Science.gov

Sample records for actinobacterial suborder micrococcineae

  1. Actinobacterial Flora in Feces of Healthy Cottontail Rabbits (Sylvilagus auduboni).

    PubMed

    Zhang, Yu; Tan, Hongming; Deng, Qingli; Cao, Lixiang

    2015-03-01

    Most known antibiotics from bacteria are produced by Actinobacteria. However, little is known about the community structure and diversity of fecal actinobacteria from rabbit feces. To investigate the actinobacterial community structure in rabbit feces, different actinobacterial-specific primer sets were used to amplify the overlap regions of 16S rRNA genes from the same DNA. At the genus level, 12 actinobacterial genera were detected by the L and S libraries. Arthrobacter, Brachybacterium, Dietzia, Leucobacter, Microbacterium, Promicromonospora and Rhodococcus were detected by L and S libraries. The Nocardioides, Streptomyces and Williamsia were only detected by L library; the Oerskovia and Brevibacterium were only detected by S library. The results indicated that rabbit feces contain diverse nonpathogenic actinobacterial taxa and PCR primer sets could underestimate the actinobacterial diversity besides the DNA extract efficiency. PMID:25424303

  2. Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau

    PubMed Central

    Yang, Jian; Li, Xiaoyan; Huang, Liuqin; Jiang, Hongchen

    2015-01-01

    The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs. PMID:26648925

  3. Actinobacterial community dynamics in long term managed grasslands.

    PubMed

    Jenkins, Sasha N; Waite, Ian S; Blackburn, Adrian; Husband, Rebecca; Rushton, Steven P; Manning, David C; O'Donnell, Anthony G

    2009-05-01

    Palace Leas, a long-term experiment at Cockle Park Farm, Northumberland, UK was established in winter 1896-1897 since when the 13 plots have received regular and virtually unchanged mineral fertiliser and farm yard manure inputs. Fertilisers have had a profound impact on soil pH with the organically fertilised plots showing a significantly higher pH than those receiving mineral fertiliser where ammonium sulphate has led to soil acidification. Here, we investigate the impact of organic and mineral fertilisers on the actinobacterial community structure of these soils using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene analysis. To differentiate fertiliser effects from seasonal variation, soils were sampled three times over one growing season between May and September 2004 and January 2005. Community profiles obtained using T-RFLP were analysed using multivariate statistics to investigate the relationship between community structure, seasonality and fertiliser management. Soil pH was shown to be the most significant edaphic factor influencing actinobacterial communities. Canonical correspondence analysis, used to investigate the relationship between the 16S rRNA gene community profiles and the environmental parameters, showed that actinobacterial communities also responded to soil water content with major changes evident over the summer months between May and September. Quantitative PCR of the actinobacterial and fungal 16S and 18S rRNA genes, respectively suggested that fungal rRNA gene copy numbers were negatively correlated (P = 0.0131) with increasing actinobacterial signals. A similar relationship (P = 0.000365) was also evident when fatty acid methyl esters indicative of actinobacterial biomass (10-methyloctadecanoic acid) were compared with the amounts of fungal octadecadienoic acid (18:2omega9,12). These results show clearly that soil pH is a major driver of change in actinobacterial communities and that genera such as

  4. C/N Ratio Drives Soil Actinobacterial Cellobiohydrolase Gene Diversity

    PubMed Central

    Prendergast-Miller, Miranda T.; Poonpatana, Pabhon; Farrell, Mark; Bissett, Andrew; Macdonald, Lynne M.; Toscas, Peter; Richardson, Alan E.; Thrall, Peter H.

    2015-01-01

    Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle. PMID:25710367

  5. C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Poonpatana, Pabhon; Farrell, Mark; Bissett, Andrew; Macdonald, Lynne M; Toscas, Peter; Richardson, Alan E; Thrall, Peter H

    2015-05-01

    Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle. PMID:25710367

  6. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    SciTech Connect

    Ivanova, Natalia; Sikorski, Johannes; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Pukall, Rudiger; Klenk, Hans-Peter; Kyrpides, Nikos

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions.

    PubMed

    Riquelme, Cristina; Marshall Hathaway, Jennifer J; Enes Dapkevicius, Maria de L N; Miller, Ana Z; Kooser, Ara; Northup, Diana E; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966

  8. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966

  9. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    PubMed

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity. PMID:26245685

  10. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta)

    PubMed Central

    Shao, Renfu; Barker, Stephen C; Li, Hu; Song, Simon; Poudel, Shreekanta; Su, Yuan

    2015-01-01

    Parasitic lice (order Phthiraptera) infest birds and mammals. The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera. The sucking lice (suborder Anoplura) known, however, have fragmented mt genomes with 9–20 minichromosomes. We sequenced the mt genome of the elephant louse, Haematomyzus elephantis – the first species of chewing lice investigated from the suborder Rhynchophthirina. We identified 33 mt genes in the elephant louse, which were on 10 minichromosomes. Each minichromosome is 3.5–4.2 kb in size and has 2–6 genes. Phylogenetic analyses of mt genome sequences confirm that the elephant louse is more closely related to sucking lice than to the chewing lice in the Amblycera and Ischnocera. Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina. Nine of the 10 mt minichromosomes of the elephant louse differ from those of the sucking lice (Anoplura) known in gene content and gene arrangement, indicating that distinct mt karyotypes have evolved in Anoplura and Rhynchophthirina since they diverged ~92 million years ago. PMID:26617060

  11. Evolution of discocephalid ciliates: molecular, morphological and ontogenetic data support a sister group of discocephalids and pseudoamphisiellids (Protozoa, Ciliophora) with establishment of a new suborder Pseudoamphisiellina subord. n.

    PubMed

    Miao, Miao; Shao, Chen; Chen, XuMiao; Song, WeiBo

    2011-07-01

    Discocephalids and pseudoamphisiellids are possibly two of the most confused groups among hypotrichous/euplotid ciliates regarding their systematic position and phylogenetic relationships. The former were often regarded as related to euplotids while the latter, in the absence of molecular data, were mostly assigned to the urostylid-like hypotrichs. In the present work, the small subunit rRNA genes of several rarely observed discocephalid and pseudoamphisiellid genera were analyzed to obtain insights into the phylogenetic relationships of these highly ambiguous Spirotrichea. Four different tree reconstruction algorithms yielded nearly identical topologies, which indicated both groups belong to the same assemblage. This assemblage is clearly isolated as a deep-branching clade and invariably positioned between Euplotida and Hypotricha. The sister group relationship of the Pseudoamphisiellidae and Discocephalidae supports the previous suggestion that they might represent an ordinal taxon, the Discocephalida. Both morphological and morphogenetic features indicate that the pseudoamphisiellids should be placed in the order Discocephalida but as a sister group to other typical discocephalids. Thus we propose establishing a new suborder, Pseudoamphisiellina subord. n. The new taxon is diagnosed by the following characteristics: (i) two distantly separated midventral rows that are morphogenetically formed with an urostylid mode; (ii) absence of the "frontoterminal row", which is formed from the posterior-most frontoventral-transverse cirral anlage in all other typical urostylids; (iii) numerous caudal cirri that derive from each of the dorsal kinety anlagen; (iv) right marginal row that has a unique de novo origin; and (v) inhabiting periphytic communities. The validity of the suborder Pseudoamphisiellina is firmly supported by molecular data. PMID:21748586

  12. Restructuring the Traditional Suborders in the Order Scleractinia Based on Embryogenetic Morphological Characteristics.

    PubMed

    Okubo, Nami

    2016-02-01

    The order Scleractinia includes two distinct groups, which are termed "complex" and "robust" as indicated by the molecular phylogeny of mitochondrial 16S ribosomal gene sequences. Since this discovery, coral taxonomists have been seeking morphological characters for grouping this deep division in the order Scleractinia. Recently, morphological characteristics during embryogenesis that facilitate grouping the two clades as "complex" and "robust" were reported, thus clarifying a deep division in the Scleractinia. In the present report, I establish two new suborders, Refertina and Vacatina, on the basis of the embryogenetic morphological characteristics, molecular data, and new observations of Tubastraea coccinea and Cyphastrea serailia embryogenesis. In particular, the embryo of T. coccinea has a possible fertilization membrane that was first observed in the phylum Cnidaria. The new suborder Refertina consists of the families that belong to the "complex" clade and have no or little blastocoel. The new suborder Vacatina is composed of the families that fall into the "robust" clade and have an apparent blastocoel. PMID:26853877

  13. Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10T)

    SciTech Connect

    Lapidus, Alla; Pukall, Rudiger; LaButti, Kurt; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Johnathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    PubMed Central

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  15. Catalogue of genera and their type species in the mite Suborder Uropodina (Acari: Mesostigmata).

    PubMed

    Halliday, R B

    2015-01-01

    This paper provides details of 300 genus-group names in the suborder Uropodina, including the superfamilies Microgynioidea, Thinozerconoidea, Uropodoidea, and Diarthrophalloidea. For each name, the information provided includes a reference to the original description of the genus, the type species and its method of designation, and details of nomenclatural and taxonomic anomalies where necessary. Twenty of these names are excluded from use because they are nomina nuda, junior homonyms, or objective junior synonyms. The remaining 280 available names appear to include a very high level of subjective synonymy, which will need to be resolved in a future comprehensive revision of the Uropodina. PMID:26249486

  16. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation. PMID:26754920

  17. Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism

    PubMed Central

    Horn, Hannes; Hentschel, Ute

    2015-01-01

    Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes. PMID:26430030

  18. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities

    PubMed Central

    Nimaichand, Salam; Devi, Asem Mipeshwaree; Tamreihao, K.; Ningthoujam, Debananda S.; Li, Wen-Jun

    2015-01-01

    Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups), Micromonospora (4), Amycolatopsis (3), Arthrobacter (3), Kitasatospora (2), Janibacter (1), Nocardia (1), Pseudonocardia (1) and Rhodococcus (1). Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS). The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites. PMID:25999937

  19. Evaluating the effectiveness of marine actinobacterial extract and its mediated titanium dioxide nanoparticles in the degradation of azo dyes.

    PubMed

    Priyaragini, S; Veena, S; Swetha, D; Karthik, L; Kumar, G; Bhaskara Rao, K V

    2014-04-01

    Aim of the present study was to synthesize titanium dioxide nanoparticles (TiO2 NPs) from marine actinobacteria and to develop an eco-friendly azo-dye degradation method. A total of five actinobacterial isolates were isolated from Chennai marine sediments, Tamilnadu, India and analyzed for the synthesis of TiO2 NPs using titanium hydroxide. Among these, the isolate PSV 3 showed positive results for the synthesis of TiO2 NPs, which was confirmed by UV analysis. Further characterization of the synthesized TiO2 NPs was done using XRD, AFM and FT-IR analysis. Actinobacterial crude extract and synthesized TiO2 NPs was found efficient in degrading azo dye such as Acid Red 79 (AR-79) and Acid Red 80 (AR-80). Degradation percentage was found to be 81% for AR-79, 83% for AR-80 using actinobacterial crude extract and 84% for AR-79, 85% for AR-80 using TiO2 NPs. Immobilized actinobacterial cells showed 88% for AR-79 and 81% for AR-80, dye degrading capacity. Degraded components were characterized by FT-IR and GC-MS analysis. The phytotoxicity test with 500 μg/mL of untreated dye showed remarkable phenotypic as well as cellular damage to Tagetes erecta plant. Comparatively no such damage was observed on plants by degraded dye components. In biotoxicity assay, treated dyes showed less toxic effect as compared to the untreated dyes. PMID:25079407

  20. Isolation and phylogenetic analysis of Bartonella species from wild carnivores of the suborder Caniformia in Japan.

    PubMed

    Sato, Shingo; Kabeya, Hidenori; Miura, Tatsuya; Suzuki, Kazuo; Bai, Ying; Kosoy, Michael; Sentsui, Hiroshi; Kariwa, Hiroaki; Maruyama, Soichi

    2012-12-28

    The prevalence of Bartonella species was investigated among wild carnivores of the suborder Caniformia, including 15 Japanese badgers (Meles anakuma), 8 Japanese martens (Martes melampus), 2 Japanese weasels (Mustela itatsi), 1 Siberian weasel (Mustela sibirica), 171 raccoon dogs (Nyctereutes procyonoides), and 977 raccoons (Procyon lotor) in Japan. Bartonella bacteria were isolated from one Japanese badger (6.7%) and from one Japanese marten (12.5%); however, no Bartonella species was found in other representatives of Caniformia. Phylogenetic analysis was based on concatenated sequences of six housekeeping genes (16S rRNA, ftsZ, gltA, groEL, ribC, and rpoB) and sequence of the 16S-23S internal transcribed spacer region. The sequence analysis indicated that the isolate derived from the Japanese badger (strain JB-15) can represent a novel Bartonella species and the isolate from the Japanese marten (strain JM-1) was closely related to Bartonella washoensis. This is the first report on isolation of Bartonella from badger and marten. PMID:22841404

  1. Characterisation of the first actinobacterial group isolated from a Mexican extremophile environment.

    PubMed

    Quintana, Erika T; Badillo, Ricardo Flores; Maldonado, Luis A

    2013-07-01

    The "Cave of Crystals" (aka 'Naica') in Chihuahua Mexico is a natural unique subterranean ecosystem which mainly consists of crystals made of calcium sulfate. The main system of caves are found at a depth of 300 meters (m) below sea level with crystals that range in size from a few centimeters to 15 m. The crystals date from nearly 400,000 years old and are thought to be formed when the cave was fully covered by water. At present time, this place shows a nearly constant temperature of 55 °C over the year and a humidity of 100 % which makes this place incomparable and unbearable to animal and/or human life. In the present study, two actinobacterial groups were isolated from within this system of caves and subjected to a systematic study to establish their phylogenetic relationship to microorganisms belonging to this vast group of Gram positive bacteria. Phenotypic properties, chemotaxonomic and 16S rRNA gene sequencing show that the microorganisms are members of the family Pseudonocardiaceae and are most closely related to the genus Prauserella. The present study is the first to report the isolation and presence of Actinobacteria or any other microbial form of life in this exceptional place. Moreover, this unexpected biodiversity can also provide an insight of the antibiotic resistome present in the isolates reported in this study. PMID:23640690

  2. (Actino)Bacterial "intelligence": using comparative genomics to unravel the information processing capacities of microbes.

    PubMed

    Pinto, Daniela; Mascher, Thorsten

    2016-08-01

    Bacterial genomes encode numerous and often sophisticated signaling devices to perceive changes in their environment and mount appropriate adaptive responses. With their help, microbes are able to orchestrate specific decision-making processes that alter the cellular behavior, but also integrate and communicate information. Moreover and beyond, some signal transducing systems also enable bacteria to remember and learn from previous stimuli to anticipate environmental changes. As recently suggested, all of these aspects indicate that bacteria do, in fact, exhibit cognition remarkably reminiscent of what we refer to as intelligent behavior, at least when referred to higher eukaryotes. In this essay, comprehensive data derived from comparative genomics analyses of microbial signal transduction systems are used to probe the concept of cognition in bacterial cells. Using a recent comprehensive analysis of over 100 actinobacterial genomes as a test case, we illustrate the different layers of the capacities of bacteria that result in cognitive and behavioral complexity as well as some form of 'bacterial intelligence'. We try to raise awareness to approach bacteria as cognitive organisms and believe that this view would enrich and open a new path in the experimental studies of bacterial signal transducing systems. PMID:26852121

  3. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA

    PubMed Central

    Hubin, Elizabeth A.; Tabib-Salazar, Aline; Humphrey, Laurence J.; Flack, Joshua E.; Olinares, Paul Dominic B.; Darst, Seth A.; Campbell, Elizabeth A.; Paget, Mark S.

    2015-01-01

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σA. The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σA as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator. PMID:26040003

  4. Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122T)

    SciTech Connect

    Land, Miriam L; Pukall, Rudiger; Abt, Birte; Goker, Markus; Rohde, Manfred; Glavina Del Rio, Tijana; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Saunders, Elizabeth H; Brettin, Tom; Detter, J. Chris; Han, Cliff; Chain, Patrick S. G.; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2009-01-01

    Beutenbergia cavernae (Groth et al. 1999) is the type species of the genus and is of phyloge-netic interest because of its isolated location in the actinobacterial suborder Micrococcineae. B. cavernae HKI 0122T is a Gram-positive, non-motile, non-spore-forming bacterium isolated from a cave in Guangxi (China). B. cavernae grows best under aerobic conditions and shows a rod-coccus growth cycle. Its cell wall peptidoglycan contains the diagnostic L-lysine L-glutamate interpeptide bridge. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome se-quence from the poorly populated micrococcineal family Beutenbergiaceae, and this 4,669,183 bp long single replicon genome with its 4225 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134T)

    SciTech Connect

    Pukall, Rudiger; Gehrich-Schroeter, Gabriele; Lapidus, Alla L.; Nolan, Matt; Glavina Del Rio, Tijana; Lucas, Susan; Chen, Feng; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Copeland, A; Saunders, Elizabeth H; Detter, J. Chris; Bruce, David; Goodwin, Lynne A.; Pati, Amrita; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Han, Cliff

    2009-01-01

    Jonesia denitrificans (Prevot 1961) Rocourt et al. 1987 is the type species of the genus Jonesia, and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. J. denitrificans is characterized by a typical coryneform morphology and is able to form irregular nonsporulating rods showing branched and clublike forms. Coccoid cells occur in older cultures. J. denitrificans is classified as a pathogenic organism for animals (vertebrates). The type strain whose genome is described here was originally isolated from cooked ox blood. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus for which a complete genome sequence is described. The 2,749,646 bp long genome with its 2558 protein-coding and 71 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122T)

    SciTech Connect

    Land, Miriam; Pukall, Rudiger; Abt, Birte; Goker, Markus; Rohde, Manfred; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Saunders, Elizabeth; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Beutenbergia cavernae (Groth et al. 1999) is the type species of the genus and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. B. cavernae HKI 0122T is a Gram-positive, non-motile, non-spore-forming bacterium isolated from a cave in Guangxi (China). B. cavernae grows best under aerobic conditions and shows a rod-coccus growth cycle. Its cell wall peptidoglycan contains the diagnostic L-lysine - L-glutamate interpeptide bridge. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the poorly populated micrococcineal family Beutenbergiaceae, and this 4,669,183 bp long single replicon genome with its 4225 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3

    PubMed Central

    Kanaparthi, Dheeraj; Pommerenke, Bianca; Casper, Peter; Dumont, Marc G

    2013-01-01

    Anaerobic nitrate-dependent Fe(II) oxidation is widespread in various environments and is known to be performed by both heterotrophic and autotrophic microorganisms. Although Fe(II) oxidation is predominantly biological under acidic conditions, to date most of the studies on nitrate-dependent Fe(II) oxidation were from environments of circumneutral pH. The present study was conducted in Lake Grosse Fuchskuhle, a moderately acidic ecosystem receiving humic acids from an adjacent bog, with the objective of identifying, characterizing and enumerating the microorganisms responsible for this process. The incubations of sediment under chemolithotrophic nitrate-dependent Fe(II)-oxidizing conditions have shown the enrichment of TM3 group of uncultured Actinobacteria. A time-course experiment done on these Actinobacteria showed a consumption of Fe(II) and nitrate in accordance with the expected stoichiometry (1:0.2) required for nitrate-dependent Fe(II) oxidation. Quantifications done by most probable number showed the presence of 1 × 104 autotrophic and 1 × 107 heterotrophic nitrate-dependent Fe(II) oxidizers per gram fresh weight of sediment. The analysis of microbial community by 16S rRNA gene amplicon pyrosequencing showed that these actinobacterial sequences correspond to ∼0.6% of bacterial 16S rRNA gene sequences. Stable isotope probing using 13CO2 was performed with the lake sediment and showed labeling of these Actinobacteria. This indicated that they might be important autotrophs in this environment. Although these Actinobacteria are not dominant members of the sediment microbial community, they could be of functional significance due to their contribution to the regeneration of Fe(III), which has a critical role as an electron acceptor for anaerobic microorganisms mineralizing sediment organic matter. To the best of our knowledge this is the first study to show the autotrophic nitrate-dependent Fe(II)-oxidizing nature of TM3 group of uncultured Actinobacteria

  8. In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production.

    PubMed

    Latha, Selvanathan; Vinothini, Gopal; John Dickson Calvin, Devadasan; Dhanasekaran, Dharumadurai

    2016-01-01

    The present study was undertaken to select exclusive indigenous actinobacterial probiont for broiler health improvement based on in vitro probiotic potentials. In total, 18 actinobacterial cultures isolated from chicken were screened for survivability (resistance to low pH, pepsin, bile and pancreatin), colonization (auto-aggregation, hydrophobicity and co-aggregation) and safety (antibiotic susceptibility and non-haemolytic activity). Ten cultures showed excellent viability at pH 2 and most of the acid-tolerant isolates exhibited resistance to pepsin (3 mg/mL), bile (0.3%) and pancreatin (1 mg/mL). Besides, the examined isolates displayed efficient adhesion properties. All the isolates were susceptible to 9 different antibiotics and none of them exhibited β-haemolytic activity. Moreover, the culture JD9 revealed remarkable probiotic features compared to the other isolates, which was identified as Streptomyces sp. JD9 (KF878075). Taken together, the present study suggests that the probiont Streptomyces sp. JD9 could potentially be used in broiler practices as a feed additive to facilitate enhanced broiler production. PMID:26111601

  9. Actinobacterial Nitrate Reducers and Proteobacterial Denitrifiers Are Abundant in N2O-Metabolizing Palsa Peat

    PubMed Central

    Palmer, Katharina

    2012-01-01

    Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N2O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N2O fluxes were spatially variable, ranging from 0.01 to −0.02 μmol of N2O m−2 h−1. Fertilization with nitrate stimulated in situ N2O emissions and N2O production in anoxic microcosms without apparent delay. N2O was subsequently consumed in microcosms. Maximal reaction velocities (vmax) of nitrate-dependent denitrification approximated 3 and 1 nmol of N2O per h per gram (dry weight [gDW]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. vmax values of nitrite-dependent denitrification were 2- to 5-fold higher than the vmax nitrate-dependent denitrification, and vmax of N2O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N2O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N2O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like palsa peats represent

  10. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites

    PubMed Central

    Schäberle, Till F

    2016-01-01

    Summary Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide from Enhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria. PMID:27340488

  11. Co-occurrence of the Multicopper Oxidases Tyrosinase and Laccase in Lichens in Sub-order Peltigerineae

    PubMed Central

    LAUFER, ZSANETT; BECKETT, RICHARD P.; MINIBAYEVA, FARIDA V.

    2006-01-01

    • Background and Aims Following previous findings of high extracellular redox activity in lichens and the presence of laccases in lichen cell walls, the work presented here additionally demonstrates the presence of tyrosinases. Tests were made for the presence of tyrosinases in 40 species of lichens, and from selected species their cellular location and molecular weights were determined. The effects of stress and inhibitors on enzyme activity were also studied. • Methods Tyrosinase and laccase activities were assayed spectrophotometrically using a variety of substrates. The molecular mass of the enzymes was estimated using polyacrylamide gel electrophoresis. • Key Results Extracellular tyrosinase and laccase activity was measured in 40 species of lichens from different taxonomic groupings and contrasting habitats. Out of 20 species tested from the sub-order Peltigerineae, all displayed significant tyrosinase and laccase activity, while activity was low or absent in other species tested. Representatives from both groups of lichens displayed low peroxidase activities. Identification of the enzymes as tyrosinases was confirmed by the ability of lichen thalli or leachates derived by shaking lichens in distilled water to metabolize substrates such as l-dihydroxyphenylalanine (DOPA), tyrosine and epinephrine readily in the absence of hydrogen peroxide, the sensitivity of the enzymes to the inhibitors cyanide, azide and hexylresorcinol, activation by SDS and having typical tyrosinase molecular masses of approx. 60 kDa. Comparing different species within the Peltigerineae showed that the activities of tyrosinases and laccase were correlated to each other. Desiccation and wounding stimulated laccase activity, while only wounding stimulated tyrosinase activity. • Conclusions Cell walls of lichens in sub-order Peltigerineae have much higher activities and a greater diversity of cell wall redox enzymes compared with other lichens. Possible roles of tyrosinases

  12. On some surface structures of potential taxonomic importance in families of the suborders Polydesmidea and Dalodesmidea (Polydesmida, Diplopoda)

    PubMed Central

    Akkari, Nesrine; Enghoff, Henrik

    2011-01-01

    Abstract Surface structures have rarely been the subject of a comprehensive study in Polydesmida despite their tremendous variety within this order. A number of these peripheral structures are here studied in most families of the suborders Polydesmidea and Dalodesmidea (sensu Hoffman 1980), using scanning electron microscopy. An illustrated description of the surface sculpture of the prozonite, the limbus and the intercalary cuticular micro-scutes on the metazonite is given for the first time for the studied families, together with an account of some other poorly known surface structures. Taken together, these characters allow us to recognize two main groupings of families. The families Ammodesmidae, Cryptodesmidae, Cyrtodesmidae, Haplodesmidae, Oniscodesmidae and Pyrgodesmidae have knobs on the posterior part of the prozonites, a toothed to lobed limbus, and no micro-scutes on the metazonites, wheras the families Fuhrmannodesmidae, Polydesmidae, Dalodesmidae, Macrosternodesmidae, Nearctodesmidae, Opisotretidae and Trichopolydesmidae have no knobs on the posterior part of the prozonites, a spiky or reduced limbus, and intercalary micro-scutes on the metazonites. The results are complemented with literature records and compared with current taxonomic and phylogenetic interpretations of the group. PMID:22303092

  13. Impact of elevated atmospheric O3 on the actinobacterial community structure and function in the rhizosphere of European beech (Fagus sylvatica L.)

    PubMed Central

    Haesler, Felix; Hagn, Alexandra; Engel, Marion; Schloter, Michael

    2014-01-01

    Many bacteria belonging to the phylum of Actinobacteria are known as antagonists against phytpathogenic microbes. This study aimed to analyze the effect of ozone on the actinobacterial community of the rhizosphere of four years old European beech (Fagus sylvatica L.) trees during different time points of the vegetation period. Effects of ozone on the total community structure of Actinobacteria were studied based on the analysis of 16S rRNA gene amplicons. In addition effects of the ozone treatment on the diversity of potential biocontrol active Actionobacteria being able to produce antibiotics were characterized by using the type II polyketide synthases (PKS) genes as marker. Season as well as ozone treatments had a significant effect on parts of the actinobacterial rhizosphere community of European beech. However on the basis of the performed analysis, the diversity of Actinobacteria possessing type II PKS genes is neither affected by seasonal changes nor by the ozone treatments, indicating no influence of the investigated treatments on the biocontrol active part of the actinobacterial community. PMID:24575080

  14. Complete Genome Sequence of the Soil Actinomycete Kocuria rhizophila▿

    PubMed Central

    Takarada, Hiromi; Sekine, Mitsuo; Kosugi, Hiroki; Matsuo, Yasunori; Fujisawa, Takatomo; Omata, Seiha; Kishi, Emi; Shimizu, Ai; Tsukatani, Naofumi; Tanikawa, Satoshi; Fujita, Nobuyuki; Harayama, Shigeaki

    2008-01-01

    The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds. PMID:18408034

  15. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  16. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  17. PKMiner: a database for exploring type II polyketide synthases

    PubMed Central

    2012-01-01

    Background Bacterial aromatic polyketides are a pharmacologically important group of natural products synthesized by type II polyketide synthases (type II PKSs) in actinobacteria. Isolation of novel aromatic polyketides from microbial sources is currently impeded because of the lack of knowledge about prolific taxa for polyketide synthesis and the difficulties in finding and optimizing target microorganisms. Comprehensive analysis of type II PKSs and the prediction of possible polyketide chemotypes in various actinobacterial genomes will thus enable the discovery or synthesis of novel polyketides in the most plausible microorganisms. Description We performed a comprehensive computational analysis of type II PKSs and their gene clusters in actinobacterial genomes. By identifying type II PKS subclasses from the sequence analysis of 280 known type II PKSs, we developed highly accurate domain classifiers for these subclasses and derived prediction rules for aromatic polyketide chemotypes generated by different combinations of type II PKS domains. Using 319 available actinobacterial genomes, we predicted 231 type II PKSs from 40 PKS gene clusters in 25 actinobacterial genomes, and polyketide chemotypes corresponding to 22 novel PKS gene clusters in 16 genomes. These results showed that the microorganisms capable of producing aromatic polyketides are specifically distributed within a certain suborder of Actinomycetales such as Catenulisporineae, Frankineae, Micrococcineae, Micromonosporineae, Pseudonocardineae, Streptomycineae, and Streptosporangineae. Conclusions We could identify the novel candidates of type II PKS gene clusters and their polyketide chemotypes in actinobacterial genomes by comprehensive analysis of type II PKSs and prediction of aromatic polyketides. The genome analysis results indicated that the specific suborders in actinomycetes could be used as prolific taxa for polyketide synthesis. The chemotype-prediction rules with the suggested type II PKS

  18. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009.

    PubMed

    Labeda, D P; Goodfellow, M; Chun, J; Zhi, X-Y; Li, W-J

    2011-06-01

    The taxonomic status of the families Actinosynnemataceae and Pseudonocardiaceae was assessed based on 16S rRNA gene sequence data available for the 151 taxa with validly published names, as well as chemotaxonomic and morphological properties available from the literature. 16S rRNA gene sequences for the type strains of all taxa within the suborder Pseudonocardineae were subjected to phylogenetic analyses using different algorithms in arb and phylip. The description of many new genera and species within the suborder Pseudonocardineae since the family Actinosynnemataceae was proposed in 2000 has resulted in a markedly different distribution of chemotaxonomic markers within the suborder from that observed at that time. For instance, it is noted that species of the genera Actinokineospora and Allokutzneria contain arabinose in whole-cell hydrolysates, which is not observed in the other genera within the Actinosynnemataceae, and that there are many genera within the family Pseudonocardiaceae as currently described that do not contain arabinose. Phylogenetic analyses of 16S rRNA gene sequences for all taxa within the suborder do not provide any statistical support for the family Actinosynnemataceae, nor are signature nucleotides found that support its continued differentiation from the family Pseudonocardiaceae. The description of the family Pseudonocardiaceae is therefore emended to include the genera previously classified within the family Actinosynnemataceae and the description of the suborder Pseudonocardineae is also emended to reflect this reclassification. PMID:20601483

  19. Analysis of recombinase A (recA/RecA) in the actinobacterial family Streptosporangiaceae and identification of molecular signatures.

    PubMed

    Meyers, Paul R

    2015-12-01

    The family Streptosporangiaceae (suborder Streptosporangineae) comprises 13 genera and 100 species with validly published names. In a recent study, gyrB gene sequences were obtained for members of the family Streptosporangiaceae and the GyrB amino acid sequences were analysed for molecular signatures. In this study, recA gene sequences (895nt) were determined for the type strains of members of the family Streptosporangiaceae. The sequences used represent 81% of the full-length recA gene of Streptosporangium roseum DSM 43021(T). The recA gene sequences were used for phylogenetic analyses and the trees were compared to the corresponding 16S-rRNA and gyrB gene trees. RecA amino acid alignments (298 amino acids) were generated and inspected for unique amino acid signatures to distinguish the genera in the family from each other. As was observed for the gyrB gene trees, the recA gene trees generally supported the division of the members of the family Streptosporangiaceae into 13 genera. The genus Nonomuraea was not monophyletic in any of the recA gene trees, while the genera Planomonospora and Streptosporangium were not monophyletic in the maximum likelihood and maximum parsimony trees. The gyrB-recA concatenated-gene tree was more robust than the recA gene tree, with 63 nodes in the gyrB-recA tree having bootstrap values ≥95%. The only insertions in the recA gene sequences were inteins identified in the type strains of Acrocarpospora phusangensis, Acrocarpospora pleiomorpha and Microbispora mesophila. Examination of the RecA sequence alignments for genus-specific amino acid sequences showed that the genera Herbidospora, Planobispora, Planomonospora and Streptosporangium contain unique amino acid sequences that distinguish these genera from all other genera in the family Streptosporangiaceae. The results of this investigation extend the results of the GyrB study and will be useful in future taxonomic studies in the family Streptosporangiaceae by providing additional

  20. Cultural, Transcriptomic, and Proteomic Analyses of Water-Stressed Cells of Actinobacterial Strains Isolated from Compost: Ecological Implications in the Fed-Batch Composting Process

    PubMed Central

    Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira

    2016-01-01

    This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts. PMID:27246805

  1. Structure and Function of CC-Chemokine Receptor 5 Homologues Derived from Representative Primate Species and Subspecies of the Taxonomic Suborders Prosimii and Anthropoidea

    PubMed Central

    Kunstman, Kevin J.; Puffer, Bridget; Korber, Bette T.; Kuiken, Carla; Smith, Una R.; Kunstman, Jennifer; Stanton, Jennifer; Agy, Michael; Shibata, Riri; Yoder, Anne D.; Pillai, Satish; Doms, Robert W.; Marx, Preston; Wolinsky, Steven M.

    2003-01-01

    A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.1, and multiple clones were sequenced to permit discrimination of both alleles. Compared to the human CCR5 sequence, the CCR5 sequences of the Lemuridae, Cebidae, and Cercopithecidae shared 87, 91 to 92, and 96 to 99% amino acid sequence homology, respectively. Amino acid substitutions tended to cluster in the amino and carboxy termini, the first transmembrane domain, and the second extracellular loop, with a pattern of species-specific changes that characterized CCR5 homologues from primates within a given family. At variance with humans, all primate species examined from the suborder Anthropoidea had amino acid substitutions at positions 13 (N to D) and 129 (V to I); the former change is critical for CD4-independent binding of SIV to CCR5. Within the Cebidae, Cercopithecidae, and Pongidae (including humans), CCR5 nucleotide similarities were 95.2 to 97.4, 98.0 to 99.5, and 98.3 to 99.3%, respectively. Despite this low genetic diversity, the phylogeny of the selected primate CCR5 homologue sequences agrees with present primate systematics, apart from some intermingling of species of the Cebidae and Cercopithecidae. Constructed HOS.CD4 cell lines expressing the entire CCR5 homologue protein from each of the Anthropoidea species and subspecies were tested for their ability

  2. Complete mitochondrial genome of Membranipora grandicella (Bryozoa: Cheilostomatida) determined with next-generation sequencing: the first representative of the suborder Malacostegina.

    PubMed

    Shen, Xin; Tian, Mei; Meng, Xueping; Liu, Huilian; Cheng, Hanliang; Zhu, Changbao; Zhao, Fangqing

    2012-09-01

    Next-generation sequencing (NGS) has proven a valuable platform for fast and easy obtaining of large numbers of sequences at relatively low cost. In this study we use shot-gun sequencing method on Illumina HiSeq 2000, to obtain enough sequences for the assembly of the bryozoan Membranipora grandicella (Bryozoa: Cheilostomatida) mitochondrial genome, which is the first representative of the suborder Malacostegina. The complete mitochondrial genome is 15,861 bp in length, which is relatively larger than other studied bryozoans. The mitochondrial genome contains 13 protein-coding genes, 2 ribosomal RNAs and 20 transfer RNAs. To investigate the phylogenetic position and the inner relationships of the phylum Bryozoa, phylogenetic trees were constructed with amino acid sequences of 11 PCGs from 30 metazoans. Two superclades of protostomes, namely Lophotrochozoa and Ecdysozoa, are recovered as monophyletic with strong support in both ML and Bayesian analyses. Somewhat to surprise, Bryozoa appears as the sister group of Chaetognatha with moderate or high support. The relationship among five bryozoans is Tubulipora flabellaris + (M. grandicella + (Flustrellidra hispida + (Bugula neritina + Watersipora subtorquata))), which supports for the view that Cheilostomatida is not a natural, monophyletic clade. NGS proved to be a quick and easy method for sequencing a complete mitochondrial genome. PMID:22503287

  3. Complete genome sequence of Kytococcus sedentarius type strain (541T)

    PubMed Central

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Göker, Markus; Pukall, Rüdiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-01-01

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. Kytococcus sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304632

  4. Complete genome sequence of Kytococcus sedentarius type strain (strain 541T)

    SciTech Connect

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrick; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Goker, Markus; Pukall, Rudiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities.

    PubMed

    Ramya, Suseenthar; Shanmugasundaram, Thangavel; Balagurunathan, Ramasamy

    2015-10-01

    Currently, there is an ever-increasing need to develop environmentally benign processes in place of synthetic protocols. As a result, researchers in the field of nanoparticle synthesis are focusing their attention on microbes from rare biological ecosystems. One potential actinobacterium, Streptomyces minutiscleroticus M10A62 isolated from a magnesite mine had the ability to synthesize selenium nanoparticles (SeNPs), extracellularly. Actinobacteria mediated SeNP synthesis were characterized by UV-visible, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and high resolution transmission electron microscopy (HR-TEM) analysis. The UV-spectral analysis of SeNPs indicated the maximum absorption at 510nm, FT-IR spectral analysis confirms the presence of capping protein, peptide, amine and amide groups. The selenium signals confirm the presence of SeNPs. All the diffraction peaks in the XRD pattern and HR-TEM confirm the size of SeNPs in the range of 10-250nm. Further, the anti-biofilm and antioxidant activity of the SeNPs increased proportionally with rise in concentration, and the test strains reduced to 75% at concentration of 3.2μg. Selenium showed significant anti-proliferative activity against HeLa and HepG2 cell lines. The wound healing activity of SeNPs reveals that 5% selenium oinment heals the excision wound of Wistar rats up to 85% within 18 days compared to the standard ointment. The biosynthesized SeNPs exhibited good antiviral activity against Dengue virus. The present study concludes that extremophilic actinobacterial strain was a novel source for SeNPs with versatile biomedical applications and larger studies are needed to quantify these observed effects of SeNPs. PMID:26302909

  6. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant.

    PubMed

    Persson, Tomas; Battenberg, Kai; Demina, Irina V; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T; Wilbanks, Elizabeth G; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  7. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  8. Brain and sense organ anatomy and histology of two species of phyletically basal non-Antarctic thornfishes of the Antarctic suborder Notothenioidei (Perciformes: Bovichtidae).

    PubMed

    Eastman, Joseph T; Lannoo, Michael J

    2007-06-01

    The predominantly non-Antarctic family Bovichtidae is phyletically basal within the perciform suborder Notothenioidei, the dominant component of the Antarctic fish fauna. In this article we focus on the South Atlantic bovichtids Bovichtus diacanthus, the klipfish from tide pools at Tristan da Cunha, and Cottoperca gobio, the frogmouth from the Patagonian shelf and Falkland Islands. We document the anatomy and histology of the brains, olfactory apparatus, retina, and cephalic lateral line system. We also use the microvascular casting agent Microfil to examine ocular vascular structures. We provide detailed drawings of the brains and cranial nerves of both species. Typical of perciforms, the brains of both species have a well-developed tectum and telencephalon and robust thalamic nuclei. The telencephalon of C. gobio is prominently lobed, with the dorsomedial nucleus more conspicuous than in any other notothenioid. The corpus cerebelli is relatively small and upright and, unlike other notothenioids, has prominent transverse sulci on the dorsal and caudal surfaces. Areas for lateral line mechanoreception (eminentia granularis and crista cerebellaris) are also conspicuous but olfactory, gustatory, and somatosensory areas are less prominent. The anterior lateral line nerve complex is larger than the posterior lateral line nerve in B. diacanthus, and in their cephalic lateral line systems both species possess branched membranous tubules (which do not contain neuromasts) with small pores. These are especially complex in B. diacanthus where they become increasingly branched and more highly pored in progressively larger specimens. Superficial neuromasts are sparse. Both species have duplex (cone and rod) retinae that are 1.25-fold thicker and have nearly 5-fold more photoreceptors and than those of most Antarctic notothenioids. Convergence ratios are also high for bovichtids. Bovichtus diacanthus has a yellow intraocular filter in the dorsal aspect of the cornea. Both

  9. Genus III. Actinokineospora Hasegawa 1988a, 449vp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently composes the actinobacterial genus Actinokineospora is presented. The phylogenetic position of the species within this genus relative to the other genera within the suborder Pseudonocardineae is discussed. Methods for isolation,...

  10. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders.

    PubMed

    Lau, Susanna K P; Li, Kenneth S M; Tsang, Alan K L; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K Y; Guo, Rongtong; Wong, Beatrice H L; Poon, Rosana W S; Lam, Carol S F; Wang, Sylvia Y H; Fan, Rachel Y Y; Chan, Kwok-Hung; Zheng, Bo-Jian; Woo, Patrick C Y; Yuen, Kwok-Yung

    2012-11-01

    Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ~40% amino acid divergence after recent interspecies transmission was even greater than the ~20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different

  11. Genus IX. Kutzneria Stackebrandt, Kroppenstedt, Jahnke, Kemmerling and Gurtler 1994, 267vp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently composes the actinobacterial genus Kutzneria is presented. The phylogenetic position of the species within this genus relative to the other genera within the suborder Pseudonocardineae is discussed. Methods for isolation, preser...

  12. Statistical Approaches for Estimating Actinobacterial Diversity in Marine Sediments

    PubMed Central

    Stach, James E. M.; Maldonado, Luis A.; Masson, Douglas G.; Ward, Alan C.; Goodfellow, Michael; Bull, Alan T.

    2003-01-01

    Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpson's index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed. PMID:14532080

  13. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.

    PubMed

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2014-12-01

    Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin-derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes. PMID:25355242

  14. Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21T)

    SciTech Connect

    Munk, Chris; Lapidus, Alla; Copeland, Alex; Jando, Marlen; Mayilraj, Shanmugam; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Bruce, David; Goodwin, Lynne; Chain, Patrick; Pitluck, Sam; Göker, Markus; Ovchinikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-12-30

    Stackebrandtia nassauensis Labeda and Kroppenstedt (2005) is the type species of the genus Stackebrandtia, and a member of the actinobacterial family Glycomycetaceae. Stackebrandtia currently contains two species, which are differentiated from Glycomyces spp. by cellular fatty acid and menaquinone composition. Strain LLR-40K-21T is Gram-positive, aerobic, and nonmotile, with a branched substrate mycelium and on some media an aerial mycelium. The strain was originally isolated from a soil sample collected from a road side in Nassau, Bahamas. We describe the features of this organism, together with the complete genome sequence and annotation. Lastly, this is the first complete genome sequence of the actinobacterial suborder Glycomycineae. The 6,841,557 bp long single replicon genome with its 6487 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Actinosynnema mirum type strain (101T)

    PubMed Central

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Del Rio, Tijana Glavina; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Göker, Markus; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia C.; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian J.; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-01-01

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304636

  16. Complete genome sequence of Actinosynnema mirum type strain (101T)

    SciTech Connect

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Nocardia casuarinae sp. nov., an actinobacterial endophyte isolated from root nodules of Casuarina glauca.

    PubMed

    Ghodhbane-Gtari, Faten; Nouioui, Imen; Salem, Karima; Ktari, Amir; Montero-Calasanz, Maria del Carmen; Tisa, Louis S; Klenk, Hans-Peter; Gtari, Maher

    2014-06-01

    An actinobacterium strain BMG51109a was isolated from surface sterilized root nodules of Casuarina glauca collected in Tunisia. The 16S rRNA gene sequence of strain BMG51109a showed most similarity (96.53-96.55 %) to the type strains of Nocardia transvalensis, N. aobensis and N. elegans. Chemotaxonomic analysis supported the assignment of the strain to Nocardia genus. The major menaquinone was MK-8(H4c) while the polar lipid profile contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, glycophospholipid, phosphatidylinositol, one uncharacterized phospholipid and three glycolipids. Whole-cell sugar analysis revealed the presence of meso-diaminopimelic acid, arabinose and galactose as diagnostic sugars, complemented by glucose, mannose and ribose. The major cellular fatty acids were tuberculostearic, oleic, palmitoleic and stearic acids. Physiological and biochemical tests showed that strain BMG51109a could be clearly distinguished from its closest phylogenetic neighbours. On the basis of these results, strain BMG51109a(T) (= DSM 45978(T) = CECT 8469(T)) is proposed as the type strain of the novel species Nocardia casuarinae sp. nov. PMID:24715251

  18. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge.

    PubMed

    Kolehmainen, Reija E; Tiirola, Marja; Puhakka, Jaakko A

    2008-11-01

    Artificial groundwater recharge (AGR) is used in the drinking water industry to supplement groundwater resources and to minimise the use of chemicals in water treatment. This study analysed the spatial and temporal changes of microbial communities in AGR using two test systems: a nutrient-amended fluidized-bed reactor (FBR) and a sand column. Structural changes in the feed lake water (Lake Roine), FBR, and sand column bacterial communities were determined by denaturing gradient gel electrophoresis (DGGE) and the length heterogeneity analysis of amplified 16S rRNA genes (LH-PCR). Two clone libraries were created to link the LH-PCR results to the dominant bacterial groups. The lake water bacterial community was relatively stable, with three bands dominating in all LH-PCR products. The most dominant fragment accounted for up to 72% and was derived from Actinobacteria. Based on the clone libraries and LH-PCR data, Actinobacteria also dominated in the unattached bacterial community of the FBR, whereas several Proteobacterial groups were more abundant on the FBR carrier particles. In the stabilised AGR system a major change in the community structure of the lake water bacteria took place during passage within the first 0.6m in the sand column as the community composition shifted from Actinobacteria-dominated populations to a diverse, mainly Proteobacterial communities. Concurrently, most of the dissolved organic carbon (DOC) was removed at this stage. In summary, the study showed that the make-up of microbial communities in experimental AGR systems responded to changes in their environment. LH-PCR showed potential as a method to determine microbial community dynamics in long-term studies at real-scale AGR sites. This is the first step to provide data on microbial community dynamics in AGR for drinking water production. PMID:18757075

  19. Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil

    PubMed Central

    Björklöf, Katarina; Karlsson, Sanja; Frostegård, Åsa; Jørgensen, Kirsten S

    2009-01-01

    Relatively little is known about the microbial communities adapted to soil environments contaminated with aged complex hydrocarbon mixtures, especially in the subsurface soil layers. In this work we studied the microbial communities in two different soil profiles down to the depth of 7 m which originated from a 30-year-old site contaminated with petroleum hydrocarbons (PHCs) and from a clean site next to the contaminated site. The concentration of oxygen in the contaminated soil profile was strongly reduced in soil layers below 1 m depth but not in the clean soil profile. Total microbial biomass and community composition was analyzed by phospholipid fatty acid (PLFA) measurements. The diversity of fungi and actinobacteria was investigated more in detail by construction of rDNA-based clone libraries. The results revealed that there was a significant and diverse microbial community in subsoils at depth below 2 m, also in conditions where oxygen was limiting. The diversity of actinobacteria was different in the two soil profiles; the contaminated soil profile was dominated by Mycobacterium -related sequences whereas sequences from the clean soil samples were related to other, generally uncultured organisms, some of which may represent two new subclasses of actinobacteria. One dominating fungal sequence which matched with the ascomycotes Acremonium sp. and Paecilomyces sp. was identified both in clean and in contaminated soil profiles. Thus, although the relative amounts of fungi and actinobacteria in these microbial communities were highest in the upper soil layers, many representatives from these groups were found in hydrocarbon contaminated subsoils even under oxygen limited conditions. PMID:19543551

  20. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes. PMID:24244004

  1. Rhodococcus baikonurensis BTM4c, a boron-tolerant actinobacterial strain isolated from soil.

    PubMed

    Yoon, Jaewoo; Miwa, Hiroki; Ahmed, Iftikhar; Yokota, Akira; Fujiwara, Toru

    2010-01-01

    By screening a bacterial population from the soil in Tokyo, Japan, we isolated a boron-tolerant bacterium, strain BTM4c. Strain BTM4c grew under the boron excess conditions with 100 mM boric acid, which is generally toxic to bacteria. Molecular phylogenetic, chemotaxonomic, and physiological data showed that the strain belongs to the genus Rhodococcus, and is to be identified as Rhodococcus baikonurensis. PMID:20057133

  2. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation.

    PubMed Central

    Ruiz, M F; Esteban, M R; Doñoro, C; Goday, C; Sánchez, L

    2000-01-01

    In Drosophila melanogaster and in Sciara ocellaris dosage compensation occurs by hypertranscription of the single male X chromosome. This article reports the cloning and characterization in S. ocellaris of the gene homologous to maleless (mle) of D. melanogaster, which implements dosage compensation. The Sciara mle gene produces a single transcript, encoding a helicase, which is present in both male and female larvae and adults and in testes and ovaries. Both Sciara and Drosophila MLE proteins are highly conserved. The affinity-purified antibody to D. melanogaster MLE recognizes the S. ocellaris MLE protein. In contrast to Drosophila polytene chromosomes, where MLE is preferentially associated with the male X chromosome, in Sciara MLE is found associated with all chromosomes. Anti-MLE staining of Drosophila postblastoderm male embryos revealed a single nuclear dot, whereas Sciara male and female embryos present multiple intranuclear staining spots. This expression pattern in Sciara is also observed before blastoderm stage, when dosage compensation is not yet set up. The affinity-purified antibodies against D. melanogaster MSL1, MSL3, and MOF proteins involved in dosage compensation also revealed no differences in the staining pattern between the X chromosome and the autosomes in both Sciara males and females. These results lead us to propose that different proteins in Drosophila and Sciara would implement dosage compensation. PMID:11102379

  3. The Genus Antillopsyche Banks (Trichoptera: Polycentropodidae) and Reevaluation of its Position Within the Phylogeny of the Suborder Annulipaplia

    NASA Astrophysics Data System (ADS)

    Chamorro-Lacayo, M.; Holzenthal, R. W.

    2005-05-01

    The genus Antillopsyche Banks 1941 is a Greater Antilles endemic with 4 extant species, A. ayacara Botosaneanu 1980, A. demma Botosaneanu 1996, A. tubicola Flint 1964, and A. wrighti Banks 1941, and one fossil species, A. oliveri Wichard 1985. Flint placed Antillopsyche in the subfamily Pseudoneureclipsinae, erected by Ulmer for the Old World genus Pseudoneureclipsis, of the family Polycentropodidae. Li and colleagues in 2001 transferred the subfamily Pseudoneureclipsinae to the family Dipseudopsidae, based largely on female and larval characters. However, Antillopsyche was not included in the analysis. Reevalutaion of the position of Antillopsyche on the basis of morphological characters of larvae and adults suggests that Antillopsyche and Pseudoneureclipsis form a monophyletic group. A preliminary reanalysis of Annulipalpia left placement of the subfamily Pseudoneureclipsinae equivocal. We did not find support for a sister relationship between Pseudoneureclipsinae and Dipseudopsidae. Additional larval, pupal, adult and behavioral characters will be included in a future analysis. Antillopsyche is revised to include new illustrations of extant species, a key, and detailed descriptions of the adult and immature stages.

  4. Taxonomy of intertidal cheilostome Bryozoa of Maceió, northeastern Brazil. Part 1: Suborders Inovicellina, Malacostegina and Thalamoporellina.

    PubMed

    Vieira, Leandro M; Almeida, Ana C S; Winston, Judith E

    2016-01-01

    Thirteen cheilostome bryozoan species from intertidal habitats of Maceió, Alagoas State, Brazil, are reported here. We describe four new species: Aetea cultrata n. sp., Biflustra marcusi n. sp., Biflustra sphinx n. sp. and Jellyella brasiliensis n. sp. Two other species of Inovicellina, Aetea arcuata Winston & Hayward, 2012, and Aetea curta Jullien, 1888, and four species of Malacostegina, Arbocuspis bellula (Hincks, 1881), Arbocuspis bicornis (Hincks, 1881), Arbocuspis ramosa (Osburn, 1940), and Jellyella tuberculata (Bosc, 1802), are reported on drift algae. Three species of Thalamoporellina are found for the first time in Maceió, Labioporella tuberculata Winston, Vieira & Woollacoot, 2014, Steginoporella           magnilabris (Busk, 1854) and Thalamoporella floridana Osburn, 1940. PMID:27394525

  5. Complete mitochondrial genome of brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae) and phylogenetic relationships of Hemipteran suborders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys (Stal) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage ...

  6. Comparison of lipids in selected tissues of the Florida manatee (Order Sirenia) and bottlenose dolphin (Order Cetacea; Suborder Odontoceti).

    PubMed

    Ames, Audra L; Van Vleet, Edward S; Reynolds, John E

    2002-07-01

    The position, porosity and oil-filled nature of the zygomatic process of the squamosal bone (ZPSB) of the Florida manatee, Trichechus manatus latirostris, suggest that it may have a similar sound conduction function to that of the intramandibular fat body (IMFB) of the bottlenose dolphin, Tursiops truncatus, and other odontocetes. To examine this possibility we determined the lipid composition of the ZPSB and adipose tissue from the dorsal part of the head region of the Florida manatee, and compared it to that of the dolphin IMFB and melon (another fatty area implicated in sound conduction in odontocetes). Lipids from manatee ZPSB and from adipose tissue were composed almost entirely of triacylglycerols. The most abundant fatty acids of the ZPSB were 18:1, 16:0, 14:0 and 16:1. The major fatty acids of the adipose tissue in the head were the four mentioned above, along with 12:0 and 18:0. Manatee samples did not contain isovaleric acid (iso-5:0), which was found in the bottlenose dolphin IMFB and melon, and has been related to sound conduction in dolphins and some other odontocetes. Thus, if manatee tissues are capable of sound conduction, and this process does occur through the ZPSB, a somewhat different suite of lipid components must support this function. PMID:12091108

  7. Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T)

    SciTech Connect

    Copeland, Alex; Lapidus, Alla; Rio, Tijana GlavinaDel; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chertkov, Olga; Brettin, Thomas; Detter, John C.; Han, Cliff; Ali, Zahid; Tindall, Brian J.; Goker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location of the genomically little studied suborder Catenulisporineae within the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic conditions. Under regular conditions C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium isolated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial family Catenulisporaceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Endocarditis by Kocuria rosea in an immunocompetent child.

    PubMed

    Moreira, Jorge Salomão; Riccetto, Adriana Gut Lopes; Silva, Marcos Tadeu Nolasco da; Vilela, Maria Marluce dos Santos

    2015-01-01

    Kocuria rosea belongs to genus Kocuria (Micrococcaceae family, suborder Micrococcineae, order Actinomycetales) that includes about 11 species of bacteria. Usually, Kocuria sp are commensal organisms that colonize oropharynx, skin and mucous membrane; Kocuria sp infections have been described in the last decade commonly affecting immunocompromised patients, using intravenous catheter or peritoneal dialysis. These patients had mainly bacteremia/recurrent sepsis. We hereby describe the case of a 10-year-old girl, immunocompetent, who had endocarditis/sepsis by K. rosea which was identified in five different blood cultures by Vitek 2 ID-GPC card (BioMérieux, France). Negative HIV serology, blood count within normal range of leukocytes/neutrophils and lymphocytes, normal fractions of the complement, normal level of immunoglobulins for the age; lymphocyte immunophenotyping was also within the expected values. Thymus image was normal at chest MRI. No catheters were required. Identification of K. rosea was essential to this case, allowing the differentiation of coagulase-negative staphylococci and use of an effective antibiotic treatment. Careful laboratory analysis of Gram-positive blood-born infections may reveal more cases of Kocuria sp infections in immunocompetent patients, which may collaborate for a better understanding, prevention and early treatment of these infections in pediatrics. PMID:25523077

  9. Bovine vaginal strain Kocuria kristinae and its characterization.

    PubMed

    Styková, Eva; Nemcová, Radomíra; Gancarčíková, Soňa; Valocký, Igor; Lauková, Andrea

    2016-05-01

    Kocuria spp. are widely distributed in nature. They are Gram-positive, coagulase-negative, coccoid bacteria belonging to the family Micrococcaceae, suborder Micrococcineae, order Actinomycetales, class Actinobacteria. In general, limited knowledge exists concerning the properties associated with the representants of the genus Kocuria, Kocuria kristinae as well. Following our previous results, K. kristinae Kk2014 Biocenol(™) (CCM 8628) was isolated from vagina of a healthy cow. Its taxonomical allottation was confirmed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system and phenotypic characteristics. Kk2014 strain showed strong adherence capability to the vaginal mucus, produced organic acids which can play a role in prevention of unsuitable contamination, and showed in vitro antagonistic/antimicrobial activity against strains Arcanobacterium pyogenes CCM 5753, Fusobacterium necrophorum CCM 5982, Streptococcus equi subsp. zooepidemicus CCM 7316, and Gardnerella vaginalis CCM 6221. Antimicrobial activity ranged from 100 to 200 AU/mL, up to 32 mm in size, respectively. PMID:26494240

  10. Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach

    PubMed Central

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; M. Vogel, Timothy; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  11. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    PubMed Central

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D.; Aldrich, Joshua T.; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W.; Jacobs, Jon M.; Adams, Paul D.; Northen, Trent R.; Simmons, Blake A.

    2016-01-01

    ABSTRACT Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T. bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. PMID:27555310

  12. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    PubMed

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  13. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field.

    PubMed

    Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk

    2013-09-01

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512

  14. Formation of stylet sheaths in aere (in air) from eight species of phytophagous hemipterans from six families (suborders: Auchenorrhyncha and Sternorrhyncha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event of these piercing-sucking insects. The stylet sheath composition is unknown, and it is suggested that it forms through interactions with external (...

  15. Formation of Stylet Sheaths in āere (in air) from eight species of phytophagous hemipterans from six families (Suborders: Auchenorrhyncha and Sternorrhyncha).

    PubMed

    Morgan, J Kent; Luzio, Gary A; Ammar, El-Desouky; Hunter, Wayne B; Hall, David G; Shatters, Robert G

    2013-01-01

    Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event. Stylet sheath compositions are largely unknown and their mode of solidification remains to be elucidated. This report demonstrates the formation and solidification of in āere (in air) produced stylet sheaths by six hemipteran families: Diaphorina citri (Psyllidae, Asian citrus psyllid), Aphis nerii (Aphididae, oleander/milkweed aphid), Toxoptera citricida (Aphididae, brown citrus aphid), Aphis gossypii (Aphididae, cotton melon aphid), Bemisia tabaci biotype B (Aleyrodidae, whitefly), Homalodisca vitripennis (Cicadellidae, glassy-winged sharpshooter), Ferrisia virgata (Pseudococcidae, striped mealybug), and Protopulvinaria pyriformis (Coccidae, pyriform scale). Examination of in āere produced stylet sheaths by confocal and scanning electron microscopy shows a common morphology of an initial flange laid down on the surface of the membrane followed by continuous hollow core structures with sequentially stacked hardened bulbous droplets. Single and multi-branched sheaths were common, whereas mealybug and scale insects typically produced multi-branched sheaths. Micrographs of the in āere formed flanges indicate flange sealing upon stylet bundle extraction in D. citri and the aphids, while the B. tabaci whitefly and H. vitripennis glassy-winged sharpshooter flanges remain unsealed. Structural similarity of in āere sheaths are apparent in stylet sheaths formed in planta, in artificial diets, or in water. The use of 'Solvy', a dissolvable membrane, for intact stylet sheath isolation is reported. These observations illustrate for the first time this mode of stylet sheath synthesis adding to the understanding of stylet sheath formation in phytophagous hemipterans and providing tools for future use in structural and compositional analysis. PMID:23638086

  16. Proposal for the New Genus Allokutzneria gen. nov. Within the Suborder Pseudonocardineae and Transfer of Kibdelosporangium albatum Tomita et al. 1993 as Allokutzneria albata comb. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the course of phylogenetic analyses based on 16S rRNA gene sequences for all currently described taxa within the family Pseudonocardineae it became evident that Kibdelosporangium albatum DSM 44149T was misplaced within the genus Kibdelosporangium and is phylogenetically most closely related t...

  17. Histologic, Molecular, and Clinical Evaluation of Explanted Breast Prostheses, Capsules, and Acellular Dermal Matrices for Bacteria

    PubMed Central

    Poppler, Louis; Cohen, Justin; Dolen, Utku Can; Schriefer, Andrew E.; Tenenbaum, Marissa M.; Deeken, Corey; Chole, Richard A.; Myckatyn, Terence M.

    2015-01-01

    Background Subclinical infections, manifest as biofilms, are considered an important cause of capsular contracture. Acellular dermal matrices (ADMs) are frequently used in revision surgery to prevent recurrent capsular contractures. Objective We sought to identify an association between capsular contracture and biofilm formation on breast prostheses, capsules, and ADMs in a tissue expander/implant (TE/I) exchange clinical paradigm. Methods Biopsies of the prosthesis, capsule, and ADM from patients (N = 26) undergoing TE/I exchange for permanent breast implant were evaluated for subclinical infection. Capsular contracture was quantified with Baker Grade and intramammary pressure. Biofilm formation was evaluated with specialized cultures, rtPCR, bacterial taxonomy, live:dead staining, and scanning electron microscopy (SEM). Collagen distribution, capsular histology, and ADM remodeling were quantified following fluorescent and light microscopy. Results Prosthetic devices were implanted from 91 to 1115 days. Intramammary pressure increased with Baker Grade. Of 26 patients evaluated, one patient had a positive culture and one patient demonstrated convincing evidence of biofilm morphology on SEM. Following PCR amplification 5 samples randomly selected for 16S rRNA gene sequencing demonstrated an abundance of suborder Micrococcineae, consistent with contamination. Conclusions Our data suggest that bacterial biofilms likely contribute to a proportion, but not all diagnosed capsular contractures. Biofilm formation does not appear to differ significantly between ADMs or capsules. While capsular contracture remains an incompletely understood but common problem in breast implant surgery, advances in imaging, diagnostic, and molecular techniques can now provide more sophisticated insights into the pathophysiology of capsular contracture. Level of Evidence PMID:26229126

  18. Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix.

    PubMed

    Eisen, Sebastian; Poehlein, Anja; Johnson, D Barrie; Daniel, Rolf; Schlömann, Michael; Mühling, Martin

    2015-01-01

    Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria. PMID:25931603

  19. Streptosporangium lutulentum sp. nov., Streptosporangium fenghuangense sp. nov. and Streptosporangium corydalis sp. nov., three novel actinobacterial species isolated from National Forest Park of Fenghuang Mountain.

    PubMed

    Fang, Baozhu; Liu, Hui; Pan, Tong; Liu, Chongxi; Guan, Xuejiao; He, Hairong; Yan, Kai; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2016-03-01

    Three novel actinobacteria, designated strains NEAU-FSHN1(T), NEAU-hd-3(T) and NEAU-Y6(T), were isolated from a stream base, soil adjacent to the stream and a root of Corydalis yanhusuo L, respectively, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic positions of these strains. The three strains were observed to form scant aerial hyphae that differentiated into spherical spore vesicles. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-FHSN1(T), NEAU-hd-3(T) and NEAU-Y6(T) showed that the three novel isolates exhibit 99.2 % (NEAU-FHSN1(T)/NEAU-hd-3(T)), 99.2 % (NEAU-FHSN1(T)/NEAU-Y6(T)) and 99.7 % (NEAU-hd-3(T)/NEAU-Y6(T)) 16S rRNA gene sequence similarities with each other and that they are closely related to strains Streptosporangium shengliense NEAU-GH7(T) (sequence similarities 98.72, 98.85, 98.99 %), Streptosporangium roseum DSM 43021(T) (98.65, 98.51, 98.58 %) and Streptosporangium album DSM 43023(T) (98.41, 98.96, 98.89 %). However, the DNA-DNA hybridization values between strains NEAU-FSHN1(T), NEAU-hd-3(T) and NEAU-Y6(T) were 61.2 % (NEAU-FSHN1(T)/NEAU-hd-3(T)), 63.5 % (NEAU-FHSN1(T)/NEAU-Y6(T)) and 65.8 % (NEAU-hd-3(T)/NEAU-Y6(T)), and the values between the three strains and their close phylogenetic relatives were also below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, the three strains can be distinguished from each other and their close phylogenetic relatives. Thus, strains NEAU-FHSN1(T), NEAU-hd-3(T) and NEAU-Y6(T) are concluded to represent three novel species of the genus Streptosporangium, for which the names Streptosporangium lutulentum sp. nov., Streptosporangium fenghuangense sp. nov. and Streptosporangium corydalis sp. nov. are proposed. The type strains are NEAU-FHSN1(T) (=CGMCC 4.7141(T) = DSM 46740(T)), NEAU-Y6(T) (=CGMCC 4.7150(T) = DSM 46722(T)) and NEAU-hd3(T) (CGMCC 4.7212(T) = JCM 30058(T)), respectively. PMID:26767659

  20. Genus X. Lechevalieria Labeda, Hatano, Kroppenstedt and Tamura 2001, 1049vp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently compose the actinobacterial genus Lechevalieria is presented. The phylogenetic position of the taxa within this genus, including Lecehvalieria aerocolonigenes, Lechevalieria flava, Lechevalieria fradiae, and Lechevalieria xinjian...

  1. Genus XV. Saccharothrix Labeda, Testa, Lechevalier and Lechevalier 1984, 429vp emend. Labeda and Lechevalier 1989, 422

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics, ecology, and natural products of the species that currently compose the actinobacterial genus Saccharothrix is presented. The phylogenetic position of the taxa within this genus, including Saccharothrix algeriensis, Saccharothrix australiensis, Saccharothrix coeruleofla...

  2. Genus XI. Lentzea Yassin, Rainey, Brzezinka, Jahnke, Weissbrodt, Budzikiewicz, Stackebrandt, and Schaal 1995, 362vp emend. Labeda, Hatano, Kroppenstedt and Tamura 2001, 1049

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently compose the actinobacterial genus Lentzea is presented. The phylogenetic position of the taxa within this genus, including Lentzea albidocapillata, Lentzea albida, Lentzea californiensis, Lentzea flaviverrucosa, Lentzea kentuckye...

  3. Genus VIII. Kibdelosporangium Shearer, Colman, Ferrin, Nisbet and Nash 1986, 48

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphology, physiology, systematics, ecology, and natural products of the species that currently compose the actinobacterial genus Kibdelosporangium is presented. The phylogenetic position of the taxa within this genus, including Kibdelosporangium aridum subsp. aridum, Kibdelosporangium aridum ...

  4. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  5. FAMILY BIBIONIDAE.

    PubMed

    Falaschi, Rafaela Lopes; Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Bibionidae are a family belonging to the suborder Bibionomorpha with four genera and 17 species known from Colombia. This work expands the distribution of these species to other localities in the country. PMID:27395253

  6. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge

    PubMed Central

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  7. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge.

    PubMed

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662-4000 m below water surface. Actinobacterial sequences represented 1.2-9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  8. Hidden among Sea Anemones: The First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) Reveals a Novel Group of Hexacorals

    PubMed Central

    Rodríguez, Estefanía; Barbeitos, Marcos S.; Brugler, Mercer R.; Crowley, Louise M.; Grajales, Alejandro; Gusmão, Luciana; Häussermann, Verena; Reft, Abigail; Daly, Marymegan

    2014-01-01

    Sea anemones (order Actiniaria) are among the most diverse and successful members of the anthozoan subclass Hexacorallia, occupying benthic marine habitats across all depths and latitudes. Actiniaria comprises approximately 1,200 species of solitary and skeleton-less polyps and lacks any anatomical synapomorphy. Although monophyly is anticipated based on higher-level molecular phylogenies of Cnidaria, to date, monophyly has not been explicitly tested and at least some hypotheses on the diversification of Hexacorallia have suggested that actiniarians are para- or poly-phyletic. Published phylogenies have demonstrated the inadequacy of existing morphological-based classifications within Actiniaria. Superfamilial groups and most families and genera that have been rigorously studied are not monophyletic, indicating conflict with the current hierarchical classification. We test the monophyly of Actiniaria using two nuclear and three mitochondrial genes with multiple analytical methods. These analyses are the first to include representatives of all three currently-recognized suborders within Actiniaria. We do not recover Actiniaria as a monophyletic clade: the deep-sea anemone Boloceroides daphneae, previously included within the infraorder Boloceroidaria, is resolved outside of Actiniaria in several of the analyses. We erect a new genus and family for B. daphneae, and rank this taxon incerti ordinis. Based on our comprehensive phylogeny, we propose a new formal higher-level classification for Actiniaria composed of only two suborders, Anenthemonae and Enthemonae. Suborder Anenthemonae includes actiniarians with a unique arrangement of mesenteries (members of Edwardsiidae and former suborder Endocoelantheae). Suborder Enthemonae includes actiniarians with the typical arrangement of mesenteries for actiniarians (members of former suborders Protantheae, Ptychodacteae, and Nynantheae and subgroups therein). We also erect subgroups within these two newly-erected suborders

  9. Genome sequence of "Candidatus Aquiluna" sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord.

    PubMed

    Kang, Ilnam; Lee, Kiyoung; Yang, Seung-Jo; Choi, Ahyoung; Kang, Dongmin; Lee, Yoo Kyoung; Cho, Jang-Cheon

    2012-07-01

    We report the genome sequence of actinobacterial strain IMCC13023, isolated from arctic fjord seawater. Phylogenetic analysis of 16S rRNA gene showed that the strain is related to "Candidatus Aquiluna rubra." The genome information suggests that strain IMCC13023 is a photoheterotroph carrying actinorhodopsin, with the smallest genome ever reported for a free-living member of the Actinobacteria. PMID:22689238

  10. Illumina-based analysis of core actinobacteriome in roots, stems, and grains of rice.

    PubMed

    Wang, Wenfeng; Zhai, Yanyan; Cao, Lixiang; Tan, Hongming; Zhang, Renduo

    2016-09-01

    Seed-borne microbiota can transmit vertically from generation to generation and be a favour mutualism between the endosymbionts and hosts. The aim of this study was to investigate the rice-associated actinobacterial taxa in roots, stems, and grains and explore vertically transmitted core actinobacteriome of rice plants. Illumina sequencing analyses of samples of rice grains, stems, and roots showed that the roots contained the most diverse actinobacteria among the tissues. The grains contained 78 actinobacterial operational taxonomic units (OTUs), among which 44 were shared with those in the stems, 30 shared with those in the roots. The coexisted OTUs in the three types of samples mainly belong to genera of Pseudonocardia, Dietzia, Nocardioides, Streptomyces, Mycobacterium, Corynebacterium, Citricoccus, Salinibacterium, and Agrococcus, and other unclassified taxa. The dominant actinobacterial genera Pseudonocardia and Dietzia in the stems and roots were still detected in relatively high abundance in the grains. The Streptomyces isolated from surface sterilized grains could improve nitrogen use efficiency of rice seedlings and the resistance to rice blast fungus. The results suggested that the rice grains contained diverse actinobacterial taxa deriving from stems and roots and showed intimate correlation with the host plants. PMID:27393994

  11. Genus IV. Actinosynnema Hasegawa, Lechevalier and Lechevalier 1978, 304al

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently composes the actinobacterial genus Actinosynnema is presented. The phylogenetic position of the species within this genus relative to the other genera within the family Actinosynnemataceae is discussed. Methods for isolation, pr...

  12. Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence

    PubMed Central

    Eisenlord, Sarah D; Zak, Donald R; Upchurch, Rima A

    2012-01-01

    It is uncertain whether the same ecological forces that structure plant and animal communities also shape microbial communities, especially those residing in soil. We sought to uncover the relative importance of present-day environmental characteristics, climatic variation, and historical contingencies in shaping soil actinobacterial communities in a long-term chronosequence. Actinobacteria communities were characterized in surface soil samples from four replicate forest stands with nearly identical edaphic and ecological properties, which range from 9500 to 14,000 years following glacial retreat in Michigan. Terminal restriction fragment length polymorphism (TRFLP) profiles and clone libraries of the actinobacterial 16S rRNA gene were constructed in each site for phenetic and phylogenetic analysis to determine whether dispersal limitation occurred following glacial retreat, or if community composition was determined by environmental heterogeneity. At every level of examination, actinobacterial community composition most closely correlated with distance, a surrogate for time, than with biogeochemical, plant community, or climatic characteristics. Despite correlation with leaf litter C:N and annual temperature, the significant and consistent relationship of biological communities with time since glacial retreat provides evidence that dispersal limitation is an ecological force structuring actinobacterial communities in soil over long periods of time. PMID:22822433

  13. Genome Sequence of Radiation-Resistant Modestobacter marinus Strain BC501, a Representative Actinobacterium That Thrives on Calcareous Stone Surfaces

    PubMed Central

    Normand, Philippe; Gury, Jérôme; Pujic, Petar; Chouaia, Bessem; Crotti, Elena; Brusetti, Lorenzo; Daffonchio, Daniele; Vacherie, Benoit; Barbe, Valérie; Médigue, Claudine; Calteau, Alexandra; Ghodhbane-Gtari, Faten; Essoussi, Imen; Nouioui, Imen; Abbassi-Ghozzi, Ines

    2012-01-01

    Here we report the full genome sequence of Modestobacter marinus strain BC501, an actinobacterial isolate that thrives on stone surfaces. The generated chromosome is circular, with a length of 5.57 Mb and a G+C content of 74.13%, containing 5,445 protein-coding genes, 48 tRNAs, and 3 ribosomal operons. PMID:22887672

  14. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  15. Genus XIII. Umezawaea Labeda and Kroppenstedt 2007, 2761vp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiology, systematics and ecology of the species that currently compose the actinobacterial genus Umezawaea is presented. The phylogenetic position of the lone species within this genus, Umezawaea tangerina relative to the species in other genera within the family Actinosynnemataceae is discu...

  16. Draft Genome Sequence of Dietzia alimentaria 72T, Belonging to the Family Dietziaceae, Isolated from a Traditional Korean Food

    PubMed Central

    Kim, Jandi; Roh, Seong Woon; Bae, Jin-Woo

    2011-01-01

    Actinobacterial strain 72T, named Dietzia alimentaria, which belongs to the family Dietziaceae, was isolated from a traditional Korean food made from clams. The draft genome sequence of D. alimentaria 72T contains 3,352,817 bp, with a G+C content of 67.34%. PMID:22072646

  17. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    PubMed

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  18. Family I. Pseudonocardiaceae Embley, Smida, and Stackebrandt 1989, 205vp emend. Labeda, Goodfellow, Chun, Zhi and Li 2010a

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The formal description of the actinobacterial higher taxon the family Pseudonocardiaceae is presented. The differential morphological and chemotaxonomic characteristics and diagnostic signature nucleotides from the 16S rRNA gene for the genera in the family is discussed. A key to the identificatio...

  19. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone.

    PubMed

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1-YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line. PMID:27047461

  20. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone

    PubMed Central

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line. PMID:27047461

  1. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees.

    PubMed

    Kaewkla, Onuma; Franco, Christopher M M

    2013-02-01

    In recent years, new actinobacterial species have been isolated as endophytes of plants and shrubs and are sought after both for their role as potential producers of new drug candidates for the pharmaceutical industry and as biocontrol inoculants for sustainable agriculture. Molecular-based approaches to the study of microbial ecology generally reveal a broader microbial diversity than can be obtained by cultivation methods. This study aimed to improve the success of isolating individual members of the actinobacterial population as pure cultures as well as improving the ability to characterise the large numbers obtained in pure culture. To achieve this objective, our study successfully employed rational and holistic approaches including the use of isolation media with low concentrations of nutrients normally available to the microorganism in the plant, plating larger quantities of plant sample, incubating isolation plates for up to 16 weeks, excising colonies when they are visible and choosing Australian endemic trees as the source of the actinobacteria. A hierarchy of polyphasic methods based on culture morphology, amplified 16S rRNA gene restriction analysis and limited sequencing was used to classify all 576 actinobacterial isolates from leaf, stem and root samples of two eucalypts: a Grey Box and Red Gum, a native apricot tree and a native pine tree. The classification revealed that, in addition to 413 Streptomyces spp., isolates belonged to 16 other actinobacterial genera: Actinomadura (two strains), Actinomycetospora (six), Actinopolymorpha (two), Amycolatopsis (six), Gordonia (one), Kribbella (25), Micromonospora (six), Nocardia (ten), Nocardioides (11), Nocardiopsis (one), Nonomuraea (one), Polymorphospora (two), Promicromonospora (51), Pseudonocardia (36), Williamsia (two) and a novel genus Flindersiella (one). In order to prove novelty, 12 strains were characterised fully to the species level based on polyphasic taxonomy. One strain represented a novel

  2. Little known chewing lice (Phthiraptera) infesting crab plover Dromas ardeola Paykull, 1805 (Charadriiformes: Dromadidae) from the Red Sea.

    PubMed

    Alahmed, Azzam; Shobrak, Mohammed; Kheir, Salah; Nasser, Mohamed

    2015-10-01

    Scanty information is available for many species of chewing lice of marine birds. Through this work we investigated one of most characteristic marine bird for chewing lice. Seven individuals of crab plovers Dromas ardeola Paykull, 1805 were trapped using standard mist nets on Humr Island in Farasan Archipelago, Saudi Arabia. Two species of chewing lice were found to infest these birds: Actornithophilus ardeolae Timmermann, 1954 of suborder Amblycera and Quadraceps brunneus (Nitzsch in Giebel, 1866) of suborder Ischnocera. Diagnostic characters, data of specimens examined, high definition photos and host distribution map are provided through this paper. PMID:26232655

  3. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    SciTech Connect

    Abt, Birte; Foster, Brian; Lapidus, Alla L.; Clum, Alicia; Sun, Hui; Pukall, Rudiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne A.; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete Genome Sequence of “Candidatus Sulcia muelleri” ML, an Obligate Nutritional Symbiont of Maize Leafhopper (Dalbulus maidis)

    PubMed Central

    Chang, Hsing-Hua; Cho, Shu-Ting; Canale, Maria C.; Mugford, Sam T.; Lopes, João R. S.; Hogenhout, Saskia A.

    2015-01-01

    “Candidatus Sulcia muelleri” is a symbiont of sap-feeding insects in the suborder Auchenorrhyncha. The strain “Ca. Sulcia muelleri” ML is associated with the maize leafhopper (Dalbulus maidis), collected in Brazil, which is a disease vector that affects corn production. Here, we report the complete genome sequence of this bacterium. PMID:25635014

  5. Complete Genome Sequence of "Candidatus Sulcia muelleri" ML, an Obligate Nutritional Symbiont of Maize Leafhopper (Dalbulus maidis).

    PubMed

    Chang, Hsing-Hua; Cho, Shu-Ting; Canale, Maria C; Mugford, Sam T; Lopes, João R S; Hogenhout, Saskia A; Kuo, Chih-Horng

    2015-01-01

    "Candidatus Sulcia muelleri" is a symbiont of sap-feeding insects in the suborder Auchenorrhyncha. The strain "Ca. Sulcia muelleri" ML is associated with the maize leafhopper (Dalbulus maidis), collected in Brazil, which is a disease vector that affects corn production. Here, we report the complete genome sequence of this bacterium. PMID:25635014

  6. No Latitudinal Trends in Body Size of Foraminifera

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Payne, J.; Seixas, G.

    2012-12-01

    Many organisms, such as penguins and polar bears, follow Bergmann's rule, which states that body size of animals tends to increase as temperature decreases, and thus as latitude increases toward to poles. A study of marine mollusk bivalves across a latitudinal gradient found no correlation between body size and latitude along the North American Pacific Coast, suggesting that the body size of marine bivalves might be controlled by other factors. This posed the question: Is there a lack of correlation between latitude and body size for all marine invertebrates or is it unique to marine bivalves? In this study, we examined four suborders of benthic foraminifera, Lagenina, Miliolina, Rotaliina, and Textulariina, a diverse phylum of amoeboid protists, to determine the relationship between body size and latitude within and across suborders at the global scale. We measured the shell (test) dimensions of foraminifera from a compilation of monograph images of type specimens. The mean test size as well as the maximum body size of those foraminifera suborders does not vary with increasing latitude. Our results show that foraminifera do not follow Bergmann's rule, consistent with the body size distribution pattern observed in marine bivalves. Different biological and environmental factors that vary between foraminifera suborders, such as life habitats, behaviors, and physiology, might have a greater influence on body size distributions.

  7. FAMILY LYGISTORRHINIDAE.

    PubMed

    Oliveira, Sarah Siqueira; Amorim, Dalton De Souza

    2016-01-01

    The Lygistorrhinidae are a family belonging to the suborder Bibionomorpha, with no previous record from Colombia. This paper refers for the first time to the occurrence of the family in the country, an undetermined species of the genus Lygistorrhina (Probolaeus) Williston. PMID:27395260

  8. MOLECULAR PHYLOGENY OF LARGE MILIOLID FORAMINIFERA. (R825869)

    EPA Science Inventory

    Abstract

    The foraminiferal superfamily Soritacea belongs to the suborder Miliolina and is divided in two families, Peneroplidae and Soritidae, the latter one comprising two subfamilies, Archaiasinae and Soritinae. Phylogenetic relationships of 11 genera of soritid fora...

  9. Thysanoptera-Terebrantia of the Hawaiian Islands: an identification manual

    PubMed Central

    Mound, Laurence; Nakahara, Sueo; Tsuda, Dick M.

    2016-01-01

    Abstract An illustrated identification system is presented to 99 species and 49 genera in three families recorded from the Hawaiian Islands in the Thysanoptera suborder Terebrantia. Only seven (possibly eight) of these species are considered endemic, the remainder being adventive to these islands. The only previous study of Hawaiian Thysanoptera, by Zimmerman in 1948, included 47 Terebrantia species in 21 genera. PMID:26843832

  10. 75 FR 42698 - Takes of Marine Mammals Incidental to Specified Activities; Installation of Meteorological Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ...). Blue whale (Balaenoptera Endangered........ Unknown. musculus). Minke whale (Balaenoptera None 2,998... projects (e.g., 73 FR 38180; 74 FR 18492; 74 FR 63724) which are relevant here. Additionally, in 2009, the... Status Population Suborder Mysticeti (baleen whales) North Atlantic right whale Endangered...........

  11. Soil Genesis and Development, Lesson 5 - Soil Geography and Classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The system of soil classification developed by the United States Department of Agriculture (USDA) is called Soil Taxonomy. Soil Taxonomy consists of a hierarchy of six levels which, from highest to lowest, are: Order, Suborder, Great Group, Subgroup, family, and series. This lesson will focus on bro...

  12. Proposal for Umezawaea gen. nov., a new genus of the Actinosynnemataceae related to Saccharothrix and transfer of Saccharothrix tangerinus Kinoshita et al. 2000 as Umezawaea tangerina gen. nov., comb. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of phylogenetic analyses of the taxa within the suborder Pseudonocardineae, it was observed that Saccharothrix tangerinus MK27-91T was misplaced in the genus Saccharothrix. After a detailed examination of nucleotide signatures in the 16S rRNA gene sequence along with the morphological...

  13. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale

    NASA Astrophysics Data System (ADS)

    Zhang, Binglin; Wu, Xiukun; Zhang, Gaosen; Li, Shuyan; Zhang, Wei; Chen, Ximing; Sun, Likun; Zhang, Baogui; Liu, Guangxiu; Chen, Tuo

    2016-05-01

    Glacier forelands, where the initially exposed area is unvegetated with minimal human influence, are an ideal place for research on the distributions and biogeography of microbial communities. Actinobacteria produce many bioactive substances and have important roles in soil development and biogeochemical cycling. However, little is known about the distribution and biogeography of Actinobacteria in glacier forelands. Therefore, we investigated the patterns of diversity and the biogeography of actinobacterial communities of the inhabited forefields of 5 glaciers in China. Of the bacteria, the mean relative abundance of Actinobacteria was 13.1%, and 6 classes were identified in the phylum Actinobacteria. The dominant class was Actinobacteria (57%), which was followed in abundance by Acidimicrobiia (19%) and Thermoleophilia (19%). When combined, the relative abundance of the other three classes, the MB-A2-108, Nitriliruptoria and Rubrobacteria, was only 2.4%. A biogeographic pattern in the forelands of the 5 glaciers in China was not detected for actinobacterial communities. Compared with 7 other actinobacterial communities found in the forelands of glaciers globally, those in the Southern Hemisphere were significantly different from those in the Northern Hemisphere. Moreover, the communities were significantly different on the separate continents of the Northern Hemisphere. The dissimilarity of the actinobacterial communities increased with geographic distance (r = 0.428, p = 0.0003). Because of environmental factors, the effect of geography was clear when the distance exceeded a certain continent-level threshold. With the analysis of indicator species, we found that each genus had a geographic characteristic, which could explain why the communities with greater diversity were more strongly affected by biogeography.

  14. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    SciTech Connect

    Gao, B.; Sugiman-Marangos, S; Junop, M; Gupta, R

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  15. First complete sequence of a giant linear plasmid from a micrococcus strain isolated from an extremely high-altitude lake.

    PubMed

    Dib, Julián Rafael; Schuldes, Jörg; Thürmer, Andrea; Farias, María E; Daniel, Rolf; Meinhardt, Friedhelm

    2013-01-01

    Micrococcus sp. strain V7, an actinobacterial strain adapted to the extreme conditions of the Laguna Vilama, an extremely high-altitude (4,600 m above sea level) lake in the Argentinian Puna, was found to carry the giant linear plasmid pLMV7. We determined its sequence (92,815 bp) as a prerequisite to the investigation of its role in survival in such a harsh environment. PMID:24285659

  16. High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a copper mine

    PubMed Central

    Castro, Daniel B.A.; Pereira, Letícia Bianca; Silva, Marcus Vinícius M. e; Silva, Bárbara P. da; Palermo, Bruna Rafaella Z.; Carlos, Camila; Belgini, Daiane R.B.; Limache, Elmer Erasmo G.; Lacerda, Gileno V. Jr; Nery, Mariana B.P.; Gomes, Milene B.; Souza, Salatiel S. de; Silva, Thiago M. da; Rodrigues, Viviane D.; Paulino, Luciana C.; Vicentini, Renato; Ferraz, Lúcio F.C.; Ottoboni, Laura M.M.

    2015-01-01

    An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest. PMID:26484219

  17. Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by Soil Actinobacteria

    PubMed Central

    Větrovský, Tomáš; Steffen, Kari Timo; Baldrian, Petr

    2014-01-01

    While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide. PMID:24551229

  18. Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve

    PubMed Central

    Sun, Hong-Min; Zhang, Tao; Yu, Li-Yan; Sen, Keya; Zhang, Yu-Qin

    2015-01-01

    The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil. PMID:26483778

  19. Diversity and novelty of actinobacteria in Arctic marine sediments.

    PubMed

    Zhang, Gaiyun; Cao, Tingfeng; Ying, Jianxi; Yang, Yanliu; Ma, Lingqi

    2014-04-01

    The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species. PMID:24519808

  20. Benthic foraminiferal distribution in deep-water periplatform carbonate environments

    SciTech Connect

    Martin, R.E.

    1987-05-01

    In contrast to clastic depositional environments, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 sediment samples (piston core top and grab) collected along two transverses approximately 25 km apart across the northern (windward) margin of Little Bahama Bank at depths of 275 to 1135 m. Most species exhibit great variation in abundance with depth. However, Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators (Spearman's r > 0.91; p < 0.005), being most abundant at depths > 1000 m, and correspond to lower slope (> 900 m) periplatform aprons. Individual foraminiferal suborders (Miliolina, Rotaliina, Textulariina) show no consistent depth-related trends. However, certain operational taxonomic groups, such as reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are significant more abundant at depths < 300 m (95% C.I.: 2.6 +/- 2.2% and 6.9 +/- 2.7%, respectively) than at greater depths (95% C.I.: 0.3 +/- 0.2% and 2.0 +/- 0.8%; Mann-Whitney U, p < 0.01), reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines (i.e., suborder Miliolina minus peneroplids and soritids) and rosalinids and discorbids (suborder Rotaliina) are also more abundant at depths < 300 m (95% C.I.: 27.5 +/- 7.4% and 32.6 +/- 8.5%, respectively) than at greater depths (95% C.I.: 10.0 +/- 3.9% and 1.5 +/- 1.6%; Mann-Whitney U, p < 0.01) and are winnowed from the carbonate platform. Assemblages exhibit greatest variation in diversity (species number, s; Shannon-Weaver, H'; evenness, J') at depths > 900 m; indices for shallower assemblages tend to be grouped more tightly at relatively high values.

  1. Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum

    PubMed Central

    Huang, Xiaoluo; Pinto, Daniela; Fritz, Georg

    2015-01-01

    ABSTRACT Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify

  2. Metagenomic Classification and Characterization Marine Actinobacteria from the Gulf of Maine without Representative Genomes

    NASA Astrophysics Data System (ADS)

    Sachdeva, R.; Heidelberg, J.

    2012-12-01

    Actinobacteria represent one of the largest and most diverse bacterial phyla and unlike most marine prokaryotes are gram-positive. This phylum encompasses a broad range of physiologies, morphologies, and metabolic properties with a broad array of lifestyles. The marine actinobacterial assemblage is dominated by the orders Actinomycetales and Acidimicrobiales (also known as the marine Actinobacteria clade). The Acidimicrobiales bacteria typically outnumber the Actinomycetales bacteria and are mostly represented by the OCS155 group. Although bacteria of the order Acidimicrobiales make up ~7.6% of the 16S matches from the Global Ocean Survey shotgun metagenomic libraries; very little is known about their potential function and role in biogeochemical cycling. Samples were collected from surface seawater samples in the Gulf of Maine (GOM) from the summer and winter of 2006. Sanger sequences were generated from the 0.1-0.8 μm fractions using paired-end medium insert shotgun libraries. The resulting 2.2 Gb were assembled using the Celera Assembler package into 280 Mb of non-redundant scaffolds. Putative actinobacterial assemblies were identified using (1) ribosomal RNA genes (16S and 23S), (2) phylogenetically informative non-ribosomal core genes thought to be resistant to horizontal gene transfer (e.g. RecA and RpoB) and (3) compositional binning using oligonucleotide frequency pattern based hierarchical clustering. Binning resulted in 3.6 Mb (4.2X coverage) of actinobacterial scaffolds that were comprised of 15.1 Mb of unassembled reads. Putative actinobacterial assemblies included both summer and winter reads demonstrating that the Actinobacteria are abundant year round. Classification reveals that all of the sampled Actinobacteria are from the orders Acidimicrobiales and Actinomycetales and are similar to those found in the global ocean. The GOM Actinobacteria show a broad range of G+C % content (32-66%) indicating a high level of genomic diversity. Those assemblies

  3. Molecular evolution of shark C-type natriuretic peptides.

    PubMed

    Takano, M; Sasayama, Y; Takei, Y

    1994-06-01

    C-type natriuretic peptides (CNP) of varying length were isolated from the atrium or ventricle of a shark, Lamna ditropis and their amino acid sequences were determined. Although the sequence of Lamna CNP was highly homologous to those of other CNPs sequenced to date, the Lamna CNP-41, the longest CNP identified in this study, has one amino acid replacement from those of Triakis scyllia and Scyliorhinus canicula, and three amino acid replacements from that of Squalus acanthias. The degree of similarity of CNP molecules coincides well with their systematic positions in the cladogram of elasmobranchs; Lamna, Triakis and Scyliorhinus belong to the same order, but Lamna and Squalus belong to different orders. The facts that Lamna and Triakis are in different suborders but Triakis and Scyliorhinus are in the same suborder and have identical CNP-41, also support this evolutionary implication. PMID:7765421

  4. Historical influences on deep-sea isopod diversity in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, George D. F.

    1998-01-01

    Most isopod crustaceans in the North Atlantic deep sea belong to the suborder Asellota. In contrast, South Atlantic isopod faunas have a significant component of flabelliferan isopods, a phylogenetic clade that contains suborders derived evolutionarily later than the Asellota. The flabelliferans decrease diversity from shallow water to deep water and on a south-to-north latitudinal gradient. Although many asellote families are endemic to the deep sea, none of the flabelliferan families appear to have evolved in the abyss. Recent colonisations of the deep sea, which may have been limited to the southern hemisphere by oceanographic conditions, have significant consequences for observed regional diversities of some taxa. Instability in oceanographic conditions owing to glaciation and benthic storms may have further limited benthic species richness of the North Atlantic deep-sea benthos.

  5. [Chiroptera and zoonosis: an emerging problem on all five continents].

    PubMed

    Hance, P; Garnotel, E; Morillon, M

    2006-04-01

    Zoonosis is the cause of the vast majority of emerging diseases. Bats that occupy the second place in the mammal class play an important role. Whether they belong to the microchiroptera suborder or to the megachiroptera suborder, bats on all five continents have been implicated in transmission of numerous pathogens including not only viruses such as Lyssavirus (e.g. rabies), Hepanivirus (e.g. Hendra and Nipah virus) and recently coronavirus (e.g. SARS-like coronavirus and Ebola virus) but also fungus such as histoplasmosis. By modifying environmental conditions and encroaching on their biotope, human intervention has probably contributed to the introduction of chiropteras into an epidemiologic chain in which they previously had no place, thus promoting the emergence of new pathogens. PMID:16775933

  6. Mitochondrial Genomes of Two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): Contrasting Rates in Mitochondrial Gene Rearrangement between Major Lineages of Psocodea

    PubMed Central

    Song, Fan; Zhou, Xuguo; Yang, Qianqian; Li, Zhihong; Cai, Wanzhi

    2013-01-01

    The superorder Psocodea has ∼10,000 described species in two orders: Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice). One booklouse, Liposcelis bostrychophila and six species of parasitic lice have been sequenced for complete mitochondrial (mt) genomes; these seven species have the most rearranged mt genomes seen in insects. The mt genome of a barklouse, lepidopsocid sp., has also been sequenced and is much less rearranged than those of the booklouse and the parasitic lice. To further understand mt gene rearrangements in the Psocodea, we sequenced the mt genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus, the first representatives from the suborder Psocomorpha, which is the most species-rich suborder of the Psocodea. We found that these two barklice have the least rearranged mt genomes seen in the Psocodea to date: a protein-coding gene (nad3) and five tRNAs (trnN, trnS1, trnE, trnM and trnC) have translocated. Rearrangements of mt genes in these two barklice can be accounted for by two events of tandem duplication followed by random deletions. Phylogenetic analyses of the mt genome sequences support the view that Psocoptera is paraphyletic whereas Phthiraptera is monophyletic. The booklouse, L. bostrychophila (suborder Troctomorpha) is most closely related to the parasitic lice. The barklice (suborders Trogiomorpha and Psocomorpha) are closely related and form a monophyletic group. We conclude that mt gene rearrangement has been substantially faster in the lineage leading to the booklice and the parasitic lice than in the lineage leading to the barklice. Lifestyle change appears to be associated with the contrasting rates in mt gene rearrangements between the two lineages of the Psocodea. PMID:23630609

  7. White piedra and pediculosis capitis in the same patient.

    PubMed

    Marques, Silvio Alencar; Richini-Pereira, Virgínia Bodelão; Camargo, Rosângela Maria Pires de

    2012-01-01

    White piedra is a superficial mycosis caused by the genus Trichosporon. It is characterized by nodules on the hair shaft. Pediculosis capitis is caused by Pediculus humanus var. capitis of the suborder Anoplura. Whereas pediculosis is a common infestation, clinical reports of white piedra are rare. Molecular biology procedures identified T. inkin as the agent of white piedra in this case report. The authors present associations between the two diseases in the same patient in order to highlight their clinical differences. PMID:23044579

  8. Antricoccus suffuscus gen. nov., sp. nov., isolated from a natural cave.

    PubMed

    Lee, Soon Dong

    2015-12-01

    A novel actinobacterium, designated strain C4-31T, was isolated from soil collected from a cave. Cells were aerobic, Gram-reaction-positive, oxidase-negative, catalase-positive and non-motile cocci. Comparison of 16S rRNA gene sequences showed that the organism occupied a distinct phylogenetic position within the suborder Frankineae, with sequence similarity values of less than 93.2 % to members of this suborder. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unknown aminophospholipid and an unknown phospholipid. The major fatty acids were iso-C16 : 0, C17 : 1ω6c and C16 : 0. The G+C content of the DNA was 62.8 mol%. On the basis of morphological and chemotaxonomic data as well as phylogenetic evidence, strain C4-31T ( = KCTC 39556T = DSM 100065T) is considered to represent the type strain of a novel species of a new genus in the suborder Frankineae, for which the name Antricoccus suffuscus gen. nov., sp. nov. is proposed. PMID:26358117

  9. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  10. Reassessing evolutionary relationships of scleractinian corals

    NASA Astrophysics Data System (ADS)

    Veron, J. E. N.; Odorico, D. M.; Chen, C. A.; Miller, D. J.

    1996-03-01

    The widely accepted family tree of Scleractinia published by Wells, based on a combination of morphological coral taxonomy and the fossil record, has recently been revised by Veron. It is now possible to test the validity of some of the conclusions reached by these and other authors by the use of molecular techniques. This paper reviews the results to date. Studies of ribosomal DNA have shown that the Scleractinia are monophyletic, i.e. derived from the same ancestral taxon. Extensions of this same data set now indicate that the Poritidae and Dendrophylliidae, with their fossil antecedents, may each warrant separate suborder status. They further suggest (a) that the Suborder Faviina (faviids, mussids and their allies) should probably be retained as a monophyletic group and (b) that Wells' original account of the isolated position of the Pocilloporidae and Astrocoeniidae is correct. These conclusions all accord with Veron's family tree. However, the Fungiina, even after removal of the Poritidae, are unlikely to be a monophyletic group at suborder level. The molecular data further show that externally observable morphological characters used in the taxonomy of extant corals distinguish families more reliably than do internal micro-skeletal characters frequently used in coral palaeontology.

  11. A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development.

    PubMed

    Garwood, Russell J; Sharma, Prashant P; Dunlop, Jason A; Giribet, Gonzalo

    2014-05-01

    Successfully placing fossils in phylogenies is integral to understanding the tree of life. Crown-group Paleozoic members of the arachnid order Opiliones are indicative of ancient origins and one of the earliest arthropod terrestrialization events [1, 2]. Opiliones epitomize morphological stasis, and all known fossils have been placed within the four extant suborders [3-5]. Here we report a Carboniferous harvestman species, Hastocularis argusgen. nov., sp. nov., reconstructed with microtomography (microCT). Phylogenetic analysis recovers this species, and the Devonian Eophalangium sheari, as members of an extinct harvestman clade. We establish the suborder Tetrophthalmi subordo nov., which bore four eyes, to accommodate H. argus and E. sheari, the latter previously considered to be a phalangid [6-9]. Furthermore, embryonic gene expression in the extant species Phalangium opilio demonstrates vestiges of lateral eye tubercles. These lateral eyes are lost in all crown-group Phalangida, but are observed in both our fossil and outgroup chelicerate orders. These data independently corroborate the diagnosis of two eye pairs in the fossil and demonstrate retention of eyes of separate evolutionary origins in modern harvestmen [10-12]. The discovery of Tetrophthalmi alters molecular divergence time estimates, supporting Carboniferous rather than Devonian diversification for extant suborders and directly impacting inferences of terrestrialization history and biogeography. Multidisciplinary approaches integrating fossil and neontological data increase confidence in phylogenies and elucidate evolutionary history. PMID:24726154

  12. Phylogeny of moray eels (Anguilliformes: Muraenidae), with a revised classification of true eels (Teleostei: Elopomorpha: Anguilliformes).

    PubMed

    Tang, Kevin L; Fielitz, Christopher

    2013-02-01

    The family Muraenidae is one of the largest and most recognizable eel groups. Moray eels are key components of marine ecosystems but their relationships remain poorly understood. The phylogenetic relationships of the morays are examined herein using mitochondrial 12S and 16S sequence data, totaling 1673 bp for 139 taxa. The results of our analyses found support for a monophyletic family Muraenidae that is part of a monophyletic suborder Muraenoidei, which is revised to include the anguilliform families Heterenchelyidae and Myrocongridae, and to exclude the family Chlopsidae. The muraenids form two monophyletic subfamilies, Muraeninae and Uropterygiinae. Of the genera that had multiple species included for analysis, only the type genus of the family, Muraena, is found to be monophyletic. In the subfamily Uropterygiinae, Uropterygius is not recovered as a monophyletic genus. In the subfamily Muraeninae, the species-rich piscivorous genera, Enchelycore and Gymnothorax, and the durophagous genus, Echidna, are demonstrably not monophyletic. The monotypic Gymnomuraena is the sister group to all other muraenine species. The relationships within Muraenidae require much additional study and its genera remain in urgent need of revision. The order Anguilliformes is revised herein to include four suborders: Anguilloidei, Congroidei, Muraenoidei, and Synaphobranchoidei. All four families of the order Saccopharyngiformes are nested within Anguilliformes, recovered as part of a clade that includes Anguillidae; the saccopharyngiform families are referred to the suborder Anguilloidei sensu novum. PMID:22967094

  13. Broader pattern of tandem repeats in the mitochondrial control region of Perciformes

    NASA Astrophysics Data System (ADS)

    Cui, Zhaoxia; Liu, Yuan; Chu, Ka Hou

    2010-07-01

    Perciformes, the largest order of vertebrates with 20 suborders, is the most diverse fish order that dominates vertebrate ocean life. The complete mitochondrial control region (CR) of Trichiurus japonicus (Trichiuridae, Scombroidei) and Pampus sp. (Stromateidae, Stromateoidei) were amplified and sequenced. Together with data from GenBank, the tandem repeats in the mitochondrial CR from 48 species, which covered nine suborders of Perciformes, are reported in this study. The tandem repeats tend to be long in the suborder Percoidei and Stromateoidei. The identical repeats in 21 species of Cichlidae suggest a common origin and have existed before species divergence. Larimichthys crocea shows tandem repeats instead of the typical structure of the central conserved sequence blocks, which was first reported in Perciformes and vertebrates. This might have resulted from interruption of the polymerase activity during the H-strand synthesis. The four broader patterns presented here for the tandem repeats, including those in both the 5' and 3' ends, only in the either 5' or 3' end, and in the central conserved domain of the control region, will be useful for understanding the evolution of species.

  14. The Early Evolutionary History of Belemnites: New Data from Japan

    PubMed Central

    Iba, Yasuhiro; Sano, Shin-ichi; Mutterlose, Jörg

    2014-01-01

    Belemnites (Order Belemnitida), a very successful group of Mesozoic coleoid cephalopods, dominated the world's oceans throughout the Jurassic and Cretaceous. According to the current view, the phylogenetically earliest belemnites are known from the lowermost Jurassic (Hettangian, 201–199 Ma) of northern Europe. They are of low diversity and have small sized rostra without clear grooves. Their distribution is restricted to this area until the Pliensbachian (191–183 Ma). Here we describe two new belemnite taxa of the Suborder Belemnitina from the Sinemurian (199–191 Ma) of Japan: Nipponoteuthis katana gen et sp. nov., which represents the new family Nipponoteuthidae, and Eocylindroteuthis (?) yokoyamai sp. nov. This is the first reliable report of Sinemurian belemnites outside of Europe and the earliest record of typical forms of Belemnitina in the world. The Sinemurian belemnites from Japan have small to large rostra with one deep and long apical groove. Morphologically these forms are completely different from coeval European genera of Hettangian–Sinemurian age. These new findings suggest that three groups of Belemnitina existed in the Hettangian–Sinemurian: 1) European small forms, 2) Japanese very large forms, and 3) the typical forms with a distinctive apical groove, reported here. The Suborder Belemnitina therefore did not necessarily originate in the Hettangian of northern Europe. The new material from Japan documents that the suborder Belemnitina had a much higher diversity in the early Jurassic than previously thought, and it also shows strong endemisms from the Sinemurian onwards. PMID:24788872

  15. The early evolutionary history of belemnites: new data from Japan.

    PubMed

    Iba, Yasuhiro; Sano, Shin-ichi; Mutterlose, Jörg

    2014-01-01

    Belemnites (Order Belemnitida), a very successful group of Mesozoic coleoid cephalopods, dominated the world's oceans throughout the Jurassic and Cretaceous. According to the current view, the phylogenetically earliest belemnites are known from the lowermost Jurassic (Hettangian, 201-199 Ma) of northern Europe. They are of low diversity and have small sized rostra without clear grooves. Their distribution is restricted to this area until the Pliensbachian (191-183 Ma). Here we describe two new belemnite taxa of the Suborder Belemnitina from the Sinemurian (199-191 Ma) of Japan: Nipponoteuthis katana gen et sp. nov., which represents the new family Nipponoteuthidae, and Eocylindroteuthis (?) yokoyamai sp. nov. This is the first reliable report of Sinemurian belemnites outside of Europe and the earliest record of typical forms of Belemnitina in the world. The Sinemurian belemnites from Japan have small to large rostra with one deep and long apical groove. Morphologically these forms are completely different from coeval European genera of Hettangian-Sinemurian age. These new findings suggest that three groups of Belemnitina existed in the Hettangian-Sinemurian: 1) European small forms, 2) Japanese very large forms, and 3) the typical forms with a distinctive apical groove, reported here. The Suborder Belemnitina therefore did not necessarily originate in the Hettangian of northern Europe. The new material from Japan documents that the suborder Belemnitina had a much higher diversity in the early Jurassic than previously thought, and it also shows strong endemisms from the Sinemurian onwards. PMID:24788872

  16. Diversity of the bacterial community in the rice rhizosphere managed under conventional and no-tillage practices.

    PubMed

    Aslam, Zubair; Yasir, Muhammad; Yoon, Hwan Sik; Jeon, Che Ok; Chung, Young Ryun

    2013-12-01

    Bacterial diversity in the rice rhizosphere at different rice growth stages, managed under conventional and no-tillage practices, was explored using a culture-based approach. Actinobacteria are among the bacterial phyla abundant in the rice rhizosphere. Their diversity was further examined by constructing metagenomic libraries based on the 16S rRNA gene, using actinobacterial- and streptomycete-specific polymerase chain reaction (PCR) primers. The study included 132 culturable strains and 125 clones from the 16S rRNA gene libraries. In conventional tillage, there were 38% Proteobacteria, 22% Actinobacteria, 33% Firmicutes, 5% Bacteroidetes, and 2% Acidobacteria, whereas with no-tillage management there were 63% Proteobacteria, 24% Actinobacteria, 6% Firmicutes, and 8% Bacteroidetes as estimated using the culture-dependent method during the four stages of rice cultivation. Principal coordinates analysis was used to cluster the bacterial communities along axes of maximal variance. The different growth stages of rice appeared to influence the rhizosphere bacterial profile for both cultivation practices. Novel clones with low similarities (89-97%) to Actinobacteria and Streptomyces were retrieved from both rice fields by screening the 16S rRNA gene libraries using actinobacterial- and streptomycete-specific primers. By comparing the actinobacterial community retrieved by culture-dependent and molecular methods, it was clear that a more comprehensive assessment of microbial diversity in the rice rhizosphere can be obtained using a combination of both techniques than by using either method alone. We also succeeded in culturing a number of bacteria that were previously described as unculturable. These were in a phylogenetically deep lineage when compared with related cultivable genera. PMID:24385351

  17. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07T)

    SciTech Connect

    Foster, Brian; Pukall, Rudiger; Abt, Birte; Nolan, Matt; Glavina Del Rio, Tijana; Chen, Feng; Lucas, Susan; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J C; Bruce, David; Goodwin, Lynne A.; Ivanova, N; Mavromatis, K; Pati, Amrita; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2010-01-01

    Xylanimonas cellulosilytica Rivas et al. 2003 is the type species of the genus Xylanimonas of the actinobacterial family Promicromonosporaceae. The species X. cellulosilytica is of interest because of its ability to hydrolyze cellulose and xylan. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the large family Promicromonosporaceae, and the 3,831,380 bp long genome (one chromosome plus an 88,604 bp long plasmid) with its 3485 protein-coding and 61 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress.

    PubMed

    Lima-Morales, Daiana; Jáuregui, Ruy; Camarinha-Silva, Amelia; Geffers, Robert; Pieper, Dietmar H; Vilchez-Vargas, Ramiro

    2016-01-01

    Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched. PMID:26850298

  20. Littoral lichens as a novel source of potentially bioactive Actinobacteria

    PubMed Central

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T.

    2015-01-01

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria. PMID:26514347

  1. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host

    PubMed Central

    Salem, Hassan; Bauer, Eugen; Strauss, Anja S.; Vogel, Heiko; Marz, Manja; Kaltenpoth, Martin

    2014-01-01

    Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists. PMID:25339726

  2. Deciphering the Genome of Polyphosphate Accumulating Actinobacterium Microlunatus phosphovorus

    PubMed Central

    Kawakoshi, Akatsuki; Nakazawa, Hidekazu; Fukada, Junji; Sasagawa, Machi; Katano, Yoko; Nakamura, Sanae; Hosoyama, Akira; Sasaki, Hiroki; Ichikawa, Natsuko; Hanada, Satoshi; Kamagata, Yoichi; Nakamura, Kazunori; Yamazaki, Shuji; Fujita, Nobuyuki

    2012-01-01

    Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different. PMID:22923697

  3. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR.

    PubMed

    Bayer, Kristina; Kamke, Janine; Hentschel, Ute

    2014-09-01

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. PMID:24942664

  4. Carbon-Fixation Rates and Associated Microbial Communities Residing in Arid and Ephemerally Wet Antarctic Dry Valley Soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, S. Craig

    2015-01-01

    Carbon-fixation is a critical process in severely oligotrophic Antarctic Dry Valley (DV) soils and may represent the major source of carbon in these arid environments. However, rates of C-fixation in DVs are currently unknown and the microorganisms responsible for these activities unidentified. In this study, C-fixation rates measured in the bulk arid soils (<5% moisture) ranged from below detection limits to ∼12 nmol C/cc/h. Rates in ephemerally wet soils ranged from ∼20 to 750 nmol C/cc/h, equating to turnover rates of ∼7–140 days, with lower rates in stream-associated soils as compared to lake-associated soils. Sequencing of the large subunit of RuBisCO (cbbL) in these soils identified green-type sequences dominated by the 1B cyanobacterial phylotype in both arid and wet soils including the RNA fraction of the wet soil. Red-type cbbL genes were dominated by 1C actinobacterial phylotypes in arid soils, with wetted soils containing nearly equal proportions of 1C (actinobacterial and proteobacterial signatures) and 1D (algal) phylotypes. Complementary 16S rRNA and 18S rRNA gene sequencing also revealed distinct differences in community structure between biotopes. This study is the first of its kind to examine C-fixation rates in DV soils and the microorganisms potentially responsible for these activities. PMID:26696969

  5. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria

    PubMed Central

    Šimek, Karel; Kasalický, Vojtěch; Jezbera, Jan; Horňák, Karel; Nedoma, Jiří; Hahn, Martin W; Bass, David; Jost, Steffen; Boenigk, Jens

    2013-01-01

    Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality. PMID:23552621

  6. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    PubMed

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-01-01

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria. PMID:26514347

  7. Analysis of the microbial community and geochemistry of a sediment core from Great Slave Lake, Canada.

    PubMed

    Lim, Jesmine; Woodward, John; Tulaczyk, Slawek; Christoffersen, Poul; Cummings, Stephen P

    2011-02-01

    Sediment cores taken from Great Slave Lake, Canada, were analysed to investigate their metabolically active microbial populations and geochemistry. The amplification of cDNA detected metabolically active bacterial (50 separate bands) and archaeal (49 separate band) communities. The bacterial communities were further resolved indicating active actinobacterial and γ-proteobacterial communities (36 and 43 individual bands respectively). Redundancy discriminate analysis and Monte Carlo permutation testing demonstrated the significant impact of geochemical parameters on microbial community structures. Geochemical analyses suggest that the upper 0.4 m represents soil weathering and erosion in the lake catchment. An increase in organic carbon in the lower core suggests either more primary productivity, indicating warmer climate conditions, associated with Holocene Climatic Optimum conditions pre 5,000 years BP or change from a reducing environment in the lower core to an oxidizing environment during more recent deposition. Drivers for bacterial, archaeal and actinobacterial community structures were sediment particle size, and its mineral composition. Depth also significantly affected γ- proteobacterial community structure. In contrast the organic carbon content did not significantly shape the microbial community structures within the sediment. This study indicates that geochemical parameters significantly contribute to microbial community structure in these sediments. PMID:20803250

  8. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential

    PubMed Central

    Becerril-Espinosa, Amayaly; Freel, Kelle C.; Jensen, Paul R.

    2015-01-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1–38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26–56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98–100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites. PMID:23229438

  9. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  10. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190.

    PubMed

    Grostern, Ariel; Alvarez-Cohen, Lisa

    2013-11-01

    Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported. In this study, we examined autotrophy in Pseudonocardia dioxanivorans CB1190, which can grow using H2 and CO2, as well as heterotrophically. Genomic and transcriptomic analysis of CB1190 cells grown with H2/bicarbonate implicated the Calvin-Benson-Bassham (CBB) cycle in growth-supporting CO2 fixation, as well as a [NiFe] hydrogenase-encoding gene cluster in H2 oxidation. The CBB cycle genes are evolutionarily most related to actinobacterial homologues, although synteny has not been maintained. Ribulose-1,5-bisphosphate carboxylase activity was confirmed in H2/bicarbonate-grown CB1190 cells and was detected in cells grown with the C1 compounds formate, methanol and carbon monoxide. We also demonstrated the upregulation of CBB cycle genes upon exposure of CB1190 to these C1 substrates, and identified genes putatively involved in generating CO2 from the C1 substrates by using RT-qPCR. Finally, the potential for autotrophic growth of other Pseudonocardia spp. was explored, and the ecological implications of autotrophy in attine ant- and plant root-associated Pseudonocardia discussed. PMID:23663433

  11. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    PubMed Central

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  12. Complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Sciuromorpha, Sciuridae) and revision of rodent phylogeny.

    PubMed

    Ryu, Shi Hyun; Kwak, Min Jung; Hwang, Ui Wook

    2013-02-01

    In this study, the complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Rodentia, Sciuromorpha, Sciuridae) was sequenced and characterized in detail. The entire mitochondrial genome of P. volans consisted of 16,513 bp and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Its gene arrangement pattern was consistent with the mammalian ground pattern. The overall base composition and AT contents were similar to those of other rodent mitochondrial genomes. The light-strand origin generally identified between tRNA ( Asn ) and tRNA ( Cys ) consisted of a secondary structure with an 11-bp stem and an 11-bp loop. The large control region was constructed of three characteristic domains, ETAS, CD, and CSB without any repeat sequences. Each domain contained ETAS1, subsequences A, B, and C, and CSB1, respectively. In order to examine phylogenetic contentious issues of the monophyly of rodents and phylogenetic relationships among five rodent suborders, here, phylogenetic analyses based on nucleotide sequence data of the 35 rodent and 3 lagomorph mitochondrial genomes were performed using the Bayesian inference and maximum likelihood method. The result strongly supported the rodent monophyly with high node confidence values (BP 100 % in ML and BPP 1.00 in BI) and also monophylies of four rodent suborders (BP 85-100 % in ML and BPP 1.00 in BI), except for Anomalumorpha in which only one species was examined here. Also, phylogenetic relationships among the five rodent suborders were suggested and discussed in detail. PMID:23114915

  13. World Checklist of Opiliones species (Arachnida). Part 2: Laniatores – Samooidea, Zalmoxoidea and Grassatores incertae sedis

    PubMed Central

    Souza, Daniele R.; Pérez-González, Abel

    2015-01-01

    Abstract Including more than 6500 species, Opiliones is the third most diverse order of Arachnida, after the megadiverse Acari and Araneae. This database is part 2 of 12 of a project containing an intended worldwide checklist of species and subspecies of Opiliones, and it includes the members of the suborder Laniatores, infraorder Grassatores of the superfamilies Samooidea and Zalmoxoidea plus the genera currently not allocated to any family (i.e. Grassatores incertae sedis). In this Part 2, a total of 556 species and subspecies are listed. PMID:26752965

  14. Genome sequence of a crustacean iridovirus, IIV31, isolated from the pill bug, Armadillidium vulgare.

    PubMed

    Piégu, Benoît; Guizard, Sébastien; Yeping, Tan; Cruaud, Corinne; Asgari, Sassan; Bideshi, Dennis K; Federici, Brian A; Bigot, Yves

    2014-07-01

    Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported. PMID:24722681

  15. G-banded karotype and ideogram for the critically endangered North Atlantic right whale (Eubalanea glacialis)

    USGS Publications Warehouse

    Pause, K.C.; Bonde, R.K.; McGuire, P.M.; Zori, Roberto T.; Gray, B.A.

    2006-01-01

    Published cytogenetic data for extant cetacean species remain incomplete. In a review of the literature, we found karyotypic information for 6 of the 13 tentatively recognized species of the suborder Mysticeti (baleen whales). Among those yet to be described is the critically endangered North Atlantic right whale (Eubalaena glacialis). Herein, we describe and propose a first-generation G-banded karyotype and ideogram for this species (2n = 42), obtained from peripheral blood chromosome preparations from a stranded male calf. This information may prove useful for future genetic mapping projects and for interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  16. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective

    PubMed Central

    2010-01-01

    Background The teleost order Lophiiformes, commonly known as the anglerfishes, contains a diverse array of marine fishes, ranging from benthic shallow-water dwellers to highly modified deep-sea midwater species. They comprise 321 living species placed in 68 genera, 18 families and 5 suborders, but approximately half of the species diversity is occupied by deep-sea ceratioids distributed among 11 families. The evolutionary origins of such remarkable habitat and species diversity, however, remain elusive because of the lack of fresh material for a majority of the deep-sea ceratioids and incompleteness of the fossil record across all of the Lophiiformes. To obtain a comprehensive picture of the phylogeny and evolutionary history of the anglerfishes, we assembled whole mitochondrial genome (mitogenome) sequences from 39 lophiiforms (33 newly determined during this study) representing all five suborders and 17 of the 18 families. Sequences of 77 higher teleosts including the 39 lophiiform sequences were unambiguously aligned and subjected to phylogenetic analysis and divergence time estimation. Results Partitioned maximum likelihood analysis confidently recovered monophyly for all of the higher taxa (including the order itself) with the exception of the Thaumatichthyidae (Lasiognathus was deeply nested within the Oneirodidae). The mitogenomic trees strongly support the most basal and an apical position of the Lophioidei and a clade comprising Chaunacoidei + Ceratioidei, respectively, although alternative phylogenetic positions of the remaining two suborders (Antennarioidei and Ogcocephaloidei) with respect to the above two lineages are statistically indistinguishable. While morphology-based intra-subordinal relationships for relatively shallow, benthic dwellers (Lophioidei, Antennarioidei, Ogcocephaloidei, Chaunacoidei) are either congruent with or statistically indistinguishable from the present mitogenomic tree, those of the principally deep-sea midwater dwellers

  17. First Record of Anisoptera (Insecta: Odonata) from mid-Cretaceous Burmese Amber.

    PubMed

    Schädel, Mario; Bechly, Günter

    2016-01-01

    The fossil dragonfly Burmalindenia imperfecta gen. et sp. nov. is described from mid-Cretaceous Burmese amber as the first record of the odonate suborder Anisoptera for this locality and one of the few records from amber in general. The inclusion comprises two fragments of the two hind wings of a dragonfly. The fossil can be attributed to a new genus and species of the family Gomphidae, presumably in the subfamily Lindeniinae, and features a strange teratological phenomenon in its wing venation. PMID:27394756

  18. Complete mitochondrial genome of Amolops mantzorum (Anura: Ranidae).

    PubMed

    Shan, Xiang; Xia, Yun; Kakehashi, Ryosuke; Kurabayashi, Atsushi; Zou, Fang-Dong; Zeng, Xiao-Mao

    2016-01-01

    Sichuan torrent frog, Amolops mantzorum (family Ranidae, suborder Neobatrachia), possesses heteromorphic sex chromosomes unusual characteristics among amphibians. We determined the complete nucleotide sequence of the A. mantzorum mitogenome. This genome is 17,744 bp in length and contains 37 genes, 1 control region, and 1 light strand replication origin typically found in vertebrate mtDNAs. In the A. mantzorum mitogenome, a novel gene arrangement is observed within the WANCY tRNA gene cluster region. This mt gene arrangement seems to be usable as a molecular maker to distinguish to this species from other species in the genus Amolops. PMID:24810067

  19. [The cases of teratology in Mallophaga of South Africa].

    PubMed

    Złotorzycka, J; Modrzejewska, M

    2001-01-01

    The following types ofteratology were found in the collection of 1278 individuals of Mallophaga coming from the birds of South Africa origin: deformity clypeus in Quadraceps kilimandjarensis (KELL.) from Stephanibyx coronatus (BURCH.), partial atrophy of one of the antennae of two males Q. kilimandjarensis and abdomen plates deformity of two females Q. kilimandjarensis, in male and female Quadraceps chorleyi TIMM. from Hoplopterus armatus (BURCH.), in female Saemundssonia africana TIMM. from Stephanibyx coronatus (BODD.) and male Plegadiphilus threskiornis (BEDF.) from Threskiornis aethiopicus (LATH.) the only representative of Amblycera (the other teratology belonged to Ischnocera suborder). Generally teratology was found in 0.70% of the collection. PMID:16888959

  20. Population genetics and evolution of the mangrove rivulus Kryptolebias marmoratus, the world's only self-fertilizing hermaphroditic vertebrate.

    PubMed

    Avise, J C; Tatarenkov, A

    2015-09-01

    The mangrove rivulus, Kryptolebias marmoratus (Rivulidae, Cyprinodontiformes), is phylogenetically embedded within a large clade of oviparous (egg laying) and otherwise mostly gonochoristic (separate sex) killifish species in the circumtropical suborder Aplocheiloidei. It is unique in its reproductive mode: K. marmoratus is essentially the world's only vertebrate species known to engage routinely in self-fertilization as part of a mixed-mating strategy of selfing plus occasional outcrossing with gonochoristic males. This unique form of procreation has profound population-genetic and evolutionary-genetic consequences that are the subject of this review. PMID:26223378

  1. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    PubMed

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  2. Analysis of a microbial community oxidizing inorganic sulfide and mercaptans.

    PubMed

    Duncan, K E; Sublette, K L; Rider, P A; Stepp, A; Beitle, R R; Conner, J A; Kolhatkar, R

    2001-01-01

    Successful treatment of refinery spent-sulfidic caustic (which results from the addition of sodium hydroxide solutions to petroleum refinery waste streams) was achieved in a bioreactor containing an enrichment culture immobilized in organic polymer beads with embedded powdered activated carbon (Bio-Sep). The aerobic enrichment culture had previously been selected using a gas mixture of hydrogen sulfide and methyl mercaptan (MeSH) as the sole carbon and energy sources. The starting cultures for the enrichment consisted of several different Thiobacilli spp. (T. thioparus, T. denitrificans, T. thiooxidans, and T. neopolitanus), as well as activated sludge from a refinery aerobic wastewater treatment system and sludge from an industrial anaerobic digester. Microscopic examination (light and SEM) of the beads and of microbial growth on the walls of the bioreactor revealed a great diversity of microorganisms. Further characterization was undertaken starting with culturable aerobic heterotrophic microorganisms (sequencing of PCR-amplified DNA coding for 16S rRNA, Gram staining) and by PCR amplification of DNA coding for 16S rRNA extracted directly from the cell mass, followed by the separation of the PCR products by DGGE (denaturing gradient gel electrophoresis). Eight prominent bands from the DGGE gel were sequenced and found to be closest to sequences of uncultured Cytophagales (3 bands), Gram-positive cocci (Micrococcineae), alpha proteobacteria (3 bands), and an unidentified beta proteobacterium. Culturable microbes included several genera of fungi as well as various Gram-positive and Gram-negative heterotrophic bacteria not seen in techniques using direct DNA extraction. PMID:11485441

  3. The bacterial microbiota in the oral mucosa of rural Amerindians.

    PubMed

    Contreras, Monica; Costello, Elizabeth K; Hidalgo, Glida; Magris, Magda; Knight, Rob; Dominguez-Bello, Maria G

    2010-11-01

    The oral microbiota plays an important role in buccal health and in diseases such as periodontitis and meningitis. The study of the human oral bacteria has so far focused on subjects from Western societies, while little is known about subjects from isolated communities. This work determined the composition of the oral mucosa microbiota from six Amazon Amerindians, and tested a sample preservation alternative to freezing. Paired oral swabs were taken from six adults of Guahibo ethnicity living in the community of Platanillal, Amazonas State, Venezuela. Replicate swabs were preserved in liquid nitrogen and in Aware Messenger fluid (Calypte). Buccal DNA was extracted, and the V2 region of the 16S rRNA gene was amplified and pyrosequenced. A total of 17 214 oral bacterial sequences were obtained from the six subjects; these were binned into 1034 OTUs from 10 phyla, 30 families and 51 genera. The oral mucosa was highly dominated by four phyla: Firmicutes (mostly the genera Streptococcus and Veillonella), Proteobacteria (mostly Neisseria), Bacterioidetes (Prevotella) and Actinobacteria (Micrococcineae). Although the microbiota were similar at the phylum level, the Amerindians shared only 62 % of the families and 23 % of the genera with non-Amerindians from previous studies, and had a lower richness of genera (51 vs 177 reported in non-Amerindians). The Amerindians carried unidentified members of the phyla Bacteroidetes, Firmicutes and Proteobacteria and their microbiota included soil bacteria Gp1 (Acidobacteriaceae) and Xylanibacter (Prevotellaceae), and the rare genus Phocoenobacter (Pasteurellaceae). Preserving buccal swabs in the Aware Messenger oral fluid collection device substantially altered the bacterial composition in comparison to freezing, and therefore this method cannot be used to preserve samples for the study of microbial communities. PMID:20847007

  4. Complete genome sequence of Cryptobacterium curtum type strain (12-3T)

    SciTech Connect

    Mavromatis, Konstantinos; Pukall, Rudiger; Rohde, Christine; Sims, David; Brettin, Thomas; Kuske, Cheryl; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; D'haeseleer, Patrik; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Rohde, Manfred; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2009-05-20

    Cryptobacterium curtum Nakazawa et al. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Coffee husk composting: An investigation of the process using molecular and non-molecular tools

    PubMed Central

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H.; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-01-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  6. Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255T)

    SciTech Connect

    Saunders, Elizabeth H; Pukall, Rudiger; Birte, Abt; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Meincke, Linda; Sims, David; Brettin, Tom; Detter, J. Chris; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Han, Cliff

    2009-01-01

    Eggerthella lenta (Eggerth 1935) Wade et al. 1999, emended W rdemann et al. 2009 is the type species of the genus Eggerthella, which belongs to the actinobacterial family Coriobacteriaceae. E. lenta is a Gram-positive, non-motile, non-sporulating pathogenic bacterium that can cause severe bacteremia. The strain described in this study has been isolated from a rectal tumor in 1935. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Eggerthella, and the 3,632,260 bp long single replicon genome with its 3123 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Coffee husk composting: an investigation of the process using molecular and non-molecular tools.

    PubMed

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-03-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  8. Cytoskeletal Proteins of Actinobacteria

    PubMed Central

    Letek, Michal; Fiuza, María; Villadangos, Almudena F.; Mateos, Luís M.; Gil, José A.

    2012-01-01

    Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of the basic physiology of certain bacterial models, little is known about Actinobacteria, an ancient group of Eubacteria. Here we review current knowledge on the cytoskeletal elements required for bacterial cell growth and cell division, focusing on actinobacterial genera such as Mycobacterium, Corynebacterium, and Streptomyces. These include some of the deadliest pathogens on earth but also some of the most prolific producers of antibiotics and antitumorals. PMID:22481946

  9. Complete genome sequence of Intrasporangium calvum type strain (7 KIPT)

    PubMed Central

    Del Rio, Tijana Glavina; Chertkov, Olga; Yasawong, Montri; Lucas, Susan; Deshpande, Shweta; Cheng, Jan-Fang; Detter, Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Pukall, Rüdiger; Sikorski, Johannes; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2010-01-01

    Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304734

  10. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    PubMed Central

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-01-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  11. LC-MS-Based Metabolomics Study of Marine Bacterial Secondary Metabolite and Antibiotic Production in Salinispora arenicola

    PubMed Central

    Bose, Utpal; Hewavitharana, Amitha K.; Ng, Yi Kai; Shaw, Paul Nicholas; Fuerst, John A.; Hodson, Mark P.

    2015-01-01

    An LC-MS-based metabolomics approach was used to characterise the variation in secondary metabolite production due to changes in the salt content of the growth media as well as across different growth periods (incubation times). We used metabolomics as a tool to investigate the production of rifamycins (antibiotics) and other secondary metabolites in the obligate marine actinobacterial species Salinispora arenicola, isolated from Great Barrier Reef (GBR) sponges, at two defined salt concentrations and over three different incubation periods. The results indicated that a 14 day incubation period is optimal for the maximum production of rifamycin B, whereas rifamycin S and W achieve their maximum concentration at 29 days. A “chemical profile” link between the days of incubation and the salt concentration of the growth medium was shown to exist and reliably represents a critical point for selection of growth medium and harvest time. PMID:25574739

  12. Diversity of nonribosomal peptide synthetase genes in the microbial metagenomes of marine sponges.

    PubMed

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-06-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  13. Complete genome sequence of Olsenella uli type strain (VPI D76D-27CT)

    SciTech Connect

    Goker, Markus; Held, Brittany; Lucas, Susan; Nolan, Matt; Yasawong, Montri; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Sikorski, Johannes; Pukall, Rudiger; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study has been isolated from human gingival crevices in 1982. This is the first completed sequence of the genus Olsenella and the fifth sequence from the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Complete genome sequence of Intrasporangium calvumtype strain (7 KIPT)

    SciTech Connect

    Glavina Del Rio, Tijana; Chertkov, Olga; Yasawong, Montri; Lucas, Susan; Deshpande, Shweta; Cheng, Jan-Fang; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Pukall, Rudiger; Sikorski, Johannes; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla L.

    2010-01-01

    Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. [Recent advance in Geodermatophilaceae--A review].

    PubMed

    Hongmin, Sun; Liyan, Yu; Yuqin, Zhang

    2015-12-01

    The family Geodermatophilaceae is a newly established actinobacterial taxon. Normand ever proposed the family Geodermatophilaceae in 1996, which was recognized as an invalid taxon at that time. In 2006, based on the common characteristics of the genera Geodermatophilus, Blastococcus and Modestobacter, Normand summarized the typical characteristics of Geodermatophilaceae, then the family Geodermatophilaceae was finally accommodated as a validly described taxon in the phylum Actinobacteria. Up to date, the family Geodermatophilaceae consisted of 3 genera, i. e., Geodermatophilus, Blastococcus and Modestobacter, including 25 validly described species. The members of the family Geodermatophilaceae were considered as biologic pioneers in extreme environments, exhibiting many potential advantages in the study of mechanism of stress resistance, desertification control and environmental remediation. The objective of this review is to summarize the research advances in the family Geodermatophilaceae, including the establishment and taxonomic characteristics of the family, as well as their application prospect and the roles in the field of ecology. PMID:27101693

  16. Complete mitochondrial genomes of two cockroaches, Blattella germanica and Periplaneta americana, and the phylogenetic position of termites.

    PubMed

    Xiao, Bo; Chen, Ai-Hui; Zhang, Yan-Yan; Jiang, Guo-Fang; Hu, Chao-Chao; Zhu, Chao-Dong

    2012-04-01

    The mitochondrial genomes are one of the most information-rich markers in phylogenetics. The relationships within superorder Dictyoptera have been debated in the literature. However, the closely related termites (Isoptera) are retained as unranked taxon within the order Blattaria (cockroaches). In this work, we sequenced the complete mitogenomes of two cockroaches, reconstructed the molecular phylogeny and attempted to infer the phylogenetic position of termites in Blattaria more reliably. The complete mtDNA nucleotide sequences of the peridomestic American cockroach (Periplaneta americana L.) and the domestic German cockroach (Blattella germanica L.) are 15,025 and 15,584 bp in size, respectively. The genome shares the gene order and orientation with previously known Blattaria mitogenomes. Most tRNAs could be folded into the typical cloverleaf secondary structure, but the tRNA-Ser (AGN) of P. americana appears to be missing the dihydrouridine arm. Using nucleotide and amino acid sequences as phylogenetic markers, we proposed that termites should be treated as a superfamily (Termitoidea) of cockroaches. We suggested that Polyphagoidea was the sister group of Termitoidea in Blattaria and supported that the suborder Caelifera is more closely related to the Phasmatodea than to the suborder Ensifera of Orthoptera. PMID:22311390

  17. Thysanoptera of Bulgaria

    PubMed Central

    Karadjova, Olia; Krumov, Vladimir

    2015-01-01

    Abstract The present checklist includes data on the species composition, geographic distribution and feeding preferences of thrips species in Bulgaria. In total, 155 species in 48 genera are listed. Of these, 125 species belong to suborder Terebrantia and include 103 species of 33 genera in family Thripidae, 14 species of two genera in Aeolothripidae, seven species of two genera in Melanthripidae and one species in Fauriellidae. In suborder Tubulifera, 30 species of 10 genera in the single family Phlaeothripidae are listed. Of the 155 Bulgarian thrips species, 87.7% are phytophagous, 4.5% are obligate predators, 5.8% are mycophagous and 1.9% are with unknown feeding preferences. Fourteen pest species are listed for Bulgaria, of which Frankliniella occidentalis, Thrips tabaci and Haplothrips tritici are of economic importance. The list provides detailed information on the horizontal and vertical distribution of Thysanoptera in 5 regions and 45 subregions of Bulgaria. The present paper also includes an evaluation of the biodiversity of Thysanoptera and the extent to which each region of the country has been studied. PMID:26019678

  18. Feliform carnivores have a distinguished constitutive innate immune response

    PubMed Central

    Heinrich, Sonja K.; Wachter, Bettina; Aschenborn, Ortwin H. K.; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á.

    2016-01-01

    ABSTRACT Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323

  19. Catalog of type specimens of recent mammals: Rodentia (Myomorpha, Anomaluromorpha, and Hystricomorpha) in the National Museum of Natural History, Smithsonian Institution

    USGS Publications Warehouse

    Fisher, Robert D.; Ludwig, Craig A.

    2014-01-01

    The type collection of Recent mammals in the Division of Mammals, National Museum of Natural History, Smithsonian Institution, contains 945 specimens bearing names of 931 species-group taxa of Rodentia (Myomorpha, Anomaluromorpha, and Hystricomorpha) as of August 2013. This catalog presents an annotated list of these holdings comprised of 905 holotypes, 16 lectotypes, 8 syntypes (48 specimens), and 2 neotypes. In addition, we include 44 specimens that are part of syntype series that should be in the collection but cannot be found or are now known to be in other collections. One hundred and ten of the names are new since the last type catalog covering these suborders A lectotype for Mus peruvianus Peale, 1848, is newly designated herein. Nine specimens previously reported were subsequently sent to the vertebrate paleontology collection and are not included here. Suborders and families are ordered as in Carleton and Musser; within families, currently recognized genera are arranged alphabetically; within each currently recognized genus, accounts are arranged alphabetically by original published name. Information in each account includes original name and abbreviated citation thereto, current name if other than original, citation for first use of current name combination for the taxon (or new name combination if used herein for the first time), type designation, U.S. National Museum catalog number(s), preparation, age and sex, date of collection and collector, original collector number, type locality, and remarks as appropriate. Digital photographs of each specimen will serve as a condition report and will be attached to each electronic specimen record.

  20. Brain-size evolution and sociality in Carnivora

    PubMed Central

    Finarelli, John A.; Flynn, John J.

    2009-01-01

    Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encephalization allometries. These evolutionary transformations include multiple independent encephalization increases and decreases in addition to a remarkably static basal Carnivora allometry that characterizes much of the suborder Feliformia and some taxa in the suborder Caniformia across much of their evolutionary history, emphasizing that complex processes shaped the modern distribution of encephalization across Carnivora. This analysis also permits critical evaluation of the social brain hypothesis (SBH), which predicts a close association between sociality and increased encephalization. Previous analyses based on living species alone appeared to support the SBH with respect to Carnivora, but those results are entirely dependent on data from modern Canidae (dogs). Incorporation of fossil data further reveals that no association exists between sociality and encephalization across Carnivora and that support for sociality as a causal agent of encephalization increase disappears for this clade. PMID:19474299

  1. Intraclass Evolution and Classification of the Colpodea (Ciliophora)

    PubMed Central

    FOISSNER, WILHELM; STOECK, THORSTEN; AGATHA, SABINE; DUNTHORN, MICAH

    2012-01-01

    Using nine new taxa and statistical inferences based on morphological and molecular data, we analyze the evolution within the class Colpodea. The molecular and cladistic analyses show four well-supported clades: platyophryids, bursariomorphids, cyrtolophosidids, and colpodids. There is a widespread occurrence of homoplasies, affecting even conspicuous morphological characteristics, e.g. the inclusion of the micronucleus in the perinuclear space of the macronucleus. The most distinct changes in the morphological classification are the lack of a basal divergence into two subclasses and the split of the cyrtolophosidids into two main clades, differing mainly by the presence vs. absence of an oral cavity. The most complex clade is that of the colpodids. We partially reconcile the morphological and molecular data using evolutionary systematics, providing a scenario in which the colpodids evolved from a Bardeliella-like ancestor and the genus Colpoda performed an intense adaptive radiation, giving rise to three main clades: Colpodina n. subord., Grossglockneriina, and Bryophryina. Three new taxa are established: Colpodina n. subord., Tillinidae n. fam., and Ottowphryidae n. fam. Colpodean evolution and classification are far from being understood because sequences are lacking for most species and half of their diversity is possibly undescribed. PMID:21762424

  2. Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents - part 1: masticatory muscles, skull shape and digging.

    PubMed

    Druzinsky, Robert E

    2010-01-01

    Traditionally, rodents have been grouped into suborders distinguished largely on the basis of characteristics of the jaw adductor muscles and other features of the masticatory apparatus. The three classic suborders are: Sciuromorpha (squirrels), Myomorpha (rats and mice), and Hystricomorpha (porcupines and the South American caviomorph rodents). Protrogomorph rodents are thought to represent the primitive condition of rodent masticatory muscles. Aplodontia rufa, the mountain beaver, is the only living protrogomorphous rodent. The present work is a detailed comparison of the masticatory apparatus in A. rufa and Marmota monax, the woodchuck. But the mandibular region of A. rufa appears remarkable, unlike anything found in other rodents. Is A. rufa a reasonable representative of the primitive, protrogomorphous condition? A.rufa is a member of the aplodontoid-sciuroid clade with a wide and flat skull. The large temporalis and mandibular apophyses of A. rufa are features related to its relatively wide skull. Such features are found in less dramatic forms in other sciuromorphous species and the basic arrangement of the masticatory muscles of A. rufa is similar to the arrangement seen in sciuromorphs. PMID:20160428

  3. Genomic Characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses: Nairoviruses Naturally Infecting Bats, Shrews, and Ticks.

    PubMed

    Walker, Peter J; Widen, Steven G; Firth, Cadhla; Blasdell, Kim R; Wood, Thomas G; Travassos da Rosa, Amelia P A; Guzman, Hilda; Tesh, Robert B; Vasilakis, Nikos

    2015-11-01

    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus. PMID:26324724

  4. Ecological analysis of acari recovered from coprolites from archaeological site of northeast Brazil.

    PubMed

    de Candanedo Guerra, Rita de Maria Seabra Nogueira; Gazêta, Gilberto Salles; Amorim, Marinete; Duarte, Antonio Nascimento; Serra-Freire, Nicolau Maués

    2003-01-01

    Coprolite samples of human and animal origin from the excavations performed at the archaeological site of Furna do Estrago, at Brejo da Madre de Deus in the state of Pernambuco, Brazil and sent to the Paleoparasitology Laboratory at Escola Nacional de Saúde Pública-Fiocruz, Rio de Janeiro, were analyzed for mites. After rehydratation and sedimentation of the coprolites, the alimentary contents and the sediments were examined and the mites collected and prepared in definitive whole mounts, using Hoyer's medium. Mites of the following suborders and orders were recovered: suborder Acaridia; order Gamasida; order Ixodida with the familiy Ixodidae (Ixodes sp. and Amblyomma sp. larvae, scutum, idiosoma, gnathosoma); order Oribatida (Aphelacarus sp., Apolohmannia sp., Eophypochthonius sp., Cosmochthonius sp., Pterobates sp., Poronoticae with pteromorphae not auriculate); order Astigmata with the families Atopomelidae (Chirodiscoides caviae), Anoetidae hypopus, Acaridae (Suidasia pontifica), Glycyphagidae (Blomia tropicalis), Pyroglyphidae (Hirstia passericola); order Actinedida with the family Tarsonemidae (Iponemus radiatae). The present work discusses the possibility of the preservation of the mite groups found up to the present day. We also discuss their relationship with the environment and their importance to present populations. PMID:12687780

  5. The Use of Soil Forming Factors in the Development of Soil Taxonomy

    NASA Astrophysics Data System (ADS)

    Bockheim, JG; Gennadiyev, AN; Hartemink, Alfred E.; Brevik, Eric C.

    2014-05-01

    The past and present roles of the five soil-forming factors in creating categories in USDA Soil Taxonomy have been analyzed. The factorial and genetic approach is clearly present in Soil Taxonomy, but was not so evident in the 7th Approximation of 1960. Soil climate is the most important factor in Soil Taxonomy. Climate is used at the highest level to define two of the 12 soil orders: Aridisols, the soils of the dry regions, and Gelisols, the permafrost-affected soils and is also used to differentiate suborders in eight of the remaining orders. Parent material is used to fully define two orders: Histosols and Andisols, and partially to define the suborders in the Entisol order (Fluvents, Psamments). Only one group of organisms, the worms (Verm-), is used at the great-group and subgroup levels in several orders. Relief and time are not used in defining taxa in Soil Taxonomy. Three of the eight epipedons are defined on the basis of parent material (folistic, histic, melanic), two on the basis of human activities (anthropic and plaggen), and two from the interaction of climate and vegetation (mollic and umbric). Of the 19 subsurface horizons, 11 originate from the interaction of climate and parent material. This analysis reveals there is an imbalance in the utilization of the soil-forming factors in Soil Taxonomy, with an emphasis on climate and parent material.

  6. A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda: Insecta) and Genome Descriptions of Six New Beetles

    PubMed Central

    Song, H.; Cameron, S. L.; Whiting, M. F.

    2008-01-01

    Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis. PMID:18779259

  7. Characteristic variations in reflectance of surface soils

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1982-01-01

    Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.

  8. The Evolution of Body Size, Antennal Size and Host Use in Parasitoid Wasps (Hymenoptera: Chalcidoidea): A Phylogenetic Comparative Analysis

    PubMed Central

    Symonds, Matthew R. E.; Elgar, Mark A.

    2013-01-01

    Chalcidoid wasps represent one of the most speciose superfamilies of animals known, with ca. 23,000 species described of which many are parasitoids. They are extremely diverse in body size, morphology and, among the parasitoids, insect hosts. Parasitic chalcidoids utilise a range of behavioural adaptations to facilitate exploitation of their diverse insect hosts, but how host use might influence the evolution of body size and morphology is not known in this group. We used a phylogenetic comparative analysis of 126 chalcidoid species to examine whether body size and antennal size showed evolutionary correlations with aspects of host use, including host breadth (specificity), host identity (orders of insects parasitized) and number of plant associates. Both morphological features and identity of exploited host orders show strong phylogenetic signal, but host breadth does not. Larger body size in these wasps was weakly associated with few plant genera, and with more specialised host use, and chalcidoid wasps that parasitize coleopteran hosts tend to be larger. Intriguingly, chalcidoid wasps that parasitize hemipteran hosts are both smaller in size in the case of those parasitizing the suborder Sternorrhyncha and have relatively larger antennae, particularly in those that parasitize other hemipteran suborders. These results suggest there are adaptations in chalcidoid wasps that are specifically associated with host detection and exploitation. PMID:24205189

  9. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences.

    PubMed

    Papillon, Daniel; Perez, Yvan; Caubit, Xavier; Le Parco, Yannick

    2006-03-01

    While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy. PMID:16434216

  10. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes

    PubMed Central

    Mabuchi, Kohji; Miya, Masaki; Azuma, Yoichiro; Nishida, Mutsumi

    2007-01-01

    Background Fishes in the families Cichlidae and Labridae provide good probable examples of vertebrate adaptive radiations. Their spectacular trophic radiations have been widely assumed to be due to structural key innovation in pharyngeal jaw apparatus (PJA), but this idea has never been tested based on a reliable phylogeny. For the first step of evaluating the hypothesis, we investigated the phylogenetic positions of the components of the suborder Labroidei (including Pomacentridae and Embiotocidae in addition to Cichlidae and Labridae) within the Percomorpha, the most diversified (> 15,000 spp) crown clade of teleosts. We examined those based on 78 whole mitochondrial genome sequences (including 12 newly determined sequences) through partitioned Bayesian analyses with concatenated sequences (13,933 bp). Results The resultant phylogenies indicated that the Labridae and the remaining three labroid families have diverged basally within the Percomorpha, and monophyly of the suborder was confidently rejected by statistical tests using Bayes factors. Conclusion The resultant phylogenies indicated that the specified PJA evolved independently at least twice, once in Labridae and once in the common ancestor of the remaining three labroid families (including the Cichlidae). Because the independent evolution of pharyngeal jaws appears to have been followed by trophic radiations, we consider that our result supports, from the aspect of historical repeatability, the idea that the evolution of the specialized PJA provided these lineages with the morphological potential for their spectacular trophic radiations. The present result will provide a new framework for the study of functional morphology and genetic basis of their PJA. PMID:17263894

  11. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  12. Phylogenomic analyses of bat subordinal relationships based on transcriptome data

    PubMed Central

    Lei, Ming; Dong, Dong

    2016-01-01

    Bats, order Chiroptera, are one of the largest monophyletic clades in mammals. Based on morphology and behaviour bats were once differentiated into two suborders Megachiroptera and Microchiroptera Recently, researchers proposed alternative views of chiropteran classification (suborders Yinpterochiroptera and Yangochiroptera) based on morphological, molecular and fossil evidence. Since genome-scale data can significantly increase the number of informative characters for analysis, transcriptome RNA-seq data for 12 bat taxa were generated in an attempt to resolve bat subordinal relationships at the genome level. Phylogenetic reconstructions were conducted using up to 1470 orthologous genes and 634,288 aligned sites. We found strong support for the Yinpterochiroptera-Yangochiroptera classification. Next, we built expression distance matrices for each species and reconstructed gene expression trees. The tree is highly consistent with sequence-based phylogeny. We also examined the influence of taxa sampling on the performance of phylogenetic methods, and found that the topology is robust to sampling. Relaxed molecular clock estimates the divergence between Yinpterochiroptera and Yangochiroptera around 63 million years ago. The most recent common ancestor of Yinpterochiroptera, corresponding to the split between Rhinolophoidea and Pteropodidae (Old World Fruit bats), is estimated to have occurred 60 million years ago. Our work provided a valuable resource to further explore the evolutionary relationship within bats. PMID:27291671

  13. The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals

    PubMed Central

    Yuan, Ming-Long; Dou, Wei; Barker, Stephen C.; Wang, Jin-Jun

    2012-01-01

    Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic. PMID:22479490

  14. Systematics of stalked jellyfishes (Cnidaria: Staurozoa)

    PubMed Central

    Hirano, Yayoi M.; Mills, Claudia E.; Falconer, Audrey; Fenwick, David

    2016-01-01

    Staurozoan classification is highly subjective, based on phylogeny-free inferences, and suborders, families, and genera are commonly defined by homoplasies. Additionally, many characters used in the taxonomy of the group have ontogenetic and intraspecific variation, and demand new and consistent assessments to establish their correct homologies. Consequently, Staurozoa is in need of a thorough systematic revision. The aim of this study is to propose a comprehensive phylogenetic hypothesis for Staurozoa, providing the first phylogenetic classification for the group. According to our working hypothesis based on a combined set of molecular data (mitochondrial markers COI and 16S, and nuclear markers ITS, 18S, and 28S), the traditional suborders Cleistocarpida (animals with claustrum) and Eleutherocarpida (animals without claustrum) are not monophyletic. Instead, our results show that staurozoans are divided into two groups, herein named Amyostaurida and Myostaurida, which can be distinguished by the absence/presence of interradial longitudinal muscles in the peduncle, respectively. We propose a taxonomic revision at the family and genus levels that preserves the monophyly of taxa. We provide a key for staurozoan genera and discuss the evolution of the main characters used in staurozoan taxonomy. PMID:27168970

  15. Systematics of stalked jellyfishes (Cnidaria: Staurozoa).

    PubMed

    Miranda, Lucília S; Hirano, Yayoi M; Mills, Claudia E; Falconer, Audrey; Fenwick, David; Marques, Antonio C; Collins, Allen G

    2016-01-01

    Staurozoan classification is highly subjective, based on phylogeny-free inferences, and suborders, families, and genera are commonly defined by homoplasies. Additionally, many characters used in the taxonomy of the group have ontogenetic and intraspecific variation, and demand new and consistent assessments to establish their correct homologies. Consequently, Staurozoa is in need of a thorough systematic revision. The aim of this study is to propose a comprehensive phylogenetic hypothesis for Staurozoa, providing the first phylogenetic classification for the group. According to our working hypothesis based on a combined set of molecular data (mitochondrial markers COI and 16S, and nuclear markers ITS, 18S, and 28S), the traditional suborders Cleistocarpida (animals with claustrum) and Eleutherocarpida (animals without claustrum) are not monophyletic. Instead, our results show that staurozoans are divided into two groups, herein named Amyostaurida and Myostaurida, which can be distinguished by the absence/presence of interradial longitudinal muscles in the peduncle, respectively. We propose a taxonomic revision at the family and genus levels that preserves the monophyly of taxa. We provide a key for staurozoan genera and discuss the evolution of the main characters used in staurozoan taxonomy. PMID:27168970

  16. Modifications of the falciform process in the eye of beloniformes (Teleostei: Atherinomorpha): evolution of a curtain-like septum in the eye.

    PubMed

    Reckel, Frank; Melzer, Roland R

    2004-04-01

    In order to comparatively analyze curtain-like septa in the eyes of visually orientated "close-to-surface-predators" among atherinomorph teleosts, we examined the eyes of 24 atherinomorph species under a binocular microscope with regard to the falciform process and related structures in the vitreous cavity. Additionally, falciform process samples were analyzed by transmission electron microscopy. All the studied representatives of the Cyprinodontiformes and Atheriniformes, and of one of the beloniform suborder, Adrianichthyioidei, possess a "typical" processus falciformis. In the eyes of the representatives of the other beloniform suborder, Belonoidei, however, pigmented structures that originate in the region of the optic disc and protrude into the vitreous cavity were noted. In the Hemiramphidae (halfbeaks) and Exocoetidae (flying fishes) these pigmented structures have a more cone-like shape, whereas in the Belonidae (needlefishes) and Scomberesocidae (sauries) horizontally oriented heavily pigmented curtain-like septa occur that divide the vitreous cavity dorsoventrally. It is suggested that the "typical" processus falciformis represents a plesiomorphic feature within the Atherinomorpha, whereas the pigmented modifications of the falciform process must be seen as a synapomorphic character state of the Belonoidei. The curtain-like septum of the Belonidae and Scomberesocidae might have evolved from the cone-like structures that are found in the Exocoetoidea. The functional significance of the pigmented structures in the eye is as yet not clear, except for the curtain-like septum found in Belonidae. It might play a role in visual orientation near the water surface at Snell's window. PMID:15052593

  17. Phylogenomic analyses of bat subordinal relationships based on transcriptome data.

    PubMed

    Lei, Ming; Dong, Dong

    2016-01-01

    Bats, order Chiroptera, are one of the largest monophyletic clades in mammals. Based on morphology and behaviour bats were once differentiated into two suborders Megachiroptera and Microchiroptera Recently, researchers proposed alternative views of chiropteran classification (suborders Yinpterochiroptera and Yangochiroptera) based on morphological, molecular and fossil evidence. Since genome-scale data can significantly increase the number of informative characters for analysis, transcriptome RNA-seq data for 12 bat taxa were generated in an attempt to resolve bat subordinal relationships at the genome level. Phylogenetic reconstructions were conducted using up to 1470 orthologous genes and 634,288 aligned sites. We found strong support for the Yinpterochiroptera-Yangochiroptera classification. Next, we built expression distance matrices for each species and reconstructed gene expression trees. The tree is highly consistent with sequence-based phylogeny. We also examined the influence of taxa sampling on the performance of phylogenetic methods, and found that the topology is robust to sampling. Relaxed molecular clock estimates the divergence between Yinpterochiroptera and Yangochiroptera around 63 million years ago. The most recent common ancestor of Yinpterochiroptera, corresponding to the split between Rhinolophoidea and Pteropodidae (Old World Fruit bats), is estimated to have occurred 60 million years ago. Our work provided a valuable resource to further explore the evolutionary relationship within bats. PMID:27291671

  18. Feliform carnivores have a distinguished constitutive innate immune response.

    PubMed

    Heinrich, Sonja K; Wachter, Bettina; Aschenborn, Ortwin H K; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á

    2016-01-01

    Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system. PMID:27044323

  19. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes.

    PubMed Central

    Cocca, E; Ratnayake-Lecamwasam, M; Parker, S K; Camardella, L; Ciaramella, M; di Prisco, G; Detrich, H W

    1995-01-01

    Alone among piscine taxa, the antarctic icefishes (family Channichthyidae, suborder Notothenioidei) have evolved compensatory adaptations that maintain normal metabolic functions in the absence of erythrocytes and the respiratory oxygen transporter hemoglobin. Although the uniquely "colorless" or "white" condition of the blood of icefishes has been recognized since the early 20th century, the status of globin genes in the icefish genomes has, surprisingly, remained unexplored. Using alpha- and beta-globin cDNAs from the antarctic rockcod Notothenia coriiceps (family Nototheniidae, suborder Notothenioidei), we have probed the genomes of three white-blooded icefishes and four red-blooded notothenioid relatives (three antarctic, one temperate) for globin-related DNA sequences. We detect specific, high-stringency hybridization of the alpha-globin probe to genomic DNAs of both white- and red-blooded species, whereas the beta-globin cDNA hybridizes only to the genomes of the red-blooded fishes. Our results suggest that icefishes retain inactive genomic remnants of alpha-globin genes but have lost, either through deletion or through rapid mutation, the gene that encodes beta-globin. We propose that the hemoglobinless phenotype of extant icefishes is the result of deletion of the single adult beta-globin locus prior to the diversification of the clade. Images Fig. 2 Fig. 3 Fig. 4 PMID:7892183

  20. Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans.

    PubMed

    Butti, Camilla; Sherwood, Chet C; Hakeem, Atiya Y; Allman, John M; Hof, Patrick R

    2009-07-10

    Von Economo neurons (VENs) are a type of large, layer V spindle-shaped neurons that were previously described in humans, great apes, elephants, and some large-brained cetaceans. Here we report the presence of Von Economo neurons in the anterior cingulate (ACC), anterior insular (AI), and frontopolar (FP) cortices of small odontocetes, including the bottlenose dolphin (Tursiops truncatus), the Risso's dolphin (Grampus griseus), and the beluga whale (Delphinapterus leucas). The total number and volume of VENs and the volume of neighboring layer V pyramidal neurons and layer VI fusiform neurons were obtained by using a design-based stereologic approach. Two humpback whale (Megaptera novaeangliae) brains were investigated for comparative purposes as representatives of the suborder Mysticeti. Our results show that the distribution of VENs in these cetacean species is comparable to that reported in humans, great apes, and elephants. The number of VENs in these cetaceans is also comparable to data available from great apes, and stereologic estimates indicate that VEN volume follows in these cetacean species a pattern similar to that in hominids, the VENs being larger than neighboring layer V pyramidal cells and conspicuously larger than fusiform neurons of layer VI. The fact that VENs are found in species representative of both cetacean suborders in addition to hominids and elephants suggests that these particular neurons have appeared convergently in phylogenetically unrelated groups of mammals possibly under the influence of comparable selective pressures that influenced specifically the evolution of cortical domains involved in complex cognitive and social/emotional processes. PMID:19412956

  1. The evolutionary history of cetacean brain and body size.

    PubMed

    Montgomery, Stephen H; Geisler, Jonathan H; McGowen, Michael R; Fox, Charlotte; Marino, Lori; Gatesy, John

    2013-11-01

    Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved. Cetaceans are remarkably diverse, varying in both phenotypes by several orders of magnitude, with notable differences between the two extant suborders, Mysticeti and Odontoceti. We analyzed the evolutionary history of brain and body mass, and relative brain size measured by the encephalization quotient (EQ), using a data set of extinct and extant taxa to capture temporal variation in the mode and direction of evolution. Our results suggest that cetacean brain and body mass evolved under strong directional trends to increase through time, but decreases in EQ were widespread. Mysticetes have significantly lower EQs than odontocetes due to a shift in brain:body allometry following the divergence of the suborders, caused by rapid increases in body mass in Mysticeti and a period of body mass reduction in Odontoceti. The pattern in Cetacea contrasts with that in primates, which experienced strong trends to increase brain mass and relative brain size, but not body mass. We discuss what these analyses reveal about the convergent evolution of large brains, and highlight that until recently the most encephalized mammals were odontocetes, not primates. PMID:24152011

  2. First evidence for (TTAGG)n telomeric sequence and sex chromosome post-reduction in Coleorrhyncha (Insecta, Hemiptera)

    PubMed Central

    Kuznetsova, Valentina G.; Grozeva, Snejana M.; Hartung, Viktor; Anokhin, Boris A.

    2015-01-01

    Abstract Telomeric repeats are general and significant structures of eukaryotic chromosomes. However, nothing is known about the molecular structure of telomeres in the enigmatic hemipteran suborder Coleorrhyncha (moss bugs) commonly considered as the sister group to the suborder Heteroptera (true bugs). The true bugs are known to differ from the rest of the Hemiptera in that they display an inverted sequence of sex chromosome divisions in male meiosis, the so-called sex chromosome post-reduction. To date, there has been no information about meiosis in Coleorrhyncha. Here we report a cytogenetic observation of Peloridium pomponorum, a representative of the single extant coleorrhynchan family Peloridiidae, using the standard chromosome staining and fluorescence in situ hybridization (FISH) with a (TTAGG)n telomeric probe. We show that Peloridium pomponorum displays 2n = 31 (30A + X) in males, the classical insect (TTAGG)n telomere organization and sex chromosome post-reduction during spermatocyte meiosis. The plesiomorphic insect-type (TTAGG)n telomeric sequence is suggested to be preserved in Coleorrhyncha and in a basal heteropteran infraorder Nepomorpha, but absent (lost) in the advanced heteropteran lineages Cimicomorpha and Pentatomomorpha. The telomere structure in other true bug infraorders is currently unknown. We consider here the inverted sequence of sex chromosome divisions as a synapomorphy of the group Coleorrhyncha + Heteroptera. PMID:26753072

  3. Characterization of the complete mitogenomes of two Neoscona spiders (Araneae: Araneidae) and its phylogenetic implications.

    PubMed

    Wang, Zheng-Liang; Li, Chao; Fang, Wen-Yuan; Yu, Xiao-Ping

    2016-09-30

    The complete mitogenomes of two orb-weaving spiders Neoscona doenitzi and Neoscona nautica were determined and a comparative mitogenomic analysis was performed to depict evolutionary trends of spider mitogenomes. The circular mitogenomes are 14,161bp with A+T content of 74.6% in N. doenitzi and 14,049bp with A+T content of 78.8% in N. nautica, respectively. Both mitogenomes contain a standard set of 37 genes typically presented in metazoans. Gene content and orientation are identical to all previously sequenced spider mitogenomes, while gene order is rearranged by tRNAs translocation when compared with the putative ancestral gene arrangement pattern presented by Limulus polyphemus. A comparative mitogenomic analysis reveals that the nucleotide composition bias is obviously divergent between spiders in suborder Opisthothelae and Mesothelae. The loss of D-arm in the trnS(UCN) among all of Opisthothelae spiders highly suggested that this common feature is a synapomorphy for entire suborder Opisthothelae. Moreover, the trnS(AGN) in araneoids preferred to use TCT as an anticodon rather than the typical anticodon GCT. Phylogenetic analysis based on the 13 protein-coding gene sequences consistently yields trees that nest the two Neoscona spiders within Araneidae and recover superfamily Araneoidea as a monophyletic group. The molecular information acquired from the results of this study should be very useful for future research on mitogenomic evolution and genetic diversities in spiders. PMID:27259661

  4. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences.

    PubMed

    Yuan, Ming-Long; Zhang, Qi-Lin; Zhang, Li; Guo, Zhong-Long; Liu, Yong-Jian; Shen, Yu-Ying; Shao, Renfu

    2016-11-01

    The Coleoptera (beetles) exhibits tremendous morphological, ecological, and behavioral diversity. To better understand the phylogenetics and evolution of beetles, we sequenced three complete mitogenomes from two families (Cleridae and Meloidae), which share conserved mitogenomic features with other completely sequenced beetles. We assessed the influence of six datasets and three inference methods on topology and nodal support within the Coleoptera. We found that both Bayesian inference and maximum likelihood with homogeneous-site models were greatly affected by nucleotide compositional heterogeneity, while the heterogeneous-site mixture model in PhyloBayes could provide better phylogenetic signals for the Coleoptera. The amino acid dataset generated more reliable tree topology at the higher taxonomic levels (i.e. suborders and series), where the inclusion of rRNA genes and the third positions of protein-coding genes improved phylogenetic inference at the superfamily level, especially under a heterogeneous-site model. We recovered the suborder relationships as (Archostemata+Adephaga)+(Myxophaga+Polyphaga). The series relationships within Polyphaga were recovered as (Scirtiformia+(Elateriformia+((Bostrichiformia+Scarabaeiformia+Staphyliniformia)+Cucujiformia))). All superfamilies within Cucujiformia were recovered as monophyletic. We obtained a cucujiform phylogeny of (Cleroidea+(Coccinelloidea+((Lymexyloidea+Tenebrionoidea)+(Cucujoidea+(Chrysomeloidea+Curculionoidea))))). This study showed that although tree topologies were sensitive to data types and inference methods, mitogenomic data could provide useful information for resolving the Coleoptera phylogeny at various taxonomic levels by using suitable datasets and heterogeneous-site models. PMID:27497607

  5. A new genus and species for the first recorded cave-dwelling Cavernicola (Platyhelminthes) from South America

    PubMed Central

    Leal-Zanchet, Ana Maria; de Souza, Stella Teles; Ferreira, Rodrigo Lopes

    2014-01-01

    Abstract Species diversity of Brazilian cave fauna has been seriously underestimated. A karst area located in Felipe Guerra, northeastern Brazil, which is a hotspot of subterranean diversity in Brazil, has revealed more than 20 troglobitic species, most of them still undescribed. Based on recent samplings in this karst area, we document the occurrence of the suborder Cavernicola (Platyhelminthes) in South American hypogean environments for the first time and describe a new genus and species for this suborder. Hausera Leal-Zanchet & Souza, gen. n. has features concordant with those defined for the family Dimarcusidae. The new genus is characterized by two unique features, viz. an intestine extending dorsally to the brain and ovovitelline ducts located dorsally to the nerve cords, which is complemented by a combination of other characters. The type-specimens of Hausera hauseri Leal-Zanchet & Souza, sp. n. are typical stygobionts, unpigmented and eyeless, and they may constitute an oceanic relict as is the case of other stygobiotic invertebrates found in this karst area in northeastern Brazil. PMID:25349486

  6. A Comparative Analysis of Feeding and Trophic Level Ecology in Stingrays (Rajiformes; Myliobatoidei) and Electric Rays (Rajiformes: Torpedinoidei)

    PubMed Central

    Jacobsen, Ian P.; Bennett, Mike B.

    2013-01-01

    Standardised diets and trophic level (TL) estimates were calculated for 75 ray species from the suborders Myliobatoidei (67 spp.) and Torpedinoidei (8 spp.). Decapod crustaceans (31.71±3.92%) and teleost fishes (16.45±3.43%) made the largest contribution to the standardised diet of the Myliobatoidei. Teleost fishes (37.40±16.09%) and polychaete worms (31.96±14.22%) were the most prominent prey categories in the standardised diet of the suborder Torpedinoidei. Cluster analysis identified nine major trophic guilds the largest of which were decapod crustaceans (24 species), teleost fishes (11 species) and molluscs (11 species). Trophic level estimates for rays ranged from 3.10 for Potamotrygon falkneri to 4.24 for Gymnura australis, Torpedo marmorata and T. nobiliana. Secondary consumers with a TL <4.00 represented 84% of the species examined, with the remaining 12 species (16%) classified as tertiary consumers (TL ≥4.00). Tertiary consumers included electric rays (Torpedo, 3 spp. and Hypnos, 1 sp.), butterfly rays (Gymnura, 4 spp.), stingrays (2 spp.) and Potamotrygonid stingrays (2 spp.). Feeding strategies were identified as the primary factor of influence with respect to Myliobatoidei and Torpedinoidei TL estimates with inter-family comparisons providing the greatest insight into Myliobatoidei and Torpedinoidei relationships. PMID:23936503

  7. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions.

    PubMed

    Letek, Michal; González, Patricia; Macarthur, Iain; Rodríguez, Héctor; Freeman, Tom C; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A; Sanders, Mandy; Scortti, Mariela M; Prescott, John F; Fogarty, Ursula; Meijer, Wim G; Parkhill, Julian; Bentley, Stephen D; Vázquez-Boland, José A

    2010-09-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  8. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  9. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth.

    PubMed

    Jog, Rahul; Pandya, Maharshi; Nareshkumar, G; Rajkumar, Shalini

    2014-04-01

    The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l(-1)), phytase (0.68 U ml(-1)), chitinase (6.2 U ml(-1)), indole-3-acetic acid (136.5 mg l(-1)) and siderophore (47.4 mg l(-1)) production, as well as utilizing all the rhizospheric sugars under test. Malate (50-55 mmol l(-1)) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes - isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and (1)H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33%) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field

  10. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    PubMed

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria. PMID:25820602

  11. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  12. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants

    PubMed Central

    Poulsen, Michael; Cafaro, Matías J.; Erhardt, Daniel P.; Little, Ainslie E. F.; Gerardo, Nicole M.; Tebbets, Brad; Klein, Bruce S.; Currie, Cameron R.

    2012-01-01

    Summary Host–parasite associations are potentially shaped by evolutionary reciprocal selection dynamics, in which parasites evolve to overcome host defences and hosts are selected to counteract these through the evolution of new defences. This is expected to result in variation in parasite-defence interactions, and the evolution of resistant parasites causing increased virulence. Fungus-growing ants maintain antibiotic-producing Pseudonocardia (Actinobacteria) that aid in protection against specialized parasites of the ants’ fungal gardens, and current evidence indicates that both symbionts have been associated with the ants for millions of years. Here we examine the extent of variation in the defensive capabilities of the ant–actinobacterial association against Escovopsis (parasite-defence interactions), and evaluate how variation impacts colonies of fungus-growing ants. We focus on five species of Acromyrmex leaf-cutting ants, crossing 12 strains of Pseudonocardia with 12 strains of Escovopsis in a Petri plate bioassay experiment, and subsequently conduct subcolony infection experiments using resistant and non-resistant parasite strains. Diversity in parasite-defence interactions, including pairings where the parasites are resistant, suggests that chemical variation in the antibiotics produced by different actinobacterial strains are responsible for the observed variation in parasite susceptibility. By evaluating the role this variation plays during infection, we show that infection of ant subcolonies with resistant parasite strains results in significantly higher parasite-induced morbidity with respect to garden biomass loss. Our findings thus further establish the role of Pseudonocardia-derived antibiotics in helping defend the ants’ fungus garden from the parasite Escovopsis, and provide evidence that small molecules can play important roles as antibiotics in a natural system. PMID:22896766

  13. Prevalence of Lysogeny among Soil Bacteria and Presence of 16S rRNA and trzN Genes in Viral-Community DNA▿

    PubMed Central

    Ghosh, Dhritiman; Roy, Krishnakali; Williamson, Kurt E.; White, David C.; Wommack, K. Eric; Sublette, Kerry L.; Radosevich, Mark

    2008-01-01

    Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities. PMID:17993550

  14. Microbial Communities Show Parallels at Sites with Distinct Litter and Soil Characteristics▿†

    PubMed Central

    Sagova-Mareckova, Marketa; Omelka, Marek; Cermak, Ladislav; Kamenik, Zdenek; Olsovska, Jana; Hackl, Evelyn; Kopecky, Jan; Hadacek, Franz

    2011-01-01

    Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds. PMID:21926225

  15. Regional diversity of amphipoda in the Caribbean Sea.

    PubMed

    Martín, Alberto; Díaz, Yusbelly; Miloslavich, Patricia; Escobar-Briones, Elva; Guerra-García, José Manuel; Ortiz, Manuel; Valencia, Bellineth; Giraldo, Alan; Klein, Eduardo

    2013-12-01

    The order Amphipoda is one of the most diverse within Peracarids, and comprises 6950 described marine species. Amphipod research in the Caribbean Sea began in the late 1800s, but has increased significantly since 1980. In this study, we analized the amphipod biodiversity (Caprellidea, Gammaridea, Hyperiidea, and Ingolfiellidea) of the Caribbean Sea. For this, we compiled available data on species diversity of marine amphipods (data bases: WoRMS and OBIS and published species lists) into a comprehensive taxonomic list by country for the ecoregions of the Caribbean. Additionally, we analized the relative contribution of each country to regional diversity and the rate of discovery of new species. The Caribbean amphipod fauna is composed of 535 species within 236 genera and 73 families for the higher taxon. The Western Caribbean ecoregion holds the largest diversity (282 species), while the Eastern Caribbean recorded the lowest one (73). Mexico and Venezuela recorded the largest number of species with 266 and 206, respectively. Twelve countries had less than 50 species. The richest suborder is the Gammaridea with 381 species followed by the suborder Hyperiidea with 116. From the total of 535 amphipod species reported for the Caribbean region, 218 have the Caribbean as the holotype locality, and 132 are endemic (about 25% of the total). Areas of higher diversity seem to be concentrated along the Mexican Caribbean, Cuba and the Northern coast of South America (Venezuela-Colombia); however, such pattern is most likely reflecting local collection efforts and taxonomic expertise rather than actual distribution. Knowledge of amphipod species is mostly limited to shallow, near-shore waters, with little infonnation available on the deep sea fauna. Regional research priorities for this group should be focused on completing shallow water coastal inventories of species in Central America and the Greater and Lesser Antilles. In addition, sampling the deep sea ecosystems should

  16. The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms

    PubMed Central

    2014-01-01

    Background Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions We demonstrate the existence of at least two SINE families within the Feliformia suborder, one

  17. Sphaeromyxids form part of a diverse group of myxosporeans infecting the hepatic biliary systems of a wide range of host organisms

    PubMed Central

    2013-01-01

    Background Approximately 40 species of Sphaeromyxa have been described, all of which are coelozoic parasites from gall bladders of marine fish. They are unique amongst the myxosporeans as they have polar filaments that are flat and folded instead of being tubular and spirally wound. This unusual feature was used as a subordinal character to erect the suborder Sphaeromyxina, which contains one family, the Sphaeromyxidae, and a single genus Sphaeromyxa. Methods In the present study, we examine eelpout from the genus Lycodes from Iceland for the presence of myxosporean parasites in the gall bladder and perform morphological and DNA studies. Results A novel myxosporean, Sphaeromyxa lycodi n. sp., was identified in the gall bladders of five of the six species of Lycodes examined, with a prevalence ranging from 29 - 100%. The coelozoic plasmodia are large, polysporous and contain disporic pansporoblasts and mature spores which are arcuate. The pyriform polar capsules encase long and irregularly folded ribbon-like polar filaments. Each spore valve has two distinct ends and an almost 180° twist along the relatively indistinct suture line. The single sporoplasm is granular with two nuclei. Sphaeromyxa lycodi is phylogenetically related to other arcuate sphaeromyxids and is reproducibly placed with all known sphaeromyxids and forms part of a robustly supported clade of numerous myxosporean genera which infect the hepatic biliary systems of a wide range of hosts. Conclusions Sphaeromyxa lycodi is a common gall bladder myxosporean in eelpout of the genus Lycodes from Northern Iceland. It has characteristics typical of the genus and develops arcuate spores. Molecular phylogenetic analyses confirm that sphaeromyxids form a monophyletic group, subdivided into straight and arcuate spore forms, within the hepatic biliary clade that infect a wide range of freshwater associated animals. The ancestral spore form for the hepatic biliary clade was probably a Chloromyxum morphotype

  18. Evolutionary biology of harvestmen (Arachnida, Opiliones).

    PubMed

    Giribet, Gonzalo; Sharma, Prashant P

    2015-01-01

    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data. PMID:25341103

  19. Complete genome sequence of Nakamurella multipartita type strain (Y-104T)

    SciTech Connect

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, A; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Detter, J. Chris; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-01-01

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the small one-species genus Nakamurella in the actinomycetal suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is able of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Complete genome sequence of Thermobispora bispora type strain (R51T)

    SciTech Connect

    Liolios, Konstantinos; Sikorski, Johannes; Jando, Marlen; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Woyke, Tanja; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Chertkov, Olga; Kuske, Cheryl R; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Detter, J C; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2010-01-01

    Thermobispora bispora (Henssen 1957) Wang et al. 1996 is the type species of the genus Thermobispora. This genus is of great interest because it is stricty thermophilic and because the genomes of its members contain substantially distinct (6.4% sequence difference) and transcriptionally active 16S rRNA genes. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of the suborder Streptosporangineae and the first genome sequence of a ember of the genus Thermobispora. The 4,189,976 bp long genome with its 3,596 protein-coding and 63 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. The enigmatic monotypic crab plover Dromas ardeola is closely related to pratincoles and coursers (Aves, Charadriiformes, Glareolidae).

    PubMed

    Pereira, Sergio L; Baker, Allan J

    2010-07-01

    The phylogenetic placement of the monotypic crab plover Dromasardeola (Aves, Charadriiformes) remains controversial. Phylogenetic analysis of anatomical and behavioral traits using phenetic and cladistic methods of tree inference have resulted in conflicting tree topologies, suggesting a close association of Dromas to members of different suborders and lineages within Charadriiformes. Here, we revisited the issue by applying Bayesian and parsimony methods of tree inference to 2,012 anatomical and 5,183 molecular characters to a set of 22 shorebird genera (including Turnix). Our results suggest that Bayesian analysis of anatomical characters does not resolve the phylogenetic relationship of shorebirds with strong statistical support. In contrast, Bayesian and parsimony tree inference from molecular data provided much stronger support for the phylogenetic relationships within shorebirds, and support a sister relationship of Dromas to Glareolidae (pratincoles and coursers), in agreement with previously published DNA-DNA hybridization studies. PMID:21637436

  2. Digestion of cellulose and xylan by symbiotic bacteria in the intestine of the Indian flying fox (Pteropus giganteus).

    PubMed

    Prem Anand, A Alwin; Sripathi, K

    2004-09-01

    Bats (Order Chiroptera) are a widely distributed group of mammals. Pteropus giganteus belongs to the Suborder Megachiroptera. This bat consumes fruits and leaves as their major food. Cellulose and xylan are the major composition of leaves. As they consume leaves in their diet, their digestive tract must contain cellulolytic and xylanolytic bacteria which help in the digestion of cellulose and xylan. The cellulolytic and xylanolytic bacteria were isolated and screened on Berg's agar containing cellulose and xylan. The bacteria isolated were characterized biochemically and found to be Proteus vulgaris, Proteus mirabilis, Citrobacter freundii, Serratia liquefaciens and Klebsiella oxytoca. These bacteria help in digestion of cellulose and xylan in the diet of the bat, P. giganteus. Here we show that leaves are also used as a carbohydrate source by these bats. An insectivorous bat, Hipposideros fulvus, was used as a control and does not possess cellulolytic and xylanolytic bacteria. PMID:15471682

  3. Evidence for echolocation in the oldest known bats.

    PubMed

    Novacek, M J

    The earliest-known bats are represented by excellent fossil material, including virtually complete skeletons of Icaronycteris index from the early Eocene (50 Myr BP) of western Wyoming and Palaeochiropteryx tupaiodon from the middle Eocene (45 Myr BP) 'Grube Messel' of western Germany. These taxa have been closely allied with Recent Microchiroptera, a suborder of diverse bats noted for their powers of ultrasonic echolocation. A problem with this relationship is the alleged absence in the Eocene forms of specializations in the auditory region and other aspects of the skeletal system. It has been proposed, therefore, that the oldest bats are members of a group more primitive and possibly ancestral to the Microchiroptera and the visually oriented Megachiroptera. Previously undescribed specimens now show, however, that Icaronycteris and Palaeochiropteryx share special basicranial features with microchiropterans which suggest comparable refinement of ultrasonic echolocation. These results support the theory that a sophisticated sonar system was present in the earliest records of microchiropteran history. PMID:3990815

  4. Asynchronous extinction of late Quaternary sloths on continents and islands

    PubMed Central

    Steadman, David W.; Martin, Paul S.; MacPhee, Ross D. E.; Jull, A. J. T.; McDonald, H. Gregory; Woods, Charles A.; Iturralde-Vinent, Manuel; Hodgins, Gregory W. L.

    2005-01-01

    Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their “last appearance” datum at ≈11,000 radiocarbon years before present (yr BP) or slightly less in North America, ≈10,500 yr BP in South America, and ≈4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial–interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people. PMID:16085711

  5. Molecular adaptations in Antarctic fish and bacteria

    NASA Astrophysics Data System (ADS)

    Russo, Roberta; Riccio, Alessia; di Prisco, Guido; Verde, Cinzia; Giordano, Daniela

    2010-08-01

    Marine organisms, living in the cold waters of the Southern Ocean, are exposed to high oxygen concentrations. Cold-adapted organisms have developed networks of defence mechanisms to protect themselves against oxidative stress. The dominant suborder Notothenioidei of the Southern Ocean is one of the most interesting models, within vertebrates, to study the evolutionary biological responses to extreme environment. Within bacteria, the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 gives the opportunity to explore the cellular strategies adopted in vivo by cold-adapted microorganisms to cope with cold and high oxygen concentration. Understanding the molecular mechanisms underlying how a range of Antarctic organisms have responded to climate change in the past will enable predictions as to how they and other species will adapt to global climate change, in terms of physiological function, distribution patterns and ecosystem balance.

  6. A megafauna's microfauna: gastrointestinal parasites of New Zealand's extinct moa (Aves: Dinornithiformes).

    PubMed

    Wood, Jamie R; Wilmshurst, Janet M; Rawlence, Nicolas J; Bonner, Karen I; Worthy, Trevor H; Kinsella, John M; Cooper, Alan

    2013-01-01

    WE PERFORM THE FIRST MULTIDISCIPLINARY STUDY OF PARASITES FROM AN EXTINCT MEGAFAUNAL CLADE USING COPROLITES FROM THE NEW ZEALAND MOA (AVES: Dinornithiformes). Ancient DNA and microscopic analyses of 84 coprolites deposited by four moa species (South Island giant moa, Dinornis robustus; little bush moa, Anomalopteryx didiformis; heavy-footed moa, Pachyornis elephantopus; and upland moa, Megalapteryx didinus) reveal an array of gastrointestinal parasites including coccidians (Cryptosporidium and members of the suborder Eimeriorina), nematodes (Heterakoidea, Trichostrongylidae, Trichinellidae) and a trematode (Echinostomida). Parasite eggs were most prevalent and diverse in coprolites from lowland sites, where multiple sympatric moa species occurred and host density was therefore probably higher. Morphological and phylogenetic evidence supports a possible vicariant Gondwanan origin for some of the moa parasites. The discovery of apparently host-specific parasite taxa suggests paleoparasitological studies of megafauna coprolites may provide useful case-studies of coextinction. PMID:23451203

  7. Peltogasterella sensuru n. sp. (Crustacea: Cirripedia: Rhizocephala) from off Okinawa Island (Ryukyu Archipelago, Japan) with remarks on its single brood externae.

    PubMed

    Yoshida, Ryuta; Hirose, Mamiko; Hirose, Euichi

    2015-09-01

    Peltogasterella sensuru n. sp. infests Pagurixus hermit crabs inhabiting rocky shores off Okinawa Island (Ryukyu Archipelago, Japan). This species is clearly distinguishable from Peltogasterella gracilis (Boschma, 1927): the stalk emerges from the middle part of the externa in the present species and P. sulcata (Lilljeborg, 1859), while the stalk in P. gracilis emerges from the posterior end of the externae. The new species differs from P. sulcata based on the morphology of the mantle aperture. Peltogasterella sensuru n. sp. repeatedly produces single brood externae that have not been previously observed in species belonging to the suborder Kentrogonida Delage, 1884. We also determined partial sequences of the COI gene and 16S rRNA gene of the new species for use as molecular markers for species identification. PMID:26249520

  8. [What gene and chromosomes say about the origin and evolution of insects and other arthropods].

    PubMed

    Lukhtanov, V A; Kuznetsova, V G

    2010-09-01

    At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha. PMID:21061630

  9. The complete mitochondrial genome of Limnoria quadripunctata Holthuis (Isopoda: Limnoriidae).

    PubMed

    Lloyd, Rhiannon E; Streeter, Simon D; Foster, Peter G; Littlewood, D Timothy J; Huntley, Jim; Beckham, Gregg T; Himmel, Michael E; Cragg, Simon M

    2015-01-01

    The complete mitochondrial genome of Limnoria quadripunctata, a marine wood-eating isopod crustacean, was determined from whole genome sequence data. The mitogenome is 16,503 bp in length and contains 39 genes: 13 protein-coding, 2 ribosomal RNA, 22 tRNA, two of which are repeated and a control region. The start codon most commonly used by the Limnoria protein-coding genes is ATN, as is the case in the two other available complete isopod mitogenomes. The gene arrangement differs among these complete isopod mitogenomes, as does the AT-content of H-strand protein-coding genes. The latter observations, coupled with the considerable nucleotide diversity observed between the isopod mitogenomes, support the idea that each isopod species belongs to a distinct lineage as implied by their current placement in separate suborders. PMID:24409843

  10. Characterisation of Major Histocompatibility Complex Class I in the Australian Cane Toad, Rhinella marina

    PubMed Central

    Lillie, Mette; Shine, Richard; Belov, Katherine

    2014-01-01

    The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad's complex history of introductions as a biocontrol agent and its subsequent invasion across Australia. PMID:25093458

  11. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  12. Mycalina: another crack in the Poecilosclerida framework.

    PubMed

    Hajdu, Eduardo; de Paula, Thiago S; Redmond, Niamh E; Cosme, Bruno; Collins, Allen G; Lôbo-Hajdu, Gisele

    2013-09-01

    This is the first phylogenetic analysis integrating both morphological and molecular data of the sponge suborder Mycalina (Poecilosclerida), which was erected in 1994. A cladistic analysis of morphology supported the monophyly of Cladorhizidae (including Euchelipluma), Guitarridae (excluding Euchelipluma), Isodictyidae, Latrunculiidae, and Podospongiidae but rejected monophyly for Desmacellidae, Esperiopsidae, Hamacanthidae, and Mycalidae. Analyses of partial 16S and partial 28S rRNA datasets combined, as well as that of a complete 18S rDNA dataset, suggest that Mycalina is not monophyletic; Biemnidae is only distantly related to other poecilosclerids; Merlia and Desmacella branch near the base of a diverse Poecilosclerida clade; Mycalidae is monophyletic (excluding Mycale [Anomomycale] titubans in 18S); and Esperiopsidae and Isodictyidae form a clade. Analyses of the two molecular datasets differed on the monophyly of Podospongiidae and about the relationship of Podospongiidae to Isodictyidae + Esperiopsidae. PMID:23798622

  13. Inventory of the Heteroptera (Insecta: Hemiptera) in Komaba Campus of the University of Tokyo, a highly urbanized area in Japan

    PubMed Central

    Saito, Masayuki U.; Kishimoto-Yamada, Keiko; Kato, Toshihide; Kurashima, Osamu; Ito, Motomi

    2015-01-01

    Abstract Background The Heteroptera, or true bugs, forms one of the major insect groups with respect to the very diverse habitat preferences, including both aquatic and terrestrial species, as well as a variety of feeding types. The first comprehensive inventory of the Heteroptera at Komaba Campus of the University of Tokyo, or an urban green space in the center of the Tokyo Metropolis, Japan, was conducted. New information A total of 115 species in 29 families of the suborder Heteroptera were identified. The area had a high species richness compared with other urbanized and suburbanized localities in Tokyo. The campus is found to show a substantial difference in heteropteran species compositions, despite being close to the other localities surrounded by highly urbanized zones in central Tokyo. PMID:25941455

  14. Distribution of constitutive heterochromatin in Pachycoris torridus (Hemiptera, Scutelleridae) with different chromatic patterns.

    PubMed

    Souza-Firmino, T S; Alevi, K C C; Pereira, L L V; Souza, E R S; Júnior, F C S; Banho, C A; Carmo, G O; Itoyama, M M

    2015-01-01

    The stink bug Pachycoris torridus is a pest of great agricultural importance due to its records on culture of physic nut (Jatropha curcas), which is the raw material for biodiesel production. An interesting feature of this insect is its high phenotypic variability, a characteristic that resulted in it being classified as a new species on eight separate occasions. In the suborder Heteroptera, the heterochromatin pattern is specific and often allows species to be differentiated. To confirm whether there is differentiation between specimens of P. torridus with different color patterns (yellow, orange, brown, and red), samples were analyzed cytogenetically using the C-banding method. During meiotic prophase, the four color patterns analyzed showed a large heterochromatic chromocenter, consisting of a combination of both sex chromosomes (X and Y). Thus, the present study reports chromosomal homogeneity in different color patterns of P. torridus and highlights the importance of this tool in the description of new species. PMID:26634542

  15. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    PubMed Central

    Shelomi, Matan; Danchin, Etienne G. J.; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  16. The sense of smell in Odonata: an electrophysiological screening.

    PubMed

    Piersanti, Silvana; Frati, Francesca; Conti, Eric; Rebora, Manuela; Salerno, Gianandrea

    2014-11-01

    Volatile chemicals mediate a great range of intra- and interspecific signalling and information in insects. Olfaction has been widely investigated mostly in Neoptera while the knowledge of this sense in most basal insects such as Paleoptera (Odonata and Ephemeroptera) is still poor. In the present study we show the results of an electrophysiological screening on two model species, Libellula depressa (Libellulidae) and Ischnura elegans (Coenagrionidae), representatives of the two Odonata suborders Anisoptera and Zygoptera, with the aim to deep the knowledge on the sense of smell of this insect order. The antennal olfactory sensory neurons (OSNs) of these two species responded to the same 22 compounds (out of 48 chemicals belonging to different functional groups) encompassing mostly amines, carboxylic acids or aldehydes and belonging to green leaf volatiles, vertebrate related volatiles and volatiles emitted by standing waters bacteria. The properties of Odonata OSNs are very similar to those of ionotropic receptors (IRs) expressing OSNs in other insects. PMID:25218659

  17. A multi-locus time-calibrated phylogeny of the siphonous green algae.

    PubMed

    Verbruggen, Heroen; Ashworth, Matt; LoDuca, Steven T; Vlaeminck, Caroline; Cocquyt, Ellen; Sauvage, Thomas; Zechman, Frederick W; Littler, Diane S; Littler, Mark M; Leliaert, Frederik; De Clerck, Olivier

    2009-03-01

    The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They comprise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved. In the Bryopsidales, three main clades were inferred, two of which correspond to previously described suborders (Bryopsidineae and Halimedineae) and a third lineage that contains only the limestone-boring genus Ostreobium. Relaxed molecular clock models indicate a Neoproterozoic origin of the siphonous green algae and a Paleozoic diversification of the orders into their families. The inferred node ages are used to resolve conflicting hypotheses about species ages in the tropical marine alga Halimeda. PMID:19141323

  18. Chemical structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green seaweeds of the order Bryopsidales.

    PubMed

    Arata, Paula X; Quintana, Irene; Canelón, Dilsia J; Vera, Beatriz E; Compagnone, Reinaldo S; Ciancia, Marina

    2015-05-20

    Sulfated and pyruvylated galactans were isolated from three tropical species of the Bryopsidales, Penicillus capitatus, Udotea flabellum, and Halimeda opuntia. They represent the only important sulfated polysaccharides present in the cell walls of these highly calcified seaweeds of the suborder Halimedineae. Their structural features were studied by chemical analyses and NMR spectroscopy. Their backbone comprises 3-, 6-, and 3,6-linkages, constituted by major amounts of 3-linked 4,6-O-(1'-carboxy)ethylidene-d-galactopyranose units in part sulfated on C-2. Sulfation on C-2 was not found in galactans from other seaweeds of this order. In addition, a complex sulfation pattern, comprising also 4-, 6-, and 4,6-disulfated galactose units was found. A fraction from P. capitatus, F1, showed a moderate anticoagulant activity, evaluated by general coagulation tests and also kinetics of fibrin formation was assayed. Besides, preliminary results suggest that one of the possible mechanisms involved is direct thrombin inhibition. PMID:25817682

  19. New Acotylea (Polycladida, Platyhelminthes) from the east coast of the North Atlantic Ocean with special mention of the Iberian littoral.

    PubMed

    Noreña, Carolina; Rodríguez, Jorge; Pérez, Jacinto; Almon, Bruno

    2015-01-01

    Polyclad species diversity, although generally well known for European North Atlantic waters, is nearly unknown for the Iberian Peninsula. The "Ría de Arousa", located on the Atlantic coast of Galicia (Spain), is a place where many positive biological factors for species biodiversity converge. Therefore, it is an ideal location to study polyclad diversity. This research, which describes new records and new species, contributes to the knowledge of the distribution of Polycladida (Platyhelminthes), particularly of the suborder Acotylea, in the Atlantic waters of the Iberian Peninsula. The new records include the re-descriptions of Cryptocelis compacta Lang, 1884, Stylochus neapolitanus (Delle Chiaje, 1841-1844) and Discocelis tigrina (Blanchard, 1847), while the two newly described species are Hoploplana elisabelloi n. sp. and Armatoplana celta n. sp. PMID:26624472

  20. The complete mitochondrial genome of the Hoffmann's two-toed sloth (Choloepus hoffmanni).

    PubMed

    Song, Xiaolei; Chen, Lingyun; Chen, Xi; Jia, Huijue

    2016-09-01

    The Hoffmann's two-toed sloth (Choloepus hoffmanni), a member of Folivora suborder, is found in the rainforest canopy of South America. Both the Hoffmann's two-toed sloth and human belong to Eutheria subclass. In this study, the complete mitochondrial genome of C. hoffmanni is reported . The whole mitochondrial genome is 16 466 bp in length, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. Comparison between the mitochondrial genome of the C. hoffmanni and that of its congener Choloepus didactylus revealed a high similarity in their gene sequences. We also constructed a phylogenetic tree on the complete mitochondrial genomes of these two species and other 14 closely related species to show their phylogenic relationship. To conclude, we analyzed the complete mitochondrial genome of C. hoffmanni and its phylogenic relationship with other related species, which would facilitate our understanding of the evolution of eutherian mitochondrial genome. PMID:26404730

  1. Phylogenetic relationships of the marine Haplosclerida (Phylum Porifera) employing ribosomal (28S rRNA) and mitochondrial (cox1, nad1) gene sequence data.

    PubMed

    Redmond, Niamh E; Raleigh, Jean; van Soest, Rob W M; Kelly, Michelle; Travers, Simon A A; Bradshaw, Brian; Vartia, Salla; Stephens, Kelly M; McCormack, Grace P

    2011-01-01

    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here. PMID:21931685

  2. Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data

    PubMed Central

    Redmond, Niamh E.; Raleigh, Jean; van Soest, Rob W. M.; Kelly, Michelle; Travers, Simon A. A.; Bradshaw, Brian; Vartia, Salla; Stephens, Kelly M.; McCormack, Grace P.

    2011-01-01

    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here. PMID:21931685

  3. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation

    PubMed Central

    Zhang, Y.; Schoch, C.L.; Fournier, J.; Crous, P.W.; de Gruyter, J.; Woudenberg, J.H.C.; Hirayama, K.; Tanaka, K.; Pointing, S.B.; Spatafora, J.W.; Hyde, K.D.

    2009-01-01

    Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceae s. str., Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic. PMID:20169024

  4. The complete mitochondrial genome sequence of Erpobdella octoculata (Hirudinea: Arhynchobdellida: Erpobdellidae).

    PubMed

    Xu, Yun-Ling; Nie, Jing

    2016-05-01

    Erpobdella octoculata (Linnaeus, 1758; Hirudinea: Arhynchobdellida: Erpobdellidae) is a very common and morphologically variable macrophagous predators of aquatic invertebrates. Here we determined the complete mitochondrial DNA (mtDNA) sequence of this species, as the first representative of the suborder Erpobdelliformes. This genome is 14,407 bp in length with an A + T content of 71.55%, containing 37 typical animal mitochondrial genes and a non-coding region (NCR). It has high AT content and the same gene arrangement pattern as those of typical annelids. The complete mtDNA sequence of E. octoculata provides useful genetic markers for identification, ecological and evolutionary studies of leeches. PMID:25329287

  5. The complete mitochondrial genome sequence and gene organization of Tridentiger trigonocephalus (Gobiidae: Gobionellinae) with phylogenetic consideration.

    PubMed

    Wei, Hongqing; Ma, Hongyu; Ma, Chunyan; Zhang, Fengying; Wang, Wei; Chen, Wei; Ma, Lingbo

    2016-09-01

    The complete mitochondrial genome plays an important role in studies of genome-level characteristics and phylogenetic relationships. Here we determined the complete mitogenome sequence of Tridentiger trigonocephalus (Perciformes, Gobiidae), and discovered its phylogenetic relationship. This circular genome was 16 662 bp in length, and consisted of 37 typical genes, including 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The gene order of T. trigonocephalus mitochondrial genome was identical to those observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the others were encoded by light strand. The phylogenetic tree constructed by 13 concatenated protein-coding genes showed that T. trigonocephalus was closest to T. bifasciatus, and then to T. barbatus among the 20 species within suborder Gobioidei. This work should facilitate the studies on population genetic diversity, and molecular evolution in Gobioidei fishes. PMID:26370266

  6. First Biosynthetic pathway of 1-hepten-3-one in Iporangaia pustulosa (Opiliones)

    PubMed Central

    Rocha, Daniele F. O.; Wouters, Felipe C.; Machado, Glauco; Marsaioli, Anita J.

    2013-01-01

    Arthropods produce a great variety of natural compounds, many of which have unexplored biosynthesis. Among the armored harvestmen (Arachnida: Opiliones) of the suborder Laniatores, the defensive gland exudates contain vinyl ketones and other constituents of supposed polyketide origin. We have studied the biosynthesis of 1-hepten-3-one in the Neotropical harvestman Iporangaia pustulosa by feeding individuals with 13C-labeled precursors, demonstrating its mixed acetate/propionate origin. 13C NMR spectroscopy showed an unusual labeling pattern suggesting different propionate sources for starting and extender units. Our analysis also indicates the presence of methylmalonyl-CoA mutase, converting acetate into propionyl-CoA via succinyl-CoA, together with other C3 unit routes. This is the first biosynthetic study of alkyl vinyl ketones in arthropods. Our results shed light on the origin and diversification of chemical compounds in a major arthropod group. PMID:24193576

  7. Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review

    PubMed Central

    Kuznetsova, Valentina; Aguin-Pombo, Dora

    2015-01-01

    Abstract A comprehensive review of cytogenetic features is provided for the large hemipteran suborder Auchenorrhyncha, which currently contains approximately 42,000 valid species. This review is based on the analysis of 819 species, 483 genera, and 31 families representing all presently recognized Auchenorrhyncha superfamilies, e.i. Cicadoidea (cicadas), Cercopoidea (spittle bugs), Membracoidea (leafhoppers and treehoppers), Myerslopioidea (ground-dwelling leafhoppers), and Fulgoroidea (planthoppers). History and present status of chromosome studies are described, as well as the structure of chromosomes, chromosome counts, trends and mechanisms of evolution of karyotypes and sex determining systems, their variation at different taxonomic levels and most characteristic (modal) states, occurrence of parthenogenesis, polyploidy, B-chromosomes and chromosome rearrangements, and methods used for cytogenetic analysis of Auchenorrhyncha. PMID:26807037

  8. Complete mitochondrial genome of the striped scat Selenotoca multifasciata (Perciformes: Scatophagidae).

    PubMed

    Liu, Zhenhao; Mu, Xingjiang; Li, Hong; Gui, Lang; Zeng, Wengang; Zhang, Junbin

    2016-07-01

    The striped scat Selenotoca multifasciata is an ornamental and commercial fish in Asia. In the present study, we sequenced and annotated the complete mitochondrial genome of Selenotoca multifasciata. Its total length is 16,646 bp, and the mitochondrial genome is composed of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding control region. ND6 and eight tRNA genes were encoded on the light strand, whereas the remaining genes located on the heavy strand (H-strand). All the 16 mitochondrial genomes of the suborder Acanthuroidei available in GenBank were employed for phylogenetic analysis, and the result showed a close relationship between Selenotoca multifasciata and Scatophagus argus. This mitochondrial information may benefit relative ecological and phylogenetic studies. PMID:27158788

  9. Dosage Compensation in Sciarids Is Achieved by Hypertranscription of the Single X Chromosome in Males

    PubMed Central

    da-Cunha, P. R.; Granadino, B.; Perondini, ALP.; Sanchez, L.

    1994-01-01

    Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males. PMID:7851774

  10. Development of remote sensing techniques capable of delineating soils as an aid to soil survey

    NASA Technical Reports Server (NTRS)

    Coleman, T. L.; Montgomery, O. L.

    1988-01-01

    Eighty-one benchmark soils from Alabama, Georgia, Florida, Tennessee, and Mississippi were evaluated to determine the feasibility of spectrally differentiating among soil categories. Relationships among spectral properties that occur between soils and within soils were examined, using discriminant analysis. Soil spectral data were obtained from air-dried samples using an Exotech Model 20C field spectroradiometer (0.37 to 2.36 microns). Differentiating among the orders, suborders, great groups, and subgroups using reflectance spectra achieved varying percentages of accuracy. Six distinct reflectance curve forms were developed from the air-dried samples based on the shape and presence or absence of adsorption bands. Iron oxide and organic matter content were the dominant soil parameters affecting the spectral characteristics for differentiating among and between these soils.

  11. Demodex castoris sp. nov. (Acari: Demodecidae) parasitizing Castor fiber (Rodentia), and other parasitic arthropods associated with Castor spp.

    PubMed

    Izdebska, Joanna N; Fryderyk, Sławomira; Rolbiecki, Leszek

    2016-02-11

    A new species of demodecid mite, Demodex castoris sp. nov. (Acari: Prostigmata: Demodecidae), is described based on adult stages from the skin of the nasal region of the Eurasian beaver Castor fiber Linnaeus, 1758, collected in Poland. This is the first detection of a representative demodecid mite in rodents of the suborder Castorimorpha and also represents the first detection of a skin mite in Eurasian beavers. The new species is a small skin mite (average 173 µm in length) characterized by sexual dimorphism related to body proportions. D. castoris sp. nov. was observed in 4 out of 6 beavers examined (66.6%), with a mean intensity of 10.8 and an intensity range of 2-23 ind. host(-1). This paper also contains a checklist of parasitic arthropods known from Castor spp. PMID:26865230

  12. Complete mitochondrial genome of an enigmatic dragonfly, Epiophlebia superstes (Odonata, Epiophlebiidae).

    PubMed

    Wang, Jo-Fan; Chen, Ming-Yu; Chaw, Shu-Miaw; Morii, Yuta; Yoshimura, Mayumi; Sota, Teiji; Lin, Chung-Ping

    2015-01-01

    This study reported the 15,435 bp-long complete mitochondrial genome of the relict Epiophlebia superstes (Odonata, Epiophlebiidae), an enigmatic dragonfly of the paraphyletic 'Anisozygoptera' possessing characteristics similar to members of both extant odonate suborders, the Zygoptera and the Anisoptera. This mitogenome comprises the common set of 37 genes and an A + T-rich control region, and has a gene arrangement identical to those of all available odonates. The genome contains three non-coding inter-genic spacers (s1-s3), which occurs in all of other known odonates, but it lacks the inter-genic spacer s5 typically found in the Anisoptera. This result suggests that E. superstes possesses a mitogenmic organization more closely related to that of the Zygoptera than that of the Anizoptera. PMID:24397757

  13. Complete genome sequence of Haliangium ochraceum type strain (SMP-2T)

    SciTech Connect

    Ivanova, N; Daum, Chris; Lang, Elke; Abt, Birte; Kopitz, marcus; Saunders, Elizabeth H; Lapidus, Alla L.; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Mavromatis, K; Pati, Amrita; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Detter, J. Chris; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Bristow, James; Markowitz, Victor; Eisen, Jonathan; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family Haliangiaceae . Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects.

    PubMed

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects' digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  15. A Megafauna’s Microfauna: Gastrointestinal Parasites of New Zealand’s Extinct Moa (Aves: Dinornithiformes)

    PubMed Central

    Wood, Jamie R.; Wilmshurst, Janet M.; Rawlence, Nicolas J.; Bonner, Karen I.; Worthy, Trevor H.; Kinsella, John M.; Cooper, Alan

    2013-01-01

    We perform the first multidisciplinary study of parasites from an extinct megafaunal clade using coprolites from the New Zealand moa (Aves: Dinornithiformes). Ancient DNA and microscopic analyses of 84 coprolites deposited by four moa species (South Island giant moa, Dinornis robustus; little bush moa, Anomalopteryx didiformis; heavy-footed moa, Pachyornis elephantopus; and upland moa, Megalapteryx didinus) reveal an array of gastrointestinal parasites including coccidians (Cryptosporidium and members of the suborder Eimeriorina), nematodes (Heterakoidea, Trichostrongylidae, Trichinellidae) and a trematode (Echinostomida). Parasite eggs were most prevalent and diverse in coprolites from lowland sites, where multiple sympatric moa species occurred and host density was therefore probably higher. Morphological and phylogenetic evidence supports a possible vicariant Gondwanan origin for some of the moa parasites. The discovery of apparently host-specific parasite taxa suggests paleoparasitological studies of megafauna coprolites may provide useful case-studies of coextinction. PMID:23451203

  16. Sperm morphology of salamandrids (Amphibia, Urodela): implications for phylogeny and fertilization biology.

    PubMed

    Selmi, M G; Brizzi, R; Bigliardi, E

    1997-12-01

    Mature spermatozoa belonging to four salamander species, Salamandrina terdigitata, Triturus alpestris, Triturus carnifex and Triturus vulgaris, have been investigated by electron microscopy. The sperm ultrastructure of these species was compared with that of previously examined urodeles (36 species and 20 genera) and with that of anurans and caecilians. Many phylogenetic considerations may be inferred as a consequence of comparative spermatology. Urodela appears to be a monophyletic order characterized by three sperm synapomorphies: the acrosomal barb, nuclear ridge and marginal filament. Cryptobranchoidea are confirmed to form a monophyletic suborder having two synapomorphic characters: absence of mitochondria in the tail, and cylindrical shape of the tail axial rod. Within the family Salamandridae, sperm morphology confirms the phylogenetic distance between Salamandrina and Triturus, as already pointed out on the basis of molecular and morphological characters. The very complex ultrastructure of spermatozoa confirms a previous opinion that internal fertilization is the ancestral condition of the Amphibia. PMID:18627832

  17. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill.

    PubMed

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M; Novoa, Beatriz

    2009-06-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution

  18. The complete mitochondrial genome of Meloidogyne graminicola (Tylenchina): a unique gene arrangement and its phylogenetic implications.

    PubMed

    Sun, Longhua; Zhuo, Kan; Lin, Borong; Wang, Honghong; Liao, Jinling

    2014-01-01

    Meloidogyne graminicola is one of the most economically important plant parasitic-nematodes (PPNs). In the present study, we determined the complete mitochondrial (mt) DNA genome sequence of this plant pathogen. Compared with other PPNs genera, this genome (19,589 bp) is only slightly smaller than that of Pratylenchus vulnus (21,656 bp). The nucleotide composition of the whole mtDNA sequence of M. graminicola is significantly biased toward A and T, with T being the most favored nucleotide and C being the least favored. The A+T content of the entire genome is 83.51%. The mt genome of M. graminicola contains 36 genes (lacking atp8) that are transcribed in the same direction. The gene arrangement of the mt genome of M. graminicola is unique. A total of 21 out of 22 tRNAs possess a DHU loop only, while tRNASer(AGN) lacks a DHU loop. The two large noncoding regions (2,031 bp and 5,063 bp) are disrupted by tRNASer(UCN). Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes support the monophylies of the three orders Rhabditida, Mermithida and Trichinellida, the suborder Rhabditina and the three infraorders Spiruromorpha, Oxyuridomorpha and Ascaridomorpha, but do not support the monophylies of the two suborders Spirurina and Tylenchina, and the three infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. The four Tylenchomorpha species including M. graminicola, P. vulnus, H. glycines and R. similis from the superfamily Tylenchoidea are placed within a well-supported monophyletic clade, but far from the other two Tylenchomorpha species B. xylophilus and B. mucronatus of Aphelenchoidea. In the clade of Tylenchoidea, M. graminicola is sister to P. vulnus, and H. glycines is sister to R. similis, which suggests root-knot nematodes has a closer relationship to Pratylenchidae nematodes than to cyst nematodes. PMID:24892428

  19. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes.

    PubMed

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Silva, Fabio Augusto Oliveira; Ledesma, Mario Angel; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Del Valle Garnero, Analía; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José

    2015-10-01

    Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very

  20. When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence

    PubMed Central

    Kocarek, Petr; John, Vaclav; Hulva, Pavel

    2013-01-01

    Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. Our results also indicate that the evolutionary consequences of the transition to an ectoparazitic mode of living, which is extremely rare in earwigs, have biased previous morphology-based hypotheses regarding the phylogeny of this insect group. PMID:23826171

  1. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus

    PubMed Central

    Ma, Chuan; Liu, Chunxiang; Yang, Pengcheng; Kang, Le

    2009-01-01

    Background The two closely related species of band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus, display significant differences in distribution, biological characteristics and habitat preferences. They are so similar to their respective congeneric species that it is difficult to differentiate them from other species within each genus. Hoppers of the two species have quite similar morphologies to that of Locusta migratoria, hence causing confusion in species identification. Thus we determined and compared the mitochondrial genomes of G. marmoratus and O. asiaticus to address these questions. Results The complete mitochondrial genomes of G. marmoratus and O. asiaticus are 15,924 bp and 16,259 bp in size, respectively, with O. asiaticus being the largest among all known mitochondrial genomes in Orthoptera. Both mitochondrial genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and an A+T-rich region in the same order as those of the other analysed caeliferan species, but different from those of the ensiferan species by the rearrangement of trnD and trnK. The putative initiation codon for the cox1 gene in the two species is ATC. The presence of different sized tandem repeats in the A+T-rich region leads to size variation between their mitochondrial genomes. Except for nad2, nad4L, and nad6, most of the caeliferan mtDNA genes exhibit low levels of divergence. In phylogenetic analyses, the species from the suborder Caelifera form a monophyletic group, as is the case for the Ensifera. Furthermore, the two suborders cluster as sister groups, supporting the monophyly of Orthoptera. Conclusion The mitochondrial genomes of both G. marmoratus and O. asiaticus harbor the typical 37 genes and an A+T-rich region, exhibiting similar characters to those of other grasshopper species. Characterization of the two mitochondrial genomes has enriched our knowledge on mitochondrial genomes of Orthoptera. PMID

  2. Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect

    PubMed Central

    Bennett, Gordon M.; Moran, Nancy A.

    2013-01-01

    Many insects rely on bacterial symbionts with tiny genomes specialized for provisioning nutrients lacking in host diets. Xylem sap and phloem sap are both deficient as insect diets, but differ dramatically in nutrient content, potentially affecting symbiont genome evolution. For sap-feeding insects, sequenced symbiont genomes are available only for phloem-feeding examples from the suborder Sternorrhyncha and xylem-feeding examples from the suborder Auchenorrhyncha, confounding comparisons. We sequenced genomes of the obligate symbionts, Sulcia muelleri and Nasuia deltocephalinicola, of the phloem-feeding pest insect, Macrosteles quadrilineatus (Auchenorrhyncha: Cicadellidae). Our results reveal that Nasuia-ALF has the smallest bacterial genome yet sequenced (112 kb), and that the Sulcia-ALF genome (190 kb) is smaller than that of Sulcia in other insect lineages. Together, these symbionts retain the capability to synthesize the 10 essential amino acids, as observed for several symbiont pairs from xylem-feeding Auchenorrhyncha. Nasuia retains genes enabling synthesis of two amino acids, DNA replication, transcription, and translation. Both symbionts have lost genes underlying ATP synthesis through oxidative phosphorylation, possibly as a consequence of the enriched sugar content of phloem. Shared genomic features, including reassignment of the UGA codon from Stop to tryptophan, and phylogenetic results suggest that Nasuia-ALF is most closely related to Zinderia, the betaproteobacterial symbiont of spittlebugs. Thus, Nasuia/Zinderia and Sulcia likely represent ancient associates that have co-resided in hosts since the divergence of leafhoppers and spittlebugs >200 Ma, and possibly since the origin of the Auchenorrhyncha, >260 Ma. PMID:23918810

  3. Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics.

    PubMed

    Timmermans, Martijn J T N; Barton, Christopher; Haran, Julien; Ahrens, Dirk; Culverwell, C Lorna; Ollikainen, Alison; Dodsworth, Steven; Foster, Peter G; Bocak, Ladislav; Vogler, Alfried P

    2016-01-01

    Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees. PMID:26645679

  4. Distribution and Phylogenetic Analysis of Family 19 Chitinases in Actinobacteria

    PubMed Central

    Kawase, Tomokazu; Saito, Akihiro; Sato, Toshiya; Kanai, Ryo; Fujii, Takeshi; Nikaidou, Naoki; Miyashita, Kiyotaka; Watanabe, Takeshi

    2004-01-01

    In organisms other than higher plants, family 19 chitinase was first discovered in Streptomyces griseus HUT6037, and later, the general occurrence of this enzyme in Streptomyces species was demonstrated. In the present study, the distribution of family 19 chitinases in the class Actinobacteria and the phylogenetic relationship of Actinobacteria family 19 chitinases with family 19 chitinases of other organisms were investigated. Forty-nine strains were chosen to cover almost all the suborders of the class Actinobacteria, and chitinase production was examined. Of the 49 strains, 22 formed cleared zones on agar plates containing colloidal chitin and thus appeared to produce chitinases. These 22 chitinase-positive strains were subjected to Southern hybridization analysis by using a labeled DNA fragment corresponding to the catalytic domain of ChiC, and the presence of genes similar to chiC of S. griseus HUT6037 in at least 13 strains was suggested by the results. PCR amplification and sequencing of the DNA fragments corresponding to the major part of the catalytic domains of the family 19 chitinase genes confirmed the presence of family 19 chitinase genes in these 13 strains. The strains possessing family 19 chitinase genes belong to 6 of the 10 suborders in the order Actinomycetales, which account for the greatest part of the Actinobacteria. Phylogenetic analysis suggested that there is a close evolutionary relationship between family 19 chitinases found in Actinobacteria and plant class IV chitinases. The general occurrence of family 19 chitinase genes in Streptomycineae and the high sequence similarity among the genes found in Actinobacteria suggest that the family 19 chitinase gene was first acquired by an ancestor of the Streptomycineae and spread among the Actinobacteria through horizontal gene transfer. PMID:14766598

  5. Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca) — a comparison with shelf data

    NASA Astrophysics Data System (ADS)

    Brandt, Angelika; Brökeland, Wiebke; Brix, Saskia; Malyutina, Marina

    2004-07-01

    Samples were taken during the expeditions ANDEEP I & II (ANT XIX/3-4) (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) with RV Polarstern for the analysis of the Southern Ocean (SO) deep-sea isopod biodiversity in the Drake Passage, off Elephant Island, along the South Shetland Islands, in the northwestern Weddell Sea, and at the South Sandwich Islands. In total 5525 specimens of Isopoda were sampled and 317 species were discriminated. Isopoda were the most abundant peracarid taxon, with 38% of all Peracarida, 98% of the Isopoda belonging to the suborder Asellota. Species richness was highest in the northwestern Weddell Sea; diversity and evenness were relatively high at all stations. The Munnopsididae were the most dominant isopod family, with 61% of the specimens, 118 species divided among 28 genera; the Haploniscidae comprised 15% of all isopods with 36 species from four genera, followed by the Ischnomesidae with 7% and 30 species from five genera. The families Desmosomatidae, Macrostylidae and Nannoniscidae comprised 10% of the isopod specimens. The Desmosomatidae were the second most diverse family, with 48 species from 12 genera. Species of the suborder Valvifera or the family Serolidae were much rarer in the SO deep-sea than on the shelf. 141 of isopod species (46% of the total number) were rare, occurring only at one of the 21 epibenthic-sledge stations. A cluster analysis showed no clear relation between isopod communities and geographic area. Depth was the most important factor for differences in isopod community patterns. The species accumulation curve shows that the SO deep sea was not sampled representatively during ANDEEP I & II and further sampling is necessary. The SO deep-sea differs in faunal composition from the shelf.

  6. Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species.

    PubMed

    Doublet, Vincent; Raimond, Roland; Grandjean, Frédéric; Lafitte, Alexandra; Souty-Grosset, Catherine; Marcadé, Isabelle

    2012-03-01

    Metazoan mitochondrial DNA (mtDNA) is generally composed of circular monomeric molecules. However, a few exceptions do exist and among them two terrestrial isopods Armadillidium vulgare and Porcellionides pruinosus have an atypical mtDNA composed of linear monomers associated with circular "head-to-head" dimers: a very unusual structure for animal mtDNA genome. To assess the distribution of this atypical mtDNA among isopods, we performed RFLP and Southern blot analyses on mtDNA of 16 terrestrial (Oniscidea family) and two aquatic isopod species: the marine Sphaeroma serratum (suborder Flabellifera, sister group of Oniscidea) and the freshwater Asellus aquaticus (Asellota, early derived taxon of isopod). The atypical mtDNA structure was observed in 15 terrestrial isopod species and A. aquaticus, suggesting a wide distribution of atypical mtDNA among isopods. However, a typical metazoan mtDNA structure was detected in the marine isopod S. serratum and the Oniscidea Ligia oceanica . Our results suggest two possible scenarios: an early origin of the atypical mtDNA in isopods followed by reversion to the typical ancestral mtDNA structure for several species, or a convergent appearance of the atypical mtDNA structure in two isopod suborders. We compare this distribution of the atypical mtDNA structure with the presence of a heteroplasmy also observed in the mtDNA of several terrestrial isopod species. We discuss if this transmitted heteroplasmy is vectored by the atypical mtDNA and its impact on the maintenance of the atypical mtDNA in isopods. PMID:22376074

  7. Antarctic Notothenioid Fishes: Genomic Resources and Strategies for Analyzing an Adaptive Radiation

    PubMed Central

    Detrich, H. W.; Amemiya, Chris T.

    2010-01-01

    The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species-flock in the cold Southern Ocean that surrounds Antarctica. To facilitate genome-level studies of the diversification of these fishes, we present estimates of the genome sizes of 11 Antarctic species and describe the production of high-quality bacterial artificial chromosome (BAC) libraries for two, the red-blooded notothen Notothenia coriiceps and the white-blooded icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families (e.g., the crown group Channichthyidae [icefishes]), was accompanied by genome expansion. Six species from the basal family Nototheniidae had C-values between 0.98 and 1.20 pg, a range that is consistent with the genome sizes of proposed outgroups (e.g., percids) of the notothenioid suborder. In contrast, four icefishes had C-values in the range 1.66–1.83 pg. The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprise 12× and 10× coverage of the respective genomes and have average insert sizes of 138 and 168 kb. Paired BAC-end reads representing ∼0.1% of each genome showed that the repetitive element landscapes of the two genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The availability of these high-quality and well-characterized BAC libraries sets the stage for targeted genomic analyses of the unusual anatomical and physiological adaptations of the notothenioids, some of which mimic human diseases. Here we consider the evolution of secondary pelagicism by various taxa of the group and illustrate the utility of Antarctic icefishes as an evolutionary-mutant model of human osteopenia (low-mineral density of bones). PMID:21082069

  8. When the body hides the ancestry: phylogeny of morphologically modified epizoic earwigs based on molecular evidence.

    PubMed

    Kocarek, Petr; John, Vaclav; Hulva, Pavel

    2013-01-01

    Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. Our results also indicate that the evolutionary consequences of the transition to an ectoparazitic mode of living, which is extremely rare in earwigs, have biased previous morphology-based hypotheses regarding the phylogeny of this insect group. PMID:23826171

  9. A revised dated phylogeny of the arachnid order Opiliones.

    PubMed

    Sharma, Prashant P; Giribet, Gonzalo

    2014-01-01

    Dating the Opiliones tree of life has become an important enterprise for this group of arthropods, due to their ancient origins and important biogeographic implications. To incorporate both methodological innovations in molecular dating as well as new systematic discoveries of harvestman diversity, we conducted total evidence dating on a data set uniting morphological and/or molecular sequence data for 47 Opiliones species, including all four well-known Palaeozoic fossils, to test the placement of both fossils and newly discovered lineages in a single analysis. Furthermore, we investigated node dating with a phylogenomic data set of 24,202 amino acid sites for 14 species of Opiliones, sampling all extant suborders. In this way, we approached molecular dating of basal harvestman phylogeny using different data sets and approaches to assess congruence of divergence time estimates. In spite of the markedly different composition of data sets, our results show congruence across all analyses for age estimates of basal nodes that are well constrained with respect to fossil calibrations (e.g., Opiliones, Palpatores). By contrast, derived nodes that lack fossil calibrations (e.g., the suborders Cyphophthalmi, and Laniatores) have large uncertainty intervals in diversification times, particularly in the total evidence dating analysis, reflecting the dearth of calibration points and undersampling of derived lineages. Total evidence dating consistently produced older median ages than node dating for ingroup nodes, due to the nested placement of multiple Palaeozoic fossils. Our analyses support basal diversification of Opiliones in the Ordovician-Devonian period, corroborating the inferred ancient origins of this arthropod order, and underscore the importance of diversity discovery-both paleontological and neontological-in evolutionary inference. PMID:25120562

  10. Revision of the Massarineae (Pleosporales, Dothideomycetes)

    PubMed Central

    Tanaka, K.; Hirayama, K.; Yonezawa, H.; Sato, G.; Toriyabe, A.; Kudo, H.; Hashimoto, A.; Matsumura, M.; Harada, Y.; Kurihara, Y.; Shirouzu, T.; Hosoya, T.

    2015-01-01

    We here taxonomically revise the suborder Massarineae (Pleosporales, Dothideomycetes, Ascomycota). Sequences of SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) are newly obtained from 106 Massarineae taxa that are phylogenetically analysed along with published sequences of 131 taxa in this suborder retrieved from GenBank. We recognise 12 families and five unknown lineages in the Massarineae. Among the nine families previously known, the monophyletic status of the Dictyosporiaceae, Didymosphaeriaceae, Latoruaceae, Macrodiplodiopsidaceae, Massarinaceae, Morosphaeriaceae, and Trematosphaeriaceae was strongly supported with bootstrap support values above 96 %, while the clades of the Bambusicolaceae and the Lentitheciaceae are moderately supported. Two new families, Parabambusicolaceae and Sulcatisporaceae, are proposed. The Parabambusicolaceae is erected to accommodate Aquastroma and Parabambusicola genera nova, as well as two unnamed Monodictys species. The Parabambusicolaceae is characterised by depressed globose to hemispherical ascomata with or without surrounding stromatic tissue, and multi-septate, clavate to fusiform, hyaline ascospores. The Sulcatisporaceae is established for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola. The Sulcatisporaceae is characterised by subglobose ascomata with a short ostiolar neck, trabeculate pseudoparaphyses, clavate asci, broadly fusiform ascospores, and ellipsoid to subglobose conidia with or without striate ornamentation. The genus Periconia and its relatives are segregated from the Massarinaceae and placed in a resurrected family, the Periconiaceae. We have summarised the morphological and ecological features, and clarified the accepted members of each family. Ten new genera, 22 new species, and seven new combinations are described and illustrated. The complete ITS sequences of nrDNA are also provided for all new taxa for use as barcode markers. PMID:26955201

  11. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D.

    PubMed

    Shtratnikova, Victoria Y; Schelkunov, Mikhail I; Fokina, Victoria V; Pekov, Yury A; Ivashina, Tanya; Donova, Marina V

    2016-08-01

    Actinobacteria comprise diverse groups of bacteria capable of full degradation, or modification of different steroid compounds. Steroid catabolism has been characterized best for the representatives of suborder Corynebacterineae, such as Mycobacteria, Rhodococcus and Gordonia, with high content of mycolic acids in the cell envelope, while it is poorly understood for other steroid-transforming actinobacteria, such as representatives of Nocardioides genus belonging to suborder Propionibacterineae. Nocardioides simplex VKM Ac-2033D is an important biotechnological strain which is known for its ability to introduce ∆(1)-double bond in various 1(2)-saturated 3-ketosteroids, and perform convertion of 3β-hydroxy-5-ene steroids to 3-oxo-4-ene steroids, hydrolysis of acetylated steroids, reduction of carbonyl groups at C-17 and C-20 of androstanes and pregnanes, respectively. The strain is also capable of utilizing cholesterol and phytosterol as carbon and energy sources. In this study, a comprehensive bioinformatics genome-wide screening was carried out to predict genes related to steroid metabolism in this organism, their clustering and possible regulation. The predicted operon structure and number of candidate gene copies paralogs have been estimated. Binding sites of steroid catabolism regulators KstR and KstR2 specified for N. simplex VKM Ac-2033D have been calculated de novo. Most of the candidate genes grouped within three main clusters, one of the predicted clusters having no analogs in other actinobacteria studied so far. The results offer a base for further functional studies, expand the understanding of steroid catabolism by actinobacteria, and will contribute to modifying of metabolic pathways in order to generate effective biocatalysts capable of producing valuable bioactive steroids. PMID:26832142

  12. Early events in the evolution of spider silk genes.

    PubMed

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  13. Early Events in the Evolution of Spider Silk Genes

    PubMed Central

    Starrett, James; Garb, Jessica E.; Kuelbs, Amanda; Azubuike, Ugochi O.; Hayashi, Cheryl Y.

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae (‘true spiders’). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions

  14. Complete mitochondrial genomes of three neobatrachian anurans: a case study of divergence time estimation using different data and calibration settings.

    PubMed

    Igawa, Takeshi; Kurabayashi, Atsushi; Usuki, Chisako; Fujii, Tamotsu; Sumida, Masayuki

    2008-01-15

    We sequenced the whole mitochondrial (mt) genomes of three neobatrachian species: Japanese tree frog Hyla japonica, Japanese common toad Bufo japonicus, and narrow-mouthed toad Microhyla okinavensis. The gene arrangements of these genomes diverged from that of basal anurans (suborder Archaeobatrachia), but are the same as that of the members of derived frogs (i.e., superfamily Hyloidae and Ranoidae in suborder Neobatrachia), suggesting the one-time occurrence of a gene rearrangement event in an ancestral lineage of derived anurans. Furthermore, several distinct repeat motifs including putative termination-associated sequences (TASs) and conserved sequence blocks (CSBs) were observed in the control regions (CRs) of B. japonicus and H. japonica, while no repeat motifs were found in that of M. okinavensis. Phylogenetic analyses using both nucleotide and amino acid data of mt genes support monophyly of neobatrachians. The estimated divergence time based on amino acid data with multiple reference points suggests that the three living amphibian orders may have originated in the Carboniferous period, and that the divergences of anurans had occurred between the Permian and Tertiary periods. We also checked the influence of the data types and the settings of reference times on divergence time estimation. The resultant divergence times estimated from several datasets and reference time settings suggest that the substitution saturation of nucleotide data may lead to overestimated (i.e., older) branching times, especially for early divergent taxa. We also found a highly accelerated substitution rate in neobatrachian mt genes, and fast substitution possibly resulted in overestimation. To correct this erroneous estimation, it is efficient to apply several reference points among neobatrachians. PMID:17997052

  15. Revision of the Massarineae (Pleosporales, Dothideomycetes).

    PubMed

    Tanaka, K; Hirayama, K; Yonezawa, H; Sato, G; Toriyabe, A; Kudo, H; Hashimoto, A; Matsumura, M; Harada, Y; Kurihara, Y; Shirouzu, T; Hosoya, T

    2015-09-01

    We here taxonomically revise the suborder Massarineae (Pleosporales, Dothideomycetes, Ascomycota). Sequences of SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) are newly obtained from 106 Massarineae taxa that are phylogenetically analysed along with published sequences of 131 taxa in this suborder retrieved from GenBank. We recognise 12 families and five unknown lineages in the Massarineae. Among the nine families previously known, the monophyletic status of the Dictyosporiaceae, Didymosphaeriaceae, Latoruaceae, Macrodiplodiopsidaceae, Massarinaceae, Morosphaeriaceae, and Trematosphaeriaceae was strongly supported with bootstrap support values above 96 %, while the clades of the Bambusicolaceae and the Lentitheciaceae are moderately supported. Two new families, Parabambusicolaceae and Sulcatisporaceae, are proposed. The Parabambusicolaceae is erected to accommodate Aquastroma and Parabambusicola genera nova, as well as two unnamed Monodictys species. The Parabambusicolaceae is characterised by depressed globose to hemispherical ascomata with or without surrounding stromatic tissue, and multi-septate, clavate to fusiform, hyaline ascospores. The Sulcatisporaceae is established for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola. The Sulcatisporaceae is characterised by subglobose ascomata with a short ostiolar neck, trabeculate pseudoparaphyses, clavate asci, broadly fusiform ascospores, and ellipsoid to subglobose conidia with or without striate ornamentation. The genus Periconia and its relatives are segregated from the Massarinaceae and placed in a resurrected family, the Periconiaceae. We have summarised the morphological and ecological features, and clarified the accepted members of each family. Ten new genera, 22 new species, and seven new combinations are described and illustrated. The complete ITS sequences of nrDNA are also provided for all new taxa for use as barcode markers. PMID:26955201

  16. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L.

    PubMed

    Madhaiyan, Munusamy; Hu, Chuan Jiong; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo; Ji, Lianghui

    2013-04-01

    A short rod-shaped Gram-stain-positive actinobacterium was isolated as an endophyte from the tissues of Jatropha curcas cv. KB27 and was investigated by means of a polyphasic taxonomic approach. An analysis of its 16S rRNA gene sequence indicated that strain S9-650(T) forms an individual line of descent and is related to certain members of the suborder Frankineae, order Actinomycetales (<95 % sequence similarity). Distance-matrix and neighbour-joining analyses set the branching point of the novel isolate between two clades, one being represented by members of the genera Frankia (family Frankiaceae) and Acidothermus (family Acidothermaceae) and the other by members of the genera Geodermatophilus, Blastococcus and Modestobacter (family Geodermatophilaceae). The organism had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The acyl type was found to be N-glycolylated. The major menaquinone was MK-9(H4) and the fatty acid profile was characterized by the predominance of iso-C16 : 0, C18 : 1ω9c, anteiso-C17 : 0 and C17 : 1ω8c. The polar lipids comprised diphosphatidylglycerol, an unidentified glycolipid, phospholipids and aminolipids. The G+C content of the genomic DNA was 71.2 mol%. The distinct phylogenetic position and the phenotypic markers that clearly separate the novel organism from all other members of the suborder Frankineae indicate that strain S9-650(T) represents a novel species in a new genus, for which the name Jatrophihabitans endophyticus gen. nov., sp. nov. is proposed. The type strain of the type species is S9-650(T) ( = DSM 45627(T) = KACC 16232(T)). PMID:22798659

  17. A revised dated phylogeny of the arachnid order Opiliones

    PubMed Central

    Sharma, Prashant P.; Giribet, Gonzalo

    2014-01-01

    Dating the Opiliones tree of life has become an important enterprise for this group of arthropods, due to their ancient origins and important biogeographic implications. To incorporate both methodological innovations in molecular dating as well as new systematic discoveries of harvestman diversity, we conducted total evidence dating on a data set uniting morphological and/or molecular sequence data for 47 Opiliones species, including all four well-known Palaeozoic fossils, to test the placement of both fossils and newly discovered lineages in a single analysis. Furthermore, we investigated node dating with a phylogenomic data set of 24,202 amino acid sites for 14 species of Opiliones, sampling all extant suborders. In this way, we approached molecular dating of basal harvestman phylogeny using different data sets and approaches to assess congruence of divergence time estimates. In spite of the markedly different composition of data sets, our results show congruence across all analyses for age estimates of basal nodes that are well constrained with respect to fossil calibrations (e.g., Opiliones, Palpatores). By contrast, derived nodes that lack fossil calibrations (e.g., the suborders Cyphophthalmi, and Laniatores) have large uncertainty intervals in diversification times, particularly in the total evidence dating analysis, reflecting the dearth of calibration points and undersampling of derived lineages. Total evidence dating consistently produced older median ages than node dating for ingroup nodes, due to the nested placement of multiple Palaeozoic fossils. Our analyses support basal diversification of Opiliones in the Ordovician-Devonian period, corroborating the inferred ancient origins of this arthropod order, and underscore the importance of diversity discovery—both paleontological and neontological—in evolutionary inference. PMID:25120562

  18. Family-Level Sampling of Mitochondrial Genomes in Coleoptera: Compositional Heterogeneity and Phylogenetics

    PubMed Central

    Timmermans, Martijn J. T. N.; Barton, Christopher; Haran, Julien; Ahrens, Dirk; Culverwell, C. Lorna; Ollikainen, Alison; Dodsworth, Steven; Foster, Peter G.; Bocak, Ladislav; Vogler, Alfried P.

    2016-01-01

    Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML (“nonhomogeneous”) algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees. PMID:26645679

  19. Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts

    PubMed Central

    2013-01-01

    Background Andaman and Nicobar Islands situated in the eastern part of Bay of Bengal are one of the distinguished biodiversity hotspot. Even though number of studies carried out on the marine flora and fauna, the studies on actinobacteria from Andaman and Nicobar Islands are meager. The aim of the present study was to screen the actinobacteria for their characterization and identify the potential sources for industrial and pharmaceutical byproducts. Results A total of 26 actinobacterial strains were isolated from the marine sediments collected from various sites of Port Blair Bay where no collection has been characterized previously. Isolates were categorized under the genera: Saccharopolyspora, Streptomyces, Nocardiopsis, Streptoverticillium, Microtetraspora, Actinopolyspora, Actinokineospora and Dactylosporangium. Majority of the isolates were found to produce industrially important enzymes such as amylase, protease, gelatinase, lipase, DNase, cellulase, urease and phosphatase, and also exhibited substantial antibacterial activity against human pathogens. 77% of isolates exhibited significant hemolytic activity. Among 26 isolates, three strains (NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26) were found to generate appreciable extent of surfactant, amylase, cellulase and protease enzyme. NIOT-VKKMA02 produced surfactant using kerosene as carbon source and emulsified upto E24–63.6%. Moreover, NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26 synthesized 13.27 U/ml, 9.85 U/ml and 8.03 U/ml amylase; 7.75 U/ml, 5.01 U/ml and 2.08 U/ml of cellulase and 11.34 U/ml, 6.89 U/ml and 3.51 U/ml of protease enzyme, respectively. Conclusions High diversity of marine actinobacteria was isolated and characterized in this work including undescribed species and species not previously reported from emerald Andaman and Nicobar Islands, including Streptomyces griseus, Streptomyces venezuelae and Saccharopolyspora salina. The enhanced salt, pH and temperature tolerance of the actinobacterial

  20. Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils.

    PubMed

    Cho, Sung-Heun; Han, Ji-Hye; Seong, Chi Nam; Kim, Seung Bum

    2006-12-01

    Spore forming actinobacteria (sporoactinobacteria) isolated from soils with an acidic pH in Pinus thunbergii forests and coal mine waste were subjected to taxonomic characterization. For the isolation of acidophilic actinobacteria, acidified starch casein agar (pH adjusted to 4-5) was used. The numbers of actinobacteria growing in acidic media were between 3.2 x 10(4) and 8.0 x 10(6) CFU/g soil. Forty three acidophilic actinobacterial strains were isolated and their 16S rDNA sequences were determined. The isolates were divided into eight distinctive phylogenetic clusters within the variation encompassed by the family Streptomycetaceae. Four clusters among them were assigned to the genus Streptacidiphilus, whereas the remaining four were assigned to Streptomyces. The clusters belonging to either Streptomyces or Streptacidiphilus did not form monophyletic clade. The growth pH profiles indicated that the representative isolates grew best between pH 5 and 6. It is evident from this study that acidity has played a critical role in the differentiation of the family Streptomycetaceae, and also that different mechanisms might have resulted in the evolution of two groups, Streptacidiphilus (strict acidophiles) and neutrotolerant acidophilic Streptomyces. The effect of geographic separation was clearly seen among the Streptacidiphilus isolates, which may be a key factor in speciation of the genus. PMID:17205037

  1. Functional characterisation of novel enantioselective lipase TALipA from Trichosporon asahii MSR54: sequence comparison revealed new signature sequence AXSXG among yeast lipases.

    PubMed

    Kumari, Arti; Gupta, Rani

    2015-01-01

    A gene encoding lipase TALipA from Trichosporon asahii MSR54 was successfully isolated, cloned and expressed in Pichia pastoris X-33. It was purified to homogeneity by affinity chromatography with 1.7 purification fold. SDS-PAGE revealed it as a monomeric 27-kDa protein. Sequence comparison showed that it has close affinity with bacterial and actinobacterial lipases. It has unique oxyanion hole "GL" and conserved pentapeptide AHSMG where alanine is present instead of glycine, which is unique to yeast lipase database. The temperature and pH optima for activity were 60 °C and pH 8.0, respectively. It is thermostable with t1/2 of 68 min at 70 °C. It hydrolyzed p-np esters with better specificity on p-np palmitate, which was again confirmed during hydrolysis of triacylglyceride mixture. The enzyme was found to be regioselective during hydrolysis of triolein. It exhibited enantio preference during esterification of phenylethanol depending upon solvent used. It was S-enantioselective in 1,4-dioxane and R-selective in isopropanol and hexane. It is a magnesium-activated metalloenzyme inhibited by 10-mM EDTA. It was stable towards most of the polar and non-polar solvents. PMID:25280633

  2. Characterization of the Bacterial Community Associated with Larvae and Adults of Anoplophora chinensis Collected in Italy by Culture and Culture-Independent Methods

    PubMed Central

    Rizzi, Aurora; Crotti, Elena; Lupi, Daniela; Daffonchio, Daniele

    2013-01-01

    The wood-boring beetle Anoplophora chinensis Forster, native to China, has recently spread to North America and Europe causing serious damage to ornamental and forest trees. The gut microbial community associated with these xylophagous beetles is of interest for potential biotechnological applications in lignocellulose degradation and development of pest-control measures. In this study the gut bacterial community of larvae and adults of A. chinensis, collected from different host trees in North Italy, was investigated by both culture and culture-independent methods. Larvae and adults harboured a moderately diverse bacterial community, dominated by Proteobacteria, Actinobacteria, and Firmicutes. The gammaproteobacterial family Enterobacteriaceae (genera Gibbsiella, Enterobacter, Raoultella, and Klebsiella) was the best represented. The abundance of such bacteria in the insect gut is likely due to the various metabolic abilities of Enterobacteriaceae, including fermentation of carbohydrates derived from lignocellulose degradation and contribution to nitrogen intake by nitrogen-fixing activity. In addition, bacteria previously shown to have some lignocellulose-degrading activity were detected at a relatively low level in the gut. These bacteria possibly act synergistically with endogenous and fungal enzymes in lignocellulose breakdown. The detection of actinobacterial symbionts could be explained by a possible role in the detoxification of secondary plant metabolites and/or protection against pathogens. PMID:24069601

  3. The genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors

    PubMed Central

    Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard

    2013-01-01

    The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704

  4. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  5. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  6. Mechanistic insight into mycobacterial MmpL protein function.

    PubMed

    Székely, R; Cole, S T

    2016-03-01

    Mycobacterial cell walls are complex structures containing a broad range of unusual lipids, glycolipids and other polymers, some of which act as immunomodulators or virulence determinants. Better understanding of the enzymes involved in export processes would enlighten cell wall biogenesis. Bernut et al. () present the findings of a structural and functional investigation of one of the most important transporter families, the MmpL proteins, members of the resistance-nodulation-cell division (RND) superfamily. A Tyr842His missense mutation in the mmpL4a gene was shown to be responsible for the smooth-to-rough morphotype change of the near untreatable opportunistic pathogen Mycobacterium bolletii due to its failure to export a glycopeptidolipid (GPL). This mutation was pleiotropic and markedly increased virulence in infection models. Tyr842 is well conserved in all actinobacterial MmpL proteins suggesting that it is functionally important and this was confirmed by several approaches including replacing the corresponding residue in MmpL3 of Mycobacterium tuberculosis. Structural modelling combined with experimental results showed Tyr842 to be a critical residue for mediating the proton motive force required for GPL export. This mechanistic insight applies to all MmpL proteins and probably to all RND transporters. PMID:26710752

  7. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2016-01-01

    We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications. PMID:27064789

  8. Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects.

    PubMed

    Ganju, Parul; Nagpal, Sunil; Mohammed, M H; Nishal Kumar, P; Pandey, Rajesh; Natarajan, Vivek T; Mande, Sharmila S; Gokhale, Rajesh S

    2016-01-01

    Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions. PMID:26758568

  9. A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus

    PubMed Central

    Seipke, Ryan F.; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W.; Goss, Rebecca J. M.; Hutchings, Matthew I.

    2011-01-01

    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds. PMID:21857911

  10. Environmental factors shaping the abundance and distribution of laccase-encoding bacterial community with potential phenolic oxidase capacity during composting.

    PubMed

    Lu, Lunhui; Zeng, Guangming; Fan, Changzheng; Guo, Jinsong; Zhang, Jiachao; Chen, Ming; Wu, Haipeng; Yuan, Yujie; He, Xiaoxiao; He, Yan

    2015-11-01

    Increasing molecular evidence points to a wide occurrence of laccase-like multicopper oxidase (LMCO)-encoding genes in bacteria. Most researches mainly focused on the bacterial LMCO diversity, whereas the processes and the environmental factors responsible for structuring bacterial LMCO communities remain relatively unknown in a composting system. Six gene libraries were constructed from samples in representative stages during composting. A total of 185 sequences obtained from sample DNA extracts were classified to 59 operational taxonomic units (OTUs) based on 10 % cutoff. The distribution profile of bacterial LMCO genes showed that proteobacterial- and actinobacterial-associated species were the dominant communities during composting. Pearson correlation analysis indicated that the pile temperature and water-soluble carbon (WSC) content were significantly positively correlated with bacterial LMCO gene OTU numbers, Chao1 and Shannon index, whereas the humic acid (HA)-like carbon content had the most significant effect on the distribution of the bacterial LMCO genes during composting by redundancy analysis. These findings will improve the understanding of the mutual relationship between environmental factors and bacterial LMCO community compositions in composting. PMID:26104868

  11. Genomic mining for novel FADH₂-dependent halogenases in marine sponge-associated microbial consortia.

    PubMed

    Bayer, Kristina; Scheuermayer, Matthias; Fieseler, Lars; Hentschel, Ute

    2013-02-01

    Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH₂-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif "GxGxxG", were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions. PMID:22562484

  12. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  13. Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment.

    PubMed

    Ray, Lopamudra; Mishra, Samir Ranjan; Panda, Ananta Narayan; Das, Surajit; Rastogi, Gurdeep; Pattanaik, Ajit Kumar; Adhya, Tapan Kumar; Suar, Mrutyunjay; Raina, Vishakha

    2016-09-01

    A novel actinobacterial strain RC1832T was isolated from the sediment of a fish dumping yard at Balugaon near Chilika Lake. The strain is halotolerant (15 % NaCl, w/v), alkali-tolerant (pH 7-10) and hydrolyzes chitin, starch, gelatin, cellulose, carboxymethyl cellulose, Tween 80, tributyrin, lecithin and casein. Apart from showing typical genus-specific morphological and chemotaxonomic features, the comparision and analysis of the near complete 16S rRNA gene sequence clearly revealed that the strain RC1832T represented a member of the genus Streptomyces. It exhibited the highest sequence similarities with the strains Streptomyces fenghuangensis GIMN4.003T (99.78 %), Streptomyces nanhaiensis DSM 41926T (99.07 %), Streptomyces radiopugnans R97T(98.71 %), Streptomyces atacamensis DSM 42065T (98.65 %) and Streptomyces barkulensis DSM 42082T (98.25 %). The DNA-DNA relatedness of strain RC 1832T with the closest phylogenetic neighbours S. fenghuangensis GIMN4.003T and S. nanhaiensis DSM 41926T were 20±2 % and 21±2 %, respectively. Thus, based on a range of phenotypic and genotypic properties, strain RC1832T was suggested to represent a novel species of the genus Streptomyces for which the name Streptomyces chitinivorans sp. nov. is proposed. The type strain is RC1832T (=JCM 30611=KCTC 29696). PMID:27220564

  14. Pupylated proteins in Corynebacterium glutamicum revealed by MudPIT analysis.

    PubMed

    Küberl, Andreas; Fränzel, Benjamin; Eggeling, Lothar; Polen, Tino; Wolters, Dirk Andreas; Bott, Michael

    2014-06-01

    In a manner similar to ubiquitin, the prokaryotic ubiquitin-like protein (Pup) has been shown to target proteins for degradation via the proteasome in mycobacteria. However, not all actinobacteria possessing the Pup protein also contain a proteasome. In this study, we set out to study pupylation in the proteasome-lacking non-pathogenic model organism Corynebacterium glutamicum. A defined pup deletion mutant of C. glutamicum ATCC 13032 grew aerobically as the parent strain in standard glucose minimal medium, indicating that pupylation is dispensable under these conditions. After expression of a Pup derivative carrying an aminoterminal polyhistidine tag in the Δpup mutant and Ni(2+)-chelate affinity chromatography, pupylated proteins were isolated. Multidimensional protein identification technology (MudPIT) and MALDI-TOF-MS/MS of the elution fraction unraveled 55 proteins being pupylated in C. glutamicum and 66 pupylation sites. Similar to mycobacteria, the majority of pupylated proteins are involved in metabolism or translation. Our results define the first pupylome of an actinobacterial species lacking a proteasome, confirming that other fates besides proteasomal degradation are possible for pupylated proteins. PMID:24737727

  15. Ether-linked lipids of Dermabacter hominis, a human skin actinobacterium.

    PubMed

    Valero-Guillén, Pedro L; Fernández-Natal, Isabel; Marrodán-Ciordia, Teresa; Tauch, Andreas; Soriano, Francisco

    2016-03-01

    Dermabacter hominis is a medically important actinobacterial inhabitant of human skin, although it is rarely implicated in infections. The lipid composition of D. hominis is revisited in this study in the context of its natural resistance to daptomycin, an antibiotic whose activity is influenced by membrane lipids. Thin layer chromatography and mass spectrometry revealed that this species contains phospholipids and glycolipids. Using electrospray ionization time of flight mass spectrometry (exact mass) and gas chromatography-mass spectrometry, the major phospholipid of D. hominis was identified as plasmanyl-phosphatidylglycerol (pPG), because it presented one alkyl chain and one acyl chain in the glycerol moiety of the molecule. The structure of the major glycolipid (GL1) was studied by combined gas-liquid chromatography, mass spectrometry and nuclear magnetic resonance, and was established as galactosyl-α-(1→2)-glucosyl-alkyl-acyl-glycerol. Lipid analyses showed differences between one daptomycin-resistant (DAP-R) strain and one daptomycin-sensitive (DAP-S) strain growing in the presence of the antibiotic: DAP-R tended to accumulate GL1 and to reduce pPG, whereas DAP-S maintained high proportions of pPG. The results demonstrate the existence of ether-linked lipids in D. hominis and reveal a differential distribution of phospholipids and glycolipids according to the sensitivity or resistance to daptomycin, although the mechanism(s) operating in the resistance to the antibiotic remain(s) to be elucidated. PMID:26867985

  16. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    PubMed

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. PMID:27242145

  17. Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines.

    PubMed

    Seffernick, Jennifer L; Wackett, Lawrence P

    2016-03-01

    Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the nitrogen atoms as ammonia to support growth. The initial reaction that opens the s-triazine ring is catalyzed by the unusual enzyme cyanuric acid hydrolase. This enzyme is in a rare protein family that consists of only cyanuric acid hydrolase (CAH) and barbiturase, with barbiturase participating in pyrimidine catabolism by some actinobacterial species. The X-ray structures of two cyanuric acid hydrolase proteins show that this family has a unique protein fold. Phylogenetic, bioinformatic, enzymological, and genetic studies are consistent with the idea that CAH has an ancient protein fold that was rare in microbial populations but is currently becoming more widespread in microbial populations in the wake of anthropogenic synthesis of cyanuric acid and other s-triazine compounds that are metabolized via a cyanuric acid intermediate. The need for the removal of cyanuric acid from swimming pools and spas, where it is used as a disinfectant stabilizer, can potentially be met using an enzyme filtration system. A stable thermophilic cyanuric acid hydrolase from Moorella thermoacetica is being tested for this purpose. PMID:26729715

  18. Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin.

    PubMed

    Zhu, Shaozhou; Hegemann, Julian D; Fage, Christopher D; Zimmermann, Marcel; Xie, Xiulan; Linne, Uwe; Marahiel, Mohamed A

    2016-06-24

    Lasso peptides are a new class of ribosomally synthesized and post-translationally modified peptides and thus far are only isolated from proteo- and actinobacterial sources. Typically, lasso peptide biosynthetic gene clusters encode enzymes for biosynthesis and export but not for tailoring. Here, we describe the isolation of the novel lasso peptide paeninodin from the firmicute Paenibacillus dendritiformis C454 and reveal within its biosynthetic cluster a gene encoding a kinase, which we have characterized as a member of a new class of lasso peptide-tailoring kinases. By employing a wide variety of peptide substrates, it was shown that this novel type of kinase specifically phosphorylates the C-terminal serine residue while ignoring those located elsewhere. These experiments also reveal that no other recognition motif is needed for efficient enzymatic phosphorylation of the C-terminal serine. Furthermore, through comparison with homologous HPr kinases and subsequent mutational analysis, we confirmed the essential catalytic residues. Our study reveals how lasso peptides are chemically diversified and sets the foundation for rational engineering of these intriguing natural products. PMID:27151214

  19. Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants.

    PubMed

    Marsh, Sarah E; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association. PMID:25058579

  20. Interaction between Workers during a Short Time Window Is Required for Bacterial Symbiont Transmission in Acromyrmex Leaf-Cutting Ants

    PubMed Central

    Marsh, Sarah E.; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R.

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association. PMID:25058579

  1. Protease Inhibitors from Marine Actinobacteria as a Potential Source for Antimalarial Compound

    PubMed Central

    Karthik, L.; Kumar, Gaurav; Keswani, Tarun; Bhattacharyya, Arindam; Chandar, S. Sarath; Bhaskara Rao, K. V.

    2014-01-01

    The study was planned to screen the marine actinobacterial extract for the protease inhibitor activity and its anti- Pf activity under in vitro and in vivo conditions. Out of 100 isolates, only 3 isolates exhibited moderate to high protease inhibitor activities on trypsin, chymotrypsin and proteinase K. Based on protease inhibitor activity 3 isolates were chosen for further studies. The potential isolate was characterized by polyphasic approach and identified as Streptomyces sp LK3 (JF710608). The lead compound was identified as peptide from Streptomyces sp LK3. The double-reciprocal plot displayed inhibition mode is non-competitive and it confirms the irreversible nature of protease inhibitor. The peptide from Streptomyces sp LK3 extract showed significant anti plasmodial activity (IC50: 25.78 µg/ml). In in vivo model, the highest level of parasitemia suppression (≈45%) was observed in 600 mg/kg of the peptide. These analyses revealed no significant changes were observed in the spleen and liver tissue during 8 dpi. The results confirmed up-regulation of TGF-β and down regulation of TNF-α in tissue and serum level in PbA infected peptide treated mice compared to PbA infection. The results obtained infer that the peptide possesses anti- Pf activity activity. It suggests that the extracts have novel metabolites and could be considered as a potential source for drug development. PMID:24618707

  2. A Laterally Acquired Galactose Oxidase-Like Gene Is Required for Aerial Development during Osmotic Stress in Streptomyces coelicolor

    PubMed Central

    Liman, Recep; Facey, Paul D.; van Keulen, Geertje; Dyson, Paul J.; Del Sol, Ricardo

    2013-01-01

    Phylogenetic reconstruction revealed that most Actinobacterial orthologs of S. coelicolor SCO2837, encoding a metal-dependent galactose oxidase-like protein, are found within Streptomyces and were probably acquired by horizontal gene transfer from fungi. Disruption of SCO2837 (glxA) caused a conditional bld phenotype that could not be reversed by extracellular complementation. Studies aimed at characterising the regulation of expression of glxA showed that it is not a target for other bld genes. We provide evidence that glxA is required for osmotic adaptation, although independently from the known osmotic stress response element SigB. glxA has been predicted to be part of an operon with the transcription unit comprising the upstream cslA gene and glxA. However, both phenotypic and expression studies indicate that it is also expressed from an independent promoter region internal to cslA. GlxA displays an in situ localisation pattern similar to that one observed for CslA at hyphal tips, but localisation of the former is independent of the latter. The functional role of GlxA in relation to CslA is discussed. PMID:23326581

  3. Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis

    PubMed Central

    Bergstrand, Lee H.; Cardenas, Erick; Holert, Johannes; Van Hamme, Jonathan D.

    2016-01-01

    ABSTRACT Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria. PMID:26956583

  4. Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines

    PubMed Central

    Seffernick, Jennifer L.

    2016-01-01

    Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the nitrogen atoms as ammonia to support growth. The initial reaction that opens the s-triazine ring is catalyzed by the unusual enzyme cyanuric acid hydrolase. This enzyme is in a rare protein family that consists of only cyanuric acid hydrolase (CAH) and barbiturase, with barbiturase participating in pyrimidine catabolism by some actinobacterial species. The X-ray structures of two cyanuric acid hydrolase proteins show that this family has a unique protein fold. Phylogenetic, bioinformatic, enzymological, and genetic studies are consistent with the idea that CAH has an ancient protein fold that was rare in microbial populations but is currently becoming more widespread in microbial populations in the wake of anthropogenic synthesis of cyanuric acid and other s-triazine compounds that are metabolized via a cyanuric acid intermediate. The need for the removal of cyanuric acid from swimming pools and spas, where it is used as a disinfectant stabilizer, can potentially be met using an enzyme filtration system. A stable thermophilic cyanuric acid hydrolase from Moorella thermoacetica is being tested for this purpose. PMID:26729715

  5. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta).

    PubMed

    Modesto, Monica; Michelini, Samanta; Stefanini, Ilaria; Sandri, Camillo; Spiezio, Caterina; Pisi, Annamaria; Filippini, Gianfranco; Biavati, Bruno; Mattarelli, Paola

    2015-06-01

    Four Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from a faecal sample of a 5-year-old ring-tailed lemur (Lemur catta). The strains showed a peculiar morphology, resembling a small coiled snake, a ring shape, or forming a little 'Y' shape. The isolated strains appeared identical, and LMC 13T was chosen as a representative strain and characterized further. Strain LMC 13T showed an A3β peptidoglycan type, similar to that found in Bifidobacterium longum. The DNA base composition was 57.2 mol% G+C. Almost-complete 16S rRNA, hsp60, rpoB, dnaJ, dnaG, purF, clpC and rpoC gene sequences were obtained, and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strain LMC 13T showed the highest similarity to B. longum subsp. suis ATCC 27533T (96.65 %) and Bifidobacterium saguini DSM 23967T (96.64 %). Strain LMC 13T was located in an actinobacterial cluster and was more closely related to the genus Bifidobacteriumthan to other genera in the Bifidobacteriaceae. On the basis of these results, strain LMC 13T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium lemurum sp. nov. is proposed; the type strain is LMC 13T ( = DSM 28807T = JCM 30168T). PMID:25736415

  6. Carbonate Mineral Formation under the Influence of Limestone-Colonizing Actinobacteria: Morphology and Polymorphism

    PubMed Central

    Cao, Chengliang; Jiang, Jihong; Sun, Henry; Huang, Ying; Tao, Faxiang; Lian, Bin

    2016-01-01

    Microorganisms and their biomineralization processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralization to allow a better understanding of bacterial contributions to carbonate mineralization in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP) during mineralization. When using the culture supernatant, doughnut-like vaterite was favored by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralization abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments. PMID:27148166

  7. Phytomonospora cypria sp. nov., isolated from soil.

    PubMed

    Sahin, Nevzat; Veyisoglu, Aysel; Tatar, Demet; Saygin, Hayrettin; Cetin, Demet; Guven, Kiymet; Klenk, Hans-Peter; Goodfellow, Michael

    2015-12-01

    A Gram-stain positive actinobacterial strain, designated KT1403(T), was isolated from a soil sample, collected from Karpaz, Magusa, Northern Cyprus, and characterised using a polyphasic approach. Morphological characteristics and chemotaxonomic data indicated that the strain belongs to the genus Phytomonospora. The cell wall of the novel strain contained meso-diaminopimelic acid and galactose, glucose and mannose as the major sugars in whole cell hydrolysates. The polar lipids in the cell membrane were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified aminophospholipid and three unidentified glycolipids. The predominant menaquinones were MK-10(H6) and MK-10(H4). The major fatty acids were found to be iso C15:0 , anteiso C15:0 and anteiso C17:0. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KT1403(T) belongs to the genus Phytomonospora with a sequence similarity of 99.73 % with Phytomonospora endophytica, the type species of the genus. DNA-DNA hybridization further differentiated strain KT1403(T) from its near phylogenetic neighbour, P. endophytica DSM 45386(T) (29.0 ± 2.2 % DNA relatedness). Therefore, it is proposed that strain KT1403(T) represents a novel species of the genus Phytomonospora, for which the name Phytomonospora cypria sp. nov. is proposed. The type strain is KT1403(T) (=KCTC 29479(T) = DSM 46767(T)). PMID:26427856

  8. Microbial Communities and Chemosynthesis in Yellowstone Lake Sublacustrine Hydrothermal Vent Waters

    PubMed Central

    Yang, Tingting; Lyons, Shawn; Aguilar, Carmen; Cuhel, Russell; Teske, Andreas

    2011-01-01

    Five sublacustrine thermal spring locations from 1 to 109 m water depth in Yellowstone Lake were surveyed by 16S ribosomal RNA gene sequencing in relation to their chemical composition and dark CO2 fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16–110°C) and electron donor supply (H2S <1 to >100 μM; NH3 <0.5 to >10 μM). Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO2 fixation rates reaching near 9 μM C h−1 at temperatures of 50–60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution. PMID:21716640

  9. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    PubMed Central

    Sathish, Kumar SR; Kokati, Venkata Bhaskara Rao

    2012-01-01

    Objective To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Methods Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Results Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusions The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms. PMID:23569848

  10. Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects

    PubMed Central

    Ganju, Parul; Nagpal, Sunil; Mohammed, MH; Nishal Kumar, P; Pandey, Rajesh; Natarajan, Vivek T; Mande, Sharmila S.; Gokhale, Rajesh S.

    2016-01-01

    Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions. PMID:26758568

  11. The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon

    PubMed Central

    2011-01-01

    Background The tree of life is usually rooted between archaea and bacteria. We have previously presented three arguments that support placing the root of the tree of life in bacteria. The data have been dismissed because those who support the canonical rooting between the prokaryotic superkingdoms cannot imagine how the vast divide between the prokaryotic superkingdoms could be crossed. Results We review the evidence that archaea are derived, as well as their biggest differences with bacteria. We argue that using novel data the gap between the superkingdoms is not insurmountable. We consider whether archaea are holophyletic or paraphyletic; essential to understanding their origin. Finally, we review several hypotheses on the origins of archaea and, where possible, evaluate each hypothesis using bioinformatics tools. As a result we argue for a firmicute ancestry for archaea over proposals for an actinobacterial ancestry. Conclusion We believe a synthesis of the hypotheses of Lake, Gupta, and Cavalier-Smith is possible where a combination of antibiotic warfare and viral endosymbiosis in the bacilli led to dramatic changes in a bacterium that resulted in the birth of archaea and eukaryotes. Reviewers This article was reviewed by Patrick Forterre, Eugene Koonin, and Gáspár Jékely PMID:21356104

  12. Prospects of using marine actinobacteria as probiotics in aquaculture.

    PubMed

    Das, Surajit; Ward, Louise R; Burke, Chris

    2008-12-01

    Chemotherapeutic agents have been banned for disease management in aquaculture systems due to the emergence of antibiotic resistance gene and enduring residual effects in the environments. Instead, microbial interventions in sustainable aquaculture have been proposed, and among them, the most popular and practical approach is the use of probiotics. A range of microorganisms have been used so far as probiotics, which include Gram-negative and Gram-positive bacteria, yeast, bacteriophages, and unicellular algae. The results are satisfactory and promising; however, to combat the latest infectious diseases, the search for a new strain for probiotics is essential. Marine actinobacteria were designated as the chemical factory a long time ago, and quite a large number of chemical substances have been isolated to date. The potent actinobacterial genera are Streptomyces; Micromonospora; and a novel, recently described genus, Salinispora. Despite the existence of all the significant features of a good probiont, actinobacteria have been hardly used as probiotics in aquaculture. However, this group of bacteria promises to supply the most potential probiotic strains in the future. PMID:18841358

  13. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants

    PubMed Central

    Sit, Clarissa S.; Ruzzini, Antonio C.; Van Arnam, Ethan B.; Ramadhar, Timothy R.; Currie, Cameron R.; Clardy, Jon

    2015-01-01

    Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A–C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A–C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented. PMID:26438860

  14. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    PubMed

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  15. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents

    PubMed Central

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957

  16. Microbial communities and chemosynthesis in yellowstone lake sublacustrine hydrothermal vent waters.

    PubMed

    Yang, Tingting; Lyons, Shawn; Aguilar, Carmen; Cuhel, Russell; Teske, Andreas

    2011-01-01

    Five sublacustrine thermal spring locations from 1 to 109 m water depth in Yellowstone Lake were surveyed by 16S ribosomal RNA gene sequencing in relation to their chemical composition and dark CO(2) fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16-110°C) and electron donor supply (H(2)S <1 to >100 μM; NH(3) <0.5 to >10 μM). Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO(2) fixation rates reaching near 9 μM C h(-1) at temperatures of 50-60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution. PMID:21716640

  17. Nocardiopsis sp. SD5: a potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India.

    PubMed

    Saha, Subhasish; Dhanasekaran, D; Shanmugapriya, S; Latha, S

    2013-07-01

    Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin protein, and keratin in its native state is not degradable by common proteolytic enzymes. The aim of the study was to find a potent feather degrading actinobacteria from feather waste soil. Out of 91 actinobacterial isolates recorded from feather waste soil in Tiruchirappalli and Nammakkal District, Tamil Nadu, India, isolate SD5 was selected for characterization because it exhibited significant keratinolytic activity. On the basis of the phenotypic, biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as Nocardiopsis sp. SD5. Protease and keratinase activity of Nocardiopsis sp. SD5 were analyzed. The enzyme was more stable over the neutral pH and the temperature of 40 °C. The optimum temperature and pH for both proteolytic and keratinolytic activity was determined at 50 °C and pH 9, respectively. Enzyme inhibitors, detergents and chelator declined the enzyme activity with increasing concentration. Nondenaturing polyacrylamide gel electrophoresis and zymogram elucidated the presence of 30 and 60 kDa protease enzymes. These findings indicated that thermo alkaliphilic feather degrading strain Nocardiopsis sp. SD5 could be used to control the feather waste pollution and to convert keratin rich feather waste into useful feedstock for poultry industry. PMID:23864545

  18. Nocardiopsis sp. SD5: A potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India.

    PubMed

    Saha, Subhasish; Dhanasekaran, D; Shanmugapriya, S; Latha, S

    2012-08-23

    Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin protein, and keratin in its native state is not degradable by common proteolytic enzymes. The aim of the study was to find a potent feather degrading actinobacteria from feather waste soil. Out of 91 actinobacterial isolates recorded from feather waste soil in Tiruchirappalli and Nammakkal District, Tamil Nadu, India, isolate SD5 was selected for characterization because it exhibited significant keratinolytic activity. On the basis of the phenotypic, biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as Nocardiopsis sp. SD5. Protease and keratinase activity of Nocardiopsis sp. SD5 were analyzed. The enzyme was more stable over the neutral pH and the temperature of 40 °C. The optimum temperature and pH for both proteolytic and keratinolytic activity was determined at 50 °C and pH 9, respectively. Enzyme inhibitors, detergents and chelator declined the enzyme activity with increasing concentration. Non denaturing poly acrylamide gel electrophoresis and zymogram elucidated the presence of 30 kda and 60 kda protease enzymes. These findings indicated that thermo alkaliphilic feather degrading strain Nocardiopsis sp. SD5 could be used to control the feather waste pollution and to convert keratin rich feather waste into useful feedstock for poultry industry. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:22914902

  19. Aalenian foraminiferal fauna and microfacies analyses of the Tethys Ocean Basin from the Transdanubian Range (Hungary)

    NASA Astrophysics Data System (ADS)

    Zsiborás, Gábor; Görög, Ágnes

    2016-04-01

    The early Middle Jurassic foraminiferal fauna of the Tethys Ocean Basin is hardly known. It is especially true for the Aalenian from when only Monaco et al. (1994) published some forms from Valdorbia Section, Central Italy and Wernli (1988) from Domuz Dag, Turkey. Thus the aim of our study was to give a detailed systematic description of the foraminiferal fauna and microfacies analyses of Nagy-Pisznice Section of Lábatlan and T?zköves Gorge of Bakonycsernye from the Transdanubian Range. According to several studies of Géczy} and others, the ammonite fauna indicate all Aalenian (Opalinum, Murchisonae, Concavum) biozones in both successions. 6 samples from T?zköves Gorge, 13 samples from Nagy-Pisznice were collected. Both sequences are about 3 metres thick Ammonitico Rosso type reddish grey limestone with flaser beds and nodules (Tölgyhát Limestone Formation). For the microfacies studies thin sections were made. The dominant microfacies is bioclastic wackestone predominated {Bositra} shells. To extract the microfossils, each sample was dissolved in glacial acetic acid. The microfauna consist of foraminifers, calcispheres, juvenile ammonites, ostracods, radiolarians, microgastropods and fragments of echinoderms. Throughout the Nagy-Pisznice succession, the composition of the foraminiferal fauna is relatively uniform and moderately divers. Most specimens belong to Suborder Lagenina with 60-80{%} abundance. The Suborder Spirillinina are also frequent with 20-35{%} abundance. Agglutinants are subordinated and Suborder Miliolina is absent. The most abundant genus is {Lenticulina}, its amount is more than 50{%} in some samples. {Astacolus}, {Marginulina}, {Dentalina}, {Nodosaria}, {Paralingulina} and Epistominidae are also frequent. {Eoguttulina} and {Paalzowella} are scarce. Spirillinids are represented by {Spirillina}, {Turrispirillina}, and {Coronipora} genera. The taxonomic composition of the foraminiferal fauna of T?zköves Gorge is similar to the aforesaid

  20. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments

    PubMed Central

    2008-01-01

    Background The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Results Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). Conclusion The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha

  1. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear

    PubMed Central

    2013-01-01

    Introduction Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200 kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attempts have been made. To understand these adaptations more fully, as well as gain insights into the evolutionary origins of ultrasonic hearing and echolocation in bats, we undertook micro-computed tomography (μCT) scans of the cochleae of representative bat species from 16 families, encompassing their broad range of ecological diversity. To characterise cochlear gross morphology, we measured the relative basilar membrane length and number of turns, and compared these values between echolocating and non-echolocating bats, as well as other mammals. Results We found that hearing and echolocation call frequencies in bats correlated with both measures of cochlear morphology. In particular, relative basilar membrane length was typically longer in echolocating species, and also correlated positively with the number of cochlear turns. Ancestral reconstructions of these parameters suggested that the common ancestor of all extant bats was probably capable of ultrasonic hearing; however, we also found evidence of a significant decrease in the rate of morphological evolution of the basilar membrane in multiple ancestral branches within the Yangochiroptera suborder. Within the echolocating Yinpterochiroptera, there was some evidence of an increase in the rate of basilar membrane evolution in some tips of the tree, possibly associated with reported shifts in call frequency associated with recent speciation events. Conclusions The two main groups of echolocating bat were found to display

  2. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation

    PubMed Central

    2011-01-01

    Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100

  3. Catalogue and historical overview of juvenile instars of oribatid mites (Acari: Oribatida).

    PubMed

    Norton, Roy A; Ermilov, Sergey G

    2014-01-01

    Oribatid mites (Acari: Oribatida) comprise a taxonomically and morphologically diverse suborder of about 10,000 described species, not including the hyporder Astigmata, with collectively a global distribution. They are primarily soil and litter inhabitants, feeding on fungi and decaying plant remains with various levels of specificity. Though all five active instars are important for reasons that relate to both ecology and systematics, most species are known only as adults. Our purpose was to gather the existing world literature on the active juvenile instars (i.e., excluding prelarva) of oribatid mites, to put classifications and nomenclature in a current context, and to identify the nature of the information in each paper. A selected historical overview identifies the contributions of 19th century authors C.L. Koch, H. Nicolet and A.D. Michael, and summarizes errors that resulted in various oribatid mite juveniles being classified in genera, families and even suborders that were different from those of their adult instars. The catalogue includes all species known to us for which juveniles have been described: 805 species in 310 genera, representing only about 8% of the known oribatid mite species and 30% of genera. These represent 118 families, about 70% of those known. At the superfamily level, representation is weakest among the diverse Oppioidea and Oribatuloidea, and those superfamilies with juveniles that are endophagous in organic substrates, such as Phthiracaroidea, Euphthiracaroidea and Carabodoidea. Representation is strongest in the middle-derivative hyporder Nothrina, in which adults and juveniles are more easily associated, and in brachypyline superfamilies that are mostly affiliated with aquatic, semiaquatic or intertidal environments, such as Limnozetoidea and Ameronothroidea. Juvenile instars remain unknown for 45 families of Brachypylina. Four new nomenclatural actions were proposed: Ojaithrus nymphoides Habeeb, 1982 is a junior synonym of

  4. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.

    PubMed

    Lavergne, A; Douzery, E; Stichler, T; Catzeflis, F M; Springer, M S

    1996-10-01

    The complete mitochondrial 12S rRNA sequences of 5 placental mammals belonging to the 3 orders Sirenia, Proboscidea, and Hyracoidea are reported together with phylogenetic analyses (distance and parsimony) of a total of 51 mammalian orthologues. This 12S rRNA database now includes the 2 extant proboscideans (the African and Asiatic elephants Loxodonta africana and Elephas maximus), 2 of the 3 extant sirenian genera (the sea cow Dugong dugon and the West Indian manatee Trichechus manatus), and 2 of the 3 extant hyracoid genera (the rock and tree hyraxes Procavia capensis and Dendrohyrax dorsalis). The monophyly of the 3 orders Sirenia, Proboscidea, and Hyracoidea is supported by all kinds of analysis. There are 23 and 3 diagnostic subsitutions shared by the 2 proboscideans and the 2 hyracoids, respectively, but none by the 2 sirenians. The 2 proboscideans exhibit the fastest rates of 12S rRNA evolution among the 11 placental orders studied. Based on various taxonomic sampling methods among eutherian orders and marsupial outgroups, the most strongly supported clade in our comparisons clusters together the 3 orders Sirenia, Proboscidea, and Hyracoidea in the superorder Paenungulata. Within paenungulates, the grouping of sirenians and proboscideans within the mirorder Tethytheria is observed. This branching pattern is supported by all analyses by high bootstrap percentages (BPs) and decay indices. When only one species is selected per order or suborder, the taxonomic sampling leads to a relative variation in bootstrap support of 53% for Tethytheria (BPs ranging from 44 to 93%) and 7% for Paernungulata (92-99%). When each order or suborder is represented by two species, this relative variation decreased to 10% for Tethytheria (78-87%) and 3% for Paenungulata (96-99%). Two nearly exclusive synapomorphies for paenungulates are identified in the form of one transitional compensatory change, but none were detected for tethytherians. Such a robust and reliable resolution of

  5. A divergent Cardinium found in daddy long-legs (Arachnida: Opiliones).

    PubMed

    Chang, Jin; Masters, Amber; Avery, Amanda; Werren, John H

    2010-11-01

    Recent studies indicate that a newly described bacterial endosymbiont, Cardinium, is widespread in arthropods and induces different reproductive manipulations in hosts. In this study, we used a portion of the 16S rRNA gene of the Cardinium to screen 16 Opilionid species from the suborder Palptores. We found the incidence of Cardinium in these Opiliones was significantly higher than in other pooled arthropods (31.2% versus 7.2%, P=0.007). Phylogenetic analyses using maximum parsimony (MP) and Bayesian analysis revealed two distinct clades in Opiliones. One is a divergent monophyletic clade with strong support that has so far not been found in other arthropods, and a second one contains Cardinium both from Opiliones and other arthropods. There is not complete concordance of the Cardinium strains with host phylogeny, suggesting some horizontal movement of the bacteria among Opiliones. Although the divergence in the sequenced 16S rRNA region between the Cardinium infecting Opiliones and Cardinium from other arthropods is greater than among Cardinium found in other arthropods, all are monophyletic with respect to the outgroup bacteria (endosymbionts of Acanthamoeba). Based on high pairwise genetic distances, deep branch, and a distinct phylogenetic grouping, we conclude that some Opiliones harbor a newly discovered Cardinium clade. PMID:20515696

  6. Molecular data do not provide unambiguous support for the monophyly of flatfishes (Pleuronectiformes): a reply to Betancur-R and Ortí.

    PubMed

    Campbell, Matthew A; Chen, Wei-Jen; López, J Andrés

    2014-06-01

    Betancur-R and Ortí (2014) offer a criticism of our recent examination of the monophyly of extant flatfishes (Pleuronectiformes; Campbell et al., 2013). We welcome this opportunity to examine and respond to the main issues presented in Betancur-R and Ortí (2014). Briefly, this debate centers on the question of whether or not analyses of the available evidence support a stable and confident conclusion regarding a sister group relationship between the two recognized pleuronectiform suborders: Psettodoidei (four species) and Pleuronectoidei (>700 species). In Campbell et al. (2013), we reported results based on sequences from six nuclear genes compatible with monophyly of Pleuronectoidei but not with that of Pleuronectiformes. In our analyses, the most closely related percomorph family to the Pleuronectoidei was resolved to be the Centropomidae. In Campbell et al. (2013), we also provided a critical review of the morphological evidence in favor flatfish monophyly showing that this evidence requires a careful re-examination where it concerns psettodoids. Here we present our perspective on the issues raised in Betancur-R and Ortí (2014). PMID:24582736

  7. Mitochondrial genomic investigation of flatfish monophyly.

    PubMed

    Campbell, Matthew A; López, J Andrés; Satoh, Takashi P; Chen, Wei-Jen; Miya, Masaki

    2014-11-10

    We present the first study to use whole mitochondrial genome sequences to examine phylogenetic affinities of the flatfishes (Pleuronectiformes). Flatfishes have attracted attention in evolutionary biology since the early history of the field because understanding the evolutionary history and patterns of diversification of the group will shed light on the evolution of novel body plans. Because recent molecular studies based primarily on DNA sequences from nuclear loci have yielded conflicting results, it is important to examine phylogenetic signal in different genomes and genome regions. We aligned and analyzed mitochondrial genome sequences from thirty-nine pleuronectiforms including nine that are newly reported here, and sixty-six non-pleuronectiforms (twenty additional clade L taxa [Carangimorpha or Carangimorpharia] and forty-six secondary outgroup taxa). The analyses yield strong support for clade L and weak support for the monophyly of Pleuronectiformes. The suborder Pleuronectoidei receives moderate support, and as with other molecular studies the putatively basal lineage of Pleuronectiformes, the Psettodoidei is frequently not most closely related to other pleuronectiforms. Within the Pleuronectoidei, the basal lineages in the group are poorly resolved, however several flatfish subclades receive consistent support. The affinities of Lepidoblepharon and Citharoides among pleuronectoids are particularly uncertain with these data. PMID:25172210

  8. Transitional fossil earwigs - a missing link in Dermaptera evolution

    PubMed Central

    2010-01-01

    Background The Dermaptera belongs to a group of winged insects of uncertain relationship within Polyneoptera, which has expanded anal region and adds numerous anal veins in the hind wing. Evolutional history and origin of Dermaptera have been in contention. Results In this paper, we report two new fossil earwigs in a new family of Bellodermatidae fam. nov. The fossils were collected from the Jiulongshan Formation (Middle Jurassic) in Inner Mongolia, northeast China. This new family, characterized by an unexpected combination of primitive and derived characters, is bridging the missing link between suborders of Archidermaptera and Eodermaptera. Phylogenetic analyses support the new family to be a new clade at the base of previously defined Eodermaptera and to be a stem group of (Eodermaptera+Neodermaptera). Conclusion Evolutional history and origin of Dermaptera have been in contention, with dramatically different viewpoints by contemporary authors. It is suggested that the oldest Dermaptera might possibly be traced back to the Late Triassic-Early Jurassic and they had divided into Archidermaptera and (Eodermaptera+Neodermaptera) in the Middle Jurassic. PMID:21062504

  9. The mitochondrial genome of Tenthredo tienmushana (Takeuchi) and a related phylogenetic analysis of the sawflies (Insecta: Hymenoptera).

    PubMed

    Song, Sheng-Nan; Wang, Ze-Hua; Li, Yue; Wei, Shu-Jun; Chen, Xue-Xin

    2016-07-01

    The mitochondrial genome sequence of Tenthredo tienmushana (Takeuchi, 1940) (Hymenoptera: Tenthredinidae) (GenBank accession KR703581) was reported. The length of the sequenced region of this mitochondrial genome is 14,943 bp, with 13 protein-coding, two rRNA, 19 tRNA (the trnI, trnQ, and trnM were failed to sequence) genes and a partial A + T-rich region. As in most other sequenced mitochondrial genomes of the suborder "Symphyta", there is no gene rearrangement in the sequenced region compared with the pupative ancestral gene arrangement of insects. All protein-coding genes start with ATN codons. Eleven, one, and one protein-coding genes stop with termination codon TAA, TA, and T, respectively. Phylogenetic analysis using the Bayesian method based on all codon positions of the 13 protein-coding genes supports the monophyly of Tenthredinoidea. Two families of the Tenthredinoidea, i.e. Tenthredinidae and Pergidae, form the basal lineage of the Hymenoptera. Within the Tenthredinidae, the subfamily Tenthrediniinae and Allantinae form a sister lineage and then sister to the Nematinae. The Orussidae was recovered to be a sister group to the Apocrita, which contains Ichneumonidae and Vespidae in our analysis. The Cephoidea is sister to the lineage of Orussoidea + Apocrita. PMID:26134345

  10. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography

    SciTech Connect

    Meher, Subhashish; Rojhirunsakool, Tanaporn; Nandwana, Peeyush; Tiley, Jamie; Banerjee, Rajarshi

    2015-04-28

    In this study, the analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12sub>-ordered g precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr(at.%) alloy. Interestingly, the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within g precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.

  11. Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence.

    PubMed

    Legendre, Frédéric; Nel, André; Svenson, Gavin J; Robillard, Tony; Pellens, Roseli; Grandcolas, Philippe

    2015-01-01

    Understanding the origin and diversification of organisms requires a good phylogenetic estimate of their age and diversification rates. This estimate can be difficult to obtain when samples are limited and fossil records are disputed, as in Dictyoptera. To choose among competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis (~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils attributed to lineages with clear synapomorphies. We find the following topology: (mantises, (other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyoptera-and stem-mantises-would date back to the Late Carboniferous (~ 300 Mya), a result compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however, would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old origin and more recent diversification) suggests a scenario of replacement in carnivory among polyneopterous insects. The most recent common ancestor of (cockroaches + termites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic boundary, which refutes a Triassic origin. We suggest directions in extant and extinct species sampling to sharpen this chronological framework and dictyopteran evolutionary studies. PMID:26200914

  12. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T.

    PubMed

    Sharma, Gaurav; Khatri, Indu; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. PMID:27358428

  13. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T

    PubMed Central

    Sharma, Gaurav; Khatri, Indu; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668T that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. PMID:27358428

  14. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    PubMed

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-07-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  15. The case for DUF1220 domain dosage as a primary contributor to anthropoid brain expansion

    PubMed Central

    Keeney, Jonathon G.; Dumas, Laura; Sikela, James M.

    2014-01-01

    Here we present the hypothesis that increasing copy number (dosage) of sequences encoding DUF1220 protein domains is a major contributor to the evolutionary increase in brain size, neuron number, and cognitive capacity that is associated with the primate order. We further propose that this relationship is restricted to the anthropoid sub-order of primates, with DUF1220 copy number markedly increasing in monkeys, further in apes, and most extremely in humans where the greatest number of copies (~272 haploid copies) is found. We show that this increase closely parallels the increase in brain size and neuron number that has occurred among anthropoid primate species. We also provide evidence linking DUF1220 copy number to brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). While we believe these and other findings presented here strongly suggest increase in DUF1220 copy number is a key contributor to anthropoid brain expansion, the data currently available rely largely on correlative measures that, though considerable, do not yet provide direct evidence for a causal connection. Nevertheless, we believe the evidence presented is sufficient to provide the basis for a testable model which proposes that DUF1220 protein domain dosage increase is a main contributor to the increase in brain size and neuron number found among the anthropoid primate species and that is at its most extreme in human. PMID:25009482

  16. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    PubMed

    Eckerle, Isabella; Ehlen, Lukas; Kallies, René; Wollny, Robert; Corman, Victor M; Cottontail, Veronika M; Tschapka, Marco; Oppong, Samuel; Drosten, Christian; Müller, Marcel A

    2014-01-01

    Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells. PMID:24454736

  17. Characterization of Pajaroellobacter abortibovis, the etiologic agent of epizootic bovine abortion.

    PubMed

    Brooks, Roxann S; Blanchard, Myra T; Clothier, Kristin A; Fish, Scott; Anderson, Mark L; Stott, Jeffery L

    2016-08-30

    Epizootic bovine abortion (EBA), first identified in the 1950s, is a major contributor of economic loss to western U.S. beef producers. The causative agent proved elusive for over fifty years until a novel Deltaproteobacteria was identified as the etiologic agent in 2005. The microbe, which has yet to be successfully cultured in vitro, has proven difficult to purify from necropsy tissues. Thus, phylogenetic characterization has been limited to analysis of the 16S ribosomal RNA (rRNA) gene (AF503916), which placed this bacterium in the order Myxococcales, suborder Sorangiineae, family Polyangiaceae and most closely related to Sorangium cellulosum. The focus of the current study was to further expand the morphologic characterization and taxonomic placement of this bacteria, named here as Pajaroellobacter abortibovis. Modified Gram staining, combined with transmission electron microscopy, provide strong evidence that the bacterium is gram negative. Flow cytometric analysis identified the presence of P. abortibovis in murine leukocytes. While attempts to sequence ten universally conserved protein-coding genes using previously published degenerative primers failed, redesigned primers based solely upon Deltaproteobacteria facilitated the partial sequencing of two genes; fusA (JQ173112) and pyrG (JQ173111). Primers designed in a similar fashion generated a partial sequence of the 23S rRNA gene (JQ173113) These sequences, combined with a revised 16S rRNA phylogenic analysis, support the placement of this bacteria as a unique genus separate from Sorangium. PMID:27527767

  18. Evidence for homologous peptidergic neurons in the buccal ganglia of diverse nudibranch mollusks.

    PubMed

    Watson, W H; Willows, A O

    1992-03-01

    The buccal ganglia of seven nudibranches (Aeolidia papillosa, Armina californica, Dirona albolineata, D. picta, Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea) were examined to explore possible homologies between large cells that reacted with antibodies directed against small cardioactive peptide B (SCPB). The buccal ganglion of each species possessed a pair of large, dorsal-lateral, whitish neurons that contained an SCPB-like peptide. We refer to these neurons as the SLB (SCPB-immunoreactive Large Buccal) cells. In all species examined, the SLB cells project out the gastroesophageal nerves and appear to innervate the esophagus. In each species, an apparent rhythmic feeding motor program (FMP) was observed by intracellular recording from both SLB neurons and other neurons in isolated preparations of the buccal ganglia. SLB cells often fire at a high frequency, and usually burst in a specific phase relation to the FMP activity. Stimulation of SLB cells enhances expression of the feeding motor program, either by potentiating existing activity or eliciting the FMP in quiescent preparations. Finally, perfusion of isolated buccal ganglia with SCPB excites the SLB cells and activates FMPs. Thus, both the immunohistochemical and electrophysiological data suggest that the SLB cells within three suborders of the opisthobranchia (Dendronotacea, Arminacea, and Aeolidacea) are homologous. A comparison of our data with previously published studies indicates that SLB cell homologs may exist in other gastropods as well. PMID:1527526

  19. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds.

    PubMed

    Baker, Allan J; Pereira, Sérgio L; Paton, Tara A

    2007-04-22

    Comparative study of character evolution in the shorebirds is presently limited because the phylogenetic placement of some enigmatic genera remains unclear. We therefore used Bayesian methods to obtain a well-supported phylogeny of 90 recognized genera using 5 kb of mitochondrial and nuclear sequences. The tree comprised three major clades: Lari (gulls, auks and allies plus buttonquails) as sister to Scolopaci (sandpipers, jacanas and allies), and in turn sister to Charadrii (plovers, oystercatchers and allies), as in previous molecular studies. Plovers and noddies were not recovered as monophyletic assemblages, and the Egyptian plover Pluvianus is apparently not a plover. Molecular dating using multiple fossil constraints suggests that the three suborders originated in the late Cretaceous between 79 and 102 Mya, and at least 14 lineages of modern shorebirds survived the mass extinction at the K/T boundary. Previous difficulties in determining the phylogenetic relationships of enigmatic taxa reflect the fact that they are well-differentiated relicts of old, genus-poor lineages. We refrain from suggesting systematic revisions for shorebirds at this time because gene trees may fail to recover the species tree when long branches are connected to deep, shorter branches, as is the case for some of the enigmatic taxa. PMID:17284401

  20. First report of gastrocotylinean post-oncomiracidia (Platyhelminthes: Monogenoidea: Heteronchoinea) on gills of flyingfish (Exocoetidae), snapper (Lutjanidae), dolphinfish (Coryphaenidae), and amberjack (Carangidae) from the Gulf of Mexico: decoy hosts and the dilution effect.

    PubMed

    Kritsky, Delane C; Bullard, Stephen A; Bakenhaster, Micah D

    2011-09-01

    Larvae, identified as post-oncomiracidia of the suborder Gastrocotylinea (Monogenoidea), were collected from formalin-fixed gills excised from six species of marine fishes captured from the Gulf of Mexico off Mississippi and Florida: common dolphinfish, Coryphaena hippurus and pompano dolphinfish, Coryphaena equiselis (both Perciformes, Coryphaenidae); gray snapper, Lutjanus griseus (Perciformes, Lutjanidae); greater amberjack, Seriola dumerili (Perciformes, Carangidae); and Atlantic flyingfish, Cheilopogon melanurus and sailfin flyingfish, Parexocoetus hillianus (both Beloniformes and Exocoetidae). Based on a combination of diagnostic morphological features, the specimens were divided into two basic forms, each of which was further subdivided into two morphotypes. No gastrocotylinean post-oncomiracidium had been reported previously from these hosts. Of the six host species, only C. hippurus serves as a host (unconfirmed) for the adult of a gastrocotylinean species, suggesting that the recorded fishes from the Gulf of Mexico comprise dead-end hosts acting as decoys for the oncomiracidia. These comparatively non-susceptible "decoy hosts" apparently dilute the susceptible fish-host population and by intercepting infective larvae (oncomiracidia) decrease the abundance of parasites on their typical hosts. PMID:21497672

  1. Evolutionary affinity of billfishes (Xiphiidae and Istiophoridae) and flatfishes (Plueronectiformes): Independent and trans-subordinal origins of endothermy in teleost fishes.

    PubMed

    Little, A G; Lougheed, S C; Moyes, C D

    2010-09-01

    Billfishes (Scombroidei) and tunas (Scombridae), both considered part of the suborder Scombroidei, have long been studied by biologists largely because of their remarkable physiological and anatomical muscular adaptations associated with regional endothermy and continuous swimming. These attributes, combined with analyses of other morphological and molecular data, have led to a general perception that tunas and billfishes are close relatives, though this hypothesis has been vigorously debated. Using Bayesian phylogenetic analysis of nine mitochondrial and three nuclear loci (>7000bp), we show that billfishes are only distantly related to tunas, but rather share strong evolutionary affinities with flatfishes (Pleuronectiformes) and jacks (Carangidae). This phylogenetic relationship is striking because of the marked variation in phenotype and niche across these trans-ordinal groups of fishes. Billfishes and flatfishes have each evolved radically divergent morphological and physiological features: elongated bills and extraocular heater organs in billfishes, and cranial asymmetry with complete eye migration during ontogenetic development in flatfishes. Despite this divergence, we identify synapomorphies consistent with the hypothesis of a common billfish/flatfish/jack ancestor. PMID:20416385

  2. The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production.

    PubMed

    Brinkrolf, Karina; Schröder, Jasmin; Pühler, Alfred; Tauch, Andreas

    2010-09-01

    Corynebacterium glutamicum is one of the best studied organisms of the high G+C branch of Gram-positive bacteria and an emerging model system for the suborder Corynebacterineae. To gain insights into the regulatory gene composition and architecture of the transcriptional regulatory network of C. glutamicum, components of the transcriptional regulatory repertoire were intensively studied by many scientific groups in recent years. In this mini-review, we summarize the present knowledge about the deduced transcriptional regulatory repertoire of C. glutamicum and the current status of transcriptional regulatory network reconstruction with regard to the genome-wide detection of transcriptional regulations, coregulatory interactions and hierarchical cross-regulations. Moreover, we provide an overview of those regulators and their transcriptional regulations controlling genes involved in the conversion of the carbon sources glucose, fructose and sucrose into the industrially relevant products l-lysine and l-glutamate. This data will contribute to our understanding of l-lysine and l-glutamate production by C. glutamicum from the perspective of systems biology and may provide the basis for computational modeling of the respective biotechnologically important metabolic pathways. PMID:19963020

  3. Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons.

    PubMed

    Matschiner, Michael; Hanel, Reinhold; Salzburger, Walter

    2009-06-01

    The diversification of the teleost suborder Notothenioidei (Perciformes) in Antarctic waters provides one of the most striking examples of a marine adaptive radiation. Along with a number of adaptations to the cold environment, such as the evolution of antifreeze glycoproteins, notothenioids diversified into eight families and at least 130 species. Here, we investigate the genetic population structure of the humped rockcod (Gobionotothen gibberifrons), a benthic notothenioid fish. Six populations were sampled at different locations around the Scotia Sea, comprising a large part of the species' distribution range (N = 165). Our analyses based on mitochondrial DNA sequence data (352 bp) and eight microsatellite markers reveal a lack of genetic structuring over large geographic distances (Phi(ST) < or = 0.058, F(ST) < or = 0.005, P values nonsignificant). In order to test whether this was due to passive larval dispersal, we used GPS-tracked drifter trajectories, which approximate movement of passive surface particles with ocean currents. The drifter data indicate that the Antarctic Circumpolar Current (ACC) connects the sampling locations in one direction only (west-east), and that passive transport is possible within the 4-month larval period of G. gibberifrons. Indeed, when applying the isolation-with-migration model in IMA, strong unidirectional west-east migration rates are detected in the humped rockcod. This leads us to conclude that, in G. gibberifrons, genetic differentiation is prevented by gene flow via larval dispersal with the ACC. PMID:19457182

  4. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans.

    PubMed Central

    Levenson, D H; Dizon, A

    2003-01-01

    All mammals ancestrally possessed two types of cone pigments, an arrangement that persists in nearly all contemporary species. However, the absence of one of these cone types, the short-wavelength-sensitive (SWS) cone, has recently been established in several delphinoid cetacean species, indicating that the loss of this pigment type may be widespread among cetaceans. To evaluate the functional condition of SWS cones in cetaceans, partial SWS cone-opsin gene sequences were obtained from nuclear DNA for 16 species representing 12 out of the 14 extant mysticete (baleen) and odontocete (toothed) families. For all these species one or more mutations were identified that indicate that their SWS cone-opsin genes are pseudogenes and thus do not code for functional visual pigment proteins. Parsimonious interpretation of the distribution of some of these mis-sense mutations indicates that the conversion of cetacean SWS coneopsin genes to pseudogenes probably occurred before the divergences of the mysticete and odontocete suborders. Thus, in the absence of dramatic homoplasy, all modern cetaceans lack functional SWS cone visual pigments and, by extension, the visual capacities that such pigments typically support. PMID:12713740

  5. Examining evolutionary relationships and shifts in depth preferences in batfishes (Lophiiformes: Ogcocephalidae).

    PubMed

    Derouen, Valerie; Ludt, William B; Ho, Hsuan-Ching; Chakrabarty, Prosanta

    2015-03-01

    Batfishes (Ogcocephalidae) are an understudied, group of marine anglerfishes that are dorsoventrally flattened and have an illicium and esca (terminal lure) used to attract prey. The family contains 10 genera and 75 recognized species from nearly all tropical and subtropical seas. Relationships among these taxa, as well as the position of Ogcocephalidae within Lophiiformes, remain poorly understood with previous studies showing conflicting, and poorly resolved results. The timing of divergence and depth of origination in the water column have also not been explored in any detail. In this study a concatenated nuclear (three genes) and mitochondrial (two genes) dataset was constructed across several anglerfish families to elucidate phylogenetic relationships among all ten batfish genera, to clarify the placement of Ogcocephaloidei within Lophiiformes, and to estimate divergence times using fossil calibrations. An ancestral state reconstruction was also conducted to examine the history of shifts in preferred habitat depths within batfishes. Phylogenetic analyses supported monophyly of each sub-order within Lophiiformes and placed Ogcocephaloidei as the sister group to Antennarioidei. Batfish genera were divided into an Eastern Pacific/Western Atlantic clade and an Indo-Pacific clade; Halieutaea was recovered as the sister group to all other batfishes. Based on divergence time estimations and ancestral state reconstructions of preferred depth, Ogcocephalidae is Eocene in age and originated on the lower continental shelf/upper continental slope (disphotic zone). PMID:25554525

  6. Age at first reproduction explains rate variation in the strepsirrhine molecular clock

    PubMed Central

    Tsantes, C.; Steiper, M. E.

    2009-01-01

    Although the molecular clock hypothesis posits that the rate of molecular change is constant over time, there is evidence that rates vary among lineages. Some of the strongest evidence for variable molecular rates comes from the primates; e.g., the “hominoid slowdown.” These rate differences are hypothesized to correlate with certain species attributes, such as generation time and body size. Here, we examine rates of molecular change in the strepsirrhine suborder of primates and test whether body size or age at first reproduction (a proxy for generation time) explains patterns of rate variation better than a null model where the molecular clock is independent of these factors. To examine these models, we analyzed DNA sequences from four pairs of recently diverged strepsirrhine sister taxa to estimate molecular rates by using sign tests, likelihood ratio tests, and regression analyses. Our analysis does not support a model where body weight or age at first reproduction strongly influences rates of molecular evolution across mitochondrial and nuclear sites. Instead, our analysis supports a model where age at first reproduction influences neutral evolution in the nuclear genome. This study supports the generation time hypothesis for rate variation in the nuclear molecular clock. Molecular clock variation due to generation time may help to resolve the discordance between molecular and paleontological estimates for divergence date estimates in primate evolution. PMID:19841267

  7. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E; Lewis, Rhodri

    2016-06-01

    Monophyly of protozoan phylum Amoebozoa, and subdivision into subphyla Conosa and Lobosa each with different cytoskeletons, are well established. However early diversification of non-ciliate lobose amoebae (Lobosa) is poorly understood. To clarify it we used recently available transcriptomes to construct a 187-gene amoebozoan tree for 30 species, the most comprehensive yet. This robustly places new genus Atrichosa (formerly lumped with Trichosphaerium) within lobosan class Tubulinea, not Discosea as previously supposed. We identified an earliest diverging lobosan clade comprising marine amoebae armoured by porose scaliform cell-envelopes, here made a novel class Cutosea with two pseudopodially distinct new families. Cutosea comprise Sapocribrum, ATCC PRA-29 misidentified as 'Pessonella', plus from other evidence Squamamoeba. We confirm that Acanthamoeba and ATCC 50982 misidentified as Stereomyxa ramosa are closely related. Discosea have a strongly supported major subclade comprising Thecamoebida plus Glycostylida (suborders Dactylopodina, Stygamoebina; Vannellina) phylogenetically distinct from Centramoebida. Stygamoeba is sister to Dactylopodina. Himatismenida are either sister to Centramoebida or deeper branching. Discosea usually appear holophyletic (rarely paraphyletic). Paramoeba transcriptomes include prokinetoplastid Perkinsela-like endosymbiont sequences. Cunea, misidentified as Mayorella, is closer to Paramoeba than Vexillifera within holophyletic Dactylopodina. Taxon-rich site-heterogeneous rDNA trees confirm cutosan distinctiveness, allow improved conosan taxonomy, and reveal previous dictyostelid tree misrooting. PMID:27001604

  8. Cloning, sequence analysis and disruption of the mglA gene involved in swarming motility of Sorangium cellulosum So ce26, a producer of the antifungal polyketide antibiotic soraphen A.

    PubMed

    Zirkle, Ross; Ligon, James M; Molnár, István

    2004-01-01

    The myxobacterium Sorangium cellulosum So ce26, the producer of the agriculturally important fungicide antibiotic soraphen A, displays coordinated gliding motility (swarming) on agar surfaces. The consequent failure to form detached colonies represents a major obstacle for microbiological and genetic studies, since single cells representing discrete genetic events cannot be reliably separated and propagated as clones. The MglA protein, the product of the mglA gene, has been shown to be a central regulator of gliding motility and swarming in the related myxobacterium Myxococcus xanthus. We have cloned and sequenced a chromosomal locus from S. cellulosum So ce26 that shows similarity to the M. xanthus mglA locus. Insertional inactivation of the chromosomal copy of the S. cellulosum So ce26 mglA homolog resulted in a strain with a non-swarming colony phenotype. This strain is able to form distinct colonies presumably derived from single cells. This is the first report on the characterization of a genetic element of the gliding motility system in the myxobacterial suborder Sorangineae. PMID:16233626

  9. Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro

    2010-01-01

    We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.

  10. Community structure variability of Uropodina mites (Acari: Mesostigmata) in nests of the common mole, Talpa europaea, in Central Europe.

    PubMed

    Napierała, Agnieszka; Mądra, Anna; Leszczyńska-Deja, Kornelia; Gwiazdowicz, Dariusz J; Gołdyn, Bartłomiej; Błoszyk, Jerzy

    2016-04-01

    Underground nests of Talpa europaea, known as the common mole, are very specific microhabitats, which are also quite often inhabited by various groups of arthropods. Mites from the suborder Uropodina (Acari: Mesostigmata) are only one of them. One could expect that mole nests that are closely located are inhabited by communities of arthropods with similar species composition and structure. However, results of empirical studies clearly show that even nests which are close to each other can be different both in terms of the species composition and abundance of Uropodina communities. So far, little is known about the factors that can cause these differences. The major aim of this study was to identify factors determining species composition, abundance, and community structure of Uropodina communities in mole nests. The study is based on material collected during a long-term investigation conducted in western parts of Poland. The results indicate that the two most important factors influencing species composition and abundance of Uropodina communities in mole nests are nest-building material and depth at which nests are located. Composition of Uropodina communities in nests of moles was also compared with that of other microhabitats (e.g. rotten wood, forest litter, soil) based on data from 4421 samples collected in Poland. Communities of this habitat prove most similar to these of open areas, especially meadows, as well as some forest types. PMID:26861069

  11. Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria).

    PubMed

    Campanella, Daniela; Hughes, Lily C; Unmack, Peter J; Bloom, Devin D; Piller, Kyle R; Ortí, Guillermo

    2015-05-01

    Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence data collected for eight molecular markers for a representative sample of 103 atheriniform species, covering 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to provide an explicit timeframe for the diversification of this group. Our results support the subdivision of Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further study is necessary to support a revised taxonomy of Atherinoidei. The time-calibrated phylogeny was used to infer ancestral habitat reconstructions to explain the current distribution of marine and freshwater taxa. Based on these results, the current distribution of Atheriniformes is likely due to widespread marine dispersal along the margins of continents, infrequent trans-oceanic dispersal, and repeated invasion of freshwater habitats. This conclusion is supported by post-Gondwanan divergence times among families within the order, and a high probability of a marine ancestral habitat. PMID:25769409

  12. Pelvic girdle mobility of cryptodire and pleurodire turtles during walking and swimming.

    PubMed

    Mayerl, Christopher J; Brainerd, Elizabeth L; Blob, Richard W

    2016-09-01

    Movements of the pelvic girdle facilitate terrestrial locomotor performance in a wide range of vertebrates by increasing hind limb excursion and stride length. The extent to which pelvic movements contribute to limb excursion in turtles is unclear because the bony shell surrounding the body presents a major obstacle to their visualization. In the Cryptodira, which are one of the two major lineages of turtles, pelvic anatomy indicates the potential for rotation inside the shell. However, in the Pleurodira, the other major suborder, the pelvis shows a derived fusion to the shell, preventing pelvic motion. In addition, most turtles use their hind limbs for propulsion during swimming as well as walking, and the different locomotor demands between water and land could lead to differences in the contributions of pelvic rotation to limb excursion in each habitat. To test these possibilities, we used X-ray reconstruction of moving morphology (XROMM) to compare pelvic mobility and femoral motion during walking and swimming between representative species of cryptodire (Pseudemys concinna) and pleurodire (Emydura subglobosa) turtles. We found that the pelvis yawed substantially in cryptodires during walking and, to a lesser extent, during swimming. These movements contributed to greater femoral protraction during both walking and swimming in cryptodires when compared with pleurodires. Although factors related to the origin of pelvic-shell fusion in pleurodires are debated, its implications for their locomotor function may contribute to the restriction of this group to primarily aquatic habits. PMID:27340204

  13. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges

    PubMed Central

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N.; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  14. A view of early vertebrate evolution inferred from the phylogeny of polystome parasites (Monogenea: Polystomatidae).

    PubMed Central

    Verneau, Olivier; Bentz, Sophie; Sinnappah, Neeta Devi; du Preez, Louis; Whittington, Ian; Combes, Claude

    2002-01-01

    The Polystomatidae is the only family within the Monogenea to parasitize sarcopterygians such as the Australian lungfish Neoceratodus poisteri and freshwater tetrapods (lissamphibians and chelonians). We present a phylogeny based on partial 18S rDNA sequences of 26 species of Polystomatidae and three taxon from the infrasubclass Oligonchoinea (= Polyopisthocotylea) obtained from the gills of teleost fishes. The basal position of the polystome from lungfish within the Polystomatidae suggests that the family arose during the evolutionary transition between actinopterygians and sarcopterygians, ca. 425 million years (Myr) ago. The monophyly of the polystomatid lineages from chelonian and lissamphibian hosts, in addition to estimates of the divergence times, indicate that polystomatids from turtles radiated ca. 191 Myr ago, following a switch from an aquatic amniote presumed to be extinct to turtles, which diversified in the Upper Triassic. Within polystomatids from lissamphibians, we observe a polytomy of four lineages, namely caudatan, neobatrachian, pelobatid and pipid polystomatid lineages, which occurred ca. 246 Myr ago according to molecular divergence-time estimates. This suggests that the first polystomatids of amphibians originated during the evolution and diversification of lissamphibian orders and suborders ca. 250 Myr ago. Finally, we report a vicariance event between two major groups of neobatrachian polystomes, which is probably linked to the separation of South America from Africa ca. 100 Myr ago. PMID:11886648

  15. A new Neocalceostomatid (Monogenoidea) from the gills of the blackfin sea catfish, Arius jella (Siluriformes: Ariidae), in the Bay of Bengal, India.

    PubMed

    Kritsky, Delane C; Shameem, U; Kumari, Ch Padma; Krishnaveni, I

    2012-06-01

    Thysanotohaptor n. gen. (Neocalceostomatidae) is proposed to accommodate Thysanotohaptor rex n. sp. collected from the gills of the blackfin sea catfish Arius jella Day (Siluriformes: Ariidae) from off the coast of Visakhapatnam, Bay of Bengal, Andhra Pradesh, India. Thysanotohaptor is differentiated from the other known neocalceostomatid genera by its species having multiple postgermarial testes (single testis in species of Neocalceostoma and Neocalceostomoides ), lacking a transverse bar associated with the ventral anchor pair (present in species of Neocalceostoma ), and possessing a disc-shaped haptor with a pleated marginal frill (frill absent in Neocalceostomoides spp.; Neocalceostoma spp. with delicate marginal membranes). The Neocalceostomatidae is considered valid within the Order Dactylogyridea based on its members having a haptor armed with 10 marginal and 4 ventral hooks and a germarium having a distal loop prior to uniting with the ootype; the family is not assigned to a suborder of Dactylogyridea because of uncertainty in part about the way in which the distribution of haptoral hooks evolved within the taxon. PMID:22263751

  16. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  17. White-nose syndrome fungus: a generalist pathogen of hibernating bats.

    PubMed

    Zukal, Jan; Bandouchova, Hana; Bartonicka, Tomas; Berkova, Hana; Brack, Virgil; Brichta, Jiri; Dolinay, Matej; Jaron, Kamil S; Kovacova, Veronika; Kovarik, Miroslav; Martínková, Natália; Ondracek, Karel; Rehak, Zdenek; Turner, Gregory G; Pikula, Jiri

    2014-01-01

    Host traits and phylogeny can determine infection risk by driving pathogen transmission and its ability to infect new hosts. Predicting such risks is critical when designing disease mitigation strategies, and especially as regards wildlife, where intensive management is often advocated or prevented by economic and/or practical reasons. We investigated Pseudogymnoascus [Geomyces] destructans infection, the cause of white-nose syndrome (WNS), in relation to chiropteran ecology, behaviour and phylogenetics. While this fungus has caused devastating declines in North American bat populations, there have been no apparent population changes attributable to the disease in Europe. We screened 276 bats of 15 species from hibernacula in the Czech Republic over 2012 and 2013, and provided histopathological evidence for 11 European species positive for WNS. With the exception of Myotis myotis, the other ten species are all new reports for WNS in Europe. Of these, M. emarginatus, Eptesicus nilssonii, Rhinolophus hipposideros, Barbastella barbastellus and Plecotus auritus are new to the list of P. destructans-infected bat species. While the infected species are all statistically phylogenetically related, WNS affects bats from two suborders. These are ecologically diverse and adopt a wide range of hibernating strategies. Occurrence of WNS in distantly related bat species with diverse ecology suggests that the pathogen may be a generalist and that all bats hibernating within the distribution range of P. destructans may be at risk of infection. PMID:24820101

  18. Molecular phylogeny of western Atlantic Farfantepenaeus and Litopenaeus shrimp based on mitochondrial 16S partial sequences.

    PubMed

    Maggioni, R; Rogers, A D; Maclean, N; D'Incao, F

    2001-01-01

    Partial sequences for the 16S rRNA mitochondrial gene were obtained from 10 penaeid shrimp species: Farfantepenaeus paulensis, F. brasiliensis, F. subtilis, F. duorarum, F. aztecus, Litopenaeus schmitti, L. setiferus, and Xiphopenaeus kroyeri from the western Atlantic and L. vannamei and L. stylirostris from the eastern Pacific. Sequences were also obtained from an undescribed morphotype of pink shrimp (morphotype II) usually identified as F. subtilis. The phylogeny resulting from the 16S partial sequences showed that these species form two well-supported monophyletic clades consistent with the two genera proposed in a recent systematic review of the suborder Dendrobranchiata. This contrasted with conclusions drawn from recent molecular phylogenetic work on penaeid shrimps based on partial sequences of the mitochondrial COI region that failed to support recent revisions of the Dendrobranchiata based on morphological analysis. Consistent differences observed in the sequences for morphotype II, coupled with previous allozyme data, support the conclusion that this is a previously undescribed species of Farfantepenaeus. PMID:11161743

  19. Field information links permafrost carbon to physical vulnerabilities of thawing

    USGS Publications Warehouse

    Harden, Jennifer W.; Koven, Charles; Ping, Chien-Lu; Hugelius, Gustaf; McGuire, A. David; Camill, P.; Jorgenson, Torre; Kuhry, Peter; Michaelson, Gary; O'Donnell, Jonathan A.; Schuur, Edward A.G.; Tamocai, Charles; Johnson, K.; Grosse, G.

    2012-01-01

    Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative probability functions (PDFs) for active layer depths under current and future climates. The difference in PDFs over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N, Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems.

  20. Penis morphology in a Burmese amber harvestman.

    PubMed

    Dunlop, Jason A; Selden, Paul A; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters. PMID:26820298

  1. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution

    PubMed Central

    Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.

    2015-01-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  2. Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae).

    PubMed

    Stewart, James Bruce; Beckenbach, Andrew T

    2005-02-01

    We present the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Auchenorrhyncha: Cercopoidae). This contribution represents the second mitochondrial genome from the Hemiptera and the second of the three hemipteran suborders sampled. The genome is a circular molecule of 16 324 bp with a total A+T content of 77.0% and 76.7% for coding regions only. The gene content, order, and structure are consistent with the Drosophila yakuba genome structure (Clary and Wolstenholme 1985) and the hypothesized ancestral arthropod genome arrangement (Crease 1999). Nucleotide composition and codon usage are near the means observed in other insect mitochondria sequenced to date but have a higher A+T richness compared with the other hemipteran example, the kissing bug Triatoma dimidiata (Dotson and Beard. 2001. Insect Mol. Biol. 10: 205-215). The major noncoding region (the A+T rich region or putative control region) between the small ribosomal subunit and the tRNAIle gene includes two extensive repeat regions. The first repeat region includes 19 tandem repeats of a 46-bp sequence, whereas the second contains a longer sequence (146 bp) tandemly repeated four times. PMID:15729396

  3. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    PubMed Central

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  4. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage.

    PubMed

    Koga, Ryuichi; Bennett, Gordon M; Cryan, Jason R; Moran, Nancy A

    2013-07-01

    Many insect groups depend on ancient obligate symbioses with bacteria that undergo long-term genomic degradation due to inactivation and loss of ancestral genes. Sap-feeding insects in the hemipteran suborder Auchenorrhyncha show complex symbioses with at least two obligate bacterial symbionts, inhabiting specialized host cells (bacteriocytes). We explored the symbiotic relationships of the spittlebugs (Auchenorrhyncha: Cercopoidea) using phylogenetic and microscopy methods. Results show that most spittlebugs contain the symbionts Sulcia muelleri (Bacteroidetes) and Zinderia insecticola (Betaproteobacteria) with each restricted to its own bacteriocyte type. However, the ancestral Zinderia symbiont has been replaced with a novel symbiont closely related to Sodalis glossinidius (Enterobacteriaceae) in members of the ecologically successful spittlebug tribe Philaenini. At least one spittlebug species retains Sulcia and Zinderia, but also has acquired a Sodalis-like symbiont, possibly representing a transitional stage in the evolutionary succession of symbioses. Phylogenetic analyses including symbionts of other Auchenorrhyncha lineages suggest that Zinderia, like Sulcia, descends from an ancestral symbiont present in the common ancestor of Auchenorrhyncha. This betaproteobacterial symbiont has been repeatedly replaced by other symbionts, such as the Sodalis-like symbiont of spittlebugs. Symbiont replacement may offer a route for hosts to escape dependence on an ancient, degraded and potentially inefficient symbiont. PMID:23574391

  5. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  6. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae).

    PubMed

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-01-01

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae. PMID:27180804

  7. Lower Cambrian biogeography and the prehistory of early animals

    SciTech Connect

    Signor, P.W. )

    1991-02-01

    Biogeographic distributions of animals reflect the complex interplay of biological and physical processes acting over geological time. In particular, plate tectonics and the evolution of lineages within clades play fundamental roles in determining faunal distributions. Ranges expand through vicariant events or dispersal and contract through local and regional extinctions. Vicariance promotes the evolutionary divergence of closely related lineages. Viewed as historical phenomena, biogeographic distributions can be employed to infer prior tectonic and evolutionary events. For example, the existence of modern marine faunal provinces reflects the interaction of evolution and plate tectonics. The Proterozoic history of skeletogenous organisms (and their ancestors) is a contentious subject, with many authors arguing that skeletogenous clades have no significant prehistory before their appearance in the fossil record. The existence of trilobite provinces dominated by different suborders, for example, suggests the trilobites evolved and dispersed, or were separated by plate movement, and then evolved independently for an extended period prior to their appearance in the fossil record. Similar arguments can be applied to other groups. The paleobiogeographic distribution of organisms also provides useful insights into late Proterozoic and Early Cambrian paleogeography. The provincial distribution of Early Cambrian taxa suggests that the putative Proterozoic supercontinent, if it existed, began to separate well before the Early Cambrian. Separate provinces would not have evolved had the various plates remained united. Therefore, the dawn of the Phanerozoic could not have coincided with the breakup of the Proterozoic supercontinent.

  8. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae)

    PubMed Central

    Karamipour, Naeime; Mehrabadi, Mohammad; Fathipour, Yaghoub

    2016-01-01

    Many members of suborder Heteroptra harbor heritable symbiotic bacteria. Here we characterize the gut symbiotic bacterium in Graphosoma lineatum (Hemiptera: Pentatomidae) by using molecular phylogeny, real-time PCR analysis as well as light and electron microscopy observations. The microscopy observations revealed the presence of a large number of rod-shaped bacterial cells in the crypts. A very high prevalence (98 to 100%) of the symbiont infection was found in the insect populations that strongly supports an intimate association between these two organisms. Real-time PCR analysis also showed that the Gammaproteobacteria dominated the crypts. The sequences of 16sr RNA and groEL genes of symbiont showed high levels of similarity (93 to 95%) to Pantoea agglomeranse and Erwinia herbicola Gammaproteobacteria. Phylogenetic analyses placed G. lineatum symbiont in a well-defined branch, divergent from other stink bug bacterial symbionts. Co-evolutionary analysis showed lack of host-symbiont phylogenetic congruence. Surface sterilization of eggs resulted in increased pre-adult stage in the offspring (aposymbionts) in comparison to the normal. Also, fecundity, longevity, and adult stage were significantly decreased in the aposymbionts. Therefore, it seems that the symbiont might play a vital function in the host biology, in which host optimal development depends on the symbiont. PMID:27609055

  9. Brucella ceti and Brucellosis in Cetaceans

    PubMed Central

    Guzmán-Verri, Caterina; González-Barrientos, Rocío; Hernández-Mora, Gabriela; Morales, Juan-Alberto; Baquero-Calvo, Elías; Chaves-Olarte, Esteban; Moreno, Edgardo

    2012-01-01

    Since the first case of brucellosis detected in a dolphin aborted fetus, an increasing number of Brucella ceti isolates has been reported in members of the two suborders of cetaceans: Mysticeti and Odontoceti. Serological surveys have shown that cetacean brucellosis may be distributed worldwide in the oceans. Although all B. ceti isolates have been included within the same species, three different groups have been recognized according to their preferred host, bacteriological properties, and distinct genetic traits: B. ceti dolphin type, B. ceti porpoise type, and B. ceti human type. It seems that B. ceti porpoise type is more closely related to B. ceti human isolates and B. pinnipedialis group, while B. ceti dolphin type seems ancestral to them. Based on comparative phylogenetic analysis, it is feasible that the B. ceti ancestor radiated in a terrestrial artiodactyl host close to the Raoellidae family about 58 million years ago. The more likely mode of transmission of B. ceti seems to be through sexual intercourse, maternal feeding, aborted fetuses, placental tissues, vertical transmission from mother to the fetus or through fish or helminth reservoirs. The B. ceti dolphin and porpoise types seem to display variable virulence in land animal models and low infectivity for humans. However, brucellosis in some dolphins and porpoises has been demonstrated to be a severe chronic disease, displaying significant clinical and pathological signs related to abortions, male infertility, neurobrucellosis, cardiopathies, bone and skin lesions, strandings, and death. PMID:22919595

  10. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  11. Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam.

    PubMed

    Soddell, Jacques A; Stainsby, Fiona M; Eales, Kathryn L; Kroppenstedt, Reiner M; Seviour, Robert J; Goodfellow, Michael

    2006-04-01

    The taxonomic position of two mycolic-acid-producing actinomycetes, isolates J81T and J82, which were recovered from activated sludge foam, was clarified. Comparative 16S rRNA gene sequence studies indicated that the organisms formed a distinct lineage within the Corynebacterineae 16S rRNA gene tree. The taxonomic integrity of this group was underpinned by a wealth of phenotypic data, notably characteristic rudimentary right-angled branching. In addition, isolate J81T contained the following: meso-diaminopimelic acid, arabinose and galactose; N-glycolated muramic acid residues; a dihydrogenated menaquinone with eight isoprene units as the predominant isoprenologue; a fatty acid profile rich in oleic and palmitoleic acids and with relatively small proportions of myristic, stearic and tuberculostearic acids; mycolic acids with 44-52 carbons; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides as major polar lipids. Strain J81T was found to have a chemotaxonomic profile that serves to distinguish it from representatives of all of the other taxa classified as belonging to the suborder Corynebacterineae. In the light of these data, it is proposed that the two isolates be classified in a novel monospecific genus. The name proposed for this taxon is Millisia brevis gen. nov., sp. nov.; strain J81T (=DSM 44463T = NRRL B-24424T) is the type strain of Millisia brevis. PMID:16585686

  12. Effects of character weighting and species sampling on phylogeny reconstruction: a case study based on DNA sequence data in cetaceans.

    PubMed

    Milinkovitch, M C; LeDuc, R G; Adachi, J; Farnir, F; Georges, M; Hasegawa, M

    1996-12-01

    Different phylogenetic analyses of the same genetic data set can yield conflicting results, depending on the choice of parameter settings and included taxa. This is particularly true in studies involving data sets where levels of homoplasy are high and likely to obscure the phylogenetic signal. Filtering of this phylogenetic noise can be attempted, with varying degrees of success, by using different weighting schemes and ingroup/outgroup choices, but it can be difficult to decide objectively which approach is best. Using a cytochrome b data set from cetaceans and artiodactyls, we examined the effects of a suite of parameter settings on the outcome of phylogenetic analyses. We tested 2968 combinations among the seven parameters that most often vary among phylogenetic studies. It is our contention that this sensitivity analysis identifies portions of the multidimensional parameter space where phylogenetic signal is most reliably recovered, and simple rules are given to guide the choice of settings. Portions of this data set have been used in previous studies with conflicting results, namely the monophyly vs. paraphyly of one of the two major recognized cetacean suborders, the toothed whales. This analysis strongly supports the sister relationship between sperm whales and baleen whales. PMID:8978067

  13. Localization of Nitric Oxide Synthase-containing Neurons in the Bat Visual Cortex and Co-localization with Calcium-binding Proteins

    PubMed Central

    Gu, Ya-Nan; Kim, Hang-Gu; Jeon, Chang-Jin

    2015-01-01

    Microchiroptera (microbats) is a suborder of bats thought to have degenerated vision. However, many recent studies have shown that they have visual ability. In this study, we labeled neuronal nitric oxide synthase (nNOS)—the synthesizing enzyme of the gaseous non-synaptic neurotransmitter nitric oxide—and co-localized it with calbindin D28K (CB), calretinin (CR), and parvalbumin (PV) in the visual cortex of the greater horseshoe bat (Rhinolophus ferrumequinum, a species of microbats). nNOS-immunoreactive (IR) neurons were found in all layers of the visual cortex. Intensely labeled neurons were most common in layer IV, and weakly labeled neurons were most common in layer VI. Majority of the nNOS-IR neurons were round- or oval-type neurons; no pyramidal-type neurons were found. None of these neurons co-localized with CB, CR, or PV. However, the synthesis of nitric oxide in the bat visual cortex by nNOS does not depend on CB, CR, or PV. PMID:26379314

  14. [Harmony in oncogenesis based on the evidence of the cytoarjic function: microoncozoa and results 1944-2004].

    PubMed

    de Vicente Jordana, Román

    2004-01-01

    The importance of the external forms (images) to get the real ideas of any thing, as being the basis of human knowledge is discussed. If no image, the imagination gets up and hundred of creative ideas (good and wrong) arose. Such happens in cancer research: too many theories and much darkness. Then, I ask: why sponges, sharks and tortoises, e.g., have not change, nor mutate and neither transform in millions of years; meanwhile, cells of human breasts, lungs and prostate, e.g., can brake the rule between thirty to fifty years? The characters of each tumour are well described, as a constant, once it is identified by analytical citological techniques. So, this means that tumours have proper genetic lines, as every natural spices has, according to biological laws for development and growth of living organisms, both plants and animals. Besides, the author gives experimental evidence on the closed similarities he found between certain nematodes isolated from bacterial cultures associated to plant tumours and those developed in cultures of blood and other materials from Hodgkin lymphoma. The nematodes appeared to be related to Ancylostoma duodenale (spices type attached to Suborder: Strongilina; family: Strongiloidea). The cytoarjic oikos is a concept of ecological niche involved with and the basis of the cytoarjic function. PMID:15997587

  15. Sperm Cells of a Primitive Strepsipteran.

    PubMed

    Nardi, James B; Delgado, Juan A; Collantes, Francisco; Miller, Lou Ann; Bee, Charles M; Kathirithamby, Jeyaraney

    2013-01-01

    The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera-the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects' sperm cells along with specific ultrastructural features of their organelles. PMID:26462430

  16. Host-parasitoid associations in Strepsiptera.

    PubMed

    Kathirithamby, Jeyaraney

    2009-01-01

    Strepsiptera are obligate endoparasitoids that exhibit extreme sexual dimorphism and parasitize seven orders and 33 families of Insecta. The adult males and the first instar larvae in the Mengenillidia and Stylopidia are free-living, whereas the adult females in Mengenillidia are free-living but in the suborder Stylopidia they remain endoparasitic in the host. Parasitism occurs at the host larval/nymphal stage and continues in a mobile host until that host's adult stage. The life of the host is lengthened to allow the male strepsipteran to complete maturation and the viviparous female to release the first instar larvae when the next generation of the host's larvae/nymphs has been produced. The ability of strepsipterans to parasitize a wide range of hosts, in spite of being endoparasitoids, is perhaps due to their unique immune avoidance system. Aspects of virulence, heterotrophic heteronomy in the family Myrmecolacidae, cryptic species, genomics, immune response, and behavior of stylopized hosts are discussed in this chapter. PMID:18817508

  17. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences

    PubMed Central

    Li, Hu; Shao, Renfu; Song, Nan; Song, Fan; Jiang, Pei; Li, Zhihong; Cai, Wanzhi

    2015-01-01

    Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera. PMID:25704094

  18. Sperm Cells of a Primitive Strepsipteran

    PubMed Central

    Nardi, James B.; Delgado, Juan A.; Collantes, Francisco; Miller, Lou Ann; Bee, Charles M.; Kathirithamby, Jeyaraney

    2013-01-01

    The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera—the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects’ sperm cells along with specific ultrastructural features of their organelles. PMID:26462430

  19. Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence

    PubMed Central

    Legendre, Frédéric; Nel, André; Svenson, Gavin J.; Robillard, Tony; Pellens, Roseli; Grandcolas, Philippe

    2015-01-01

    Understanding the origin and diversification of organisms requires a good phylogenetic estimate of their age and diversification rates. This estimate can be difficult to obtain when samples are limited and fossil records are disputed, as in Dictyoptera. To choose among competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis (~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils attributed to lineages with clear synapomorphies. We find the following topology: (mantises, (other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyoptera—and stem-mantises—would date back to the Late Carboniferous (~ 300 Mya), a result compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however, would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old origin and more recent diversification) suggests a scenario of replacement in carnivory among polyneopterous insects. The most recent common ancestor of (cockroaches + termites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic boundary, which refutes a Triassic origin. We suggest directions in extant and extinct species sampling to sharpen this chronological framework and dictyopteran evolutionary studies. PMID:26200914

  20. Effects of host sociality on ectoparasite population biology.

    PubMed

    Whiteman, Noah Kerness; Parker, Patricia G

    2004-10-01

    Theory predicts a positive relationship between parasite infection intensity and host density. However, this generalization is complicated in natural systems by differences in life history among parasite taxa, e.g., transmissibility. Accordingly, predictions relating host density to parasite load should be specific to each parasite taxon. To illustrate this, we studied parasites that differed greatly in life history in the context of the Galapagos hawk's (Buteo galapagoensis) variably cooperative mating system. Two louse (Phthiraptera) species were collected: Colpocephalum turbinatum (Amblycera), with 53 host species, and Degeeriella regalis (Ischnocera), with 10 host species, although B. galapagoensis was the only known Galapagos host. Sixty territorial adult male hawks from 26 groups of 1-6 males were quantitatively sampled for lice. Average abundance and intensity of C. turbinatum but not D. regalis were significantly larger in large groups of hawks than small groups. Males from the same polyandrous group harbored significantly correlated abundances of C. turbinatum but not D. regalis. Prevalence, average abundance, and intensity of C. turbinatum were significantly higher than D. regalis. These are the first results to demonstrate significant differences in a suite of population responses between these louse suborders in the context of host sociality. PMID:15562590

  1. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    PubMed

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  2. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    PubMed

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  3. Bat Airway Epithelial Cells: A Novel Tool for the Study of Zoonotic Viruses

    PubMed Central

    Eckerle, Isabella; Ehlen, Lukas; Kallies, René; Wollny, Robert; Corman, Victor M.; Cottontail, Veronika M.; Tschapka, Marco; Oppong, Samuel; Drosten, Christian; Müller, Marcel A.

    2014-01-01

    Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells. PMID:24454736

  4. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses

    PubMed Central

    Wilson, Alex C. C.; Duncan, Rebecca P.

    2015-01-01

    The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called bacteriocytes, are derived. In particular, we propose that such differences in bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research. PMID:26039986

  5. Effects of Character Weighting and Species Sampling on Phylogeny Reconstruction: A Case Study Based on DNA Sequence Data in Cetaceans

    PubMed Central

    Milinkovitch, M. C.; LeDuc, R. G.; Adachi, J.; Farnir, F.; Georges, M.; Hasegawa, M.

    1996-01-01

    Different phylogenetic analyses of the same genetic data set can yield conflicting results, depending on the choic of parameter settings and included taxa. This is particularly true in studies involving data sets where levels of homoplasy are high and likely to obscure the phylogenetic signal. Filtering of this phylogenetic noise can be attempted, with varying degrees of success, by using different weighting schemes and ingroup/outgroup choices, but it can be difficult to decide objectively which approach is best. Using a cytochrome b data set from cetaceans and artiodactyls, we examined the effects of a suite of parameter settings on the outcome of phylogenetic analyses. We tested 2968 combinations among the seven parameters that most often vary among phylogenetic studies. It is our contention that this sensitivity analysis identifies portions of the multidimensional parameter space where phylogenetic signal is most reliably recovered, and simple rules are given to guide the choice of settings. Portions of this data set have been used in previous studies with conflicting results, namely the monophyly vs. paraphyly of one of the two major recognized cetacean suborders, the toothed whales. This analysis strongly supports the sister relationship between sperm whales and baleen whales. PMID:8978067

  6. The fossil record and macroevolutionary history of the beetles.

    PubMed

    Smith, Dena M; Marcot, Jonathan D

    2015-04-22

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous-Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  7. Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods.

    PubMed

    Wright, Jonathan C; Peña-Peralta, Mariasol

    2005-01-01

    Terrestrial isopods (suborder Oniscidea) excrete most nitrogen diurnally as volatile ammonia, and ammonia-loaded animals accumulate nonessential amino acids, which may constitute the major nocturnal nitrogen pool. This study explored the relationship between ammonia excretion, glutamine storage/mobilization, and water balance, in two sympatric species Ligidium lapetum (section Diplocheta), a hygric species; and Armadillidium vulgare (Section Crinocheta), a xeric species capable of water-vapor absorption (WVA). Ammonia excretion (12-h), tissue glutamine levels, and water contents were measured following field collection of animals at dusk and dawn. In both species, diurnal ammonia excretion exceeded nocturnal excretion four- to fivefold while glutamine levels increased four- to sevenfold during the night. Most glutamine was accumulated in the somatic tissues ("body wall"). While data support the role of glutamine in nocturnal nitrogen storage, potential nitrogen mobilization from glutamine breakdown (162 micromol g(-1) in A. vulgare) exceeds measured ammonia excretion (2.5 micromol g(-1)) over 60-fold. This may serve to generate the high hemolymph ammonia concentrations (and high P(NH3)) seen during volatilization. The energetic cost of ammonia volatilization is discussed in the light of these findings. Mean water contents were similar at dusk and dawn in both species, indicating that diel cycles of water depletion and replenishment were not occurring. PMID:15578188

  8. Respiratory physiology of the Oniscidea: aerobic capacity and the significance of pleopodal lungs.

    PubMed

    Wright, Jonathan C; Ting, Kevin

    2006-10-01

    The radiation of the terrestrial isopods (sub-order Oniscidea) has been accompanied by evolution of pleopodal lungs in the sections Tylida and Crinocheta. To understand the significance of such lungs for aerobic respiration, comparative studies were conducted using 6 species. Ligia occidentalis, lacking lungs, behaved as a metabolic conformer in reduced PO(2), and showed decreased V(.-)O(2) in low humidity and following dehydration. In species possessing lungs, metabolism was insensitive to dehydration. However, lung development did not show a clear relationship to metabolic regulation: Porcellio dilatatus was a metabolic conformer while Tylos punctatus and Armadillidium vulgare were efficient regulators. The metabolic conformers did not accumulate lactate during moderate hypoxia (10% O(2)), indicating that reduced V(.-)O(2) is not compensated with anaerobic glycolysis. In contrast, Alloniscus perconvexus, a littoral species with limited metabolic regulation, showed the largest lactate accumulation during hypoxia and also possessed the highest tissue LDH activity. It is hypothesized that these are adaptations to periodic hypoxia in sand burrows and the high metabolic cost of burrowing. Differences in lactate accumulation during immersion were curious, with the largest increases occurring in L. occidentalis and A. perconvexus that tolerate prolonged immersion in seawater. Possible functions of this lactate accumulation may include modulation of hemocyanin oxygen affinity. PMID:16875858

  9. In vivo ion fluxes across the eggs of Armadillidium vulgare (Oniscidea: Isopoda): the role of the dorsal organ.

    PubMed

    Wright, Jonathan C; O'Donnell, Michael J

    2010-01-01

    The thin-walled, lecithotrophic eggs of land isopods (suborder Oniscidea) are brooded in a fluid-filled maternal marsupium until a few days following the second embryonic molt. Eggs of Armadillidium vulgare possess a well-developed dorsal organ underlying a broad silver-staining saddle on the vitelline membrane. Based on its chloride permeability and known transport functions in planktotrophic crustaceans, we hypothesized that the dorsal organ functions in passive or active ion movements. To study this, we employed the automated scanning electrode technique with self-referencing ion-selective microelectrodes to measure ion fluxes across the dorsal organ and adjacent egg poles. Stage 1 (chorionated) eggs revealed only small ion fluxes, indicating low permeability. Early stage 2 eggs--between the first embryonic molt and blastokinesis--showed evidence for active uptake of Ca(2+) and Cl(-) and possibly Na(+) against low bathing concentrations, and uptake fluxes were predominantly localized over the dorsal organ. Late stage 2 eggs revealed no capacity for ion uptake, consistent with the atrophy of the dorsal organ at blastokinesis, but high ion permeability. In all stages, the silver-staining saddle showed a sustained outward proton flux indicating that it is the primary site for metabolic acid/CO(2) excretion. The emerging picture is that the embryo dorsal organ in A. vulgare serves important functions in ion regulation, calcium provisioning, and acid excretion. PMID:20465420

  10. Surviving mass extinction by bridging the benthic/planktic divide

    PubMed Central

    Darling, Kate F.; Thomas, Ellen; Kasemann, Simone A.; Seears, Heidi A.; Smart, Christopher W.; Wade, Christopher M.

    2009-01-01

    Evolution of planktic organisms from benthic ancestors is commonly thought to represent unidirectional expansion into new ecological domains, possibly only once per clade. For foraminifera, this evolutionary expansion occurred in the Early–Middle Jurassic, and all living and extinct planktic foraminifera have been placed within 1 clade, the Suborder Globigerinina. The subsequent radiation of planktic foraminifera in the Jurassic and Cretaceous resulted in highly diverse assemblages, which suffered mass extinction at the end of the Cretaceous, leaving an impoverished assemblage dominated by microperforate triserial and biserial forms. The few survivor species radiated to form diverse assemblages once again in the Cenozoic. There have, however, long been doubts regarding the monophyletic origin of planktic foraminifera. We present surprising but conclusive genetic evidence that the Recent biserial planktic Streptochilus globigerus belongs to the same biological species as the benthic Bolivina variabilis, and geochemical evidence that this ecologically flexible species actively grows within the open-ocean surface waters, thus occupying both planktic and benthic domains. Such a lifestyle (tychopelagic) had not been recognized as adapted by foraminifera. Tychopelagic are endowed with great ecological advantage, enabling rapid recolonization of the extinction-susceptible pelagic domain from the benthos. We argue that the existence of such forms must be considered in resolving foraminiferal phylogeny. PMID:19574452

  11. Species composition, richness, and distribution of marine bivalve molluscs in Bahía de Mazatlán, México

    PubMed Central

    Esqueda-González, María del Carmen; Ríos-Jara, Eduardo; Galván-Villa, Cristian Moises; Rodríguez-Zaragoza, Fabian Alejandro

    2014-01-01

    Abstract We describe the composition and distribution of bivalve molluscs from the sandy and rocky intertidal and the shallow subtidal environments of Bahía de Mazatlán, México. The bivalve fauna of the bay is represented by 89 living species in 28 families, including 37 new records and four range extensions: Lithophaga hastasia, Adula soleniformis, Mactrellona subalata, and Strigilla ervilia. The number of species increases from the upper (44) and lower intertidal (53) to the shallow subtidal (76), but only 11 (17%) have a wide distribution in the bay (i.e., found in all sampling sites and environments). The bivalve assemblages are composed of four main life forms: 27 epifaunal species, 26 infaunal, 16 semi-infaunal, and 20 endolithic. A taxonomic distinctness analysis identified the sampling sites and environments that contribute the most to the taxonomic diversity (species to suborder categories) of the bay. The present work increased significantly (31%) to 132 species previous inventories of bivalves of Bahía de Mazatlán. These species represent 34% of the bivalve diversity of the southern Golfo de California and approximately 15% of the Eastern Tropical Pacific region. PMID:24843252

  12. Parasites reveal movement of bats between the New and Old Worlds.

    PubMed

    Hamilton, Patrick B; Cruickshank, Catriona; Stevens, Jamie R; Teixeira, Marta M G; Mathews, Fiona

    2012-05-01

    The global distribution of bat taxa indicates that the Atlantic and Pacific Oceans are effective barriers to movement between the Old and New Worlds. For instance, one of the major suborders, Yinpterochiroptera, has an exclusively Old World distribution, and within the other, Yangochiroptera, no species and only five genera are common to both. However, as bats are sometimes blown out to sea, and have colonised isolated islands, occasional natural movement between the New and Old Worlds does appear to be possible. Here we identify new genotypes of a blood parasite, Trypanosoma dionisii, in Old World bats that are closely related to South American strains. Using highly conservative calibration points, divergence of Old and New World strains is estimated to have occurred 3.2-5.0 million years ago (MYA), depending on the method used (upper 95% CL for maximum time 11.4MYA). The true date of divergence is likely to be considerably more recent. These results demonstrate that taxon-specific parasites can indicate historical movements of their hosts, even where their hosts may have left no lasting phylogenetic footprint. PMID:22306822

  13. Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    PubMed Central

    Fukami, Hironobu; Chen, Chaolun Allen; Budd, Ann F.; Collins, Allen; Wallace, Carden; Chuang, Yao-Yang; Chen, Chienhsun; Dai, Chang-Feng; Iwao, Kenji; Sheppard, Charles; Knowlton, Nancy

    2008-01-01

    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ß-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent “robust” and “complex” clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils. PMID:18795098

  14. Intestinal volvulus in cetaceans.

    PubMed

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition. PMID:23150643

  15. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution.

    PubMed

    Duka, Tetyana; Anderson, Sarah M; Collins, Zachary; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  16. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  17. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  18. Estimating Tempo and Mode of Y Chromosome Turnover: Explaining Y Chromosome Loss With the Fragile Y Hypothesis

    PubMed Central

    Blackmon, Heath; Demuth, Jeffery P.

    2014-01-01

    Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species’ karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the “fragile Y” hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction. PMID:24939995

  19. Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis.

    PubMed

    Blackmon, Heath; Demuth, Jeffery P

    2014-06-01

    Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species' karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the "fragile Y" hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction. PMID:24939995

  20. Checklist of the Diptera (Insecta) of Finland: an introduction and a summary of results

    PubMed Central

    Kahanpää, Jere

    2014-01-01

    Abstract Nearly thirty-five years have passed since Hackman published his “Check list of the Finnish Diptera” (1980). The number of true flies (Diptera) known from Finland has increased by more than two thousand species since then. At the same time, hundreds of erroneous records have been recognized and purged from the checklist. ZooKeys issue 441 provides a new checklist of the Diptera species of the Republic of Finland. This introductory paper presents the rationale behind the project, provides technical documentation on the checklist format and sources used, and summarizes the results. The remaining papers in this issue cover one or more Diptera families in detail. Two electronic appendices are provided: supporting data (additional references to first published records and the previous checklist) and a complete list of Finnish Diptera taxa in Darwin Core compliant format for easy computer access and processing. The new checklist records 6920 fly species from Finland, 2932 belonging to the nematoceran or lower flies and 3989 to the suborder Brachycera. The changes since 1980 are most prominent in the Lower Diptera. For example, more than 400 non-biting midges (Chironomidae) have been added since 1980, and the number of moth flies (Psychodidae) known from Finland has more than tripled. Among the larger families, large increases in known Finnish species are also seen in Cecidomyiidae (161% increase), Pipunculidae (98%), and Chironomidae (90%). PMID:25337004

  1. Female rule in lemurs is ancestral and hormonally mediated.

    PubMed

    Petty, Joseph M A; Drea, Christine M

    2015-01-01

    Female social dominance (FSD) over males is unusual in mammals, yet characterizes most Malagasy lemurs, which represent almost 30% of all primates. Despite its prevalence in this suborder, both the evolutionary trajectory and proximate mechanism of FSD remain unclear. Potentially associated with FSD is a suite of behavioural, physiological and morphological traits in females that implicates (as a putative mechanism) 'masculinization' via androgen exposure; however, relative to conspecific males, female lemurs curiously show little evidence of raised androgen concentrations. By observing mixed-sex pairs of related Eulemur species, we identified two key study groups--one comprised of species expressing FSD and increased female scent marking, the other comprised of species (from a recently evolved clade) showing equal status between the sexes and the more traditional pattern of sexually dimorphic behaviour. Comparing females from these two groups, we show that FSD is associated with more masculine androgen profiles. Based on the widespread prevalence of male-like features in female lemurs and a current phylogeny, we suggest that relaxation of hormonally mediated FSD emerged only recently and that female masculinization may be the ancestral lemur condition, an idea that could revolutionize our understanding of the ancient socioecology and evolution of primate social systems. PMID:25950904

  2. Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): How valuable is barcoding with COI?

    NASA Astrophysics Data System (ADS)

    Lautredou, A.-C.; Bonillo, C.; Denys, G.; Cruaud, C.; Ozouf-Costaz, C.; Lecointre, G.; Dettai, A.

    2010-08-01

    The Trematominae are a particularly interesting subfamily within the antarctic suborder Notothenioidei (Teleostei). The 14 closely related species occupy a large range of ecological of niches, extremely useful for evolutionary and biogeography studies in the Antarctic Ocean. But some Trematomus species can be difficult to identify by using morphological criteria, specially young stages and damaged specimens. Molecular identification would therefore be highly useful, however the suitability of the cytochrome oxidase I gene in a barcoding approach needs to be assessed. We evaluated species delineation within the genus Trematomus comparing morphological identification, nuclear markers (the rhodopsin retrogene and a new nuclear marker pkd1: polycystic kidney disease 1) and COI. We show that Trematomus vicarius is not distinguishable from Trematomus bernacchii with the molecular markers used, and neither is Trematomus loennbergii from Trematomus lepidorhinus. We suggest that until this is investigated further, studies including these species list them as T. loennbergii/ T. lepidorhinus group, and keep voucher samples and specimens. Generally, COI gives a congruent result with the rhodopsin retrogene, and except for the previously cited species pairs, COI barcoding is efficient for identification in this group. Moreover pkd1 might not be suitable for a phylogenetic study at this scale for this group.

  3. Mites (Arachnida: Acari) collected on rubber trees Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg. in Santana, Amapá state, Brazil.

    PubMed

    Deus, E G; Souza, M S M; Mineiro, J L C; Adaime, R; Santos, R S

    2012-11-01

    The purpose of this study was to elaborate a preliminary list of the mite species associated with rubber trees in the municipality of Santana, in the state of Amapá, Brazil. Two collections of rubber tree leaves were conducted on May 2nd and June 5th , 2010. Twenty-five plants were sampled at random. Three leaves were collected per plant, from the lower third of the crown. The samples were placed in paper bags, packed in an isothermal box chilled gel-based pulp plant (Gelo-X(®)), and transported to the Entomology Laboratory at Embrapa Amapá, in Macapá. The leaflets were examined under a stereomicroscope, and the mites found on the adaxial and abaxial surfaces of the leaves were collected with a stilet, mounted on microscope slides in Hoyer's medium, and later identified. We collected a total of 1,722 mites of 10 families: Acaridae, Cunaxidae, Eriophyidae, Iolinidae, Phytoseiidae, Stigmaeidae, Tarsonemidae, Tenuipalpidae, Tydeidae, and Winterschmidtiidae, in addition to unidentified species of the suborders Oribatida and Astigmatina. The family Phytoseiidae represented only 2.90% of specimens collected, but showed the highest species richness (5 species). The only representative of Tenuipalpidae was Tenuipalpus heveae Baker, 1945, but 81.13% of the mites collected in this study belonged to this species. PMID:23295522

  4. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae).

    PubMed

    Karamipour, Naeime; Mehrabadi, Mohammad; Fathipour, Yaghoub

    2016-01-01

    Many members of suborder Heteroptra harbor heritable symbiotic bacteria. Here we characterize the gut symbiotic bacterium in Graphosoma lineatum (Hemiptera: Pentatomidae) by using molecular phylogeny, real-time PCR analysis as well as light and electron microscopy observations. The microscopy observations revealed the presence of a large number of rod-shaped bacterial cells in the crypts. A very high prevalence (98 to 100%) of the symbiont infection was found in the insect populations that strongly supports an intimate association between these two organisms. Real-time PCR analysis also showed that the Gammaproteobacteria dominated the crypts. The sequences of 16sr RNA and groEL genes of symbiont showed high levels of similarity (93 to 95%) to Pantoea agglomeranse and Erwinia herbicola Gammaproteobacteria. Phylogenetic analyses placed G. lineatum symbiont in a well-defined branch, divergent from other stink bug bacterial symbionts. Co-evolutionary analysis showed lack of host-symbiont phylogenetic congruence. Surface sterilization of eggs resulted in increased pre-adult stage in the offspring (aposymbionts) in comparison to the normal. Also, fecundity, longevity, and adult stage were significantly decreased in the aposymbionts. Therefore, it seems that the symbiont might play a vital function in the host biology, in which host optimal development depends on the symbiont. PMID:27609055

  5. Longer-term effects of selective thinning on microarthropod communities in a late-successional coniferous forest

    USGS Publications Warehouse

    Peck, R.W.; Niwa, C.G.

    2005-01-01

    Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent, prostigmatid mites, were reduced in thinned stands compared with unthinned stands. No differences were found for Collembola in the forest floor or for any mite suborder within the soil. Family level examination of mesostigmatid and prostigmatid mites revealed significant differences between stand types for both horizons. At the species level, thinning influenced numerous oribatid mites and Collembola. For oribatid mites, significant or marginally significant differences were found for seven of 15 common species in the forest floor and five of 16 common species in soil. Collembola were affected less, with differences found for one of 11 common species in the forest floor and three of 13 common species in soil. Multivariate analysis of variance and ordination indicated that forest thinning had little influence on the composition of oribatid mite and collembolan communities within either the forest floor or soil. Differences in microclimate or in the accumulation of organic matter on the forest floor were likely most responsible for the observed patterns of abundance. Considering the role that microarthropods play in nutrient cycling, determining the functional response of a wide range of taxa to thinning may be important to effective ecosystem management.

  6. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses.

    PubMed

    Wilson, Alex C C; Duncan, Rebecca P

    2015-08-18

    The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called bacteriocytes, are derived. In particular, we propose that such differences in bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research. PMID:26039986

  7. Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    PubMed Central

    Bromley, Keith M.; Hacia, Joseph G.; Bromage, Timothy G.; Snead, Malcolm L.; Moradian-Oldak, Janet; Paine, Michael L.

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  8. Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    PubMed

    Yoder, Anne D; Chan, Lauren M; dos Reis, Mario; Larsen, Peter A; Campbell, C Ryan; Rasoloarison, Rodin; Barrett, Meredith; Roos, Christian; Kappeler, Peter; Bielawski, Joseph; Yang, Ziheng

    2014-01-01

    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available. PMID:24398377

  9. Female rule in lemurs is ancestral and hormonally mediated

    PubMed Central

    Petty, Joseph M. A.; Drea, Christine M.

    2015-01-01

    Female social dominance (FSD) over males is unusual in mammals, yet characterizes most Malagasy lemurs, which represent almost 30% of all primates. Despite its prevalence in this suborder, both the evolutionary trajectory and proximate mechanism of FSD remain unclear. Potentially associated with FSD is a suite of behavioural, physiological and morphological traits in females that implicates (as a putative mechanism) ‘masculinization’ via androgen exposure; however, relative to conspecific males, female lemurs curiously show little evidence of raised androgen concentrations. By observing mixed‐sex pairs of related Eulemur species, we identified two key study groups ‐‐ one comprised of species expressing FSD and increased female scent marking, the other comprised of species (from a recently evolved clade) showing equal status between the sexes and the more traditional pattern of sexually dimorphic behaviour. Comparing females from these two groups, we show that FSD is associated with more masculine androgen profiles. Based on the widespread prevalence of male‐like features in female lemurs and a current phylogeny, we suggest that relaxation of hormonally mediated FSD emerged only recently and that female masculinization may be the ancestral lemur condition, an idea that could revolutionize our understanding of the ancient socioecology and evolution of primate social systems. PMID:25950904

  10. Molecular Evolutionary Characterization of a V1R Subfamily Unique to Strepsirrhine Primates

    PubMed Central

    Yoder, Anne D.; Chan, Lauren M.; dos Reis, Mario; Larsen, Peter A.; Campbell, C. Ryan; Rasoloarison, Rodin; Barrett, Meredith; Roos, Christian; Kappeler, Peter; Bielawski, Joseph; Yang, Ziheng

    2014-01-01

    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available. PMID:24398377

  11. Chromosomal complements of some Atlantic Blennioidei and Gobioidei species (Perciformes)

    PubMed Central

    Galvão, Tatiana Barbosa; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2011-01-01

    Abstract A remarkable degree of chromosomal conservatism (2n=48, FN=48) has been identified in several families of Perciformes. However, some families exhibit greater karyotypic diversity, although there is still scant information on the Atlantic species. In addition to a review of karyotypic data available for representatives of the suborders Blennioidei and Gobioidei, we have performed chromosomal analyses on Atlantic species of the families Blenniidae, Ophioblennius trinitatis Miranda-Ribeiro, 1919 (2n=46; FN=64) and Scartella cristata (Linnaeus, 1758)(2n=48; FN=50), Labrisomidae, Labrisomus nuchipinnis (Quoy & Gaimard, 1824)(2n=48; FN=50) and Gobiidae, Bathygobius soporator (Valenciennes, 1837)(2n=48; FN=56). Besides variations in chromosome number and karyotype formulas, Ag-NOR sites, albeit unique, were located in different positions and/or chromosome pairs for the species analyzed. On the other hand, the heterochromatic pattern was more conservative, distributed predominantly in the centromeric/pericentromeric regions of the four species. Data already available for Gobiidae, Blenniidae and Labrisomidae show greater intra- and interspecific karyotypic diversification when compared to other groups of Perciformes, where higher uniformity is found for various chromosome characteristics. Evolutionary dynamism displayed by these two families is likely associated with population fractionation resulting from unique biological characteristics, such as lower mobility and/or specific environmental requirements. PMID:24260634

  12. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus

    PubMed Central

    Smith, Richard H.; Hallwirth, Claus V.; Westerman, Michael; Hetherington, Nicola A.; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B.; Koonin, Eugene V.; Agbandje-McKenna, Mavis; Kotin, Robert M.; Alexander, Ian E.

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV “fossils” provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  13. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae)

    PubMed Central

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-01-01

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae. PMID:27180804

  14. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms.

    PubMed

    Smith, William Leo; Wheeler, Ward C

    2006-01-01

    Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms. PMID:16740627

  15. Evolutionary Origin of the Scombridae (Tunas and Mackerels): Members of a Paleogene Adaptive Radiation with 14 Other Pelagic Fish Families

    PubMed Central

    Miya, Masaki; Friedman, Matt; Satoh, Takashi P.; Takeshima, Hirohiko; Sado, Tetsuya; Iwasaki, Wataru; Yamanoue, Yusuke; Nakatani, Masanori; Mabuchi, Kohji; Inoue, Jun G.; Poulsen, Jan Yde; Fukunaga, Tsukasa; Sato, Yukuto; Nishida, Mutsumi

    2013-01-01

    Uncertainties surrounding the evolutionary origin of the epipelagic fish family Scombridae (tunas and mackerels) are symptomatic of the difficulties in resolving suprafamilial relationships within Percomorpha, a hyperdiverse teleost radiation that contains approximately 17,000 species placed in 13 ill-defined orders and 269 families. Here we find that scombrids share a common ancestry with 14 families based on (i) bioinformatic analyses using partial mitochondrial and nuclear gene sequences from all percomorphs deposited in GenBank (10,733 sequences) and (ii) subsequent mitogenomic analysis based on 57 species from those targeted 15 families and 67 outgroup taxa. Morphological heterogeneity among these 15 families is so extraordinary that they have been placed in six different perciform suborders. However, members of the 15 families are either coastal or oceanic pelagic in their ecology with diverse modes of life, suggesting that they represent a previously undetected adaptive radiation in the pelagic realm. Time-calibrated phylogenies imply that scombrids originated from a deep-ocean ancestor and began to radiate after the end-Cretaceous when large predatory epipelagic fishes were selective victims of the Cretaceous-Paleogene mass extinction. We name this clade of open-ocean fishes containing Scombridae “Pelagia” in reference to the common habitat preference that links the 15 families. PMID:24023883

  16. Analog number representations in mongoose lemurs (Eulemur mongoz): evidence from a search task.

    PubMed

    Lewis, Kerrie P; Jaffe, Sarah; Brannon, Elizabeth M

    2005-10-01

    A wealth of data demonstrating that monkeys and apes represent number have been interpreted as suggesting that sensitivity to number emerged early in primate evolution, if not before. Here we examine the numerical capacities of the mongoose lemur (Eulemur mongoz), a member of the prosimian suborder of primates that split from the common ancestor of monkeys, apes and humans approximately 47-54 million years ago. Subjects observed as an experimenter sequentially placed grapes into an opaque bucket. On half of the trials the experimenter placed a subset of the grapes into a false bottom such that they were inaccessible to the lemur. The critical question was whether lemurs would spend more time searching the bucket when food should have remained in the bucket, compared to when they had retrieved all of the food. We found that the amount of time lemurs spent searching was indicative of whether grapes should have remained in the bucket, and furthermore that lemur search time reliably differentiated numerosities that differed by a 1:2 ratio, but not those that differed by a 2:3 or 3:4 ratio. Finally, two control conditions determined that lemurs represented the number of food items, and neither the odor of the grapes, nor the amount of grape (e.g., area) in the bucket. These results suggest that mongoose lemurs have numerical representations that are modulated by Weber's Law. PMID:15660208

  17. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins.

    PubMed

    McCulloch, Graham A; Wallis, Graham P; Waters, Jonathan M

    2016-03-01

    For more than two centuries biogeographers have attempted to explain why terrestrial or freshwater lineages have geographic distributions broken by oceans, with these disjunct distributions either attributed to vicariance associated with Gondwanan fragmentation or trans-oceanic dispersal. Stoneflies (order: Plecoptera) are a widespread order of freshwater insects whose poor dispersal ability and intolerance for salt water make them ideal candidates for Gondwanan relicts - taxa whose distribution can be explained by vicariant isolation driven by the breakup of Gondwana. Here we reconstruct the phylogenetic relationships among southern hemisphere stoneflies (5 families; 86 genera) using 2864bp of mitochondrial (COI) and nuclear (18S, H3) DNA, with a calibrated relaxed molecular clock used to estimate the chronology of diversification. Our analysis suggests that largely antitropical stonefly sub-orders, Arctoperlaria (northern hemisphere) and Antarctoperlaria (southern hemisphere), were formed approximately 121Ma (95% prior probability distribution 107-143Ma), which may reflect the vicariant rifting of the supercontinent Pangaea. Subsequently, we infer that a single Arctoperlaria lineage has dispersed into southern hemisphere 76Ma (95% range 65-98Ma). The majority of divergences between South American and Australian stonefly lineages appear to coincide with the opening of Drake Passage around 40Ma, suggesting vicariant isolation of these landmasses may be responsible for these biogeographic disjunctions. In contrast, divergences between New Zealand lineages and their sister taxa appear to post-date vicariant timeframes, implying more recent dispersal events. PMID:26585029

  18. An insight into the sialome of blood feeding Nematocera

    PubMed Central

    Ribeiro, José M.C.; Mans, Ben J.; Arcà, Bruno

    2010-01-01

    Within the Diptera and outside the suborder Brachycera, the blood feeding habit occurred at least twice, producing the present day sand flies, and the Culicomorpha, including the mosquitoes (Culicidae), black flies (Simulidae), biting midges (Ceratopogonidae) and frog feeding flies (Corethrellidae). Alternatives to this scenario are also discussed. Successful blood feeding requires adaptations to antagonize the vertebrate's mechanisms of blood clotting, platelet aggregation, vasoconstriction, pain and itching, which are triggered by tissue destruction and immune reactions to insect products. Saliva of these insects provides a complex pharmacological armamentarium to block these vertebrate reactions. With the advent of transcriptomics, the sialomes (from the Greek word sialo=saliva) of at least two species of each of these families have been studied (except for the frog feeders), allowing an insight into the diverse pathways leading to today's salivary composition within the Culicomorpha, having the sand flies as an outgroup. This review catalogs 1,288 salivary proteins in 10 generic classes comprising over 150 different protein families, most of which we have no functional knowledge. These proteins and many sequence comparisons are displayed in a hyperlinked spreadsheet that hopefully will stimulate and facilitate the task of functional characterization of these proteins, and their possible use as novel pharmacological agents and epidemiological markers of insect vector exposure. PMID:20728537

  19. The anatomy and ontogeny of the head, neck, pectoral, and upper limb muscles of Lemur catta and Propithecus coquereli (primates): discussion on the parallelism between ontogeny and phylogeny and implications for evolutionary and developmental biology.

    PubMed

    Diogo, Rui; Molnar, Julia L; Smith, Timothy D

    2014-08-01

    Most anatomical studies of primates focus on skeletal tissues, but muscular anatomy can provide valuable information about phylogeny, functional specializations, and evolution. Herein, we present the first detailed description of the head, neck, pectoral, and upper limb muscles of the fetal lemuriforms Lemur catta (Lemuridae) and Propithecus coquereli (Indriidae). These two species belong to the suborder Strepsirrhini, which is often presumed to possess some plesiomorphic anatomical features within primates. We compare the muscular anatomy of the fetuses with that of infants and adults and discuss the evolutionary and developmental implications. The fetal anatomy reflects a phylogenetically more plesiomorphic condition in nine of the muscles we studied and a more derived condition in only two, supporting a parallel between ontogeny and phylogeny. The derived exceptions concern muscles with additional insertions in the fetus which are lost in adults of the same species, that is, flexor carpi radialis inserts on metacarpal III and levator claviculae inserts on the clavicle. Interestingly, these two muscles are involved in movements of the pectoral girdle and upper limb, which are mainly important for activities in later stages of life, such as locomotion and prey capture, rather than activities in fetal life. Accordingly, our findings suggest that some exceptions to the "ontogeny parallels phylogeny" rule are probably driven more by ontogenetic constraints than by adaptive plasticity. PMID:24757163

  20. A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae).

    PubMed

    Xu, Xin; Liu, Fengxiang; Chen, Jian; Ono, Hirotsugu; Li, Daiqin; Kuntner, Matjaž

    2015-01-01

    The spider suborder Mesothelae, containing a single extant family Liphistiidae, represents a species-poor and ancient lineage. These are conspicuous spiders that primitively retain a segmented abdomen and appendage-like spinnerets. While their classification history is nearly devoid of phylogenetic hypotheses, we here revise liphistiid genus level taxonomy based on original sampling throughout their Asian range, and on the evidence from a novel molecular phylogeny. By combining morphological and natural history evidence with phylogenetic relationships in the companion paper, we provide strong support for the monophyly of Liphistiidae, and the two subfamilies Liphistiinae and Heptathelinae. While the former only contains Liphistius Schiödte, 1849, a genus distributed in Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand, we recognize and diagnose seven heptatheline genera, all but three removed from the synonymy of Heptathela: i) Ganthela Xu & Kuntner, gen. n. with the type species Ganthelayundingensis Xu, sp. n. is known from Fujian and Jiangxi, China; ii) a rediagnosed Heptathela Kishida, 1923 is confined to the Japanese islands (Kyushu and Okinawa); iii) Qiongthela Xu & Kuntner, gen. n. with the type species Qiongthelabaishensis Xu, sp. n. is distributed disjunctly in Hainan, China and Vietnam; iv) Ryuthela Haupt, 1983 is confined to the Ryukyu archipelago (Japan); v) Sinothela Haupt, 2003 inhabits Chinese areas north of Yangtze; vi) Songthela Ono, 2000 inhabits southwest China and northern Vietnam; and vii) Vinathela Ono, 2000 (Abcathela Ono, 2000, syn. n.; Nanthela Haupt, 2003, syn. n.) is known from southeast China and Vietnam. PMID:25878527

  1. A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae)

    PubMed Central

    Xu, Xin; Liu, Fengxiang; Chen, Jian; Ono, Hirotsugu; Li, Daiqin; Kuntner, Matjaž

    2015-01-01

    Abstract The spider suborder Mesothelae, containing a single extant family Liphistiidae, represents a species-poor and ancient lineage. These are conspicuous spiders that primitively retain a segmented abdomen and appendage-like spinnerets. While their classification history is nearly devoid of phylogenetic hypotheses, we here revise liphistiid genus level taxonomy based on original sampling throughout their Asian range, and on the evidence from a novel molecular phylogeny. By combining morphological and natural history evidence with phylogenetic relationships in the companion paper, we provide strong support for the monophyly of Liphistiidae, and the two subfamilies Liphistiinae and Heptathelinae. While the former only contains Liphistius Schiödte, 1849, a genus distributed in Indonesia (Sumatra), Laos, Malaysia, Myanmar, Thailand, we recognize and diagnose seven heptatheline genera, all but three removed from the synonymy of Heptathela: i) Ganthela Xu & Kuntner, gen. n. with the type species Ganthela yundingensis Xu, sp. n. is known from Fujian and Jiangxi, China; ii) a rediagnosed Heptathela Kishida, 1923 is confined to the Japanese islands (Kyushu and Okinawa); iii) Qiongthela Xu & Kuntner, gen. n. with the type species Qiongthela baishensis Xu, sp. n. is distributed disjunctly in Hainan, China and Vietnam; iv) Ryuthela Haupt, 1983 is confined to the Ryukyu archipelago (Japan); v) Sinothela Haupt, 2003 inhabits Chinese areas north of Yangtze; vi) Songthela Ono, 2000 inhabits southwest China and northern Vietnam; and vii) Vinathela Ono, 2000 (Abcathela Ono, 2000, syn. n.; Nanthela Haupt, 2003, syn. n.) is known from southeast China and Vietnam. PMID:25878527

  2. Chemical defense of an opilionid (Acanthopachylus aculeatus).

    PubMed

    Eisner, Thomas; Rossini, Carmen; González, Andrés; Eisner, Maria

    2004-03-01

    The opilionid Acanthopachylus aculeatus was shown to produce a defensive secretion containing quinones (2,3-dimethyl-1,4-benzoquinone, 2,5-dimethyl-1,4-benzoquinone and 2,3,5-trimethyl-1,4-benzoquinone), confirming the findings reported nearly a half century ago in a classic study. The mechanism by which the opilionid puts the secretion to use is described. When disturbed, the animal regurgitates enteric fluid, which it conveys by intercoxal clefts to the anterolateral corners of the carapace, where the two gland openings are situated. It then injects some of its quinonoid secretion into the fluid, and conveys the mixed liquid along the length of its flanks by way of two special channels. Such a discharge mechanism may be widespread among opilionids of the family Gonyleptidae (suborder Laniatores), to which A. aculeatus belongs. In a bioassay based on a scratch reflex in decapitated cockroaches (Periplaneta americana) the liquid effluent of A. aculeatus was shown to be potently irritating. Use of the effluent was demonstrated to protect the opilionid against ants (Formica exsectoides). Wolf spiders (Lycosa ceratiola) were shown to be minimally affected by the effluent (they showed little response when the fluid was added to their mouthparts as they fed on mealworms, their normal laboratory prey), although they proved to be aversive to mere contact with the opiliond itself, and to reject the animal without inducing it to discharge. A. aculeatus may therefore contain distasteful factors besides its glandular products. PMID:15010482

  3. A new species of Sphaeromyxa (Myxosporea: Sphaeromyxina: Sphaeromyxidae) in devil firefish, Pterois miles (Scorpaenidae), from the northern Red Sea: morphology, ultrastructure, and phylogeny.

    PubMed

    Diamant, A; Whipps, C M; Kent, M L

    2004-12-01

    Sphaeromyxa zaharoni n. sp. (Myxosporea) is described from the gallbladder of devil firefish, Pterois miles (Scorpaenidae), from coral reefs of the Gulf of Eilat, Israel, northern Red Sea. The parasite was found also in bearded scorpionfish, Scorpaenopsis barbata, from the same area. This is the first report on Sphaeromyxa sp. from this zoogeographical region. The plasmodia are amoeboid when young, becoming disc-shaped and elongated when mature. In paraffin sections, the plasmodium periphery appears as a finely granulated, strongly eosinophilic layer with an intricate surface membrane network. Sphaeromyxa zaharoni n. sp. is polysporous, disporoblastic, and has asynchronous sporogenesis. The mature spore is elongated and fusiform, has delicately ridged valves, and contains a single, binucleated sporoplasm. In valvular view, the tips are truncated. The mean spore size is length 14.5 microm, width 4.8 microm, and polar capsule 4.8 x 3.4 microm. The 2 equally sized ovoid polar capsules are positioned at opposite ends of the spore, each containing a filament loosely folded in 2 loops. The fine structure of the sporoblast and spore corresponded with previously studied Sphaeromyxa species. According to small-subunit ribosomal DNA gene sequence analysis, S. zaharoni n. sp. is most closely related to 2 Myxidium spp. The close phylogenetic relatedness of Sphaeromyxa and Myxidium and similar spore morphology raises the question whether these 2 genera should be maintained in separate families and suborders. PMID:15715240

  4. Proteogenomic insights into the core-proteome of female reproductive tissues from crustacean amphipods.

    PubMed

    Trapp, Judith; Almunia, Christine; Gaillard, Jean-Charles; Pible, Olivier; Chaumot, Arnaud; Geffard, Olivier; Armengaud, Jean

    2016-03-01

    As a result of the poor genome sequence coverage of crustacean amphipods, characterization of their evolutionary biology relies mostly on phenotypic traits. Here, we analyzed the proteome of ovaries from five amphipods, all from the Senticaudata suborder, with the objective to obtain insights into the core-proteome of female reproductive systems. These amphipods were from either the Gammarida infraorder: Gammarus fossarum, Gammarus pulex, Gammarus roeseli, or the Talitrida infraorder: Parhyale hawaiensis and Hyalella azteca. Ovaries from animals sampled at the end of their reproductive cycle were dissected. Their whole protein contents were extracted and their proteomes were recorded by high-throughput nanoLC-MS/MS with a high-resolution mass spectrometer. We interpreted tandem mass spectrometry data with the protein sequence resource from G. fossarum and P. hawaiensis, both recently established by RNA sequencing. The large molecular biodiversity within amphipods was assessed by the ratio of MS/MS spectra assigned for each sample, which tends to diverge rapidly along the taxonomic level considered. The core-proteome was defined as the proteins conserved along all samples, thus detectable by the homology-based proteomic assignment procedure. This specific subproteome may be further enriched in the future with the analysis of new species and update of the protein sequence resource. PMID:26170043

  5. Patterns of resource partitioning by nesting herons and ibis: how are odonata exploited?

    PubMed

    Samraoui, Farrah; Nedjah, Riad; Boucheker, Abdennour; Alfarhan, Ahmed H; Samraoui, Boudjéma

    2012-04-01

    Herons and ibis are colonially nesting waders which, owing to their number, mobility and trophic role as top predators, play a key role in aquatic ecosystems. They are also good biological models to investigate interspecific competition between sympatric species and predation; two processes which structure ecological communities. Odonata are also numerous, diverse, mobile and can play an important role in aquatic ecosystems by serving as prey for herons and ibis. A relationship between prey size and bird predator has been observed in Numidia wetlands (NE Algeria) after analyzing food boluses regurgitated by six species of birds (Purple Heron, Black-crowned Night Heron, Glossy Ibis, Little Egret, Squacco Heron and Cattle Egret) during the breeding period, which also shows a temporal gradient for the six species. Both the Levins index and preliminary multivariate analysis of the Odonata as prey fed to nestling herons and ibis, indicated a high degree of resource overlap. However, a distinction of prey based on taxonomy (suborder and family) and developmental stage (larvae or adults) reveals a clear size dichotomy with large-sized predators (Purple Heron, Black-crowned Night Heron and Glossy Ibis) preying on large preys like Aeshnids and Libellulids and small-sized predators feeding mainly on small prey like Zygoptera. Overall, the resource utilization suggests a pattern of resource segregation by coexisting nesting herons and ibis based on the timing of reproduction, prey types, prey size and foraging microhabitats. PMID:22578577

  6. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal.

    PubMed

    Hunt, D M; Fitzgibbon, J; Slobodyanyuk, S J; Bowmaker, J K

    1996-05-01

    Lake Baikal in Eastern Siberia is the deepest and one of the largest and most ancient lakes in the world. However, even in the deepest regions, oxygenation levels do not fall below 75-80% of the surface levels. This has enabled a remarkable flock of largely endemic teleost fish of the sub-order Cottoidei to colonize all depth habitats. We have previously shown that species that occupy progressively deeper habitats show a blue shift in the peak wavelength of absorbance (lambda max) of both their rod and cone visual pigments; for the rod pigments, a number of stepwise shifts occur from about 516 nm in littoral species to about 484 nm in abyssal species. By sequencing the rod opsin gene from 11 species of Baikal cottoids that include representatives from all depth habitats, we have been able to identify four amino acid substitutions that would account for these shifts. The effect of each substitution on lambda max is approximately additive and each corresponds to a particular lineage of evolution. PMID:8711901

  7. Cellular location and major terminal networks of the orexinergic system in the brain of two megachiropterans.

    PubMed

    Dell, Leigh-Anne; Kruger, Jean-Leigh; Pettigrew, John D; Manger, Paul R

    2013-11-01

    The present study describes the distribution of orexin-A immunoreactive neurons and their terminal networks in the brains of two species of megachiropterans. In general the organization of the orexinergic system in the mammalian brain is conserved across species, but as one of two groups of mammals that fly and have a high metabolic rate, it was of interest to determine whether there were any specific differences in the organization of this system in the megachiropterans. Orexinergic neurons were limited in distribution to the hypothalamus, and formed three distinct clusters, or nuclei, a main cluster with a perifornical location, a zona incerta cluster in the dorsolateral hypothalamus and an optic tract cluster in the ventrolateral hypothalamus. The nuclear parcellation of the orexinergic system in the megachiropterans is similar to that seen in many mammals, but differs from the microchiropterans where the optic tract cluster is absent. The terminal networks of the orexinergic neurons in the megachiropterans was similar to that seen in a range of mammalian species, with significant terminal networks being found in the hypothalamus, cholinergic pedunculopontine and laterodorsal tegemental nuclei, the noradrenergic locus coeruleus complex, all serotonergic nuclei, the paraventricular nuclei of the epithalamus and adjacent to the habenular nuclei. While the megachiropteran orexinergic system is typically mammalian in form, it does differ from that reported for microchiropterans, and thus provides an additional neural character arguing for independent evolution of these two chiropteran suborders. PMID:24041616

  8. Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes

    PubMed Central

    Verde, Cinzia; Howes, Barry D.; De Rosa, M. Cristina; Raiola, Luca; Smulevich, Giulietta; Williams, Richard; Giardina, Bruno; Parisi, Elio; Di Prisco, Guido

    2004-01-01

    The suborder Notothenioidei dominates the Antarctic ichthyofauna. The non-Antarctic monotypic family Pseudaphritidae is one of the most primitive families. The characterization of the oxygen-transport system of euryhaline Pseudaphritis urvillii is herewith reported. Similar to most Antarctic notothenioids, this temperate species has a single major hemoglobin (Hb 1, over 95% of the total). Hb 1 has strong Bohr and Root effects. It shows two very uncommon features in oxygen binding: At high pH values, the oxygen affinity is exceptionally high compared to other notothenioids, and subunit cooperativity is modulated by pH in an unusual way, namely the curve of the Hill coefficient is bell-shaped, with values approaching 1 at both extremes of pH. Molecular modeling, electronic absorption and resonance Raman spectra have been used to characterize the heme environment of Hb 1 in an attempt to explain these features, particularly in view of some potentially important nonconservative replacements found in the primary structure. Compared to human HbA, no major changes were found in the structure of the proximal cavity of the α-chain of Hb 1, although an altered distal histidyl and heme position was identified in the models of the β-chain, possibly facilitated by a more open heme pocket due to reduced steric constraints on the vinyl substituent groups. This conformation may lead to the hemichrome form identified by spectroscopy in the Met state, which likely fulfils a potentially important physiological role. PMID:15340169

  9. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    PubMed

    Lacruz, Rodrigo S; Lakshminarayanan, Rajamani; Bromley, Keith M; Hacia, Joseph G; Bromage, Timothy G; Snead, Malcolm L; Moradian-Oldak, Janet; Paine, Michael L

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  10. Characterization and phylogenetic relationship of prosimian MHC class I genes.

    PubMed

    Flügge, Perris; Zimmermann, Elke; Hughes, Austin L; Günther, Eberhard; Walter, Lutz

    2002-12-01

    MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians. PMID:12486535

  11. An insight into the sialome of blood-feeding Nematocera.

    PubMed

    Ribeiro, José M C; Mans, Ben J; Arcà, Bruno

    2010-11-01

    Within the Diptera and outside the suborder Brachycera, the blood-feeding habit occurred at least twice, producing the present day sand flies, and the Culicomorpha, including the mosquitoes (Culicidae), black flies (Simulidae), biting midges (Ceratopogonidae) and frog feeding flies (Corethrellidae). Alternatives to this scenario are also discussed. Successful blood-feeding requires adaptations to antagonize the vertebrate's mechanisms of blood clotting, platelet aggregation, vasoconstriction, pain and itching, which are triggered by tissue destruction and immune reactions to insect products. Saliva of these insects provides a complex pharmacological armamentarium to block these vertebrate reactions. With the advent of transcriptomics, the sialomes (from the Greek word sialo = saliva) of at least two species of each of these families have been studied (except for the frog feeders), allowing an insight into the diverse pathways leading to today's salivary composition within the Culicomorpha, having the sand flies as an outgroup. This review catalogs 1288 salivary proteins in 10 generic classes comprising over 150 different protein families, most of which we have no functional knowledge. These proteins and many sequence comparisons are displayed in a hyperlinked spreadsheet that hopefully will stimulate and facilitate the task of functional characterization of these proteins, and their possible use as novel pharmacological agents and epidemiological markers of insect vector exposure. PMID:20728537

  12. Bats: Important Reservoir Hosts of Emerging Viruses

    PubMed Central

    Calisher, Charles H.; Childs, James E.; Field, Hume E.; Holmes, Kathryn V.; Schountz, Tony

    2006-01-01

    Bats (order Chiroptera, suborders Megachiroptera [“flying foxes”] and Microchiroptera) are abundant, diverse, and geographically widespread. These mammals provide us with resources, but their importance is minimized and many of their populations and species are at risk, even threatened or endangered. Some of their characteristics (food choices, colonial or solitary nature, population structure, ability to fly, seasonal migration and daily movement patterns, torpor and hibernation, life span, roosting behaviors, ability to echolocate, virus susceptibility) make them exquisitely suitable hosts of viruses and other disease agents. Bats of certain species are well recognized as being capable of transmitting rabies virus, but recent observations of outbreaks and epidemics of newly recognized human and livestock diseases caused by viruses transmitted by various megachiropteran and microchiropteran bats have drawn attention anew to these remarkable mammals. This paper summarizes information regarding chiropteran characteristics and information regarding 66 viruses that have been isolated from bats. From these summaries, it is clear that we do not know enough about bat biology; we are doing too little in terms of bat conservation; and there remain a multitude of questions regarding the role of bats in disease emergence. PMID:16847084

  13. Penis morphology in a Burmese amber harvestman

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Selden, Paul A.; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  14. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong; Li, Chuan

    2015-10-01

    The interfering vibration signals of a gearbox often represent a challenging issue in rolling bearing fault detection and diagnosis, particularly under unknown variable rotational speed conditions. Though some methods have been proposed to remove the gearbox interfering signals based on their discrete frequency nature, such methods may not work well under unknown variable speed conditions. As such, we propose a new approach to address this issue. The new approach consists of three main steps: (a) adaptive gear interference removal, (b) fault characteristic order (FCO) based fault detection, and (c) rotational-order-sideband (ROS) based fault type identification. For gear interference removal, an enhanced adaptive noise cancellation (ANC) algorithm has been developed in this study. The new ANC algorithm does not require an additional accelerometer to provide reference input. Instead, the reference signal is adaptively constructed from signal maxima and instantaneous dominant meshing multiple (IDMM) trend. Key ANC parameters such as filter length and step size have also been tailored to suit the variable speed conditions, The main advantage of using ROS for fault type diagnosis is that it is insusceptible to confusion caused by the co-existence of bearing and gear rotational frequency peaks in the identification of the bearing fault characteristic frequency in the FCO sub-order region. The effectiveness of the proposed method has been demonstrated using both simulation and experimental data. Our experimental study also indicates that the proposed method is applicable regardless whether the bearing and gear rotational speeds are proportional to each other or not.

  15. Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations.

    PubMed

    Liu, Yuan; Cui, Zhaoxia

    2011-01-01

    The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A+T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group. PMID:20352347

  16. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa).

    PubMed

    Maronna, Maximiliano M; Miranda, Thaís P; Peña Cantero, Álvaro L; Barbeitos, Marcos S; Marques, Antonio C

    2016-01-01

    Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective. PMID:26821567

  17. A cytoarchitectonic and TH-immunohistochemistry characterization of the dopamine cell groups in the substantia nigra, ventral tegmental area and retrorubral field in the rock cavy (Kerodon rupestris).

    PubMed

    Cavalcanti, José R L P; Soares, Joacil G; Oliveira, Francisco G; Guzen, Fausto P; Pontes, André L B; Sousa, Twyla B; Cavalcante, Jeferson S; Nascimento, Expedito S; Cavalcante, Judney C; Costa, Miriam S M O

    2014-01-01

    The 3-hydroxytyramine/dopamine is a monoamine of the catecholamine group and it is a precursor of the noradrenaline and adrenaline synthesis, in which the enzyme tyrosine hydroxylase acts as a rate-limiting enzyme. The dopaminergic nuclei retrorubral field (A8 group), substantia nigra pars compacta (A9 group) and ventral tegmental area (A10 group) are involved in three complex circuitries named mesostriatal, mesocortical and mesolimbic, which are directly related to various behavioral manifestations such as motor control, reward signaling in behavioral learning, motivation and pathological manifestations of Parkinson's disease and schizophrenia. The aim of this study was to describe the delimitation of A8, A9 and A10 groups and the morphology of their neurons in the brain of the rock cavy (Kerodon rupestris), a typical Brazilian Northeast rodent belonging to the suborder Hystricomorpha, family Caviidae. Coronal and sagittal sections of the rock cavy brains were submitted to Nissl staining and TH immunohistochemistry. The organization of these dopaminergic nuclei in the rock cavy brain is very similar to that found in other animals of the Rodentia order, except for the presence of the tail of the substantia nigra, which is found only in the species under study. The results revealed that, apart some morphological variations, A8, A9 and A10 groups are phylogenetically stable brain structures. PMID:24444614

  18. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  19. First report of Tequus schrottkyi (Konow) (Hymenoptera: Pergidae) in Uruguay, and information about its host plant and biology

    PubMed Central

    González, Andrés; Schmidt, Stefan

    2016-01-01

    Abstract Background The sawfly family Pergidae is best represented in South America, and it is the third largest family in the suborder Symphyta. Tequus is a Neotropical genus that has been reported in association with host plants of the genus Solanum (Solanaceae), with little information about the life history of its members. Tequus schrottkyi (Konow, 1906) was described from Paraguay, without any information about its biology and host plant. New information We report the first record of T. schrottkyi from Uruguay, with information on its host plant and details of its biology. The identification was based on morphology, DNA barcode is provided to allow identification using molecular characters. This sawfly species is associated with Solanum commersonii, a native plant common in Uruguay. Tequus schrottkyi presents several generations between March and July. The larvae feed on leaves and spin a silk cocoon in the soil in which they pupate. The adults exhibit sexual dimorphism, the female being larger than the male and with a different color pattern. The eggs are laid individually in the leaf margins into the leaf tissue. The larvae are unpalatable to a generalist predator, possibly due to defensive compounds sequestered from their host plant, known to contain toxic compounds. PMID:26929717

  20. The complete mitochondrial genome sequence of Hepatozoon catesbianae (Apicomplexa: Coccidia: Adeleorina), a blood parasite of the green frog, Lithobates (formerly Rana) clamitans.

    PubMed

    Leveille, Alexandre N; Ogedengbe, Mosun E; Hafeez, Mian A; Tu, Hsiang-Hsien Abby; Barta, John R

    2014-10-01

    A complete mitochondrial genome for the blood parasite Hepatozoon catesbianae (Alveolata; Apicomplexa; Coccidia; Adeleorina; Hepatozoidae) was obtained through PCR amplification and direct sequencing of resulting PCR products. The mitochondrial genome of H. catesbianae is 6,397 bp in length and contains 3 protein-coding genes (cytochrome c oxidase subunit I [COI]; cytochrome c oxidase subunit III [COIII]; and cytochrome B [CytB]). Sequence similarities to previously published mitochondrial genomes of other apicomplexan parasites permitted annotation of 23 putative rDNA fragments in the mitochondrial genome of H. catesbianae, 14 large subunit rDNA fragments, and 9 small subunit rDNA fragments. Sequences corresponding to rDNA fragments RNA5, RNA8, RNA11, and RNA19 of Plasmodium falciparum were not identified in the mitrochondrial genome sequence of H. catesbianae. Although the presence of 3 protein-coding regions and numerous putative rDNA fragments is a feature typical for apicomplexan mitochondrial genomes, the mitochondrial genome of H. catesbianae possesses a structure and gene organization that is distinct among the Apicomplexa. This is the first complete mitochondrial genome sequence obtained from any apicomplexan parasite in the suborder Adeleorina. PMID:24820055

  1. Structure of Membrane-active Toxin from Crab Spider Heriaeus melloteei Suggests Parallel Evolution of Sodium Channel Gating Modifiers in Araneomorphae and Mygalomorphae*

    PubMed Central

    Berkut, Antonina A.; Peigneur, Steve; Myshkin, Mikhail Yu.; Paramonov, Alexander S.; Lyukmanova, Ekaterina N.; Arseniev, Alexander S.; Grishin, Eugene V.; Tytgat, Jan; Shenkarev, Zakhar O.; Vassilevski, Alexander A.

    2015-01-01

    We present a structural and functional study of a sodium channel activation inhibitor from crab spider venom. Hm-3 is an insecticidal peptide toxin consisting of 35 amino acid residues from the spider Heriaeus melloteei (Thomisidae). We produced Hm-3 recombinantly in Escherichia coli and determined its structure by NMR spectroscopy. Typical for spider toxins, Hm-3 was found to adopt the so-called “inhibitor cystine knot” or “knottin” fold stabilized by three disulfide bonds. Its molecule is amphiphilic with a hydrophobic ridge on the surface enriched in aromatic residues and surrounded by positive charges. Correspondingly, Hm-3 binds to both neutral and negatively charged lipid vesicles. Electrophysiological studies showed that at a concentration of 1 μm Hm-3 effectively inhibited a number of mammalian and insect sodium channels. Importantly, Hm-3 shifted the dependence of channel activation to more positive voltages. Moreover, the inhibition was voltage-dependent, and strong depolarizing prepulses attenuated Hm-3 activity. The toxin is therefore concluded to represent the first sodium channel gating modifier from an araneomorph spider and features a “membrane access” mechanism of action. Its amino acid sequence and position of the hydrophobic cluster are notably different from other known gating modifiers from spider venom, all of which are described from mygalomorph species. We hypothesize parallel evolution of inhibitor cystine knot toxins from Araneomorphae and Mygalomorphae suborders. PMID:25352595

  2. Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves)

    PubMed Central

    Fain, Matthew G; Houde, Peter

    2007-01-01

    Background The phylogeny of shorebirds (Aves: Charadriiformes) and their putative sister groups was reconstructed using approximately 5 kilobases of data from three nuclear loci and two mitochondrial genes, and compared to that based on two other nuclear loci. Results Charadriiformes represent a monophyletic group that consists of three monophyletic suborders Lari (i.e., Laridae [including Sternidae and Rynchopidae], Stercorariidae, Alcidae, Glareolidae, Dromadidae, and Turnicidae), Scolopaci (i.e., Scolopacidae [including Phalaropidae], Jacanidae, Rostratulidae, Thinocoridae, Pedionomidae), and Charadrii (i.e., Burhinidae, Chionididae, Charadriidae, Haematopodidae, Recurvirostridae, and presumably Ibidorhynchidae). The position of purported "gruiform" buttonquails within Charadriiformes is confirmed. Skimmers are most likely sister to terns alone, and plovers may be paraphyletic with respect to oystercatchers and stilts. The Egyptian Plover is not a member of the Glareolidae, but is instead relatively basal among Charadrii. None of the putative sisters of Charadriiformes were recovered as such. Conclusion Hypotheses of non-monophyly and sister relationships of shorebirds are tested by multilocus analysis. The monophyly of and interfamilial relationships among shorebirds are confirmed and refined. Lineage-specific differences in evolutionary rates are more consistent across loci in shorebirds than other birds and may contribute to the congruence of locus-specific phylogenetic estimates in shorebirds. PMID:17346347

  3. Non-breeding habitat preference affects ecological speciation in migratory waders

    PubMed Central

    2007-01-01

    Models of ecological speciation predict that certain types of habitat should be more conducive to species diversification than others. In this study, I test this hypothesis in waders of the sub-order Charadrii using the number of morphological sub-species per species as an index of diversity. I classified all members of this clade as spending the non-breeding season either coastally or inland and argue that these represent fundamentally different environments. Coastal mudflats are characterised by high predictability and patchy worldwide distribution, whilst inland wetlands are widespread but unpredictable. The results show that migratory species that winter coastally are sub-divided into more sub-species than those that winter inland. This was not the case for non-migratory species. I argue that coastal environments select for more rigid migratory pathways, whilst inland wetlands favour more flexible movement patterns. Population sub-division could then result from the passive segregation of breeding sites or from the active selection for assortative mating of ecomorphs. PMID:18087687

  4. Fauna aquatic insects in sewage maturation ponds of Kashan University of Medical Science 2005.

    PubMed

    Dehghani, Rouhollah; Miranzadeh, Mohhamad Bagher; Yosefzadeh, Mehrnoosh; Zamani, Soheyla

    2007-03-15

    Organic materials in maturation ponds, the personal study was carried out to determine the aquatic insects living in the maturation pond of Kashan University of Medical Sciences in 2005. This was a descriptive study, 9 series of sampling including 1032 of larva, nymph and adults were collected and sent to a laboratory. Then they were diagnosed using stereo microscope and morphologic identification key. At of 1032 collected samples from 4 maturation ponds, the orders if Diptera (52%), Hempitera (24%), Ciclopodidade (12%), Hydroacarina (9.5%), Coleptera (0.77%), Aranida (0.67%), Hymenoptera (0.58%), Odonata (0.48%), were determined. The families of Chironomidae and Culicidae from Diptera order, Corixidae, Notonectidae, Cupepodae and Copepodidae families from Hemiptera order, Hydrophilidae family from Coleptera order, Aranidae family from Aranida order, Vospidae family from Hymenoptera order, Anizoptera suborder from Odonata order were determined. Maturation ponds are the artificial places where are appropriate for the growth and development of aquatic insects and also for their predators with taking in to account that some of these insects are the carriers of pathogens, make inconvenience for human and also has significant role in the cycle of changing materials, it is recommended that further specialized studies carry out in this regard. PMID:19069891

  5. Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome.

    PubMed

    Shanku, Alexander G; McPeek, Mark A; Kern, Andrew D

    2013-03-11

    In this paper we present a de novo assembly of the transcriptome of the damselfly, Enallagma hageni, through the use of 454 pyrosequencing. E. hageni is a member of the suborder Zygoptera within the order Odonata, and the Odonata are the basal lineage of the winged insects (Pterygota). To date, sequence data used in phylogenetic analysis of Enallagma species have been derived from either mtDNA or ribosomal nuclear DNA. This transcriptome contained 31,661 contigs that were assembled and translated into 14,813 individual open reading frames. Using these data, we constructed an extensive dataset of 634 orthologous nuclear protein-coding genes across 11 species of Arthropoda, and used Bayesian techniques to elucidate Enallagma's place in the Arthropod phylogenetic tree. Additionally, we demonstrate that the Enallagma transcriptome contains 169 genes that are evolving at rates that differ relative to the rest of the transcriptome (29 accelerated and 140 decreased), and through multiple Gene Ontology searches and clustering methods, we present the first functional-annotation of any palaeopteran's transcriptome in the literature. PMID:23550132

  6. Integration of remote sensing (RS) and geographic information system (GIS) techniques for change detection of the land use and land cover (LULC) for soil management in the southern Port Said region, Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed Abd El Rehim Abd El Aziz

    2014-11-01

    The monitoring of land use/land cover (LULC) changes in southern Port Said region area is very important for the planner of managements, governmental and non-governmental organizations, decision makers and the scientific community. This information is essential for planning and implementing policies to optimize the use of natural resources and accommodate development whilst minimizing the impact on the environment. To monitor these changes in the study area, two sets of satellite images (Landsat TM-5 and ETM+7) data were used with Path/Row (175/38) in date 1986 and 2006, respectively. The Landsat TM and ETM data are useful for this type of study due to its high spatial resolution, spectral resolution and low repetitive acquisition (16 days). A postclassification technique is used in this study based on hybrid classification (Unsupervised and Supervised). Each method used was assessed, and checked in field. Eight to Twelve LULC classes are recognized and mapping produced. The soils in southern Port Said area were classification in two orders for soil taxonomic units, which are Entisols and Aridisols and four sub-orders classes. The study land was evaluated into five classes from non suitable (N) to very highly suitable (S1) for some crops in the southern region of Port Said studied soils, with assess the nature of future change following construction of the international coastal road which crosses near to the study area.

  7. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa)

    PubMed Central

    Maronna, Maximiliano M.; Miranda, Thaís P.; Peña Cantero, Álvaro L.; Barbeitos, Marcos S.; Marques, Antonio C.

    2016-01-01

    Leptothecata are hydrozoans whose hydranths are covered by perisarc and gonophores and whose medusae bear gonads on their radial canals. They develop complex polypoid colonies and exhibit considerable morphological variation among species with respect to growth, defensive structures and mode of development. For instance, several lineages within this order have lost the medusa stage. Depending on the author, traditional taxonomy in hydrozoans may be either polyp- or medusa-oriented. Therefore, the absence of the latter stage in some lineages may lead to very different classification schemes. Molecular data have proved useful in elucidating this taxonomic challenge. We analyzed a super matrix of new and published rRNA gene sequences (16S, 18S and 28S), employing newly proposed methods to measure branch support and improve phylogenetic signal. Our analysis recovered new clades not recognized by traditional taxonomy and corroborated some recently proposed taxa. We offer a thorough taxonomic revision of the Leptothecata, erecting new orders, suborders, infraorders and families. We also discuss the origination and diversification dynamics of the group from a macroevolutionary perspective. PMID:26821567

  8. Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm.

    PubMed

    Jurado, Valme; Kroppenstedt, Reiner M; Saiz-Jimenez, Cesáreo; Klenk, Hans-Peter; Mouniée, Delphine; Laiz, Leonila; Couble, Andrée; Pötter, Gabriele; Boiron, Patrick; Rodríguez-Nava, Verónica

    2009-12-01

    A novel actinomycete, strain OFN S31(T), was isolated from a complex biofilm in the Altamira Cave, Spain. A polyphasic study was carried out to clarify the taxonomic position of this strain. Phylogenetic analysis with 16S rRNA gene sequences of representatives of the genera Corynebacterium, Dietzia, Gordonia, Millisia, Mycobacterium, Nocardia, Rhodococcus, Segniliparus, Skermania, Tsukamurella and Williamsia indicated that strain OFN S31(T) formed a distinct taxon in the 16S rRNA gene tree that was more closely associated with the Mycobacterium clade. The type strain of Mycobacterium fallax was the closest relative of strain OFN S31(T) (95.6 % similarity). The cell wall contained meso-diaminopimelic acid, arabinose and galactose, which are characteristic components of cell-wall chemotype IV of actinomycetes. The sugars of the peptidoglycan were acetylated. The polar lipid pattern was composed of phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain OFN S31(T) is characterized by the absence of mycelium and mycolic acids. Strain OFN S31(T) had MK-8 as the major menaquinone. The DNA G+C content was 49.3 mol%, the lowest found among all taxa included in the suborder Corynebacterineae. Based on morphological, chemotaxonomic, phenotypic and genetic characteristics, strain OFN S31(T) is considered to represent a novel species of a new genus, for which the name Hoyosella altamirensis gen. nov., sp. nov. is proposed. The type strain of Hoyosella altamirensis is strain OFN S31(T) (=CIP 109864(T) =DSM 45258(T)). PMID:19643882

  9. Species composition, richness, and distribution of marine bivalve molluscs in Bahía de Mazatlán, México.

    PubMed

    Esqueda-González, María Del Carmen; Ríos-Jara, Eduardo; Galván-Villa, Cristian Moises; Rodríguez-Zaragoza, Fabian Alejandro

    2014-01-01

    We describe the composition and distribution of bivalve molluscs from the sandy and rocky intertidal and the shallow subtidal environments of Bahía de Mazatlán, México. The bivalve fauna of the bay is represented by 89 living species in 28 families, including 37 new records and four range extensions: Lithophaga hastasia, Adula soleniformis, Mactrellona subalata, and Strigilla ervilia. The number of species increases from the upper (44) and lower intertidal (53) to the shallow subtidal (76), but only 11 (17%) have a wide distribution in the bay (i.e., found in all sampling sites and environments). The bivalve assemblages are composed of four main life forms: 27 epifaunal species, 26 infaunal, 16 semi-infaunal, and 20 endolithic. A taxonomic distinctness analysis identified the sampling sites and environments that contribute the most to the taxonomic diversity (species to suborder categories) of the bay. The present work increased significantly (31%) to 132 species previous inventories of bivalves of Bahía de Mazatlán. These species represent 34% of the bivalve diversity of the southern Golfo de California and approximately 15% of the Eastern Tropical Pacific region. PMID:24843252

  10. A multiple data set phylogeny for the endemic South African freshwater phreatoicidean isopod genus Mesamphisopus: Taxonomic and biogeographic implications.

    PubMed

    Gouws, G; Matthee, C A; Stewart, B A

    2010-05-01

    The obligate, freshwater isopod suborder Phreatoicidea is represented in South Africa by ten species contained within the endemic genus Mesamphisopus (Mesamphisopidae). Here, phylogenetic hypotheses are proposed to describe the evolutionary and biogeographic history of the genus with respect to drainage basin evolution and to assess species diversity, particularly among populations variably identified as Mesamphisopusabbreviatus or Mesamphisopusdepressus. Twenty-three ingroup taxa were examined, including eight known species and representatives of the M. abbreviatus-depressus complex. Allozyme data from 12 loci were analysed phenetically and cladistically. Mitochondrial DNA sequence data from the 12S ribosomal RNA and cytochrome c oxidase subunit I genes were analysed as a combined mtDNA data set and as a total data set in combination with recoded allele frequency data. Analyses retrieved (1) a monophyletic Mesamphisopus; (2) Mesamphisopustsitsikamma and a Mesamphisopuspaludosus+Mesamphisopuspenicillatus clade as basal lineages; (3) a Mesamphisopuscapensis+Mesamphisopusbaccatus clade; and (4) a clade containing the M. abbreviatus-depressus complex, with these taxa nested among several other species. Large genetic distances among taxa and the paraphyly of the members of the M. abbreviatus-depressus complex suggested the presence of hidden taxonomic diversity in Mesamphisopus. Clear biogeographic patterns emerged with lineages and clades mostly restricted to geographically discrete regions. Patterns showed remarkable similarity to those seen in the region's terrestrial fauna and bore no relation to the history of drainage basins. These patterns suggested that vicariance and, possibly, limited dispersal events played a major role in the evolution of Mesamphisopus. PMID:20096796

  11. Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development.

    PubMed

    Pantalacci, Sophie; Chaumot, Arnaud; Benoît, Gérard; Sadier, Alexa; Delsuc, Frédéric; Douzery, Emmanuel J P; Laudet, Vincent

    2008-05-01

    It is widely accepted that evolutionary changes in conserved developmental signaling pathways play an important role in morphological evolution. However, few in silico studies were interested in tracking such changes in a signaling pathway. The Ectodysplasin (EDA) pathway provides an opportunity to fill this gap because it is involved in vertebrate skin appendage development such as scales, teeth, hair, and feathers that take an obvious part in the adaptation of species to their environment. We benefited from the large amount of genomic data now available to explore the evolution of the upstream genes of the EDA pathway. In mammals, these genes are eda (encoding 2 ligands, EDA-A1 and EDA-A2), edar (EDA-A1 receptor), edaradd (EDA receptor [EDAR] adapter), xedar (EDA-A2 receptor), and troy (a XEDAR-related receptor). We show that the evolution of EDA pathway genes combines both strongly conserved features and evolutionary shifts. These shifts are found at different signaling levels (from the ligand to intracellular signaling) and at different taxonomic levels (class, suborder, and genera). Although conserved features likely participate to the similarities found in the early development of vertebrate skin appendages, these shifts might account for innovations and specializations. Moreover, our study demonstrates that we can now benefit from the large number of sequenced vertebrate genomes to explore the evolution of specific signaling pathways and thereby to open new perspectives for developmental biology and evolutionary developmental biology. PMID:18304980

  12. All Rodents Are Not the Same: A Modern Synthesis of Cortical Organization

    PubMed Central

    Krubitzer, Leah; Campi, Katharine L.; Cooke, Dylan F.

    2011-01-01

    Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents includes arboreal, aerial, terrestrial, semi-aquatic, burrowing, and rock dwelling. Not surprisingly, the behaviors associated with particular lifestyles are also highly variable and thus the neocortex, which generates these behaviors, has undergone corresponding alterations across species. Studies of cortical organization in species that vary along several dimensions such as terrain niche, diel pattern, and rearing conditions demonstrate that the size and number of cortical fields can be highly variable within this order. The internal organization of a cortical field also reflects lifestyle differences between species and exaggerates behaviorally relevant effectors such as vibrissae, teeth, or lips. Finally, at a cellular level, neuronal number and density varies for the same cortical field in different species and is even different for the same species reared in different conditions (laboratory vs. wild-caught). These very large differences across and within rodent species indicate that there is no generic rodent model. Rather, there are rodent models suited for specific questions regarding the development, function, and evolution of the neocortex. PMID:21701141

  13. Germline viral "fossils" guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus.

    PubMed

    Smith, Richard H; Hallwirth, Claus V; Westerman, Michael; Hetherington, Nicola A; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B; Koonin, Eugene V; Agbandje-McKenna, Mavis; Kotin, Robert M; Alexander, Ian E

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  14. Characterization of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater.

    PubMed

    Zhang, Dongqing; Luo, Jinxue; Lee, Zarraz May Ping; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2016-07-01

    A 454 high-throughput pyrosequencing approach was used to characterize the structures of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater at a concentration of 250 μg L(-1). The removal efficiencies of caffeine in the planted beds (93.0 %) were significantly (p < 0.05) higher than those in the unplanted beds (81.4 %). Bacterial diversity was decreased by 25 and 22.4 %, respectively, in both planted and unplanted mesocosms after 210-day operation. The results of taxonomic analyses suggested that chronic exposure of wetland ecosystems to caffeine could lead to moderate shifts in microbial community composition. In total, 2156 operational taxonomic units (OTUs) were generated and 20 phyla comprising 260 genera were identified. The major phylogenetic groups at phylum level included Firmicutes (39 %), Actinobacteria (25.1 %), Proteobacteria (17.1 %), Synergistetes (5.6 %), and Chloroflexi (5.5 %). Bacilli and Synergistia increased in abundance in the planted mesocosms, while for the unplanted mesocosms, Actinobacterial, Clostridia and Betaproteobacteria exhibited increased proportion under the exposure of caffeine. At genus level, Propionibacterium, Staphylococcus, Bacillus, and Streptococcus were found to be increased in abundance after caffeine treatment. As for the response of fungal community to caffeine enrichment, genus like Cladosporium, Emericellopsis, Aspergillus, and Phoma were found to be resistant to caffeine disturbance. When compared to the microbial community between planted and unplanted mesocosms, a distinct community profile for both bacteria and fungi community was observed. The presence of plants had a remarkable effect on the structure of microbial community, helping buffer against the stress associated with caffeine exposure. PMID:27068910

  15. The obligate respiratory supercomplex from Actinobacteria.

    PubMed

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity. PMID:27472998

  16. Microbial population dynamics during fed-batch operation of commercially available garbage composters.

    PubMed

    Narihiro, T; Abe, T; Yamanaka, Y; Hiraishi, A

    2004-09-01

    Microbial populations in terms of quantity, quality, and activity were monitored during 2 months of start-up operation of commercially available composters for fed-batch treatment of household biowaste. All the reactors, operated at a waste-loading rate of 0.7 kg day(-1) (wet wt), showed a mass reduction efficiency of 88-93%. The core temperature in the reactors fluctuated between 31 degrees C and 58 degrees C due to self-heating. The pH declined during the early stage of operation and steadied at pH 7.4-9.3 during the fully acclimated stage. The moisture content was 48-63% early in the process and 30-40% at the steady state. Both direct total counts and plate counts of bacteria increased via two phases (designated phases I, II) and reached an order of magnitude of 10(11) cells g(-1) (dry wt) at the steady state. Microbial community changes during the start-up period were studied by culture-independent quinone profiling and denatured gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA. In all the reactors, ubiquinones predominated during phase I, whereas partially saturated menaquinones became predominant during phase II. This suggested that there was a drastic population shift from ubiquinone-containing Proteobacteria to Actinobacteria during the start-up period. The DGGE analysis of the bacterial community in one of the reactors also demonstrated a drastic population shift during phase I and the predominance of members of the phyla Proteobacteria and Bacteroidetes during the overall period. But this molecular analysis failed to detect actinobacterial clones from the reactor at any stage. PMID:15480624

  17. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes. PMID:26547568

  18. Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes

    PubMed Central

    2012-01-01

    Background Tyrosine-based site-specific recombinases (TBSSRs) are DNA breaking-rejoining enzymes. In bacterial genomes, they play a major role in the comings and goings of mobile genetic elements (MGEs), such as temperate phage genomes, integrated conjugative elements (ICEs) or integron cassettes. TBSSRs are also involved in the segregation of plasmids and chromosomes, the resolution of plasmid dimers and of co-integrates resulting from the replicative transposition of transposons. With the aim of improving the annotation of TBSSR genes in genomic sequences and databases, which so far is far from robust, we built a set of over 1,300 TBSSR protein sequences tagged with their genome of origin. We organized them in families to investigate: i) whether TBSSRs tend to be more conserved within than between classes of MGE types and ii) whether the (sub)families may help in understanding more about the function of TBSSRs associated in tandem or trios on plasmids and chromosomes. Results A total of 67% of the TBSSRs in our set are MGE type specific. We define a new class of actinobacterial transposons, related to Tn554, containing one abnormally long TBSSR and one of typical size, and we further characterize numerous TBSSRs trios present in plasmids and chromosomes of α- and β-proteobacteria. Conclusions The simple in silico procedure described here, which uses a set of reference TBSSRs from defined MGE types, could contribute to greatly improve the annotation of tyrosine-based site-specific recombinases in plasmid, (pro)phage and other integrated MGE genomes. It also reveals TBSSRs families whose distribution among bacterial taxa suggests they mediate lateral gene transfer. PMID:22502997

  19. Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola

    PubMed Central

    Keffer, J. L.; Hahn, M. W.

    2015-01-01

    ABSTRACT Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the

  20. Tricholoma matsutake Dominates Diverse Microbial Communities in Different Forest Soils▿†

    PubMed Central

    Vaario, Lu-Min; Fritze, Hannu; Spetz, Peter; Heinonsalo, Jussi; Hanajík, Peter; Pennanen, Taina

    2011-01-01

    Fungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroom Tricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria. Tomentollopsis sp. in the organic layer above the shiro and Piloderma sp. in the shiro correlated positively with the presence of T. matsutake in all experimental sites. A Thermomonosporaceae bacterium and Nocardia sp. correlated positively with the presence of T. matsutake, and Streptomyces sp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots. PMID:21984247

  1. Stackebrandtia cavernae sp. nov., a novel actinobacterium isolated from a karst cave sample.

    PubMed

    Zhang, Wan-Qin; Li, Yu-Qian; Liu, Lan; Salam, Nimaichand; Fang, Bao-Zhu; Wei, Dao-Qiao; Han, Ming-Xian; Li, Wen-Jun

    2016-03-01

    A novel actinobacterial strain, YIM ART06T, was isolated from a rock sample of karst cave located at Guizhou province, south-west China, and was characterized by a polyphasic taxonomic approach. The morphological and chemotaxonomic properties of strain YIM ART06T were in accordance with those of the genus Stackebrandtia. The 16S rRNA gene sequence of strain YIM ART06T showed highest similarity to Stackebrandtia nassauensis JCM 14905T (98.0 %). The DNA-DNA hybridization value between strains YIM ART06T and S. nassauensis JCM 14905T was, however, moderately high (62.9 %) but below the 70 % limit for species identification. Strain YIM ART06T contained meso-diaminopimelic acid as the diagnostic diamino acid, and mannose, ribose and xylose in the whole-cell hydrolysates. The predominant menaquinones detected were MK-10(H4), MK-10(H6), MK-11(H4) and MK-11(H6), while the cell membrane polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmethylethanolamine and three unidentified phospholipids. The genomic DNA G+C content of strain YIM ART06T was 71 mol%. The major fatty acids were anteiso-C17 : 0, iso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. Based on the taxonomic characteristics from the genotypic and phenotypic results, strain YIM ART06T merits recognition as a representative of a novel species of the genus Stackebrandtia, for which the name Stackebrandtia cavernae sp. nov. is proposed. The type strain is YIM ART06T ( = KCTC 39599T = CCTCC AA 2015021T = DSM 100594T). PMID:26703216

  2. Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evloutionary adaptations

    SciTech Connect

    Barabote, Ravi D.; Xie, Gary; Leu, David H.; Normand, Philippe; Necsulea, Anamaria; Daubin, Vincent; Medigue, Claudine; Adney, William S.; Xu,Xin Clare; Lapidus, Alla; Detter, Chris; Pujic, Petar; Bruce, David; Lavire, Celine; Challacombe, Jean F.; Brettin, Thomas S.; Berry, Alison M.

    2009-01-01

    We present here the complete 2.4 Mb genome of the cellulolytic actinobacterial thermophile, Acidothermus cellulolyticus 11B. New secreted glycoside hydrolases and carbohydrate esterases were identified in the genome, revealing a diverse biomass-degrading enzyme repertoire far greater than previously characterized, and significantly elevating the industrial value of this organism. A sizable fraction of these hydrolytic enzymes break down plant cell walls and the remaining either degrade components in fungal cell walls or metabolize storage carbohydrates such as glycogen and trehalose, implicating the relative importance of these different carbon sources. A novel feature of the A. cellulolyticus secreted cellulolytic and xylanolytic enzymes is that they are fused to multiple tandemly arranged carbohydrate binding modules (CBM), from families 2 and 3. Interestingly, CBM3 was found to be always N-terminal to CBM2, suggesting a functional constraint driving this organization. While the catalytic domains of these modular enzymes are either diverse or unrelated, the CBMs were found to be highly conserved in sequence and may suggest selective substrate-binding interactions. For the most part, thermophilic patterns in the genome and proteome of A. cellulolyticus were weak, which may be reflective of the recent evolutionary history of A. cellulolyticus since its divergence from its closest phylogenetic neighbor Frankia, a mesophilic plant endosymbiont and soil dweller. However, ribosomal proteins and non-coding RNAs (rRNA and tRNAs) in A. cellulolyticus showed thermophilic traits suggesting the importance of adaptation of cellular translational machinery to environmental temperature. Elevated occurrence of IVYWREL amino acids in A. cellulolyticus orthologs compared to mesophiles, and inverse preferences for G and A at the first and third codon positions also point to its ongoing thermoadaptation. Additional interesting features in the genome of this cellulolytic, hot

  3. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    SciTech Connect

    Xie, Gary; Detter, John C; Bruce, David C; Challacombe, Jean F; Brettin, Thomas S; Necsulea, Anamaria; Daubin, Vincent; Medigue, Claudine; Adney, William S; Xu, Xin C; Lapidus, Alla; Pujic, Pierre; Berry, Alison M; Barabote, Ravi D; Leu, David; Normand, Phillipe

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  4. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    SciTech Connect

    Xie, Gary; Detter, Chris; Bruce, David; Challacome, Jean F; Brettin, Thomas S; Barabote, Ravi D; Leu, David; Normand, Philippe; Necsula, Anamaria; Daubin, Vincent; Medigue, Claudine; Xu, Xin C; Lapidus, Alla; Pujic, Pierre; Richardson, Paul; Berry, Alison M

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  5. Discovering the Recondite Secondary Metabolome Spectrum of Salinispora Species: A Study of Inter-Species Diversity

    PubMed Central

    Bose, Utpal; Hewavitharana, Amitha K.; Vidgen, Miranda E.; Ng, Yi Kai; Shaw, P. Nicholas; Fuerst, John A.; Hodson, Mark P.

    2014-01-01

    Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology. PMID

  6. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture.

    PubMed

    Cui, Yingshun; Kang, Myung-Suk; Woo, Sung-Geun; Jin, Long; Kim, Kwang Kyu; Park, Joonhong; Lee, Myungjin; Lee, Sung-Taik

    2013-01-01

    A Gram-reaction-positive, non-spore-forming, aerobic actinobacterial strain (2C6-41(T)) was isolated from the activated sludge from an industrial wastewater treatment plant in Daegu, South Korea. Its taxonomic position was investigated by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity, closest phylogenetic relatives to strain 2C6-41(T) were Brevibacterium pityocampae DSM 21720(T) (97.2 %), Brevibacterium salitolerans KCTC 19616(T) (96.7 %), Brevibacterium album KCTC 19173(T) (96.2 %) and Brevibacterium samyangense KCCM 42316(T) (96.2 %). The DNA G+C content of strain 2C6-41(T) was 66.4 mol%. Chemotaxonomic data, which included MK-8(H(2)) as the major menaquinone; meso-diaminopimelic acid, glutamic acid and alanine as cell-wall amino acids; ribose, mannose and glucose as major cell-wall sugars; and anteiso-C(15 : 0), anteiso-C(17 : 0), C(16 : 0) and iso-C(15 : 0) as major fatty acids, supported the affiliation of strain 2C6-41(T) to the genus Brevibacterium. The aromatic ring cleavage enzyme catechol 1,2-dioxygenase was not detected in strain 2C6-41(T), but catechol 2,3-dioxygenase was detected. The results of physiological and biochemical tests, and the low level of DNA-DNA relatedness to the closest phylogenetic relative enabled strain 2C6-41(T) to be differentiated genotypically and phenotypically from recognized species of the genus Brevibacterium. The isolate is therefore considered to represent a novel species in the genus Brevibacterium, for which the name Brevibacterium daeguense sp. nov. is proposed. The type strain is 2C6-41(T) (=KCTC 19800(T) = JCM 17458(T)). PMID:22368170

  7. Isolation a new strain of Kocuria rosea capable of tolerating extreme conditions.

    PubMed

    Gholami, M; Etemadifar, Z; Bouzari, M

    2015-06-01

    A new actinobacterial strain was isolated from Ab-e-Siah spring (dark water) taken from the Ramsar city in Iran, and subjected to several stress conditions investigation. The isolate, named MG2 strain, was Gram-positive, aerobic, diplococci or tetrad shaped, non-spore forming and non-motile. Phylogenetic analysis of the isolate using 16S rDNA sequence indicated that the organism matched best with the genus Kocuria and the highest sequence similarities (98.55%) being found with Kocuria rosea. The 16S rDNA sequence determined in this study has been deposited in the NCBI database with the accession no. JX534199, K. rosea strain MG2. The isolated strain was an alkaliphilic-mesophilic bacterium because the optimal growth was observed at pH 9.2 and temperature of 28 °C under aerobic condition. MG2 was a halotolerant strain and tolerated maximally to 15% NaCl concentraion. Viability analysis by flow cytometry indicated that this strain had highly resistance to UV-C radiation and moderately resistance to desiccation after 28 days. The viability of K. rosea strains MG2 and Deinococcus radiodurans R1 were determined D87 and D98 according to D index, respectively, by a dose radiation 25 J/cm (Appukuttan et al., 2006). Thus the UV resistance of strain MG2 was comparable with representative radiation resistant Deinococcus. Also MG2 was grown at 1-4% of H2O2 as an oxidant agent. This research is the first study on multiple extreme resistance of Kocuria rosea new strain (MG2) isolated in Iran. PMID:25839781

  8. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    PubMed

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  9. The effect of native and introduced biofuel crops on the composition of soil biota communities

    NASA Astrophysics Data System (ADS)

    Heděnec, Petr; Ustak, Sergej; Novotný, David; Frouz, Jan

    2015-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  10. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy E.; Parker, Alexander E.; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, Stephen C.

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas. PMID:25674080

  11. Nocardioides endophyticus sp. nov. and Nocardioides conyzicola sp. nov., isolated from herbaceous plant roots.

    PubMed

    Han, Ji-Hye; Kim, Tae-Su; Joung, Yochan; Kim, Mi Na; Shin, Kee-Sun; Bae, Taeok; Kim, Seung Bum

    2013-12-01

    Two Gram-stain-positive, non-motile, non-spore-forming, rod-shaped actinobacterial strains were isolated from the surface-sterilized roots of mugwort (Artemisia princeps) and horse-weed (Conyza canadensis), and subjected to taxonomic characterization. 16S rRNA gene sequence analysis indicated that the isolates, designated MWE 3-5(T) and HWE 2-02(T), should be placed in the genus Nocardioides of the family Nocardioidaceae. The strains were closely related to Nocardioides hankookensis DS-30(T), which exhibited 16S rRNA gene sequence similarity values of 97.99 and 99.09 % with strains MWE 3-5(T) and HWE 2-02(T), respectively. The genome relatedness of N. hankookensis DS-30(T) with strain MWE 3-5(T) was 35.8 %, and that with strain HWE 2-02(T) was 36.4 %, whereas that between the two isolates was 43.2 %. Strains MWE 3-5(T) and HWE 2-02(T) possessed MK-8(H4) as the major isoprenoid quinone, and ll-diaminopimelic acid in the cell-wall peptidoglycan. The main fatty acids were iso-C16 : 0, iso-C17 : 0 and C18 : 1ω9c for strain MWE 3-5(T) and iso-C16 : 0, 10-methyl C18 : 0 and C18 : 1ω9c for strain HWE 2-02(T). Based on phenotypic, genotypic and phylogenetic studies, the following two novel species are proposed: Nocardioides endophyticus sp. nov. (type strain, MWE 3-5(T) = KCTC 29122(T) = JCM 18532(T)) and Nocardioides conyzicola sp. nov. (type strain, HWE 2-02(T) = KCTC 29121(T) = JCM 18531(T)). PMID:23990649

  12. Rhodococcus enclensis sp. nov., a novel member of the genus Rhodococcus.

    PubMed

    Dastager, Syed G; Mawlankar, Rahul; Tang, Shan-Kun; Krishnamurthi, Srinivasan; Ramana, V Venkata; Joseph, Neeta; Shouche, Yogesh S

    2014-08-01

    A novel actinobacterial strain, designated, NIO-1009(T), was isolated from a marine sediment sample collected from Chorao Island, Goa, India. Phylogenetic analysis comparisons based on 16S rRNA gene sequences between strain NIO-1009(T) and other members of the genus Rhodococcus revealed that strain NIO-1009(T) had the closest sequence similarity to Rhodococcus kroppenstedtii DSM 44908(T) and Rhodococcus corynebacterioides DSM 20151(T) with 99.2 and 99.1%, respectively. Furthermore, DNA-DNA hybridization results showed that R. kroppenstedtii DSM 44908(T) and R. corynebacterioides DSM 20151(T) were 39.5 (3.0%) and 41.7 (2.0%) with strain NIO-1009(T), respectively, which were well below the 70% limit for any novel species proposal. Phylogenetically strain NIO-1009(T) forms a stable clade with and R. kroppenstedtii DSM 44908(T) and R. corynebacterioides DSM 20151(T) with 100% bootstrap values. Strain NIO-1009(T) contained meso-diaminopimelic acid as the diagnostic diamino acid and galactose and arabinose as the cell wall sugars. The major fatty acids were C(16 : 0), C(18 : 1)ω9c, C(16 : 1)(ω6c and/or ω7c) and 10-methyl C(18 : 0). The only menaquinone detected was MK-8(H2), while the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unknown phospholipid. The G+C content of the genomic DNA was 66.9 mol%. The phenotypic and genotypic data showed that strain NIO-1009(T) warrants recognition as a novel species of the genus Rhodococcus for which the name Rhodococcus enclensis sp. nov., is proposed; the type strain is NIO-1009(T) ( = NCIM 5452(T) = DSM 45688(T)). PMID:24854006

  13. MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models

    PubMed Central

    Gevorgyan, Albert; Kierzek, Andrzej M.; Breitling, Rainer; Takano, Eriko

    2012-01-01

    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads. PMID:23272111

  14. Streptomyces gramineus sp. nov., an antibiotic-producing actinobacterium isolated from bamboo (Sasa borealis) rhizosphere soil.

    PubMed

    Lee, Hyo-Jin; Han, Song-Ih; Whang, Kyung-Sook

    2012-04-01

    Two actinobacterial strains, JR-43T and JR-4, were isolated from bamboo (Sasa borealis) rhizosphere soil. The isolates produced grey aerial mycelium and a yellow soluble pigment on ISP 4. Microscopic observation revealed that strains JR-43T and JR-4 produced rectiflexibiles spore chains with spiny surfaces. Both isolates had antibacterial activity against plant-pathogenic bacteria, such as Xanthomonas campestris LMG 568T and Xanthomonas axonopodis pv. vesicatoria LMG 905. The isolates contained iso-C14:0, iso-C15:0, anteiso-C15:0 and iso-C16:0 as the major fatty acids and MK-9(H6) and MK-9(H8) as the major isoprenoid quinones. Phylogenetic analysis of the 16S rRNA gene sequences of strains JR-43T and JR-4 showed that they grouped within Streptomyces cluster II and had highest sequence similarity to Streptomyces seoulensis NBRC 16668T and Streptomyces recifensis NBRC 12813T (both 98.2 % 16S rRNA gene sequence similarity). DNA-DNA relatedness between strain JR-43T and S. seoulensis NBRC 16668T and S. recifensis NBRC 12813T ranged from 31.42 to 42.92 %. Based on DNA-DNA relatedness and morphological and phenotypic data, strains JR-43T and JR-4 could be distinguished from the type strains of phylogenetically related species. They are therefore considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces gramineus sp. nov. is proposed. The type strain is JR-43T (=KACC 15079T=NBRC 107863T). Strain JR-4 (=KACC 15078= NBRC 107864) is a reference strain [corrected]. PMID:21622836

  15. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  16. A Walk into the LuxR Regulators of Actinobacteria: Phylogenomic Distribution and Functional Diversity

    PubMed Central

    Santos, Catarina Lopes; Correia-Neves, Margarida; Moradas-Ferreira, Pedro; Mendes, Marta Vaz

    2012-01-01

    LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH) transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS) mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on Gram-negative organisms, and the presence of LuxR regulators in the Gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53%) this domain was REC (receiver domain), suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field. PMID:23056438

  17. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    PubMed

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  18. Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2011-03-01

    A novel actinobacterium, designated PNP1(T), was isolated from a wastewater treatment plant at a pesticide factory by selective enrichment with para-nitrophenol. The strictly aerobic strain PNP1(T) grew with para-nitrophenol as the sole carbon and energy source. Metabolism of para-nitrophenol resulted in the stoichiometric release of nitrite. When incubated with both para-nitrophenol and acetate, para-nitrophenol was degraded and utilized as growth substrate prior to acetate. When grown on acetate (in the absence of ammonium) both nitrite and nitrate served as nitrogen sources, nitrate being quantitatively reduced to nitrite which accumulated in cultures during aerobic growth. Cells were coccoid and stained Gram-positive, were non-motile and did not form endospores. Colonies of strain PNP1(T) on agar medium were bright yellow, circular and smooth. The dominant menaquinone was MK-8(H(2)) (54%) and the major cellular fatty acid was anteiso C15:0 (75%). Strain PNP1(T) grew optimally at 27°C, at pH 8-8.5, at salinities 3% (w/v) NaCl, yet exhibited a substantial halotolerance with growth occurring at salinities up to 17% (w/v) NaCl. In addition to para-nitrophenol, a range of sugars, short chain fatty acids and alcohols served as electron donors for growth. The DNA G + C mol% was 68%. The genotypic and phenotypic properties suggest that strain PNP1(T) represents a novel species of the actinobacterial genus Citricoccus for which the name Citricoccus nitrophenolicus is proposed. It is the first member of this genus that has been reported to hydrolyze and grow on para-nitrophenol. The type strain is PNP1(T) (=DSM 23311(T) = CCUG 59571(T)). PMID:20882410

  19. Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria.

    PubMed

    Ahmed, Iftikhar; Kudo, Takuji; Abbas, Saira; Ehsan, Muhammad; Iino, Takao; Fujiwara, Toru; Ohkuma, Moriya

    2014-07-01

    A rod-shaped, motile, facultatively anaerobic and moderately halotolerant plant-growth-promoting actinobacterial strain, designated NCCP-11(T), was isolated from paddy grains. To delineate its taxonomic position, the strain was subjected to a polyphasic characterization. Cells of strain NCCP-11(T) grew at 10-37 °C (optimum 28-32 °C), at pH 6-9 (optimum pH 7) and in 0-12% (w/v) NaCl (optimum 1-2%) in broth medium. Based on 16S rRNA gene sequence analysis, strain NCCP-11(T) showed highest similarity to the type strains of Cellulomonas hominis (98.99%) and Cellulomonas denverensis (98.09 %) and less than 97 % with other closely related taxa. The chemotaxonomic data [major menaquinone: MK-9(H4); cell-wall peptidoglycan: type A4β; major fatty acids: anteiso-C15 : 0, C16 : 0, C14 : 0 and anteiso-C17 : 0; major polar lipids: diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides and two unknown polar lipids] also supported the affiliation of strain NCCP-11(T) to the genus Cellulomonas. The level of DNA-DNA relatedness between strain NCCP-11(T) and the two type strains mentioned above was less than 42.7%. On the basis of DNA-DNA relatedness, physiological and biochemical characteristics and phylogenetic position, strain NCCP-11(T) can be differentiated from species of the genus Cellulomonas with validly published names and thus represents a novel species, for which the name Cellulomonas pakistanensis sp. nov. is proposed. The type strain is NCCP-11(T) ( = DSM 24792(T) = JCM 18755(T) = KCTC 19798(T)). PMID:24733176

  20. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    PubMed

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)). PMID:27209413

  1. Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa).

    PubMed

    Thanaboripat, Dusanee; Thawai, Chitti; Kittiwongwattana, Chokchai; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak

    2015-11-01

    An actinobacterial strain, DCWR9-8-2(T), was isolated from a leaf of Thai upland rice (Oryza sativa) collected in Chumporn province, Thailand. Strain DCWR9-8-2(T) is Gram-stain-positive aerobic bacteria that produce single spores directly on the vegetative hypha. Cell wall peptidoglycan of this strain exhibits meso-diaminopimelic acid and glycine, the reducing sugars of whole-cell hydrolysate are arabinose, glucose, ribose, xylose and small amount of mannose. The phospholipid profiles in the membrane are comprised of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides. The major menaquinones are MK-9(H4) and MK-10(H6). The diagnostic cellular fatty acids are iso-C16:0 and iso-C15:0. The G+C content of the genomic DNA is 72.5 mol%. The result of 16S rRNA sequence analysis of the strain revealed that this strain was closely related to Micromonospora auratinigra TT1-11(T) (99.25%). On the other hand, the result of gyrB gene sequence analysis revealed that this strain was closed to M. eburnea JCM 12345(T) (96.30%). In addition, a combination of DNA-DNA hybridization results and some phenotypic properties supported that this strain should be judged as a novel species of the genus Micromonospora, for which the name M. endophytica sp. nov. is proposed. The type strain is DCWR9-8-2(T) (=BCC 67267(T)=NBRC 110008(T)). PMID:25966850

  2. Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand.

    PubMed

    Montero-Calasanz, Maria del Carmen; Göker, Markus; Pötter, Gabriele; Rohde, Manfred; Spröer, Cathrin; Schumann, Peter; Klenk, Hans-Peter; Gorbushina, Anna A

    2013-06-01

    A novel Gram-positive, multiloculated thalli-forming, aerobic, actinobacterial strain, CF9/1/1(T), was isolated in 2007 during environmental screening for xerophilic fungi in arid desert soil from the Sahara desert, Chad. The isolate grew best at a temperature range of 20-35 °C and at pH 6.0-8.5 and with 0-4% (w/v) NaCl, forming black-coloured and irregular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the novel strain was 75.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, a not yet structurally identified aminophospholipid and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose was a diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C16:0 and iso-C15:0. The 16S rRNA gene sequence of the isolate showed 94.6-97.0% sequence similarities with those of five members of the genus: Geodermatophilus ruber DSM 45317(T) (94.6%), Geodermatophilus obscurus DSM 43160(T) (94.8%), Geodermatophilus siccatus DSM 45419(T) (96.2%), Geodermatophilus nigrescens DSM 45408(T) (96.7%) and Geodermatophilus arenarius DSM 45418(T) (97.0%). Based on the evidence from this polyphasic taxonomic study, a novel species, Geodermatophilus telluris sp. nov., is proposed; the type strain is CF9/1/1(T) (=DSM 45421(T)=CCUG 62764(T)). PMID:23159748

  3. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation. PMID:24695826

  4. The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogen’s lifestyle

    PubMed Central

    2013-01-01

    Background Nocardia cyriacigeorgica is recognized as one of the most prevalent etiological agents of human nocardiosis. Human exposure to these Actinobacteria stems from direct contact with contaminated environmental matrices. The full genome sequence of N. cyriacigeorgica strain GUH-2 was studied to infer major trends in its evolution, including the acquisition of novel genetic elements that could explain its ability to thrive in multiple habitats. Results N. cyriacigeorgica strain GUH-2 genome size is 6.19 Mb-long, 82.7% of its CDS have homologs in at least another actinobacterial genome, and 74.5% of these are found in N. farcinica. Among N. cyriacigeorgica specific CDS, some are likely implicated in niche specialization such as those involved in denitrification and RuBisCO production, and are found in regions of genomic plasticity (RGP). Overall, 22 RGP were identified in this genome, representing 11.4% of its content. Some of these RGP encode a recombinase and IS elements which are indicative of genomic instability. CDS playing part in virulence were identified in this genome such as those involved in mammalian cell entry or encoding a superoxide dismutase. CDS encoding non ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) were identified, with some being likely involved in the synthesis of siderophores and toxins. COG analyses showed this genome to have an organization similar to environmental Actinobacteria. Conclusion N. cyriacigeorgica GUH-2 genome shows features suggesting a diversification from an ancestral saprophytic state. GUH-2 ability at acquiring foreign DNA was found significant and to have led to functional changes likely beneficial for its environmental cycle and opportunistic colonization of a human host. PMID:23622346

  5. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria

    PubMed Central

    Lynch, Ryan C.; Darcy, John L.; Kane, Nolan C.; Nemergut, Diana R.; Schmidt, Steve K.

    2014-01-01

    Previous surveys of very dry Atacama Desert mineral soils have consistently revealed sparse communities of non-photosynthetic microbes. The functional nature of these microorganisms remains debatable given the harshness of the environment and low levels of biomass and diversity. The aim of this study was to gain an understanding of the phylogenetic community structure and metabolic potential of a low-diversity mineral soil metagenome that was collected from a high-elevation Atacama Desert volcano debris field. We pooled DNA extractions from over 15 g of volcanic material, and using whole genome shotgun sequencing, observed only 75–78 total 16S rRNA gene OTUs3%. The phylogenetic structure of this community is significantly under dispersed, with actinobacterial lineages making up 97.9–98.6% of the 16S rRNA genes, suggesting a high degree of environmental selection. Due to this low diversity and uneven community composition, we assembled and analyzed the metabolic pathways of the most abundant genome, a Pseudonocardia sp. (56–72% of total 16S genes). Our assembly and binning efforts yielded almost 4.9 Mb of Pseudonocardia sp. contigs, which accounts for an estimated 99.3% of its non-repetitive genomic content. This genome contains a limited array of carbohydrate catabolic pathways, but encodes for CO2 fixation via the Calvin cycle. The genome also encodes complete pathways for the catabolism of various trace gases (H2, CO and several organic C1 compounds) and the assimilation of ammonia and nitrate. We compared genomic content among related Pseudonocardia spp. and estimated rates of non-synonymous and synonymous nucleic acid substitutions between protein coding homologs. Collectively, these comparative analyses suggest that the community structure and various functional genes have undergone strong selection in the nutrient poor desert mineral soils and high-elevation atmospheric conditions. PMID:25566214

  6. The Human Nasal Microbiota and Staphylococcus aureus Carriage

    PubMed Central

    Frank, Daniel N.; Feazel, Leah M.; Bessesen, Mary T.; Price, Connie S.; Janoff, Edward N.; Pace, Norman R.

    2010-01-01

    Background Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of ∼50% of healthy adults, whereas ∼50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization. Methodology/Principal Findings Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers). Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp.), with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp). In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0