

    Günther, S; Emmerich, P; Laue, T; Kühle, O; Asper, M; Jung, A; Grewing, T; ter Meulen, J; Schmitz, H

    2000-01-01

    We describe the isolation and characterization of a new Lassa virus strain imported into Germany by a traveler who had visited Ghana, Côte D'Ivoire, and Burkina Faso. This strain, designated "AV," originated from a region in West Africa where Lassa fever has not been reported. Viral S RNA isolated from the patient's serum was amplified and sequenced. A long-range reverse transcription polymerase chain reaction allowed amplification of the full-length (3.4 kb) S RNA. The coding sequences of strain AV differed from those of all known Lassa prototype strains (Josiah, Nigeria, and LP) by approximately 20%, mainly at third codon positions. Phylogenetically, strain AV appears to be most closely related to strain Josiah from Sierra Leone. Lassa viruses comprise a group of genetically highly diverse strains, which has implications for vaccine development. The new method for full-length S RNA amplification may facilitate identification and molecular analysis of new arenaviruses or arenavirus strains.

  2. Strain Insensitive Optical Phase Locked Loop

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)

    1998-01-01

    A strain sensor uses optical fibers including strain insensitive portions and a strain sensitive portion. The optical fibers form a sensitive arm of an optical phase locked loop (OPLL). The use of the OPLL allows for multimode optical fiber to be used in a strain insensitive configuration. Only strain information for the strain sensitive portion is monitored rather than the integrated strain measurements commonly made with optical fiber sensors.

  3. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  4. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  5. Computerized comparison of the protein compositions of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum strains.

    PubMed

    Bernáth, S; Német, L; Tóth, K; Morovján, G

    2001-02-01

    Protein profiles of six Erysipelothrix rhusiopathiae strains, five Erysipelothrix tonsillarum strains and three Erysipelothrix strains of uncertain taxonomic position were studied by sodium dodecyl sulphate-polyactylamide gel electrophoresis (SDS-PAGE). In a computerized comparison of the protein patterns of the strains, the level of similarity between the strains was determined. The SDS-PAGE protein bands were divided into 14 groups based on molecular weight. The relative distribution of proteins within these groups was used to characterize the strains. These distribution patterns were analysed by computing Pearson's correlation coefficient between strains, and by cluster analysis based on Euclidean distances and the unweighted pair-group method of arithmetic averages (UPGMA). The geometric mean of the similarities calculated by Pearson's correlation coefficient was 0.980 +/- 0.018 between the E. rhusiopathiae strains and 0.979 +/- 0.013 for E. tonsillarum strains. The value was 0.932 +/- 0.036 between the strains belonging to different species. However, a threshold value applicable for identification of a given strain to a species could not be established. Of the three strains of uncertain taxonomic position, the strains designated Rotzunge and Iszap 4 had a protein composition more similar to that of E. tonsillarum than to that of the E. rhusiopathiae type strain. The strain designated Pécs 56, which may be a member of a new species according to literature data, gave inconsistent results by the two methods used. The computerized evaluation method developed here is suitable for the comparison of the protein composition of the strains and for the construction of the protein similarity tree by cluster analysis.

  6. Human fibroblast strain with normal survival but abnormal postreplication repair after ultraviolet light irradiation

    SciTech Connect

    Doniger, J.; Barrett, S.F.; Robbins, J.H.

    1980-08-01

    Postreplication repair has been studied in ultraviolet light (UV-irradiated) fibroblast strains derived from eight apparently normal control donors and seven xeroderma pigmentosum patients. One control donor strain had an intermediate defect in postreplication repair similar to that in excision-deficient xeroderma pigmentosum fibroblasts. However, unlike the xeroderma pigmentosum strains, this control donor strain had normal UV-induced unscheduled DNA synthesis and normal survival after irradiation with UV. This unique fibroblast strain should be useful in studies designed to elucidate the possible role of postreplication repair in UV-induced carcinogenesis and mutagenesis.

  7. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology.

    PubMed

    Tayabali, Azam F; Coleman, Gordon; Nguyen, Kathy C

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.

  8. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology

    PubMed Central

    Tayabali, Azam F.; Coleman, Gordon; Nguyen, Kathy C.

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications. PMID:26619347

  9. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  10. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  11. An experimental/analytical comparison of strains in encapsulated assemblies

    SciTech Connect

    Guess, T.R.; Burchett, S.N.

    1991-11-01

    A combined experimental and analytical study of strains developed in encapsulated assemblies during casting, curing and thermal excursions is described. The experimental setup, designed to measure in situ strains, consisted of thin, closed-end, Kovar tubes that were instrumented with strain gages and thermocouples before being over-cast with a polymeric encapsulant. Four bisphenol A (three diethanolamine cured and one anhydride cured) epoxy-based materials and one urethane elastomeric material were studied. After cure of the encapsulant, tube strains were measured over the temperature range of {minus}55{degrees}C to 90{degrees}C. The thermal excursion experiments were then numerically modeled using finite element analyses and the computed strains were compared to the experimental strains. The predicted strains were over estimated (conservative) when a linear, elastic, temperature-dependent material model was assumed for the encapsulant and the stress free temperature T{sub i} was assumed to correspond to the cure temperature {Tc} of the encapsulant. Very good agreement was obtained with linear elastic calculations provided that the stress free temperature corresponded to the onset of the glassy-to-rubbery transition range of the encapsulant. Finally, excellent agreement was obtained in one of the materials (828/DEA) when a viscoelastic material model was utilized and a stress free temperature corresponding to the cure temperature was assumed. 13 refs., 20 figs., 3 tabs.

  12. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.

    PubMed

    Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin

    2012-10-01

    This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.

  13. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  14. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  15. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  16. Differences in susceptibility of mouse strains to tetrodotoxin.

    PubMed

    Suzuki, Hodaka

    2016-09-01

    The mouse bioassay for tetrodotoxin has been used for many years in Japan. To the best of our knowledge, however, there have only been a few reports that have specifically investigated differences in susceptibility to tetrodotoxin among mouse strains. In this study, we investigated the response of various mouse strains to tetrodotoxin. Tetrodotoxin solution was injected intraperitoneally into male mice of 5 inbred strains (A/J, BALB/c, C3H/He, C57BL/6, and DBA/2) and male and female mice of 2 non-inbred strains (ddY and ICR). Significant differences in susceptibility to tetrodotoxin were found among the mouse strains tested. In comparison to the ddY male mice, which are designated to be used in the Japanese reference method, the 5 inbred strains of mice tested were significantly more resistant to tetrodotoxin. However, no significant differences in tetrodotoxin susceptibility were observed between ddY male and female mice or between ddY male mice and ICR male and female mice. These results indicate that the users of the mouse bioassay should pay attention to differences in mouse strain in susceptibility to tetrodotoxin.

  17. Controlling surface reactions with nanopatterned surface elastic strain.

    PubMed

    Li, Zhisheng; Potapenko, Denis V; Osgood, Richard M

    2015-01-27

    The application of elastic lattice strain is a promising approach for tuning material properties, but the attainment of a systematic approach for introducing a high level of strain in materials so as to study its effects has been a major challenge. Here we create an array of intense locally varying strain fields on a TiO2 (110) surface by introducing highly pressurized argon nanoclusters at 6-20 monolayers under the surface. By combining scanning tunneling microscopy imaging and the continuum mechanics model, we show that strain causes the surface bridge-bonded oxygen vacancies (BBOv), which are typically present on this surface, to be absent from the strained area and generates defect-free regions. In addition, we find that the adsorption energy of hydrogen binding to oxygen (BBO) is significantly altered by local lattice strain. In particular, the adsorption energy of hydrogen on BBO rows is reduced by ∼ 35 meV when the local crystal lattice is compressed by ∼ 1.3%. Our results provide direct evidence of the influence of strain on atomic-scale surface chemical properties, and such effects may help guide future research in catalysis materials design.

  18. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  19. Strain and elongation of the human semitendinosus muscle - tendon unit.

    PubMed

    Kellis, Eleftherios; Patsika, Glykeria; Karagiannidis, Evaggelos

    2013-12-01

    The semitendinosus (ST) consists of a long distal tendon and it is divided in two parts by a tendinous inscription (TI). The purpose of this study was to quantify strain and elongation of the TI and the distal tendon of ST. Fourteen subjects performed ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of the distal tendon and selected points across the TI and aponeuroses. Three-way analysis of variance designs indicated that: (a) strain and elongation of the ST distal muscle-tendon junction were higher than that of the aponeurosis - TI junction points (p < 0.05) (b) the long arm of the TI reach strain of 49.86 ± 7.77% which was significantly (p < 0.05) higher than that displayed by the short arm (28.35 ± 0.59%) (c) Strain of tendinous and TI-aponeuroses segments significantly increased from 90° to 0° of knee flexion while the inverse was observed for the TI arm length (p < 0.05). (d) Tendon strain was significantly higher than strain of the TI-aponeuroses segments at 45° and 90° of knee flexion while the opposite was observed at 0° of knee flexion. The arrangement of TI along ST length results in differential local strains, indicating that the mechanical properties of the ST muscle are affected by tendon, aponeuroses and tendinous inscription interactions.

  20. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  1. Virtual strain gage size study

    SciTech Connect

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strains are being found.

  2. Radio Frequency (RF) strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Milford S., Jr. (Inventor)

    1988-01-01

    This invention relates to an apparatus for measuring strain in a structure. In particular, the invention detects strain in parts per million to over ten percent along an entire length (or other dimension) of a structure measuring a few millimeters to several kilometers. By using a propagation path bonded to the structure, the invention is not limited by the signal attenuation characteristics of the structure and thus frequencies in the megahertz to gigahertz range may be used to detect strain in part per million to over ten percent with high precision.

  3. Strain accumulation in quasicrystalline solids

    NASA Technical Reports Server (NTRS)

    Nori, Franco; Ronchetti, Marco; Elser, Veit

    1988-01-01

    The relaxation of two-dimensional quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously is studied. Whereas ideal, quasi-periodic networks are stable against such perturbations, significant accumulations of strain in a class of disordered networks generated by a growth process are found. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation observed in these networks also grows linearly with system size. Finally, dependence of strain accumulation on cooling rate is found.

  4. QUANTIFICATION OF SIDEROPHORE AND HEMOLYSIN FROM STACHYBOTRYS CHARTARUM STRAINS, INCLUDING A STRAIN ISOLATED FROM THE LUNG OF A CHILD WITH PULMONARY HEMORRHAGE AND HEMOSIDEROSIS

    EPA Science Inventory

    A strain of Stachybotrys chartarum was recently isolated from the lung of a pulmonary hemorrhage and hemosiderosis (PH) patient in Texas (designated the Houston strain). This is the first time that S. chartarum has been isolated from the lung of a PH patient. In this study, the ...

  5. Electric circuit model for strained-layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-11-01

    For the design and analysis of a strained-layer semiconductor device structure, the equilibrium strain profile may be determined numerically by energy minimization but this method is computationally intense and non-intuitive. Here we present an electric circuit model approach for the equilibrium analysis of an epitaxial stack, in which each sublayer may be represented by an analogous configuration involving a current source, a resistor, a voltage source, and an ideal diode. The resulting node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This new approach enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits may be translated to the relaxation of strained-layer structures. In this paper, we describe the mathematical foundation of the electrical circuit model and demonstrate its application to epitaxial layers of Si1-x Ge x grown on a Si (001) substrate.

  6. Carbon nanotube strain sensors for wearable patient monitoring applications

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Aryasomayajula, Lavanya; Whitchurch, Ashwin; Varadan, Vijay K.

    2008-03-01

    Wearable health monitoring systems have recently attracted widespread interest for their application in long term patient monitoring. Wireless wearable technology enables continuous observation of patients while they perform their normal everyday activities. This involves the development of flexible and conformable sensors that could be easily integrated to the smart fabrics. Carbon nanotubes are found to be one of the ideal candidate materials for the design of multifunctional e-textiles because of their capability to change conductance based on any mechanical deformation as well as surface functionalization. This paper presents the development and characterization of a carbon nanotube (CNT)-polymer nanocomposite flexible strain sensor for wearable health monitoring applications. These strain sensors can be used to measure the respiration rhythm which is a vital signal required in health monitoring. A number of strain sensor prototypes with different CNT compositions have been fabricated and their characteristics for both static as well as dynamic strain have been measured.

  7. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  8. Thin film strain gage development program. Final program

    SciTech Connect

    Grant, H.P.; Przybyszewski, J.S.; Anderson, W.L.; Claing, R.G.

    1983-12-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  9. Electronic measurement of strain effects on spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Tinkey, Holly; Appelbaum, Ian

    Spin transport in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized electrons into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.

  10. Laser-based strain measurements for high temperature applications

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1992-01-01

    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis.

  11. Study of High Strain Rate Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  12. Genotyping of Bacillus cereus strains by microarray-based resequencing.

    PubMed

    Zwick, Michael E; Kiley, Maureen P; Stewart, Andrew C; Mateczun, Alfred; Read, Timothy D

    2008-07-02

    The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a "one reaction" genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing.

  13. Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing

    PubMed Central

    Zwick, Michael E.; Kiley, Maureen P.; Stewart, Andrew C.; Mateczun, Alfred; Read, Timothy D.

    2008-01-01

    The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a “one reaction” genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing. PMID:18596941

  14. Bioprocessing of Stichococcus bacillaris strain siva2011

    PubMed Central

    2014-01-01

    Background Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule hydrocarbons. These hydrocarbons can often be used as liquid fuels, often with more versatility and by a more direct approach than some TAGs. However, the appropriate TAGs, accumulated from microalgae biomass, can be used as substrates for different kinds of renewable liquid fuels such as biodiesel and jet fuel. Results This article describes the isolation and identification of a lipid-rich, hydrocarbon-producing alga, Stichococcus bacillaris strain siva2011, together with its bioprocessing, hydrocarbon and fatty acid methyl ester (FAME) profiles. The S. bacillaris strain siva2011 was scaled-up in an 8 L bioreactor with 0.2% CO2. The C16:0, C16:3, C18:1, C18:2 and C18:3 were 112.2, 9.4, 51.3, 74.1 and 69.2 mg/g dry weight (DW), respectively. This new strain produced a significant amount of biomass of 3.79 g/L DW on day 6 in the 8 L bioreactor and also produced three hydrocarbons. Conclusions A new oil-rich microalga S. bacillaris strain siva2011 was discovered and its biomass has been scaled-up in a newly designed balloon-type bioreactor. The TAGs and hydrocarbons produced by this organism could be used as substrates for jet fuel or biodiesel. PMID:24731690

  15. Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture.

    PubMed

    Miller, D M; Dudley, E G; Roberts, R F

    2012-09-01

    Yogurt starter cultures may consist of multiple strains of Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST). Conventional plating methods for monitoring LB and ST levels during yogurt manufacture do not allow for quantification of individual strains. The objective of the present work was to develop a quantitative PCR method for quantification of individual strains in a commercial yogurt starter culture. Strain-specific primers were designed for 2 ST strains (ST DGCC7796 and ST DGCC7710), 1 LB strain (DGCC4078), and 1 Lactobacillus delbrueckii ssp. lactis strain (LL; DGCC4550). Primers for the individual ST and LB strains were designed to target unique DNA sequences in clustered regularly interspersed short palindromic repeats. Primers for LL were designed to target a putative mannitol-specific IIbC component of the phosphotransferase system. Following evaluation of primer specificity, standard curves relating cell number to cycle threshold were prepared for each strain individually and in combination in yogurt mix, and no significant differences in the slopes were observed. Strain balance data was collected for yogurt prepared at 41 and 43°C to demonstrate the potential application of this method.

  16. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  17. Compact Simultaneous-beam Optical Strain Measurement System, Phase 5

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1994-01-01

    Recent advances on the laser speckle strain measurement system under development at NASA Lewis Research Center have resulted in a compact, easy-to-use measurement package having many performance improvements over previous systems. NASA has developed this high performance optical strain measurement system for high temperature material testing applications. The system is based on I. Yamaguchi's two-beam speckle-shift strain measurement theory, and uses a new optical design that allows simultaneous recording of laser speckle patterns. This design greatly improves system response over previous implementations of the two-beam speckle-shift technique. The degree of immunity to transient rigid body motions is no longer dependent on the data transfer rate. The system automatically calculates surface strains at a frequency of about 5 Hz using a high speed digital signal processor in a personal computer. This system is fully automated, and can be operated remotely. This report describes the designs and methods used by the system, and shows low temperature strain test results obtained from small diameter tungsten-rhenium and palladium-chrome wires.

  18. [Breeding of robust industrial ethanol-tolerant Saccharomyces cerevisiae strain by artificial zinc finger protein library].

    PubMed

    Ma, Cui; Zhao, Xinqing; Li, Qian; Zhang, Mingming; Kim, Jin Soo; Bai, Fengwu

    2013-05-01

    Breeding of robust industrial Saccharomyces cerevisiae strains with high ethanol tolerance is of great significance for efficient fuel ethanol production. Zinc finger proteins play important roles in gene transcription and translation, and exerting control on the regulation of multiple genes. The sequence and localization of the zinc finger motif can be designed and engineered, and the artificial zinc finger protein can be used to regulate celluar metabolism. Stress tolerance of microbial strains is related to multiple genes. Therefore, it is possible to use artificially-designed zinc finger proteins to breed stress tolerant strains. In this study, a library containing artificial zinc finger protein encoding genes was transformed into the model yeast strain S288c. A recombinant strain named M01 with improved ethanol tolerance was obtained. The plasmid in M01 was isolated, and then transformed into the industrial yeast strain Sc4126. Ethanol tolerance of the recombinant strain of Sc4126 were significantly improved. When high gravity ethanol fermentation using 250 g/L glucose was performed, comparing with the wild-type strain, fermentation time of the recombinant strain was decreased by 24 h and the final ethanol concentration was enhanced by 6.3%. The results of this study demonstrate that artificial zinc finger proteins are able to exert control on stress tolerance of yeast strains, and these results provide basis to construct robust industrial yeast strains for efficient ethanol fermentation.

  19. PLASTICITY AND NON-LINEAR ELASTIC STRAINS

    DTIC Science & Technology

    conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)

  20. Magnetic Domain Strain Sensor Program

    DTIC Science & Technology

    1990-08-01

    static strain measurement at elevated temperatures. 2.2 Magnetic Strain Measurement Theory The initial work at GED investigated the Barkhausen effect...including large and small Barkhausen jumps. This is a wave propaga- tion phenomenon in which a magnetic wave velocity is measured. The wave velocity in a...theory explaining the phenomenon that deviates from the Barkhausen effect. Some basic concepts had to be examined to better understand magnetic phenomena

  1. HIGH-TEMPERATURE STRAIN GAGE,

    DTIC Science & Technology

    The patent involves a high-temperature tensometer consisting of a strain-sensitive wire grid, a connecting and insulating material, a sub-layer of...heat-resistant material, deposited on the part being investigated or on a backing by gas flame deposition, and a connector to fasten the strain...adhesion, the tension-sensitive wire grid is fastened through the sub-layer to the part being tested by the connecting and insulating material. (Author)

  2. Strain Wave during the Transient Process of Fault Unstable Slip

    NASA Astrophysics Data System (ADS)

    Guo, L.; Liu, L.

    2011-12-01

    The "stick-slip" model was proposed as an important mechanism for shallow-focus earthquakes. The study on the transient process of fault unstable slip failure is helpful for understanding the earthquake preparatory process, the mechanism of energy released, the precursor and after shake effect. Double shear frictional experiments are conducted for simulating "stick-slip" phenomenon, and a specially designed multi-channel super dynamic strain field observation system is employed to acquire dada continuously with the sample rate of 3,400 samples/second. The rock deformation process can be recorded in detail, especially in the moment of unstable slip (The unstable slip duration is less than two second in experiments). The strain results from super dynamic strain field observation system show that multi-frequency components and tremendous amplitude fluctuation are included in strain signals along the fault. There are three clear phases during the unstable slip progress: pre-slip (phase I), high-frequency strain vibration (phase II) and strain regulating to stop (phase III). Each phase has its own characteristics on duration, strain rate, frequency, amplitude and energy release. There are strong fluctuations in duration of approximately 70ms in phase II. The frequency and maximum amplitude are 300-400Hz and 150~300μɛ respectively. Main strain energy release takes place at phase II, less than one-tenth of the total slip time, so that the whole course of dislocation or stress drop would not be taken as earthquake simply at least in laboratory. The phase characteristic of the strain wave is probably its inherent attribute of unstable slip process and independent of dynamical loading conditions. The elastic rebound phenomena, considered as one classic earthquake generation model, can be observed clearly by analyzing the rotation of the principal strain axis with strain variation. The rotated angle ranges from 5° to 15° typically. The value and location of precursor slip

  3. NUTRITION OF FIVE BACTEROIDES STRAINS

    PubMed Central

    Quinto, Grace

    1962-01-01

    Quinto, Grace (University of Kentucky College of Medicine, Lexington). Nutrition of five Bacteroides strains. J. Bacteriol. 84:559–562. 1962.—Some of the nutritional requirements of five gram-negative anaerobic bacilli, including Ristella perfoetens, Zuberella clostridiformis, and three Bacteroides strains freshly isolated from clinical exudates, were investigated. A fluid maintenance medium was developed in which the three freshly isolated strains, C-4, C-7, and C-2795, grew maximally in 12 to 24 hr. The maintenance medium contained 2.0% Trypticase and Proteose Peptone, 0.5% glucose, and 0.1% sodium thioglycolate; it was adjusted to pH 7.2 and supplemented with 0.1 μg of hemin/ml. Strains C-4, C-7, and C-2795 were cultivated through 14 serial cultures in fluid maintenance medium containing 0.1 μg of hemin/ml. The most satisfactory inoculum was a 1:100 or 1:1,000 dilution of a 24-hr seed culture. All the strains except Z. clostridiformis grew serially in a defined medium. R. perfoetens required pantothenic acid, nicotinic acid, and the following amino acids: histidine, tryptophan, tyrosine, valine, phenylalanine, cystine, and probably arginine, glutamic acid, methionine, glycine, isoleucine, leucine, and lysine. The C-4, C-7, and C-2795 strains required the hemin supplement in defined medium, but not vitamins, purines, or pyrimidines. PMID:13972793

  4. Interpretation of large-strain geophysical crosshole tests

    SciTech Connect

    Drnevich, V.P.; Salgado, R.; Ashmawy, A.; Grant, W.P.; Vallenas, P.

    1995-10-01

    At sites in earthquake-prone areas, the nonlinear dynamic stress-strain behavior of soil with depth is essential for earthquake response analyses. A seismic crosshole test has been developed where large dynamic forces are applied in a borehole. These forces generate shear strains in the surrounding soil that are well into the nonlinear range. The shear strain amplitudes decrease with distance from the source. Velocity sensors located in three additional holes at various distances from the source hole measure the particle velocity and the travel time of the shear wave from the source. This paper provides an improved, systematic interpretation scheme for the data from these large-strain geophysical crosshole tests. Use is made of both the measured velocities at each sensor and the travel times. The measured velocity at each sensor location is shown to be a good measure of the soil particle velocity at that location. Travel times to specific features on the velocity time history, such as first crossover, are used to generate travel time curves for the waves which are nonlinear. At some distance the amplitudes reduce to where the stress-strain behavior is essentially linear and independent of strain amplitude. This fact is used together with the measurements at the three sensor locations in a rational approach for fitting curves of shear wave velocity versus distance from the source hole that allow the determination of the shear wave velocity and the shear strain amplitude at each of the sensor locations as well as the shear wave velocity associated with small-strain (linear) behavior. The method is automated using off-the-shelf PC-based software. The method is applied to large-strain crosshole tests performed as part of the studies for the design and construction of the proposed Multi-Function Waste Tank Facility planned for Hanford Site.

  5. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  6. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  7. Fermentation characteristics of Dekkera bruxellensis strains.

    PubMed

    Blomqvist, Johanna; Eberhard, Thomas; Schnürer, Johan; Passoth, Volkmar

    2010-07-01

    The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)(-1) and growth rates varied from 0.037 to 0.050 h(-1). The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0-13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72-84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.

  8. Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07T)

    SciTech Connect

    Foster, Brian; Pukall, Rudiger; Abt, Birte; Nolan, Matt; Glavina Del Rio, Tijana; Chen, Feng; Lucas, Susan; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J C; Bruce, David; Goodwin, Lynne A.; Ivanova, N; Mavromatis, K; Pati, Amrita; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2010-01-01

    Xylanimonas cellulosilytica Rivas et al. 2003 is the type species of the genus Xylanimonas of the actinobacterial family Promicromonosporaceae. The species X. cellulosilytica is of interest because of its ability to hydrolyze cellulose and xylan. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the large family Promicromonosporaceae, and the 3,831,380 bp long genome (one chromosome plus an 88,604 bp long plasmid) with its 3485 protein-coding and 61 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Development of a fiber optic pavement subgrade strain measurement system

    NASA Astrophysics Data System (ADS)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences

  10. Repetitive strain injury.

    PubMed

    Helliwell, P S; Taylor, W J

    2004-08-01

    Pain in the forearm is relatively common in the community. In the workplace forearm pain is associated with work involving frequent repetition, high forces, and prolonged abnormal postures. Nevertheless, other factors are involved in the presentation and the continuation of the pain. Notable among these factors are psychosocial issues and the workplace environment-the attitude to workers and their welfare, the physical conditions, and design of the job. Primary prevention may be effective but active surveillance is important with early intervention and an active management approach. Physical treatments have not been extensively evaluated. In the established case, management should be multidisciplinary, addressing physical aspects of the job but also addressing the "yellow, blue, and black flags" which should be viewed as obstacles to recovery. For the worker "on sick" a dialogue should be established between the worker, the primary care physician, and the workplace. Return to work should be encouraged and facilitated by medical interventions and light duty options. Rehabilitation programmes may be of use in chronic cases.

  11. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    DOE PAGES

    Chen, Aiping; Hu, Jia -Mian; Lu, Ping; ...

    2016-06-10

    One novel approach to manipulating functionalities in correlated complex oxides is strain. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. Moreover,more » by changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.« less

  12. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    SciTech Connect

    Chen, Aiping; Hu, Jia -Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, T.; Enriquez, E.; Weigand, M.; Su, Qing; Wang, Haiyan; Zhu, J. -X.; MacManus-Driscoll, Judith L.; Chen, Long -Qing; Yarotski, D.; Jia, Q.

    2016-06-10

    One novel approach to manipulating functionalities in correlated complex oxides is strain. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. Moreover, by changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.

  13. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    PubMed Central

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L.; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-01-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness. PMID:27386578

  14. Shotcrete in tunnel design

    SciTech Connect

    Golser, J.; Galler, R.; Schubert, P.; Rabensteiner, K.

    1995-12-31

    Shotcrete is an important structural element for tunnel support. Green shotcrete is exposed to compression strain rates and tunnel design requires a realistic material law for shotcrete. A modified rate of flow method simulates shotcrete behavior very well and can be incorporated in Finite Element calculations.

  15. IDENTIFICATION OF A FLAVOBACTERIUM STRAIN VIRULENT AGAINT GIARDIA LAMBLIA CYSTS

    EPA Science Inventory

    We have isolated a bacterial strain capable of killing the cyst form of Giardia lamblia, from a Kentucky stream. This bacterium, designated Sun4, is a Gram negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has no...

  16. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  17. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  18. Applications of strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Laurich, B. K.; Mailhiot, C.

    1990-04-01

    Because of different band edge lineups, strain conditions, and growth orientations, various strained layer superlattice (SLS) materials can exhibit qualitatively new physical behavior in their optical properties. Two examples are given of new physical behavior in SLS: strain generated electric fields in polar growth axis superlattices and strained type 2 superlattices. In SLS, large electric fields can be generated by the piezoelectric effect. The fields are largest for SLS with a (111) growth axis; they vanish for SLS with a (100) growth axis. The strain generated electric fields strongly modify the optical properties of the superlattice. Photogenerated electron-hole pairs screen the fields leading to a large nonlinear optical response. Application of an external electric field leads to a large linear electrooptical response. The absorption edge can be either red or blue shifted. Optical studies of (100), (111), and (211) oriented GaInAs/GaAs superlattices confirm the existence of the strain generated electric fields. Small band gap semiconductors are useful for making intrinsic long wavelength infrared detectors. Arbitrarily small band gaps can be reached in the type 2 superlattice InAs/GaSb. However, for band gaps less than 0.1 eV, the layer thicknesses are large and the overlap of electron and hole wavefunctions are small. Thus, the absorption coefficient is too small for useful infrared (IR) detection. Including In in the GaSb introduces strain in he InAs/GaInSb superlattice which shifts the band edges so that small band gaps can be reached in thin layer superlattices. Good absorption at long IR wavelengths is thus achieved.

  19. Magnetic susceptibility, petrofabrics and strain

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham John

    1988-12-01

    Magnetic susceptibility is a non-destructive technique for quantifying the average fabric of a small sample of rock. The interpretation of the magnetic fabric is not always straightforward. However, the principal directions of the magnitude ellipsoid of susceptibility commonly show orientations consistent with the kinematic interpretations of folds, shear zones and other structural features. The directions may correspond with the orientations of strained objects or with the planar-linear mineral orientations. There will usually be multiple mineralogical sources of susceptibility, often involving silicates. If the sources are known, or if the susceptibility can be attributed to a single mineral species, it may be possible to establish a correlation between the strain ellipsoid and the susceptibility ellipsoid. This correlation will be of principal directions in many instances and occasionally there may be a weak correlation of strain magnitudes as well. In other circumstances it may be possible to establish a correlation between changes in susceptibility and the strain. Nevertheless magnetic fabric studies are not routine substitutes for strain analysis. Even where information on strain is not provided, the magnetic fabrics (and subfabrics) yield a measure of the preferred crystallographic orientation or preferred dimensional orientation of the minerals that may be integrated profitably with other petrofabric data. Experimental deformation of certain synthetic aggregates indicates that directions of magnetic susceptibility spin rapidly with advancing strain, especially where the matrix grains undergo crystal-plastic deformation. In certain experiments, simple shear appears to change the intensity of magnetic fabric more effectively than pure shear. Experiments indicate also that the initial anisotropy of a rock-like material is not easily overprinted by deformation whereas field studies are equivocal.

  20. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  1. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  2. Surface strain measurements of fingertip skin under shearing

    PubMed Central

    2016-01-01

    The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces. PMID:26888949

  3. Distinct phosphatase activity profiles in two strains of Trypanosoma cruzi.

    PubMed

    Morales-Neto, R; Hulshof, L; Ferreira, C V; Gadelha, F R

    2009-12-01

    Phosphorylation of parasite proteins plays a key role in the process of cell invasion by Trypanosoma cruzi, the etiologic agent of Chagas' disease. In this sense, characterization of parasite kinases and phosphatases could open new possibilities for the rational design of chemotherapeutic agents for the treatment of Chagas' disease. In this work, we analyzed phosphatase activities in T. cruzi homogenates from 2 strains belonging to different lineages and with different resistance to oxidative stress. Tulahuen 2 cells (Lineage I) showed higher phosphatase activities and specificity constants when compared to the Y strain (Lineage II). Tulahuen 2 had an optimum phosphatase activity at pH 4.0 and the Y strain at pH 7.0. In both cases, neutral–basic, but not acid, phosphatase activities were increased in the presence of Mg2+. Although calcium had an inhibitory effect at a pH of 7.0 and 8.0 in the Y strain, this inhibition was restricted to pH 8.0 in the other strain. Different substrates and acid phosphotyrosine and alkaline phosphatase inhibitors exhibited distinct effects on the phosphatase activity of both strains. Our results provide a better understanding of T. cruzi phosphatases and reinforce the notion of heterogeneity among T. cruzi populations.

  4. Effects of Applied Strain on Rates of Ageing: Project Overview

    NASA Technical Reports Server (NTRS)

    Campion, R. P.

    1997-01-01

    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided.

  5. WIPP Benchmark calculations with the large strain SPECTROM codes

    SciTech Connect

    Callahan, G.D.; DeVries, K.L.

    1995-08-01

    This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.

  6. Structural analysis of strained quantum dots using nuclear magnetic resonance.

    PubMed

    Chekhovich, E A; Kavokin, K V; Puebla, J; Krysa, A B; Hopkinson, M; Andreev, A D; Sanchez, A M; Beanland, R; Skolnick, M S; Tartakovskii, A I

    2012-10-01

    Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.

  7. Isolation and characterization of a new Arthrospira strain.

    PubMed

    de Morais, Michele Greque; da Cruz Reichert, Carolina; Dalcanton, Francieli; Durante, Andrei José; Marins, Luis Fernando; Costa, Jorge Alberto Vieira

    2008-01-01

    A filamentous microorganism, morphologically similar to the cyanobacterium Arthrospira, was isolated from Mangueira Lagoon in Brazil, from which Arthrospira has not previously been isolated. Random amplified polymorphic DNA (RAPD) comparison with the standard Arthrospira platensis strains LEB 52 and Paracas indicated that the organism isolated was an Arthrospira isolate, which we denominated strain LEB 18. The RAPD analysis showed conserved sequences which indicated that the three strains belonged to the same genus, and were all Arthrospira species, but there were sufficient differences between them suggesting that they were separate strains. The strain LEB 18 was cultivated in undiluted Zarrouk medium and in 60% and 20% (v/v) Zarrouk medium diluted with sterilized Mangueira Lagoon water (MLW) using illuminance rates of 32.5, 45.5 and 58.5 micromol m(-2) s(-1) according to a complete 32 factorial design with a triplicate central point. The strains LEB 52 and Paracas were cultived in the conditions central point. Our new isolate produced the highest specific growth rate (Umax = 0.22 d(-1)) in 60% Zarrouk medium diluted with MLW and illuminated with 58.5 micromol m(-2) s(-1) and the highest protein content (86.0% w/w).

  8. Peri-Implant Strain in an In Vitro Model.

    PubMed

    Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul

    2015-10-01

    An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.

  9. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  10. Tuning magnetism by biaxial strain in native ZnO.

    PubMed

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  11. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.

    2004-01-01

    The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.

  12. Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system.

    PubMed

    Butterfield, Timothy A

    2010-04-01

    The muscle tendon unit is a stable system, designed to operate eccentrically with efficiency and resiliency. Fiber strains, although minimized by tendon compliance during exercise, are essential components to decoding the mechanical and chemical signals during exercise. Subsequent cellular adaptations minimize the subsequent "dose" of stress and strain and serve to limit the exacerbation of damage into injury.

  13. Psychological Strain and Emotional Labor among Police-Officers: A Diary Study

    ERIC Educational Resources Information Center

    van Gelderen, Benjamin; Heuven, Ellen; van Veldhoven, Marc; Zeelenberg, Marcel; Croon, Marcel

    2007-01-01

    The authors examined the relationship between psychological strain, emotional dissonance and emotional job demands during a working day of 65 Dutch (military) police officers, using a 5-day diary design. We hypothesized that emotional dissonance partly mediated the relationship between psychological strain at the start and at the end of a work…

  14. Rapid detection of methicillin-resistant Staphylococcus aureus strains not identified by slide agglutination tests.

    PubMed Central

    Kuusela, P; Hildén, P; Savolainen, K; Vuento, M; Lyytikäinen, O; Vuopio-Varkila, J

    1994-01-01

    Seventy-nine methicillin-resistant Staphylococcus aureus (MRSA) strains, isolated during 1980 to 1990, were classified as MRSA Aggl- (14 strains) and MRSA Aggl+ (65 strains) strains on the basis of test results in slide agglutination assays designed to detect fibrinogen-binding protein (clumping factor) and protein A on the staphylococcal surface. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that lysostaphin digests of MRSA Aggl- strains contained a high-molecular-weight protein which was not detected in digests of MRSA Aggl+ strains. Immunization of rabbits with an MRSA Aggl- strain produced an antiserum which agglutinated all MRSA Aggl- strains and also 64 of 65 MRSA Aggl+ strains. Only 1 of 68 coagulase-negative staphylococci showed agglutination in this assay. The anti-MRSA Aggl- antiserum reacted mainly with a 230-kDa staphylococcal surface protein but also with a 175-kDa protein, probably formed by proteolysis of the former and a few slightly smaller proteins. These could not be immunologically detected in lysostaphin digests of MRSA Aggl+ strains. Purified antibodies reacting with the 230-kDa protein agglutinated all MRSA Aggl- strains, indicating that the protein is located on the surfaces of staphylococci. The results suggest a tentative role for the 230-kDa protein or its fragments as a novel target to develop more efficient rapid identification methods for S. aureus, including MRSA. Images PMID:8126170

  15. C55 bacteriocin produced by ETB-plasmid positive Staphylococcus aureus strains is a key factor for competition with S. aureus strains.

    PubMed

    Kawada-Matsuo, Miki; Shammi, Fariha; Oogai, Yuichi; Nakamura, Norifumi; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2016-03-01

    Exfoliative toxin (ET) produced by Staphylococcus aureus is closely associated with the onset of bullous impetigo. To date, three ETs (ETA, ETB and ETD) have been identified. The gene encoding ETB is located in a plasmid designated pETB. Bacteriocin synthesis genes are also located in this plasmid and pETB-positive strains reportedly produce the C55 bacteriocin. In this study, the antibacterial activity against S. aureus strains of the bacteriocin produced by the pETB-positive strain TY4 was investigated. This bacteriocin demonstrated antibacterial activity against all pETB-negative but not pETB-positive strains, including TY4. Additionally, a TY4- strain from which the pETB plasmid had been deleted exhibited susceptibility to the bacteriocin. Further experiments revealed that two immunity factors (orf 46-47 and orf 48) downstream of the bacteriocin synthesis genes in the pETB plasmid are associated with immunity against the bacteriocin produced by TY4. The TY4- with orf46-47 strain exhibited complete resistance to bacteriocin, whereas the TY4- with orf48 strain exhibited partial resistance. Whether bacteriocin affects the proportion of each strain when co-cultured with S. aureus strains was also investigated. When TY4 or TY4- was co-cultured with 209P strain, which is susceptible to the bacteriocin, the proportion of 209P co-cultured with TY4 was significantly less than when 209P was co-cultured with TY4-, whereas the proportion of TY4- with orf46-48 co-cultured with TY4 was greater than with TY4-. These results suggest that the C55 bacteriocin produced by pETB-positive strains affects the proportion of each strain when pETB-positive and -negative strains co-exist.

  16. Effect of Local Tidal Lung Strain on Inflammation in Normal and Lipopolysaccharide-Exposed Sheep

    PubMed Central

    Wellman, Tyler J.; Winkler, Tilo; Costa, Eduardo L.V.; Musch, Guido; Harris, R. Scott; Zheng, Hui; Venegas, Jose G.; Vidal Melo, Marcos F.

    2014-01-01

    Objective Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to: (1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans; and (2) determine how this strain-inflammation relationship is affected by endotoxemia. Design Interventional animal study. Setting Experimental laboratory and positron emission tomography (PET) facility. Subjects Eighteen 2–4-month-old sheep. Interventions Three groups of sheep (n=6) were mechanically ventilated to the same plateau pressure (30–32 cmH2O) with High-Strain (VT=18.2±6.5 ml/kg, PEEP=0), High-Strain plus intravenous lipopolysaccharide (LPS) (VT=18.4±4.2 ml/kg, PEEP=0), or Low-Strain plus LPS (VT=8.1±0.2 ml/kg, PEEP=17±3 cmH2O). At baseline, we acquired respiratory-gated PET scans of inhaled 13NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest (ROIs). After 3 hours of mechanical ventilation, dynamic [18F]fluoro-2-deoxy-D-glucose (18F-FDG) scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same ROIs. Measurements and Main Results Baseline regional tidal strain had a significant effect on 18F-FDG net uptake rate Ki in High-Strain LPS (p=0.036) and on phosphorylation rate k3 in High-Strain (p=0.027) and High-Strain LPS (p=0.004). LPS exposure increased the k3-tidal strain slope 3-fold (p=0.009), without significant lung edema. The Low-Strain LPS group showed lower baseline regional tidal strain (0.33±0.17) than High-Strain (1.21±0.62; p<0.001) or High-Strain LPS (1.26±0.44; p<0.001), and lower k3 (p<0.001) and Ki (p<0.05) than High-Strain LPS. Conclusions Local

  17. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  18. Characterization of strains of Corynebacterium bovis.

    PubMed Central

    Brooks, B W; Barnum, D A

    1984-01-01

    The biochemical and morphological characteristics of 104 strains of Corynebacterium bovis isolated from bovine milk samples and the C. bovis reference strain were found to be uniform. Valuable criteria for identification were presence of catalase and oxidase, production of acid from glucose and fructose and a requirement for enriched basal media. Six strains of human and three strains of bovine origin were found to be inconsistent with the reference strain. PMID:6722650

  19. Asymmetrically doped stacked channel strained SOI FinFET

    NASA Astrophysics Data System (ADS)

    Dubey, Shashank; Kondekar, Pravin N.

    2017-02-01

    Strained SOI (SSOI) n-channel trigate FinFET is designed with asymmetrically doped stacked channels along the fin height. The OFF current is reduced with respect to lightly doped uniform SSOI FinFET because of band gap modification, originated between highly doped uniaxial strained and lightly doped Si fin. Through TCAD simulation it is observed that for the stacked devices the OFF current is reduced by more than 47%. The performances are also compared with highly doped uniform SSOI FinFETs and the results indicated that these devices have lesser random dopant variation at a moderate cost of ON and OFF current.

  20. Strain-controlled thermal conductivity in ferroic twinned films

    PubMed Central

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-01-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices. PMID:25224749

  1. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  2. Mapping of IS6110 Insertion Sites in Two Epidemic Strains of Mycobacterium tuberculosis

    PubMed Central

    Beggs, Marjorie L.; Eisenach, Kathleen D.; Cave, M. Donald

    2000-01-01

    A widely distributed strain designated 210 was identified in a study of the diversity of Mycobacterium tuberculosis DNA fingerprints from three geographically separate states in the United States. This strain is characterized by a 21-band fingerprint pattern when probed with IS6110, and the pattern is similar to that displayed by strains designated W. Intracellular growth of strain 210 isolates in human macrophages is significantly faster than that of isolates from other clusters or nonclustered isolates. The purpose of this study was to identify the sites of IS6110 insertions in strain 210 and compare these to IS6110 insertion sites in strain W. Our hypothesis is that an IS6110 insertion site(s) could possibly be responsible for a strain's increased capacity for transmission and/or replication. In this report, the insertion sites in strains 210 and W are described and referenced to their location in the M. tuberculosis H37Rv genome sequence. The W and 210 strains have 17 identical sites of IS6110 insertion and additional sequence not found in H37Rv but present in other clinical isolates. The IS6110 insertion site in the 36-bp direct repeat (DR) region of strains 210 and W has 15 spacers in the left flanking region. The DR region on the right side of IS6110 has been deleted. Five sites of insertion in strain 210 not found in strain W are described, as well as two unique sites in strain W. One copy of IS6110 was found to reside 55 bp in the ctpD gene. This gene is expressed, indicating that IS6110 can provide a promoter sequence for the transcription of genes. PMID:10921952

  3. Chronic occupational repetitive strain injury.

    PubMed Central

    O'Neil, B. A.; Forsythe, M. E.; Stanish, W. D.

    2001-01-01

    OBJECTIVE: To review common repetitive strain injuries (RSIs) that occur in the workplace, emphasizing diagnosis, treatment, and etiology of these conditions. QUALITY OF EVIDENCE: A MEDLINE search from January 1966 to June 1999 focused on articles published since 1990 because RSIs are relatively new diagnoses. MeSH headings that were explored using the thesaurus included "cumulative trauma disorder," "overuse injury," and "repetitive strain injury." The search was limited to English articles only, and preference was given to randomized controlled trials. MAIN MESSAGE: Repetitive strain injuries result from repeated stress to the body's soft tissue structures including muscles, tendons, and nerves. They often occur in patients who perform repetitive movements either in their jobs or in extracurricular activities. Common RSIs include tendon-related disorders, such as rotator cuff tendonitis, and peripheral nerve entrapment disorders, such as carpal tunnel syndrome. A careful history and physical examination often lead to the diagnosis, but newer imaging techniques, such as magnetic resonance imaging and ultrasound, can help in refractory cases. Conservative management with medication, physiotherapy, or bracing is the mainstay of treatment. Surgery is reserved for cases that do not respond to treatment. CONCLUSION: Repetitive strain injury is common; primary care physicians must establish a diagnosis and, more importantly, its relationship to occupation. Treatment can be offered by family physicians who refer to specialists for cases refractory to conservative management. PMID:11228032

  4. Trials with a Strain Gauge.

    ERIC Educational Resources Information Center

    Auty, Geoff

    1996-01-01

    Describes an attempt to match the goals of the practical demonstration of the use of a strain gauge and the technical applications of science and responding to student questions in early trials, while keeping within the level of electronics in advanced physics. (Author/JRH)

  5. Bacteriocins and novel bacterial strains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry is thought to be a significant source of Campylobacter in human disease. We evaluated anti-Campylobacter activity among 365 Bacillus and Paenibacillus isolates from poultry. One novel antagonistic Bacillus circulans and three Paenibacillus polymyxa strains were identified and further studi...

  6. Extreme Temperature Strain Measurement System

    DTIC Science & Technology

    1990-08-01

    Electrix Industries, Inc., P.O. Box 306, Lombard, IL 60148, Phone (312) 627-6802 38 Foil Strain gages. ° HiTEC Corp., Nardone Industrial Park...Planer Ltd., CERL-Planer Capacitive Transducer, Windmill Road, Sunbury -on- Thames, Middx., England, Phone: Sunbury 86262-3-4-5 • HiTEC Corp., Nardone

  7. Draft Genome Sequence of the Field Isolate Brucella melitensis Strain Bm IND1 from India.

    PubMed

    Rao, Sashi Bhushan; Gupta, Vivek K; Kumar, Mukesh; Hegde, Nagendra R; Splitter, Gary A; Reddanna, Pallu; Radhakrishnan, Girish K

    2014-05-29

    Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus.

  8. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  9. Internal strain, deformation, and failure of large scale pullout tests in concrete

    NASA Astrophysics Data System (ADS)

    Stone, W. C.

    1982-05-01

    Detailed experimental data on crack propagation and internal strain distribution for the pullout test is presented. A 12:1 scaled-up pullout test was designed, using a commercial pullout insert for the prototype dimensions, and was instrumented with small waterproof embedment strain gages so as to obtain internal strain profiles at critical locations. Two large scale specimens were tested with apex angles falling at the upper and lower bounds currently recommended in ASTM C-900. Two dimensional axisymmetric finite element analyses were performed for the two experimental specimens and the results were compared with measured strains for load stages below the onset of internal cracking.

  10. High compressive pre-strains reduce the bending fatigue life of nitinol wire.

    PubMed

    Gupta, Shikha; Pelton, Alan R; Weaver, Jason D; Gong, Xiao-Yan; Nagaraja, Srinidhi

    2015-04-01

    initiated from surface inclusions in nearly all wires. Compressive pre-strain-induced damage may accelerate such crack initiation, thereby reducing fatigue life. The results of the present study indicate that large compressive pre-strains are detrimental to the fatigue properties of Nitinol, and, taken together, the findings underscore the importance of accounting for thermo-mechanical history in the design and testing of wire-based percutaneous implants.

  11. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  12. Indices of Psychological Strain During Hypoxis Bedrest

    NASA Astrophysics Data System (ADS)

    Stavrou, Nektarios A.; McDonnell, Adam C.; Eiken, Ola; Mekjavic, Igor B.

    2013-02-01

    Much attention has been devoted to the physiological changes that occur during bed rest. However, there has been a lack of focus on the psychological aspects per se. We investigated indices of psychological strain during three 10-d interventions, designed to assess the combined effects of inactivity/unloading and normobaric hypoxia on several physiological systems. Eleven male participants underwent three 10-d campaigns in a randomized manner: 1) normobaric hypoxic ambulatory confinement (HAMB), 2) normobaric hypoxic bed rest (HBR) and 3) normoxic bed rest (NBR). The most negative psychological profile appeared on BR10 of HBR and HAmb conditions (hypoxic conditions). Concomitantly a decrease in positive emotions was observed from BR-2 to BR10. Bed rest and exposure to hypoxic environments seems to exert a negative effect on person’s psychological mood.

  13. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    PubMed

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  14. A NEW STRAIN OF TRANSMISSIBLE LEUCEMIA IN FOWLS (STRAIN H).

    PubMed

    Ellermann, V

    1921-03-31

    1. A new strain of fowl leucosis has been transmitted through twelve generations of fowls. 2. An increase in virulence was observed during its passage. This was shown in a shortening of the interval between inoculation and death. The increase in virulence does not affect the number of successful inoculations, which remains approximately constant in from 20 to 40 per cent of the birds employed. 3. As with former strains, the disease manifests itself in various forms; i.e., myeloid and intravascular lymphoid types. A single lymphatic case was observed. 4. In several intravascular cases a diminution in the hemolytic power of the serum was established. This phenomenon was absent in a number of myeloid cases. 5. Active immunization cannot be produced by means of the subcutaneous injection of virulent material. 6. The finding of previous experiments that the virus is filterable has been confirmed. 7. The inoculation of human leucemic material into fowls gave negative results.

  15. Material mechanical characterization method for multiple strains and strain rates

    SciTech Connect

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  16. Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.

    PubMed

    Massouros, Panagiotis G; Bayly, Philip V; Genin, Guy M

    2014-01-15

    The transient rotation responses of simple, axisymmetric, viscoelastic structures are of interest for interpretation of experiments designed to characterize materials and closed structures such as the brain using magnetic resonance techniques. Here, we studied the response of a Maxwell viscoelastic cylinder to small, sinusoidal displacement of its outer boundary. The transient strain field can be calculated in closed form using any of several conventional approaches. The solution is surprising: the strain field develops a singularity that appears when the wavefront leaves the center of the cylinder, and persists as the wavefront reflects to the outer boundary and back to the center of the cylinder. The singularity is alternately annihilated and reinitiated upon subsequent departures of the wavefront from the center of the cylinder until it disappears in the limit of steady state oscillations. We present the solution for this strain field, characterize the nature of this singularity, and discuss its potential role in the mechanical response and evolved morphology of the brain.

  17. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  18. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    PubMed Central

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  19. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  20. Genetic and phenotypic characterization of a Japanese wild-derived DOB/Oda rat strain.

    PubMed

    Kuramoto, Takashi; Inoue, Satoko; Neoda, Yuki; Yamasaki, Ken-ichi; Hashimoto, Ryoko; Mashimo, Tomoji; Oda, Sen-ichi; Serikawa, Tadao

    2013-08-01

    Wild-derived rat strains can provide novel genome resources that are not available in standard laboratory strains. Genetic backgrounds of wild-derived strains can facilitate effective genetic linkage analyses and often modulate the expression of mutant phenotypes. Here we describe the development and characterization of a new inbred rat strain, DOB/Oda, from wild rats (Rattus norvegicus) captured in Shitara, Aichi, Japan. Phenotype analysis of 109 parameters revealed that the DOB/Oda rats had small body weight, preference for darkness, and high locomotor activity compared with the rat strains in the National BioResource Project for the Rat (NBRP-Rat) database. Genome analysis with 357 SSLP markers identified DOB/Oda-specific alleles in 70 markers. The percentage of SSLP markers that showed polymorphism between the DOB/Oda strain and any of 132 laboratory strains from NBRP-Rat varied from 89 to 95 %. The polymorphic rate (average of the values of the percentage) for the DOB/Oda strain was 91.6 %, much higher than the rates for available wild-derived strains such as the Brown Norway rat. A phylogenic tree constructed with DOB/Oda and all the strains in NBRP-Rat showed that the DOB/Oda strain localized within the wild rat groups, apparently separate from the laboratory strains. Together, these findings indicated that the DOB/Oda rat has a unique genome that is not available in the laboratory strains. Therefore, the new DOB/Oda strain will provide an important genome resource that will be useful for designing genetic experiments and for the discovery of genes that modulate mutant phenotypes.

  1. Anisotropic strain dependence of oxygen vacancy formation in YBa2Cu3O7-δ: first principle study

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Matsumoto, Kaname

    2014-11-01

    Anisotropic strain dependence of oxygen vacancy(OV) formation energy(Evac) was clarified in YBa2Cu3O7 using first principle calculation. Evac decreased with increase in tensile strain, and the effect strongly depended on crystallographic direction of strain. Anisotropy in strain dependence of Evac originated from variation of hybridization peak structure and significant atomic relaxation of Cu, which resulted from anisotropic bonding of CuO chain. Evac was small in the c-axis and b-axis in tensile strain case, showing that OV concentration was increased significantly by the c-axis and b-axis tensile strain. For OV suppression, elastic strain and lattice defects should be designed so as to decrease c-axis and b-axis tensile strain.

  2. Strain compensation in a semiconducting device structure using an intentionally mismatched uniform buffer layer

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-12-01

    The extent of strain relaxation in semiconducting device heterostructures has important implications in the design of high electron mobility transistors, light-emitting diodes, and laser diodes, in which the residual strain affects the device characteristics. In this work, we develop the theoretical framework for understanding strain compensation in a semiconductor device layer using a uniform buffer layer which can be intentionally mismatched to the material above. Specifically, we determined the critical condition for complete strain compensation in the device layer by intentionally introducing a compositional mismatch at the device-buffer interface. We present minimum energy calculations and show that for a given device layer with fixed mismatch and layer thickness, the buffer layer may be designed with the appropriate combination of thickness and mismatch such that the device layer will have zero residual strain in equilibrium. Such a structure can be referred to as a completely strain-compensated design. In the more general case, there may be partial strain compensation, and we give a simple physics-based Gaussian-type function describing the residual strain in the device layer. We have applied this general framework to In x Ga1-x As/GaAs (001) heterostructures for the purpose of illustration, but the work is applicable to any diamond or zinc blende (001) heteroepitaxial material system.

  3. Strains

    MedlinePlus

    Pulled muscle ... can include: Pain and difficulty moving the injured muscle Discolored and bruised skin Swelling ... if you still have pain. Rest the pulled muscle for at least a day. If possible, keep ...

  4. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  5. Thermoresistive strain sensor and positioning method for roll-to-roll processes.

    PubMed

    Liao, Kuan-Hsun; Lo, Cheng-Yao

    2014-05-05

    This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au) line was patterned on a polyethylenenaphthalate (PEN) substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR) detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF) of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements.

  6. Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers.

    PubMed

    Liu, Qingwen; Tokunaga, Tomochika; He, Zuyuan

    2011-10-10

    Aiming at realizing a static strain sensor of nano-strain resolution, which is required in most geophysical applications, this paper presents a thorough analysis on the strain resolution of a fiber Bragg grating (FBG) static strain sensor interrogated with a narrow linewidth tunable laser. The main noise sources of the sensor are discussed, and the strain resolution is deduced with a cross-correlation algorithm. The theoretical prediction agrees well with our experimental result, and the analysis is further validated by numerical simulations. Based on the analysis, the paper provides the guidelines for optimizing this type of sensor to realize ultra-high resolution. It is shown that with properly designed FBGs and interrogation systems, nano static strain resolution can be realized, as we recently demonstrated in experiment.

  7. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  8. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  9. Recommended Strain Gage Application Procedures for Various Langley Research Center Balances and Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1997-01-01

    The NASA Langley Research Center uses more than 10000 strain gages per year in supporting its various research programs. The character of the testing at LaRC is such that the types of strain gage installations, the materials they are applied to, and the test environments encountered, require many varied approaches for installing strain gages. These installations must be accomplished in the most technically discerning and appropriate manner. This technical memorandum is offered as an assisting guide in helping the strain gage user to determine the appropriate approach for a given strain gage application requirement. Specifically, this document offers detailed recommendations for strain gaging the following: LaRC-Designed balances, LARC custom transducers, certain composite materials and alloys, high-temperature test articles, and selected non-typical or unique materials or test conditions.

  10. Thermoresistive Strain Sensor and Positioning Method for Roll-to-Roll Processes

    PubMed Central

    Liao, Kuan-Hsun; Lo, Cheng-Yao

    2014-01-01

    This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au) line was patterned on a polyethylenenaphthalate (PEN) substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR) detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF) of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements. PMID:24803196

  11. Nonlinear strain dependences in highly strained germanium micromembranes for on-chip light source applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guilloy, Kevin; Gassenq, Alban; Pauc, Nicolas; Escalante Fernandez, Jose Maria; Duchemin, Ivan; Niquet, Yann-Michel; Tardif, Samuel; Rieutord, Francois; Gentile, Pascal; Osvaldo Dias, Guilherme; Rouchon, Denis; Widiez, Julie; Hartmann, Jean-Michel; Fowler, Daivid; Chelnokov, Alexei; Geiger, Richard; Zabel, Thomas; Sigg, Hans C.; Faist, Jérôme; Reboud, Vincent; Calvo, Vincent

    2016-05-01

    ]. Finally, we performed electro-absorption measurements on micro-membranes to determine the energy of the direct transitions (conduction band to light and heavy holes) in uniaxially stressed germanium. The relationship between strain and direct bandgap became nonlinear above 2.5 %, in agreement with our theoretical models. In conclusion, we show that under uniaxial strain level above 2 %, germanium exhibits significant nonlinear behaviors which have to be taken into consideration for the design and fabrication of future on-chip germanium laser sources compatible with CMOS technologies. [1] Van de Walle, Phys. Rev. B 39, 1871 (1989) [2] Lim et al., Opt. Express 17, 16358 (2009) [3] Süess et al., Nature Phot. 7, 466 (2013) [4] Widiez et al., ECS Transaction 64, 35-48 (2014) [5] Gassenq et al., submitted [6] Gassenq et al., submitted

  12. Modelling to very high strains

    NASA Astrophysics Data System (ADS)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    Ductile strains in shear zones often reach extreme values, resulting in typical structures, such as winged porphyroclasts and several types of shear bands. The numerical simulation of the development of such structures has so far been inhibited by the low maximum strains that numerical models can normally achieve. Typical numerical models collapse at shear strains in the order of one to three. We have implemented a number of new functionalities in the numerical platform "Elle" (Jessell et al. 2001), which significantly increases the amount of strain that can be achieved and simultaneously reduces boundary effects that become increasingly disturbing at higher strain. Constant remeshing, while maintaining the polygonal phase regions, is the first step to avoid collapse of the finite-element grid required by finite-element solvers, such as Basil (Houseman et al. 2008). The second step is to apply a grain-growth routine to the boundaries of polygons that represent phase regions. This way, the development of sharp angles is avoided. A second advantage is that phase regions may merge or become separated (boudinage). Such topological changes are normally not possible in finite element deformation codes. The third step is the use of wrapping vertical model boundaries, with which optimal and unchanging model boundaries are maintained for the application of stress or velocity boundary conditions. The fourth step is to shift the model by a random amount in the vertical direction every time step. This way, the fixed horizontal boundary conditions are applied to different material points within the model every time step. Disturbing boundary effects are thus averaged out over the whole model and not localised to e.g. top and bottom of the model. Reduction of boundary effects has the additional advantage that model can be smaller and, therefore, numerically more efficient. Owing to the combination of these existing and new functionalities it is now possible to simulate the

  13. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  14. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  15. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  16. [Modern Approaches to the Creation of Industrial Microorganism Strains].

    PubMed

    Debabov, V G

    2015-04-01

    Microorganism producer strains are the basis of industrial biotechnology. Their properties determine the economical parameters of the production. Methods of rational design (metabolic engineering) and combinatorial methods of mutagenesis and selection (laboratory evolution, adaptive evolution, protein and genomic shuffling) are used for the construction of microorganism strains. Combination of these methods is frequently used. Modern strains usually do not contain plasmids and markers of drug resistance. All changes are introduced into the chromosome by the methods of homologous and site-specific recombination. The sum of such approaches is called recombineering. Gene expression is carried out at the optimal level under the control of promoters of a certain power (frequently regulated). Knowledge of a complete genomic sequence is almost a mandatory condition for the use of methods of metabolic engineering. Bioinformatics significantly assists in the selection of enzymes and the search for necessary genes and metabolic reactions. Measurement of metabolic fluxes largely assists in the construction of strains. The current level of science makes it possible to construct metabolic pathways de novo in strains for the production of chemicals and biofuel. Carbon dioxide has potential as a raw material for microbiological industry; therefore, the study of CO2 fixation by acetogens and electrogens is a promising direction of studies.

  17. Investigation of cyanobacteria in a controlled hyperbolic straining flow

    NASA Astrophysics Data System (ADS)

    Akbaridoust, Farzan; Philip, Jimmy; Marusic, Ivan

    2016-11-01

    Here we report a systematic study on the effect of straining flow on cyanobacteria, which are a cause of significant water contamination issues worldwide. We focus on the species Anaebena Circinalis. A micro-cross channel equipped with two online computer-controlled on-chip membrane valves was designed and fabricated using standard soft-lithography. The device produces a hyperbolic straining flow on a micron-scaled region similar to G. I. Taylor's four-roll mill at larger scale. It was used to investigate the behaviour of a single filament of cynobacteria in a crowded medium under an increasing uniform strain rate flow. The velocity field and the resulting uniform strain-rate was measured in the absence of bacteria filaments using micro-PIV. A large number of single filaments of bacteria were trapped and exposed to stain-rates over 2 to 15 s-1. Previous studies have reported anecdotal evidence of suspected mechanical damage to Anaebena Circinalis for strain rates considerably lower than the maximum values studied here. In our case, no mechanical damage was observed. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

  18. Time-dependent strains and stresses in a pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  19. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  20. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    SciTech Connect

    Clausen, Bjorn; Brown, Donald W; Tome, Carlos N; Balogh, Levente; Vogel, Sven C

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  1. Susceptibility of Legionella strains to the chlorinated biocide, monochloramine.

    PubMed

    Jakubek, Delphine; Guillaume, Carole; Binet, Marie; Leblon, Gérard; DuBow, Michael; Le Brun, Matthieu

    2013-01-01

    Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased.

  2. Low-dimensional clustering detects incipient dominant influenza strain clusters

    PubMed Central

    He, Jiankui; Deem, Michael W.

    2010-01-01

    Influenza has been circulating in the human population and has caused three pandemics in the last century (1918 H1N1, 1957 H2N2 and 1968 H3N2). The 2009 A(H1N1) was classified by World Health Organization as the fourth pandemic. Influenza has a high evolution rate, which makes vaccine design challenging. We here consider an approach for early detection of new dominant strains. By clustering the 2009 A(H1N1) sequence data, we found two main clusters. We then define a metric to detect the emergence of dominant strains. We show on historical H3N2 data that this method is able to identify a cluster around an incipient dominant strain before it becomes dominant. For example, for H3N2 as of 30 March 2009, the method detects the cluster for the new A/British Columbia/RV1222/2009 strain. This strain detection tool would appear to be useful for annual influenza vaccine selection. PMID:21036781

  3. High strain rate mechanical properties of IM7/8551-7 graphite epoxy composite

    SciTech Connect

    Powers, B.M.; Vinson, J.R.; Hall, I.W.

    1995-12-31

    Polymer matrix composites offer excellent mechanical properties such as high specific strength and stiffness which make them attractive for many naval, aerospace and automotive structural components. Although they are candidate materials for many applications where high strain rate loading is probable, little is known of the material responses to shock loading for most composite materials. Because mechanical properties vary significantly with strain rate, the use of static properties in the analysis and design of structures which undergo dynamic loadings can on one hand lead to a very conservative overweight design, or on the other hand can lead to designs which fail prematurely and unexpectedly. The use of dynamic material properties will ensure the design of composite structures which are weight efficient and structurally sound when they are subjected to dynamic loads. In this study, a Split Hopkinson Pressure Bar is used to obtain compressive mechanical properties of a unidirectional IM7/8551-7 graphite epoxy composite. For each of the three principal directions, the yield stress, yield strain, ultimate stress, ultimate strain, modulus of elasticity, elastic strain energy function and the total strain energy to failure are presented for strain rates varying from 49 sec{sup {minus}1} to 1430 sec{sup {minus}1}. The data from 72 tests are statistically analyzed, represented by equations, and discussed in some detail.

  4. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  5. Virtual strain gage size study

    DOE PAGES

    Reu, Phillip L.

    2015-09-22

    DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strainsmore » are being found.« less

  6. ISOLATION AND PRELIMINARY CHARACTERISTICS OF THREE BACTERIOPHAGES ASSOCIATED WITH A LYSOGENIC STRAIN OF PSEUDOMONAS AERUGINOSA, 12

    PubMed Central

    Feary, Thomas W.; Fisher, Earl; Fisher, Thelma N.

    1964-01-01

    Feary, Thomas W. (Tulane University School of Medicine, New Orleans, La.), Earl Fisher, Jr., and Thelma N. Fisher. Isolation and preliminary characteristics of three bacteriophages associated with a lysogenic strain of Pseudomonas aeruginosa. J. Bacteriol. 87:196–208. 1964.—Three bacteriophages designated 7v, 7m, and 7s were isolated from a lysogenic strain of Pseudomonas aeruginosa designated Ps-7. The three viruses were found to be completely unrelated on the basis of plaque morphology, host range, serology, ultraviolet induction, sensitivity to heat, and particle morphology as revealed by electron microscopy. In addition, it was shown that the three phages were incapable of plaque formation on bacteria other than various strains of P. aeruginosa. Of the three phages, only phage 7v was capable of plaque formation on strain Ps-7. The growth of phage 7v on strain Ps-7 exhibited properties which suggest that this virus arises as the result of mutation in a temperate phage for which strain Ps-7 is lysogenic. Phages 7m and 7s are incapable of plaque formation on strain Ps-7, but are adsorbed at characteristic rates to cell suspensions of strain Ps-7. The relationship between phage 7m and strain Ps-7 was shown to meet the classical criteria for lysogeny. Because phage 7s contains ribonucleic acid as its nucleic acid component, it was concluded that its production by strain Ps-7 and the demonstration of immunity of strain Ps-7 to infection by phage 7s were not sufficient evidence to define the nature of the relationship between phage 7s and P. aeruginosa strain Ps-7. It was observed that under certain conditions the infectious titer of phage 7s preparations are markedly reduced in the presence of ribonuclease. Images PMID:14102854

  7. Strain softening in stretched DNA

    PubMed Central

    Luan, Binquan; Aksimentiev, Aleksei

    2010-01-01

    The microscopic mechanics of DNA stretching was characterized using extensive molecular dynamics simulations. By employing an anisotropic pressure control method, realistic force-extension dependences of effectively infinite DNA molecules were obtained. A coexistence of B- and S-DNA domains was observed during the overstretching transition. The simulations revealed that strain softening may occur in the process of stretching torsionally constrained DNA. The latter observation was qualitatively reconciled with available experimental data using a random-field Ising model. PMID:18851334

  8. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  9. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  10. Development of a strain-specific genomic marker for monitoring a Bacillus subtilis biocontrol strain in the rhizosphere of tomato.

    PubMed

    Felici, Cristiana; Vettori, Lorenzo; Toffanin, Annita; Nuti, Marco

    2008-08-01

    A strain-specific molecular marker enabling the detection and tracking of the biological control agent Bacillus subtilis 101, when released into the environment, was developed. Random amplified polymorphic DNA (RAPD) technique was used to differentiate this from other B. subtilis strains. A differentially amplified fragment obtained from RAPD profiles was sequenced and characterized as sequence-characterized amplified region (SCAR) marker, and four primer pairs were designed and evaluated for their specificity towards this strain. The sensibility of the selected SCAR primer pair was evaluated by qualitative PCR and Southern blotting, and the detection limit was assessed around 10(2) CFU (g dry wt soil)(-1), thus providing a reliable tool for the traceability of this B. subtilis strain in greenhouse or field trials. A plating assay coupled to PCR with the SCAR primer pair was then used as a detection method in microcosm experiments for monitoring the population of B. subtilis 101 in the rhizosphere of tomato, grown under two different soil conditions, i.e. nonsterile peat-based substrate and sandy-loam agricultural soil, respectively. The data of rhizosphere colonization indicated that the soil conditions significantly affected the rhizosphere establishment of strain 101.

  11. Strains and Sprains Are a Pain

    MedlinePlus

    ... strain at some point. Strains and sprains are common injuries, especially for kids who are very active or ... such as twisting your ankle. This kind of injury is common in sports, but also can happen any time ...

  12. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  13. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  14. Using BEEM To Probe Strains In Semiconductors

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Milliken, Autumn M.; Manion, Stephen J.; Kaiser, William J.

    1996-01-01

    Ballistic-electron-emission microscopy (BEEM) useful in determining strains in semiconductors under some conditions. More specifically, BEEM is variant of scanning tunneling microscopy and sensitive to electronic structure of probed material. In present approach, BEEM used to obtain data on those aspects of variations in electronic structures related to variations in strains. Then by use of mathematical modeling of relationships between electronic structures and strains, variations in strains deduced from BEEM data.

  15. Temperature-Compensating Inactive Strain Gauge

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1993-01-01

    Thermal contribution to output of active gauge canceled. High-temperature strain gauges include both active gauge wires sensing strains and inactive gauge wires providing compensation for thermal contributions to gauge readings. Inactive-gauge approach to temperature compensation applicable to commercially available resistance-type strain gauges operating at temperatures up to 700 degrees F and to developmental strain gauges operating at temperatures up to 2,000 degrees F.

  16. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  17. Phenotypic, antigenic, and molecular characterization of Pasteurella piscicida strains isolated from fish.

    PubMed Central

    Magariños, B; Romalde, J L; Bandín, I; Fouz, B; Toranzo, A E

    1992-01-01

    We compared Pasteurella piscicida strains isolated from different fish species in several European countries with strains isolated in Japan and the United States. The taxonomic analysis revealed that, regardless of the geographic origin and source of isolation, all the strains exhibited the same biochemical and physiological characteristics. Serological assays with different rabbit antisera demonstrated a high level of antigenic similarity among strains, with cross-agglutination titers of 20,480 to 40,960. This serological homogeneity was supported by the lipopolysaccharide (LPS) and membrane protein profiles. All the P. piscicida strains had the same electrophoretic LPS pattern, showing O side chains with a ladder-like structure, and shared at least four major outer membrane proteins, of 20, 30, 42, and 53 kDa. Western blot (immunoblot) analysis with LPS and protein indicated that all the P. piscicida strains are immunologically related. In addition, the chromosomal DNA fingerprint patterns obtained for the European strains with the enzymes EcoRI and BamHI were practically identical to those of the Japanese and U.S. strains. Although some differences were found in the plasmid profiles of P. piscicida, a large number of strains possessed in common plasmid bands of 20 and 7 MDa. In addition, a plasmid of 50 MDa was present in the majority of the European strains. Restriction endonuclease analysis demonstrated the genetic homology of the plasmid bands shared by most of the European strains. All the P. piscicida strains had the same drug resistance patterns, indicating that a correlation between plasmid carriage and resistance to a specific antimicrobial agent cannot be established. The high levels of phenotypic, serological, and genetic homogeneity found among the P. piscicida strains should facilitate the development of DNA probes with diagnostic purposes as well as the design of effective vaccines. Images PMID:1444366

  18. Phenotypic, antigenic, and molecular characterization of Pasteurella piscicida strains isolated from fish.

    PubMed

    Magariños, B; Romalde, J L; Bandín, I; Fouz, B; Toranzo, A E

    1992-10-01

    We compared Pasteurella piscicida strains isolated from different fish species in several European countries with strains isolated in Japan and the United States. The taxonomic analysis revealed that, regardless of the geographic origin and source of isolation, all the strains exhibited the same biochemical and physiological characteristics. Serological assays with different rabbit antisera demonstrated a high level of antigenic similarity among strains, with cross-agglutination titers of 20,480 to 40,960. This serological homogeneity was supported by the lipopolysaccharide (LPS) and membrane protein profiles. All the P. piscicida strains had the same electrophoretic LPS pattern, showing O side chains with a ladder-like structure, and shared at least four major outer membrane proteins, of 20, 30, 42, and 53 kDa. Western blot (immunoblot) analysis with LPS and protein indicated that all the P. piscicida strains are immunologically related. In addition, the chromosomal DNA fingerprint patterns obtained for the European strains with the enzymes EcoRI and BamHI were practically identical to those of the Japanese and U.S. strains. Although some differences were found in the plasmid profiles of P. piscicida, a large number of strains possessed in common plasmid bands of 20 and 7 MDa. In addition, a plasmid of 50 MDa was present in the majority of the European strains. Restriction endonuclease analysis demonstrated the genetic homology of the plasmid bands shared by most of the European strains. All the P. piscicida strains had the same drug resistance patterns, indicating that a correlation between plasmid carriage and resistance to a specific antimicrobial agent cannot be established. The high levels of phenotypic, serological, and genetic homogeneity found among the P. piscicida strains should facilitate the development of DNA probes with diagnostic purposes as well as the design of effective vaccines.

  19. Strains around distally inclined implants retaining mandibular overdentures with Locator attachments: an in vitro study

    PubMed Central

    Setta, Fathi Abo; Khirallah, Ahmed Samir

    2016-01-01

    PURPOSE The aim of the present study was to evaluate, by means of strain gauge analysis, the effect of different implant angulations on strains around two implants retaining mandibular overdenture with Locator attachments. MATERIALS AND METHODS Four duplicate mandibular acrylic models were constructed. Two implants were inserted in the canine regions using the following degrees of distal inclinations: group I (control); 0°, group II; 10°, group III; 20°, and group IV; 30°. Locator pink attachments were used to connect the overdenture to the implants and Locator red (designed for severely angled implants) was used for group IV (group IVred). For each group, two linear strain gauges were attached at the mesial and distal surfaces of the acrylic resin around each implant. Peri-implant strain was measured on loading and non-loading sides during bilateral and unilateral loading. RESULTS For all groups, the mesial surfaces of the implants at loading and non-loading sides experienced compressive (negative) strains, while the distal implant surfaces showed tensile (positive) strains. Group IV showed the highest strain, followed by group III, group II. Both group I and group IVred showed the lowest strain. The strain gauges at the mesial surface of the loading side recorded the highest strain, and the distal surface at non-loading side showed the lowest strain. Unilateral loading recorded significantly higher strain than bilateral loading. CONCLUSION Peri-implant strains around two implants used to retain mandibular overdentures with Locator attachments increase as distal implant inclination increases, except when red nylon inserts were used. PMID:27141255

  20. Strain Rate Effects on Ultimate Strain of Copper

    DTIC Science & Technology

    1979-05-01

    34Dogbone" Specimen Used for Quasi-Static 5 and Intermediate Rate Tests 2 Schematic of Split Hopkinso’v Bar Apparatus 7 3a PETN Filled Tube Specimen...48 Experiment 25 Calculated Stress Components in Copper Cylinder 52 Expanded by PETN 26 Fracture of Explosively Expanded Cylindrical 54 Tube A-la...Record of Shot No. 10 73 A7b Framing Camera Record of Shot No. 10 74 A-8 Strain Versus Time for Copper Tube Expanded 75 by PETN vi

  1. Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains

    PubMed Central

    Gangaiah, Dharanesh; Webb, Kristen M.; Humphreys, Tricia L.; Fortney, Kate R.; Toh, Evelyn; Tai, Albert; Katz, Samantha S.; Pillay, Allan; Chen, Cheng-Yen; Roberts, Sally A.; Munson, Robert S.; Spinola, Stanley M.

    2015-01-01

    Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions. PMID:26147869

  2. Phenotypic and Genotypic Description of Sedimenticola selenatireducens Strain CUZ, a Marine (Per)Chlorate-Respiring Gammaproteobacterium, and Its Close Relative the Chlorate-Respiring Sedimenticola Strain NSS

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana E.; Wang, Ouwei; Engelbrektson, Anna; Clark, Iain; Lucas, Lauren N.; Somasekhar, Pranav Y.

    2015-01-01

    Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30°C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42°C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms. PMID:25662971

  3. Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS.

    PubMed

    Carlström, Charlotte I; Loutey, Dana E; Wang, Ouwei; Engelbrektson, Anna; Clark, Iain; Lucas, Lauren N; Somasekhar, Pranav Y; Coates, John D

    2015-04-01

    Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30 °C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42 °C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms.

  4. Influence of strain on the structural instabilities and functional properties of complex oxides

    NASA Astrophysics Data System (ADS)

    Hatt, Alison J.

    Complex oxides display a tremendous array of functional properties, ranging from ferroelectricity to giant magnetoresistance to superconductivity. Epitaxial strain in thin films of these materials provides a tool to further manipulate the available functionalities and presents an attractive avenue for material design. Arising from mismatch between films and substrate lattice parameters, strain can have profound effects on material properties by altering the energy balance between competing structural instabilities. Here we use density functional calculations to address the influence of strain on ABO 3 perovskite oxides, examining the impact on structural instabilities and focusing on regions in which strain induces phase transition phenomena. The density functional approach gives us access to the atomic-level details of a material's response to strain, enabling us to disentangle competing instabilities and differentiate between the ionic, electronic and lattice responses. In particular, we seek to illuminate the coupling of strain to distortion modes involving rigid rotations of the BO6 octahedral units. These octahedral rotations are known to drive or prohibit a number of strain-induced phenomena in functional oxides, but the details of their coupling to strain were not previously well understood. We develop our topic through investigations on four perovskite systems. We first study a layered superlattice of La(Al,Fe,Cr)O3, to distinguish the effect of misfit strain from the symmetry constraint imposed by heterostructuring. We then focus on the influence of strain in a series of single-phase perovskites of increasing complexity. In the simple dielectric LaAlO3, we isolate the strain-rotation coupling, develop a model for the dependence of rotations on bi-axial and uni-axial strain, and characterize a previously unidentified strain-induced phase transition. Next, we address strain in a polar material, multiferroic BiFeO3, to investigate recent experimental reports

  5. Antigenic differentiation of classical swine fever vaccinal strain PAV-250 from other strains, including field strains from Mexico.

    PubMed

    Mendoza, Susana; Correa-Giron, Pablo; Aguilera, Edgar; Colmenares, Germán; Torres, Oscar; Cruz, Tonatiuh; Romero, Andres; Hernandez-Baumgarten, Eliseo; Ciprián, Abel

    2007-10-10

    Twenty-nine classical swine fever virus (CSFv) strains were grown in the PK15 or SK6 cell lines. Antigenic differentiation studies were performed using monoclonal antibodies (McAbs), produced at Lelystad (CDI-DLO), The Netherlands. The monoclonals which were classified numerically as monoclonals 2-13. Epitope map patterns that resulted from the reactivity with McAbs were found to be unrelated to the pathogenicity of the viruses studied. Antigenic determinants were recognized by McAbs 5 and 8, were not detected in some Mexican strains; however, sites for McAb 6 were absent in all strains. The PAV-250 vaccine strain was recognized by all MAbs, except by MAb 6. Furthermore, the Chinese C-S vaccine strain was found to be very similar to the GPE(-) vaccine. None of the studied Mexican vaccines or field strains was found to be similar to the PAV-250 vaccine strain.

  6. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted

  7. Design optimization of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Joh, C.-Y.; Grossman, B.; Haftka, R. T.

    1991-01-01

    Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.

  8. Antimicrobial Screening of Actinobacteria using a Modified Cross-Streak Method

    PubMed Central

    Velho-Pereira, Sonashia; Kamat, N M

    2011-01-01

    Out of the 30 actinobacterial cultures screened for antimicrobial activity, 28 cultures were found to produce active products against various pathogenic microorganisms such as Gram-negative, Gram-positive bacteria and yeast, using a modified cross streak method. The modified method helped in easy quantification of results and also in ruling out probable mutual antibiosis. The actinobacterial strains that showed the ability to produce antimicrobial compounds belonged to Streptomyces (53%), Micromonospora (13%) and Actinomadura (10%) genera. Streptomyces sp. strain MMA-5 showed the highest multispecific antibiosis efficiency score value. Broad antibiotic spectrum activity was exhibited by Streptomyces sp. strain MMA-2 and Micromonospora sp. strain MMA-8. The multidrug resistant human pathogenic yeast strain Candida albicans was inhibited by 18 actinobacterial strains. PMID:22303068

  9. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  10. First International Symposium on Strain Gauge Balances. Pt. 1

    NASA Technical Reports Server (NTRS)

    Tripp, John S. (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  11. Effect of strain and strain rate on residual microstructures in copper

    SciTech Connect

    Stevens, M.F.; Follansbee, P.S.

    1986-01-01

    Several specimens of OFE Cu were deformed in compression to study the resulting microstructures at equivalent levels of threshold stress and strain. Equiaxed, diffuse dislocation cells are more persistent in Cu when tested at strain rates exceeding 10/sup 3/ sec/sup -1/. At quasi-static strain rates, dislocation collapse into more distinct, narrow microbands occurs at lower strain levels.

  12. Error quantification in strain mapping methods.

    PubMed

    Guerrero, Elisa; Galindo, Pedro; Yáñez, Andrés; Ben, Teresa; Molina, Sergio I

    2007-10-01

    In this article a method for determining errors of the strain values when applying strain mapping techniques has been devised. This methodology starts with the generation of a thickness/defocus series of simulated high-resolution transmission electron microscopy images of InAsxP1-x/InP heterostructures and the application of geometric phase. To obtain optimal defocusing conditions, a comparison of different defocus values is carried out by the calculation of the strain profile standard deviations among different specimen thicknesses. Finally, based on the analogy of real state strain to a step response, a characterization of strain mapping error near an interface is proposed.

  13. Tests of strain analysis by experimental deformation

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.; McArthur, J.

    1991-01-01

    The linearisation method and Robin's method of strain analysis of granular materials yield accurate strain estimates for a variety of materials deformed experimentally in pure shear. The breakdown of continuum behaviour at high pore fluid pressures causes the methods to overestimate the strain because they do not take added rigid-body rotation into account. Both methods tolerate some variation in initial shape ratio and some degree of initial preferred orientation at modest strains. Results of tests on polymict sandstone indicate that the lower than average ductility of competent clasts may be balanced against an unfavourable degree of preferred orientation to yield an improved strain estimate.

  14. Radio-Frequency Strain Monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Rogowski, Robert S.; Holben, Milford S., Jr.

    1988-01-01

    Radio-frequency (RF) strain monitor developed to measure lengths of objects. RF waveguide or cable bonded to structure monitored. Propagation of RF signal along waveguide results in phase shift proportional to length of path traveled. Impedance mismatches placed in RF cable at nodes of structure. Records mismatches and detects overall length of line and lengths of intervals between nodes. Used to detect changes in elements of large structure with single cable. Monitor has potential for many applications, including monitoring stability of such large structures as aircraft, bridges, and buildings in Earthquake zones.

  15. Genetic diversity of Hungarian canine distemper virus strains.

    PubMed

    Demeter, Zoltán; Lakatos, Béla; Palade, Elena Alina; Kozma, Tamás; Forgách, Petra; Rusvai, Miklós

    2007-06-21

    To achieve proper diagnosis of dogs based on acute clinical symptoms and poorly preserved field samples taken from animals that died due to canine distemper (CD), a new differential diagnostic test has been developed based on polymerase chain reaction (PCR). In this study, more than 150 samples collected from dogs showing respiratory, gastrointestinal and neurological signs suggesting canine distemper virus (CDV) infection were examined. The samples consisted of urine, blood and nasal swabs collected from clinically ill patients, sent to our laboratory by clinicians from various veterinary clinics throughout Hungary. Various organs collected during the necropsy of dogs with pathological changes that suggested CDV infection were also included. Three distinct PCRs were designed. For diagnostic purposes, a primer pair specific to a 409 bases-long segment within the conservative part of the large polymerase region (L) of the CDV genome was designed. Using this test, out of the 150 analyzed samples, 46 (30.66%) proved to be positive for CDV, indicating that CDV still represents a high risk to the canine population in Hungary. For the phylogenetical analysis, a primer pair that completely encompasses the hemagglutinin (H) gene of the CDV genome was designed. The amplicons of this region were sequenced in both directions using the appropriate primers. Our results indicate that several different CDV genotypes are currently present in Hungary. Nine of the analyzed Hungarian strains turned out to belong to the so-called Arctic group of CDVs, and were most closely related to non-European strains from North America, China and Greenland, as well as to the phocine distemper virus 2 (PDV-2) isolated from Baikal seals (Phoca sibirica). One of the Hungarian strains showed high similarity to other European isolates from Denmark, Germany, Italy and Turkey, as well as to other isolates from geographically more distant regions, such as the USA. Three Hungarian strains seem to join a

  16. Mechanisms of strain-mediated mesenchymal stem cell apoptosis.

    PubMed

    Kearney, E M; Prendergast, P J; Campbell, V A

    2008-12-01

    Mechanical conditioning of mesenchymal stem cells (MSCs) has been adopted widely as a biophysical signal to aid tissue engineering applications. The replication of in vivo mechanical signaling has been used in in vitro environments to regulate cell differentiation, and extracellular matrix synthesis, so that both the chemical and mechanical properties of the tissue-engineered construct are compatible with the implant site. While research in these areas contributes to tissue engineering, the effects of mechanical strain on MSC apoptosis remain poorly defined. To evaluate the effects of uniaxial cyclic tensile strain on MSC apoptosis and to investigate mechanotransduction associated with strain-mediated cell death, MSCs seeded on a 2D silicone membrane were stimulated by a range of strain magnitudes for 3 days. Mechanotransduction was investigated using the stretch-activated cation channel blocker gadolinium chloride, the L-type voltage-activated calcium channel blocker nicardipine, the c-jun NH(2)-terminal kinase (JNK) blocker D-JNK inhibitor 1, and the calpain inhibitor MDL 28170. Apoptosis was assessed through DNA fragmentation using the terminal deoxynucleotidyl transferase mediated-UTP-end nick labeling method. Results demonstrated that tensile strains of 7.5% or greater induce apoptosis in MSCs. L-type voltage-activated calcium channels coupled mechanical stress to activation of calpain and JNK, which lead to apoptosis through DNA fragmentation. The definition of the in vitro boundary conditions for tensile strain and MSCs along with a proposed mechanism for apoptosis induced by mechanical events positively contributes to the development of MSC biology, bioreactor design for tissue engineering, and development of computational methods for mechanobiology.

  17. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  18. Differentiation of strains in Mycobacterium tuberculosis complex by DNA sequence polymorphisms, including rapid identification of M. bovis BCG.

    PubMed Central

    Frothingham, R

    1995-01-01

    The Mycobacterium tuberculosis complex includes M. tuberculosis, M. bovis, M. microti, and M. africanum. Seven strains of the M. tuberculosis complex were sequenced in a region of about 300 bp which contains multiple 15-bp tandem repeats and which is part of a 1,551-bp open reading frame. Four distinct sequences were obtained, each defining a sequevar. A sequevar includes the strain or strains with a given sequence. The type strain M. tuberculosis TMC 102 (H37Rv) was designated sequevar MED-G. When compared to MED-G, sequevar LONG had an insertion of one 15-bp tandem repeat and sequevar SHORT had a deletion of one tandem repeat. Sequevar MED-C had a G-->C substitution, coding for the conservative change Ser-->Thr. BanI cuts only sequevar MED-C at the site of the substitution. PCR-restriction enzyme analysis was used to determine the sequevars of 92 M. tuberculosis complex strains. All 23 M. bovis BCG strains belonged to sequevar MED-C. The M. africanum type strain was sequevar SHORT. The remaining 68 strains of M. tuberculosis, M. bovis (not BCG), and M. microti were sequevars LONG (3 strains) or MED-G (65 strains). PCR-restriction enzyme analysis was applied to reference strains and clinical isolates with a worldwide distribution. This method provides rapid, sensitive, and specific identification of the important vaccine strain M. bovis BCG. PMID:7790448

  19. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains.

    PubMed

    Kuno, Goro

    2010-11-01

    The yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae), is well recognized for its extensive adaptation to diverse ecological conditions and for genetic variation. Recognizing the importance of strain variation of this mosquito, researchers have established a large number of laboratory strains. Some of the popular strains have been used for research for years in many laboratories around the world. However, the exact origins of many of these strains are unknown. In this review, publications and archival records were examined to report the early laboratory mosquito rearing practices around the world and to identify the origins of selected strains. The records showed that inter-laboratory sharing of strains was already underway in the early part of the 20th century because of the ease of breeding Ae. aegypti and of sending eggs by mail. It also was found that the four strains established in major U.S. institutions by the mid-1930s, including the "ROCK" (short for Rockefeller) strain, had been derived from Cuba, Nigeria, Philippines, or Puerto Rico, all known for a long history of transmission of yellow fever virus or dengue virus rather than from North America. The strains used for research in Europe were primarily derived from West Africa, but strains of Asian, Caribbean, and South American origins also were used for comparative experiments among geographic strains. Neglected issues related to strain designation and original source identification in scientific publications were found and their relevance to current research is discussed.

  20. Demonstration Using Field Collections that Argentina Fall Armyworm Populations Exhibit Strain-specific Host Plant Preferences.

    PubMed

    Murúa, M Gabriela; Nagoshi, Rodney N; Dos Santos, Daniel A; Hay-Roe, Mirian M; Meagher, Robert L; Vilardi, J C

    2015-10-01

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere.

  1. Systemic neonatal candidosis: the karyotyping of Candida albicans strains isolated from neonates and health-workers.

    PubMed

    Ben Abdeljelil, J; Ben Saida, N; Saghrouni, F; Fathallah, A; Boukadida, J; Sboui, H; Ben Said, M

    2010-01-01

    Candida albicans has become an important cause of nosocomial infections in neonatal intensive care units (NICUs). The aim of the present study was to compare C. albicans strains isolated from neonates (NN) suffering from systemic candidosis and from nurses in order to determine the relatedness between NN and health workers' strains. Thirty-one C. albicans strains were isolated from 18 NN admitted to the NICU of the neonatology service of Farhat Hached Hospital of Sousse, Tunisia and suffering from systemic candidosis, together with five strains recovered from nurses suffering from C. albicans onychomycosis. Two additional strains were tested, one from an adult patient who developed a systemic candidosis and the second from an adult with inguinal intertrigo. All strains were karyotyped by pulsed-field gel electrophoresis (PFGE) with a CHEF-DR II system. Analysis of PFGE patterns yielded by the 38 strains tested led to the identification of three pulsotypes that were designated I, II and III, and consisted of six chromosomal bands with a size ranging from 700 to >2500 kbp. The most widespread was the pulsotype I, which was shared by 17 NN and the five nurses' strains. The identity between NN and nurses' strains is very suggestive of a nosocomial acquisition from health-workers.

  2. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    SciTech Connect

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength in AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.

  3. Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic.

    PubMed

    Esona, Mathew D; Roy, Sunando; Rungsrisuriyachai, Kunchala; Sanchez, Jacqueline; Vasquez, Lina; Gomez, Virgen; Rios, Lourdes Aviles; Bowen, Michael D; Vazquez, Marietta

    2017-02-01

    We report the genome of a novel human triple-recombinant G4P[6-8_R] mono-reassortant strain identified in a stool sample from the Dominican Republic during routine facility-based rotavirus strain surveillance. The strain was designated as RVA/Human-wt/DOM/2013840364/2013/G4P[6-8_R], with a genomic constellation of G4-P[6-8_R]-I1-R1-C1-M1-(A1-A8_R)-N1-(T1-T7_R)-E1-H1. Recombinant gene segments NSP1 and NSP3 were generated as a result of recombination between genogroup 1 rotavirus A1 human strain and a genotype A8 porcine strain and between genogroup 1 rotavirus T1 human strain and a genotype T7 bovine strain, respectively. Analyses of the RNA secondary structures of gene segment VP4, NSP1 and NSP3 showed that all the recombinant regions appear to start in a loop (single-stranded) region and terminate in a stem (double-stranded) structure. Also, the VP7 gene occupied lineage VII within the G4 genotypes consisting of mostly porcine or porcine-like G4 strains, suggesting the occurrence of reassortment. The remaining gene segments clustered phylogenetically with genogroup 1 strains. This exchange of whole or partial genetic materials between rotaviruses by recombination and reassortment contributes directly to their diversification, adaptation and evolution.

  4. [Development of genetically stable recombinant Saccharomyces cerevisiae strains using combinational chromosomal integration].

    PubMed

    Zuo, Qi; Zhao, Xinqing; Liu, Haijun; Hu, Shiyang; Ma, Zhongyi; Bai, Fengwu

    2014-04-01

    Chromosomal integration enables stable phenotype and therefore has become an important strategy for breeding of industrial Saccharomyces cerevisiae strains. pAUR135 is a plasmid that enables recycling use of antibiotic selection marker, and once attached with designated homologous sequences, integration vector for stable expression can be constructed. Development of S. cerevisiae strains by metabolic engineering normally demands overexpression of multiple genes, and employing pAUR135 plasmid, it is possible to construct S. cerevisiae strains by combinational integration of multiple genes in multiple sites, which results in different ratios of expressions of these genes. Xylose utilization pathway was taken as an example, with three pAUR135-based plasmids carrying three xylose assimilation genes constructed in this study. The three genes were sequentially integrated on the chromosome of S. cerevisiae by combinational integration. Xylose utilization rate was improved 24.4%-35.5% in the combinational integration strain comparing with that of the control strain with all the three genes integrated in one location. Strain improvement achieved by combinational integration is a novel method to manipulate multiple genes for genetic engineering of S. cerevisiae, and the recombinant strains are free of foreign sequences and selection markers. In addition, stable phenotype can be maintained, which is important for breeding of industrial strains. Therefore, combinational integration employing pAUR135 is a novel method for metabolic engineering of industrial S. cerevisiae strains.

  5. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    PubMed Central

    Bernal, Milagro García; Campa-Córdova, Ángel Isidro; Saucedo, Pedro Enrique; González, Marlen Casanova; Marrero, Ricardo Medina; Mazón-Suástegui, José Manuel

    2015-01-01

    Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world. PMID:27047067

  6. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  7. Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains.

    PubMed

    Araque, Isabel; Gil, Joana; Carreté, Ramon; Constantí, Magda; Bordons, Albert; Reguant, Cristina

    2016-03-01

    Trace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O. oeni, pairs of primers were designed to amplify arcA, arcB, arcC and arcD1 sequences. All strains contained these four genes. The same primers were used to confirm the organization of these genes in an arcABCD1 operon. Nevertheless, considerable variability in the ability to degrade arginine among these O. oeni strains was observed. Therefore, despite the presence of the arc genes in all strains, the expression patterns of individual genes must be strain dependent and influenced by the different wine conditions. Additionally, the presence of arc genes was also determined in the 57 sequenced strains of O. oeni available in GenBank, and the complete operon was found in 83% of strains derived from wine. The other strains were found to lack the arcB, arcC and arcD genes, but all contained sequences homologous to arcA, and some of them had also ADI activity.

  8. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  9. In vitro quantification of strain patterns in the craniofacial skeleton due to masseter and temporalis activities.

    PubMed

    Maloul, Asmaa; Regev, Eran; Whyne, Cari M; Beek, Marteen; Fialkov, Jeffrey A

    2012-09-01

    Many complications in craniofacial surgery can be attributed to a lack of characterization of facial skeletal strain patterns. This study aimed to delineate human midfacial strain patterns under uniform muscle loading. The left sides of 5 fresh-frozen human cadaveric heads were dissected of all soft tissues except the temporalis and masseter muscles. Tensile forces were applied to the free mandibular ends of the muscles. Maxillary alveolar arches were used to restrain the skulls. Eight strain gauges were bonded to the surface of the midface to measure the strain under single muscle loading conditions (100 N). Maxillary strain gauges revealed a biaxial load state for both muscles. Thin antral bone experienced high maximum principal tensile strains (maximum of 685.5 με) and high minimum principal compressive strains (maximum of -722.44 με). Similar biaxial patterns of lower magnitude were measured on the zygoma (maximum of 208.59 με for maximum principal strains and -78.11 με for minimum principal strains). Results, consistent for all specimens and counter to previously accepted concepts of biomechanical behavior of the midface under masticatory muscle loading, included high strain in the thin maxillary antral wall, rotational bending through the maxilla and zygoma, and a previously underestimated contribution of the temporalis muscle. This experimental model produced repeatable strain patterns quantifying the mechanics of the facial skeleton. These new counterintuitive findings underscore the need for accurate characterization of craniofacial strain patterns to address problems in the current treatment methods and develop robust design criteria.

  10. Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2002-01-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent. PMID:12089031

  11. Children with severe early childhood caries: streptococci genetic strains within carious and white spot lesions

    PubMed Central

    Gilbert, Kenneth; Joseph, Raphael; Vo, Alex; Patel, Trusha; Chaudhry, Samiya; Nguyen, Uyen; Trevor, Amy; Robinson, Erica; Campbell, Margaret; McLennan, John; Houran, Farielle; Wong, Tristan; Flann, Kendra; Wages, Melissa; Palmer, Elizabeth A.; Peterson, John; Engle, John; Maier, Tom; Machida, Curtis A.

    2014-01-01

    Background and objectives Mutans streptococci (MS) are one of the major microbiological determinants of dental caries. The objectives of this study are to identify distinct MS and non-MS streptococci strains that are located at carious sites and non-carious enamel surfaces in children with severe early childhood caries (S-ECC), and assess if cariogenic MS and non-cariogenic streptococci might independently exist as primary bacterial strains on distinct sites within the dentition of individual children. Design Dental plaque from children (N=20; aged 3–6) with S-ECC was collected from carious lesions (CLs), white spot lesions (WSLs) and non-carious enamel surfaces. Streptococcal isolates (N=10–20) from each site were subjected to polymerase chain reaction (PCR) to identify MS, and arbitrarily primed-PCR for assignment of genetic strains. Primary strains were identified as ≥50% of the total isolates surveyed at any site. In several cases, strains were characterized for acidurity using ATP-driven bioluminescence and subjected to PCR-determination of potential MS virulence products. Identification of non-MS was determined by 16S rRNA gene sequencing. Results Sixty-four independent MS or non-MS streptococcal strains were identified. All children contained 1–6 strains. In many patients (N=11), single primary MS strains were identified throughout the dentition. In other patients (N=4), primary MS strains were identified within CLs that were distinct from primary strains found on enamel. Streptococcus gordonii strains were identified as primary strains on enamel or WSLs in four children, and in general were less aciduric than MS strains. Conclusions Many children with S-ECC contained only a single primary MS strain that was present in both carious and non-carious sites. In some cases, MS and non-cariogenic S. gordonii strains were found to independently exist as dominant strains at different locations within the dentition of individual children, and the aciduric

  12. Strain Differences in Behavioral Inhibition in a Go/No-go Task Demonstrated Using 15 Inbred Mouse Strains

    PubMed Central

    Gubner, Noah R.; Wilhelm, Clare J.; Phillips, Tamara J.; Mitchell, Suzanne H.

    2012-01-01

    Background High levels of impulsivity have been associated with a number of substance abuse disorders including alcohol abuse. Research has not yet revealed whether these high levels predate the development of alcohol abuse. Methods The current study examined impulsivity in 15 inbred strains of mice (A/HeJ, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, C57L/J, C58/J, CBA/J, DBA/1J, DBA/2J, NZB/B1NJ, PL/J, SJL/J, SWR/J, and 129P3/J) using a Go/No-go task, which was designed to measure a subject’s ability to inhibit a behavior. Numerous aspects of response to ethanol and other drugs of abuse have been examined in these strains. Results There were significant strain differences in the number of responses made during the No-go signal (false alarms) and the extent to which strains responded differentially during the Go and No-go signals (d′). The rate of responding prior to the cue did not differ among strains, although there was a statistically significant correlation between false alarms and precue responding that was not related to basal activity level. Interstrain correlations suggested that false alarms and rate of responding were associated with strain differences in ethanol-related traits from the published literature. Conclusions The results of this study do support a link between innate level of impulsivity and response to ethanol and are consistent with a genetic basis for some measures of behavioral inhibition. PMID:20491731

  13. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes. PMID:24244004

  14. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J; O'Dwyer, Kathleen; Matthews, Steve J; Paget, Mark S

    2013-06-01

    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria.

  15. Application of advanced reliability methods to local strain fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, T. T.; Wirsching, P. H.

    1983-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) might become extremely difficult or very inefficient. This study suggests using a simple, and easily constructed, second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  16. Stacking sequence optimization of simply supported laminates with stability and strain constraints

    NASA Technical Reports Server (NTRS)

    Nagendra, S.; Haftka, R. T.; Gurdal, Z.

    1992-01-01

    An integer programming formulation for the design of symmetric and balanced rectangular composite laminates with simply supported boundary conditions subject to buckling and strain constraints is presented. The design variables that define the stacking sequence of the laminate are ply-identity zero-one integers. The buckling constraint is linear in terms of the ply-identity design variables, but strains are nonlinear functions of these variables. A linear approximation is developed for the strain constraints so that the problem can be solved by sequential linearization using the branch and bound algorithm. Examples of graphite-epoxy plates under biaxial compression are presented. Optimum stacking sequences obtained using the linear approximation are compared with global optimum designs obtained using a genetic search procedure.

  17. Experimental study on strain sensing by small-diameter FBG

    NASA Astrophysics Data System (ADS)

    Liu, Rong-mei; Li, Qiufeng; Zhu, Lujia; Liang, Dakai

    2016-11-01

    Fiber Bragg grating (FBG) sensors were attractive in various fields for structural health monitoring. Because of their accurate performance and real time response, embedded FBG sensors are promising for strain monitoring in composite materials. As an optical fiber sensor was embedded inside a composite, interface would form around the embedded optical fiber and the host polymer composite. In order to study the influence of the embedded optical fiber to the mechanical character, finite elemental analysis was applied to study the stress distribution inside the composite. Keeping the resin rich area the same size, laminates with optical fibers in different diameters, which were 250 and 125 micrometers, were analyzed. The simulation results represent that stress singularity would occur around the embedded optical fiber. The singularity value for the laminate with optical fiber at 250 micrometer was higher than that with optical fiber at 125 micrometer. Micro- cracks would arise at the stress singularity point. Therefore, the optical fiber in smaller diameter was preferred since the mechanical strength could be higher. Four points bending test was carried out on a steel beam with a small-diameter FBG on the bottom surface. Besides, a strain gauge was stuck on bottom to validate the monitoring results by FBG sensor. The tested results indicated that the strain monitoring results by the small-diameter FBG sensor almost identical with the theoretical ones and what recorded by strain gauge. The maximum testing error for the designed FBG is less than 2% compared with the theoretical one.

  18. Genomic Characterization of Campylobacter jejuni Strain M1

    PubMed Central

    Friis, Carsten; Wassenaar, Trudy M.; Javed, Muhammad A.; Snipen, Lars; Lagesen, Karin; Hallin, Peter F.; Newell, Diane G.; Toszeghy, Monique; Ridley, Anne; Manning, Georgina; Ussery, David W.

    2010-01-01

    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1. PMID:20865039

  19. Properties of an Arcanobacterium haemolyticum strain isolated from a donkey.

    PubMed

    Sammra, Osama; Balbutskaya, Anna; Nagib, Samy; Alber, Jörg; Lämmler, Christoph; Abdulmawjood, Amir; Timke, Markus; Kostrzewa, Markus; Prenger-Berninghoff, Ellen

    2014-01-01

    The present study was designed to characterize phenotypically and genotypically an Arcanobacterium haemolyticum strain (A. haemolyticum P646) isolated from a purulent nasal discharge of a donkey. A. haemolyticum P646 showed, compared to sheep blood, an enhanced hemolytic reaction on rabbit blood agar, a synergistic CAMP-like reaction with Streptococcus agalactiae and Rhodococcus equi as indicator strains, a reverse CAMP reaction in the zone of Staphylococcus aureus beta-hemolysin and the typical biochemical properties of this species. The species identity could be confirmed by MALDI-TOF MS analysis, by sequencing the 16S rDNA and glyceraldehyde-3-phosphate dehydrogenase encoding gene gap and by amplification of A. haemolyticum specific parts of 16S-23S rDNA intergenic spacer region and 23S rDNA. A. haemolyticum P646 and the reference strain A. haemolyticum DSM 20595 were further characterized by amplification of the putative virulence genes encoding arcanolysin, phospholipase D, hemolysin A, CAMP factor family protein, a collagen binding protein and two neuraminidases which were present for A. haemolyticum DSM 20595. A. haemolyticum P646 showed a comparable gene spectrum but was negative for the genes encoding collagen binding protein and neuraminidase H. To our knowledge, the present study is the first phenotypic and genotypic characterization of an A. haemolyticum strain isolated from a donkey.

  20. Oxygen limitation is a pitfall during screening for industrial strains.

    PubMed

    Zimmermann, Hartmut F; Anderlei, Tibor; Büchs, Jochen; Binder, Michael

    2006-10-01

    Oxygen supply is a key parameter in aerobic fermentation processes like the industrial production of amino acids. Although the oxygen transfer rate (OTR; or the volumetric oxygen transfer coefficient k(L)a) is routinely analyzed by engineers during stirred tank fermentations, it is often not taken into account by biologists conducting screening experiments in shake flasks. To show the importance of knowing how to avoid oxygen transfer limitations during primary screenings, Corynebacterium glutamicum ATCC 13032 (wild-type strain) and DSM 12866 (lysine-producing strain) were cultivated in shake flasks with different culture liquid volumes and under different shaking conditions. With the Respiration Activity Monitoring System, the OTR was determined quasi-continuously. Optical density as well as concentrations of lysine and byproducts (lactate, acetate, succinate) were determined off-line and correlated with the OTR signal. From the results, design criteria for improved screening in shaken bioreactors that help to avoid selection of suboptimal strains during early process development steps can be derived. Finally, the suitability of DSM 12866 as a strain for industrial processes with a high space-time yield is discussed.

  1. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  2. Using Microsatellites to Identify Yeast Strains in Beer

    PubMed Central

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identify yeast strains commonly used in the production of beer. Six microsatellite regions of DNA (comprised of AAT) were used as sequence tagged site markers (STR) to identify and compare yeast samples and to determine strain within a species. Labeled primers ScATT (1-6) targeting these six microsatellite regions were designed using 6-FAM, VIC, NED and PET 5′-fluorescent labels. The six regions were amplified, in a single reaction, from extracted yeast genomic DNA using a modified multiplex-PCR protocol and the labeled PCR products were analyzed on an ABI 3130xl Genetic Analyzer. Using this approach 6 STR markers were amplified in a single multiplex reaction from a commercially utilized yeast strain provided by Odell Brewing. Different alleles were distinguished based on the size of each STR and the labeling fluorophore. The procedures developed in this study will provide an invaluable tool for the quality control of yeast strains in the brewing industry.

  3. Multiplicative earthquake likelihood models incorporating strain rates

    NASA Astrophysics Data System (ADS)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for <span class="hlt">strain</span>-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and <span class="hlt">strain</span>-rates for the New Zealand region. Three components of the <span class="hlt">strain</span> rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational <span class="hlt">strain</span> rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the <span class="hlt">strain</span> rate estimates. The shear <span class="hlt">strain</span> rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including <span class="hlt">strain</span> rates are significantly more informative than the best models excluding <span class="hlt">strain</span> rates in both the fitting and testing period. A hybrid that combines the shear and dilatational <span class="hlt">strain</span> rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational <span class="hlt">strain</span> rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26228712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26228712"><span>Development of a bilayer ring system for achieving high <span class="hlt">strain</span> in commercial rheometers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, Michael B; Wolchok, Jeffrey C; Klemuk, Sarah A; Titze, Ingo R</p> <p>2015-09-18</p> <p>Mechanical stimulation of cell cultures has been shown be an effective means of enhancing ECM production. ECM produced from vocal fold fibroblast cultures has the potential for therapeutic use for vocal fold repair. However, current bioreactor <span class="hlt">designs</span> generally fail to produce physiological relevant frequency and <span class="hlt">strain</span> values. Here we present an approach for using commercial oscillatory rheometers and an elastic ring bilayer system to produce physiologically relevant <span class="hlt">strain</span> values at frequencies in the range of 20-100 Hz. We demonstrate the ability to target specific <span class="hlt">strain</span> and frequency values by manipulating system parameters, and also show that it is possible to maintain high oscillatory <span class="hlt">strains</span> for extended periods of time. Such a system could be used to mechanically stimulate cell cultures contained within gel carrier systems and has the potential to be extended to other applications requiring high <span class="hlt">strains</span> at low frequencies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25612551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25612551"><span>Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis <span class="hlt">strain</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khanolkar, Dnyanada; Dubey, S K; Naik, Milind Mohan</p> <p>2015-05-01</p> <p>Tributyltin chloride (TBTCl) has been used extensively as an antifouling agent in ship paints, which results in the contamination of aquatic sites. These contaminated sites serve as enrichment areas for TBTCl-resistant bacterial <span class="hlt">strains</span>. One TBTCl-resistant bacterial <span class="hlt">strain</span> was isolated from the sediments of Zuari estuary, Goa, India, which is a major hub of various ship-building activities. Based on biochemical characteristics and 16S rDNA sequence analysis, this bacterial <span class="hlt">strain</span> was identified as Alcaligenes faecalis and <span class="hlt">designated</span> as <span class="hlt">strain</span> SD5. It could degrade ≥3 mM TBTCl by using it as a sole carbon source and transform it into the less toxic dibutyltin chloride, which was confirmed by nuclear magnetic resonance and mass spectroscopy. Interestingly, this bacterial <span class="hlt">strain</span> also showed enhanced exopolysaccharide and siderophore production when cells were exposed to toxic levels of TBTCl, suggesting their involvement in conferring resistance to this antifouling biocide as well as degradative capability respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934622','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934622"><span><span class="hlt">Strain</span> Sensor of Carbon Nanotubes in Microscale: From Model to Metrology</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qiu, Wei; Li, Shi-Lei; Deng, Wei-lin; Gao, Di; Kang, Yi-Lan</p> <p>2014-01-01</p> <p>A <span class="hlt">strain</span> sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane <span class="hlt">strain</span> components in microscale. Based on previous work on the mathematic model of carbon nanotube <span class="hlt">strain</span> sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT <span class="hlt">strain</span> sensor from the viewpoint of metrology. A new miniaccessory for polarization control is <span class="hlt">designed</span>, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT <span class="hlt">strain</span> sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology. PMID:24683338</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24683338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24683338"><span><span class="hlt">Strain</span> sensor of carbon nanotubes in microscale: from model to metrology.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiu, Wei; Li, Shi-Lei; Deng, Wei-Lin; Gao, Di; Kang, Yi-Lan</p> <p>2014-01-01</p> <p>A <span class="hlt">strain</span> sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane <span class="hlt">strain</span> components in microscale. Based on previous work on the mathematic model of carbon nanotube <span class="hlt">strain</span> sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT <span class="hlt">strain</span> sensor from the viewpoint of metrology. A new miniaccessory for polarization control is <span class="hlt">designed</span>, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT <span class="hlt">strain</span> sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/540935','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/540935"><span>Effect of <span class="hlt">strain</span> rate and temperature on the tensile properties of MANET II steel</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ghoneim, M.M.</p> <p>1997-08-01</p> <p>MANET II, a modified 12% Cr steel with the German <span class="hlt">designation</span> DIN 1.4914, is a candidate structural material for the first wall and blanket in fusion reactors. In the present study, the tensile properties of this steel were investigated in the temperature range of 25 to 350 C at <span class="hlt">strain</span> rates of 5 {times} 10{sup {minus}5}, 1.2 {times} 10{sup {minus}4}, and 1.2 {times} 10{sup {minus}3}s{sup {minus}1}. Both microstructure and fracture surfaces were examined using optical and scanning electron microscopic (SEM) techniques. The results showed that the steel suffers dynamic <span class="hlt">strain</span> aging, although no serrated flow was observed. Yield strength, ultimate strength, and elongation showed negative <span class="hlt">strain</span> rate sensitivity. Dynamic <span class="hlt">strain</span> aging also affected the <span class="hlt">strain</span> hardening rate. Results are discussed with regard to the chemical composition and fracture surface morphology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25503536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25503536"><span><span class="hlt">Strain</span> effects on oxygen migration in perovskites.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mayeshiba, Tam; Morgan, Dane</p> <p>2015-01-28</p> <p>Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. <span class="hlt">Strain</span> is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of <span class="hlt">strain</span> effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial <span class="hlt">strain</span>, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial <span class="hlt">strain</span> reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent <span class="hlt">strain</span> for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent <span class="hlt">strain</span> across all systems. The estimated range for the change in migration barrier within each system is ±25 meV per percent <span class="hlt">strain</span> when considering all hops. These results suggest that <span class="hlt">strain</span> can significantly impact transport in these materials, e.g., a 2% tensile <span class="hlt">strain</span> can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 °C or 773 K) for one of the most <span class="hlt">strain</span>-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive <span class="hlt">strain</span> in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the <span class="hlt">strain</span> dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the <span class="hlt">strain</span> response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23700121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23700121"><span>Detected microsatellite polymorphisms in genetically altered inbred mouse <span class="hlt">strains</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Du, Xiaoyan; Cui, Jing; Wang, Chao; Huo, Xueyun; Lu, Jing; Li, Yichen; Chen, Zhenwen</p> <p>2013-08-01</p> <p>Microsatellites are 50-200 repetitive DNA sequences composed of 1- to 6-base-pair-long reiterative motifs within the genome. They are vulnerable to DNA modifications, such as recombination and/or integration, and are recognized as "sentinel" DNA. Our previous report indicated that the genotypes of the microsatellite loci could change from mono- to poly-morphisms (CMP) in gene knockout (KO) mice, implying that genetic modification induces microsatellite mutation. However, it is still unclear whether the random insertion of DNA fragments into mice genomes produced via transgene (Tg) or N-ethyl-N-nitrosourea (ENU) would also result in microsatellite mutations or microsatellite loci genotypes changes. This study was <span class="hlt">designed</span> to find possible clues to answer this question. In brief, 198 microsatellite loci that were distributed among almost all of the chromosomes (except for the Y) were examined through polymerase chain reaction to screen possible CMPs in six Tg <span class="hlt">strains</span>. First, for each <span class="hlt">strain</span>, the microsatellite sequences of all loci were compared between Tg and the corresponding background <span class="hlt">strain</span> to exclude genetic interference. Simultaneously, to exclude spontaneous mutation-related CMPs that might exist in the examined six <span class="hlt">strains</span>, mice from five spontaneously mutated inbred <span class="hlt">strains</span> were used as the negative controls. Additionally, the sequences of all loci in these spontaneous mutated mice were compared to corresponding genetic background controls. The results showed that 40 of the 198 (20.2%) loci were identified as having CMPs in the examined Tg mice <span class="hlt">strains</span>. The CMP genotypes were either homozygous or heterozygous compared to the background controls. Next, we applied the 40 CMP positive loci in ENU-mutated mice and their corresponding background controls. After that, a general comparison of CMPs that exist among Tg, ENU-treated and KO mouse <span class="hlt">strains</span> was performed. The results indicated that four (D11mit258, D13mit3, D14mit102 and DXmit172) of the 40 (10%) CMP</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222745','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222745"><span>Distribution of Nontuberculous Mycobacteria <span class="hlt">strains</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Aim Mycobacteria other than tuberculosis (MOTT) cause increasingly serious infections especially in immunosuppressive patients by direct transmission from the environment or after colonization. However, identification of these species is difficult because of the cost and difficulties in defining to species level. Identification and distribution of these species can help clinician in the choice of treatment. Materials and methods A total of 90 MOTT <span class="hlt">strains</span> obtained from four different centers were included in the study. These <span class="hlt">strains</span> were identified by sequence analysis of 16S rRNA and Hsp65 genetic regions. Results Accordingly, within the 90 MOTT <span class="hlt">strains</span>, 17 different species were identified. In order of frequency, these species were M. gordonea (n = 21), M. abscessus (n = 13), M. lentiflavum (n = 9), M. fortuitum (n = 8), M. intracellulare (n = 6), M. kumamotonense (n = 6), M. neoaurum (n = 5), M. chimaera (n = 5), M. alvei (n = 5), M. peregrinum (n = 3), M. canariasense (n = 3), M. flavescens (n = 1), M. mucogenicum (n = 1), M. chelona (n = 1), M. elephantis (n = 1), M. terrae (n = 1) and M. xenopi (n = 1). Most frequently identified MOTT species according to the geographical origin were as follows: M. abscessus was the most common species either in Istanbul or Malatya regions (n = 6, n = 6, consequently). While M. kumamotonense was the most frequent species isolated from Ankara region (n = 6), M. gordonea was the most common for Samsun region (n = 14). Conclusion Our study revealed that frequency of MOTT varies depending on the number of clinical samples and that frequency of these species were affected by the newly identified species as a result of the use of novel molecular methods. In conclusion, when establishing diagnosis and treatment methods, it is important to know that infections caused by unidentified MOTT species may vary according to the regions in Turkey. The results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26902321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26902321"><span>Comparison of <span class="hlt">Strain</span> Rosettes and Digital Image Correlation for Measuring Vertebral Body <span class="hlt">Strain</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gustafson, Hannah; Siegmund, Gunter; Cripton, Peter</p> <p>2016-05-01</p> <p><span class="hlt">Strain</span> gages are commonly used to measure bone <span class="hlt">strain</span>, but only provide <span class="hlt">strain</span> at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore <span class="hlt">strain</span>, over an entire region of interest on the bone surface. This study compares vertebral body <span class="hlt">strains</span> measured using <span class="hlt">strain</span> gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a <span class="hlt">strain</span> rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the <span class="hlt">strain</span> rosette and DIC were 1 με and 24 με, respectively. Bland-Altman analysis was used to compare <span class="hlt">strain</span> from the DIC and rosette (excluding 44% of trials with some evidence of <span class="hlt">strain</span> rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was -108 με ± 702 με for the minimum (compressive) principal <span class="hlt">strain</span> and -53 με ± 332 με for the maximum (tensile) principal <span class="hlt">strain</span>. Although the DIC has higher noise, it avoids the relatively high risk we observed of <span class="hlt">strain</span> gage debonding. These results can be used to develop guidelines for selecting a method to measure <span class="hlt">strain</span> on bone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1723b0001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1723b0001D"><span>Modeling competition between yeast <span class="hlt">strains</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap</p> <p>2016-04-01</p> <p>We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the <span class="hlt">strains</span>. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28234444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28234444"><span><span class="hlt">Strain</span> Compensation in Single ZnSe/CdSe Quantum Wells: Analytical Model and Experimental Evidence.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rieger, Torsten; Riedl, Thomas; Neumann, Elmar; Grützmacher, Detlev; Lindner, Jörg K N; Pawlis, Alexander</p> <p>2017-03-08</p> <p>The lattice mismatch between CdSe and ZnSe is known to limit the thickness of ZnSe/CdSe quantum wells on GaAs (001) substrates to about 2-3 monolayers. We demonstrate that this thickness can be enhanced significantly by using In0.12Ga0.88As pseudo substrates, which generate alternating tensile and compressive <span class="hlt">strains</span> in the ZnSe/CdSe/ZnSe layers resulting in an efficient <span class="hlt">strain</span> compensation. This method enables to <span class="hlt">design</span> CdSe/ZnSe quantum wells with CdSe thicknesses ranging from 1 to 6 monolayers, covering the whole visible spectrum. The <span class="hlt">strain</span> compensation effect is investigated by high resolution transmission electron microscopy and supported by molecular statics simulations. The model approach with the supporting experimental measurements is sufficiently general to be also applied to other highly mismatched material combinations for the <span class="hlt">design</span> of advanced <span class="hlt">strained</span> heterostructures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014403','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014403"><span>Microprocessor-based multichannel flutter monitor using dynamic <span class="hlt">strain</span> gage signals</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smalley, R. R.</p> <p>1976-01-01</p> <p>Two microprocessor-based multichannel monitors for monitoring <span class="hlt">strain</span> gage signals during aerodynamic instability (flutter) testing in production type turbojet engines were described. One system monitors <span class="hlt">strain</span> gage signals in the time domain and gives an output indication whenever the signal amplitude of any gage exceeds a pre-set alarm or abort level for that particular gage. The second system monitors the <span class="hlt">strain</span> gage signals in the frequency domain and therefore is able to use both the amplitude and frequency information. Thus, an alarm signal is given whenever the spectral content of the <span class="hlt">strain</span> gage signal exceeds, at any point, its corresponding amplitude vs. frequency limit profiles. Each system <span class="hlt">design</span> is described with details on <span class="hlt">design</span> trade-offs, hardware, software, and operating experience.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.451a2041F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.451a2041F"><span>Numerical study of <span class="hlt">strain</span>-rate effect in cold rolls forming of steel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falsafi, J.; Demirci, E.; Silberschmidt, V. V.</p> <p>2013-07-01</p> <p>Cold roll forming (CRF) is a well-known continuous manufacturing process, in which a flat strip is deformed by successive rotating pairs of tools, without changing the material thickness. In the past decades, to lessen the process-development efforts, finite-element simulations have been increasingly employed to improve the process <span class="hlt">design</span> and predict the manufacturing-induced defects. One of the important aspects in <span class="hlt">design</span> of the CRF process is consideration of resulting <span class="hlt">strains</span> in the final product as the material passes through several complex forming stands. Sufficient knowledge of longitudinal <span class="hlt">strain</span> in the workpiece is required to set various process parameters. Increasing a process speed in a roll forming operation can bring cost advantages, but the influence of the forming speed on the <span class="hlt">strain</span> distribution should be explored. This study is focussed on a <span class="hlt">strain</span>-rate effect in the CRF process of steel sheets. The <span class="hlt">strain</span>-rate dependency of a plastic behaviour observed in most metals can affect the finished product's quality as well as process parameters. This paper investigates the influence of the <span class="hlt">strain</span> rate on longitudinal <span class="hlt">strains</span> induced in the roll forming operation by incorporating a phenomenological Johnson-Cook constitutive model, which allows studying the impact of the process speed on the output product. Taking advantage of 3D finite element analysis, a roll forming process was simulated using MCS.Marc, comprising a complete set of forming stations. Through the changing of the process speed, the <span class="hlt">strain</span> rate impact on longitudinal peak <span class="hlt">strains</span> and forming length was investigated. The results highlight the effect of the <span class="hlt">strain</span> rate on edge thinning and subsequent undesirable distortions in the product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24518385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24518385"><span>The many shades of prion <span class="hlt">strain</span> adaptation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baskakov, Ilia V</p> <p>2014-01-01</p> <p>In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion <span class="hlt">strains</span> of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion <span class="hlt">strain</span> adaptation. The current article discusses the remarkable parallels between phenomena of prion <span class="hlt">strain</span> adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion <span class="hlt">strain</span> adaptation and synthetic <span class="hlt">strain</span> evolution are discussed. The current article highlights the complexity of the prion transmission barrier and <span class="hlt">strain</span> adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=217426','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=217426"><span>Sequences of Wolbachia wsp genes reveal multiple infection of individual northern corn rootworms (Diabrotica barberi) by several Wolbachia <span class="hlt">strains</span></span></a></p> <p><a target="_blank" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p></p> <p></p> <p>Northern corn rootworm (Diabrotica barberi)(NCR) populations in the USA are infected with at least 4 <span class="hlt">strains</span> of the endosymbiont, Wolbachia. NCR from eastern Illinois to Pennsylvania appear to harbor at least 4 different <span class="hlt">strains</span> <span class="hlt">designated</span> wBar1, wBar3, wBar4, and wBar5. NCR from central Illinois ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=238181','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=238181"><span>GMAX-L Saccharomyces Cerevisiae <span class="hlt">Strains</span> for Profitable Sustainable Cellulosic Ethanol and Biodiesel Production Concurrently using Engineered Workcell</span></a></p> <p><a target="_blank" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p></p> <p></p> <p>A stable GMAX-L <span class="hlt">strain</span> of Saccharomyces cerevisiae is being constructed using pSUMO expression cassettes that are extremely high expression level plasmids <span class="hlt">designed</span> for use on automated workcell. This <span class="hlt">strain</span> expresses xylose isomerase, xylulokinase, XIB1, and XIG1 for anaerobic cellulosic ethanol pr...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19701665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19701665"><span>Characterization of Microbulbifer <span class="hlt">strain</span> CMC-5, a new biochemical variant of Microbulbifer elongatus type <span class="hlt">strain</span> DSM6810T isolated from decomposing seaweeds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jonnadula, RaviChand; Verma, Pankaj; Shouche, Yogesh S; Ghadi, Sanjeev C</p> <p>2009-12-01</p> <p>A Gram-negative, rod-shaped, non-spore forming, non-motile and moderate halophilic bacteria <span class="hlt">designated</span> as <span class="hlt">strain</span> CMC-5 was isolated from decomposing seaweeds by enrichment culture. The growth of <span class="hlt">strain</span> CMC-5 was assessed in synthetic seawater-based medium containing polysaccharide. The bacterium degraded and utilized agar, alginate, carrageenan, xylan, carboxymethyl cellulose and chitin. The <span class="hlt">strain</span> was characterized using a polyphasic approach for taxonomic identification. Cellular fatty acid analysis showed the presence of iso-C(15:0) as major fatty acid and significant amounts of iso-C(17:1x9c) and C(18:1x7c). Phylogenetic analysis based on 16S rDNA sequence indicated that <span class="hlt">strain</span> CMC-5 is phylogenetically related to Microbulbifer genus and 99% similar to type <span class="hlt">strain</span> Microbulbifer elongatus DSM6810T. However in contrast to Microbulbifer elongatus DSM6810T, <span class="hlt">strain</span> CMC-5 is non-motile, utilizes glucose, galactose, inositol and xylan, does not utilize fructose and succinate nor does it produce H2S. Further growth of bacterial <span class="hlt">strain</span> CMC-5 was observed when inoculated in seawater-based medium containing sterile pieces of Gracilaria corticata thalli. The bacterial growth was associated with release of reducing sugar in the broth suggesting its role in carbon recycling of polysaccharides from seaweeds in marine ecosystem.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...43a2080B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...43a2080B"><span>Stress-<span class="hlt">strain</span> analysis of pipelines laid in permafrost</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burkov, P.; Yan‘nan', Van; Burkova, S.</p> <p>2016-09-01</p> <p>Increasing reliability of pipelines becomes a real challenge at all stages: <span class="hlt">design</span>, construction and operation of pipeline systems. It is very important to determine the behaviour of the constructed pipeline under the operational and environmental loads using the <span class="hlt">design</span> model in accordance with that one adopted in the rules and regulations. This article presents the simulation of pipeline in permafrost. The evaluation of the stress-<span class="hlt">strain</span> state is given herein and the areas of the stress concentration are detected with the account for different loads occurred during the pipeline operation. Information obtained from the assessment of the stress-<span class="hlt">strain</span> state of the pipeline allows determining sections in pre-emergency state (even before damages) and take all the necessary measures for eliminating them, thus increasing the pipeline system reliability. It is shown that the most critical pipeline cross-section is observed at the point of transition from one environment to another. The maximum <span class="hlt">strains</span> decrease the level of the pipeline reliability. The finite element model is presented to determine the pipeline sections in pre-emergency state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA571154','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA571154"><span>SNIT: SNP Identification for <span class="hlt">Strain</span> Typing</span></a></p> <p><a target="_blank" href="https://publicaccess.dtic.mil/psm/api/service/search/search">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>Durkin S, Schneewind O, Nierman WC: Genome sequencing and analysis of Yersina pestis KIM D27, an avirulent <span class="hlt">strain</span> exempt from select agent regulation. PLoS...gener- ated from next-generation sequencing (NGS) data, we selected the recently published Yersinia pestis KIM D27 genome [12]. The Y. pestis D27 <span class="hlt">strain</span>...is a deriva- tive of Y. pestis KIM 10 <span class="hlt">strain</span> (accession no. NC_004088). The Y. pestis KIM D27 draft genome (accession no. ADDC00000000) was generated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840000339&hterms=vibrational+modes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvibrational%2Bmodes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840000339&hterms=vibrational+modes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvibrational%2Bmodes"><span>Deriving <span class="hlt">Strain</span> Modes From Vibrational Tests</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, J. W.; Joanides, J. C.</p> <p>1985-01-01</p> <p>Measurements and theoretical analysis complement each other. Experimental acceleration and <span class="hlt">strain</span> data used to calculate coefficients of low-frequency vibrational modes of object under test. An iterative comparison of experimental and calculated <span class="hlt">strains</span> give modal model of improved accuracy that predicts <span class="hlt">strains</span> under operating conditions. Method useful in fatigue life and reliability analyses of buildings, pumps, engines, vehicles, and other systems subject to vibrations and loud noises during operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/403435','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/403435"><span>Estimates of maximum <span class="hlt">strains</span> induced in buried pipelines by dynamic loading</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Fernandez, G.; Al-Chaar, G.; Brady, P.</p> <p>1995-12-31</p> <p>An evaluation of pipe <span class="hlt">strains</span> measured during full scale blast in-situ tests was carried out to assess the effects produced by a nearby quarry blast in a buried, steel pipeline carrying pressurized gas. The result of the blast tests indicated that the magnitude of the maximum circumferential <span class="hlt">strain</span> is equal or larger than the magnitude of the maximum axial <span class="hlt">strain</span> measured in the pipe. It was also observed that circumferential <span class="hlt">strains</span> can develop simultaneously with the dynamic-induced axial <span class="hlt">strains</span>, resulting in a more critical loading condition than the one contemplated by the ASCE (1983) <span class="hlt">design</span> guidelines for seismic loading. This behavior can become critical in pressurized pipes where significant circumferential stresses are already present under normal operating conditions. Based on the results of these tests, recommendations for including circumferential <span class="hlt">strains</span> are suggested to the ASCE (1983) <span class="hlt">Design</span> Guidelines. Consideration should be given to a compressive wave traveling at a high angle which respect to the longitudinal axis of the pipe which can induce squeezing or ovaling of the pipe section, resulting in significant circumferential <span class="hlt">strains</span> in the pipe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740026131','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740026131"><span>RETSCP: A computer program for analysis of rocket engine thermal <span class="hlt">strains</span> with cyclic plasticity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, R. W.</p> <p>1974-01-01</p> <p>A computer program, <span class="hlt">designated</span> RETSCP, for the analysis of Rocket Engine Thermal <span class="hlt">Strain</span> with Cyclic Plasticity is described. RETSCP is a finite element program which employs a three dimensional isoparametric element. The program treats elasto-plastic <span class="hlt">strain</span> cycling including the effects of thermal and pressure loads and temperature dependent material properties. Theoretical aspects of the finite element method are discussed and the program logic is described. A RETSCP User's Manual is presented including sample case results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26115529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26115529"><span>Optimization of process configuration and <span class="hlt">strain</span> selection for microalgae-based biodiesel production.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Nan; Dieu, Linus Tao Jie; Harvey, Simon; Lee, Dong-Yup</p> <p>2015-10-01</p> <p>A mathematical model was developed for the <span class="hlt">design</span> of microalgae-based biodiesel production system by systematically integrating all the production stages and <span class="hlt">strain</span> properties. Through the hypothetical case study, the model suggested the most economical system configuration for the selected microalgae <span class="hlt">strains</span> from the available processes at each stage, thus resulting in the cheapest biodiesel production cost, S$2.66/kg, which is still higher than the current diesel price (S$1.05/kg). Interestingly, the microalgae <span class="hlt">strain</span> properties, such as lipid content, effective diameter and productivity, were found to be one of the major factors that significantly affect the production cost as well as system configuration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25767217','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25767217"><span>Whole-Genome Sequence for Methicillin-Resistant Staphylococcus aureus <span class="hlt">Strain</span> ATCC BAA-1680.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daum, Luke T; Bumah, Violet V; Masson-Meyers, Daniela S; Khubbar, Manjeet; Rodriguez, John D; Fischer, Gerald W; Enwemeka, Chukuka S; Gradus, Steve; Bhattacharyya, Sanjib</p> <p>2015-03-12</p> <p>We report here the whole-genome sequence of the USA300 <span class="hlt">strain</span> of methicillin-resistant Staphylococcus aureus (MRSA), <span class="hlt">designated</span> ATCC BAA-1680, and commonly referred to as community-associated MRSA (CA-MRSA). This clinical MRSA isolate is commercially available from the American Type Culture Collection (ATCC) and is widely utilized as a control <span class="hlt">strain</span> for research applications and clinical diagnosis. The isolate was propagated in ATCC medium 18, tryptic soy agar, and has been utilized as a model S. aureus <span class="hlt">strain</span> in several studies, including MRSA genetic analysis after irradiation with 470-nm blue light.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22278163','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22278163"><span><span class="hlt">Strain</span>-induced magnetism in MoS{sub 2} monolayer with defects</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Tao, Peng; Guo, Huaihong; Yang, Teng Zhang, Zhidong</p> <p>2014-02-07</p> <p>The <span class="hlt">strain</span>-induced magnetism is observed in single-layer MoS{sub 2} with atomic single vacancies from density functional calculations. Calculated magnetic moment is no less than 2 μ{sub B} per vacancy defect. The <span class="hlt">strain</span>-induced band gap closure is concurrent with the occurrence of the magnetism. Possible physical mechanism of the emergence of <span class="hlt">strain</span>-induced magnetism is illustrated. We also demonstrate the possibility to test the predicted magnetism in experiment. Our study may provide an opportunity for the <span class="hlt">design</span> of new type of memory-switching or logic devices by using earth-rich nonmagnetic materials MoS{sub 2}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24950637','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24950637"><span>Photodynamic inactivation of oropharyngeal Candida <span class="hlt">strains</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Postigo, Agustina; Bulacio, Lucía; Sortino, Maximiliano</p> <p>2014-09-25</p> <p>Oropharyngeal candidiasis (OPC) is an infection frequent in immunocompromised patients. Photodynamic therapy is an alternative to conventional treatments, based on the utilization of compounds that inhibit or kill microorganisms only under the effect of light, process known as Photodynamic Inactivation (PDI). In the present study, PDI of Candida spp. by the natural product α-terthienyl (α-T) was investigated following the guidelines of CLSI M27-A3, under UV-A light irradiation. The optimal values of two variables, exposure irradiation time (ET) and distance to the irradiation source (DIS) were established by employing <span class="hlt">Design</span> Expert Software (DES). For this purpose, a panel of Candida <span class="hlt">strains</span> isolated from OPC (C. albicans, C. tropicalis, C. parapsilosis and C. krusei) was employed and optimal values were 5 min (ET) and between 6.06 and 6.43 cm (DIS) with a desirability factor of 0.989. α-T plus UV-A light in the optimal conditions caused a complete reduction in viable cells in 5 min which was demonstrated by viable cells reduction assays and confocal microscopy after vital staining (propidium iodide/fluorescein diacetate). The germ tube formation of C. albicans was inhibited by α-T at sub-inhibitory concentrations. Results showed that α-T plus UV-A light could constitute an alternative for OPC treatments at the optimal conditions determined here.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/912475','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/912475"><span>Measurement of Sorption-Induced <span class="hlt">Strain</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Eric P. Robertson; Richard L. Christiansen</p> <p>2005-05-01</p> <p><span class="hlt">Strain</span> caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure <span class="hlt">strain</span> on multiple small coal samples based on the optical detection of the longitudinal <span class="hlt">strain</span> instead of the more common usage of <span class="hlt">strain</span> gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate <span class="hlt">strain</span> data could be obtained in a shortened amount of time. A suite of <span class="hlt">strain</span> curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the <span class="hlt">strain</span> data obtained for pure gases. The sorption-induced <span class="hlt">strain</span> measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced <span class="hlt">strain</span> for the subbituminous coal over twice as great at the bituminous coal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000697','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000697"><span>Acceleration and Velocity Sensing from Measured <span class="hlt">Strain</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pak, Chan-Gi; Truax, Roger</p> <p>2016-01-01</p> <p>A simple approach for computing acceleration and velocity of a structure from the <span class="hlt">strain</span> is proposed in this study. First, deflection and slope of the structure are computed from the <span class="hlt">strain</span> using a two-step theory. Frequencies of the structure are computed from the time histories of <span class="hlt">strain</span> using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic <span class="hlt">strain</span> sensor, system equivalent reduction and expansion process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/20976649','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/20976649"><span><span class="hlt">Strain</span> accommodation in inelastic deformation of glasses</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Murali, P.; Ramamurty, U.; Shenoy, Vijay B.</p> <p>2007-01-01</p> <p>Motivated by recent experiments on metallic glasses, we examine the micromechanisms of <span class="hlt">strain</span> accommodation including crystallization and void formation during inelastic deformation of glasses by employing molecular statics simulations. Our atomistic simulations with Lennard-Jones-like potentials suggests that a softer short range interaction between atoms favors crystallization. Compressive hydrostatic <span class="hlt">strain</span> in the presence of a shear <span class="hlt">strain</span> promotes crystallization whereas a tensile hydrostatic <span class="hlt">strain</span> is found to induce voids. The deformation subsequent to the onset of crystallization includes partial reamorphization and recrystallization, suggesting important atomistic mechanisms of plastic dissipation in glasses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/366503','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/366503"><span>Investigation of a noncontact <span class="hlt">strain</span> measurement technique</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Damiano, B.; Talarico, L.J.</p> <p>1996-05-01</p> <p>The goal of this project was to investigate the feasibility of a new noncontact technique for directly and continuously monitoring peak <span class="hlt">strain</span> in rotating components. The technique utilizes the unique <span class="hlt">strain</span>-sensitive magnetic material properties of transformation Induced Plasticity (TRIP) steel alloys to measure <span class="hlt">strain</span>. These alloys are weakly magnetic when unstrained but become strongly ferromagnetic after mechanical deformation. A computer study was performed to determine whether the <span class="hlt">strain</span>-induced change in the magnetic material properties of a TRIP steel gage bonded to a rotating component would cause significant perturbations in the magnetic flux of a stationary electromagnet. The effects of <span class="hlt">strain</span> level, distance between the rotating component and the stationary electromagnet, and motion-induced eddy currents on flux perturbation magnitude were investigated. The calculated results indicate that a TRIP steel <span class="hlt">strain</span> sensing element can cause a significant perturbation in the magnetic flux of a stationary electromagnet. The magnetic flux perturbation magnitude was found to be inversely proportional to the distance between the magnet face and the TRIP steel element and directly proportional to the TRIP steel <span class="hlt">strain</span> level. The effect of motion-induced eddy currents on the magnetic flux was found to be negligible. It appears that the technique can be successfully applied to measure peak <span class="hlt">strain</span> in rotating components; however, the sensitivity of the magnetic flux perturbation magnitude to the distance between the <span class="hlt">strain</span> sensing element and the electromagnet may require making an independent proximity measurement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7453585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7453585"><span>[Antigenic relationships between Debaryomyces <span class="hlt">strains</span> (author's transl)].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aksoycan, N</p> <p>1980-01-01</p> <p>The results of the agglutinations between homologous and heterologous Debaryomyces <span class="hlt">strains</span> and their agglutinating sera are shown in table I. According to these findings, D. hansenii and D. marama are antigenically different from other Debaryomyces <span class="hlt">strains</span> in this genus. In a previous study Aksoycan et al. have shown a common antigenic factor between D. hansenii, D. marama <span class="hlt">strains</span> and Salmonella 0:7 antigen. This factor was not present in other six <span class="hlt">strains</span> of Debaryomyces. These results also show that D. tamarii does not have any antigenic relationship with the other seven species of Debaryomyces in this genus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARV27001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARV27001L"><span>Making Novel Materials Using <span class="hlt">Strain</span> in Nanomembranes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lagally, Max G.</p> <p>2012-02-01</p> <p>The controlled introduction of <span class="hlt">strain</span> in materials offers an important degree of freedom for fundamental studies of materials as well as advanced device engineering. <span class="hlt">Strain</span> in a crystalline solid modifies the lattice constants and reduces the crystal symmetry. Because <span class="hlt">strain</span> energy is proportional to thickness, a free-standing crystalline thin sheet, which we call a nanomembrane (NM), can be <span class="hlt">strained</span> to a greater degree that a bulk material with the same surface area. I show the use of nanomembrane <span class="hlt">strain</span> engineering to make defect-free single crystals that cannot be grown any other way, and materials with <span class="hlt">strain</span> symmetries that they do not have naturally, in both cases alloys of Si and Ge. <span class="hlt">Strain</span> in NMs causes significant shifts in energy band edges, splitting of degenerate states, and changes in effective masses. These effects can be used to produce a desired band offset between different materials, to increase carrier mobility, and to change relative energy positions of valleys. In the latter respect, through the use of NMs it has recently become possible, using tensile <span class="hlt">strain</span>, to make Ge direct-bandgap and light emitting at room temperature. Periodic local stress can produce <span class="hlt">strain</span> superlattices and thus single-element heterojunctions. Work performed with the Roberto Paiella, Mark Eriksson, Feng Liu, and Irena Knezevic research groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/867015','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/servlets/purl/867015"><span>Optical fiber sensor technique for <span class="hlt">strain</span> measurement</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Butler, Michael A.; Ginley, David S.</p> <p>1989-01-01</p> <p>Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a <span class="hlt">strain</span>. Changes in the <span class="hlt">strain</span> cause changes in the optical path length of the <span class="hlt">strain</span> fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the <span class="hlt">strain</span> experienced by the <span class="hlt">strained</span> one of the optical fibers. These signals are then processed to evaluate <span class="hlt">strain</span> as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being <span class="hlt">strained</span>, so that <span class="hlt">strains</span> generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the <span class="hlt">strain</span> changes under study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AcMSn..29..543X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AcMSn..29..543X"><span>Control of surface wettability via <span class="hlt">strain</span> engineering</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Wei; Liu, Jefferson Zhe; Zhang, Zhi-Liang; Zhen, Quan-Shui</p> <p>2013-08-01</p> <p>Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic simulations, we demonstrate that <span class="hlt">strain</span> engineering can serve as an effective way to control the surface wettability. The contact angles θ of water droplets on a graphene vary from 72.5° to 106° under biaxial <span class="hlt">strains</span> ranging from -10% to 10% that are applied on the graphene layer. For an intrinsic hydrophilic surface (at zero <span class="hlt">strain</span>), the variation of θ upon the applied <span class="hlt">strains</span> is more sensitive, i.e., from 0° to 74.8°. Overall the cosines of the contact angles exhibit a linear relation with respect to the <span class="hlt">strains</span>. In light of the inherent dependence of the contact angle on liquid-solid interfacial energy, we develop an analytic model to show the cos θ as a linear function of the adsorption energy E ads of a single water molecule over the substrate surface. This model agrees with our molecular dynamic results very well. Together with the linear dependence of E ads on biaxial <span class="hlt">strains</span>, we can thus understand the effect of <span class="hlt">strains</span> on the surface wettability. Thanks to the ease of reversibly applying mechanical <span class="hlt">strains</span> in micro/nano-electromechanical systems, we believe that <span class="hlt">strain</span> engineering can be a promising means to achieve the reversibly control of surface wettability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840004375','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840004375"><span>Inflatable device for installing <span class="hlt">strain</span> gage bridges</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cook, C. E.; Smith, G. E.; Monaghan, R. C. (Inventor)</p> <p>1983-01-01</p> <p>Methods and devices for installing in a tubular shaft multiple <span class="hlt">strain</span> gages are disclosed with focus on a method and a device for pneumatically forcing <span class="hlt">strain</span> gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple <span class="hlt">strain</span> gages in a tubular shaft. The <span class="hlt">strain</span> gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4700..304A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4700..304A"><span>Microminiature temperature-compensated magnetoelastic <span class="hlt">strain</span> gauge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arms, Steven W.; Townsend, Christopher P.</p> <p>2002-07-01</p> <p>Our objective was to demonstrate a microminiature magnetoelastic <span class="hlt">strain</span> gauge that provides both <span class="hlt">strain</span> and temperature signals without additional sensors. Iron based magnetoelastic materials were embedded within superelastic nickel/titanium (NiTi) tubing. NiTi stress was transferred to the ferrite, causing a permeability change sensed by a tiny coil. The coil/bridge was excited (70 KHz AC), synchronously demodulated, and amplified to produce a voltage output proportional to coil/ferrite impedance. A DC voltage was also applied and separately conditioned to provide an output proportional to coil resistance; this signal was used to provide thermal compensation. Controlled <span class="hlt">strains</span> were applied and 6 Hz cyclic outputs recorded simultaneously from the magnetoelastic <span class="hlt">strain</span> gauge and conventional foil <span class="hlt">strain</span> gauges. The magnetoelastic <span class="hlt">strain</span> gauge tracked the foil gauge with minimal hysteresis and good linearity over 600 microstrain; repeatability was approximately 1.5 microstrain. The magnetoelastic <span class="hlt">strain</span> gauge's gauge factor was computed from delta inductance/original inductance under static <span class="hlt">strain</span> conditions. Temperatures of 25-140 deg C resulted in an uncompensated shift of 15 microstrain/deg C, and compensated shift of 1.0 microstrain/deg C. A sensitive micro-magnetoelastic <span class="hlt">strain</span> gauge was demonstrated using the same sensor to detect stress and temperature with no moving parts, high gauge factor, and good thermal stability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9061E..31R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9061E..31R"><span>Distributed <span class="hlt">strain</span> monitoring for bridges: temperature effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Regier, Ryan; Hoult, Neil A.</p> <p>2014-03-01</p> <p>To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic <span class="hlt">strain</span> sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for <span class="hlt">strain</span> to be measured with the same accuracy and gage lengths as conventional <span class="hlt">strain</span> sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed <span class="hlt">strain</span> sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. <span class="hlt">Strain</span> data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the <span class="hlt">strain</span> measurements are affected by the bridge behavior as a whole. The <span class="hlt">strain</span> measurements due to temperature are compared to <span class="hlt">strain</span> measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and <span class="hlt">strain</span> changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="https://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="https://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.science.gov"><img src="https://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="https://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>