Science.gov

Sample records for actinobacterium designated strain

  1. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata.

    PubMed

    de Oliveira, Luciana G; Tormet Gonzalez, Gabriela D; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content. PMID:24994795

  2. Genome Sequence of the Atypical Symbiotic Frankia R43 Strain, a Nitrogen-Fixing and Hydrogen-Producing Actinobacterium

    PubMed Central

    Bolotin, Alexander; Fournier, Pascale; Sorokin, Alexei; Lapidus, Alla; Richau, Kerstin H.; Briolay, Jerome; Mebarki, Farida; Normand, Philippe

    2015-01-01

    Frankia strain R43 is a nitrogen-fixing and hydrogen-producing symbiotic actinobacterium that was isolated from nodules of Casuarina cunninghamiana but infects only Elaeagnaceae. This communication reports the genome of the strain R43 and provides insights into the microbe genomics and physiological potentials. PMID:26607894

  3. Genome Sequence of the Atypical Symbiotic Frankia R43 Strain, a Nitrogen-Fixing and Hydrogen-Producing Actinobacterium.

    PubMed

    Pujic, Petar; Bolotin, Alexander; Fournier, Pascale; Sorokin, Alexei; Lapidus, Alla; Richau, Kerstin H; Briolay, Jerome; Mebarki, Farida; Normand, Philippe; Sellstedt, Anita

    2015-01-01

    Frankia strain R43 is a nitrogen-fixing and hydrogen-producing symbiotic actinobacterium that was isolated from nodules of Casuarina cunninghamiana but infects only Elaeagnaceae. This communication reports the genome of the strain R43 and provides insights into the microbe genomics and physiological potentials. PMID:26607894

  4. Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils.

    PubMed

    Nouioui, Imen; Beauchemin, Nicholas; Cantor, Michael N; Chen, Amy; Detter, J Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wall, Luis; Wei, Chia-Lin; Woyke, Tanja; Tisa, Louis S

    2013-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale. PMID:23846272

  5. Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis.

    PubMed

    Wall, Luis G; Beauchemin, Nicholas; Cantor, Michael N; Chaia, Eugenia; Chen, Amy; Detter, J Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P; Nouioui, Imen; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wei, Chia-Lin; Woyke, Tanja; Tisa, Louis S

    2013-01-01

    Frankia forms a nitrogen-fixing symbiosis with actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis grown in the Patagonia region of Argentina. PMID:23846281

  6. Draft Genome Sequence of Frankia sp. Strain CcI6, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana

    PubMed Central

    Mansour, Samira R.; Oshone, Rediet; Hurst, Sheldon G.; Morris, Krystalynne; Thomas, W. Kelley

    2014-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a 5.57-Mbp draft genome sequence for Frankia sp. strain CcI6, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casurina cunninghamiana grown in Egyptian soils. PMID:24435877

  7. Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida.

    PubMed

    Sen, Arnab; Beauchemin, Nicholas; Bruce, David; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Deshpande, Shweta; Detter, Chris; Furnholm, Teal; Ghodbhane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Land, Miriam L; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina L; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Wishart, Jessie; Tisa, Louis S

    2013-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida. PMID:23516220

  8. Draft Genome Sequence of Frankia sp. Strain CcI6, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana.

    PubMed

    Mansour, Samira R; Oshone, Rediet; Hurst, Sheldon G; Morris, Krystalynne; Thomas, W Kelley; Tisa, Louis S

    2014-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a 5.57-Mbp draft genome sequence for Frankia sp. strain CcI6, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casurina cunninghamiana grown in Egyptian soils. PMID:24435877

  9. Draft Genome Sequence of Frankia sp. Strain BMG5.23, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia

    PubMed Central

    Ghodhbane-Gtari, Faten; Hurst, Sheldon G.; Oshone, Rediet; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Ktari, Amir; Salem, Karima; Gtari, Maher

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.27-Mbp draft genome sequence for Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casuarina glauca collected in Tunisia. PMID:24874687

  10. Draft Genome Sequence of Frankia sp. Strain BMG5.23, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia.

    PubMed

    Ghodhbane-Gtari, Faten; Hurst, Sheldon G; Oshone, Rediet; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.27-Mbp draft genome sequence for Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casuarina glauca collected in Tunisia. PMID:24874687

  11. Draft Genome Sequence of Kocuria rhizophila strain TPW45, an Actinobacterium Isolated from Freshwater

    PubMed Central

    Adrian, Tan-Guan-Sheng; Tan, Pui-Wan; Chen, Jian-Woon; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Kocuria rhizophila is a ubiquitous bacterium which is well known for its industrial value. Here, we present the draft genome of Kocuria rhizophila strain TPW45 which was isolated from Sungai Gabai, Selangor, Malaysia. The assembled genome comprised of 46 contigs and the estimated genome size is 2.7 Mb. Based on the RAST annotation, a gene cluster responsible for aromatic compound degradation was identified in this strain. PMID:27326264

  12. Genome sequence of the Fleming strain of Micrococcus luteus, a simple free- living actinobacterium

    SciTech Connect

    Young, Michael; Artsatbanov, Vladislav; Beller, Harry R.; Chandra, Govind; Chater, Keith F.; Dover, Lynn G.; Goh, Ee-Been; Kahan, Tamar; Kaprelyants, Arseny S.; Kyrpides, Nikos; Lapidus, Alla; Lowry, Stephen R.; Lykidis, Athanasios; Mahillon, Jacques; Markowitz, Viktor; Mavrommatis, Konstantinos; Mukamolova, Galina V.; Oren, Aharon; Rokem, J. Stefan; Smith, Margaret C. M.; Young, Danielle I.; Greenblatt, Charles L.

    2009-11-01

    Micrococcus luteus (NCTC2665, Fleming strain) has one of the smallest genomes of free living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content 73%) predicted to encode 2403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 IS elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and fourteen response regulators, indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to {Beta}-lactam antibiotics may result from the presence of a reduced set of penicillin binding proteins and the absence of a wblC gene, which plays an important role in antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose, and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three gene cluster essential for this metabolism has been identified in the genome.

  13. Draft Genome Sequence of Frankia sp. Strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt

    PubMed Central

    Hurst, Sheldon G.; Oshone, Rediet; Ghodhbane-Gtari, Faten; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Ktari, Amir; Salem, Karima; Mansour, Samira; Gtari, Maher

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt. PMID:24855310

  14. Draft Genome sequence of Frankia sp. Strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida

    SciTech Connect

    Sen, Arnab; Beauchemin, Nicholas; Bruce, David; Chain, Patrick S. G.; Chen, Amy; Davenport, Karen W.; Deshpande, Shweta; Detter, J. Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne A.; Gtari, Maher; Han, James; Huntemann, Marcel; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Markowitz, Victor; Mavromatis, K; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Wishart, Jessie; Tisa, Louis S.

    2013-01-01

    Members of actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. stain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.

  15. Draft Genome Sequence of Frankia sp. Strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt.

    PubMed

    Hurst, Sheldon G; Oshone, Rediet; Ghodhbane-Gtari, Faten; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Mansour, Samira; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt. PMID:24855310

  16. Genome Sequence of Radiation-Resistant Modestobacter marinus Strain BC501, a Representative Actinobacterium That Thrives on Calcareous Stone Surfaces

    PubMed Central

    Normand, Philippe; Gury, Jérôme; Pujic, Petar; Chouaia, Bessem; Crotti, Elena; Brusetti, Lorenzo; Daffonchio, Daniele; Vacherie, Benoit; Barbe, Valérie; Médigue, Claudine; Calteau, Alexandra; Ghodhbane-Gtari, Faten; Essoussi, Imen; Nouioui, Imen; Abbassi-Ghozzi, Ines

    2012-01-01

    Here we report the full genome sequence of Modestobacter marinus strain BC501, an actinobacterial isolate that thrives on stone surfaces. The generated chromosome is circular, with a length of 5.57 Mb and a G+C content of 74.13%, containing 5,445 protein-coding genes, 48 tRNAs, and 3 ribosomal operons. PMID:22887672

  17. Saccharothrix carnea sp. nov., an actinobacterium isolated from soil.

    PubMed

    Liu, Chongxi; Guan, Xuejiao; Wang, Shurui; Zhao, Junwei; Wang, Haiyan; He, Hairong; Xiang, Wensheng; Wang, Xiangjing

    2014-12-01

    A novel actinobacterium, designated strain NEAU-yn17(T), was isolated from a soil sample collected at the wastewater discharge site of a pesticide factory in Harbin, northern China, and characterized using a polyphasic approach. Morphological and chemotaxonomic properties of strain NEAU-yn17(T) were consistent with the description of the genus Saccharothrix, such as the spore arrangement, the diamino acid of the peptidoglycan, the whole-cell hydrolysates, the predominant menaquinone and the phospholipid profile. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain NEAU-yn17(T) should also be classified in the genus Saccharothrix, with Saccharothrix saharensis DSM 45456(T) (99.52 % sequence similarity) and Saccharothrix xinjiangensis JCM 12329(T) (99.04 %) as the nearest phylogenetic relatives. A combination of DNA-DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-yn17(T) can be distinguished from its closest relatives. Therefore, strain NEAU-yn17(T) represents a novel species of the genus Saccharothrix, for which the name Saccharothrix carnea sp. nov. is proposed. The type strain is NEAU-yn17(T) ( = CGMCC 4.7097(T) = DSM 45878(T)). PMID:25256705

  18. Cellulosimicrobium marinum sp. nov., an actinobacterium isolated from sea sediment.

    PubMed

    Hamada, Moriyuki; Shibata, Chiyo; Tamura, Tomohiko; Nurkanto, Arif; Ratnakomala, Shanti; Lisdiyanti, Puspita; Suzuki, Ken-Ichiro

    2016-07-01

    A novel Gram stain positive actinobacterium, designated RS-7-4(T), was isolated from a sea sediment sample collected in Indonesia, and its taxonomic position was investigated using a polyphasic approach. Strain RS-7-4(T) was observed to form vegetative hyphae in the early phase of growth, but the hyphae eventually fragmented into short rods to coccoid cells. Growth occurred at 15-37 °C, pH 6.0-11.0 and in the presence of 0-7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain RS-7-4(T) was closely related to the members of the genus Cellulosimicrobium, with a similarity range of 98.08-99.10 %. The peptidoglycan type of strain RS-7-4(T) was found to be A4α L-Lys-L-Thr-D-Asp. The predominant menaquinone was MK-9(H4), and the major fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0. The DNA G+C content was 75.6 mol%. These chemotaxonomic features corresponded to those of the genus Cellulosimicrobium. Meanwhile, the results of DNA-DNA hybridization, and physiological and biochemical tests revealed that strain RS-7-4(T) was different from the recognized species of the genus Cellulosimicrobium. Therefore, strain RS-7-4(T) represents a novel species of the genus Cellulosimicrobium, for which the name Cellulosimicrobium marinum sp. nov. is proposed. The type strain is RS-7-4(T) (=NBRC 110994(T) =InaCC A726(T)). PMID:26905395

  19. Streptosporangium saharense sp. nov., an actinobacterium isolated from Saharan soil.

    PubMed

    Chaabane Chaouch, Fawzia; Bouras, Noureddine; Mokrane, Salim; Zitouni, Abdelghani; Schumann, Peter; Spröer, Cathrin; Sabaou, Nasserdine; Klenk, Hans-Peter

    2016-03-01

    A novel actinobacterium, designated strain SG20T, was isolated from a Saharan soil sample collected from Béni-isguen (Mzab), Ghardaïa province, southern Algeria. The micro-organism developed small roundish sporangia on aerial mycelium that were sessile or carried by very short sporangiophores. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the whole-cell sugars comprised glucose, ribose and mannose, but madurose was not detected. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were iso-C16 : 0 and C16 : 0. The phospholipids detected were diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and unknown lipids. The phenotypic and chemotaxonomic characteristics of the novel strain resembled those of recognized members of the genus Streptosporangium. Moreover, phylogenetic analysis based on a 16S rRNA gene sequence generated from the strain identified its closest relative as Streptosporangium jomthongense BCC 53154T (98.5 % similarity), which produces single spores on aerial mycelium, but no sporangia. In hybridization experiments, the DNA-DNA relatedness values recorded between strain SG20T and S. jomthongense DSM 46822T fell well below 70 %. On the basis of phenotypic and genotypic data, strain SG20T can be distinguished as representing a novel species of the genus Streptosporangium, for which the name Streptosporangium saharense sp. nov. is proposed. The type strain is SG20T ( = DSM 46743T = CECT 8840T). PMID:26755450

  20. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China.

    PubMed

    Tang, Shu-Kun; Wang, Yun; Lou, Kai; Mao, Pei-Hong; Xu, Li-Hua; Jiang, Cheng-Lin; Kim, Chang-Jin; Li, Wen-Jun

    2009-06-01

    A Gram-positive actinobacterium, designated strain YIM 90716(T), was isolated from a saline soil sample collected from Ganjiahu Suosuo Forest National Nature Reserve in Xinjiang Province, north-west China. The new isolate contained lysine, glutamic acid and alanine with peptidoglycan type Lys-Ala(3) (variation A3alpha). The major phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The predominant menaqinone was MK-7(H(2)). The major fatty acids were anteiso-C(15 : 0), iso-C(16 : 0) and anteiso-C(17 : 0). The DNA G+C content of strain YIM 90716(T) was 68.0 mol%. Chemotaxonomic properties supported the affiliation of strain YIM 90716(T) to the genus Kocuria. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism was related most closely to Kocuria kristinae DSM 20032(T) (96.8 % similarity) and showed lower levels of 16S rRNA gene similarity (<96.5 %) with the type strains of other species of the genus Kocuria. The results of fatty acid analysis and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain YIM 90716(T) from its closest relatives. On the basis of data from the present polyphasic study, strain YIM 90716(T) is considered to represent a novel species of the genus Kocuria, for which the name Kocuria halotolerans sp. nov. is proposed. The type strain is YIM 90716(T) (=DSM 18442(T)=KCTC 19172(T)=CCTCC AB 206069(T)). PMID:19502308

  1. Modestobacter lacusdianchii sp. nov., a Phosphate-Solubilizing Actinobacterium with Ability to Promote Microcystis Growth.

    PubMed

    Zhang, Bing-Huo; Salam, Nimaichand; Cheng, Juan; Li, Han-Quan; Yang, Jian-Yuan; Zha, Dai-Ming; Zhang, Yu-Qin; Ai, Meng-Jie; Hozzein, Wael N; Li, Wen-Jun

    2016-01-01

    A novel actinobacterium, designated strain JXJ CY 19T, was isolated from a culture mat of Microcystis aeruginosa FACHB-905 collected from Dianchi Lake, South-west China. 16S rRNA gene sequences comparison of strain JXJ CY 19T and the available sequences in the GenBank database showed that the strain was closely related to Modestobacter marinus 42H12-1T (99.1% similarity) and Modestobacter roseus KLBMP 1279T (99.0%). The isolate had meso-diaminopimelic in the cell wall with whole-cell sugars of mannose, rhamnose, ribose, glucose, galactose, and arabinose. The menaquinone detected was MK-9(H4), while the major cellular fatty acids include C17:1 ω8c, C15:0 iso, C15:1 iso G and C16:0 iso. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified phospholipid. The DNA-DNA hybridization values between strains JXJ CY 19T and the closely related type strains Modestobacter marinus CGMCC 4.5581T and Modestobacter roseus NBRC 108673T were determined to be 50.8 ± 0.8% and 44.1 ± 1.7%, respectively. The DNA G+C content was 71.9 mol%. On the basis of the above taxonomic data and differences in physiological characters from the closely related type strains, strain JXJ CY 19T was recognized as a novel species of the genus Modestobacter, for which the name Modestobacter lacusdianchii sp. nov. (JXJ CY 19T = KCTC 39600T = CPCC 204352T) is proposed. The type strain JXJ CY 19T can solubilize calcium phosphate tribasic (Ca3(PO4)2), phytin and L-α-phosphatidylcholine. The phosphate-solubilizing property of the novel actinobacterium could be a possible factor for the increase in growth of Microcystis aeruginosa FACHB-905 in ecosystem where the amount of available soluble phosphate is limited such as Dianchi Lake. PMID:27537546

  2. Modestobacter lacusdianchii sp. nov., a Phosphate-Solubilizing Actinobacterium with Ability to Promote Microcystis Growth

    PubMed Central

    Cheng, Juan; Li, Han-Quan; Yang, Jian-Yuan; Zha, Dai-Ming; Zhang, Yu-Qin; Ai, Meng-Jie; Hozzein, Wael N.; Li, Wen-Jun

    2016-01-01

    A novel actinobacterium, designated strain JXJ CY 19T, was isolated from a culture mat of Microcystis aeruginosa FACHB-905 collected from Dianchi Lake, South-west China. 16S rRNA gene sequences comparison of strain JXJ CY 19T and the available sequences in the GenBank database showed that the strain was closely related to Modestobacter marinus 42H12-1T (99.1% similarity) and Modestobacter roseus KLBMP 1279T (99.0%). The isolate had meso-diaminopimelic in the cell wall with whole-cell sugars of mannose, rhamnose, ribose, glucose, galactose, and arabinose. The menaquinone detected was MK-9(H4), while the major cellular fatty acids include C17:1 ω8c, C15:0 iso, C15:1 iso G and C16:0 iso. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified phospholipid. The DNA-DNA hybridization values between strains JXJ CY 19T and the closely related type strains Modestobacter marinus CGMCC 4.5581T and Modestobacter roseus NBRC 108673T were determined to be 50.8 ± 0.8% and 44.1 ± 1.7%, respectively. The DNA G+C content was 71.9 mol%. On the basis of the above taxonomic data and differences in physiological characters from the closely related type strains, strain JXJ CY 19T was recognized as a novel species of the genus Modestobacter, for which the name Modestobacter lacusdianchii sp. nov. (JXJ CY 19T = KCTC 39600T = CPCC 204352T) is proposed. The type strain JXJ CY 19T can solubilize calcium phosphate tribasic (Ca3(PO4)2), phytin and L-α-phosphatidylcholine. The phosphate-solubilizing property of the novel actinobacterium could be a possible factor for the increase in growth of Microcystis aeruginosa FACHB-905 in ecosystem where the amount of available soluble phosphate is limited such as Dianchi Lake. PMID:27537546

  3. Permanent Draft Genome Sequence of Frankia sp. Strain Allo2, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Allocasuarina

    PubMed Central

    Oshone, Rediet; Ngom, Mariama; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Sy, Mame Ourèye; Champion, Antony; Thomas, W. Kelley

    2016-01-01

    Frankia sp. strain Allo2 is a member of Frankia lineage Ib, which is able to reinfect plants of the Casuarinaceae family, and exhibits a high level of salt tolerance compared to other isolates. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain Allo2 with a G+C content of 70.0% and 4,224 candidate protein-encoding genes. PMID:27198023

  4. Permanent Draft Genome Sequence of Frankia sp. Strain Allo2, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Allocasuarina.

    PubMed

    Oshone, Rediet; Ngom, Mariama; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Sy, Mame Ourèye; Champion, Antony; Thomas, W Kelley; Tisa, Louis S

    2016-01-01

    Frankia sp. strain Allo2 is a member of Frankia lineage Ib, which is able to reinfect plants of the Casuarinaceae family, and exhibits a high level of salt tolerance compared to other isolates. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain Allo2 with a G+C content of 70.0% and 4,224 candidate protein-encoding genes. PMID:27198023

  5. Permanent Draft Genome Sequence of Nocardia sp. BMG111209, an Actinobacterium Isolated from Nodules of Casuarina glauca.

    PubMed

    Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Gueddou, Abdellatif; Hezbri, Karima; Ktari, Amir; Louati, Moussa; Nouioui, Imen; Chen, Amy; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Pagani, Ioanna; Sen, Arnab; Wall, Luis; Woyke, Tanja; Gtari, Maher; Tisa, Louis S

    2016-01-01

    Nocardia sp. strain BMG111209 is a non-Frankia actinobacterium isolated from root nodules of Casuarina glauca in Tunisia. Here, we report the 9.1-Mbp draft genome sequence of Nocardia sp. strain BMG111209 with a G + C content of 69.19% and 8,122 candidate protein-encoding genes. PMID:27491997

  6. Permanent Draft Genome Sequence of Nocardia sp. BMG111209, an Actinobacterium Isolated from Nodules of Casuarina glauca

    PubMed Central

    Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Gueddou, Abdellatif; Hezbri, Karima; Ktari, Amir; Louati, Moussa; Nouioui, Imen; Chen, Amy; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Pagani, Ioanna; Sen, Arnab; Wall, Luis; Woyke, Tanja

    2016-01-01

    Nocardia sp. strain BMG111209 is a non-Frankia actinobacterium isolated from root nodules of Casuarina glauca in Tunisia. Here, we report the 9.1-Mbp draft genome sequence of Nocardia sp. strain BMG111209 with a G + C content of 69.19% and 8,122 candidate protein-encoding genes. PMID:27491997

  7. Permanent Draft Genome Sequence of Frankia sp. Strain ACN1ag, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Alnus glutinosa.

    PubMed

    Swanson, Erik; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Tisa, Louis S

    2015-01-01

    Frankia strain ACN1(ag) is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes. PMID:26679592

  8. Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales.

    PubMed

    Nouioui, Imen; Gtari, Maher; Göker, Markus; Ghodhbane-Gtari, Faten; Tisa, Louis S; Fernandez, Maria P; Normand, Philippe; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Reddy, T B K; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C; Klenk, Hans-Peter

    2016-01-01

    Frankia sp. strain G2 was originally isolated from Casuarina equisetifolia and is characterized by its ability to nodulate actinorhizal plants of the Rhamnales order, but not its original host. It represents one of the largest Frankia genomes so far sequenced (9.5 Mbp). PMID:27231368

  9. Permanent Draft Genome Sequence of Frankia sp. Strain ACN1ag, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Alnus glutinosa

    PubMed Central

    Swanson, Erik; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley

    2015-01-01

    Frankia strain ACN1ag is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes. PMID:26679592

  10. Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales

    PubMed Central

    Nouioui, Imen; Gtari, Maher; Göker, Markus; Ghodhbane-Gtari, Faten; Tisa, Louis S.; Fernandez, Maria P.; Normand, Philippe; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Reddy, T. B. K.; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C.

    2016-01-01

    Frankia sp. strain G2 was originally isolated from Casuarina equisetifolia and is characterized by its ability to nodulate actinorhizal plants of the Rhamnales order, but not its original host. It represents one of the largest Frankia genomes so far sequenced (9.5 Mbp). PMID:27231368

  11. Permanent Draft Genome Sequence for Frankia sp. Strain CeD, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina equistifolia Grown in Senegal

    PubMed Central

    Ngom, Mariama; Oshone, Rediet; Hurst, Sheldon G.; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Sy, Mame Ourèye; Champion, Antony; Thomas, W. Kelley

    2016-01-01

    Frankia strain CeD is a member of Frankia lineage Ib that is able to reinfect plants of the Casuarina families. Here, we report a 5.0-Mbp draft genome sequence with a G+C content of 70.1% and 3,847 candidate protein-encoding genes. PMID:27056238

  12. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt.

    PubMed

    Li, Wen-Jun; Zhang, Yu-Qin; Schumann, Peter; Chen, Hua-Hong; Hozzein, Wael N; Tian, Xin-Peng; Xu, Li-Hua; Jiang, Cheng-Lin

    2006-04-01

    A coccoid, non-motile actinobacterium, designated strain YIM 70003T, was isolated from a saline, alkaline, desert-soil sample from Egypt. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism formed a distinct phyletic line within the genus Kocuria and was most closely related to Kocuria polaris DSM 14382T (98.6 % sequence similarity) and Kocuria rosea DSM 20447T (98.2 %). Chemotaxonomic data, including the Lys-Ala3 peptidoglycan type, the presence of phosphatidylglycerol and diphosphatidylglycerol as the predominant phospholipids, the presence of MK-8(H2) and MK-9(H2) as the major menaquinones, the predominance of fatty acids ai-C(15 : 0) and i-C(15 : 0) and the DNA G+C content, also supported the affiliation of the isolate to the genus Kocuria. The low DNA-DNA relatedness with K. polaris DSM 14382T (56.6 %) and K. rosea DSM 20447T (15.5 %) in combination with phenotypic data show that strain YIM 70003T should be classified as a novel species of the genus Kocuria. The name Kocuria aegyptia sp. nov. is proposed, with strain YIM 70003T (=CCTCC AA203006T = CIP 107966T = KCTC 19010T = DSM 17006T) as the type strain. PMID:16585685

  13. Geodermatophilus sabuli sp. nov., a γ-radiation-resistant actinobacterium isolated from desert limestone.

    PubMed

    Hezbri, Karima; Ghodhbane-Gtari, Faten; Montero-Calasanz, Maria del Carmen; Sghaier, Haïtham; Rohde, Manfred; Schumann, Peter; Klenk, Hans-Peter; Gtari, Maher

    2015-10-01

    A novel γ-radiation-resistant and Gram-staining-positive actinobacterium designated BMG 8133T was isolated from a limestone collected in the Sahara desert of Tunisia. The strain produced dry, pale-pink colonies with an optimum growth at 35–40 °C and pH 6.5–8.0. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main polar lipids were phosphatidylcholine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and one unspecified glycolipid. MK-9(H4) was the dominant menaquinone. Galactose and glucose were detected as diagnostic sugars. The major cellular fatty acids were branched-chain saturated acids iso-C16 : 0 and iso-C15 : 0. The DNA G+C content of the novel strain was 74.5 %. The 16S rRNA gene sequence showed highest sequence identity with Geodermatophilus ruber (98.3 %). Based on phenotypic results and 16S rRNA gene sequence analysis, strain BMG 8133T is proposed to represent a novel species, Geodermatophilus sabuli sp. nov. The type strain is BMG 8133T ( = DSM 46844T = CECT 8820T). PMID:26297235

  14. Genome Features of the Endophytic Actinobacterium Micromonospora lupini Strain Lupac 08: On the Process of Adaptation to an Endophytic Life Style?

    PubMed Central

    Trujillo, Martha E.; Bacigalupe, Rodrigo; Pujic, Petar; Igarashi, Yasuhiro; Benito, Patricia; Riesco, Raúl; Médigue, Claudine; Normand, Philippe

    2014-01-01

    Endophytic microorganisms live inside plants for at least part of their life cycle. According to their life strategies, bacterial endophytes can be classified as “obligate” or “facultative”. Reports that members of the genus Micromonospora, Gram-positive Actinobacteria, are normal occupants of nitrogen-fixing nodules has opened up a question as to what is the ecological role of these bacteria in interactions with nitrogen-fixing plants and whether it is in a process of adaptation from a terrestrial to a facultative endophytic life. The aim of this work was to analyse the genome sequence of Micromonospora lupini Lupac 08 isolated from a nitrogen fixing nodule of the legume Lupinus angustifolius and to identify genomic traits that provide information on this new plant-microbe interaction. The genome of M. lupini contains a diverse array of genes that may help its survival in soil or in plant tissues, while the high number of putative plant degrading enzyme genes identified is quite surprising since this bacterium is not considered a plant-pathogen. Functionality of several of these genes was demonstrated in vitro, showing that Lupac 08 degraded carboxymethylcellulose, starch and xylan. In addition, the production of chitinases detected in vitro, indicates that strain Lupac 08 may also confer protection to the plant. Micromonospora species appears as new candidates in plant-microbe interactions with an important potential in agriculture and biotechnology. The current data strongly suggests that a beneficial effect is produced on the host-plant. PMID:25268993

  15. Rothia endophytica sp. nov., an actinobacterium isolated from Dysophylla stellata (Lour.) Benth.

    PubMed

    Xiong, Zi-Jun; Zhang, Jin-Li; Zhang, Dao-Feng; Zhou, Zhi-Li; Liu, Min-Jiao; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Li, Wen-Jun

    2013-11-01

    A novel endophytic actinobacterium, designated strain YIM 67072(T), was isolated from healthy roots of Dysophylla stellata (Lour.) Benth. Cells of this aerobic, cream-yellow-coloured strain occurred singly, in pairs or in tetrads, were Gram-stain-positive and ovoid- to spherical-shaped. Strain YIM 67072(T) grew at 4-45 °C, pH 5.0-10.0 and in the presence of 0-7 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 67072(T) belonged to the genus Rothia. The isolate contained MK-7 as the major component of the quinone system. The peptidoglycan type was A3α. The polar lipid profile consisted predominantly of diphosphatidylglycerol and glycolipids. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 53.2 mol%. However, strain YIM 67072(T) differed from its closest relatives Rothia nasimurium CCUG 35957(T) (98.5 % 16S rRNA gene sequence similarity), Rothia amarae JCM 11375(T) (97.6 %) and Rothia terrae L-143(T) (97.3 %) in many phenotypic characteristics. Moreover, the levels of DNA-DNA relatedness between the novel isolate and the three above-mentioned type strains were 28.7±1.3 %, 36.5±1.2 %, 46.8±1.5 %, respectively. Based on comparative analysis of physiological and chemotaxonomic data, strain YIM 67072(T) represents a novel species of the genus Rothia, for which the name Rothia endophytica sp. nov. is proposed. The type strain is YIM 67072(T) ( = DSM 26247(T) = JCM 18541(T)). PMID:23710050

  16. Lentzea guizhouensis sp. nov., a novel lithophilous actinobacterium isolated from limestone from the Karst area, Guizhou, China.

    PubMed

    Cao, Cheng-Liang; Zhou, Xiao-Qi; Qin, Sheng; Tao, Fa-Xiang; Jiang, Ji-Hong; Lian, Bin

    2015-12-01

    A novel filamentous actinobacterium, designated strain DHS C013(T), was isolated from limestone collected in Guizhou Province, South-west China. Morphological and chemotaxonomic characteristics of the strain support its assignment to the genus Lentzea. Phylogenetic analyses showed that strain DHS C013(T) is closely related to Lentzea jiangxiensis FXJ1.034(T) (98.7 % 16S rRNA gene similarity) and Lentzea flaviverrucosa 4.0578(T) (98.0 % 16S rRNA gene similarity), but it can be distinguished from these strains based on low levels of DNA:DNA relatedness (~44 and ~37 %, respectively). Physiological and biochemical tests also allowed phenotypic differentiation of the novel strain from these closely related species. On the basis of the evidence presented here, strain DHS C013(T) is concluded to represent a novel species of the genus Lentzea, for which the name Lentzea guizhouensis sp. nov. is proposed. The type strain is DHS C013(T) (=KCTC 29677(T) = CGMCC 4.7203(T)). PMID:26377575

  17. Dactylosporangium solaniradicis sp. nov., a novel actinobacterium isolated from a root of tomato (Solanum lycopersicum L.).

    PubMed

    Fan, Jianlong; Liu, Chongxi; Ma, Zhaoxu; Zhou, Shuyu; Li, Wenchao; Li, Jiansong; Chu, Liyang; Wang, Xiangjing; Xiang, Wensheng

    2016-07-01

    A novel actinobacterium, designated strain NEAU-FJL2(T), was isolated from a tomato root (Solanum lycopersicum L.) and characterised using a polyphasic approach. Morphological and chemotaxonomic properties of strain NEAU-FJL2(T) are consistent with the description of the genus Dactylosporangium. Finger-shaped sporangia were observed to form on short sporangiophores branching from the substrate hyphae. The cell wall peptidoglycan was found to contain meso- and 3-hydroxy-diaminopimelic acids; arabinose, mannose, rhamnose and xylose were found as whole-cell sugars. The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The predominant menaquinones were identified as MK-9(H8) and MK-9(H6). The major fatty acids were identified as iso-C16:0, C16:1 ω7c and iso-C15:0. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain NEAU-FJL2(T) belongs to the genus Dactylosporangium, with Dactylosporangium sucinum JCM 19831(T) (99.3 % 16S rRNA gene sequence similarity), Dactylosporangium darangshiense JCM 17441(T) (99.2 %), Dactylosporangium fulvum JCM 5631(T) (98.9 %) and Dactylosporangium roseum JCM 3364(T) (98.8 %) as the nearest phylogenetic relatives. However, a combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-FJL2(T) can be distinguished from them. Consequently, it is proposed that strain NEAU-FJL2(T) represents a novel species of the genus Dactylosporangium, for which the name Dactylosporangium solaniradicis sp. nov. is proposed. The type strain is NEAU-FJL2(T) (=CGMCC 4.7302(T) = DSM 100814(T)). PMID:27091125

  18. Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis C. A. Mey.

    PubMed

    Wang, Hong-Fei; Li, Li; Zhang, Yong-Guang; Hozzein, Wael N; Zhou, Xing-Kui; Liu, Wei-Hong; Duan, Yan-Qing; Li, Wen-Jun

    2015-07-01

    A Gram-staining-positive, white-coloured, aerobic, non-motile, catalase-positive and oxidase-negative, endophytic actinobacterium, designated strain EGI 6500322(T), was isolated from the surface-sterilized root of the halophyte Salsola affinis C. A. Mey collected from Urumqi, Xinjiang province, north-west China. Growth occurred at 5-35 °C (optimum 25-30 °C), at pH 5-10 (optimum pH 7-8) and with 0-13% NaCl (w/v) (optimum 0-5%). The predominant menaquinone was MK-9 (93.1%). The major cellular fatty acids were anteiso-C15:0 (49.5%) and iso-C15:0 (15.1%). The cell-wall peptidoglycan contained lysine, alanine and glutamic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown phospholipids and one unknown glycolipid. The DNA G+C content of strain EGI 6500322(T) was 62.0 mol%. Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain EGI 6500322(T) were identified as Arthrobacter ardleyensis DSM 17432(T) (98.38%) and Arthrobacter bergerei DSM 16367(T (98.37%). The DNA-DNA relatedness between strain EGI 6500322(T) and Arthrobacter ardleyensis DSM 17432(T) and Arthrobacter bergerei DSM 16367(T) was 53.4 ± 4.1% and 30.5 ± 1.7%, respectively. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA-DNA hybridization data, strain EGI 6500322(T) should represent a novel species of the genus Arthrobacter, for which the name Arthrobacter endophyticus sp. nov. is proposed. The type strain is EGI 6500322(T) ( =  CTC 29490(T) = JCM 30091(T)). PMID:25858247

  19. Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera.

    PubMed

    Prakash, Om; Nimonkar, Yogesh; Munot, Hitendra; Sharma, Avinash; Vemuluri, Venkata Ramana; Chavadar, Mahesh S; Shouche, Yogesh S

    2014-10-01

    A yellow Gram-stain-positive, non-motile, non-endospore -forming, spherical endophytic actinobacterium, designated strain AE-6(T), was isolated from the inner fleshy leaf tissues of Aloe barbadensis (Aloe vera) collected from Pune, Maharashtra, India. Strain AE-6(T) grew at high salt concentrations [10% (w/v) NaCl], temperatures of 15-41 °C and a pH range of 5-12. It showed highest (99.7%) 16S rRNA gene sequence similarity with Micrococcus yunnanensis YIM 65004(T) followed by Micrococcus luteus NCTC 2665(T) (99.6%) and Micrococcus endophyticus YIM 56238(T) (99.0%). Ribosomal protein profiling by MALDI-TOF/MS also showed it was most closely related to M. yunnanensis YIM 65004(T) and M. luteus NCTC 2665(T). Like other members of the genus Micrococcus, strain AE-6(T) had a high content of branched chain fatty acids (iso-C15:0 and anteiso-C15:0). MK-8(H2) and MK-8 were the predominant isoprenoid quinones. Cell wall analysis showed an 'A2 L-Lys-peptide subunit' type of peptidoglycan and ribose to be the major cell wall sugar. The DNA G+C content was 70 mol%. Results of DNA-DNA hybridization of AE-6(T) with its closest relatives from the genus Micrococcus produced a value of less than 70%. Based on the results of this study, strain AE-6(T) could be clearly differentiated from other members of the genus Micrococcus. We propose that it represents a novel species of the genus Micrococcus and suggest the name Micrococcus aloeverae sp. nov., with strain AE-6(T) ( = MCC 2184(T) = DSM 27472(T)) as the type strain of the species. PMID:25048212

  20. Nakamurella endophytica sp. nov., a novel endophytic actinobacterium isolated from the bark of Kandelia candel.

    PubMed

    Tuo, Li; Li, Fei-Na; Pan, Zhen; Lou, Inchio; Guo, Min; Ming-Yuen Lee, Simon; Chen, Li; Hu, Lin; Sun, Cheng-Hang

    2016-03-01

    A Gram-stain-positive, aerobic, coccus-shaped, non-spore-forming actinobacterium, designated strain 2Q3S-4-2T, was isolated from the surface-sterilized bark of Kandelia candel, collected from Cotai Ecological Zones in Macao, PR China. It was tested using a polyphasic approach to determine its taxonomic position. Strain 2Q3S-4-2T grew optimally without NaCl at 28-30 °C and at pH 7.0. Substrate mycelia and aerial mycelia were not formed and no diffusible pigments were observed on the media tested. Phylogenetic analysis, based on 16S rRNA gene sequences, suggested that strain 2Q3S-4-2T belonged to the genus Nakamurella, sharing highest 16S rRNA gene sequence similarity with Nakamurella flavida DS-52T (96.76 %). The DNA G+C content of strain 2Q3S-4-2T was 67.8 mol%. The cell-wall peptidoglycan contained meso-diaminopimelic acid and MK-8(H4) was the predominant menaquinone. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipids and phosphatidylinositol. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and C16 : 0. On the basis of the phylogenetic, phenotypic and chemotaxonomic analysis, strain 2Q3S-4-2T represents a novel species of the genus Nakamurella, for which the name Nakamurella endophytica sp. nov. is proposed. The type strain is 2Q3S-4-2T ( = DSM 100722T = CGMCC 4.7308T). PMID:26813967

  1. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt.

    PubMed

    Puente-Sánchez, Fernando; Sánchez-Román, Mónica; Amils, Ricardo; Parro, Víctor

    2014-10-01

    A novel actinobacterium, designated IPBSL-7(T), was isolated from a drilling core 297 m deep obtained from the Iberian Pyrite Belt. The strain was isolated anaerobically using nitrate as the electron acceptor. 16S rRNA gene sequence analysis revealed that it was related to Tessaracoccus flavescens SST-39(T) (95.7% similarity), Tessaracoccus bendigoensis Ben 106(T) (95.7%), Tessaracoccus lubricantis KSS-17Se(T) (95.6%) and Tessaracoccus oleiagri SL014B-20A1(T) (95.0%), while its similarity to any other member of the family Propionibacteriaceae was less than 94%. Cells were non-motile, non-spore-forming, Gram-positive, oval to rod-shaped, and often appeared in pairs or small groups. The strain was facultatively anaerobic, oxidase-negative, catalase-positive and capable of reducing nitrate. Colonies were circular, convex, smooth and colourless. The organism could grow at between 15 and 40 °C, with an optimal growth at 37 °C. The pH range for growth was from pH 6 to 9, with pH 8 being the optimal value. Strain IPBSL-7(T) had peptidoglycan type A3-γ', with ll-diaminopimelic acid as the diagnostic diamino-acid and glycine at position 1 of the peptide subunit. The dominant menaquinone was MK-9(H4) (93.8%). The major cellular fatty acid was anteiso-C15:0 (55.0%). The DNA G+C content was 70.3 mol%. On the basis of phenotypic and phylogenetic results, strain IPBSL-7(T) can be differentiated from previously described species of the genus Tessaracoccus and, therefore, represents a novel species, for which the name Tessaracoccus lapidicaptus sp. nov. is proposed. The type strain is IPBSL-7(T) ( = CECT 8385(T) = DSM 27266(T)). PMID:25052391

  2. Genomic and Transcriptomic Studies of an RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine)-Degrading Actinobacterium

    PubMed Central

    Chen, Hao-Ping; Zhu, Song-Hua; Casabon, Israël; Hallam, Steven J.; Crocker, Fiona H.; Mohn, William W.

    2012-01-01

    Whole-genome sequencing, transcriptomic analyses, and metabolic reconstruction were used to investigate Gordonia sp. strain KTR9's ability to catabolize a range of compounds, including explosives and steroids. Aspects of this mycolic acid-containing actinobacterium's catabolic potential were experimentally verified and compared with those of rhodococci and mycobacteria. PMID:22923396

  3. Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium.

    PubMed

    Chen, Hao-Ping; Zhu, Song-Hua; Casabon, Israël; Hallam, Steven J; Crocker, Fiona H; Mohn, William W; Indest, Karl J; Eltis, Lindsay D

    2012-11-01

    Whole-genome sequencing, transcriptomic analyses, and metabolic reconstruction were used to investigate Gordonia sp. strain KTR9's ability to catabolize a range of compounds, including explosives and steroids. Aspects of this mycolic acid-containing actinobacterium's catabolic potential were experimentally verified and compared with those of rhodococci and mycobacteria. PMID:22923396

  4. Bounagaea algeriensis gen. nov., sp. nov., an extremely halophilic actinobacterium isolated from a Saharan soil of Algeria.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Mokrane, Salim; Zitouni, Abdelghani; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2015-08-01

    A novel halophilic actinobacterium strain, designated H8(T), was isolated from a Saharan soil sample collected in El-Goléa, South Algeria. Strain H8(T) was identified as representing a new genus using a polyphasic taxonomic approach. Phylogenetic analysis revealed that strain H8(T) shared the highest degree of 16S rRNA gene sequence similarity with 'Mzabimyces algeriensis' DSM 46680(T) (93.0 %), Saccharopolyspora ghardaiensis DSM 45606(T) (91.2 %), Halopolyspora alba DSM 45976(T) (90.8 %) and Actinopolyspora mortivallis DSM 44261(T) (90.0 %). The strain was found to grow optimally at 28-35 °C, at pH 6.0-7.0, and in the presence of 15-25 % (w/v) NaCl. The substrate mycelium was observed to be well developed and fragmented in liquid medium and on solid medium. The aerial mycelium was observed to be moderately abundant and to form long chains with non-motile, smooth-surfaced and ovoid or spherical spores at maturity. The cell wall of strain H8(T) was found to contain meso-diaminopimelic acid. The whole-cell hydrolysates were found to mainly contain arabinose and galactose. The diagnostic phospholipid detected was phosphatidylcholine, and MK-9(H4), MK-9(H2) and MK-10(H2) were found to be the predominant menaquinones. The major cellular fatty acids were determined to be anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content of strain H8(T) was determined to be 71.3 mol%. The genotypic and phenotypic data showed that the strain represents a novel genus and species, for which the name Bounagaea algeriensis gen. nov., sp. nov. is proposed, with the type strain H8(T) (=DSM 45966(T) = CECT 8470(T)). PMID:26050246

  5. Kocuria dechangensis sp. nov., an actinobacterium isolated from saline and alkaline soils.

    PubMed

    Wang, Kaibiao; Zhang, Lei; Liu, Yanshuang; Pan, Yuanyuan; Meng, Lin; Xu, Tong; Zhang, Cheng; Liu, Henan; Hong, Shan; Huang, Haipeng; Jiang, Juquan

    2015-09-01

    A Gram-stain positive, strictly aerobic, non-motile and coccus-shaped actinobacterium, designated strain NEAU-ST5-33(T), was isolated from saline and alkaline soils in Dechang Township, Zhaodong City, PR China. It formed beige-yellow colonies and grew at NaCl concentrations of 0-5% (w/v) (optimum 0%), at pH 6.0-9.0 (optimum pH 7.0) and over a temperature range of 4-50 °C (optimum 35 °C). Based on 16S rRNA gene sequence analysis, strain NEAU-ST5-33(T) was phylogenetically closely related to the type strains of species of the genus Kocuria, Kocuria polaris CMS 76or(T), Kocuria rosea DSM 20447(T), Kocuria turfanensis HO-9042(T), Kocuria aegyptia YIM 70003(T), Kocuria himachalensis K07-05(T) and Kocuria flava HO-9041(T), with respective sequence similarities of 98.8%, 98.8%, 98.3%, 98.1%, 98.1% and 97.9%. DNA-DNA hybridization relatedness values of strain NEAU-ST5-33(T) with type strains of the closely related species ranged from 54 ± 1% to 34 ± 1%. The DNA G+C content was 61.2 mol%. The major fatty acids (>5%) were C15 : 0 anteiso, C15 : 0 iso and C16 : 1ω7c and/or C16 : 1ω6c. The major menaquinone detected was MK-8 (H2), and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unknown aminolipid and one unknown lipid. On the basis of the genotypic, chemotaxonomic and phenotypic data, we propose that strain NEAU-ST5-33(T) represents a novel species of the genus Kocuria, with the name Kocuria dechangensis sp. nov. The type strain is NEAU-ST5-33(T) ( = CGMCC 1.12187(T) = DSM 25872(T)). PMID:26048314

  6. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    PubMed

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable. PMID:26956574

  7. Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse.

    PubMed

    Colin, Verónica L; Cortes, Álvaro A Juárez; Aparicio, Juan D; Amoroso, María J

    2016-02-01

    Vinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp. MC1 for vinasse treatment. Alternative use of raw vinasse as a substrate for producing metabolites of biotechnological interest such as bioemulsifiers, was also evaluated. The strain was able to grow at very high vinasse concentrations (until 50% v/v) and remove over 50% of the biodegradable organic matter in a time period as short as 4 d. Potentially toxic metals such as Mn, Fe, Zn, As, and Pb were also effectively removed during bacterial growth. Decrease in the pollution potential of treated vinasse compared to raw effluent, was reflected in a significant increase in the vigour index of Lactuca sativa (letucce) used as bioremediation indicator. Finally, significant bioemulsifier production was detected when this strain was incubated in a vinasse-based culture medium. These results represent the first advances on the recovery and re-valuation of an actual effluent, by using an actinobacterium from our collection of cultures. PMID:26421623

  8. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  9. Permanent Draft Genome Sequence for Frankia sp. Strain EI5c, a Single-Spore Isolate of a Nitrogen-Fixing Actinobacterium, Isolated from the Root Nodules of Elaeagnus angustifolia.

    PubMed

    D'Angelo, Timothy; Oshone, Rediet; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Thomas, W Kelley; Tisa, Louis S

    2016-01-01

    Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes. PMID:27389275

  10. Permanent Draft Genome Sequence for Frankia sp. Strain EI5c, a Single-Spore Isolate of a Nitrogen-Fixing Actinobacterium, Isolated from the Root Nodules of Elaeagnus angustifolia

    PubMed Central

    D’Angelo, Timothy; Oshone, Rediet; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Thomas, W. Kelley

    2016-01-01

    Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus. Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes. PMID:27389275

  11. Permanent Draft Genome Sequence of Frankia sp. Strain AvcI1, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Alnus viridis subsp. crispa Grown in Canada

    PubMed Central

    Swanson, Erik; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley

    2015-01-01

    Frankia strain AvcI1, isolated from root nodules of Alnus viridis subsp. crispa, is a member of Frankia lineage Ia, which is able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report a 7.7-Mbp draft genome sequence with a G+C content of 72.41% and 6,470 candidate protein-encoding genes. PMID:26722013

  12. Permanent Draft Genome Sequence of Frankia sp. Strain AvcI1, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Alnus viridis subsp. crispa Grown in Canada.

    PubMed

    Swanson, Erik; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Tisa, Louis S

    2015-01-01

    Frankia strain AvcI1, isolated from root nodules of Alnus viridis subsp. crispa, is a member of Frankia lineage Ia, which is able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report a 7.7-Mbp draft genome sequence with a G+C content of 72.41% and 6,470 candidate protein-encoding genes. PMID:26722013

  13. Design of minimally strained nucleic Acid nanotubes.

    PubMed

    Sherman, William B; Seeman, Nadrian C

    2006-06-15

    A practical theoretical framework is presented for designing and classifying minimally strained nucleic acid nanotubes. The structures are based on the double crossover motif where each double-helical domain is connected to each of its neighbors via two or more Holliday-junction-like reciprocal exchanges, such that each domain is parallel to the main tube axis. Modeling is based on a five-parameter characterization of the segmented double-helical structure. Once the constraint equations have been derived, the primary design problem for a minimally strained N-domain structure is reduced to solving three simultaneous equations in 2N+2 variables. Symmetry analysis and tube merging then allow for the design of a wide variety of tubes, which can be tailored to satisfy requirements such as specific inner and outer radii, or multiple lobed structures. The general form of the equations allows similar techniques to be applied to various nucleic acid helices: B-DNA, A-DNA, RNA, DNA-PNA, or others. Possible applications for such tubes include nanoscale scaffolding as well as custom-shaped enclosures for other nano-objects. PMID:16581842

  14. Actinomadura keratinilytica sp. nov., a keratin-degrading actinobacterium isolated from bovine manure compost.

    PubMed

    Puhl, Aaron A; Selinger, L Brent; McAllister, Tim A; Inglis, G Douglas

    2009-04-01

    A novel keratinolytic actinobacterium, strain WCC-2265(T), was isolated from bovine hoof keratin 'baited' into composting bovine manure from southern Alberta, Canada, and subjected to phenotypic and genotypic characterization. Strain WCC-2265(T) produced well-developed, non-fragmenting and extensively branched hyphae within substrates and aerial hyphae, from which spherical spores possessing spiny cell sheaths were produced in primarily flexuous or straight chains. The cell wall contained meso-diaminopimelic acid, whole-cell sugars were galactose, glucose, madurose and ribose, and the major menaquinones were MK-9(H(6)), MK-9(H(8)), MK-9(H(4)) and MK-9(H(2)). These characteristics suggested that the organism belonged to the genus Actinomadura and a comparative analysis of 16S rRNA gene sequences indicated that it formed a distinct clade within the genus. Strain WCC-2265(T) could be differentiated from other species of the genus Actinomadura by DNA-DNA hybridization, morphological and physiological characteristics and the predominance of iso-C(16 : 0), iso-C(17 : 0) and 10-methyl C(17 : 0) fatty acids. The broad range of phenotypic and genetic characters supported the suggestion that this organism represents a novel species of the genus Actinomadura, for which the name Actinomadura keratinilytica sp. nov. is proposed; the type strain is strain WCC-2265(T) (=DSM 45195(T)=CCUG 56181(T)). PMID:19329615

  15. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

    USGS Publications Warehouse

    Finster, K.W.; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, K.U.

    2009-01-01

    A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l-1) and MgCl2???6H 2O (3 g l-1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45??C, with an optimum between 35 and 40??C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T). ?? 2009 Springer Science+Business Media B.V.

  16. Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov.

    PubMed

    Zhang, Yong-Guang; Wang, Hong-Fei; Yang, Ling-Ling; Zhou, Xing-Kui; Zhi, Xiao-Yang; Duan, Yan-Qing; Xiao, Min; Zhang, Yuan-Ming; Li, Wen-Jun

    2016-01-01

    A novel obligately halophilic, facultatively alkaliphilic actinobacterium, designated EGI 80759T, was isolated from the rhizosphere of Tamarix hispida Willd, Karamay, Xinjiang province, north-west China. Cells of strain EGI 80759T were Gram-stain-positive, non-motile and non-endospore-forming rods. Strain EGI 80759T showed obligately halophilic growth with a tolerance to 8-25 % (w/v) NaCl (optimum growth at 10-12 %, w/v) and facultatively alkaliphilic growth within the pH range 7.0-11.0 (optimum growth at pH 9.0-10.0). Cell-wall hydrolysates of the isolate contained meso-diaminopimelic acid (peptidoglycan type A1γ), with glucose, glucosamine, ribose and mannose as the major sugars. The major fatty acids identified were 10-methyl-C17 : 0, C17 : 1ω8c and C17 : 0. The predominant menaquinone was MK-9(H4). The G+C content of the genomic DNA was 72.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain EGI 80759T clustered with members of the class Nitriliruptoria and showed highest 16S rRNA gene sequence similarities with Euzebya tangerina F10T (90.3 %) and Nitriliruptor alkaliphilus ANL-iso2T (88.1 %). On the basis of the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, Egibacter rhizosphaerae gen. nov., sp. nov., of a proposed novel family, Egibacteraceae fam. nov., and order, Egibacterales ord. nov., within the class Nitriliruptoria. The type strain of the type species, Egibacter rhizosphaerae, is EGI 80759T ( = CGMCC 1.14997T = KCTC 39588T). PMID:26510781

  17. Egicoccus halophilus gen. nov., sp. nov., a halophilic, alkalitolerant actinobacterium and proposal of Egicoccaceae fam. nov. and Egicoccales ord. nov.

    PubMed

    Zhang, Yong-Guang; Chen, Ji-Yue; Wang, Hong-Fei; Xiao, Min; Yang, Ling-Ling; Guo, Jian-Wei; Zhou, En-Min; Zhang, Yuan-Min; Li, Wen-Jun

    2016-02-01

    A novel Gram-stain-positive, non-motile, moderately halophilic and alkalitolerant actinobacterium, designated EGI 80432T, was isolated from a saline-alkaline soil of Xinjiang province, north-west China. Cells were non-endospore-forming cocci with a diameter of 0.5-0.8 μm. Strain EGI 80432T grew in the presence of 0-9 % (w/v) NaCl (optimum at 3-5 %), and also grew within the pH range 6.0-10.0 (optimum at pH 8.0-9.0) on marine 2216E medium. The peptidoglycan type was A1γ. The whole-cell hydrolysates contained glucose, galactose, mannose and three unknown sugars as major sugars. The predominant menaquinone was MK-9(H4). The major fatty acids were C17 : 1ω8c, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C18 : 1ω9c and iso-C15 : 0 The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, one unknown phosphoglycolipid, three unknown phospholipids and four unknown polar lipids. The genomic DNA G+C content was 75.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EGI 80432T clustered within the radius of the class Nitriliruptoria. Levels of sequence similarity between strain EGI 80432T and its phylogenetic neighbours Nitriliruptor alkaliphilus ANL-iso2T and Euzebya tangerina F10T were 94.1 and 88.1 %, respectively. Based on morphological, physiological and chemotaxonomic characteristics and phylogenetic analysis, a novel species of a new genus, Egicoccus halophilus gen. nov., sp. nov., is proposed, within the new family and new order Egicoccaceae fam. nov. and Egicoccales ord. nov. in the class Nitriliruptoria. The type strain of Egicoccus halophilus is EGI 80432T ( = CGMCC 1.14988T = KCTC 33612T). PMID:26552810

  18. Design of a strain-gage probe

    NASA Technical Reports Server (NTRS)

    Kolba, V. M.; Vetter, D. L.

    1969-01-01

    Strain-gage spacer probe uses the deflection of a leaf spring to measure strain in a long, slender beam nondestructively. The selected gage is of the smallest practical size, as thin as possible and yet of a standard type.

  19. Kribbella pittospori sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of an Australian native apricot tree, Pittosporum angustifolium.

    PubMed

    Kaewkla, Onuma; Franco, Christopher Milton Mathew

    2016-06-01

    An endophytic actinobacterium, strain PIP 158T, was isolated from the stem of a native apricot tree (Pittosporum angustifolium) collected from the grounds of Flinders University, Adelaide, Australia. As a result of a polyphasic taxonomic study, this strain was identified as a member of the genus Kribbella. This strain was a Gram-stain-positive, aerobic actinobacterium with well-developed substrate mycelia which were non-motile and with hyphae fragmenting into short to elongated rod-like elements. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this isolate in the family Nocardioidaceae, being most closely related to Kribbella sandramycini ATCC 39419T and Kribbella albertanoniae BC640T which share a similarity of 99. 26 and 99.18 % with Kribbella hippodromi S1.4T, respectively. Chemotaxonomic data including cell-wall components, major menaquinones and major fatty acids confirmed the affiliation of strain PIP 158T to the genus Kribbella. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with DNA-DNA hybridization, allowed the genotypic and phenotypic differentiation of strain PIP 158T from the closest related species with validly published names. The name proposed for the novel species is Kribbella pittospori sp. nov. The type strain is PIP 158T (=DSM 23717T=NRRL B-24813T). PMID:26978036

  20. Microbacterium oryzae sp. nov., an actinobacterium isolated from rice field soil.

    PubMed

    Kumari, Prabla; Bandyopadhyay, Saumya; Das, Subrata K

    2013-07-01

    A novel aerobic soil actinobacterium (strain MB10(T)) belonging to the genus Microbacterium was isolated from rice field soil samples collected from Jagatpur, Orissa, India. Cells were Gram-stain positive, short rod-shaped and motile. The strain was oxidase-negative and catalase-positive. Heterotrophic growth was observed at pH 5.0-11.0 and at 16-37 °C; optimum growth was observed at 28 °C and pH 7.0-9.0. The DNA G+C content was 71.6 mol%. Predominant cellular fatty acids of strain MB10(T) were iso-C14 : 0, anteiso-C15 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. Cell wall sugars were galactose, glucose and rhamnose. The major isoprenoid quinones were MK-9 (10 %), MK-10 (43 %) and MK-11 (36 %). The peptidoglycan represents the peptidoglycan type B2β. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid and unknown glycolipids. 16S rRNA gene sequence identity revealed the strain MB10(T) clustered within the radiation of the genus Microbacterium and showed 99.2 % similarity with Microbacterium barkeri DSM 20145(T). However, DNA-DNA similarity study was 37.0 % with Microbacterium barkeri DSM 20145(T), the nearest phylogenetic relative. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence analysis and DNA-DNA reassociation studies, it is proposed that strain MB10(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium oryzae sp. nov. is proposed; the type strain is MB10(T) ( = JCM 16837(T) = DSM 23396(T)). PMID:23203624

  1. Designing recombinant Pseudomonas strains to enhance biodesulfurization.

    PubMed Central

    Gallardo, M E; Ferrández, A; De Lorenzo, V; García, J L; Díaz, E

    1997-01-01

    The dsz biodesulfurization cluster from Rhodococcus erythropolis IGTS8 has been engineered under the control of heterologous broad-host-range regulatory signals to alleviate the mechanism of sulfur repression, and it was stably inserted into the chromosomes of different Pseudomonas strains. The recombinant bacteria were able to desulfurize dibenzothiophene more efficiently than the native host. Furthermore, these new biocatalysts combine relevant industrial and environmental traits, such as production of biosurfactants, with the enhanced biodesulfurization phenotype. PMID:9371464

  2. NASA LaRC Strain Gage Balance Design Concepts

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1999-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.

  3. Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2011-03-01

    A novel actinobacterium, designated PNP1(T), was isolated from a wastewater treatment plant at a pesticide factory by selective enrichment with para-nitrophenol. The strictly aerobic strain PNP1(T) grew with para-nitrophenol as the sole carbon and energy source. Metabolism of para-nitrophenol resulted in the stoichiometric release of nitrite. When incubated with both para-nitrophenol and acetate, para-nitrophenol was degraded and utilized as growth substrate prior to acetate. When grown on acetate (in the absence of ammonium) both nitrite and nitrate served as nitrogen sources, nitrate being quantitatively reduced to nitrite which accumulated in cultures during aerobic growth. Cells were coccoid and stained Gram-positive, were non-motile and did not form endospores. Colonies of strain PNP1(T) on agar medium were bright yellow, circular and smooth. The dominant menaquinone was MK-8(H(2)) (54%) and the major cellular fatty acid was anteiso C15:0 (75%). Strain PNP1(T) grew optimally at 27°C, at pH 8-8.5, at salinities 3% (w/v) NaCl, yet exhibited a substantial halotolerance with growth occurring at salinities up to 17% (w/v) NaCl. In addition to para-nitrophenol, a range of sugars, short chain fatty acids and alcohols served as electron donors for growth. The DNA G + C mol% was 68%. The genotypic and phenotypic properties suggest that strain PNP1(T) represents a novel species of the actinobacterial genus Citricoccus for which the name Citricoccus nitrophenolicus is proposed. It is the first member of this genus that has been reported to hydrolyze and grow on para-nitrophenol. The type strain is PNP1(T) (=DSM 23311(T) = CCUG 59571(T)). PMID:20882410

  4. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented.

  5. Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor.

    PubMed

    Kim, Minsuk; Yi, Jeong Sang; Lakshmanan, Meiyappan; Lee, Dong-Yup; Kim, Byung-Gee

    2016-03-01

    In silico model-driven analysis using genome-scale model of metabolism (GEM) has been recognized as a promising method for microbial strain improvement. However, most of the current GEM-based strain design algorithms based on flux balance analysis (FBA) heavily rely on the steady-state and optimality assumptions without considering any regulatory information. Thus, their practical usage is quite limited, especially in its application to secondary metabolites overproduction. In this study, we developed a transcriptomics-based strain optimization tool (tSOT) in order to overcome such limitations by integrating transcriptomic data into GEM. Initially, we evaluated existing algorithms for integrating transcriptomic data into GEM using Streptomyces coelicolor dataset, and identified iMAT algorithm as the only and the best algorithm for characterizing the secondary metabolism of S. coelicolor. Subsequently, we developed tSOT platform where iMAT is adopted to predict the reaction states, and successfully demonstrated its applicability to secondary metabolites overproduction by designing actinorhodin (ACT), a polyketide antibiotic, overproducing strain of S. coelicolor. Mutants overexpressing tSOT targets such as ribulose 5-phosphate 3-epimerase and NADP-dependent malic enzyme showed 2 and 1.8-fold increase in ACT production, thereby validating the tSOT prediction. It is expected that tSOT can be used for solving other metabolic engineering problems which could not be addressed by current strain design algorithms, especially for the secondary metabolite overproductions. PMID:26369755

  6. Myceligenerans cantabricum sp. nov., a barotolerant actinobacterium isolated from a deep cold-water coral.

    PubMed

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Molina, Axayacatl; Acuña, José L; García, Luis A; Blanco, Gloria

    2015-04-01

    An actinobacterium strain (M-201(T)) was isolated from a deep-sea scleractinian coral (Fam. Caryophillidae) collected at 1500 m depth in the Avilés Canyon in the Cantabrian Sea, Asturias, Spain. Strain M-201(T) grew at pH 6.0-9.0 (optimum pH 7.0), between 4 and 37 °C (optimum 28 °C) and at salinities of 0.5-10.5% (w/v) NaCl (optimum 0.5-3.0%). The peptidoglycan contained the amino acids Lys, Ala, Thr, Glu and one unknown amino acid component, and belonged to type A4α, and the cell-wall sugars are glucose, mannose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, an unknown phosphoglycolipid and seven unknown glycolipids. The predominant menaquinones were MK-9(H4) and MK-9(H6). Major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0) and anteiso-C(17 : 0). The genomic DNA G+C content was 72.4 mol%. The chemotaxonomic properties supported the affiliation of strain M-201(T) to the genus Myceligenerans . Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism was most closely related to Myceligenerans crystallogenes CD12E2-27(T) (98.2% 16S rRNA gene sequence similarity). However, it had a relatively low DNA-DNA relatedness value with the above strain (48%). The isolate showed antibiotic activity against Escherichia coli , Micrococcus luteus ATCC 14452 and Saccharomyces cerevisiae var. carlsbergensis. To the best of our knowledge, this is the first report of antibiotic production in the genus Myceligenerans . The differences in phenotypic, metabolic, ecological and phylogenetic characteristics justify the proposal of a novel species of the genus Myceligenerans , Myceligenerans cantabricum sp. nov., with M-201(T) ( = CECT 8512(T) = DSM 28392(T)) as the type strain. PMID:25667397

  7. Jatrophihabitans fulvus sp. nov., an actinobacterium isolated from grass soil.

    PubMed

    Jin, Long; Lee, Hyung-Gwan; Ko, So-Ra; Ahn, Chi-Yong; Oh, Hee-Mock

    2015-10-01

    A Gram-stain-positive, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain PB158T, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the novel isolate in the class Actinobacteria, and most closely related to Jatrophihabitans endophyticus S9-650T and Jatrophihabitans soli KIS75-12T with 98.1 and 97.0 % 16S rRNA gene sequence similarity, respectively. Cells of strain PB158T formed yellow colonies on R2A agar, contained MK-9(H4) as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic diamino acid, and included iso-C16 : 0, C18 : 1ω9c, and C17 : 1ω8c as the major fatty acids (>5 %). The acyl type was found to be N-glycolylated. The G+C content of genomic DNA of strain PB158T was 72.4 mol%. In DNA-DNA hybridizations, the DNA-DNA relatedness value observed between strain PB158T and the type strain of J. endophyticus was 21.8 % indicating that the two strains do not belong to the same species. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB158T represents a novel species of the genus Jatrophihabitans, for which the name Jatrophihabitans fulvus sp. nov. is proposed. The type strain is PB158T ( = KCTC 33605T = JCM 30448T). PMID:26296765

  8. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil.

    PubMed

    Singh, Hina; Du, Juan; Trinh, Huan; Won, KyungHwa; Yang, Jung-Eun; Yin, ChangShik; Kook, MooChang; Yi, Tae-Hoo

    2016-01-01

    A novel bacterial strain, designated THG-S11.7T, was isolated from garden soil in Incheon, South Korea. Cells of the strain were Gram-stain-positive, aerobic, non-motile cocci, and were catalase- and oxidase-positive. Colonies of the strain were white. Strain THG-S11.7T grew optimally at 28 °C, at pH 7.0 and in the presence of 2.0 % NaCl. 16S rRNA gene sequence analysis indicated that the strain was a member of the genus Nocardioides. Strain THG-S11.7T showed a 16S rRNA gene sequence similarity of 98.2 % to Nocardioides kongjuensis KCTC 19054T, 98.0 % to Nocardioides caeni KCTC 19600T, 97.9 % to Nocardioides daeguensis KCTC 19799T, 97.8 % to Nocardioides nitrophenolicus KCTC 047BPT, 97.6 % to Nocardioides aromaticivorans KACC 20613T, 97.5 % to Nocardioides simplex KACC 20620T and 97.0 % to Nocardioides ginsengisoli KCTC 19135T. DNA-DNA relatedness values between strain THG-S11.7T and the closest phylogenetic neighbours were below 45.0 % and the DNA G+C content of strain THG-S11.7T was 72.2 mol%. Strain THG-S11.7T was characterized chemotaxonomically as having ll-diaminopimelic acid in the cell-wall peptidoglycan and menaquinone MK-8(H4) as the predominant isoprenoid quinone. The major phospholipid was determined to be diphosphatidylglycerol. The major cellular fatty acids of strain THG-S11.7T were iso-C15 : 0, C16 : 0 and iso-C16 : 0. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate represents a novel species of the genus Nocardioides, for which the name Nocardioides albidus sp. nov. is proposed. The type strain is THG-S11.7T ( = KCTC 39607T = CCTCC AB 2015297T). PMID:26530636

  9. Modeling and observer design for recombinant Escherichia coli strain.

    PubMed

    Nadri, M; Trezzani, I; Hammouri, H; Dhurjati, P; Longin, R; Lieto, J

    2006-03-01

    A mathematical model for recombinant bacteria which includes foreign protein production is developed. The experimental system consists of an Escherichia Coli strain and plasmid pIT34 containing genes for bioluminescence and production of a protein, beta-galactosidase. This recombinant strain is constructed to facilitate on-line estimation and control in a complex bioprocess. Several batch experiments are designed and performed to validate the developed model. The design of a model structure, the identification of the model parameters and the estimation problem are three parts of a joint design problem. A nonlinear observer is designed and an experimental evaluation is performed on a batch fermentation process to estimate the substrate consumption. PMID:16411071

  10. Draft Genome Sequence of Arthrobacter crystallopoietes Strain BAB-32, Revealing Genes for Bioremediation

    PubMed Central

    Joshi, M. N.; Pandit, A. S.; Sharma, A.; Pandya, R. V.; Desai, S. M.; Saxena, A. K.

    2013-01-01

    Arthrobacter crystallopoietes strain BAB-32, a Gram-positive obligate aerobic actinobacterium having potential application in bioremediation and bioreduction of a few metals, was isolated from rhizosphere soil of Gandhinagar, Gujarat, India. The draft genome (4.3 Mb) of the strain revealed a few vital gene clusters involved in the metabolism of aromatic compounds, zinc, and sulfur. PMID:23833141

  11. Draft Genome Sequence of Arthrobacter crystallopoietes Strain BAB-32, Revealing Genes for Bioremediation.

    PubMed

    Joshi, M N; Pandit, A S; Sharma, A; Pandya, R V; Desai, S M; Saxena, A K; Bagatharia, S B

    2013-01-01

    Arthrobacter crystallopoietes strain BAB-32, a Gram-positive obligate aerobic actinobacterium having potential application in bioremediation and bioreduction of a few metals, was isolated from rhizosphere soil of Gandhinagar, Gujarat, India. The draft genome (4.3 Mb) of the strain revealed a few vital gene clusters involved in the metabolism of aromatic compounds, zinc, and sulfur. PMID:23833141

  12. Design and development of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Martin, M.; Voor, M.; Lin, J.-T.; Jackson, D.; Hnat, W.; Naber, J.

    2006-05-01

    The design, modeling, fabrication and testing of a MEMS-based capacitive bending strain sensor utilizing a comb drive is presented. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist with the diagnosis of spinal fusion. ABAQUS/CAE finite-element analysis (FEA) software was used to predict sensor actuation, capacitance output and avoid material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. The sensor was adhered to a steel beam and subjected to four-point bending to mechanically change the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers. At the unstrained state, the capacitive output was 7.56 pF and increased inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with the largest differential of 0.65 pF or 6.33% occurring at 1000 µɛ. Advantages of this design are a dice-free process without the use of expensive silicon-on-insulator (SOI) wafers.

  13. Design-oriented aeroservoelastic optimization of strain-actuated aircraft

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.

    An integrated design-oriented aeroservoelastic optimization capability for strain-actuated aircraft is presented. This capability is called SMART and it encompasses a suite of computer applications created for conceptual and preliminary design of aircraft augmented with "smart" actuation technologies. The SMART suite of applications includes: (1) a dedicated pre-processor for vehicle geometry, material, actuator, mechanism, and sensor layout; (2) a dedicated finite element automesher for conventional and strain-actuated flight vehicles; (3) integration of structural dynamics with a state of the art commercial unsteady aerodynamics code (ZAERO) via automated pre- and post-processors; (4) a database architecture for analyzing multiple designs and flight conditions; and (5) automated open- and closed-loop aeroservoelastic (ASE) model preparation. The analysis techniques used as the basis for SMART are suitable (within the range of application of linear theory) for modeling real flight vehicles with real large-scale structural, aerodynamic, and control systems. These techniques include: (6) dedicated linear finite element infrastructure for modeling conventional and strain-actuated (temperature and voltage induced) flight structures; (7) dedicated static and dynamic finite element solvers; (8) state space stability analysis for coupled aeroservoelastic systems; (9) computational tools for LQR controller design; and (10) analysis tools for the calculation of random response of linear systems to random inputs. SMART can compute: (11) static aeroelastic deformations and stresses in trimmed maneuvering elastic airplanes; (12) open-loop aeroelastic poles; (13) closed-loop (control by LQR) aeroservoelastic poles; (14) gust response (random gusts) of the open-loop and closed-loop aeroservoelastic system, and, also, when aerodynamic loads are not present; and (15) deformation and stresses of passive or actively-controlled structures subject to dynamic and static loads. To

  14. Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov.

    PubMed

    Tvrzová, Ludmila; Schumann, Peter; Sedlácek, Ivo; Pácová, Zdena; Spröer, Cathrin; Verbarg, Susanne; Kroppenstedt, Reiner M

    2005-01-01

    A Gram-positive actinobacterium, previously classified as Kocuria varians, was subjected to a polyphasic taxonomic study. The bacterium showed the peptidoglycan type Lys-Ala3 (variation A3alpha), MK-7(H2) was the major menaquinone and anteiso-C(15 : 0) and anteiso-C(17 : 0) were the major fatty acids. On the basis of the phylogenetic and phenotypic characteristics of the actinobacterium, a novel species, Kocuria carniphila sp. nov. (type strain, CCM 132T=DSM 16004T), is proposed. PMID:15653866

  15. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L.

    PubMed

    Madhaiyan, Munusamy; Hu, Chuan Jiong; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo; Ji, Lianghui

    2013-04-01

    A short rod-shaped Gram-stain-positive actinobacterium was isolated as an endophyte from the tissues of Jatropha curcas cv. KB27 and was investigated by means of a polyphasic taxonomic approach. An analysis of its 16S rRNA gene sequence indicated that strain S9-650(T) forms an individual line of descent and is related to certain members of the suborder Frankineae, order Actinomycetales (<95 % sequence similarity). Distance-matrix and neighbour-joining analyses set the branching point of the novel isolate between two clades, one being represented by members of the genera Frankia (family Frankiaceae) and Acidothermus (family Acidothermaceae) and the other by members of the genera Geodermatophilus, Blastococcus and Modestobacter (family Geodermatophilaceae). The organism had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The acyl type was found to be N-glycolylated. The major menaquinone was MK-9(H4) and the fatty acid profile was characterized by the predominance of iso-C16 : 0, C18 : 1ω9c, anteiso-C17 : 0 and C17 : 1ω8c. The polar lipids comprised diphosphatidylglycerol, an unidentified glycolipid, phospholipids and aminolipids. The G+C content of the genomic DNA was 71.2 mol%. The distinct phylogenetic position and the phenotypic markers that clearly separate the novel organism from all other members of the suborder Frankineae indicate that strain S9-650(T) represents a novel species in a new genus, for which the name Jatrophihabitans endophyticus gen. nov., sp. nov. is proposed. The type strain of the type species is S9-650(T) ( = DSM 45627(T) = KACC 16232(T)). PMID:22798659

  16. Genome Sequence of Streptomyces sp. Strain RTd22, an Endophyte of the Mexican Sunflower

    PubMed Central

    Chagas, Fernanda O.; Bacha, Larissa V.; Samborskyy, Markyian; Conti, Raphael; Pessotti, Rita C.; Clardy, Jon

    2016-01-01

    We report here the complete genome sequence of Streptomyces sp. strain RTd22, an endophytic actinobacterium that was isolated from the roots of the Mexican sunflower Tithonia diversifolia. The bacterium’s 11.1-Mb linear chromosome is predicted to encode a large number of unknown natural products. PMID:27445382

  17. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard

    2014-01-01

    This paper presents a study of the sensing properties exhibited by textile-based knitted strain sensors. Knitted sensors were manufactured using flat-bed knitting technology, and electro-mechanical tests were subsequently performed on the specimens using a tensile testing machine to apply strain whilst the sensor was incorporated into a Wheatstone bridge arrangement to allow electrical monitoring. The sensing fabrics were manufactured from silver-plated nylon and elastomeric yarns. The component yarns offered similar diameters, bending characteristics and surface friction, but their production parameters differed in respect of the required yarn input tension, the number of conductive courses in the sensing structure and the elastomeric yarn extension characteristics. Experimental results showed that these manufacturing controls significantly affected the sensing properties of the knitted structures such that the gauge factor values, the working range and the linearity of the sensors varied according to the knitted structure. These results confirm that production parameters play a fundamental role in determining the physical behavior and the sensing properties of knitted sensors. It is thus possible to manipulate the sensing properties of knitted sensors and the sensor response may be engineered by varying the production parameters applied to specific designs. PMID:24608010

  18. Computational methods in metabolic engineering for strain design.

    PubMed

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. PMID:25576846

  19. Designing topological states by pressure, strain, and functionalization

    NASA Astrophysics Data System (ADS)

    Schwingenschlogl, Udo

    Various examples of the design of topological states by means of first-principles calculations are discussed. The presentation focusses on the design parameters (1) pressure, (2) strain, and (3) functionalization. TiTe2 is found to be unusually accessible to strain effects and the first compound that under hydrostatic pressure (up to experimentally reasonable 30 GPa) is subject to a series of four topological phase transitions, which are related to band inversions at different points of the Brillouin zone. Therefore, TiTe2 enables experimental access to all these transitions in a single compound. Phase transitions in TlBiS2 and TlSbS2 are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the M points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator. While monolayer arsenic and arsenic antimonide are semiconductors (direct band gap at the Γ point), fluorination results for both compounds in Dirac cones at the K points. Fluorinated monolayer arsenic shows a band gap of 0.16 eV due to spin-orbit coupling and fluorinated arsenic antimonide a larger band gap of 0.37 eV due to inversion symmetry breaking. Spin-orbit coupling induces spin splitting similar to monolayer MoS2. Phonon calculations confirm that both materials are dynamically stable. Calculations of the edge states of nanoribbons by the tight-binding method demonstrate that fluorinated arsenic is topologically nontrivial in contrast to fluorinated arsenic antimonide.

  20. RobOKoD: microbial strain design for (over)production of target compounds

    PubMed Central

    Stanford, Natalie J.; Millard, Pierre; Swainston, Neil

    2015-01-01

    Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design. PMID:25853130

  1. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize.

    PubMed

    Kämpfer, Peter; Glaeser, Stefanie P; McInroy, John A; Busse, Hans-Jürgen

    2016-04-01

    A Gram-stain-positive, aerobic organism was isolated as an endophyte from the stem tissue of healthy maize (Zea mays) and investigated in detail for its taxonomic position. On the basis of the 16S rRNA gene sequence analysis, strain JM-601T was shown to be most closely related to Nocardioides alpinus (98.3 %), and Nocardioides ganghwensis (98.0 %). The 16S rRNA gene sequence similarity to all other species of the genus Nocardioides was ≤ 98.0 %. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The major quinone of strain JM-601T was menaquinone MK-8(H4). The polar lipid profile revealed the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine and an unidentified phospholipid. The polyamine pattern contained predominantly spermine and moderate amounts of spermidine. In the fatty acid profile, iso-C16 : 0, C17 : 1ω8c and 10-methyl C17 : 0 were present in major amounts. All these data support the allocation of the strain to the genus Nocardioides. The results of physiological and biochemical characterization allow in addition a phenotypic differentiation of strain JM-601T from N. alpinus and N. ganghwensis. Strain JM-601T represents a novel species of the genus Nocardioides, for which we propose the name Nocardioides zeicaulis sp. nov., with JM-601T ( = CCM 8654T = CIP 110980T) as the type strain. PMID:26867539

  2. Microbacterium nanhaiense sp. nov., an actinobacterium isolated from sea sediment.

    PubMed

    Yan, Lien; Wang, Jingjing; Chen, Zhirong; Guan, Yingying; Li, Jing

    2015-10-01

    A Gram-staining-positive, heterotrophic, anaerobic, non-spore-forming, non-motile, rod-shaped strain, OAct400T, belonging to the genus Microbacterium was isolated from a sediment collected from a depth of 2093 m in the South China Sea, China. The strain was identified using a polyphasic taxonomic approach. The strain grew well on yeast extract/malt extract agar (ISP 2) and nutrient agar media, and formed no aerial mycelium and no diffusible pigments on any media tested. The strain grew in the presence of 0-8 % (w/v) NaCl (optimum, 2-4 %), at pH 5.0-10.0 (optimum, pH 7.0) and at 4-37 °C (optimum, 28 °C). Strain OAct400T contained ornithine as the diagnostic diamino acid. The whole-cell sugars were dominated by glucose and galactose. The predominant menaquinones were MK-11 (51 %) and MK-10 (24 %). The major phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C15 : 0 (59.35 %), iso-C16 : 0 (17.89 %) and anteiso-C17 : 0 (16.09 %). DNA-DNA relatedness with Microbacterium amylolyticum DSM 24221T and Microbacterium gubbeenense CIP 107184T, the nearest phylogenetic relatives (97.73 and 97.44 % 16S rRNA gene sequence similarity, respectively) was 31.3 ± 2.1 and 28.7 ± 1.2 %, respectively. On the basis of phenotypic, phylogenetic and genotypic data, a novel species, Microbacterium nanhaiense sp. nov., is proposed. The type strain is OAct400T ( = CGMCC 4.7181T = DSM 26811T = KCTC 29185T). PMID:26220793

  3. Design and application of FBG strain experimental apparatus in high temperature

    NASA Astrophysics Data System (ADS)

    Xia, Zhongcheng; Liu, Yueming; Gao, Xiaoliang

    2014-09-01

    Fiber Bragg Grating (FBG) sensing technology has many applications, and it's widely used in detection of temperature, strain and etc. Now the application of FBG sensor is limited to the temperature below 200°C owing to the so called High Temperature Erasing Phenomenon. Strain detection over 200°C is still an engineering challenge since high temperature has a bad influence on the sensor, testing equipment and test data, etc, thus effective measurement apparatus are needed to ensure the accuracy of the measurement over 200°C, but there are no suitable FBG strain experimental apparatus in high temperature to date. In this paper a high temperature FBG strain experimental apparatus has been designed to detect the strain in high temperature. In order to verify working condition of the high temperature FBG strain, an application of FBG strain sensing experiment was given in this paper. The high temperature FBG strain sensor was installed in the apparatus, the internal temperature of experimental apparatus was controlled from -20 to 300°C accurately, and strain loading was given by the counterweight, then the data was recorded through electrical resistance strain measurement and optical sensing interrogator. Experimental data result shows that the high temperature FBG strain experimental apparatus can work properly over 200°C. The design of the high temperature FBG strain experimental apparatus are demonstrated suitable for high temperature strain gauges and FBG strain sensors , etc, which can work under the temperature of -20 ~ 300°C, the strain of -1500 ~ +1500μepsilon and the wavelength resolution of 1pm.

  4. Salternamides A-D from a Halophilic Streptomyces sp. Actinobacterium.

    PubMed

    Kim, Seong-Hwan; Shin, Yoonho; Lee, So-Hyoung; Oh, Ki-Bong; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan

    2015-04-24

    Salternamides A-D (1-4), the first secondary metabolites discovered from saltern-derived actinomycetes, were isolated from a halophilic Streptomyces strain isolated from a saltern on Shinui Island in the Republic of Korea. The planar structures of the salternamides, which are new members of the manumycin family, were elucidated by a combination of spectroscopic analyses. The absolute configurations of the salternamides were determined by chemical and spectroscopic methods, including the modified Mosher's method, J-based configuration analysis, and circular dichroism spectroscopy. Salternamide A (1), which is the first chlorinated compound in the manumycin family, exhibited potent cytotoxicity against a human colon cancer cell line (HCT116) and a gastric cancer cell line (SNU638) with submicromolar IC50 values. Salternamides A and D were also determined to be weak Na(+)/K(+) ATPase inhibitors. PMID:25700232

  5. Materials design and processings for industrial high-strain-rate superplastic forming

    SciTech Connect

    Hosokawa, H.; Higashi, K.

    2000-07-01

    The optimum materials design in microstructural control could be developed for the high-strain-rate superplastic materials in the industrial scale. In the present work, it is reported that the high-performance-engine pistons with near-net-shape can be fabricated by the superplastic forging technology in the high-strain-rate superplastic PM Al-Si based alloy, which is produced by using this optimum materials design.

  6. Design of an enhanced sensitivity FBG strain sensor and application in highway bridge engineering

    NASA Astrophysics Data System (ADS)

    Li, Litong; Zhang, Dongsheng; Liu, Hui; Guo, Yongxing; Zhu, Fangdong

    2014-06-01

    The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.

  7. Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola

    PubMed Central

    Keffer, J. L.; Hahn, M. W.

    2015-01-01

    ABSTRACT Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the

  8. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis

    PubMed Central

    Dhanda, Sandeep Kumar; Vir, Pooja; Singla, Deepak; Gupta, Sudheer; Kumar, Shailesh

    2016-01-01

    Development of an effective vaccine against drug-resistant Mycobacterium tuberculosis (Mtb) is crucial for saving millions of premature deaths every year due to tuberculosis. This paper describes a web portal developed for assisting researchers in designing vaccines against emerging Mtb strains using traditional and modern approaches. Firstly, we annotated 59 genomes of Mycobacterium species to understand similarity/dissimilarity between tuberculoid, non-tuberculoid and vaccine strains at genome level. Secondly, antigen-based vaccine candidates have been predicted in each Mtb strain. Thirdly, epitopes-based vaccine candidates were predicted/discovered in above antigen-based vaccine candidates that can stimulate all arms of immune system. Finally, a database of predicted vaccine candidates at epitopes as well at antigen level has been developed for above strains. In order to design vaccine against a newly sequenced genome of Mtb strain, server integrates three modules for identification of strain-, antigen-, epitope-specific vaccine candidates. We observed that 103522 unique peptides (9mers) had the potential to induce an antibody response and/or promiscuous binder to MHC alleles and/or have the capability to stimulate T lymphocytes. In summary, this web-portal will be useful for researchers working on designing vaccines against Mtb including drug-resistant strains. Availability: The database is available freely at http://crdd.osdd.net/raghava/mtbveb/. PMID:27096425

  9. Modeling, design, fabrication, and testing of a fiber Bragg grating strain sensor array

    NASA Astrophysics Data System (ADS)

    Abdi, Abdeq M.; Suzuki, Shigeru; Schülzgen, Axel; Kost, Alan R.

    2007-05-01

    The modeling, design, simulation, fabrication, calibration, and testing of a three-element, 15.3 cm fiber Bragg grating strain sensor array with the coherent optical frequency domain reflectometry (C-OFDR) interrogation technique are demonstrated. The fiber Bragg grating array (FBGA) is initially simulated using in-house software that incorporates transfer matrices. Compared to the previous techniques used, the transfer matrix method allows a systemwide approach to modeling the FBGA-C-OFDR system. Once designed and simulated, the FBGA system design is then imprinted into the core of a boron-germanium codoped photosensitive fiber using the phase mask technique. A fiber optic Fabry-Perot interferometric (FPI) strain gauge calibrator is then used to determine the strain gauge factor of a single fiber Bragg grating (FBG), and the results are used on the FBGA. The FPI strain gauge calibrator offers nondestructive testing of the FBG. To test the system, the FBGA is then attached to a 75 cm cantilever beam and interrogated using an incremental tunable laser. Electric strain gauges (ESGs) are then used to independently verify the strain measurements with the FBGA at various displacements of the cantilever beam. The results show that the peak strain error is 18% with respect to ESG results. In addition, good agreement is shown between the simulation and the experimental results.

  10. Cyclic material properties at high strain ranges beyond the standard design codes

    NASA Astrophysics Data System (ADS)

    Maile, Karl; Bothe, Klaus; Blind, Dieter; Vazoukis, Georg

    1992-07-01

    Low cycle fatigue tests were performed at characteristic temperatures on materials employed in nuclear piping systems. The influence of strain rate, temperature, surface roughness, notches and welding on the number of cycles to crack initiation and failure were investigated in the high strain range regime. The crack initiation does not depend significantly on the strain rate, the surface conditions and the temperature. The fatigue endurance of notched specimens cannot be satisfactorily compared with that of smooth specimens. The influence of welding depends on the material. The results of the smooth specimens lie above the design curves of TRD, KTA and ASME code.

  11. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    SciTech Connect

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath E-mail: madhu.bhaskaran@gmail.com; Bhaskaran, Madhu E-mail: madhu.bhaskaran@gmail.com

    2014-01-13

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics.

  12. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    NASA Astrophysics Data System (ADS)

    Gawedzki, Waclaw; Tarnowski, Jerzy

    2015-10-01

    Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  13. Complete Genome Sequencing of Protease-Producing Novel Arthrobacter sp. Strain IHBB 11108 Using PacBio Single-Molecule Real-Time Sequencing Technology

    PubMed Central

    Kiran, Shashi; Swarnkar, Mohit K.; Pal, Mohinder; Thakur, Rishu; Tewari, Rupinder; Singh, Anil Kumar

    2015-01-01

    A previously uncharacterized species of the genus Arthrobacter, strain IHBB 11108 (MCC 2780), is a Gram-positive, strictly aerobic, nonmotile, cold-adapted, and protease-producing alkaliphilic actinobacterium, isolated from shallow undersurface water from Chandra Tal Lake, Lahaul-Spiti, India. The complete genome of the strain is 3.6 Mb in size with an average 58.97% G+C content. PMID:25908143

  14. Effect of nickel titanium file design on the root surface strain and apical microcracks.

    PubMed

    Jamleh, Ahmed; Adorno, Carlos G; Ebihara, Arata; Suda, Hideaki

    2016-04-01

    The aim of this study was to determine the effect of nickel titanium file design on the root surface strain generated and apical microcracks caused during canal shaping. Thirty-three mandibular incisors were distributed into LightSpeed X, FlexMaster and a control group. A strain gauge was fixed apically on the proximal root surface to determine the maximum strain during canal shaping. Except for the control group, all root canals were enlarged to size 50. Images were taken after removing the apical 1 and 2 mm of the root end. Mean maximum strain values and presence of microcracks were statistically compared using the t-test and chi-square test, respectively. During canal shaping, the strain increased cumulatively with mean maximum strains of 808.2 ± 228.8 and 525.1 ± 168.9 microstrain in LightSpeed X and FlexMaster, respectively (P = 0.004). Both systems caused comparable microcracks. Although LightSpeed X produced higher maximum strain, no difference in microcrack development was found between both systems. PMID:26420627

  15. Human papilloma virus strain detection utilising custom-designed oligonucleotide microarrays.

    PubMed

    Ayers, Duncan; Platt, Mark; Javad, Farzad; Day, Philip J R

    2011-01-01

    Within the past 15 years, the utilisation of microarray technology for the detection of specific pathogen strains has increased rapidly. Presently, it is possible to simply purchase a pre-manufactured "off the shelf " oligonucleotide microarray bearing a wide variety of known signature DNA sequences previously identified in the organism being studied. Consequently, a hybridisation analysis may be used to pinpoint which strain/s is present in any given clinical sample. However, there exists a problem if the study necessitates the identification of novel sequences which are not represented in commercially available microarray chips. Ideally, such investigations require an in situ oligonucleotide microarray platform with the capacity to synthesise microarrays bearing probe sequences designed solely by the researcher. This chapter will focus on the employment of the Combimatrix® B3 CustomArray™ for the synthesis of reusable, bespoke microarrays for the purpose of discerning multiple Human Papilloma Virus strains. PMID:20938834

  16. Design, Evaluation and Experimental Effort Toward Development of a High Strain Composite Wing for Navy Aircraft

    NASA Technical Reports Server (NTRS)

    Bruno, Joseph; Libeskind, Mark

    1990-01-01

    This design development effort addressed significant technical issues concerning the use and benefits of high strain composite wing structures (Epsilon(sub ult) = 6000 micro-in/in) for future Navy aircraft. These issues were concerned primarily with the structural integrity and durability of the innovative design concepts and manufacturing techniques which permitted a 50 percent increase in design ultimate strain level (while maintaining the same fiber/resin system) as well as damage tolerance and survivability requirements. An extensive test effort consisting of a progressive series of coupon and major element tests was an integral part of this development effort, and culminated in the design, fabrication and test of a major full-scale wing box component. The successful completion of the tests demonstrated the structural integrity, durability and benefits of the design. Low energy impact testing followed by fatigue cycling verified the damage tolerance concepts incorporated within the structure. Finally, live fire ballistic testing confirmed the survivability of the design. The potential benefits of combining newer/emerging composite materials and new or previously developed high strain wing design to maximize structural efficiency and reduce fabrication costs was the subject of subsequent preliminary design and experimental evaluation effort.

  17. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Senthilkumar, Murugaiyan; Lee, Keun Chul; Sundaram, Subbiah

    2010-06-01

    Two yellow-pigmented, Gram-stain-positive, aerobic, motile, short rod-shaped bacteria were isolated from natural teak tree rhizosphere soil and their taxonomic positions were determined by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strains TG-S248(T) and TG-S240 formed a distinct phyletic line within the genus Leifsonia. 16S rRNA gene sequence analysis of strain TG-S248(T) with sequences from Leifsonia shinshuensis DB 102(T), L. poae VKM Ac-1401(T), L. naganoensis DB 103(T), L. aquatica DSM 20146(T) and L. xyli subsp. cynodontis JCM 9733(T) revealed pairwise similarities ranging from 98.7 to 99.1 %. The major fatty acids were anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(16 : 0). The G+C content of the DNA of the type strain was 69.4 mol%. DNA-DNA hybridization experiments revealed low levels of DNA-DNA relatedness (32 % or less) between strain TG-S248(T) and its closest relatives. Based on differences in phenotypic and genotypic characteristics, strain TG-S248(T) (=LMG 24767(T) =JCM 15679(T)) is designated the type strain of a novel species of the genus Leifsonia, for which the name Leifsonia soli sp. nov. is proposed. PMID:19667370

  18. Agromyces insulae sp. nov., an actinobacterium isolated from a soil sample.

    PubMed

    Huang, Jian-Rong; Ming, Hong; Li, Shuai; Meng, Xiao-Lin; Zhang, Jian-Xin; Khieu, Thi-Nhan; Tang, Zhong; Li, Wen-Jun; Nie, Guo-Xing

    2016-05-01

    A novel Gram-reaction-positive, non-motile, aerobic bacterium, designated CFH S0483T, was isolated from a soil sample collected from Catba island in Halong Bay, Vietnam. 16S rRNA gene sequence analysis showed that the strain is a member of the genus Agromyces and has highest 16S rRNA gene sequence similarities with Agromyces humatus DSM 16389T (97.3 %) and Agromyces ramosus DSM 43045T (97.1 %), and similarities  < 97.0 % with type strains of other species of the genus Agromyces. Strain CFH S0483T was able to grow at 10-37 °C, at pH 7.0-9.0 and tolerated NaCl up to 2.0 % (w/v). The whole-cell sugars were mannose, galactose, glucose and ribose. The isolate contained l-2,4-diaminobutyric acid, d-alanine, d-glutamic acid and glycine in the cell-wall peptidoglycan. Strain CFH S0483T exhibited a menaquinone system with MK-12, and the major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The genomic DNA G+C content of strain CFH S0483T was 71.6 mol%. Based on the phylogenetic and phenotypic analysis, and low DNA-DNA hybridization values, strain CFH S0483T could not be classified into any recognized species of the genus Agromyces. Strain CFH S0483T is therefore considered to represent a novel species of the genus Agromyces, for which the name Agromyces insulae sp. nov. is proposed. The type strain is CFH S0483T ( = KCTC 39117T = CCTCC AB 2014301T). PMID:26883212

  19. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    SciTech Connect

    Lower, Mark D.

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  20. Microlunatus endophyticus sp. nov., an endophytic actinobacterium isolated from bark of Bruguiera sexangula.

    PubMed

    Tuo, Li; Li, Jing; Liu, Shao-Wei; Liu, Yang; Hu, Lin; Chen, Li; Jiang, Ming-Guo; Sun, Cheng-Hang

    2016-01-01

    A Gram-stain-positive, aerobic, coccoid, non-motile, non-spore-forming bacterium, designated strain S3Af-1T, was isolated from surface-sterilized bark of Bruguiera sexangula collected from Dongzhaigang National Nature Reserve in Hainan, China, and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelia or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain S3Af-1T grew optimally without NaCl, at 28-30 °C and at pH 7.0.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S3Af-1T belonged to the genus Microlunatus and shared highest similarity with 'Microlunatus terrae' BS6 (97.43 %) and Microlunatus soli CC-12602T (97.08 %). DNA-DNA hybridization results indicated that the level of relatedness between strain S3Af-1T and M. soli CC-12602T was less than 70 %. The DNA G+C content of strain S3Af-1T was 67.1 mol%. The cell-wall peptidoglycan contained ll-2,6-diaminopimelic acid. MK-9(H6) and MK-9(H4) were the predominant menaquinones. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, two unidentified phospholipids and other lipids were detected in the polar lipid extracts. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain S3Af-1T represents a novel species of the genus Microlunatus, for which the name Microlunatus endophyticus sp. nov. is proposed. The type strain is S3Af-1T ( = DSM 100019T = CGMCC 4.7306T). PMID:26585772

  1. Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device.

    PubMed

    Bell, B J; Nauman, E; Voytik-Harbin, S L

    2012-03-21

    Mechanical signals transferred between a cell and its extracellular matrix play an important role in regulating fundamental cell behavior. To further define the complex mechanical interactions between cells and matrix from a multiscale perspective, a biaxial testing device was designed and built. Finite element analysis was used to optimize the cruciform specimen geometry so that stresses within the central region were concentrated and homogenous while minimizing shear and grip effects. This system was used to apply an equibiaxial loading and unloading regimen to fibroblast-seeded tissue equivalents. Digital image correlation and spot tracking were used to calculate three-dimensional strains and associated strain transfer ratios at macro (construct), meso, matrix (collagen fibril), cell (mitochondria), and nuclear levels. At meso and matrix levels, strains in the 1- and 2-direction were statistically similar throughout the loading-unloading cycle. Interestingly, a significant amplification of cellular and nuclear strains was observed in the direction perpendicular to the cell axis. Findings indicate that strain transfer is dependent upon local anisotropies generated by the cell-matrix force balance. Such multiscale approaches to tissue mechanics will assist in advancement of modern biomechanical theories as well as development and optimization of preconditioning regimens for functional engineered tissue constructs. PMID:22455913

  2. Migration and strains induced by different designs of force-closed stems for THA☆

    PubMed Central

    Griza, Sandro; Gomes, Luiz Sérgio Marcelino; Cervieri, André; Strohaecker, Telmo Roberto

    2015-01-01

    Objectives Subtle differences in stem design can result in different mechanical responses of the total hip arthroplasty. Tests measuring migration of the stem relative to the femur, as well as the strains in the cement mantle and on the femur can detect different mechanical behavior between stems. Methods In this article, conical, double and triple tapered stems were implanted in composite femurs and subjected to static and cyclic loads. Stems differed mainly on taper angle, calcar radius and proximal stiffness. Stem migration and strains on the femur and in the cement mantle were achieved. Results Significant differences (p < 0.05) were noted in the permanent rotation between double and triple tapers, in the strains on the proximal medial femur between triple and both conical and double tapers, and in the strains on the lateral proximal femur between double tapers and both conical and triple tapers. Conclusion The proposed mechanical tests were able to detect significant differences in the behavior of these resembling stems. Stem proximal stiffness and the calcar radius of the stem influence its rotational stability and the strain transmission to the femur. PMID:27218081

  3. Design, modeling, fabrication and testing of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Voor, M.; Martin, M.; Hnat, W.; Lin, J.; Jackson, D.; Naber, J.

    2006-04-01

    Presented herein are the design, modelling, fabrication and testing of a MEMSbased capacitive bending strain sensor utilizing a comb drive. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist orthopaedic surgeons with the diagnosis of spinal fusion. ABAQUS/CAE version 6.5 finite element analysis (FEA) modelling software was used to predict sensor actuation, capacitance output and the avoidance of material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. For testing, the sensor was adhered to a steel beam, which was subjected to four-point bending. This mechanically changed the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers, beginning with an initial capacitance of 7.56 pF at the unstrained state and increasing inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with experimental data. The largest differential of 0.65 pF or 6.33% occurred at 1000 µɛ.

  4. Simplified sensor design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; Lopez-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-05-01

    Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the thermal drift in a real application keeping a simple manufacture process.

  5. Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast

    PubMed Central

    James, P.; Halladay, J.; Craig, E. A.

    1996-01-01

    The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections. PMID:8978031

  6. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.

    PubMed

    Noda, Shuhei; Shirai, Tomokazu; Oyama, Sachiko; Kondo, Akihiko

    2016-01-01

    A synthetic metabolic pathway suitable for the production of chorismate derivatives was designed in Escherichia coli. An L-phenylalanine-overproducing E. coli strain was engineered to enhance the availability of phosphoenolpyruvate (PEP), which is a key precursor in the biosynthesis of aromatic compounds in microbes. Two major reactions converting PEP to pyruvate were inactivated. Using this modified E.coli as a base strain, we tested our system by carrying out the production of salicylate, a high-demand aromatic chemical. The titer of salicylate reached 11.5 g/L in batch culture after 48 h cultivation in a 2-liter jar fermentor, and the yield from glucose as the sole carbon source exceeded 40% (mol/mol). In this test case, we found that pyruvate was synthesized primarily via salicylate formation and the reaction converting oxaloacetate to pyruvate. In order to demonstrate the generality of our designed strain, we employed this platform for the production of each of 7 different chorismate derivatives. Each of these industrially important chemicals was successfully produced to levels of 1-3g/L in test tube-scale culture. PMID:26654797

  7. Optimized design and simulation of high temperature pressure pipeline strain monitoring with optical fiber sensing technology

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Liu, Yueming; Lou, Jun

    2011-08-01

    methods mentioned above cannot satisfy the strain change monitoring of high temperature pressure piping. In this paper a novel method is presented using optical Fiber Bragg Grating sensor to carry on the real-time monitoring of the high temperature pressure piping surface strain change. firstly the stress and strain analysis of the high temperature pressure piping surface is given based on the established theoretical model, then optimized design and simulation is accomplished with computer ANSYS software. In the end a optimized set-up is put forward and discussed.

  8. Agromyces marinus sp. nov., a novel actinobacterium isolated from sea sediment.

    PubMed

    Hamada, Moriyuki; Shibata, Chiyo; Tamura, Tomohiko; Suzuki, Ken-ichiro

    2014-10-01

    Two novel Gram-stain-positive actinobacteria, designated H23-8(T) and H23-19, were isolated from a sea sediment sample and their taxonomic positions were investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that these isolates were closely related to the members of the genus Agromyces, with similarity range of 94.5-97.4%. Strains H23-8(T) and H23-19 contained L-2,4-diaminobutyric acid, D-alanine, D-glutamic acid and glycine in their peptidoglycan. The predominant menaquinones were MK-13 and MK-12, and the major fatty acids were anteiso-C(15:0), anteiso-C(17:0) and iso-C(16:0). The DNA G+C content was 72.3-72.5 mol%. The chemotaxonomic characteristics of the isolates matched those described for members of the genus Agromyces. The results of phylogenetic analysis and DNA-DNA hybridization, along with differences in phenotypic characteristics between strains H23-8(T) and H23-19 and the species of the genus Agromyces with validly published names, indicated that the two isolates should be assigned to a novel species of the genus Agromyces, for which the name Agromyces marinus sp. nov. is proposed; the type strain is H23-8(T) (=NBRC 109019(T)=DSM 26151(T)). PMID:24824819

  9. Improved Kolsky-bar design for mechanical characterization of materials at high strain rates

    NASA Astrophysics Data System (ADS)

    Song, Bo; Connelly, Kevin; Korellis, John; Lu, Wei-Yang; Antoun, Bonnie R.

    2009-11-01

    A Kolsky apparatus with numerous modifications has been designed for mechanical characterization of materials at high strain rates. These modifications include employing a highly precise optical table, pillow blocks with Frelon®-coated linear bearings as bar supports and a laser system for better precision bar alignment, etc. In addition, the striker bars were coated with Teflon® to minimize the friction with the gun barrel after removal of the conventional plastic sabots. This new design significantly simplifies the alignment process, improving the final alignment and calibration in the bar system; both are critical for validity and accuracy of the resulting data. An example of a dynamic experiment on a 6061 aluminum specimen by using this newly designed Kolsky bar is also presented.

  10. Conceptual Design of a Wireless Strain Monitoring System for Space Applications

    NASA Astrophysics Data System (ADS)

    Broutas, Panagiotis; Bitzaros, Stathis Kyriakis; Goustouridis, Dimitrios; Katsafouros, Stavros; Tsoukalas, Dimitrios; Chatzandroulis, Stavros

    The conceptual design of the architecture of a wireless strain monitoring network suitable for space applications is presented. The system is a heterogeneous wireless network that consists of battery powered nodes and batteryless nodes that are able to harvest energy from an incident RF field. Battery powered nodes are based on the Zigbee standard. Both battery and batteryless nodes are envisioned to include sensors but some battery powered nodes could simply serve as relaying points to transfer data to the central computer. The structure of the batteryless nodes as well as remote powering and data transmission are analyzed.

  11. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.

    PubMed

    Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao

    2014-01-01

    To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals. PMID:25523614

  12. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Li, J. Q.; Zhang, R.

    2006-10-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible.

  13. Complete Genome Sequence of pAP13, a Large Linear Plasmid of a Brevibacterium Strain Isolated from a Saline Lake at 4,200 Meters above Sea Level in Argentina

    PubMed Central

    Schuldes, Jörg; Thürmer, Andrea; Farias, María E.; Daniel, Rolf; Meinhardt, Friedhelm

    2013-01-01

    pAP13 is an 89-kb linear plasmid hosted by Brevibacterium sp. strain Ap13, an actinobacterium isolated from the feces of a flamingo from an extremely high-altitude lake in Argentina. Because of the ecological importance of the genus Brevibacterium, the absolute lack of information concerning Brevibacterium linear plasmids, and the possible ecological significance of this unusual plasmid, pAP13 was completely sequenced, including the inversely oriented termini. PMID:24285657

  14. Complete Genome Sequence of pAP13, a Large Linear Plasmid of a Brevibacterium Strain Isolated from a Saline Lake at 4,200 Meters above Sea Level in Argentina.

    PubMed

    Dib, Julian Rafael; Schuldes, Jörg; Thürmer, Andrea; Farias, María E; Daniel, Rolf; Meinhardt, Friedhelm

    2013-01-01

    pAP13 is an 89-kb linear plasmid hosted by Brevibacterium sp. strain Ap13, an actinobacterium isolated from the feces of a flamingo from an extremely high-altitude lake in Argentina. Because of the ecological importance of the genus Brevibacterium, the absolute lack of information concerning Brevibacterium linear plasmids, and the possible ecological significance of this unusual plasmid, pAP13 was completely sequenced, including the inversely oriented termini. PMID:24285657

  15. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design.

    PubMed

    Ramírez-Cavazos, Leticia I; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L; Hernández-Luna, Carlos; Agathos, Spiros N; Parra, Roberto

    2014-04-01

    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143,000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20,000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers. PMID:24711355

  16. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design*

    PubMed Central

    Ramírez-Cavazos, Leticia I.; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L.; Hernández-Luna, Carlos; Agathos, Spiros N.; Parra, Roberto

    2014-01-01

    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143 000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20 000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers. PMID:24711355

  17. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  18. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.

    PubMed

    DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results. PMID:26628152

  19. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain

    NASA Astrophysics Data System (ADS)

    DeWolf, Scott; Wyatt, Frank K.; Zumberge, Mark A.; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ɛ2/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.

  20. A stem design change to reduce peak cement strains at the tip of cemented total hip arthroplasty.

    PubMed

    Estok, D M; Harris, W H

    2000-08-01

    A series of 3-dimensional finite element models was created to assess different designs of the tip of the stems of cemented femoral components of total hip arthroplasty that would decrease the peak axial tensile cement strains developed near the tip. Features of stem design that would facilitate positioning the femoral component in a neutral position centered in uniform cement mantle of adequate thickness also were evaluated. These studies showed that a stem that had a narrow tip profile that would accept an externally applied polymethyl methacrylate centralizer shaped similar to a napkin ring and had a gradual transition zone to join the body of the implant achieved these objectives. Such a combination resulted in the reduction of the peak axial strains to less than half the magnitude of the peak strains around a conventional tip (830 vs 1,868 microstrain). The reduction in peak axial strains was to one third the magnitude of the strains developed adjacent to a stem with a hole drilled into the tip to accept the commonly used fin-type polymethyl methacrylate centralizer (830 vs 2,466 microstrain). These goals were achieved because a stem that is designed to accept a napkin ring-style centralizer i) has a lower bending stiffness at the tip of the implant, ii) allows room for a thicker cement mantle, and iii) avoids creating a stress riser adjacent to the edge of the drill hole. The peak cement strains adjacent to a stem of this design are well below the endurance limit of cement as long as the transition zone where the narrow tip meets the body of the implant is gradual. PMID:10959996

  1. Design of a Small-Molecule Entry Inhibitor with Activity against Primary Measles Virus Strains

    PubMed Central

    Plemper, Richard K.; Doyle, Joshua; Sun, Aiming; Prussia, Andrew; Cheng, Li-Ting; Rota, Paul A.; Liotta, Dennis C.; Snyder, James P.; Compans, Richard W.

    2005-01-01

    The incidence of measles virus (MV) infection has been significantly reduced in many nations through extensive vaccination; however, the virus still causes significant morbidity and mortality in developing countries. Measles outbreaks also occur in some developed countries that have failed to maintain high vaccine coverage rates. While vaccination is essential in preventing the spread of measles, case management would greatly benefit from the use of therapeutic agents to lower morbidity. Thus, the development of new therapeutic strategies is desirable. We previously reported the generation of a panel of small-molecule MV entry inhibitors. Here we show that our initial lead compound, although providing proof of concept for our approach, has a short half-life (<16 h) under physiological conditions. In order to combine potent antiviral activity with increased compound stability, a targeted library of candidate molecules designed on the structural basis of the first lead has been synthesized and tested against MV. We have identified an improved lead with low toxicity and high stability (half-life ≫ 16 h) that prevents viral entry and hence infection. This compound shows high MV specificity and strong activity (50% inhibitory concentration = 0.6 to 3.0 μM, depending on the MV genotype) against a panel of wild-type MV strains representative of viruses that are currently endemic in the field. PMID:16127050

  2. Geomechanical Modeling to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Gomez, S. P.; Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Taha, M. R.; Stormont, J. C.

    2013-12-01

    A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. For the DOE-NETL project 'Wellbore Seal Repair Using Nanocomposite Materials,' we are especially interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Building on existing thermo-hydro-mechanical (THM) finite element modeling of wellbore casings subject to significant tensile and shear loads, we advance a conceptual and numerical methodology to assess responses of annulus cement and casing. Bench-scale models complement bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. Field scale models use the stratigraphy from a pilot CO2 injection operation to estimate the necessary mechanical properties needed for a successful repair material. We report on approaches used for adapting existing wellbore models and share preliminary results of field scale models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6241A.

  3. Streptomyces gramineus sp. nov., an antibiotic-producing actinobacterium isolated from bamboo (Sasa borealis) rhizosphere soil.

    PubMed

    Lee, Hyo-Jin; Han, Song-Ih; Whang, Kyung-Sook

    2012-04-01

    Two actinobacterial strains, JR-43T and JR-4, were isolated from bamboo (Sasa borealis) rhizosphere soil. The isolates produced grey aerial mycelium and a yellow soluble pigment on ISP 4. Microscopic observation revealed that strains JR-43T and JR-4 produced rectiflexibiles spore chains with spiny surfaces. Both isolates had antibacterial activity against plant-pathogenic bacteria, such as Xanthomonas campestris LMG 568T and Xanthomonas axonopodis pv. vesicatoria LMG 905. The isolates contained iso-C14:0, iso-C15:0, anteiso-C15:0 and iso-C16:0 as the major fatty acids and MK-9(H6) and MK-9(H8) as the major isoprenoid quinones. Phylogenetic analysis of the 16S rRNA gene sequences of strains JR-43T and JR-4 showed that they grouped within Streptomyces cluster II and had highest sequence similarity to Streptomyces seoulensis NBRC 16668T and Streptomyces recifensis NBRC 12813T (both 98.2 % 16S rRNA gene sequence similarity). DNA-DNA relatedness between strain JR-43T and S. seoulensis NBRC 16668T and S. recifensis NBRC 12813T ranged from 31.42 to 42.92 %. Based on DNA-DNA relatedness and morphological and phenotypic data, strains JR-43T and JR-4 could be distinguished from the type strains of phylogenetically related species. They are therefore considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces gramineus sp. nov. is proposed. The type strain is JR-43T (=KACC 15079T=NBRC 107863T). Strain JR-4 (=KACC 15078= NBRC 107864) is a reference strain [corrected]. PMID:21622836

  4. Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata.

    PubMed

    Jha, Bhavanath; Kumar Singh, Vijay; Weiss, Angelo; Hartmann, Anton; Schmid, Michael

    2015-09-01

    Two novel, Gram-stain-positive, rod-shaped, halotolerent bacteria, strains JG 03(T) and JG 05 were isolated from the rhizosphere of Salicornia brachiata, an extreme halophyte. Comparative analyses of 16S rRNA gene sequences showed that they were closely related to members of the genus Zhihengliuella, with sequence similarities of 96.9-99.1%. The sequence similarity of strains JG 03(T )and JG 05 with each other was 99.4%. DNA-DNA hybridization of JG 03(T) and JG 05 with other species of the genus Zhihengliuella with validly published names showed reassociation values of 19.8%-53.4% and a value of 91.4% between each other. The peptidoglycan type of both strains was A4α and MK-9 and MK-10 were the predominant menaquinones. The predominant fatty acid in JG 03(T) was anteiso-C15 : 0 and anteiso-C17 : 0. However, iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0 were the major fatty acids in strain JG 05. The DNA G+C content of strains JG 03(T) and JG 05 was 70.0 and 70.1 mol%, respectively. In nutrient broth medium both strains grew at NaCl concentrations of up to 15% (w/v). On the basis of chemotaxonomic characteristics and phylogenetic analyses, strains JG 03(T) and JG 05 should be affiliated to the genus Zhihengliuella. Strains JG 03(T) and JG 05 represent a novel species of the genus Zhihengliuella for which the name Zhihengliuella somnathii sp. nov. is proposed. The type strain is JG 03(T) ( = DSM 23187(T) = IMCC 253(T)). PMID:26297009

  5. Utilization of Genomic Variations Among Xylella fastidiosa Strains for Improved Diagnostic Design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa causes economically important diseases in grapevine, citrus and many other plant species. Our recent whole genome comparative analysis of the four sequenced strains has identified genomic variation among these strains. The...

  6. Stackebrandtia cavernae sp. nov., a novel actinobacterium isolated from a karst cave sample.

    PubMed

    Zhang, Wan-Qin; Li, Yu-Qian; Liu, Lan; Salam, Nimaichand; Fang, Bao-Zhu; Wei, Dao-Qiao; Han, Ming-Xian; Li, Wen-Jun

    2016-03-01

    A novel actinobacterial strain, YIM ART06T, was isolated from a rock sample of karst cave located at Guizhou province, south-west China, and was characterized by a polyphasic taxonomic approach. The morphological and chemotaxonomic properties of strain YIM ART06T were in accordance with those of the genus Stackebrandtia. The 16S rRNA gene sequence of strain YIM ART06T showed highest similarity to Stackebrandtia nassauensis JCM 14905T (98.0 %). The DNA-DNA hybridization value between strains YIM ART06T and S. nassauensis JCM 14905T was, however, moderately high (62.9 %) but below the 70 % limit for species identification. Strain YIM ART06T contained meso-diaminopimelic acid as the diagnostic diamino acid, and mannose, ribose and xylose in the whole-cell hydrolysates. The predominant menaquinones detected were MK-10(H4), MK-10(H6), MK-11(H4) and MK-11(H6), while the cell membrane polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmethylethanolamine and three unidentified phospholipids. The genomic DNA G+C content of strain YIM ART06T was 71 mol%. The major fatty acids were anteiso-C17 : 0, iso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. Based on the taxonomic characteristics from the genotypic and phenotypic results, strain YIM ART06T merits recognition as a representative of a novel species of the genus Stackebrandtia, for which the name Stackebrandtia cavernae sp. nov. is proposed. The type strain is YIM ART06T ( = KCTC 39599T = CCTCC AA 2015021T = DSM 100594T). PMID:26703216

  7. Isoptericola rhizophila sp. nov., a novel actinobacterium isolated from rhizosphere soil.

    PubMed

    Kaur, Navjot; Rajendran, Mathan Kumar; Kaur, Gurwinder; Shanmugam, Mayilraj

    2014-08-01

    A Gram-positive, yellow pigmented strain, BKS 3-46(T) was isolated from a soil sample collected from the rhizosphere of Ficus benghalensis (banyan tree) in Bhitarkanika mangrove forest, in the Indian state of Odisha, and subjected to polyphasic taxonomic study. The 16S rRNA gene sequence of the strain was determined and the sequence analysis showed that strain BKS 3-46(T) should be assigned to the genus Isoptericola. The chemotaxonomic data supported this taxonomic placement i.e. presence of menaquinone MK-9(H4); major fatty acids anteiso C15:0 and iso-C15:0; and phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol (PI) as major polar lipids. Further phylogenetic analysis of the 16S rRNA gene sequence confirmed that the strain BKS 3-46(T) belongs to the genus Isoptericola and is closely related to Isoptericola halotolerans MTCC 11265(T) (98.6 %) followed by Isoptericola nanjingensis MTCC 11633(T) (98.4 %) and Isoptericola chiayiensis MTCC 11634(T) (98.1 %). However, the DNA-DNA hybridization values obtained between strain BKS 3-46(T) and other related strains were well below the threshold that is required for the proposal of a novel species. The G+C content of the genomic DNA was determined to be 70.4 mol%. The phenotypic and genotypic data showed that the strain BKS 3-46(T) merits the recognition as a representative of a novel species of the genus Isoptericola. It is proposed that the isolate should be classified in the genus Isoptericola as a novel species, Isoptericola rhizophila sp. nov. The type strain is BKS 3-46(T) (=MTCC 11080(T)=JCM 19252(T)). PMID:24858573

  8. Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas.

    PubMed

    Mayilraj, S; Kroppenstedt, R M; Suresh, K; Saini, H S

    2006-08-01

    A reddish orange bacterium, strain K07-05(T), was isolated from soil during a study of the bacterial diversity of a cold desert of the Indian Himalayas and was studied by using a polyphasic approach. The organism had morphological and chemotaxonomic properties consistent with its classification in the genus Kocuria. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain K07-05(T) was closely related to Kocuria rosea DSM 20447(T) and Kocuria polaris MTCC 3702(T) (98.1 and 97.8 % sequence similarity, respectively), whereas the sequence similarity values with respect to the other Kocuria species with validly published names were between 96.4 and 94.2 %. However, the genomic relatedness, as shown by DNA-DNA hybridization, of strain K07-05(T) and K. polaris MTCC 3702(T) is 49.5 % and that with K. rosea MTCC 2522(T) is 24.0 %. The DNA G+C content of the strain is 75.3 mol%. The above data in combination with the phenotypic distinctiveness of K07-05(T) clearly indicate that the strain represents a novel species, for which the name Kocuria himachalensis sp. nov. is proposed. The type strain is K07-05(T) (=MTCC 7020(T)=DSM 44905(T)=JCM 13326(T)). PMID:16902039

  9. Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments.

    PubMed

    Albarracín, Virginia Helena; Alonso-Vega, Pablo; Trujillo, Martha E; Amoroso, María Julia; Abate, Carlos Mauricio

    2010-02-01

    A novel actinomycete strain, ABO(T), isolated from copper-polluted sediments showed remarkable copper resistance as well as high bioaccumulation abilities. Classical taxonomic methods, including chemotaxonomy and molecular techniques, were used to characterize the isolate. Strain ABO(T) developed a honey-yellow substrate mycelium on all ISP media tested. Abundant, white, aerial mycelium was only formed on ISP 2, 5 and 7 and MM agar. Both types of hyphae fragmented into squarish rod-shaped elements. The aerial mycelium displayed spore-like structures with smooth surfaces in long, straight to flexuous chains. The organism has a type-IV cell wall lacking mycolic acids and type-A whole-cell sugar pattern (meso-diaminopimelic acid, arabinose and galactose) in addition to a phospholipid type-II profile. 16S rRNA gene sequence studies indicated that this organism is a member of the family Pseudonocardiaceae and that it forms a monophyletic clade with Amycolatopsis eurytherma NT202(T). The DNA-DNA relatedness of strain ABO(T) to A. eurytherma DSM 44348(T) was 39.5 %. It is evident from these genotypic and phenotypic data that strain ABO(T) represents a novel species in the genus Amycolatopsis, for which the name proposed is Amycolatopsis tucumanensis sp. nov. The type strain is ABO(T) (=DSM 45259(T) =LMG 24814(T)). PMID:19651731

  10. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L.

    PubMed

    Xu, Huan; Zhang, Sheng; Cheng, Juan; Asem, Mipeshwaree Devi; Zhang, Meng-Yue; Manikprabhu, Deene; Zhang, Tian-Yuan; Wu, Ying-Ying; Li, Wen-Jun; Zhang, Yi-Xuan

    2016-05-01

    A Gram-stain-positive, aerobic and yellow actinobacterial strain, designated SYP-A7303T, was isolated from the root of Ginkgo biloba L. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SYP-A7303T belongs to the genus Nocardioides. The 16S rRNA gene sequence of strain SYP-A7303T showed highest similarity to Nocardioides marinus CL-DD14T ( = JCM 15615T) (98.3 %) and Nocardioides aquiterrae GW-9T ( = JCM 11813T) (97.1 %), and less than 96.9 % to the type strains of other species of the genus Nocardioides. Strain SYP-A7303T grew optimally at 28 °C, pH 7.0 and in the absence of NaCl. It contained ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, with mannose, ribose, rhamnose, glucose and galactose as whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown lipid. The menaquinone was MK-8(H4) and the predominant cellular fatty acids were iso-C16 : 0, C18 : 1ω9c and C17 : 1ω8c. The DNA G+C content was 72 mol%. Mean DNA-DNA relatedness values between strain SYP-A7303T and the closely related strains N. marinus JCM 15615T and N. aquiterrae JCM 11813T were 62.5 ± 2.4 and 56.5 ± 3.5 %, respectively. Based on the morphological, physiological, biochemical and chemotaxonomic characteristics presented in this study, strain SYP-A7303T represents a novel species of the genus Nocardioides, for which the name Nocardioides ginkgobilobae sp. nov. is proposed. The type strain is SYP-A7303T ( = DSM 100492T = KCTC 39594T). PMID:26902329

  11. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  12. Innovative IPV from attenuated Sabin poliovirus or newly designed alternative seed strains.

    PubMed

    Hamidi, Ahd; Bakker, Wilfried A M

    2012-11-01

    This article gives an overview of the patent literature related to innovative inactivated polio vaccine (i-IPV) based on using Sabin poliovirus strains and newly developed alternative recombinant poliovirus strains. This innovative approach for IPV manufacturing is considered to attribute to the requirement for affordable IPV in the post-polio-eradication era, which is on the horizon. Although IPV is a well-established vaccine, the number of patent applications in this field was seen to have significantly increased in the past decade. Currently, regular IPV appears to be too expensive for universal use. Future affordability may be achieved by using alternative cell lines, alternative virus seed strains, improved and optimized processes, dose sparing, or the use of adjuvants. A relatively short-term option to achieve cost-price reduction is to work on regular IPV, using wild-type poliovirus strains, or on Sabin-IPV, based on using attenuated poliovirus strains. This price reduction can be achieved by introducing efficiency in processing. There are also multiple opportunities to work on dose sparing, for example, by using adjuvants or fractional doses. Renewed interest in this field was clearly reflected in the number and diversity of patent applications. In a later stage, several innovative approaches may become even more attractive, for example the use of recombinant virus strains or even a totally synthetic vaccine. Currently, such work is mainly carried out by research institutes and universities and therefore clinical data are not available. PMID:24236927

  13. High-quality draft genome sequence of Kocuria marina SO9-6, an actinobacterium isolated from a copper mine

    PubMed Central

    Castro, Daniel B.A.; Pereira, Letícia Bianca; Silva, Marcus Vinícius M. e; Silva, Bárbara P. da; Palermo, Bruna Rafaella Z.; Carlos, Camila; Belgini, Daiane R.B.; Limache, Elmer Erasmo G.; Lacerda, Gileno V. Jr; Nery, Mariana B.P.; Gomes, Milene B.; Souza, Salatiel S. de; Silva, Thiago M. da; Rodrigues, Viviane D.; Paulino, Luciana C.; Vicentini, Renato; Ferraz, Lúcio F.C.; Ottoboni, Laura M.M.

    2015-01-01

    An actinobacterial strain, designated SO9-6, was isolated from a copper iron sulfide mineral. The organism is Gram-positive, facultatively anaerobic, and coccoid. Chemotaxonomic and phylogenetic properties were consistent with its classification in the genus Kocuria. Here, we report the first draft genome sequence of Kocuria marina SO9-6 under accession JROM00000000 (http://www.ncbi.nlm.nih.gov/nuccore/725823918), which provides insights for heavy metal bioremediation and production of compounds of biotechnological interest. PMID:26484219

  14. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed. PMID:25430144

  15. Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest.

    PubMed

    Zainal, Nurullhudda; Ser, Hooi-Leng; Yin, Wai-Fong; Tee, Kok-Keng; Lee, Learn-Han; Chan, Kok-Gan

    2016-03-01

    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol  %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)). PMID:26786500

  16. Streptomyces antioxidans sp. nov., a Novel Mangrove Soil Actinobacterium with Antioxidative and Neuroprotective Potentials

    PubMed Central

    Ser, Hooi-Leng; Tan, Loh Teng-Hern; Palanisamy, Uma D.; Abd Malek, Sri N.; Yin, Wai-Fong; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    A novel strain, Streptomyces antioxidans MUSC 164T was recovered from mangrove forest soil located at Tanjung Lumpur, Malaysia. The Gram-positive bacterium forms yellowish-white aerial and brilliant greenish yellow substrate mycelium on ISP 2 agar. A polyphasic approach was used to determine the taxonomy status of strain MUSC 164T. The strain showed a spectrum of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8), while the identified polar lipids consisted of aminolipid, diphosphatidylglycerol, glycolipid, hydroxyphosphatidylethanolamine, phospholipid, phosphatidylinositol, phosphatidylethanolamine, phosphatidylglycerol and lipid. The cell wall sugars consist of galactose, glucose and ribose. The predominant cellular fatty acids (>10.0%) were identified as iso-C15:0 (34.8%) and anteiso-C15:0(14.0%). Phylogenetic analysis identified that closely related strains for MUSC 164T as Streptomyces javensis NBRC 100777T (99.6% sequence similarity), Streptomyces yogyakartensis NBRC 100779T (99.6%) and Streptomyces violaceusniger NBRC 13459T (99.6%). The DNA–DNA relatedness values between MUSC 164T and closely related type strains ranged from 23.8 ± 0.3% to 53.1 ± 4.3%. BOX-PCR fingerprints comparison showed that MUSC 164T exhibits a unique DNA profile, with DNA G + C content determined to be 71.6 mol%. Based on the polyphasic study of MUSC 164T, it is concluded that this strain represents a novel species, for which the name Streptomyces antioxidans sp. nov. is proposed. The type strain is MUSC 164T (=DSM 101523T = MCCC 1K01590T). The extract of MUSC 164T showed potent antioxidative and neuroprotective activities against hydrogen peroxide. The chemical analysis of the extract revealed that the strain produces pyrazines and phenolic-related compounds that could explain

  17. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    NASA Astrophysics Data System (ADS)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  18. Pentachlorophenol Degradation by Janibacter sp., a New Actinobacterium Isolated from Saline Sediment of Arid Land

    PubMed Central

    Khessairi, Amel; Jaouani, Atef; Turki, Yousra; Boudabous, Abdellatif; Hassen, Abdennaceur; Ouzari, Hadda

    2014-01-01

    Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy. Based on 16S rRNA coding gene sequence analysis, the strain FAS23 was identified as Janibacter sp. As revealed by high performance liquid chromatography (HPLC) analysis, FAS23 strain was found to be efficient for PCP removal in the presence of 1% of glucose. The conditions of growth and PCP removal by FAS23 strain were found to be optimal in neutral pH and at a temperature of 30°C. Moreover, this strain was found to be halotolerant at a range of 1–10% of NaCl and able to degrade PCP at a concentration up to 300 mg/L, while the addition of nonionic surfactant (Tween 80) enhanced the PCP removal capacity. PMID:25313357

  19. Production and optimization of L-asparaginase by an actinobacterium isolated from Nizampatnam mangrove ecosystem.

    PubMed

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M

    2014-09-01

    The aim of the present study was to isolate and screen actinomycetes from the mangrove sediments of Nizampatnam that are potent to produce L-asparaginase, an enzyme that catalyses the hydrolysis of asparagine. A total of 31 actinomycetes strains were isolated, of which 6 strains were positive for L-asparaginase. Several physico-chemical parameters were optimized for maximizing L-asparaginase production by the potent strain identified as Pseudonocardia endophytica VUK-10. Production of L-asparaginase by the strain was high in modified Asparagine glucose salts broth (FM-4)(3.96 IU/ml) as compared to other tested media. Maltose(6.99 IU ml(-1)) and L-asparagine (7.42 IU ml(-1)) were found to be the most suitable carbon and nitrogen sources for optimum enzyme production. Maximum production of L-asparaginase was found in the culture medium with pH 8 and temperature 30 degrees C incubated for four days. This is the first report on the production of L-asparaginase by Pseudonocardia endophytica VUK-10 from Nizampatnam mangrove sediments. PMID:25204050

  20. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    PubMed

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments. PMID:25758141

  1. Regulation of a nickel-cobalt efflux system and nickel homeostasis in a soil actinobacterium Streptomyces coelicolor.

    PubMed

    Kim, Hae Mi; Ahn, Bo-Eun; Lee, Ju-Hyung; Roe, Jung-Hye

    2015-04-01

    In Streptomyces coelicolor, a soil actinobacterium capable of morphological differentiation and complex secondary metabolism, nickel deficiency is sensed by Nur, a Ni-specific Fur family regulator that controls nickel uptake systems (NikABCDE and NikMNOQ) and both Fe-containing and Ni-containing superoxide dismutases (SodF and SodN). On the other hand, the nickel efflux system and its regulator have not been elucidated. In this study, we demonstrate that an ArsR/SmtB family metalloregulator NmtR, a close homologue of NmtR from Mycobacterium tuberculosis, controls a putative efflux pump of P1-type ATPase (NmtA) in S. coelicolor. NmtR binds to the nmtA promoter region to repress its transcription, and is dissociated in the presence of Ni(ii) and Co(ii). Disruption of the nmtA gene makes cells more sensitive to nickel and cobalt, consistent with its predicted role in encoding a Ni-Co-efflux pump. Growth of S. coelicolor in complex YEME medium is only marginally inhibited by up to 0.5 mM Ni(ii), with significant growth retardation at 1 mM. Nur-regulated sodF and nikA genes are repressed at less than 0.1 μM added NiSO4 whereas NmtR-regulated nmtA transcription is induced at 0.5 mM or more Ni(ii). This reveals the extreme sensitivity of S. coelicolor to nickel deficiency as well as tolerance to surplus nickel. How this organism and possibly other actinomycetes have evolved to develop such a highly Ni-tolerant physiology and how the highly sensitive regulator Nur and the obtuse regulator NmtR achieve their characteristic Ni-sensitivity are interesting questions to solve in the future. PMID:25697558

  2. Cryogenic strain gage techniques used in force balance design for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1986-01-01

    A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.

  3. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil.

    PubMed

    Ser, Hooi-Leng; Zainal, Nurullhudda; Palanisamy, Uma Devi; Goh, Bey-Hing; Yin, Wai-Fong; Chan, Kok-Gan; Lee, Learn-Han

    2015-06-01

    A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)). PMID:25863667

  4. Computer Simulation of Stress-Strain State of Oil Gathering Pipeline Designed for Ugut Field

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Burkova, S. P.; Samigullin, V. D.

    2016-04-01

    The paper presents the stress and strain state modeling of infield pipeline in Ugut oil field. The finite element models of the stress field distribution in the pipeline wall are presented in this paper. The attention is paid to the pipeline reliability under stress conditions induced by the internal pressure and external compressive or tensile loads.

  5. Designing acoustic-electric strain-gauge converters for sensitive diaphragm elements

    NASA Astrophysics Data System (ADS)

    Chernyak, M. G.; Kovalenko, T. V.

    Analytic expressions and nomograms are obtained to estimate the sensitivity of differential acoustic-electric measuring pressure converter with an error no more than 5% and to choose such an arrangement of strain-gauge converters on its sensitive diaphragm element that would ensure an additive temperature error of the measuring pressure converter less than 10-4 K-1

  6. General Strain Theory as a Basis for the Design of School Interventions

    ERIC Educational Resources Information Center

    Moon, Byongook; Morash, Merry

    2013-01-01

    The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…

  7. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    SciTech Connect

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  8. Ether-linked lipids of Dermabacter hominis, a human skin actinobacterium.

    PubMed

    Valero-Guillén, Pedro L; Fernández-Natal, Isabel; Marrodán-Ciordia, Teresa; Tauch, Andreas; Soriano, Francisco

    2016-03-01

    Dermabacter hominis is a medically important actinobacterial inhabitant of human skin, although it is rarely implicated in infections. The lipid composition of D. hominis is revisited in this study in the context of its natural resistance to daptomycin, an antibiotic whose activity is influenced by membrane lipids. Thin layer chromatography and mass spectrometry revealed that this species contains phospholipids and glycolipids. Using electrospray ionization time of flight mass spectrometry (exact mass) and gas chromatography-mass spectrometry, the major phospholipid of D. hominis was identified as plasmanyl-phosphatidylglycerol (pPG), because it presented one alkyl chain and one acyl chain in the glycerol moiety of the molecule. The structure of the major glycolipid (GL1) was studied by combined gas-liquid chromatography, mass spectrometry and nuclear magnetic resonance, and was established as galactosyl-α-(1→2)-glucosyl-alkyl-acyl-glycerol. Lipid analyses showed differences between one daptomycin-resistant (DAP-R) strain and one daptomycin-sensitive (DAP-S) strain growing in the presence of the antibiotic: DAP-R tended to accumulate GL1 and to reduce pPG, whereas DAP-S maintained high proportions of pPG. The results demonstrate the existence of ether-linked lipids in D. hominis and reveal a differential distribution of phospholipids and glycolipids according to the sensitivity or resistance to daptomycin, although the mechanism(s) operating in the resistance to the antibiotic remain(s) to be elucidated. PMID:26867985

  9. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    PubMed

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-01

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces. PMID:25592044

  10. Impact of linker strain and flexibility in the design of a fragment-based inhibitor

    PubMed Central

    Chung, Suhman; Parker, Jared B.; Bianchet, Mario; Amzel, L. Mario; Stivers, James T.

    2011-01-01

    The linking together of molecular fragments that bind to adjacent sites on an enzyme can lead to high affinity inhibitors. Ideally, this strategy would employ linkers that do not perturb the optimal binding geometries of the fragments and do not have excessive conformational flexibility that would increase the entropic penalty of binding. In reality, these aims are seldom realized due to limitations in linker chemistry. Here we systematically explore the energetic and structural effects of rigid and flexible linkers on the binding of a fragment-based inhibitor of human uracil DNA glycosylase. Analysis of the free energies of binding in combination with co-crystal structures shows that the flexibility and strain of a given linker can have a significant impact on binding affinity even when the binding fragments are optimally positioned. Such effects are not apparent from inspection of structures and underscore the importance of linker optimization in fragment-based drug discovery efforts. PMID:19396178

  11. Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs

    NASA Astrophysics Data System (ADS)

    Weil, K. S.; Koeppel, B. J.

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seal in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the

  12. Evaluating a prototype device designed to alleviate night vision goggle induced neck strain among military personnel.

    PubMed

    Dibblee, Jenna; Worthy, Portia; Farrell, Philip; Hetzler, Markus; Reid, Susan; Stevenson, Joan; Fischer, Steven

    2015-01-01

    The purpose of this study was verify the design of a novel Helmet System Support Device (HSSD) that can be used by military aircrew to help intervene on and reduce the high prevalence of neck trouble. Twelve healthy participants repeated simulated helicopter aircrew tasks on 3 separate days. On each day they wore a different helmet configuration, where measures of performance, perceived demand/preference and muscular demand were recorded. The results showed that vigilance tasks were performed over 10% faster with the HSSD configuration compared to wearing the normal helmet configuration. Participants were able to maintain static (endurance) postures for 28% longer, and use of the HSSD helped to prevent neck muscle fatigue in the most demanding task. The results of this design verification study indicate that the HSSD may be a realistic, feasible near-term solution to intervene on the high prevalence of neck trouble among rotary-wing aircrew. Practitioner Summary: This paper verifies the effectiveness of the Helmet System Support Device (HSSD) as an on-body personal protective device to help control exposures associated with aircrew neck trouble. The HSSD reduced perceived demand, reduced cumulative muscle activity in select muscles and provided improved fatigue resistance, meeting its desired design objectives. PMID:25932658

  13. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH).

    PubMed

    Urzì, Clara; La Cono, Violetta; Stackebrandt, Erko

    2004-07-01

    Bacteria of the family of Geodermatophilaceae are actively involved in the decay processes [Urzì, C. and Realini, M. (1998) Int Biodeterior Biodegrad 42: 45-54; Urzì, C., Salamone, P., Schumann, P., and Stackebrandt, E. (2000) Int J Syst Evol Microbiol 50: 529-536] of stone monuments. Characterization of isolates includes phenotypic, chemotaxonomic and genetic analysis often requiring long-term procedures. The use of specific probes for members of Geodermatophilaceae family could be useful for the easy detection of those strains colonizing rock surfaces and involved in the biodeterioration. Two 16S rRNA-targeted oligonucleotide probes were designed for the specific detection of members of the family Geodermatophilaceae using fluorescence in situ hybridization (FISH); one probe specific for members of the two genera Geodermatophilus/Blastococcus and the second for members of the genus Modestobacter. PMID:15186346

  14. Detection of multiple strains of rabies virus RNA using primers designed to target Mexican vampire bat variants.

    PubMed

    Loza-Rubio, E; Rojas-Anaya, E; Banda-Ruíz, V M; Nadin-Davis, S A; Cortez-García, B

    2005-10-01

    A reverse transcription-polymerase chain reaction (RT-PCR), that uses primers specifically designed to amplify a portion of the N gene of vampire bat strains of rabies that circulate in Mexico, but also recognizing most of the rabies variants circulating in endemic areas, was established. This standardized PCR assay was able to detect viral RNA in tenfold serial dilutions up to a 10(7) dilution using stock virus at an original titre of 10(7.5) LD50. The assay was highly specific for rabies virus. Forty different rabies isolates recovered from different species and geographical regions in the country were diagnosed as positive and negative by the fluorescent antibody test (FAT). These same samples were re-examined by both PCR and the mouse inoculation test (MIT). Compared with MIT the PCR exhibited an epidemiological sensitivity of 86% and a specificity of 91% while its positive predictive value was 96%. PMID:16181515

  15. Detection of multiple strains of rabies virus RNA using primers designed to target Mexican vampire bat variants.

    PubMed Central

    Loza-Rubio, E.; Rojas-Anaya, E.; Banda-Ruíz, V. M.; Nadin-Davis, S. A.; Cortez-García, B.

    2005-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR), that uses primers specifically designed to amplify a portion of the N gene of vampire bat strains of rabies that circulate in Mexico, but also recognizing most of the rabies variants circulating in endemic areas, was established. This standardized PCR assay was able to detect viral RNA in tenfold serial dilutions up to a 10(7) dilution using stock virus at an original titre of 10(7.5) LD50. The assay was highly specific for rabies virus. Forty different rabies isolates recovered from different species and geographical regions in the country were diagnosed as positive and negative by the fluorescent antibody test (FAT). These same samples were re-examined by both PCR and the mouse inoculation test (MIT). Compared with MIT the PCR exhibited an epidemiological sensitivity of 86% and a specificity of 91% while its positive predictive value was 96%. PMID:16181515

  16. Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: design using Topliss' decision tree, synthesis and biological assay.

    PubMed

    Jorge, Salomão Dória; Palace-Berl, Fanny; Masunari, Andrea; Cechinel, Cléber André; Ishii, Marina; Pasqualoto, Kerly Fernanda Mesquita; Tavares, Leoberto Costa

    2011-08-15

    The aim of this study was the design of a set of benzofuroxan derivatives as antimicrobial agents exploring the physicochemical properties of the related substituents. Topliss' decision tree approach was applied to select the substituent groups. Hierarchical cluster analysis was also performed to emphasize natural clusters and patterns. The compounds were obtained using two synthetic approaches for reducing the synthetic steps as well as improving the yield. The minimal inhibitory concentration method was employed to evaluate the activity against multidrug-resistant Staphylococcus aureus strains. The most active compound was 4-nitro-3-(trifluoromethyl)[N'-(benzofuroxan-5-yl)methylene]benzhydrazide (MIC range 12.7-11.4 μg/mL), pointing out that the antimicrobial activity was indeed influenced by the hydrophobic and electron-withdrawing property of the substituent groups 3-CF(3) and 4-NO(2), respectively. PMID:21757359

  17. Design considerations of biaxially tensile-strained germanium-on-silicon lasers

    NASA Astrophysics Data System (ADS)

    Li, Xiyue; Li, Zhiqiang; Li, Simon; Chrostowski, Lukas; (Maggie Xia, Guangrui

    2016-06-01

    Physical models of Ge energy band structure and material loss were implemented in LASTIPTM, a 2D simulation tool for edge emitting laser diodes. This model is able to match available experimental data. Important design parameters of a Fabry–Perot Ge laser, such as the cavity length, thickness, width, polycrystalline Si cladding layer thickness were studied and optimized. The laser structure optimizations alone were shown to reduce I th by 22-fold and increase η d and η i by 11 and 6 times. The simulations also showed that improving the defect limited carrier lifetime is critical for achieving an efficient and low-threshold Ge laser. With the optimized structure design (300 μm for the cavity length, 0.4 μm for the cavity width, 0.3 μm for the cavity thickness, and 0.6 μm for the polycrystalline Si cladding layer thickness) and a defect limited carrier lifetime of 100 ns, a wall-plug efficiency of 14.6% at 1 mW output is predicted, where J th of 2.8 kA cm‑2, I th of 3.3 mA, I 1mW of 9 mA, and η d of 23.6% can be achieved. These are tremendous improvements from the available experimental values at 280 kA cm‑2, 756 mA, 837 mA and 1.9%, respectively.

  18. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium

    PubMed Central

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L−1 starch, 30 g L−1 soya bean and 9 g L−1 sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view. PMID:24516462

  19. Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains

    PubMed Central

    Gtari, Maher; Ghodhbane-Gtari, Faten; Nouioui, Imen; Ktari, Amir; Hezbri, Karima; Mimouni, Wajdi; Sbissi, Imed; Ayari, Amani; Yamanaka, Takashi; Normand, Philippe; Tisa, Louis S; Boudabous, Abdellatif

    2015-01-01

    The repeated failures reported in cultivating some microbial lineages are a major challenge in microbial ecology and probably linked, in the case of Frankia microsymbionts to atypical patterns of auxotrophy. Comparative genomics of the so far uncultured cluster-2 Candidatus Frankia datiscae Dg1, with cultivated Frankiae has revealed genome reduction, but no obvious physiological impairments. A direct physiological assay on nodule tissues from Coriaria myrtifolia infected with a closely-related strain permitted the identification of a requirement for alkaline conditions. A high pH growth medium permitted the recovery of a slow-growing actinobacterium. The strain obtained, called BMG5.1, has short hyphae, produced diazovesicles in nitrogen-free media, and fulfilled Koch’s postulates by inducing effective nodules on axenically grown Coriaria spp. and Datisca glomerata. Analysis of the draft genome confirmed its close proximity to the Candidatus Frankia datiscae Dg1 genome with the absence of 38 genes (trehalose synthase, fumarylacetoacetase, etc) in BMG5.1 and the presence of 77 other genes (CRISPR, lanthionine synthase, glutathione synthetase, catalase, Na+/H+ antiporter, etc) not found in Dg1. A multi-gene phylogeny placed the two cluster-2 strains together at the root of the Frankia radiation. PMID:26287281

  20. Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains.

    PubMed

    Gtari, Maher; Ghodhbane-Gtari, Faten; Nouioui, Imen; Ktari, Amir; Hezbri, Karima; Mimouni, Wajdi; Sbissi, Imed; Ayari, Amani; Yamanaka, Takashi; Normand, Philippe; Tisa, Louis S; Boudabous, Abdellatif

    2015-01-01

    The repeated failures reported in cultivating some microbial lineages are a major challenge in microbial ecology and probably linked, in the case of Frankia microsymbionts to atypical patterns of auxotrophy. Comparative genomics of the so far uncultured cluster-2 Candidatus Frankia datiscae Dg1, with cultivated Frankiae has revealed genome reduction, but no obvious physiological impairments. A direct physiological assay on nodule tissues from Coriaria myrtifolia infected with a closely-related strain permitted the identification of a requirement for alkaline conditions. A high pH growth medium permitted the recovery of a slow-growing actinobacterium. The strain obtained, called BMG5.1, has short hyphae, produced diazovesicles in nitrogen-free media, and fulfilled Koch's postulates by inducing effective nodules on axenically grown Coriaria spp. and Datisca glomerata. Analysis of the draft genome confirmed its close proximity to the Candidatus Frankia datiscae Dg1 genome with the absence of 38 genes (trehalose synthase, fumarylacetoacetase, etc) in BMG5.1 and the presence of 77 other genes (CRISPR, lanthionine synthase, glutathione synthetase, catalase, Na+/H+ antiporter, etc) not found in Dg1. A multi-gene phylogeny placed the two cluster-2 strains together at the root of the Frankia radiation. PMID:26287281

  1. Optimization of Magnetosome Production and Growth by the Magnetotactic Vibrio Magnetovibrio blakemorei Strain MV-1 through a Statistics-Based Experimental Design

    PubMed Central

    Silva, Karen T.; Leão, Pedro E.; Abreu, Fernanda; López, Jimmy A.; Gutarra, Melissa L.; Farina, Marcos; Bazylinski, Dennis A.; Freire, Denise M. G.

    2013-01-01

    The growth and magnetosome production of the marine magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 were optimized through a statistics-based experimental factorial design. In the optimized growth medium, maximum magnetite yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor were obtained. PMID:23396329

  2. Identification of a potential lead structure for designing new antimicrobials to treat infections caused by Staphylococcus epidermidis-resistant strains.

    PubMed

    Pinheiro, Luiz C S; Abreu, Paula A; Afonso, Ilidio F; Leal, Bruno; Corrêa, Luiz C D; Borges, Júlio C; Marques, Isakelly P; Lourenço, André L; Sathler, Plinio; dos Santos, Andre L; Medeiros, Cid A; Cabral, Lúcio M; Júnior, Maurício L O; Romeiro, Gilberto A; Ferreira, Vitor F; Rodrigues, Carlos R; Castro, Helena C; Bernardino, Alice M R

    2008-11-01

    Bacterial infections are a significant cause of morbidity and mortality among critically ill patients. The increase of antibiotic resistance in bacteria from human microbiota-such as Staphylococcus epidermidis, an important nosocomial pathogen that affects immunocompromised patients or those with indwelling devices-increased the desire for new antibiotics. In this study we designed, synthesized, and determined the antimicrobial activity of 27 thieno[2,3-b]pyridines (1, 2, 2a-2m, 3, 3a-3m) derivatives against a drug-resistant clinical S. epidermidis strain. In addition, we performed a structure-activity relationship analysis using a molecular modeling approach, and discuss the drug absorption, distribution, metabolism, excretion, and toxicity profile and Lipinski's "rule of five," which are tools to assess the relationship between structures and drug-like properties of active compounds. Our results showed that compound 3b (5-(1H-tetrazol-5-yl)-4-(3;-methylphenylamino)thieno[2,3-b]pyridine) was as active as oxacillin and chloramphenicol but with lower theoretical toxicity risks and a better drug likeness and drug score potential than chloramphenicol. All molecular modeling and biological results reinforced the promising profile of 3b for further experimental investigation and development of new antibacterial drugs. PMID:18810543

  3. Genetic Relationship among Worldwide Strains of Xanthomonas Causing Canker in Citrus Species and Design of New Primers for Their Identification by PCR†

    PubMed Central

    Cubero, J.; Graham, J. H.

    2002-01-01

    Partial sequence analysis of the ribosomal operon in Xanthomonas axonopodis allowed discrimination among strains causing the A, B, and C types of citrus bacterial canker (CBC) and quantification of the relationship of these organisms with other species and pathovars in the same genus. Sets of primers based on sequence differences in the internally transcribed spacer and on a sequence from the plasmid gene pthA involved in virulence were designed for specific identification of xanthomonads causing CBC diseases. The two sets were validated with a collection of Xanthomonas strains associated with citrus species. The primer set based on ribosomal sequences had a high level of specificity for X. axonopodis pv. citri, whereas the set based on the pthA gene was universal for all types of CBC organisms. Moreover, the relationships among worldwide Xanthomonas strains causing CBC were analyzed by amplification of repetitive sequences (enterobacterial repetitive intergenic consensus and BOX elements). Under specific conditions, pathotypes of these Xanthomonas strains could be discerned, and subgroups of the pathotypes were identified. Subgroups of strains were associated with certain geographic areas of the world, and on this basis the origin of type A strains introduced into Florida could be inferred. PMID:11872476

  4. Impact of variation in acute virulence of BVDV1 strains on design of better vaccine efficacy challenge models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to antigenic differences between BVDV1 and BVDV2 strains both pestivirus species are included in U.S. vaccines. The efficacy of these vaccines in preventing acute infections is evaluated based on reduction of clinical disease. While high virulence BVDV2 strains are used in U.S. vaccine efficac...

  5. Design and application of a fiber Bragg grating strain sensor with enhanced sensitivity in the small-scale dam model

    NASA Astrophysics Data System (ADS)

    Ren, Liang; Chen, Jianyun; Li, Hong-Nan; Song, Gangbing; Ji, Xueheng

    2009-03-01

    Accurate measurement of strain variation and effective prediction of failure within models have been major objectives for strain sensors in dam model tests. In this paper, a fiber Bragg grating (FBG) strain sensor with enhanced strain sensitivity that is packaged by two gripper tubes is presented and applied in the seismic tests of a small-scale dam model. This paper discusses the principle of enhanced sensitivity of the FBG strain sensor. Calibration experiments and reliability tests were conducted to evaluate the sensor's strain transferring characteristics on plates of different material. This paper also investigates the applicability of the FBG strain sensors in seismic tests of a dam model by conducting a comparison between the test measurements of FBG sensors and analytical predictions, monitoring the failure progress and predicting the cracking inside the dam model. Results of the dam model tests prove that the FBG strain sensor has the advantages of small size, high precision, and embeddability. It has a promising potential in the cracking and failure monitoring and identification of the dam model.

  6. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    PubMed

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. PMID:26982503

  7. Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells.

    PubMed

    Arold, Stephen P; Wong, Joyce Y; Suki, Bela

    2007-07-01

    The pulmonary epithelium is exposed to mechanical strains during normal breathing or mechanical ventilation. While important for the regulation of cellular processes, excessive strains damage epithelial cells. To investigate the effects of strain on the epithelium, we developed a stretching device to apply equi-biaxial strains to cells cultured on elastic membranes. Following device validation, we exposed a murine epithelial cell line (MLE-12) to 30 min of cyclic stretch with 0, 25, 50, 75 and 100% change in surface area on pronectin or type I collagen coated membranes. Following stretch, we assessed cell viability using fluorescent immunocytochemisty and surfactant secretion using [(3)H] labeled phosphatidylcholine (PC). Cell injury increased with increasing strain with cells on pronectin showing more injury than on type I collagen. Stretching had no effect on surfactant secretion on either substratum suggesting MLE-12 cells are a poor model for stretch-induced surfactant secretion. The cells grown on pronectin, however, demonstrated a 3-fold increase in surfactant secretion compared to those grown on type I collagen at all strains. This suggests that, while this cell line does not demonstrate stretch-induced surfactant secretion, the underlying extracellular matrix plays a crucial factor in both cell death and signal transduction in response to strain. PMID:17578668

  8. Permanent Draft Genome Sequence for Frankia sp. Strain CeD, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina equistifolia Grown in Senegal.

    PubMed

    Ngom, Mariama; Oshone, Rediet; Hurst, Sheldon G; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Sy, Mame Ourèye; Champion, Antony; Thomas, W Kelley; Tisa, Louis S

    2016-01-01

    Frankiastrain CeD is a member ofFrankialineage Ib that is able to reinfect plants of theCasuarinafamilies. Here, we report a 5.0-Mbp draft genome sequence with a G+C content of 70.1% and 3,847 candidate protein-encoding genes. PMID:27056238

  9. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, Y.; Jiang, Z.

    2016-01-01

    When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.

  10. A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire

    NASA Astrophysics Data System (ADS)

    Amin, Abdullah Al; Baig, Tanvir; Deissler, Robert J.; Yao, Zhen; Tomsic, Michael; Doll, David; Akkus, Ozan; Martens, Michael

    2016-05-01

    High temperature superconductors such as MgB2 focus on conduction cooling of electromagnets that eliminates the use of liquid helium. With the recent advances in the strain sustainability of MgB2, a full body 1.5 T conduction cooled magnetic resonance imaging (MRI) magnet shows promise. In this article, a 36 filament MgB2 superconducting wire is considered for a 1.5 T full-body MRI system and is analyzed in terms of strain development. In order to facilitate analysis, this composite wire is homogenized and the orthotropic wire material properties are employed to solve for strain development using a 2D-axisymmetric finite element analysis (FEA) model of the entire set of MRI magnet. The entire multiscale multiphysics analysis is considered from the wire to the magnet bundles addressing winding, cooling and electromagnetic excitation. The FEA solution is verified with proven analytical equations and acceptable agreement is reported. The results show a maximum mechanical strain development of 0.06% that is within the failure criteria of -0.6% to 0.4% (-0.3% to 0.2% for design) for the 36 filament MgB2 wire. Therefore, the study indicates the safe operation of the conduction cooled MgB2 based MRI magnet as far as strain development is concerned.

  11. Fly's proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Wicaksono, D. H. B.; Zhang, L.-J.; Pandraud, G.; French, P. J.; Vincent, J. F. V.

    2006-04-01

    A new strain-sensing structure inspired from insect's (especially the Fly) propricoception sensor is devised. The campaniform sensillum is a strain-sensing microstructure with very high sensitivity despite its small dimension (diameter ~10 µm in a relatively stiff material of insect's exocuticle (E = ~109 Pa). Previous work shows that the high sensitivity of this structure towards strain is due to its membrane-in-recess- and strainconcentrating- hole- features. Based on this inspiration, we built similar structure using silicon micromachining technology. Then a simple characterisation setup was devised. Here, we present briefly, finite-element modeling and simulation based on this actual sample preparation for the characterisation. As comparison and also to understand mechanical features responsible for the strain-sensitivity, we performed the modeling on different mechanical structures: bulk chunk, blind-hole, thorugh-hole, surface membrane, and membrane-in-recess. The actual experimental characterisation was performed previously using optical technique to membranein- recess micromachined Si structure. The FEM simulation results confirm that the bending stress and strain are concentrated in the hole-vicinity. The membrane inside the hole acts as displacement transducer. The FEM is in conformity with previous analytical results, as well as the optical characterisation result. The end goal is to build a new type MEMS strain sensor.

  12. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  13. Design and proposal of dual line-of-defense perimeter watchdog incorporating optimally designed FBG based accelerometers and strain sensors using single optical fiber

    NASA Astrophysics Data System (ADS)

    Khan, Mohd. Mansoor; Sonkar, Ramesh Kumar

    2015-06-01

    Paper presents Opto-Mechanical intrusion sensor fence with FBGs attached to mechanical accelerometers and strain sensors, optimized on SolidWorks 2013 for desired frequency to 35 Hz, picking up accelerations/ strains and its deployment for perimeter security. The accelerometer structure consists of inertial mass supported by an L-shaped modified cantilever beam having non-uniform cross section area connected to base by a thin neck element which acts as strain concentrated centre hence an optimum zone for FBG sensors placement. Bragg wavelength shifts were obtained on Optigrating software for the obtained strain values on mechanical assembly of fence. CFD wind analysis is performed on the assembly to obtain the spot for accelerometer's placement to avoid false alarms up to wind velocities of 20 m/s.

  14. Mosquito larvicidal activity of silver nanoparticles synthesised using actinobacterium, Streptomyces sp. M25 against Anopheles subpictus, Culex quinquefasciatus and Aedes aegypti.

    PubMed

    Shanmugasundaram, T; Balagurunathan, R

    2015-12-01

    The present work reports the larvicidal potential of microbially synthesised silver nanoparticles (AgNPs) by using an actinobacterium, Streptomyces sp. M25 isolated from Western Ghats, Tamil Nadu, India. The biomass of Streptomyces sp. was exposed to 1 mM silver nitrate (AgNO3) solution. The synthesis of AgNPs was confirmed by visual inspection followed by instrumental analysis such as UV-vis spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy and transmission electron microscopy (TEM) with selected area electron diffraction. Based on the TEM and XRD analysis, the average size of the AgNPs was determined to be 10-35 nm. The biosynthesised AgNPs exhibited significant larvicidal activity against malarial vector, Anopheles subpictus (LC50 51.34 mg/L and χ (2) value of 8.228), filarial vector, Culex quinquefasciatus (LC50 48.98 mg/L and χ (2) value of 14.307) and dengue vector, Aedes aegypti (LC50 60.23 mg/L and χ (2) value of 4.042), respectively. Similarly, AgNO3 had larvicidal activity against malarial vector, A. subpictus (LC50 42.544 mg/L and χ (2) value of 2.561), filarial vector, C. quinquefasciatus (LC50 44.922 mg/L and χ (2) value of 1.693) and dengue vector, A. aegypti (LC50 39.664 mg/L and χ (2) value of 5.724), respectively. The current study is a rapid, cost effective, eco-friendly and single step approach. The Streptomyces sp. M25 is a newly added source for the synthesis of AgNPs with improved larvicidal activity. PMID:26688633

  15. Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect

    SciTech Connect

    Souma, Satofumi Ueyama, Masayuki; Ogawa, Matsuto

    2014-05-26

    We present a numerical study on the performance of strained graphene-based field-effect transistors. A local strain less than 10% is applied over a central channel region of the graphene to induce the shift of the Dirac point in the channel region along the transverse momentum direction. The left and the right unstrained graphene regions are doped to be either n-type or p-type. By using the atomistic tight-binding model and a Green's function method, we predict that the gate voltage applied to the central strained graphene region can switch the drain current on and off with an on/off ratio of more than six orders of magnitude at room temperature. This is in spite of the absence of a bandgap in the strained channel region. Steeper subthreshold slopes below 60 mV/decade are also predicted at room temperature because of a mechanism similar to the band-to-band tunneling field-effect transistors.

  16. Designing and exploring active N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against three Trypanosoma cruzi strains more prevalent in Chagas disease patients.

    PubMed

    Palace-Berl, Fanny; Pasqualoto, Kerly Fernanda Mesquita; Jorge, Salomão Dória; Zingales, Bianca; Zorzi, Rodrigo Rocha; Silva, Marcelo Nunes; Ferreira, Adilson Kleber; de Azevedo, Ricardo Alexandre; Teixeira, Sarah Fernandes; Tavares, Leoberto Costa

    2015-01-01

    Chagas disease affects around 8 million people worldwide and its treatment depends on only two nitroheterocyclic drugs, benznidazole (BZD) and nifurtimox (NFX). Both drugs have limited curative power in chronic phase of disease. Nifuroxazide (NF), a nitroheterocyclic drug, was used as lead to design a set of twenty one compounds in order to improve the anti-Trypanosoma cruzi activity. Lipinski's rules were considered in order to support drug-likeness designing. The set of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides was assayed against three T. cruzi strains, which represent the discrete typing units more prevalent in human patients: Y (TcII), Silvio X10 cl1 (TcI), and Bug 2149 cl10 (TcV). All the derivatives, except one, showed enhanced trypanocidal activity against the three strains as compared to BZD. In the Y strain 62% of the compounds were more active than NFX. The most active compound was N'-((5-nitrofuran-2-yl) methylene)biphenyl-4-carbohydrazide (C20), which showed IC50 values of 1.17 ± 0.12 μM; 3.17 ± 0.32 μM; and 1.81 ± 0.18 μM for Y, Silvio X10 cl1, and Bug 2149 cl10 strains, respectively. Cytotoxicity assays with human fibroblast cells have demonstrated high selectivity indices for several compounds. Exploratory data analysis indicated that primarily topological, steric/geometric, and electronic properties have contributed to the discrimination of the set of investigated compounds. The findings can be helpful to drive the designing, and subsequently, the synthesis of additional promising drugs against Chagas disease. PMID:25899337

  17. Interlaboratory standardization of the sandwich enzyme-linked immunosorbent assay designed for MATS, a rapid, reproducible method for estimating the strain coverage of investigational vaccines.

    PubMed

    Plikaytis, Brian D; Stella, Maria; Boccadifuoco, Giuseppe; DeTora, Lisa M; Agnusdei, Mauro; Santini, Laura; Brunelli, Brunella; Orlandi, Luca; Simmini, Isabella; Giuliani, Marzia; Ledroit, Morgan; Hong, Eva; Taha, Muhamed-Kheir; Ellie, Kim; Rajam, Gowrisankar; Carlone, George M; Claus, Heike; Vogel, Ulrich; Borrow, Ray; Findlow, Jamie; Gilchrist, Stefanie; Stefanelli, Paola; Fazio, Cecilia; Carannante, Anna; Oksnes, Jan; Fritzsønn, Elisabeth; Klem, Anne-Marie; Caugant, Dominique A; Abad, Raquel; Vázquez, Julio A; Rappuoli, Rino; Pizza, Mariagrazia; Donnelly, John J; Medini, Duccio

    2012-10-01

    The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or "relative potency" (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified. PMID:22875603

  18. Crystal structure analysis under uniaxial strain at low temperature using a unique design of four-axis x-ray diffractometer with a fixed sample

    SciTech Connect

    Kondo, Ryusuke; Kagoshima, Seiichi; Harada, Jimpei

    2005-09-15

    For the purpose of crystal structure analysis under uniaxial strain at low temperatures, we developed a pressure cell for uniaxial compression and a unique design of an x-ray diffractometer wherein both the x-ray source and the detector are capable of two-axial rotation with a fixed sample. This arrangement is advantageous to crystal structure analyses under extreme conditions that require a large and heavy apparatus. Using the present diffractometer, we performed the crystal structure analyses of the organic conductor, {alpha}-(BEDT-TTF){sub 2}I{sub 3} (BEDT-TTF denotes bis(ethylene)dithio-tetrathiafulvalene), under uniaxial strain and ambient pressure, and at room and low temperatures, and obtained results that were qualitatively consistent with those of resistivity measurements.

  19. Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Wenrui; Fan, Meng; Li, Leigang; Chen, Aiping; Su, Qing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2015-11-01

    The ability to control the morphology of heterointerfaces with coupled functionalities is fascinating from both fundamental and technological perspectives. Here, using BiFeO3:CoFe2O4 vertically aligned nanocomposite (VAN) films as a model system, we demonstrate a simple and effective method to modulate the heterointerface and its morphology in nanocomposite films with pulsed laser deposition. By tuning the deposition frequency through thickness during film growth, both vertically straight and gradient heterointerfaces have been achieved. The modulated heterointerface is strongly correlated with strain tuning and interface coupling, and thus modifies the magnetic anisotropy, coercive fields, and ferroelectric switching behavior. This study provides a viable approach for tailoring the interface strain and coupling in VAN and achieving tunable physical properties.

  20. Antibiofouling potential of quercetin compound from marine-derived actinobacterium, Streptomyces fradiae PE7 and its characterization.

    PubMed

    Gopikrishnan, Venugopal; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Pazhanimurugan, Raasaiyah; Balagurunathan, Ramasamy

    2016-07-01

    An attempt has been made to isolate, purify and characterize antifouling compound from Streptomyces fradiae PE7 isolated from Vellar estuarine sediment, Parangipettai, South India. The microbial identification was done at species level based on its phenotypic, cell wall and molecular characteristics. Strain PE7 produced high quantity of antifouling compounds in agar surface fermentation when compared to submerged fermentation. In fermentation optimization, wide range of sugars, amino acids, minerals, pH, temperature and NaCl concentration was found to influence the antifouling compound production from the strain PE7. Antifouling compound PE7-C was purified from the crude extract by preparative TLC, and its activity against biofouling bacteria was confirmed by bioautography. Based on the physico-chemical characteristics, the chemical structure of the antifouling compound PE7-C was identified as quercetin (C15H10O7), a flavonoid class of compound with the molecular weight 302.23 g/mol. The purified quercetin was active against 18 biofouling bacteria with MIC range between 1.6 and 25 μg/ml, algal spore germination and mollusc foot adherence found at 100 μg/ml and 306 ± 19.6 μg ml(-1) respectively. The present study, for the first time, reported quercetin from marine-derived Streptomyces sp. PE7 with antifouling activity. This also leads to the repurposing of quercetin for the development of antifouling agent. PMID:27032633

  1. The properties given at the time of publication for the designated type strain of Leifsonia rubra Reddy et al. 2003, CMS 76r, do not correspond with those of MTCC 4210, DSM 15304, CIP 107783 and JCM 12471 that are deposited as representing the type strain: Opinion 96. Judicial Commission of the International Committee on Systematics of Prokaryotes.

    PubMed

    Tindall, B J

    2014-10-01

    The Judicial Commission affirms that, according to information presented to it, the type strain of Leifsonia rubra Reddy et al. 2003 designated in the original publication as strain CMS 76r and deposited as MTCC 4210, DSM 15304, CIP 107783 and JCM 12471 does not have properties corresponding with those of the strains held in those collections under those accession numbers. The species Leifsonia rubra Reddy et al. 2003 was not represented by an authentic deposit of a type strain at the time of effective publication in the pages of the International Journal of Systematic and Evolutionary Microbiology. PMID:25288665

  2. Design and evaluation of specific PCR primers for rapid and reliable identification of Staphylococcus xylosus strains isolated from dry fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Parente, Eugenio; Villani, Francesco

    2003-11-01

    Rapid and reliable identification of Staphylococcus xylosus was achieved by species-specific PCR assays. Two sets of primers, targeting on xylulokinase (xylB) and 60 kDa heat-shock protein (hsp60) genes of S. xylosus, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 27 reference strains of the DSM collection, representing 23 different species of the Staphylococcus genus and 3 species of the Kocuria genus. Moreover, 90 wild strains isolated from different fermented dry sausages were included in the analysis. By using primers xylB-F and xylB-R the expected PCR fragment was obtained only when DNA from S. xylosus was used. By contrast, amplification performed by using primers xylHs-F and xylHs-R produced a single PCR fragment, of the expected length, when DNA from S. xylosus, S. haemolyticus, S. intermedius and S. kloosii were used as template. Nevertheless, AluI digestion of the xylHs-F/xylHs-R PCR fragment allowed a clear differentiation of these 4 species. The rapidity (about 4 h from DNA isolation to results) and reliability of the PCR procedures established suggests that the method may be profitably applied for specific detection and identification of S. xylosus strains. PMID:14666989

  3. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  4. Non-radiative recombination in Ge1-ySny light emitting diodes: The role of strain relaxation in tuned heterostructure designs

    NASA Astrophysics Data System (ADS)

    Gallagher, J. D.; Senaratne, C. L.; Xu, C.; Sims, P.; Aoki, T.; Smith, D. J.; Menéndez, J.; Kouvetakis, J.

    2015-06-01

    This paper describes the properties of Ge1-ySny light emitting diodes with a broad range of Sn concentrations (y = 0.0-0.11). The devices are grown upon Si(100) platforms using ultra-low temperature deposition of highly reactive Ge and Sn hydrides. The device fabrication adopts two new photodiode designs which lead to optimized performance and enables a systematic study of the effects of strain relaxation on emission efficiency. In contrast with n-Ge/i-Ge1-ySny/p-Ge analogs, which in most cases contain two defected interfaces, our designs include a p-layer with composition Ge1-zSnz chosen to be z < y to facilitate light extraction, but with z close enough to y to guarantee no strain relaxation at the i/p interface. In addition, a Ge1-xSnx alloy is also used for the n layer, with compositions in the 0 ≤ x ≤ y range, so that defected and non-defected n/i interfaces can be studied. The electroluminescence spectra vs the Sn content y in the intrinsic layer of the diodes exhibit a monotonic shift in the emission wavelength from 1550 nm to 2500 nm. On the other hand, the emission intensities show a complex dependence that cannot be explained solely on the basis of Sn concentrations. Detailed theoretical modeling of these intensities makes it possible to extract recombination lifetimes that are found to be more than three times longer in samples in which strain relaxation has not occurred at the n-i interface, demonstrating the existence of a large non-radiative contribution from the relaxation defects. This finding is particularly significant for direct gap diodes with y > 0.09, for which it is practically impossible to avoid strain relaxation in n-Ge/i-Ge1-ySny/p-Ge analogs. The new designs introduced here open the door to the fabrication of highly efficient electrically pumped systems for applications in future generations of integrated photonics.

  5. Non-radiative recombination in Ge{sub 1−y}Sn{sub y} light emitting diodes: The role of strain relaxation in tuned heterostructure designs

    SciTech Connect

    Gallagher, J. D.; Xu, C.; Smith, D. J.; Menéndez, J.; Senaratne, C. L.; Sims, P.; Kouvetakis, J.; Aoki, T.

    2015-06-28

    This paper describes the properties of Ge{sub 1−y}Sn{sub y} light emitting diodes with a broad range of Sn concentrations (y = 0.0–0.11). The devices are grown upon Si(100) platforms using ultra-low temperature deposition of highly reactive Ge and Sn hydrides. The device fabrication adopts two new photodiode designs which lead to optimized performance and enables a systematic study of the effects of strain relaxation on emission efficiency. In contrast with n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs, which in most cases contain two defected interfaces, our designs include a p-layer with composition Ge{sub 1−z}Sn{sub z} chosen to be z < y to facilitate light extraction, but with z close enough to y to guarantee no strain relaxation at the i/p interface. In addition, a Ge{sub 1−x}Sn{sub x} alloy is also used for the n layer, with compositions in the 0 ≤ x ≤ y range, so that defected and non-defected n/i interfaces can be studied. The electroluminescence spectra vs the Sn content y in the intrinsic layer of the diodes exhibit a monotonic shift in the emission wavelength from 1550 nm to 2500 nm. On the other hand, the emission intensities show a complex dependence that cannot be explained solely on the basis of Sn concentrations. Detailed theoretical modeling of these intensities makes it possible to extract recombination lifetimes that are found to be more than three times longer in samples in which strain relaxation has not occurred at the n-i interface, demonstrating the existence of a large non-radiative contribution from the relaxation defects. This finding is particularly significant for direct gap diodes with y > 0.09, for which it is practically impossible to avoid strain relaxation in n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs. The new designs introduced here open the door to the fabrication of highly efficient electrically pumped systems for applications in future generations of integrated photonics.

  6. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.

    PubMed

    Greening, Chris; Berney, Michael; Hards, Kiel; Cook, Gregory M; Conrad, Ralf

    2014-03-18

    In the Earth's lower atmosphere, H2 is maintained at trace concentrations (0.53 ppmv/0.40 nM) and rapidly turned over (lifetime ≤ 2.1 y(-1)). It is thought that soil microbes, likely actinomycetes, serve as the main global sink for tropospheric H2. However, no study has ever unambiguously proven that a hydrogenase can oxidize this trace gas. In this work, we demonstrate, by using genetic dissection and sensitive GC measurements, that the soil actinomycete Mycobacterium smegmatis mc(2)155 constitutively oxidizes subtropospheric concentrations of H2. We show that two membrane-associated, oxygen-dependent [NiFe] hydrogenases mediate this process. Hydrogenase-1 (Hyd1) (MSMEG_2262-2263) is well-adapted to rapidly oxidize H2 at a range of concentrations [Vmax(app) = 12 nmol⋅g⋅dw(-1)⋅min(-1); Km(app) = 180 nM; threshold = 130 pM in the Δhyd23 (Hyd1 only) strain], whereas Hyd2 (MSMEG_2719-2720) catalyzes a slower-acting, higher-affinity process [Vmax(app) = 2.5 nmol⋅g⋅dw(-1)⋅min(-1); Km(app) = 50 nM; threshold = 50 pM in the Δhyd13 (Hyd2 only) strain]. These observations strongly support previous studies that have linked group 5 [NiFe] hydrogenases (e.g., Hyd2) to the oxidation of tropospheric H2 in soil ecosystems. We further reveal that group 2a [NiFe] hydrogenases (e.g., Hyd1) can contribute to this process. Hydrogenase expression and activity increases in carbon-limited cells, suggesting that scavenging of trace H2 helps to sustain dormancy. Distinct physiological roles for Hyd1 and Hyd2 during the adaptation to this condition are proposed. Soil organisms harboring high-affinity hydrogenases may be especially competitive, given that they harness a highly dependable fuel source in otherwise unstable environments. PMID:24591586

  7. The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications

    PubMed Central

    Falentin, Hélène; Deutsch, Stéphanie-Marie; Jan, Gwenaël; Loux, Valentin; Thierry, Anne; Parayre, Sandrine; Maillard, Marie-Bernadette; Dherbécourt, Julien; Cousin, Fabien J.; Jardin, Julien; Siguier, Patricia; Couloux, Arnaud; Barbe, Valérie; Vacherie, Benoit; Wincker, Patrick; Gibrat, Jean-François; Gaillardin, Claude; Lortal, Sylvie

    2010-01-01

    Background Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use [1]. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027T), was sequenced with an 11-fold coverage. Methodology/Principal Findings The circular chromosome of 2.7 Mb of the CIRM-BIA1 strain has a GC-content of 67% and contains 22 different insertion sequences (3.5% of the genome in base pairs). Using a proteomic approach, 490 of the 2439 predicted proteins were confirmed. The annotation revealed the genetic basis for the hardiness of P. freudenreichii, as the bacterium possesses a complete enzymatic arsenal for de novo biosynthesis of aminoacids and vitamins (except panthotenate and biotin) as well as sequences involved in metabolism of various carbon sources, immunity against phages, duplicated chaperone genes and, interestingly, genes involved in the management of polyphosphate, glycogen and trehalose storage. The complete biosynthesis pathway for a bifidogenic compound is described, as well as a high number of surface proteins involved in interactions with the host and present in other probiotic bacteria. By comparative genomics, no pathogenicity factors found in P. acnes or in other pathogenic microbial species were identified in P. freudenreichii, which is consistent with the Generally Recognized As Safe and Qualified Presumption of Safety status of P. freudenreichii. Various pathways for formation of cheese flavor compounds were identified: the Wood-Werkman cycle for propionic acid formation, amino acid degradation pathways resulting in the formation of volatile branched chain fatty acids, and esterases involved in the formation of free fatty acids and esters. Conclusions

  8. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite

    PubMed Central

    Cochrane, Cédric; Koncar, Vladan; Lewandowski, Maryline; Dufour, Claude

    2007-01-01

    The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are “smart” because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene)/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor's electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.

  9. Sprains and Strains

    MedlinePlus

    ... people at risk for strains. Gymnastics, tennis, rowing, golf, and other sports that require extensive gripping can ... Trials and You was designed to help people learn more about clinical trials, why they matter, and ...

  10. Nocardiopsis sp. SD5: a potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India.

    PubMed

    Saha, Subhasish; Dhanasekaran, D; Shanmugapriya, S; Latha, S

    2013-07-01

    Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin protein, and keratin in its native state is not degradable by common proteolytic enzymes. The aim of the study was to find a potent feather degrading actinobacteria from feather waste soil. Out of 91 actinobacterial isolates recorded from feather waste soil in Tiruchirappalli and Nammakkal District, Tamil Nadu, India, isolate SD5 was selected for characterization because it exhibited significant keratinolytic activity. On the basis of the phenotypic, biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as Nocardiopsis sp. SD5. Protease and keratinase activity of Nocardiopsis sp. SD5 were analyzed. The enzyme was more stable over the neutral pH and the temperature of 40 °C. The optimum temperature and pH for both proteolytic and keratinolytic activity was determined at 50 °C and pH 9, respectively. Enzyme inhibitors, detergents and chelator declined the enzyme activity with increasing concentration. Nondenaturing polyacrylamide gel electrophoresis and zymogram elucidated the presence of 30 and 60 kDa protease enzymes. These findings indicated that thermo alkaliphilic feather degrading strain Nocardiopsis sp. SD5 could be used to control the feather waste pollution and to convert keratin rich feather waste into useful feedstock for poultry industry. PMID:23864545

  11. Nocardiopsis sp. SD5: A potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India.

    PubMed

    Saha, Subhasish; Dhanasekaran, D; Shanmugapriya, S; Latha, S

    2012-08-23

    Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin protein, and keratin in its native state is not degradable by common proteolytic enzymes. The aim of the study was to find a potent feather degrading actinobacteria from feather waste soil. Out of 91 actinobacterial isolates recorded from feather waste soil in Tiruchirappalli and Nammakkal District, Tamil Nadu, India, isolate SD5 was selected for characterization because it exhibited significant keratinolytic activity. On the basis of the phenotypic, biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as Nocardiopsis sp. SD5. Protease and keratinase activity of Nocardiopsis sp. SD5 were analyzed. The enzyme was more stable over the neutral pH and the temperature of 40 °C. The optimum temperature and pH for both proteolytic and keratinolytic activity was determined at 50 °C and pH 9, respectively. Enzyme inhibitors, detergents and chelator declined the enzyme activity with increasing concentration. Non denaturing poly acrylamide gel electrophoresis and zymogram elucidated the presence of 30 kda and 60 kda protease enzymes. These findings indicated that thermo alkaliphilic feather degrading strain Nocardiopsis sp. SD5 could be used to control the feather waste pollution and to convert keratin rich feather waste into useful feedstock for poultry industry. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:22914902

  12. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  13. Novel optical system for in vitro quantification of full surface strain fields in small arteries: I. Theory and design.

    PubMed

    Genovese, K; Lee, Y U; Humphrey, J D

    2011-03-01

    Recent advances in vascular biology and pathophysiology have revealed the need to understand better the genetic basis of arterial stiffness, disease progression and responses to clinical intervention. Towards this end, in vitro experiments on arteries from genetically modified mice promise to provide significantly increased insight into both health and disease. The need to test small arteries, often of complex shape, necessitates new methods for experimental arterial mechanics, however, ones that can provide information on local changes in geometry and strain. In this paper, we present a theoretical framework for a new panoramic digital image correlation-based method sufficient to collect such information and we demonstrate the utility of this approach via validation studies on phantoms having dimensions on the order of 500-1000 μm, similar to those of large mouse arteries. In particular, we show that placing the specimen within a conical mirror and imaging the specimen via a gimbal-mounted mirror using a single camera yields stereo information sufficient to quantify the size, shape and deformation along the full length and around the entire circumference of small arteries. In a companion paper, we show further that this approach can be implemented effectively while testing arteries within a physiological solution that maintains native biomechanical properties. PMID:21347912

  14. Development of a Custom-Designed, Pan Genomic DNA Microarray to Characterize Strain-Level Diversity among Cronobacter spp.

    PubMed Central

    Tall, Ben Davies; Gangiredla, Jayanthi; Gopinath, Gopal R.; Yan, Qiongqiong; Chase, Hannah R.; Lee, Boram; Hwang, Seongeun; Trach, Larisa; Park, Eunbi; Yoo, YeonJoo; Chung, TaeJung; Jackson, Scott A.; Patel, Isha R.; Sathyamoorthy, Venugopal; Pava-Ripoll, Monica; Kotewicz, Michael L.; Carter, Laurenda; Iversen, Carol; Pagotto, Franco; Stephan, Roger; Lehner, Angelika; Fanning, Séamus; Grim, Christopher J.

    2015-01-01

    Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species:Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite toward the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas. PMID:25984509

  15. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  16. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field. PMID:25559661

  17. Optical properties of InAsBi and optimal designs of lattice-matched and strain-balanced III-V semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Webster, P. T.; Shalindar, A. J.; Riordan, N. A.; Gogineni, C.; Liang, H.; Sharma, A. R.; Johnson, S. R.

    2016-06-01

    The optical properties of bulk InAs0.936Bi0.064 grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs0.936Bi0.064 as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software tool that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs0.911Sb0.089 and GaSb/InAs0.932Bi0.068 and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.

  18. New Source Heterojunction Structures with Relaxed/Strained Semiconductors for Quasi-Ballistic Complementary Metal-Oxide-Semiconductor Transistors: Relaxation Technique of Strained Substrates and Design of Sub-10 nm Devices

    NASA Astrophysics Data System (ADS)

    Tomohisa Mizuno,; Naoki Mizoguchi,; Kotaro Tanimoto,; Tomoaki Yamauchi,; Mitsuo Hasegawa,; Toshiyuki Sameshima,; Tsutomu Tezuka,

    2010-04-01

    We have studied new abrupt-source-relaxed/strained semiconductor-heterojunction structures for quasi-ballistic complementary metal-oxide-semiconductor (CMOS) devices, by locally controlling the strain of a single strained semiconductor. Appling O+ ion implantation recoil energy to the strained semiconductor/buried oxide interface, Raman analysis of the strained layers indicates that we have successfully relaxed both strained-Si-on-insulator (SSOI) substrates for n-MOS and SiGe-on-insulator (SGOI) substrates for p-MOS without polycrystallizing the semiconductor layers, by optimizing O+ ion implantation conditions. As a result, it is considered that the source conduction and valence band offsets Δ EC and Δ EV can be realized by the energy difference in the source Si/channel-strained Si and the source-relaxed SiGe/channel-strained SiGe layers, respectively. The device simulator, considering the tunneling effects at the source heterojunction, shows that the transconductance of sub-10 nm source heterojunction MOS transistors (SHOT) continues to increase with increasing Δ EC. Therefore, SHOT structures with the novel source heterojunction are very promising for future quasi-ballistic CMOS devices.

  19. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  20. Vehicular Causation Factors and Conceptual Design Modifications to Reduce Aortic Strain in Numerically Reconstructed Real World Nearside Lateral Automotive Crashes.

    PubMed

    Belwadi, Aditya; Yang, King H

    2015-01-01

    Aortic injury (AI) leading to disruption of the aorta is an uncommon but highly lethal consequence of trauma in modern society. Most recent estimates range from 7,500 to 8,000 cases per year from a variety of causes. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest cavity. It is evident that effective means of substantially improving the outcome of motor vehicle crash-induced AIs is by preventing the injury in the first place. In the current study, 16 design of computer experiments (DOCE) were carried out with varying levels of principal direction of force (PDOF), impact velocity, impact height, and impact position of the bullet vehicle combined with occupant seating positions in the case vehicle to determine the effects of these factors on aortic injury. Further, a combination of real world crash data reported in the Crash Injury Research and Engineering Network (CIREN) database, Finite Element (FE) vehicle models, and the Wayne State Human Body Model-II (WSHBM-II) indicates that occupant seating position, impact height, and PDOF, in that order play, a primary role in aortic injury. PMID:26448781

  1. Vehicular Causation Factors and Conceptual Design Modifications to Reduce Aortic Strain in Numerically Reconstructed Real World Nearside Lateral Automotive Crashes

    PubMed Central

    Belwadi, Aditya; Yang, King H.

    2015-01-01

    Aortic injury (AI) leading to disruption of the aorta is an uncommon but highly lethal consequence of trauma in modern society. Most recent estimates range from 7,500 to 8,000 cases per year from a variety of causes. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest cavity. It is evident that effective means of substantially improving the outcome of motor vehicle crash-induced AIs is by preventing the injury in the first place. In the current study, 16 design of computer experiments (DOCE) were carried out with varying levels of principal direction of force (PDOF), impact velocity, impact height, and impact position of the bullet vehicle combined with occupant seating positions in the case vehicle to determine the effects of these factors on aortic injury. Further, a combination of real world crash data reported in the Crash Injury Research and Engineering Network (CIREN) database, Finite Element (FE) vehicle models, and the Wayne State Human Body Model-II (WSHBM-II) indicates that occupant seating position, impact height, and PDOF, in that order play, a primary role in aortic injury. PMID:26448781

  2. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  3. Non-linear visco-elastic analysis and the design of super-pressure balloons : stress, strain and stability

    NASA Astrophysics Data System (ADS)

    Wakefield, David

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation

  4. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  5. Genome sequence of "Candidatus Microthrix parvicella" Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant.

    PubMed

    Muller, Emilie E L; Pinel, Nicolás; Gillece, John D; Schupp, James M; Price, Lance B; Engelthaler, David M; Levantesi, Caterina; Tandoi, Valter; Luong, Khai; Baliga, Nitin S; Korlach, Jonas; Keim, Paul S; Wilmes, Paul

    2012-12-01

    "Candidatus Microthrix" bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1. PMID:23144412

  6. Genome Sequence of “Candidatus Microthrix parvicella” Bio17-1, a Long-Chain-Fatty-Acid-Accumulating Filamentous Actinobacterium from a Biological Wastewater Treatment Plant

    PubMed Central

    Muller, Emilie E. L.; Pinel, Nicolás; Gillece, John D.; Schupp, James M.; Price, Lance B.; Engelthaler, David M.; Levantesi, Caterina; Tandoi, Valter; Luong, Khai; Baliga, Nitin S.; Korlach, Jonas; Keim, Paul S.

    2012-01-01

    “Candidatus Microthrix” bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “Candidatus Microthrix parvicella” strain Bio17-1. PMID:23144412

  7. Achieving high performance electric field induced strain: a rational design of hyperbranched aromatic polyamide functionalized graphene-polyurethane dielectric elastomer composites.

    PubMed

    Chen, Tian; Qiu, Jinhao; Zhu, Kongjun; Li, Jinhuan; Wang, Jingwen; Li, Shuqin; Wang, Xiaoliang

    2015-03-26

    Dielectric elastomers have great potentials as flexible actuators in micro-electromechanical systems (MEMS) due to their large deformation, light weight, mechanical compliancy, and low cost. The low dielectric constant of these elastomers requires a rather high voltage electric field, which has greatly limited their applications. In this work, a diaphragm-type flexible microactuator comprising a hyperbranched aromatic polyamide functionalized graphene (HAPFG) filler embedded into the polyurethane (PU) dielectric elastomer matrix is described. The rational designed HAPFG sheets exhibits uniform dispersion in PU matrix and strong adhesion with the matrix by hydrogen-bond coupling. Consequently, the HAPFG-PU composites possess high dielectric performance and low loss modulus. The effect of hyperbranched aromatic polyamide functionalized graphene on high voltage electric field induced strain was experimentally investigated using the Fotonic sensor. The high electric field response of the composite was discussed by applying different kinds of alternating-current field. In addition, a comparison of the breakdown strength between the HAPFG-PU composite and the pure PU was carried out. PMID:25741878

  8. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  9. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science

  10. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  11. Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    PubMed Central

    De Boeck, Bart WL; Kirn, Borut; Teske, Arco J; Hummeling, Ralph W; Doevendans, Pieter A; Cramer, Maarten J; Prinzen, Frits W

    2008-01-01

    Background Dyssynchrony of myocardial deformation is usually described in terms of variability only (e.g. standard deviations SD's). A description in terms of the spatio-temporal distribution pattern (vector-analysis) of dyssynchrony or by indices estimating its impact by expressing dyscoordination of shortening in relation to the global ventricular shortening may be preferential. Strain echocardiography by speckle tracking is a new non-invasive, albeit 2-D imaging modality to study myocardial deformation. Methods A post-processing toolbox was designed to incorporate local, speckle tracking-derived deformation data into a 36 segment 3-D model of the left ventricle. Global left ventricular shortening, standard deviations and vectors of timing of shortening were calculated. The impact of dyssynchrony was estimated by comparing the end-systolic values with either early peak values only (early shortening reserve ESR) or with all peak values (virtual shortening reserve VSR), and by the internal strain fraction (ISF) expressing dyscoordination as the fraction of deformation lost internally due to simultaneous shortening and stretching. These dyssynchrony parameters were compared in 8 volunteers (NL), 8 patients with Wolff-Parkinson-White syndrome (WPW), and 7 patients before (LBBB) and after cardiac resynchronization therapy (CRT). Results Dyssynchrony indices merely based on variability failed to detect differences between WPW and NL and failed to demonstrate the effect of CRT. Only the 3-D vector of onset of shortening could distinguish WPW from NL, while at peak shortening and by VSR, ESR and ISF no differences were found. All tested dyssynchrony parameters yielded higher values in LBBB compared to both NL and WPW. CRT reduced the spatial divergence of shortening (both vector magnitude and direction), and improved global ventricular shortening along with reductions in ESR and dyscoordination of shortening expressed by ISF. Conclusion Incorporation of local 2-D

  12. Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain.

    PubMed

    Deng, Yu; Fisher, Adam B; Fong, Stephen S

    2015-10-01

    Thermobifida fusca is a moderately thermophilic actinobacterium naturally capable of utilizing lignocellulosic biomass. The B6 strain of T. fusca was previously engineered to produce 1-propanol directly on lignocellulosic biomass by expressing a bifunctional butyraldehyde/alcohol dehydrogenase (adhE2). To characterize the intracellular mechanisms related to the accumulation of 1-propanol, the engineered B6 and wild-type (WT) strains were systematically compared by analysis of the transcriptome and intracellular metabolome during exponential growth on glucose, cellobiose, and Avicel. Of the 18 known cellulases in T. fusca, 10 cellulase genes were transcriptionally expressed on all three substrates along with three hemicellulases. Transcriptomic analysis of cellodextrin and cellulose transport revealed that Tfu_0936 (multiple sugar transport system permease) was the key enzyme regulating the uptake of sugars in T. fusca. For both WT and B6 strains, it was found that growth in oxygen-limited conditions resulted in a blocked tricarboxylic acid (TCA) cycle caused by repressed expression of Tfu_1925 (aconitate hydratase). Further, the transcriptome suggested a pathway for synthesizing succinyl-CoA: oxaloacetate to malate (by malate dehydrogenase), malate to fumarate (by fumarate hydratase), and fumarate to succinate (by succinate dehydrogenase/fumarate reductase) which was ultimately converted to succinyl-CoA by succinyl-CoA synthetase. Both the transcriptome and the intracellular metabolome confirmed that 1-propanol was produced through succinyl-CoA, L-methylmalonyl-CoA, D-methylmalonyl-CoA, and propionyl-CoA in the B6 strain. PMID:26227414

  13. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  14. Streptomyces malaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines

    PubMed Central

    Ser, Hooi-Leng; Palanisamy, Uma Devi; Yin, Wai-Fong; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136T (=DSM 100712T = MCCC 1K01246T) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063T (99.6%) along with two other strains (>98.9% sequence similarities). The DNA–DNA relatedness between MUSC 136T and these type strains ranged from 22.7 ± 0.5% to 46.5 ± 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136T exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites. PMID:27072394

  15. Streptomyces malaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines.

    PubMed

    Ser, Hooi-Leng; Palanisamy, Uma Devi; Yin, Wai-Fong; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136(T) (=DSM 100712(T) = MCCC 1K01246(T)) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063(T) (99.6%) along with two other strains (>98.9% sequence similarities). The DNA-DNA relatedness between MUSC 136(T) and these type strains ranged from 22.7 ± 0.5% to 46.5 ± 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136(T) exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites. PMID:27072394

  16. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  17. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.

    PubMed

    Contador, C A; Rodríguez, V; Andrews, B A; Asenjo, J A

    2015-11-01

    The first manually curated genome-scale metabolic model for Salinispora tropica strain CNB-440 was constructed. The reconstruction enables characterization of the metabolic capabilities for understanding and modeling the cellular physiology of this actinobacterium. The iCC908 model was based on physiological and biochemical information of primary and specialised metabolism pathways. The reconstructed stoichiometric matrix consists of 1169 biochemical conversions, 204 transport reactions and 1317 metabolites. A total of 908 structural open reading frames (ORFs) were included in the reconstructed network. The number of gene functions included in the reconstructed network corresponds to 20% of all characterized ORFs in the S. tropica genome. The genome-scale metabolic model was used to study strain-specific capabilities in defined minimal media. iCC908 was used to analyze growth capabilities in 41 different minimal growth-supporting environments. These nutrient sources were evaluated experimentally to assess the accuracy of in silico growth simulations. The model predicted no auxotrophies for essential amino acids, which was corroborated experimentally. The strain is able to use 21 different carbon sources, 8 nitrogen sources and 4 sulfur sources from the nutrient sources tested. Experimental observation suggests that the cells may be able to store sulfur. False predictions provided opportunities to gain new insights into the physiology of this species, and to gap fill the missing knowledge. The incorporation of modifications led to increased accuracy in predicting the outcome of growth/no growth experiments from 76 to 93%. iCC908 can thus be used to define the metabolic capabilities of S. tropica and guide and enhance the production of specialised metabolites. PMID:26459337

  18. Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India

    PubMed Central

    Krishnan, Ramya; Menon, Rahul Ravikumar; Tanaka, Naoto; Busse, Hans-Jürgen; Krishnamurthi, Srinivasan; Rameshkumar, Natarajan

    2016-01-01

    A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abilities to promote plant growth under saline conditions. The novel strain P3B162T possesses plant growth beneficial traits such as positive growth on 1-aminocyclopropane-1-carboxylic acid (ACC), production of indole acetic acid (IAA) and siderophore. In addition, it also showed important phenotypic characters such as ability to form biofilm and utilization of various components of plant root exudates (sugars, amino acids and organic acids), clearly indicating its lifestyle as a plant rhizosphere associated bacterium. Taxonomically, the novel strain P3B162T was affiliated to the genus Arthrobacter based on the collective results of phenotypic, genotypic and chemotaxonomic analyses. Moreover, molecular analysis using 16S rRNA gene showed Arthrobacter globiformis NBRC 12137T, Arthrobacter pascens DSM 20545T and Arthrobacter liuii DSXY973T as the closely related phylogenetic neighbours, showing more than 98% 16S rRNA similarity values, whereas the recA gene analysis displayed Arthrobacter liuii JCM 19864T as the nearest neighbour with 94.7% sequence similarity and only 91.7% to Arthrobacter globiformis LMG 3813T and 88.7% to Arthrobacter pascens LMG 16255T. However, the DNA-DNA hybridization values between strain P3B162T, Arthrobacter globiformis LMG 3813T, Arthrobacter pascens LMG 16255T and Arthrobacter liuii JCM 19864T was below 50%. In addition, the novel strain P3B162T can be distinguished from its closely related type strains by several phenotypic characters such as colony pigment, tolerance to NaCl, motility, reduction of nitrate, hydrolysis of DNA, acid from sucrose, cell wall sugars and cell wall peptidoglycan structure. In conclusion, the combined results of this study support the

  19. Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India.

    PubMed

    Krishnan, Ramya; Menon, Rahul Ravikumar; Tanaka, Naoto; Busse, Hans-Jürgen; Krishnamurthi, Srinivasan; Rameshkumar, Natarajan

    2016-01-01

    A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abilities to promote plant growth under saline conditions. The novel strain P3B162T possesses plant growth beneficial traits such as positive growth on 1-aminocyclopropane-1-carboxylic acid (ACC), production of indole acetic acid (IAA) and siderophore. In addition, it also showed important phenotypic characters such as ability to form biofilm and utilization of various components of plant root exudates (sugars, amino acids and organic acids), clearly indicating its lifestyle as a plant rhizosphere associated bacterium. Taxonomically, the novel strain P3B162T was affiliated to the genus Arthrobacter based on the collective results of phenotypic, genotypic and chemotaxonomic analyses. Moreover, molecular analysis using 16S rRNA gene showed Arthrobacter globiformis NBRC 12137T, Arthrobacter pascens DSM 20545T and Arthrobacter liuii DSXY973T as the closely related phylogenetic neighbours, showing more than 98% 16S rRNA similarity values, whereas the recA gene analysis displayed Arthrobacter liuii JCM 19864T as the nearest neighbour with 94.7% sequence similarity and only 91.7% to Arthrobacter globiformis LMG 3813T and 88.7% to Arthrobacter pascens LMG 16255T. However, the DNA-DNA hybridization values between strain P3B162T, Arthrobacter globiformis LMG 3813T, Arthrobacter pascens LMG 16255T and Arthrobacter liuii JCM 19864T was below 50%. In addition, the novel strain P3B162T can be distinguished from its closely related type strains by several phenotypic characters such as colony pigment, tolerance to NaCl, motility, reduction of nitrate, hydrolysis of DNA, acid from sucrose, cell wall sugars and cell wall peptidoglycan structure. In conclusion, the combined results of this study support the

  20. Hip flexor strain - aftercare

    MedlinePlus

    Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  1. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  2. Novel strained superjunction VDMOS

    NASA Astrophysics Data System (ADS)

    Naugarhiya, Alok; Dubey, Shashank; Kondekar, Pravin N.

    2015-09-01

    In this paper, we have proposed novel strained superjunction (s-SJ) vertical double diffused MOS (VDMOS). Through channel engineering, we have introduced strain effects in s-SJ device using thin separate p-type silicon-germanium (p-SiGe) layer over silicon p-pillar. Further, we have designed process flow for the possible fabrication of s-SJ VDMOS. The proposed s-SJ devices fitted with less input capacitance (Cin) and 1.2∼3 times higher output current density than conventional SJ VDMOS. Therefore, 40% less gate charge (Qg) is required to turn-on the s-SJ VDMOS and Ron A is optimized in between 12% and 46%.

  3. Numerical demonstration of MEMS strain sensor

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2012-04-01

    Silicon has piezoresistive property that allows designing strain sensor with higher gauge factor compared to conventional metal foil gauges. The sensing element can be micro-scale using MEMS, which minimizes the effect of strain gradient on measurement at stress concentration regions such as crack tips. The challenge of MEMS based strain sensor design is to decouple the sensing element from substrate for true strain measurement and to compensate the temperature effect on the piezoresistive coefficients of silicon. In this paper, a family of MEMS strain sensors with different geometric designs is introduced. Each strain sensor is made of single crystal silicon and manufactured using deposition/ etching/oxidation steps on a n- doped silicon wafer in (100) plane. The geometries include sensing element connected to the free heads of U shape substrate, a set of two or more sensing elements in an array in order to capture strain gradients and two directional sensors. The response function and the gauge factor of the strain sensors are identified using multi-physics models that combine structural and electrical behaviors of sensors mounted on a strained structure. The relationship between surface strain and strain at microstructure is identified numerically in order to include the relationship in the response function calculation.

  4. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  5. Competitiveness of a Genetically Engineered Strain of Trichoderma virens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intraspecific competitiveness of a genetically engineered strain of Trichoderma virens was assessed relative to the non-transformed, progenitor strain and an isogenic, auxotrophic strain using a replacement series design. The transformed strain was less fit, but appeared more competitive than t...

  6. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  7. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  8. Strains and Sprains

    MedlinePlus

    ... Children's Sports Injuries Computer-Related Repetitive Stress Injuries Knee Injuries Broken Bones, Sprains, and Strains Strains and Sprains ... Pain Going to a Physical Therapist Hamstring Strain Knee Injuries Sports and Exercise Safety Dealing With Sports Injuries ...

  9. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  10. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  11. Strainrange partitioning: A total strain range version

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range - life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  12. Thick film wireless and powerless strain sensor

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Sun, Ke

    2006-03-01

    The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.

  13. Medically Complex Home Care and Caregiver Strain

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  14. Whole genome sequences of four Brucella strains.

    PubMed

    Ding, Jiabo; Pan, Yuanlong; Jiang, Hai; Cheng, Junsheng; Liu, Taotao; Qin, Nan; Yang, Yi; Cui, Buyun; Chen, Chen; Liu, Cuihua; Mao, Kairong; Zhu, Baoli

    2011-07-01

    Brucella melitensis and Brucella suis are intracellular pathogens of livestock and humans. Here we report four genome sequences, those of the virulent strain B. melitensis M28-12 and vaccine strains B. melitensis M5 and M111 and B. suis S2, which show different virulences and pathogenicities, which will help to design a more effective brucellosis vaccine. PMID:21602346

  15. Program Calibrates Strain Gauges

    NASA Technical Reports Server (NTRS)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  16. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  17. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  18. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  19. Effects of systematic clinical supervision on psychiatric nurses' sense of coherence, creativity, work-related strain, job satisfaction and view of the effects from clinical supervision: a pre-post test design.

    PubMed

    Berg, A; Hallberg, I R

    1999-10-01

    There are few investigations of the type and the outcome of interventions aimed at supporting nurses caring for psychiatric patients. Therefore a prepost-test design study was used in which 22 psychiatric nurses, on a general psychiatric ward were examined before, during and after one year of systematic clinical supervision combined with supervised documented, planned, individualized care. The methods used were the Sense of Coherence scale (SOC), the Creative Climate Questionnaire (CCQ), the Work-Related Strain Inventory and 34 statements from the Satisfaction with Nursing Care and Work Questionnaire (SNCW). In addition 14 statements were developed to evaluate the nurses' view of the effects from clinical supervision. The baseline values for the CCQ indicated a stagnant organization and a high score in the conflict dimension indicated personal and emotional tensions within the organization. The intervention led to a significantly increased creative and innovative climate in the dimensions for trust, idea time and reduced conflicts. However, the organizational climate remained stagnant. The nurses' view of the effects from clinical supervision also increased significantly. There were no significant changes in the nurses' SNCW, WRSI or SOC score. The result of the correlation analysis indicated that a strong sense of coherence was related to low work-related strain but not to unsatisfactory working conditions/milieu. The results gave some support to the idea that systematic clinical supervision and supervised nursing care plans constitute one type of support strategy that improves creativity and the organizational climate. It may, not, however, buffer for interpersonal problems. Further research is required to explore the need for effects of various support systems depending on the circumstances in the organization. PMID:10827645

  20. Strains and Sprains

    MedlinePlus

    ... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...

  1. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  2. Can a strain yield a qubit?

    NASA Astrophysics Data System (ADS)

    Benjamin, Colin

    2015-03-01

    A Josepshon qubit is designed via the application of a tensile strain to a topological insulator surface, sandwiched between two s-wave superconductors. The strain applied leads to a shift in Dirac point without changing the conducting states existing on the surface of a topological insulator. This strain applied can be tuned to form a π-junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in a doubly degenerate state- ``0'' and ``1'' states of the qubit. A qubit designed this way is easily controlled via the tunable strain. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived. This work was supported by funds from Dept. of Science and Technology (Nanomission), Govt. of India, Grant No. SR/NM/NS-1101/2011.

  3. Involvement of an Alkane Hydroxylase System of Gordonia sp. Strain SoCg in Degradation of Solid n-Alkanes▿

    PubMed Central

    Lo Piccolo, Luca; De Pasquale, Claudio; Fodale, Roberta; Puglia, Anna Maria; Quatrini, Paola

    2011-01-01

    Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in Gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C12) to hexatriacontane (C36) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)-encoding systems of other alkane-degrading actinobacteria. Quantitative reverse transcription-PCR showed that the genes encoding AlkB (alkane 1-monooxygenase), RubA3 (rubredoxin), RubA4 (rubredoxin), and RubB (rubredoxin reductase) were induced by both n-hexadecane and n-triacontane, which were chosen as representative long-chain liquid and solid n-alkane molecules, respectively. Biotransformation of n-hexadecane into the corresponding 1-hexadecanol was detected by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME/GC-MS) analysis. The Gordonia SoCg alkB was heterologously expressed in Escherichia coli BL21 and in Streptomyces coelicolor M145, and both hosts acquired the ability to transform n-hexadecane into 1-hexadecanol, but the corresponding long-chain alcohol was never detected on n-triacontane. However, the recombinant S. coelicolor M145-AH, expressing the Gordonia alkB gene, was able to grow on n-triacontane as the sole C source. A SoCg alkB disruption mutant that is completely unable to grow on n-triacontane was obtained, demonstrating the role of an AlkB-type AH system in degradation of solid n-alkanes. PMID:21183636

  4. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.

    PubMed

    Lee, Joo-Young; Na, Yoon-Ah; Kim, Eungsoo; Lee, Heung-Shick; Kim, Pil

    2016-05-28

    Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in the industrial production of amino acids, one of the most important areas of white biotechnology. From shortly after its genome information became available, C. glutamicum has been applied in various production processes for value-added chemicals, fuels, and polymers, as a key organism in industrial biotechnology alongside the surprising progress in systems biology and metabolic engineering. In addition, recent studies have suggested another potential for C. glutamicum as a synthetic biology platform chassis that could move the new era of industrial microbial biotechnology beyond the classical field. Here, we review the recent progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most promising and valuable workhorses in the field of industrial biotechnology. PMID:26838341

  5. New Orientia tsutsugamushi strain from scrub typhus in Australia.

    PubMed Central

    Odorico, D. M.; Graves, S. R.; Currie, B.; Catmull, J.; Nack, Z.; Ellis, S.; Wang, L.; Miller, D. J.

    1998-01-01

    In a recent case of scrub typhus in Australia, Orientia tsutsugamushi isolated from the patient's blood was tested by sequence analysis of the 16S rDNA gene. The sequence showed a strain of O. tsutsugamushi that was quite different from the classic Karp, Kato, and Gilliam strains. The new strain has been designated Litchfield. PMID:9866742

  6. AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS

    PubMed Central

    Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.

    2012-01-01

    Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120

  7. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Schütze, Andreas; Seelecke, Stefan

    2016-06-01

    This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  8. Strain gage balances and buffet gages

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1983-01-01

    One-piece strain gage force balances were developed for use in the National Transonic Facility (NTF). This was accomplished by studying the effects of the cryogenic environment on materials, strain gages, cements, solders, and moisture proofing agents, and selecting those that minimized strain gage output changes due to temperature. In addition, because of the higher loads that may be imposed by the NTF, these balances are designed to carry a larger load for a given diameter than conventional balances. Full cryogenic calibrations were accomplished, and wind tunnel results that were obtained from the Langley 0-3-Meter Transonic Cryogenic Tunnel were used to verify laboratory test results.

  9. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  10. The Development of Electrical Strain Gages

    NASA Technical Reports Server (NTRS)

    De Forest, A V; Leaderman, H

    1940-01-01

    The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.

  11. Strain limit criteria to predict failure

    SciTech Connect

    Flanders, H.E.

    1995-12-31

    In recent years extensive effort has been expended to qualify existing structures for conditions that are beyond the original design basis. Determination of the component failure load is useful for this type of evaluation. This paper presents criteria based upon strain limits to predict the load at failure. The failure modes addressed are excessive plastic deformations, localized plastic strains, and structural instability. The effects of analytical method sophistication, as built configurations, material properties degradation, and stress state are addressed by the criteria.

  12. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1986-01-01

    One of the goals of the HOST Program is the development of electrical resistance strain gages for static strain measurements at temperatures equal to or greater than 1273 K. Strain gage materials must have a reproducible or predictable response to temperature, time and strain. It is the objective of this research to investigate criteria for the selection of materials for such applications through electrical properties studies. The results of the investigation of two groups of materials, refractory compounds and binary alloy solid solutions are presented.

  13. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  14. Can strain magnetize light?

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Strain in photonic structures can induce pseudomagnetic fields and Landau levels. Nature Photonics spoke to Mordechai Segev, Mikael Rechtsman, Alexander Szameit and Julia Zeuner about their unique approach.

  15. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  16. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  17. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  18. Absolute strain measurements made with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Song, In C.; Lee, Sun K.; Jeong, Sung H.; Lee, Byeong H.

    2004-02-01

    A strain sensor system based on optical fiber Bragg gratings (FBGs) is proposed with a new matched-filter design. The strain variation on the sensor FBG is continuously followed and matched by a filter FBG by use of a feedback control loop that produces an identical strain condition on the filter FBG. The matched strain on the filter FBG is then determined from the resonance vibration of the fiber piece embedding the filter FBG. The implementation and the performance of the proposed system are described. It is demonstrated that the proposed system can distinguish strain variation on the sensor FBG with resolution of one microstrain.

  19. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  20. Mechanochromic polyurethane strain sensor

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Khapli, S.; Peterson, S. D.; Porfiri, M.

    2014-08-01

    In this Letter, we study the mechanical and optical response of a thermoplastic polyurethane blended with 0.5 wt. % of bis(benzoxazolyl)stilbene dye. The mechanochromic behavior of the material is characterized in a uniaxial stress-relaxation test by simultaneously acquiring the applied force, mechanical deformation, and fluorescence emission. To offer insight into the stress-strain response of the polymer-dye blend, we adapt a classical nonlinear constitutive behavior for elastomeric materials that accounts for stress-induced softening. We correlate the fluorescent response with the mechanical strain to demonstrate the possibility of accurate strain sensing for a broad range of deformations during both loading and unloading.

  1. Strain gauge installation tool

    SciTech Connect

    Conard, Lisa Marie

    1997-12-01

    A tool and a method for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  2. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  3. Heat strain during explosive ordnance disposal.

    PubMed

    Stewart, Ian B; Rojek, Amanda M; Hunt, Andrew P

    2011-08-01

    Bomb technicians perform their work while encapsulated in explosive ordnance disposal suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body's natural mechanisms for heat dissipation. Consequently, bomb technicians are known to experience symptoms of heat illness while performing their work. This research provides the first field based analysis of heat strain in bomb technicians. Six participants undertook simulated operational tasks across 2 days of variable climate. All subjects demonstrated high levels of heat strain as evidenced by elevated heart rate, core body temperature, and physiological strain index. Participants also reported signs and symptoms associated with heat illness. These results were exacerbated by more intense physical activity despite being undertaken in a cooler environment. The universal experience of heat strain in this sample has significant implications for the health of bomb technicians and additional research examining methods to improve temperature regulation and performance is warranted. PMID:21882791

  4. What Are Sprains and Strains?

    MedlinePlus

    ... sprain, one or more ligaments is stretched or torn. What Causes a Sprain? Where Do Sprains Usually ... strain, a muscle or tendon is stretched or torn. What Causes Strains? A strain is caused by ...

  5. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  6. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.

    PubMed

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  7. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres

    PubMed Central

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  8. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  9. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000.

    PubMed

    Reddy, Gundlapally S N; Potrafka, Ruth M; Garcia-Pichel, Ferran

    2007-09-01

    A novel isolate, CP153-2(T), was obtained from topsoil biological crusts in the Colorado Plateau (USA). Colonies were black in colour due to melanin-like pigments when grown on oligotrophic medium, but not when grown on copiotrophic medium. Induction of melanogenesis was independent of growth phase or illumination conditions, including exposure to UVB and UVA radiation, but exposure to UVB could enhance total pigment production and growth under low nitrogen prevented its synthesis. This mode of regulation was previously unknown among melanin-producing bacteria. Polyphasic characterization of the strain revealed that cells were short, straight to curved or irregular rods that developed into pairs and formed multiseptate short filaments, with rare bud-like cells. Short rods were typically motile by means of flagella; multicellular structures tended to be sessile. Cells stained Gram-positive, grew at 4-30 degrees C and had a narrow range of pH tolerance (pH 5-9). The major fatty acids were iso-C(15:0) iso-C(16 : 0), anteiso-C(15 : 0) and C(18 : 1); MK-9(H(4)) was the major respiratory quinone. Its peptidoglycan contained meso-diaminopimelic acid. Based on 16S rRNA gene sequence similarity data, its closest relative (98.1 % similarity) was Modestobacter multiseptatus DSM 44406(T), which is similar morphologically. Based on the above characteristics, strain CP153-2(T) was also assigned to the genus Modestobacter. However, CP153-2(T) had a relatedness of only 49.9 % in whole-genome reassociation comparisons with the type strain of M. multiseptatus and thus formally represents a novel species, for which the name Modestobacter versicolor sp. nov. is proposed. Additional evidence in support of a novel species comes from phenotypic and chemotaxonomic characteristics. Strain CP153-2(T) (=ATCC BAA-1040(T) =DSM 16678(T)) is the type strain of M. versicolor. PMID:17766865

  10. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-06-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials.

  11. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    PubMed Central

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  12. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes.

    PubMed

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P; Pint, Cary L

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  13. Strain Rate Dependence of Compressive Stress-Strain Loops of Several Polymers

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    The compressive stress-strain loops of several commercial polymers at strain rates of nearly 700/s are determined in the standard split Hopkinson pressure bar. Four different polymers or typical thermoplastics: ABS, PA-6, PA-66 and PC are tested at room temperature. Cylindrical specimens with a slenderness ratio (= height l /diameter d) of 0.5 are used in the Hopkinson bar tests, and those with l/d = 1.5 as specified in the ASTM Designation E9-89a are used in the static tests. The stress-strain loops in compression at low and intermediate strain rates are measured in an Instron testing machine. The influences of strain rate on the Young's modulus, 2.5% flow stress and dissipation energy are investigated. It is demonstrated that the area within the stress-strain loop (or dissipation energy) increases with increasing strain rate as well as given strain, that is, all polymers tested exhibit intrinsic dynamic viscoelasticity and a high elastic aftereffect following complete unloading.

  14. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  15. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  16. Design and evaluation of two-stage multiplex real-time PCR method for detecting O157:H7 and non-O157 STEC strains from beef samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: E. coli O157:H7 was first recognized as a human pathogen in 1982 and until recently was the only E. coli strain mandated for testing by the USDA. In June 2012, the USDA declared six additional Shiga-toxin producing E. coli serogroups (O26, O45, O103, O111, O121, and O145) as adulterant...

  17. Fiber optic strain monitoring for pipelines

    SciTech Connect

    Berthold, J.W.

    1998-04-08

    The objective of this project was to demonstrate the feasibility of using fiber optic Bragg grating sensors (BGS) to measure axial and bending strain in pipes. Work was performed by McDermott Technology Inc. (MTI) and included BGS design and procurement. In addition to the pipe strain testing, a number of BGS evaluations were performed. Several methods were evaluated to protect and encapsulate the BGS, which are embedded inside an optical fiber, and strain transfer tests were performed on two of the encapsulation approaches. A high strain bending test to failure was performed on one BGS. A special test section was used to characterize the performance of the BGS and compare to standard electrical resistance foil strain gages. Two sets of pipe strain tests were performed. In the first test series, optical fiber was positioned along the pipe test section and embedded BGS were attached directly to the outside of the pipe wall. In the second tests series, the BGS were encapsulated inside a stainless steel tube which was attached to the outside of the pipe wall. All the tests were successfully completed, the data analyzed, and the results summarized in this report.

  18. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  19. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  20. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  1. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  2. Annihilation of strained vortices

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi

    2014-11-01

    As an initial stage of vortex reconnection, approach of nearly anti-parallel vortices has often been observed experimentally and studied numerically. Inspired by the recent experiment by Kleckner and Irvine on the dynamics of knotted vortices, we have studied the motion of two anti-parellel Burgers vortices driven by an axisymmetric linear straining field. We first extend the Burgers vortex solution which is a steady exact solution of the Navier-Stokes equation to a time-dependent exact solution. Then by superposing two such solutions, we investigate the annihilation process analytically. We can demonstrate that during the annihilation process the total vorticity decays exponentially on a time-scale proportional to the inverse of the rate of strain, even as the kinematic viscosity tends to 0. The analytic results are compared with the numerical simulations of two strained vortices with the vortex-vortex nonlinear interaction by Buntine and Pullin.

  3. Genomic fingerprinting of bacteriocin-producer strains of Staphylococcus aureus.

    PubMed

    Nascimento, Janaína dos S; Giambiagi-deMarval, Marcia; de Oliveira, Selma S; Ceotto, Hilana; dos Santos, Kátia Regina N; Bastos, Maria do Carmo de F

    2005-09-01

    Among 363 strains of Staphylococcus aureus, 21 were shown to produce bacteriocins (Bac), antimicrobial peptides with potential biotechnological applications. This collection includes strains which are either isolated from food, patients and healthy cattle, or are involved in subclinical bovine mastitis. From these 21 strains, 17 were shown to carry closely-related 8.0-kb Bac plasmids encoding bacteriocins either identical to or similar to aureocin A70, a bacteriocin able to inhibit strains of Listeria monocytogenes, a food-borne pathogen. Such findings prompted us to investigate the genetic relationships among these Bac+ strains. To obtain more discriminatory results, a combined analysis of AP-PCR, rep-PCR, and a modified PCR technique that we designated SD-PCR was employed. The 17 Bac+ strains harboring 8.0-kb Bac plasmids exhibited seven fingerprint patterns. One such genotype was composed of 8 out of the 11 strains associated with bovine mastitis, which suggests the prevalence of a clone of Bac+ strains involved in this animal infection carrying 8.0-kb Bac plasmids. Our data support the assumption that Bac+ strains of S. aureus carrying genetically related 8.0-kb Bac plasmids do not belong to a single clone. It seems, therefore, that 8.0-kb Bac plasmids have spread horizontally among different S. aureus strains. There also seems to be genetic diversity among the remaining Bac+ strains analyzed. PMID:16171981

  4. Local Strain Evaluation of Strained-SOI Structures

    NASA Astrophysics Data System (ADS)

    Usuda, Koji; Mizuno, Tomohisa; Numata, Toshinori; Tezuka, Tsutomu; Sugiyama, Naoharu; Moriyama, Yoshihiko; Nakaharai, Shu; Takagi, Shin-Ichi

    The strain relaxation within a strained-Si on SiGe on insulator (SGOI) structure might be one of the key issues in development of strained-Si MOSFET devices for high-performance ULSIs. In order to investigate the strain relaxation within the thin strained-Si layers, a new characterization technique to directly evaluate a local strain variation in the layers is required. Hence, we have developed the nano-beam electron diffraction (NBD) method which has a lateral resolution of 10 nm and a strain resolution of 0.1%. In this paper, we discuss a detailed investigation of whether the NBD method could be utilized to clarify a strain in a strained-Si layer on the SGOI structures.

  5. ConStrains identifies microbial strains in metagenomic datasets

    PubMed Central

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-01-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived data sets provides insights into microbial community dynamics. PMID:26344404

  6. ConStrains identifies microbial strains in metagenomic datasets.

    PubMed

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-10-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived datasets provides insights into microbial community dynamics. PMID:26344404

  7. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  8. Exciton effects in strained armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jia, Yonglei; Liu, Junlin

    2016-01-01

    The exciton effects in 1-nm-wide armchair graphene nanoribbons (AGNRs) under the uniaxial strain were studied within the nonorthogonal tight-binding (TB) model, supplemented by the long-range Coulomb interactions. The obtained results show that both the excitation energy and exciton binding energy are modulated by the uniaxial strain. The variation of these energies depends on the ribbon family. In addition, the results show that the variation of the exciton binding energy is much weaker than the variation of excitation energy. Our results provide new guidance for the design of optomechanical systems based on graphene nanoribbons.

  9. Job Strain in Physical Therapists

    PubMed Central

    Campo, Marc A.; Weiser, Sherri; Koenig, Karen L.

    2009-01-01

    Background: Job stress has been associated with poor outcomes. In focus groups and small-sample surveys, physical therapists have reported high levels of job stress. Studies of job stress in physical therapy with larger samples are needed. Objective: The purposes of this study were: (1) to determine the levels of psychological job demands and job control reported by physical therapists in a national sample, (2) to compare those levels with national norms, and (3) to determine whether high demands, low control, or a combination of both (job strain) increases the risk for turnover or work-related pain. Design: This was a prospective cohort study with a 1-year follow-up period. Methods: Participants were randomly selected members of the American Physical Therapy Association (n=882). Exposure assessments included the Job Content Questionnaire (JCQ), a commonly used instrument for evaluation of the psychosocial work environment. Outcomes included job turnover and work-related musculoskeletal disorders. Results: Compared with national averages, the physical therapists reported moderate job demands and high levels of job control. About 16% of the therapists reported changing jobs during follow-up. Risk factors for turnover included high job demands, low job control, job strain, female sex, and younger age. More than one half of the therapists reported work-related pain. Risk factors for work-related pain included low job control and job strain. Limitations: The JCQ measures only limited dimensions of the psychosocial work environment. All data were self-reported and subject to associated bias. Conclusions: Physical therapists’ views of their work environments were positive, including moderate levels of demands and high levels of control. Those therapists with high levels of demands and low levels of control, however, were at increased risk for both turnover and work-related pain. Physical therapists should consider the psychosocial work environment, along with other

  10. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  11. The strained state cosmology

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-01-01

    Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.

  12. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  13. Accurate strain measurements in highly strained Ge microbridges

    NASA Astrophysics Data System (ADS)

    Gassenq, A.; Tardif, S.; Guilloy, K.; Osvaldo Dias, G.; Pauc, N.; Duchemin, I.; Rouchon, D.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Niquet, Y.-M.; Geiger, R.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.

    2016-06-01

    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to ɛ100 = 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9% corresponding to an unexpected Δω = 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.

  14. Ultrasonic actuators: Remote strain measurements, high strain horns and ultrasonic chromatography

    NASA Astrophysics Data System (ADS)

    Lee, Chung Hoon

    In this thesis, optical diffraction strain measurement, silicon-based ultrasonic horn actuators for thin film testing, and mufluidic assay systems are presented. Optical ultrasonic strain measurement: Using optical diffraction gratings integrated on a PZT/silicon laminate actuator, the strain on the actuator was optically and remotely measured. The methodology, limitations, analytical and numerical (ANSYS) analysis are presented. This technology of diffraction grating for ultrasonic strain measurements could lead to an instrument useful for remote monitoring of strain on MEMS sensors. Design of high efficiency silicon-based ultrasonic horn, and their fabrication for thin film testing under cyclic load: A detailed ultrasonic horn design and its analysis are resented. For this application a Gaussian horn is utilized. Most ultrasonic horns have a single point maximum strain point along the horn resulting in strain gradient at all points. For the purpose of straining thin films it is desirable to have areas of spatially constant strain fields. Remarkably, the Gaussian horn has a constant strain area suitable for thin film testing. High strain values can lead to testing not only fatigue, but also fracture of thin films. We feel that the ability to generate constant ultrasonic strain areas on silicon is a technique suitable for industrial and academic material characterization. A portable high-intensity ultrasonic actuator for mufluidic separation (ultrasonic chromatography): Micro-particle manipulation in a liquid using ultrasonic fields in a micro-channel, principle of operation, and analysis are presented. Beads of different sizes could be separated within an optically viewable aperture (˜100 mum). It is found that the separation occurs due to ultrasonic radiation force and a new inertial force, acting on the beads. The key mechanism of focusing beads at the nodes of ultrasonic standing waves, and the origin of the inertial force for the separation are described. The

  15. Strain engineering water transport in graphene nanochannels.

    PubMed

    Xiong, Wei; Liu, Jefferson Zhe; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui

    2011-11-01

    Using equilibrium and nonequilibrium molecular dynamic simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nanochannels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nanochannel devices. PMID:22181520

  16. The meaning of role strain.

    PubMed

    Ward, C R

    1986-01-01

    Explicating the meaning of the concept of role strain is important in role theory formulation, an area requiring further development to provide explanations and predictions for both patient and provider roles. In this analysis, the use of the term role strain is traced from the structural-functionalist and symbolic-interactionist perspectives. Descriptive, stipulative, and connotative definitions of role strain are derived, and necessary and relevant properties are proposed. Antecedent and intervening conditions for role strain are outlined from the literature. Role strain manifestations and empirical referents are presented, and an initial step is taken toward a theoretical formulation by defining role strain within the context of role stress. PMID:3079985

  17. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGESBeta

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  18. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  19. Ribotyping of Lactobacillus casei group strains isolated from dairy products.

    PubMed

    Svec, P; Dráb, V; Sedlácek, I

    2005-01-01

    A series of lactobacilli isolated from dairy products were characterized using biotyping and ribotyping with EcoRI and HindIII restriction enzymes. Biotyping assigned 14 strains as Lactobacillus casei, 6 strains as Lactobacillus paracasei subsp. paracasei and 12 as Lactobacillus rhamnosus. The obtained ribotype patterns separated all analyzed strains into two clearly distinguished groups corresponding to L. rhamnosus and L. casei/L. paracasei subsp. paracasei. The HindIII ribotypes of individual strains representing these two groups were visually very similar. In contrast, EcoRI ribotyping revealed high intraspecies variability. All ribotypes of L. casei and L. paracasei subsp. paracasei dairy strains were very close and some strains even shared identical ribotype profiles. The type strains L. casei CCM 7088T (= ATCC 393T) and Lactobacillus zeae CCM 7069T revealing similar ribopatterns formed a separate subcluster using both restriction enzymes. In contrast, the ribotype profile of L. casei CCM 7089 (= ATCC 334) was very close to ribopatterns obtained from the dairy strains. These results support synonymy of L. casei and L. paracasei species revealed by other studies as well as reclassification of the type strain L. casei CCM 7088T as L. zeae and designation of L. casei CCM 7089 as the neotype strain. PMID:16295661

  20. Inexpensive Implementation of Many Strain Gauges

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.

    2010-01-01

    It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of

  1. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  2. Strain Release Amination

    PubMed Central

    Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.

    2015-01-01

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372

  3. Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group.

    PubMed

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-05-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  4. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  5. Interfacial residual thermal strain

    NASA Astrophysics Data System (ADS)

    Kasen, M.; Santoyo, R.

    A method has been developed for assessing the influence of polymer chemical composition and of processing parameters on the magnitude of residual stress developed in glass-fibre-reinforced composites subjected to various cure cycles and subsequently cooled to cryogenic temperatures. The test method was applied to nine resin types, including epoxy, vinyl ester, polyester, cyanate ester and phenolic formulations. Results suggest that polyester resin develops substantially less overall residual strain than do the other resin systems.

  6. Strain Analysis of the de Mattia Test

    NASA Astrophysics Data System (ADS)

    Feichter, C.; Vezer, S.; Reiter, M.; Major, Z.

    2010-06-01

    The de Mattia test is a well-known, standardized and widely used method in the rubber industry for characterizing the fatigue behaviour of rubbers. Due to the visual observation and classification of the crack initiated, high data scatter were usually observed in these tests. To improve the quality of the de Mattia test and to support the applicability of the test method in modern design procedures, two novel experimental methods were proposed. Full-field strain analysis experiments using digital image correlation technique were performed and the local strains at the notch tip determined in the first. A global displacement vs. local strain calibration curves makes the design and conduction of strain based Wöhler curves possible. The crack initiation and crack growth is detected by an image analysis system and the crack growth rate was determined in the second method. To gain more insight into the fatigue behaviour of rubbers, these two novel methods were combined and can efficiently be used for characterizing the fatigue behaviour of rubbers.

  7. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  8. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  9. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  10. Construction of the Inbred Strain.

    PubMed

    Shinya, Minori

    2016-01-01

    Genetically homogeneous populations such as inbred strains are valuable experimental tools in various fields of biomedical analyses. In many animals, inbred strains are established by consecutive sib-pair mating for a minimum of 20 generations. As the generation proceeds, fitness of the population reduces usually. Therefore, in order to establish inbred strains, the important point is the selection of pairs in good condition at each generation. Here, I describe the procedure and tips for generating inbred strains in zebrafish. PMID:27464804

  11. Strain calibration of optical FBG-based strain sensors

    NASA Astrophysics Data System (ADS)

    Roths, Johannes; Wilfert, Andre; Kratzer, Peter; Jülich, Florian; Kuttler, Rolf

    2010-09-01

    A facility for strain sensitivity calibration of optical FBG-based strain sensors according to the German VDI/VDE 2660 guideline was established and characterized. Statistical analysis of several calibration measurement series performed with one single type of FBG strain sensor and application technique showed a reproducibility of 0.15%. Strain sensitivities for FBGs inscribed in two different types of optical fibres (GF1B and PR2008) showed significantly different strain sensitivities of k = 0.7885+/-0.0026 and k = 0.7758+/-0.0024, respectively.

  12. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity.

    PubMed

    Rathod, Dnyaneshwar; Golinska, Patrycja; Wypij, Magdalena; Dahm, Hanna; Rai, Mahendra

    2016-10-01

    The authors report the biological synthesis of silver nanoparticles (AgNPs) by alkaliphilic actinobacterium Nocardiopsis valliformis OT1 strain isolated for the first time from Lonar crater, India. The primary detection of silver NPs formation was made by colour change from colourless to dark brown and confirmed by UV-Vis spectrum of AgNPs at 423 nm, specific for AgNPs. Further, AgNPs were characterized by nanoparticle tracking analysis, Zeta sizer, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) analyses. FTIR analysis showed the presence of proteins as capping agent. TEM analysis revealed the formation of spherical and polydispersed AgNPs within the size range of 5-50 nm. The antimicrobial activity of silver nanoparticles against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis was evaluated. The AgNPs showed the maximum antibacterial activity against B. subtilis (Gram positive) and the minimum against E. coli (Gram negative). The minimal inhibitory concentration values of AgNPs for the tested bacteria were found to be in the range of 30-80 µg/mL. The AgNPs demonstrated higher antibacterial activity against all the bacteria tested as compared with the commercially available antibiotics. The cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) demonstrated a dose-response activity. The IC50 value was found to be 100 µg/mL of AgNPs against cancer HeLa cell line. PMID:27278909

  13. Identification of fall armyworm (Lepidoptera:Noctuidae) host strains using male-derived spermatophores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory experiments were designed to identify the host strain paternity of fall armyworm [Spodoptera frugiperda (J. E. Smith)] mated females. In no-choice tests, corn or rice strain females were placed in cages with males of the opposite strain. After 48 h, females were dissected and spermatoph...

  14. 77 FR 2910 - Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance; Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... strain D747 (formerly known as Bacillus subtilis variant amyloliquefaciens strain D747). This document is... Federal Register of January 6, 2012, (77 FR 745). This section was inadvertently designated as Sec. 180... AGENCY 40 CFR Part 180 Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of...

  15. Complete Genome Sequence of Leuconostoc gelidum Strain JB7, Isolated from Kimchi

    PubMed Central

    Jung, Ji Young; Lee, Se Hee

    2012-01-01

    A strain of Leuconostoc gelidum, designated strain JB7, was isolated from kimchi, the representative Korean traditional fermented food. Here we announce the complete genome sequence of L. gelidum strain JB7, consisting of a 1,893,499-bp circular chromosome with a G+C content of 36.68%, and provide a description of its annotation. PMID:23144409

  16. Printing of stretchable silk membranes for strain measurements.

    PubMed

    Ling, Shengjie; Zhang, Qiang; Kaplan, David L; Omenetto, Fiorenzo; Buehler, Markus J; Qin, Zhao

    2016-07-01

    Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to several limitations such as strain range, boundary conditions, surface bonding and biocompatibility. Here we propose the use of silk solutions and printing to synthesize prototype strain gauges for large strain measurements in biological tissues. The study shows that silk-based strain gauges can be stretched up to 1300% without failure, which is more than two orders of magnitude larger than conventional strain gauges, and the mechanics can be tuned by adjusting ion content. We demonstrate that the printing approach can accurately provide well bonded fluorescent features on the silk membranes using designs which can accurately measure strain in the membrane. The results show that these new strain gauges measure large deformations in the materials by eliminating the effects of sliding from the boundaries, making the measurements more accurate than direct outputs from tensile machines. PMID:27241909

  17. Transient dynamic distributed strain sensing using photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Samad, Shafeek A.; Hegde, G. M.; Roy Mahapatra, D.; Hanagud, S.

    2014-02-01

    A technique to determine the strain field in one-dimensional (1D) photonic crystal (PC) involving high strain rate, high temperature around shock or ballistic impact is proposed. Transient strain sensing is important in aerospace and other structural health monitoring (SHM) applications. We consider a MEMS based smart sensor design with photonic crystal integrated on a silicon substrate for dynamic strain correlation. Deeply etched silicon rib waveguides with distributed Bragg reflectors are suitable candidates for miniaturization of sensing elements, replacing the conventional FBG. Main objective here is to investigate the effect of non-uniform strain localization on the sensor output. Computational analysis is done to determine the static and dynamic strain sensing characteristics of the 1D photonic crystal based sensor. The structure is designed and modeled using Finite Element Method. Dynamic localization of strain field is observed. The distributed strain field is used to calculated the PC waveguide response. The sensitivity of the proposed sensor is estimated to be 0.6 pm/μɛ.

  18. High catalase production by Rhizobium radiobacter strain 2-1.

    PubMed

    Nakayama, Mami; Nakajima-Kambe, Toshiaki; Katayama, Hideki; Higuchi, Kazuhiko; Kawasaki, Yoshio; Fuji, Ryujiro

    2008-12-01

    To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater. PMID:19134550

  19. Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection

    NASA Astrophysics Data System (ADS)

    Cai, Le; Song, Li; Luan, Pingshan; Zhang, Qiang; Zhang, Nan; Gao, Qingqing; Zhao, Duan; Zhang, Xiao; Tu, Min; Yang, Feng; Zhou, Wenbin; Fan, Qingxia; Luo, Jun; Zhou, Weiya; Ajayan, Pulickel M.; Xie, Sishen

    2013-10-01

    Realization of advanced bio-interactive electronic devices requires mechanically compliant sensors with the ability to detect extremely large strain. Here, we design a new multifunctional carbon nanotube (CNT) based capacitive strain sensors which can detect strains up to 300% with excellent durability even after thousands of cycles. The CNT-based strain gauge devices exhibit deterministic and linear capacitive response throughout the whole strain range with a gauge factor very close to the predicted value (strictly 1), representing the highest sensitivity value. The strain tests reveal the presented strain gauge with excellent dynamic sensing ability without overshoot or relaxation, and ultrafast response at sub-second scale. Coupling these superior sensing capabilities to the high transparency, physical robustness and flexibility, we believe the designed stretchable multifunctional CNT-based strain gauge may have various potential applications in human friendly and wearable smart electronics, subsequently demonstrated by our prototypical data glove and respiration monitor.

  20. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  1. [Echinococcus and strain concepts].

    PubMed

    Utük, Armağan Erdem; Simsek, Sami

    2008-01-01

    Hydatid disease (echinococcosis) is one of the most important parasitic zoonoses and remains a public health and economic problem all over the world. Echinococcus granulosus includes a number of genetic variants and, up to date, analyses of mitochondrial DNA sequences have identified ten distinct genetic types (genotypes G1-10). This categorization follows closely the pattern of strain variation emerging based on biological characteristics. The extensive variation in E. granulosus may influence life-cycle patterns, host specificity, development rate, antigenicity, transmission dynamics, sensitivity to chemotherapeutic agents, and pathology. In this review, the recent genetic characterizations of Echinococcus genus have been summarized. PMID:18351549

  2. Development of an Integrated Evaluation System for a Stretchable Strain Sensor

    PubMed Central

    Jeon, Hyungkook; Hong, Seong Kyung; Cho, Seong J.; Lim, Geunbae

    2016-01-01

    Recently, much research has been focused on stretchable or flexible electronic sensors for the measurement of strain or deformation on movable and variably shaped objects. In this research, to evaluate the performance of stretchable strain sensors, we have designed an integrated evaluation system capable of simultaneously measuring the change in stress and conductance of a strain sensor. Using the designed system, we have successfully evaluated the deformation characteristics, sensing range and sensing sensitivity of a stretchable strain sensor. We believe that the developed integrated evaluation system could be a useful tool for performance evaluation of stretchable strain sensors. PMID:27447639

  3. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  4. Unexpected strain-stiffening in crystalline solids.

    PubMed

    Jiang, Chao; Srinivasan, Srivilliputhur G

    2013-04-18

    Strain-stiffening--an increase in material stiffness at large strains--is a vital mechanism by which many soft biological materials thwart excessive deformation to protect tissue integrity. Understanding the fundamental science of strain-stiffening and incorporating this concept into the design of metals and ceramics for advanced applications is an attractive prospect. Using cementite (Fe3C) and aluminium borocarbide (Al3BC3) as prototypes, here we show via quantum-mechanical calculations that strain-stiffening also occurs, surprisingly, in simple inorganic crystalline solids and confers exceptionally high strengths to these two solids, which have anomalously low resistance to deformation near equilibrium. For Fe3C and Al3BC3, their ideal shear strength to shear modulus ratios attain remarkably high values of 1.14 and 1.34 along the (010)[001] and slip systems, respectively. These values are more than seven times larger than the original Frenkel value of 1/2π (refs 4, 5) and are the highest yet reported for crystalline solids. The extraordinary stiffening of Fe3C arises from the strain-induced reversible 'cross-linking' between weakly coupled edge- and corner-sharing Fe6C slabs. This new bond formation creates a strong, three-dimensional covalent bond network that resists large shear deformation. Unlike Fe3C, no new bond forms in Al3BC3 but stiffening still occurs because strong repulsion between Al and B in a compressed Al-B bond unsettles the existing covalent bond network. These discoveries challenge the conventional wisdom that large shear modulus is a reliable predictor of hardness and strength of materials, and provide new lessons for materials selection and design. PMID:23575634

  5. Tessaracoccus massiliensis sp. nov., a new bacterial species isolated from the human gut.

    PubMed

    Seck, E; Traore, S I; Khelaifia, S; Beye, M; Michelle, C; Couderc, C; Brah, S; Fournier, P-E; Raoult, D; Dubourg, G

    2016-09-01

    A new Actinobacterium, designated Tessaracoccus massiliensis type strain SIT-7(T) (= CSUR P1301 = DSM 29060), have been isolated from a Nigerian child with kwashiorkor. It is a facultative aerobic, Gram positive, rod shaped, non spore-forming, and non motile bacterium. Here, we describe the genomic and phenotypic characteristics of this isolate. Its 3,212,234 bp long genome (1 chromosome, no plasmid) exhibits a G+C content of 67.81% and contains 3,058 protein-coding genes and 49 RNA genes. PMID:27358740

  6. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    PubMed Central

    2009-01-01

    Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports

  7. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGESBeta

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength inmore » AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.« less

  8. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  9. Palladium-chromium static strain gage for high temperature propulsion systems

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1991-01-01

    The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.

  10. Effect of anharmonicity of interatomic potential on strain distribution in semiconductor nanostructures

    NASA Technical Reports Server (NTRS)

    Lazarenkova, Olga L.; von Allmen, Paul; Oyafuso, Fabiano; Lee, Seungwoii; Klimeck, Gerhard

    2004-01-01

    Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore of utmost importance for the design of optical devices with prescribed light emission spectrum.

  11. Isolation of a Variant Strain of Pleurotus eryngii and the Development of Specific DNA Markers to Identify the Variant Strain

    PubMed Central

    Lee, Hyun-Jun; Kim, Sang-Woo; Ryu, Jae-San; Lee, Chang-Yun

    2014-01-01

    A degenerated strain of Pleurotus eryngii KNR2312 was isolated from a commercial farm. Random amplified polymorphic DNA analysis performed on the genomic DNA of the normal and degenerated strains of this species revealed differences in the DNA banding pattern. A unique DNA fragment (1.7 kbp), which appeared only in the degenerated strain, was isolated and sequenced. Comparing this sequence with the KNR2312 genomic sequence showed that the sequence of the degenerated strain comprised three DNA regions that originated from nine distinct scaffolds of the genomic sequence, suggesting that chromosome-level changes had occurred in the degenerated strain. Using the unique sequence, three sets of PCR primers were designed that targeted the full length, the 5' half, and the 3' half of the DNA. The primer sets P2-1 and P2-2 yielded 1.76 and 0.97 kbp PCR products, respectively, only in the case of the degenerated strain, whereas P2-3 generated a 0.8 kbp product in both the normal and the degenerated strains because its target region was intact in the normal strain as well. In the case of the P2-1 and P2-2 sets, the priming regions of the forward and reverse primers were located at distinct genomic scaffolds in the normal strain. These two primer sets specifically detected the degenerate strain of KNR2312 isolated from various mushrooms including 10 different strains of P. eryngii, four strains of P. ostreatus, and 11 other wild mushrooms. PMID:24808734

  12. Isolation of a Variant Strain of Pleurotus eryngii and the Development of Specific DNA Markers to Identify the Variant Strain.

    PubMed

    Lee, Hyun-Jun; Kim, Sang-Woo; Ryu, Jae-San; Lee, Chang-Yun; Ro, Hyeon-Su

    2014-03-01

    A degenerated strain of Pleurotus eryngii KNR2312 was isolated from a commercial farm. Random amplified polymorphic DNA analysis performed on the genomic DNA of the normal and degenerated strains of this species revealed differences in the DNA banding pattern. A unique DNA fragment (1.7 kbp), which appeared only in the degenerated strain, was isolated and sequenced. Comparing this sequence with the KNR2312 genomic sequence showed that the sequence of the degenerated strain comprised three DNA regions that originated from nine distinct scaffolds of the genomic sequence, suggesting that chromosome-level changes had occurred in the degenerated strain. Using the unique sequence, three sets of PCR primers were designed that targeted the full length, the 5' half, and the 3' half of the DNA. The primer sets P2-1 and P2-2 yielded 1.76 and 0.97 kbp PCR products, respectively, only in the case of the degenerated strain, whereas P2-3 generated a 0.8 kbp product in both the normal and the degenerated strains because its target region was intact in the normal strain as well. In the case of the P2-1 and P2-2 sets, the priming regions of the forward and reverse primers were located at distinct genomic scaffolds in the normal strain. These two primer sets specifically detected the degenerate strain of KNR2312 isolated from various mushrooms including 10 different strains of P. eryngii, four strains of P. ostreatus, and 11 other wild mushrooms. PMID:24808734

  13. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  14. Uncovering high-strain rate protection mechanism in nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-11-01

    Under high-strain-rate compression (strain rate ~103 s-1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10-3 s-1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  15. Applying strain into graphene by SU-8 resist shrinkage

    NASA Astrophysics Data System (ADS)

    Takamura, Makoto; Hibino, Hiroki; Yamamoto, Hideki

    2016-07-01

    We investigated the use of the shrinkage of SU-8 resist caused by thermal annealing to apply strain into graphene grown by the chemical-vapor-deposition (CVD) method. We demonstrate that the shrinkage of resist deposited on top of graphene on a substrate induces a local tensile strain within a distance of 1–2 μm from the edge of the resist. The thermal shrinkage of SU-8 will allow us to design the local strain in graphene on substrates. We also show that the shrinkage induces a large tensile strain in graphene suspended between two bars of SU-8. We expect that a much larger strain can be induced by suppressing defects in CVD-grown graphene.

  16. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  17. Uncovering high-strain rate protection mechanism in nacre.

    PubMed

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  18. Uncovering high-strain rate protection mechanism in nacre

    PubMed Central

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate ∼103 s−1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10−3 s−1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  19. Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring

    NASA Technical Reports Server (NTRS)

    Wang, A.

    2002-01-01

    The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.

  20. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  1. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  2. Strain intermittency in shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Balandraud, Xavier; Barrera, Noemi; Biscari, Paolo; Grédiac, Michel; Zanzotto, Giovanni

    2015-05-01

    We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in-house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.

  3. onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ ˜4.6 μm) based on a slightly diagonal active region design

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lösch, R.; Bronner, W.; Hugger, S.; Fuchs, F.; Aidam, R.; Wagner, J.

    2008-12-01

    Employing a "slightly diagonal" active region design for the quantum cascade lasers compared to a reference sample based on the conventional vertical transition design [R. Köhler et al., Appl. Phys. Lett. 76, 1092 (2000)], we have improved the maximum operation temperature, room-temperature maximum peak power per facet, and room-temperature slope efficiency from 320 K, 200 mW, and 570 mW/A to higher than 360 K, 3.2 W, and 2200 mW/A, respectively, for the device size of 16 μm×3 mm with as-cleaved facets operated in pulsed mode.

  4. Scaffold metamaterial and its application as strain sensor

    SciTech Connect

    Wu, Wei; Ren, Mengxin Pi, Biao; Cai, Wei Xu, Jingjun; Wu, Yang

    2015-08-31

    In this paper, strain sensors based on planar scaffold metamaterial design are demonstrated. The optical properties of such metamaterials are studied, which are proved to be highly dependent on the deformation of the structure. Fabricating such metamaterial on compliant polymeric substrate, the geometric parameters could be tuned with external strain and hence are found to control the reflection resonance condition of the metamaterial. Such mechanical tunability provides the opportunity to realize efficient strain sensors and about 27 nm resonance wavelength shift is observed by applying as much as 37% tensile strain. Furthermore, distinct from most of the previous works, our structures are based on “intaglio” design, which could be manufactured directly by one step fabrication using focused ion beam cutting, hence makes the fabrication process much simpler.

  5. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  6. Inhomogeneous strains in small particles

    NASA Astrophysics Data System (ADS)

    Marks, L. D.

    1985-02-01

    This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.

  7. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  8. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted

  9. Thermal strain imaging: a review

    PubMed Central

    Seo, Chi Hyung; Shi, Yan; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2011-01-01

    Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies. PMID:22866235

  10. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  11. Strain in silicon nanowire beams

    NASA Astrophysics Data System (ADS)

    Ureña, Ferran; Olsen, Sarah H.; Šiller, Lidija; Bhaskar, Umesh; Pardoen, Thomas; Raskin, Jean-Pierre

    2012-12-01

    In this work, strain in silicon free standing beams loaded in uniaxial tension is experimentally and theoretically investigated for strain values ranging from 0 to 3.6%. The fabrication method allows multiple geometries (and thus strain values) to be processed simultaneously on the same wafer while being studied independently. An excellent agreement of strain determined by two non-destructive characterization techniques, Raman spectroscopy and mechanical displacement using scanning electron microscopy (SEM) markers, is found for all the sample lengths and widths. The measured data also show good agreement with theoretical predictions of strain based upon continuum mechanical considerations, giving validity to both measurement techniques for the entire range of strain values. The dependence of Young's modulus and fracture strain on size has also been analyzed. The Young's modulus is determined using SEM and compared with that obtained by resonance-based methods. Both methods produced a Young's modulus value close to that of bulk silicon with values obtained by resonance-based methods being slightly lower. Fracture strain is analyzed in 40 sets of samples with different beam geometries, yielding values up to 3.6%. The increase in fracture strain with decreasing beam width is compared with previous reports. Finally, the role of the surface on the mechanical properties is analyzed using UV and visible lasers having different penetration depths in silicon. The observed dependence of Raman shift on laser wavelength is used to assess the thermal conductivity of deformed silicon.

  12. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  13. Burning Rate of Composite Propellants under the Conditions of Strain

    NASA Astrophysics Data System (ADS)

    Hu, Songqi; Chen, Jing; Wu, Guanjie; Liu, Yingji; Hua, Yijin

    2014-12-01

    In this work, a correlation between propellant burning rate and strain was established. In order to investigate the effects of strain and pressure, and to measure burning rate of composite propellants, a novel apparatus was designed and prepared. Burning rates of three formula composite propellants under different pressures and strains were measured using such device. Based on the measurements, a model for the analysis on the experimental results was proposed. It was demonstrated that the model corresponded with the experimental data if the propellant samples were under tensile strain increasing from 0 to 20%. Burning rate ratio and tensile strain obeyed the quadratic relationship, burning rate increased with strain, but there was no mutation in less than 20% deformation. Furthermore, burning rate ratio of composite propellants which had low Poisson ratio increased fast as tensile strain decreased. And the less binder component of composite propellants, the burning ratio changed more significantly under a given strain state. In addition, as the exposed area increased, the burning rate ratio became larger.

  14. Strain to failure of pressurized thick wall cylinders

    SciTech Connect

    Priddy, T.G.; Roach, D.P.

    1989-01-01

    The determination of the fully plastic response and pressure limit of a highly pressurized vessel is of considerable importance in design. The plastic-strain response during and following autofrettage operations, in comparison with the limiting strain condition, is of special interest. This paper presents the results of an analysis method for thick wall, high pressure, cylinders where the effective plastic strain distribution through the thickness is the material response variable of primary interest. The limiting value of this effective plastic strain depends on the level of tensile-stress triaxiality which also varies through the thickness. This strain-to-failure criterion is used to predict the complete pressure versus strain response and the maximum pressure for test cylinders. A simple model of effective-stress versus effective plastic strain is employed. This model is quantified by data taken from uniaxial, tension, true-stress-strain curves and from the fracture zone of the tensile specimen. A sample calculation is included and, in a companion paper, a series of burst tubes having properties ranging from brittle to ductile are compared with this analytical method. 21 refs., 5 figs., 2 tabs.

  15. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. PMID:26225436

  16. Thin film strain transducer. [in-flight measurement of stress or strain in walls of high altitude balloons

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  17. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  18. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  19. Iodine-stress corrosion cracking of Zircaloy-2 cladding under near plane strain and localized stress-strain conditions

    SciTech Connect

    Nobrega, B.N.

    1984-01-01

    The segmented expanding mandrel test (SEMT) method is generally regarded as a good laboratory simulator of pellet-cladding interactions (PCI) in LWR fuel rods. Yet it does not reproduce the low strain failures in Zircaloy cladding typical of PCI-failed fuel elements and commonly observed in other types of laboratory specimens. This investigation addressed this apparent inconsistency. Iodine-stress corrosion cracking (I-SCC) of cold worked, unirradiated Zircaloy-2 cladding was induced in three different types of tubing specimens (known as regular, thin-wall, and chamfered) in a modified SEMT apparatus designed to test mechanical conditions that could lead to slow strain failures. Only the chamfered sample, which has been shown to be subjected to more nearly plane strain conditions than either of the other two specimen types, failed consistently at low (0.8%) total diametral strains in good agreement with in-reactor failure data. Such conditions were numerically and experimentally quantified by means of finite element calculational models and local strain measurements. The numerical analyses and strain measurements provide valuable insight into the PCI simulating power of the segmented expanding mandrel test and its experimental limitations. Failure-strain results for chamfered barrier claddings were obtained and compared with available literature data. The improved I-SCC resistance of this type of cladding was confirmed but the failure strains were significantly lower than reported for regular barrier tubes.

  20. Strainrange partitioning - A total strain range version. [for creep fatigue life prediction by summing inelastic and elastic strain-range-life relations for two Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  1. Role of scaffold network in controlling strain and functionalities of nanocomposite films.

    PubMed

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-06-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface-strain-properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness. PMID:27386578

  2. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  3. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  4. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  5. [Repetition Strain Injury

    PubMed

    Ribeiro

    1997-01-01

    Muscular-skeletal disorders of the upper limbs resulting from work involving repetition strain (RSI) are now the most frequent work-related diseases in early or late industrialized countries. The author maintains that in addition to being work-related diseases, RSIs are symbolic illnesses revealing the contradictions and social pathogenesis of the new cycle of development and crisis in capitalist production. Discussing the social and historical dimensions of this process, the author insists that the low efficacy of technical interventions by labor engineering, ergonomics, and clinical medicine in the prevention, early and adequate diagnosis, and treatment of such post-modern illnesses and the difficulty in rehabilitating and reincorporating such workers reflect precisely a broader determination of health and illness, since the appropriation, incorporation, and use of technological innovations and the new forms of work management are defined according to the exclusive interests of capital. Thus, a growing contingent of young workers (mainly females) from different labor categories are losing or under threat of losing their health and work capacity, two essential and closely linked public values. The solution to the SRI issue must be political and collective. PMID:10886940

  6. Stress-Strain Behaviour of a Micacious Sand in Plane Strain Condition

    NASA Astrophysics Data System (ADS)

    Yasin, S. J. M.; Tatsuoka, F.

    Unusual failures of river banks and river training structures have been reported during construction and shortly after commissioning of several structures along Jamuna river in Bangladesh that raised widespread questions regarding the design principles and parameters used. The natural sand deposit along the Jamuna river contain relatively larger amount of mica than most other natural soils. Jamuna sand needs to be studied under wide range of loading conditions (such as triaxial, plane strain, simple shear etc.), drainage and density conditions (i.e. drained / undrained, dry / saturated, dense/loose state etc.) to reveal the extent of variation of its strength and deformation characteristics in order to facilitate understanding of the mechanism of past failures of structures and suggest rational design parameters. A series of plane strain compression tests were performed on Jamuna sand. It is observed that Jamuna sand is highly contractive under shear and more anisotropic than other non-mica sands.

  7. Characterization of IS1245 for Strain Typing of Mycobacterium avium

    PubMed Central

    Pestel-Caron, Martine; Arbeit, Robert D.

    1998-01-01

    IS1245 is an insertion element widely prevalent among isolates of Mycobacterium avium. We used PvuII Southern blots to analyze IS1245 polymorphisms among 159 M. avium isolates (141 clinical isolates from 40 human immunodeficiency virus-infected patients plus 18 epidemiologically related environmental isolates) that represented 40 distinct M. avium strains, as resolved by previous studies by pulsed-field gel electrophoresis (PFGE). All 40 strains carried DNA homologous to IS1245 and thus were typeable. Twenty-five (63%) strains had ≥10 copies of the element, 6 (15%) had 4 to 9 copies, and 9 (23%) had only 1 to 3 copies. Among the last group of nine strains (each of which was distinct by PFGE analysis), IS1245 typing resolved only four patterns and thus provided poor discriminatory power. To evaluate the in vivo stability of IS1245, we analyzed 32 strains for which sets of 2 to 19 epidemiologically related isolates were available. For 19 (59%) of these sets, all isolates representing the same strain had indistinguishable IS1245 patterns. Within eight (25%) sets, one or more isolates had IS1245 patterns that differed by one or two fragments from the modal pattern for the isolates of that strain. Five (16%) sets included isolates whose patterns differed by three or more fragments; on the basis of IS1245 typing those isolates would have been designated distinct strains. IS1245 was stable during in vitro passage, suggesting that the variations observed represented natural translocations of the element. IS1245 provides a useful tool for molecular strain typing of M. avium but may have limitations for analyzing strains with low copy numbers or for resolving extended epidemiologic relationships. PMID:9650925

  8. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology

    PubMed Central

    Tayabali, Azam F.; Coleman, Gordon; Nguyen, Kathy C.

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications. PMID:26619347

  9. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  10. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  11. Ferroelastic dynamics and strain compatibility

    NASA Astrophysics Data System (ADS)

    Lookman, T.; Shenoy, S. R.; Rasmussen, K. Ø.; Saxena, A.; Bishop, A. R.

    2003-01-01

    We derive underdamped evolution equations for the order-parameter (OP) strains of a proper ferroelastic material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free energy as a polynomial expansion in the N=n+Nop symmetry-adapted strains. The Nop strain equations are structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding (BG), with “strain accelerations” proportional to a Laplacian acting on a sum of the free-energy strain derivative and frictional strain force assuming geometric linearity. The tensorial St. Venant’s elastic compatibility constraints that forbid defects, are used to determine the n non-order-parameter strains in terms of the OP strains, generating anisotropic and long-range OP contributions to the free energy, friction, and noise. The same OP equations are obtained by either varying the displacement vector components, or by varying the N strains subject to the Nc compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear (strain) oscillators labeled by wave vector k→, with competing short- and long-range couplings. The oscillators have different “strain-mass” densities ρ(k)˜1/k2 and dampings ˜1/ρ(k)˜k2, so the lighter large-k oscillators equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for special parameter values. We consider in detail the two-dimensional (2D) unit-cell transitions from a triangular to a centered

  12. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  13. Controlling surface reactions with nanopatterned surface elastic strain.

    PubMed

    Li, Zhisheng; Potapenko, Denis V; Osgood, Richard M

    2015-01-27

    The application of elastic lattice strain is a promising approach for tuning material properties, but the attainment of a systematic approach for introducing a high level of strain in materials so as to study its effects has been a major challenge. Here we create an array of intense locally varying strain fields on a TiO2 (110) surface by introducing highly pressurized argon nanoclusters at 6-20 monolayers under the surface. By combining scanning tunneling microscopy imaging and the continuum mechanics model, we show that strain causes the surface bridge-bonded oxygen vacancies (BBOv), which are typically present on this surface, to be absent from the strained area and generates defect-free regions. In addition, we find that the adsorption energy of hydrogen binding to oxygen (BBO) is significantly altered by local lattice strain. In particular, the adsorption energy of hydrogen on BBO rows is reduced by ∼ 35 meV when the local crystal lattice is compressed by ∼ 1.3%. Our results provide direct evidence of the influence of strain on atomic-scale surface chemical properties, and such effects may help guide future research in catalysis materials design. PMID:25494489

  14. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  15. Flexible carbon nanotube films for high performance strain sensors.

    PubMed

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  16. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  17. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  18. An experimental/analytical comparison of strains in encapsulated assemblies

    SciTech Connect

    Guess, T.R.; Burchett, S.N.

    1991-11-01

    A combined experimental and analytical study of strains developed in encapsulated assemblies during casting, curing and thermal excursions is described. The experimental setup, designed to measure in situ strains, consisted of thin, closed-end, Kovar tubes that were instrumented with strain gages and thermocouples before being over-cast with a polymeric encapsulant. Four bisphenol A (three diethanolamine cured and one anhydride cured) epoxy-based materials and one urethane elastomeric material were studied. After cure of the encapsulant, tube strains were measured over the temperature range of {minus}55{degrees}C to 90{degrees}C. The thermal excursion experiments were then numerically modeled using finite element analyses and the computed strains were compared to the experimental strains. The predicted strains were over estimated (conservative) when a linear, elastic, temperature-dependent material model was assumed for the encapsulant and the stress free temperature T{sub i} was assumed to correspond to the cure temperature {Tc} of the encapsulant. Very good agreement was obtained with linear elastic calculations provided that the stress free temperature corresponded to the onset of the glassy-to-rubbery transition range of the encapsulant. Finally, excellent agreement was obtained in one of the materials (828/DEA) when a viscoelastic material model was utilized and a stress free temperature corresponding to the cure temperature was assumed. 13 refs., 20 figs., 3 tabs.

  19. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  20. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  1. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  2. QUANTIFICATION OF SIDEROPHORE AND HEMOLYSIN FROM STACHYBOTRYS CHARTARUM STRAINS, INCLUDING A STRAIN ISOLATED FROM THE LUNG OF A CHILD WITH PULMONARY HEMORRHAGE AND HEMOSIDEROSIS

    EPA Science Inventory

    A strain of Stachybotrys chartarum was recently isolated from the lung of a pulmonary hemorrhage and hemosiderosis (PH) patient in Texas (designated the Houston strain). This is the first time that S. chartarum has been isolated from the lung of a PH patient. In this study, the ...

  3. High strain rate compression testing of glass fibre reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Govender, R. A.; Langdon, G. S.; Cloete, T. J.; Nurick, G. N.

    2012-08-01

    This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB) in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP's failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  4. Carbon nanotube strain sensors for wearable patient monitoring applications

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Aryasomayajula, Lavanya; Whitchurch, Ashwin; Varadan, Vijay K.

    2008-03-01

    Wearable health monitoring systems have recently attracted widespread interest for their application in long term patient monitoring. Wireless wearable technology enables continuous observation of patients while they perform their normal everyday activities. This involves the development of flexible and conformable sensors that could be easily integrated to the smart fabrics. Carbon nanotubes are found to be one of the ideal candidate materials for the design of multifunctional e-textiles because of their capability to change conductance based on any mechanical deformation as well as surface functionalization. This paper presents the development and characterization of a carbon nanotube (CNT)-polymer nanocomposite flexible strain sensor for wearable health monitoring applications. These strain sensors can be used to measure the respiration rhythm which is a vital signal required in health monitoring. A number of strain sensor prototypes with different CNT compositions have been fabricated and their characteristics for both static as well as dynamic strain have been measured.

  5. Reliability study of the NiH2 strain gage

    NASA Technical Reports Server (NTRS)

    Klein, Glenn C.; Rash, Donald E., Jr.

    1993-01-01

    This paper summarizes a joint study by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC). This study characterizes the reliability and robustness of the temperature compensated strain gages currently specified for sensing of internal pressure of NiH2 cells. These strain gages are characterized as fully encapsulated, metallic foil grids with known resistance that varies with deformation. The measurable deformation, when typically installed on the hemispherical portion of a NiH2 cell, is proportional to the material stresses as generated by internal cell pressures. The internal pressure sensed in this manner is calibrated to indicate the state-of-charge for the cell. This study analyzes and assesses both robustness and reliability for the basic design of the strain gage, the installation of the strain gage, and the circuitry involved.

  6. Study of High Strain Rate Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  7. Laser-based strain measurements for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lant, Christian T.

    1992-09-01

    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis.

  8. Strain-controlled fatigue of acrylic bone cement.

    PubMed

    Carter, D R; Gates, E I; Harris, W H

    1982-09-01

    Monotonic tensile tests and tension-compression fatigue tests were conducted of wet acrylic bone cement specimens at 37 degrees C. All testing was conducted in strain control at a strain rate of 0.02/s. Weibull analysis of the tensile tests indicated that monotonic fracture was governed more strongly by strain than stress. The number of cycles to fatigue failure was also more strongly controlled by strain amplitude than stress amplitude. Specimen porosity distribution played a major role in determining the tensile and fatigue strengths. The degree of data scatter suggests that Weibull analysis of fatigue data may be useful in developing design criteria for the surgical use of bone cement. PMID:7130218

  9. Electronic measurement of strain effects on spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Tinkey, Holly; Appelbaum, Ian

    Spin transport in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized electrons into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.

  10. Modifying the Optoelectronic Properties of Rubrene by Strain

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar; Ramasubramaniam, Ashwin

    Rubrene crystals are promising organic electronic and optoelectronic materials due to their high charge carrier mobility. Recent studies have shown that the electronic properties of rubrene films can be tuned by substrate-induced strain, suggesting a new route towards the design of more efficient devices. Here, we present a first-principles density functional theory and many-body perturbation theory analysis of strain-induced changes to the mechanical, electronic, and optical properties of rubrene crystals. With an applied strain that is consistent with experiment, we predict changes of hole motilities in excellent agreement with electrical conductivity measurements. Furthermore, we predict that the optical absorption and nature of low-energy excitons within the crystal can be tuned by an applied strain as low as 1%. This work utilized resources at the Center for Nanoscale Materials, supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

  11. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  12. [Breeding of robust industrial ethanol-tolerant Saccharomyces cerevisiae strain by artificial zinc finger protein library].

    PubMed

    Ma, Cui; Zhao, Xinqing; Li, Qian; Zhang, Mingming; Kim, Jin Soo; Bai, Fengwu

    2013-05-01

    Breeding of robust industrial Saccharomyces cerevisiae strains with high ethanol tolerance is of great significance for efficient fuel ethanol production. Zinc finger proteins play important roles in gene transcription and translation, and exerting control on the regulation of multiple genes. The sequence and localization of the zinc finger motif can be designed and engineered, and the artificial zinc finger protein can be used to regulate celluar metabolism. Stress tolerance of microbial strains is related to multiple genes. Therefore, it is possible to use artificially-designed zinc finger proteins to breed stress tolerant strains. In this study, a library containing artificial zinc finger protein encoding genes was transformed into the model yeast strain S288c. A recombinant strain named M01 with improved ethanol tolerance was obtained. The plasmid in M01 was isolated, and then transformed into the industrial yeast strain Sc4126. Ethanol tolerance of the recombinant strain of Sc4126 were significantly improved. When high gravity ethanol fermentation using 250 g/L glucose was performed, comparing with the wild-type strain, fermentation time of the recombinant strain was decreased by 24 h and the final ethanol concentration was enhanced by 6.3%. The results of this study demonstrate that artificial zinc finger proteins are able to exert control on stress tolerance of yeast strains, and these results provide basis to construct robust industrial yeast strains for efficient ethanol fermentation. PMID:24010359

  13. Bioprocessing of Stichococcus bacillaris strain siva2011

    PubMed Central

    2014-01-01

    Background Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule hydrocarbons. These hydrocarbons can often be used as liquid fuels, often with more versatility and by a more direct approach than some TAGs. However, the appropriate TAGs, accumulated from microalgae biomass, can be used as substrates for different kinds of renewable liquid fuels such as biodiesel and jet fuel. Results This article describes the isolation and identification of a lipid-rich, hydrocarbon-producing alga, Stichococcus bacillaris strain siva2011, together with its bioprocessing, hydrocarbon and fatty acid methyl ester (FAME) profiles. The S. bacillaris strain siva2011 was scaled-up in an 8 L bioreactor with 0.2% CO2. The C16:0, C16:3, C18:1, C18:2 and C18:3 were 112.2, 9.4, 51.3, 74.1 and 69.2 mg/g dry weight (DW), respectively. This new strain produced a significant amount of biomass of 3.79 g/L DW on day 6 in the 8 L bioreactor and also produced three hydrocarbons. Conclusions A new oil-rich microalga S. bacillaris strain siva2011 was discovered and its biomass has been scaled-up in a newly designed balloon-type bioreactor. The TAGs and hydrocarbons produced by this organism could be used as substrates for jet fuel or biodiesel. PMID:24731690

  14. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  15. Compact Simultaneous-beam Optical Strain Measurement System, Phase 5

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1994-01-01

    Recent advances on the laser speckle strain measurement system under development at NASA Lewis Research Center have resulted in a compact, easy-to-use measurement package having many performance improvements over previous systems. NASA has developed this high performance optical strain measurement system for high temperature material testing applications. The system is based on I. Yamaguchi's two-beam speckle-shift strain measurement theory, and uses a new optical design that allows simultaneous recording of laser speckle patterns. This design greatly improves system response over previous implementations of the two-beam speckle-shift technique. The degree of immunity to transient rigid body motions is no longer dependent on the data transfer rate. The system automatically calculates surface strains at a frequency of about 5 Hz using a high speed digital signal processor in a personal computer. This system is fully automated, and can be operated remotely. This report describes the designs and methods used by the system, and shows low temperature strain test results obtained from small diameter tungsten-rhenium and palladium-chrome wires.

  16. Development of distributed strain and temperature sensing cables

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2005-05-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring.

  17. Reliability and field testing of distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2006-03-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring as well as the respective testing procedures during production and in the field.

  18. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  19. Strain Wave during the Transient Process of Fault Unstable Slip

    NASA Astrophysics Data System (ADS)

    Guo, L.; Liu, L.

    2011-12-01

    The "stick-slip" model was proposed as an important mechanism for shallow-focus earthquakes. The study on the transient process of fault unstable slip failure is helpful for understanding the earthquake preparatory process, the mechanism of energy released, the precursor and after shake effect. Double shear frictional experiments are conducted for simulating "stick-slip" phenomenon, and a specially designed multi-channel super dynamic strain field observation system is employed to acquire dada continuously with the sample rate of 3,400 samples/second. The rock deformation process can be recorded in detail, especially in the moment of unstable slip (The unstable slip duration is less than two second in experiments). The strain results from super dynamic strain field observation system show that multi-frequency components and tremendous amplitude fluctuation are included in strain signals along the fault. There are three clear phases during the unstable slip progress: pre-slip (phase I), high-frequency strain vibration (phase II) and strain regulating to stop (phase III). Each phase has its own characteristics on duration, strain rate, frequency, amplitude and energy release. There are strong fluctuations in duration of approximately 70ms in phase II. The frequency and maximum amplitude are 300-400Hz and 150~300μɛ respectively. Main strain energy release takes place at phase II, less than one-tenth of the total slip time, so that the whole course of dislocation or stress drop would not be taken as earthquake simply at least in laboratory. The phase characteristic of the strain wave is probably its inherent attribute of unstable slip process and independent of dynamical loading conditions. The elastic rebound phenomena, considered as one classic earthquake generation model, can be observed clearly by analyzing the rotation of the principal strain axis with strain variation. The rotated angle ranges from 5° to 15° typically. The value and location of precursor slip

  20. Evolution of and Evolutionary Relationships between Extant Vaccinia Virus Strains

    PubMed Central

    Qin, Li; Favis, Nicole; Famulski, Jakub

    2014-01-01

    ABSTRACT Although vaccinia virus (VACV) was once used as a vaccine to eradicate smallpox on a worldwide scale, the biological origins of VACV are uncertain, as are the historical relationships between the different strains once used as smallpox vaccines. Here, we sequenced additional VACV strains that either represent relatively pristine examples of old vaccines (e.g., Dryvax, Lister, and Tashkent) or have been subjected to additional laboratory passage (e.g., IHD-W and WR). These genome sequences were compared with those previously reported for other VACVs as well as other orthopoxviruses. These extant VACVs do not always cluster in simple phylogenetic trees that are aligned with the known historical relationships between these strains. Rather, the pattern of deletions suggests that all existing strains likely come from a complex stock of viruses that has been passaged, distributed, and randomly sampled over time, thus obscuring simple historical or geographic links. We examined surviving nonclonal vaccine stocks, like Dryvax, which continue to harbor larger and now rare variants, including one that we have designated “clone DPP25.” DPP25 encodes genes not found in most VACV strains, including an ankyrin-F-box protein, a homolog of the variola virus (Bangladesh) B18R gene which we show can be deleted without affecting virulence in mice. We propose a simple common mechanism by which recombination of a larger and hypothetical DPP25-like ancestral strain, combined with selection for retention of critically important genes near the terminal inverted repeat boundaries (vaccinia virus growth factor gene and an interferon alpha/beta receptor homolog), could produce all known VACV variants. IMPORTANCE Smallpox was eradicated by using a combination of intensive disease surveillance and vaccination using vaccinia virus (VACV). Interestingly, little is known about the historical relationships between different strains of VACV and how these viruses may have evolved from a

  1. Anelastic Strain Recovery Analysis Code

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  2. Interpretation of large-strain geophysical crosshole tests

    SciTech Connect

    Drnevich, V.P.; Salgado, R.; Ashmawy, A.; Grant, W.P.; Vallenas, P.

    1995-10-01

    At sites in earthquake-prone areas, the nonlinear dynamic stress-strain behavior of soil with depth is essential for earthquake response analyses. A seismic crosshole test has been developed where large dynamic forces are applied in a borehole. These forces generate shear strains in the surrounding soil that are well into the nonlinear range. The shear strain amplitudes decrease with distance from the source. Velocity sensors located in three additional holes at various distances from the source hole measure the particle velocity and the travel time of the shear wave from the source. This paper provides an improved, systematic interpretation scheme for the data from these large-strain geophysical crosshole tests. Use is made of both the measured velocities at each sensor and the travel times. The measured velocity at each sensor location is shown to be a good measure of the soil particle velocity at that location. Travel times to specific features on the velocity time history, such as first crossover, are used to generate travel time curves for the waves which are nonlinear. At some distance the amplitudes reduce to where the stress-strain behavior is essentially linear and independent of strain amplitude. This fact is used together with the measurements at the three sensor locations in a rational approach for fitting curves of shear wave velocity versus distance from the source hole that allow the determination of the shear wave velocity and the shear strain amplitude at each of the sensor locations as well as the shear wave velocity associated with small-strain (linear) behavior. The method is automated using off-the-shelf PC-based software. The method is applied to large-strain crosshole tests performed as part of the studies for the design and construction of the proposed Multi-Function Waste Tank Facility planned for Hanford Site.

  3. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  4. Shotcrete in tunnel design

    SciTech Connect

    Golser, J.; Galler, R.; Schubert, P.; Rabensteiner, K.

    1995-12-31

    Shotcrete is an important structural element for tunnel support. Green shotcrete is exposed to compression strain rates and tunnel design requires a realistic material law for shotcrete. A modified rate of flow method simulates shotcrete behavior very well and can be incorporated in Finite Element calculations.

  5. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  6. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  7. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    PubMed Central

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L.; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-01-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness. PMID:27386578

  8. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    DOE PAGESBeta

    Chen, Aiping; Hu, Jia -Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, T.; Enriquez, E.; Weigand, M.; Su, Qing; et al

    2016-06-10

    One novel approach to manipulating functionalities in correlated complex oxides is strain. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. Moreover,more » by changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.« less

  9. The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction.

    PubMed

    Yan, Kai; Maark, Tuhina Adit; Khorshidi, Alireza; Sethuraman, Vijay A; Peterson, Andrew A; Guduru, Pradeep R

    2016-05-17

    Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity. PMID:27079940

  10. Probing of Strain Mediated Hybrid Multiferroic Devices

    NASA Astrophysics Data System (ADS)

    Fohtung, Edwin; Kim, J.; Marsh, M.; Lei, Na; Chen, S.; Sinha, S.; Ravelosona, D.; Fullerton, Eric; Shpyrko, Oleg

    2012-02-01

    Smart materials for sensor technology, (non) volatile device memories for information technology, and ultrasound generators in medical imaging have one thing in common, their active elements consist of ferroelectrics (FE) driven by voltages or ferromagnetics (FM) driven by magnetization. In the quest to design high functionality devices to meet today's consumer technological demands, high focus has been given to multiferroic [1]. However, the coexistence of magnetic order and ferroelectric polarization combined in a single-phase material has proven to be rear as most of these materials tend to have low magnetic ordering temperatures and are often antiferromagnets, in which the magnetoelectric (ME) coupling effect is intrinsically small. We utilize an alternative approach to design multiferroic-hybrid devices based on FE-FM composites where the ME coupling emerges from strain-mediated interaction between individual phases [2]. We develop a nonlinear thermodynamic theory for strain-mediated direct ME effect and Bragg Ptychographic Coherent Diffraction Imaging (BCDI) serves as the unique tool of choice for sub-nanometer resolution nondestructive probing of the order parameters in the devices [1] N. Spaldin and M. Fiebig, Science 309, 391 (2005). [2] E. Fohtung et al., submitted (2012)

  11. Development of a fiber optic pavement subgrade strain measurement system

    NASA Astrophysics Data System (ADS)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences

  12. Strain uniformity in biaxial specimens is highly sensitive to attachment details.

    PubMed

    Eilaghi, Armin; Flanagan, John G; Brodland, G Wayne; Ethier, C Ross

    2009-09-01

    Biaxial testing has been used widely to characterize the mechanical properties of soft tissues and other flexible materials, but fundamental issues related to specimen design and attachment have remained. Finite element models and experiments were used to investigate how specimen geometry and attachment details affect uniformity of the strain field inside the attachment points. The computational studies confirm that increasing the number of attachment points increases the size of the area that experiences sensibly uniform strain (defined here as the central sample region where the ratio of principal strains E(11)/E(22)<1.10), and that the strains experienced in this region are less than nominal strains based on attachment point movement. Uniformity of the strain field improves substantially when the attachment points span a wide zone along each edge. Subtle irregularities in attachment point positioning can significantly degrade strain field uniformity. In contrast, details of the apron, the region outside of the attachment points, have little effect on the interior strain field. When nonlinear properties consistent with those found in human sclera are used, similar results are found. Experiments were conducted on 6 x 6 mm talc-sprinkled rubber specimens loaded using wire "rakes." Points on a grid having 12 x 12 bays were tracked, and a detailed strain map was constructed. A finite element model based on the actual geometry of an experiment having an off-pattern rake tine gave strain patterns that matched to within 4.4%. Finally, simulations using nonequibiaxial strains indicated that the strain field uniformity was more sensitive to sample attachment details for the nonequibiaxial case as compared to the equibiaxial case. Specimen design and attachment were found to significantly affect the uniformity of the strain field produced in biaxial tests. Practical guidelines were offered for design and mounting of biaxial test specimens. The issues addressed here are

  13. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  14. Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo

    PubMed Central

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-01-01

    Objective The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach Acute force measurements were made using a load cell in n=3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 sec interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p<0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Further, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4–5 fold) stresses due to tissue micromotion at the interface. Significance The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  15. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  16. PiggyBac Transgene Insertion Site GIZA Strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetically modified New World screwworms were analyzed by inverse PCR and several sequences of genomic DNA flanking the transposon insertion sites were obtained. One transgenic strain, designated GIZA, exhibited the properties of a lethal genetic mutation. Classic genetic crosses of these insects r...

  17. IDENTIFICATION OF A FLAVOBACTERIUM STRAIN VIRULENT AGAINT GIARDIA LAMBLIA CYSTS

    EPA Science Inventory

    We have isolated a bacterial strain capable of killing the cyst form of Giardia lamblia, from a Kentucky stream. This bacterium, designated Sun4, is a Gram negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has no...

  18. Characterization of p-Hydroxycinnamate Catabolism in a Soil Actinobacterium

    PubMed Central

    Otani, Hiroshi; Lee, Young-Eun; Casabon, Israël

    2014-01-01

    p-Hydroxycinnamates, such as ferulate and p-coumarate, are components of plant cell walls and have a number of commercial applications. Rhodococcus jostii RHA1 (RHA1) catabolizes ferulate via vanillate and the β-ketoadipate pathway. Here, we used transcriptomics to identify genes in RHA1 that are upregulated during growth on ferulate versus benzoate. The upregulated genes included three transcriptional units predicted to encode the uptake and β-oxidative deacetylation of p-hydroxycinnamates: couHTL, couNOM, and couR. Neither ΔcouL mutants nor ΔcouO mutants grew on p-hydroxycinnamates, but they did grow on vanillate. Among several p-hydroxycinnamates, CouL catalyzed the thioesterification of p-coumarate and caffeate most efficiently (kcat/Km = ∼400 mM−1 s−1). p-Coumarate was also RHA1's preferred growth substrate, suggesting that CouL is a determinant of the pathway's specificity. CouL did not catalyze the activation of sinapate, in similarity to two p-coumaric acid:coenzyme A (CoA) ligases from plants, and contains the same bulged loop that helps determine substrate specificity in the plant homologues. The couO mutant accumulated 4-hydroxy-3-methoxyphenyl-β-ketopropionate in the culture supernatant when incubated with ferulate, supporting β-oxidative deacetylation. This phenotype was not complemented with a D257N variant of CouO, consistent with the predicted role of Asp257 as a metal ligand in this amidohydrolase superfamily member. These data suggest that CouO functionally replaces the β-ketothiolase and acyl-CoA thioesterase that occur in canonical β-oxidative pathways. Finally, the transcriptomics data suggest the involvement of two distinct formaldehyde detoxification pathways in vanillate catabolism and identify a eugenol catabolic pathway. The results of this study augment our understanding of the bacterial catabolism of aromatics from renewable feedstocks. PMID:25266382

  19. Deciphering the Genome of Polyphosphate Accumulating Actinobacterium Microlunatus phosphovorus

    PubMed Central

    Kawakoshi, Akatsuki; Nakazawa, Hidekazu; Fukada, Junji; Sasagawa, Machi; Katano, Yoko; Nakamura, Sanae; Hosoyama, Akira; Sasaki, Hiroki; Ichikawa, Natsuko; Hanada, Satoshi; Kamagata, Yoichi; Nakamura, Kazunori; Yamazaki, Shuji; Fujita, Nobuyuki

    2012-01-01

    Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different. PMID:22923697

  20. Surface strain measurements of fingertip skin under shearing.

    PubMed

    Delhaye, Benoit; Barrea, Allan; Edin, Benoni B; Lefèvre, Philippe; Thonnard, Jean-Louis

    2016-02-01

    The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces. PMID:26888949

  1. WIPP Benchmark calculations with the large strain SPECTROM codes

    SciTech Connect

    Callahan, G.D.; DeVries, K.L.

    1995-08-01

    This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.

  2. Effects of Applied Strain on Rates of Ageing: Project Overview

    NASA Technical Reports Server (NTRS)

    Campion, R. P.

    1997-01-01

    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided.

  3. Surface strain measurements of fingertip skin under shearing

    PubMed Central

    2016-01-01

    The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces. PMID:26888949

  4. Pipeline blockage location by strain measurement using an ROV

    SciTech Connect

    Rogers, L.M.

    1995-12-31

    The paper describes an ROV based inspection method for locating a blockage in a marine pipeline. The method measures changes in the hoop strain in the pipe corresponding to changes in the internal fluid pressure. The device (patent applied for), converts radial extension or compression of the pipe into axial compression or tension respectively of a load cell. It allows the use of a high sensitivity axial strain sensing element to measure the hoop strain in the pipe. By pressurizing the pipe at positions upstream and downstream of the blockage and measuring the resulting hoop strain, the boundaries of the blockage can be accurately defined. The device can be installed and recovered by ROV, the signals being relayed to the surface via the ROV`s umbilical. The method has been used successfully to locate and define the extent of a blockage in a deepwater oil flowline running from a satellite well system to a production platform, allowing the planning of effective remedial action. The results of the strain measurements were found to be fully consistent with the contents of the pipe determined by subsequent sectioning. Key features of the hoop strain device include rugged design, high sensitivity, ease of attachment and recovery by ROV with the need for minimal cleaning and for access only to a sector of the pipe, typically {1/4} the circumference.

  5. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  6. Tunable-microlens-based multipoint diffraction strain sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Asundi, Anand

    2009-12-01

    Multipoint Diffraction Strain Sensor (MDSS) is a novel and promising strain sensing system to acquire whole field strain information with high accuracy without the need for numerical differentiation. Compared to traditional optical diffraction strain sensors, the main advantage of MDSS is the use of micro-lens array to get whole field information. Both tilt and in-plane strain can be acquired separately by using two symmetric incident laser beams. However, it is costly and troublesome to fabricate, adjust or replace lens arrays for different applications. A practical way to solve this problem is to use a liquid crystal lens as spatial light modulator which displays Diffractive Optical Element (DOE) based lens array. This liquid crystal lens is software controlled capable to display any user designed DOE pattern. The sensitivity and field of interrogation is thus tuneable by changing focal length of lens arrays. Moreover arbitrary size or shape of lens arrays can be designed to measure certain part of the specimen in most interest. Experimental results with different lens arrays are demonstrated for uniform rotations.

  7. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres.

    PubMed

    Zhang, Yin; Chen, Chen; Liang, C Y; Liu, Z W; Li, Y S; Che, Renchao

    2015-11-01

    Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. PMID:26440072

  8. Genome Sequence of Pseudomonas chlororaphis Strain 189

    PubMed Central

    Town, Jennifer; Audy, Patrice; Boyetchko, Susan M.

    2016-01-01

    Pseudomonas chlororaphis strain 189 is a potent inhibitor of the growth of the potato pathogen Phytophthora infestans. We determined the complete, finished sequence of the 6.8-Mbp genome of this strain, consisting of a single contiguous molecule. Strain 189 is closely related to previously sequenced strains of P. chlororaphis. PMID:27340063

  9. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.

    2004-01-01

    The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.

  10. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  11. Spin transport in graphene superlattice under strain

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2016-09-01

    In this paper, the spin-dependent transport and the spin polarization properties for graphene superlattice with Rashba spin-orbit interaction (RSOI) in the presence of zigzag and armchair direction strain are studied. It is found that for the zigzag direction strain the angular range of the spin-inversion can be efficiently controlled by the strain strength. In addition, the efficiency of spin-inversion and spin-dependent conductivity decreases by increasing the strain strength. When the armchair direction strain is applied to a monolayer graphene superlattice the spin polarization can be observed and increases by increasing the strain strength, whereas for the zigzag direction strain it is zero.

  12. C55 bacteriocin produced by ETB-plasmid positive Staphylococcus aureus strains is a key factor for competition with S. aureus strains.

    PubMed

    Kawada-Matsuo, Miki; Shammi, Fariha; Oogai, Yuichi; Nakamura, Norifumi; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2016-03-01

    Exfoliative toxin (ET) produced by Staphylococcus aureus is closely associated with the onset of bullous impetigo. To date, three ETs (ETA, ETB and ETD) have been identified. The gene encoding ETB is located in a plasmid designated pETB. Bacteriocin synthesis genes are also located in this plasmid and pETB-positive strains reportedly produce the C55 bacteriocin. In this study, the antibacterial activity against S. aureus strains of the bacteriocin produced by the pETB-positive strain TY4 was investigated. This bacteriocin demonstrated antibacterial activity against all pETB-negative but not pETB-positive strains, including TY4. Additionally, a TY4- strain from which the pETB plasmid had been deleted exhibited susceptibility to the bacteriocin. Further experiments revealed that two immunity factors (orf 46-47 and orf 48) downstream of the bacteriocin synthesis genes in the pETB plasmid are associated with immunity against the bacteriocin produced by TY4. The TY4- with orf46-47 strain exhibited complete resistance to bacteriocin, whereas the TY4- with orf48 strain exhibited partial resistance. Whether bacteriocin affects the proportion of each strain when co-cultured with S. aureus strains was also investigated. When TY4 or TY4- was co-cultured with 209P strain, which is susceptible to the bacteriocin, the proportion of 209P co-cultured with TY4 was significantly less than when 209P was co-cultured with TY4-, whereas the proportion of TY4- with orf46-48 co-cultured with TY4 was greater than with TY4-. These results suggest that the C55 bacteriocin produced by pETB-positive strains affects the proportion of each strain when pETB-positive and -negative strains co-exist. PMID:26801833

  13. Micro-electromechanical Systems for Probing Novel Strain Physics and Innovative Strain Devices in 2D Materials

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett

    Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  14. Draft Genome Sequence of the Biofilm-Forming Stenotrophomonas maltophilia Strain 53

    PubMed Central

    Akbar, Sirwan; Rout, Simon P.

    2015-01-01

    A clinical strain of Stenotrophomonas maltophilia (designated strain 53) was obtained, and a whole-genome sequence was generated. The subsequent draft whole-genome sequence demonstrated the presence of a number of genes encoding for proteins involved in resistance to a number of antimicrobial therapies. PMID:25883296

  15. Specific detection and identification of Xylella fastidiosa strains causing oleander leaf scorch by polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pair of PCR primers, QH-OLS05/QH-OLS08, was developed that is specific for strains of Xylella fastidiosa causing oleander leaf scorch. The primers were designed based on DNA sequence of a randomly amplified polymorphic DNA (RAPD)-PCR product unique to oleander strains. The PCR assay using primer p...

  16. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant.

    PubMed

    Burgess, Sara A; Cox, Murray P; Flint, Steve H; Lindsay, Denise; Biggs, Patrick J

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  17. Draft Genome Sequence of the Biofilm-Forming Stenotrophomonas maltophilia Strain 53.

    PubMed

    Akbar, Sirwan; Rout, Simon P; Humphreys, Paul N

    2015-01-01

    A clinical strain of Stenotrophomonas maltophilia (designated strain 53) was obtained, and a whole-genome sequence was generated. The subsequent draft whole-genome sequence demonstrated the presence of a number of genes encoding for proteins involved in resistance to a number of antimicrobial therapies. PMID:25883296

  18. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant

    PubMed Central

    Burgess, Sara A.; Cox, Murray P.; Flint, Steve H.; Lindsay, Denise

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  19. Taxonomy of oxalotrophic Methylobacterium strains

    NASA Astrophysics Data System (ADS)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  20. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  1. Rotamer strain as a determinant of protein structural specificity.

    PubMed Central

    Lazar, G. A.; Johnson, E. C.; Desjarlais, J. R.; Handel, T. M.

    1999-01-01

    We present direct evidence for a change in protein structural specificity due to hydrophobic core packing. High resolution structural analysis of a designed core variant of ubiquitin reveals that the protein is in slow exchange between two conformations. Examination of side-chain rotamers indicates that this dynamic response and the lower stability of the protein are coupled to greater strain and mobility in the core. The results suggest that manipulating the level of side-chain strain may be one way of fine tuning the stability and specificity of proteins. PMID:10631975

  2. Strain-controlled thermal conductivity in ferroic twinned films

    PubMed Central

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-01-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices. PMID:25224749

  3. Trials with a Strain Gauge.

    ERIC Educational Resources Information Center

    Auty, Geoff

    1996-01-01

    Describes an attempt to match the goals of the practical demonstration of the use of a strain gauge and the technical applications of science and responding to student questions in early trials, while keeping within the level of electronics in advanced physics. (Author/JRH)

  4. High compressive pre-strains reduce the bending fatigue life of nitinol wire.

    PubMed

    Gupta, Shikha; Pelton, Alan R; Weaver, Jason D; Gong, Xiao-Yan; Nagaraja, Srinidhi

    2015-04-01

    initiated from surface inclusions in nearly all wires. Compressive pre-strain-induced damage may accelerate such crack initiation, thereby reducing fatigue life. The results of the present study indicate that large compressive pre-strains are detrimental to the fatigue properties of Nitinol, and, taken together, the findings underscore the importance of accounting for thermo-mechanical history in the design and testing of wire-based percutaneous implants. PMID:25625888

  5. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  6. Physiological strain and countermeasures with firefighting.

    PubMed

    Cheung, S S; Petersen, S R; McLellan, T M

    2010-10-01

    Protective clothing is integral to the task of firefighting, but at the same time can increase physiological strain and impair work capacity. Encapsulation of the head and the high thermal resistance and/or low water vapor permeability of the clothing ensemble impede evaporative heat dissipation, thus elevating the rate of heat storage and creating a state of uncompensable heat stress (UHS). In addition, the additional weight from carrying a supplemental air supply and the greater respiratory work of breathing through a regulator can create a negative spiral of thermal hyperpnea from greater respiratory demands and metabolic heat production. The elevated respiratory demands also increase cardiac strain and potentially the risk for myocardial events. Tolerance time during UHS is determined by three factors: the core temperature at the beginning of the heat stress exposure, the core temperature that can be tolerated before exhaustion or collapse ensues, and the rate of increase in core temperature from the beginning to end of the heat stress exposure. Protective clothing is often employed in highly dynamic environments, making portability, longevity and integration with the task requirements and clothing critical design characteristics for countermeasures. To date, most countermeasures have been relatively indirect in nature, primarily with alterations in work scheduling along with physiological manipulations such as cooling manipulations during recovery periods. Advances are required in materials science to develop lighter and less restrictive protective equipment, concurrent with cooling strategies that target specific regions or which can be effectively implemented during exercise. PMID:21029197

  7. Compressive strain limits for buried pipelines

    SciTech Connect

    Zimmerman, T.J.E.; Stephens, M.J.; DeGeer, D.D.; Chen, Q.

    1995-12-31

    Buried pipelines subjected to large differential ground movements experience deformation-induced stresses and strains that can cause local buckling, or pipe wrinkling. Severe wrinkling is a structural integrity concern, as it can lead to pipeline rupture. To assess this situation, current practice takes a conservative approach that suggests that compressive strains in a pipeline should be limited in order to avoid local buckle initiation. The research project discussed in this paper has developed an alternative approach that recognizes the ability of a pipe to plastically deform and wrinkle without being functionally impaired, provided a rational limit is set on the amount of wrinkling that is allowed to take place. This paper presents and discusses selected results from the four phases of this research work: (1) an assessment of existing data and analytical methods; (2) a large-scale experimental testing program; (3) development of a non-linear finite element model; and (4) development of new design criteria and semi-empirical prediction methods.

  8. Proposal for designation of F38-type caprine mycoplasmas as Mycoplasma capricolum subsp. capripneumoniae subsp. nov. and consequent obligatory relegation of strains currently classified as M. capricolum (Tully, Barile, Edward, Theodore, and Ernø 1974) to an additional new subspecies, M. capricolum subsp. capricolum subsp. nov.

    PubMed

    Leach, R H; Ernø, H; MacOwan, K J

    1993-07-01

    A subspecies relationship with the existing species Mycoplasma capricolum is appropriate for the F38 group of mycoplasmas, the causative agent of classical contagious caprine pleuropneumonia. We believe that this classification is justified on the basis of the close DNA-DNA relationship recently reported for isolates belonging to the two groups and the other known serological and biological similarities and differences of these organisms. Strain F38T (T = type strain) and taxonomically indistinguishable strains are therefore proposed as members of a new subspecies of M. capricolum, M. capricolum subsp. capripneumoniae. Strain F38 (= NCTC 10192) is the type strain of M. capricolum subsp. capripneumoniae subsp. nov. As a consequence of this subdivision of the species M. capricolum, strains previously classified as M. capricolum are now necessarily relegated to subspecies status, as M. capricolum subsp. capricolum subsp. nov. Strain California kid (= ATCC 27343 = NCTC 10154) is the type strain of M. capricolum, as well as of M. capricolum subsp. capricolum. A taxonomic description of M. capricolum subsp. capripneumoniae and a brief amended description of M. capricolum subsp. capricolum are presented. PMID:8347517

  9. Virulence of 32 Salmonella Strains in Mice

    PubMed Central

    Swearingen, Matthew C.; Porwollik, Steffen; Desai, Prerak T.; McClelland, Michael; Ahmer, Brian M. M.

    2012-01-01

    Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies. PMID:22558320

  10. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Yang, Y. H.; Li, J. M.; Yang, M. W.; Tang, J.; Liang, T.

    2012-10-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained.

  11. Strain measurement aided assembly for a CFRP hexapod

    NASA Astrophysics Data System (ADS)

    Ren, Guorui; Li, Chuang; Wang, Wei; Fan, Xuewu

    2011-12-01

    In order to mount a space optical telescope with long focal length on a spacecraft for an astronomy observation mission, a carbon fiber reinforced plastic (CFRP) hexapod with titanium alloy brackets was designed and fabricated. Each bracket has a pair of heads and each head has two orthogonal flexures as virtual pivots without clearance to provide flexure mounts. Because of no adjustment parts, slight differences among components and roughly assembly would result in misalignment and asymmetrical stress in the hexapod. The stresses and strains of the CFRP hexapod structure under 1G gravity load were analyzed with finite element method. In order to monitor the assembly stress and provide regulating guidance, strain gauges were stuck centrally on the bottom flexures of each bracket. Comparing the measured strains with the computed values, the low stress assembly of the CFRP hexapod has been accomplished successfully.

  12. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    PubMed Central

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  13. Molecular Mechanism of Nicotine Degradation by a Newly Isolated Strain, Ochrobactrum sp. Strain SJY1

    PubMed Central

    Yu, Hao; Zhu, Xiongyu; Li, Yangyang

    2014-01-01

    A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation. PMID:25344232

  14. Molecular mechanism of nicotine degradation by a newly isolated strain, Ochrobactrum sp. strain SJY1.

    PubMed

    Yu, Hao; Tang, Hongzhi; Zhu, Xiongyu; Li, Yangyang; Xu, Ping

    2015-01-01

    A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation. PMID:25344232

  15. Mapping microscale strain heterogeneity during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla Terminel, A.; Evans, J.

    2013-12-01

    We use a new technique combining microfabrication technology and compression tests to map the strain field at a micrometric scale in polycrystalline materials. This technique allows us to map local strain while measuring macroscopic strain and rheological properties, and provides insight into the relative contribution of various plasticity mechanisms under varying creep conditions. The micro-strain mapping technique was applied to Carrara Marble under different deformation regimes, at 300 MPa and temperatures ranging from 200 to 700 °C. At 600 °C, strain of 10%, and strain rate of 3e-5s-1, the local strain at twin and grain boundaries is up to 5 times greater than the average sample strain. At these conditions, strains averaged across a particular grain may vary by as much as 100%, but the strain field becomes more homogeneous with increasing strain. For example, for the analyzed experiments, the average wavelength of the strain heterogeneity is 70 micrometers at 10% strain, but increases to 110 micrometers at 20%. For a strain of 10%, heterogeneity is increased at slower strain rate (at 1e-5s-1). This increase seems to be associated with a more important role of twin boundary and grain boundary migration. As expected, twin densities are markedly greater at the lower temperature, though it is still unclear whether the relative twin volume is greater. However, twin strains are still important at 600 °C and accommodate an average of 14 % of the total strain at 10% deformation and a strain rate of 3e-5s-1.

  16. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  17. Indices of Psychological Strain During Hypoxis Bedrest

    NASA Astrophysics Data System (ADS)

    Stavrou, Nektarios A.; McDonnell, Adam C.; Eiken, Ola; Mekjavic, Igor B.

    2013-02-01

    Much attention has been devoted to the physiological changes that occur during bed rest. However, there has been a lack of focus on the psychological aspects per se. We investigated indices of psychological strain during three 10-d interventions, designed to assess the combined effects of inactivity/unloading and normobaric hypoxia on several physiological systems. Eleven male participants underwent three 10-d campaigns in a randomized manner: 1) normobaric hypoxic ambulatory confinement (HAMB), 2) normobaric hypoxic bed rest (HBR) and 3) normoxic bed rest (NBR). The most negative psychological profile appeared on BR10 of HBR and HAmb conditions (hypoxic conditions). Concomitantly a decrease in positive emotions was observed from BR-2 to BR10. Bed rest and exposure to hypoxic environments seems to exert a negative effect on person’s psychological mood.

  18. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  19. Recommended Strain Gage Application Procedures for Various Langley Research Center Balances and Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1997-01-01

    The NASA Langley Research Center uses more than 10000 strain gages per year in supporting its various research programs. The character of the testing at LaRC is such that the types of strain gage installations, the materials they are applied to, and the test environments encountered, require many varied approaches for installing strain gages. These installations must be accomplished in the most technically discerning and appropriate manner. This technical memorandum is offered as an assisting guide in helping the strain gage user to determine the appropriate approach for a given strain gage application requirement. Specifically, this document offers detailed recommendations for strain gaging the following: LaRC-Designed balances, LARC custom transducers, certain composite materials and alloys, high-temperature test articles, and selected non-typical or unique materials or test conditions.

  20. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  1. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGESBeta

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  2. Thermoresistive Strain Sensor and Positioning Method for Roll-to-Roll Processes

    PubMed Central

    Liao, Kuan-Hsun; Lo, Cheng-Yao

    2014-01-01

    This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au) line was patterned on a polyethylenenaphthalate (PEN) substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR) detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF) of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements. PMID:24803196

  3. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  4. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  5. Strain Concentration at Structural Discontinuities and Its Prediction Based on Characteristics of Compliance Change in Structures

    NASA Astrophysics Data System (ADS)

    Kasahara, Naoto

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes an increase in creep-fatigue damage of materials. One of the difficulties in predicting strain concentration is its dependence on the magnitude of loading, the constitutive equations, and the duration of loading. In this study, the author investigated the fundamental mechanism of strain concentration and its main factors. The results revealed that strain concentration is caused by strain redistribution between elastic and inelastic regions, which can be quantified by the characteristics of structural compliance. The characteristics of structural compliance are controlled by elastic region in structures and are insensitive to constitutive equations. It means that inelastic analysis can be easily applied to obtain compliance characteristics. By utilizing this fact, a simplified inelastic analysis method was proposed based on the characteristics of compliance change for the prediction of strain concentration.

  6. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    SciTech Connect

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magnetic field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.

  7. Nonlinear strain dependences in highly strained germanium micromembranes for on-chip light source applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guilloy, Kevin; Gassenq, Alban; Pauc, Nicolas; Escalante Fernandez, Jose Maria; Duchemin, Ivan; Niquet, Yann-Michel; Tardif, Samuel; Rieutord, Francois; Gentile, Pascal; Osvaldo Dias, Guilherme; Rouchon, Denis; Widiez, Julie; Hartmann, Jean-Michel; Fowler, Daivid; Chelnokov, Alexei; Geiger, Richard; Zabel, Thomas; Sigg, Hans C.; Faist, Jérôme; Reboud, Vincent; Calvo, Vincent

    2016-05-01

    ]. Finally, we performed electro-absorption measurements on micro-membranes to determine the energy of the direct transitions (conduction band to light and heavy holes) in uniaxially stressed germanium. The relationship between strain and direct bandgap became nonlinear above 2.5 %, in agreement with our theoretical models. In conclusion, we show that under uniaxial strain level above 2 %, germanium exhibits significant nonlinear behaviors which have to be taken into consideration for the design and fabrication of future on-chip germanium laser sources compatible with CMOS technologies. [1] Van de Walle, Phys. Rev. B 39, 1871 (1989) [2] Lim et al., Opt. Express 17, 16358 (2009) [3] Süess et al., Nature Phot. 7, 466 (2013) [4] Widiez et al., ECS Transaction 64, 35-48 (2014) [5] Gassenq et al., submitted [6] Gassenq et al., submitted

  8. Quantum spin hall insulators in strain-modified arsenene

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Ma, Yandong; Chen, Zhongfang

    2015-11-01

    By means of density functional theory (DFT) computations, we predict that the suitable strain modulation of honeycomb arsenene results in a unique two-dimensional (2D) topological insulator (TI) with a sizable bulk gap (up to 696 meV), which could be characterized and utilized at room temperature. Without considering any spin-orbit coupling, the band inversion occurs around the Gamma (G) point at tensile strains larger than 11.7%, which indicates the quantum spin Hall effect in arsenene at appropriate strains. The nontrivial topological phase was further confirmed by the topological invariant ν = 1 and edge states with a single Dirac-type crossing at the G point. Our results provide a promising strategy for designing 2D TIs with large bulk gaps from commonly used materials.By means of density functional theory (DFT) computations, we predict that the suitable strain modulation of honeycomb arsenene results in a unique two-dimensional (2D) topological insulator (TI) with a sizable bulk gap (up to 696 meV), which could be characterized and utilized at room temperature. Without considering any spin-orbit coupling, the band inversion occurs around the Gamma (G) point at tensile strains larger than 11.7%, which indicates the quantum spin Hall effect in arsenene at appropriate strains. The nontrivial topological phase was further confirmed by the topological invariant ν = 1 and edge states with a single Dirac-type crossing at the G point. Our results provide a promising strategy for designing 2D TIs with large bulk gaps from commonly used materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05006e

  9. An edited linkage map for the AXB and BXA recombinant inbred mouse strains.

    PubMed

    Sampson, S B; Higgins, D C; Elliot, R W; Taylor, B A; Lueders, K K; Koza, R A; Paigen, B

    1998-09-01

    We have updated the history of the AXB and BXA recombinant inbred (RI) strains, typed additional loci, and edited the AXB, BXA RI database. Thirteen of the original 51 AXB and BXA RI strains are either extinct or genetically contaminated, leaving 33 living strains available from The Jackson Laboratory. However, we found a high degree of similarity among three sets of strains, indicating that these strains are not independent, which leaves 27 independent RI strains in the set. Accordingly, we modified the database by combining the AXB and BXA RI sets and eliminating strains that were genetically contaminated or extinct with no available DNA. We added 92 newly typed loci, retyped some questionable genotypings, and removed loci with excessive double crossovers or an insufficient number of typed strains. The edited strain distribution pattern (SDP) is available on the World Wide Web (WWW) (http://www. informatics.jax.org/riset.html) and now includes over 700 loci. Each locus is linked to adjacent loci with a LOD score of at least 3.0 with a few described exceptions. We also carried out a second editing designed for the analysis of quantitative trait loci by deleting extinct strains and loci with identical SDPs; this edited database is also available on the WWW. PMID:9716653

  10. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  11. High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Simha, H.; Pratap, A.

    2001-06-01

    Tensile and compressive stress-strain response of two types of TPOs and graphite-epoxy composites are investigated at strain rates in the range 0.001/s-1000/s. Specimen strain in the low strain rate regime 0.001-100/s was determined using an optical extensometer in conjunction with standard MTS machine. Tensile test at high strain rate were performed on newly developed tensile version of All- Polymeric Split Hopkinson Bar. Tensile TPO specimens in the dog-bone configuration are placed in specially designed grips fabricated from nylatron. Compression response of TPO specimens at high strain rate is determined using 25.4-mm diameter aluminum bars. Peak compressive stress increases from 10 MPa at a strain rate of 100/s to 35 MPa at a strain rate of 1000/s. Preliminary data on high strain rate tensile response of graphite-epoxy and graphite-peek composites are presented. These data are intended to develop a material model incorporating strain rate sensitivity for TPOs and to be used in car crash simulations.

  12. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  13. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced. PMID:24659382

  14. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  15. Modelling to very high strains

    NASA Astrophysics Data System (ADS)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    Ductile strains in shear zones often reach extreme values, resulting in typical structures, such as winged porphyroclasts and several types of shear bands. The numerical simulation of the development of such structures has so far been inhibited by the low maximum strains that numerical models can normally achieve. Typical numerical models collapse at shear strains in the order of one to three. We have implemented a number of new functionalities in the numerical platform "Elle" (Jessell et al. 2001), which significantly increases the amount of strain that can be achieved and simultaneously reduces boundary effects that become increasingly disturbing at higher strain. Constant remeshing, while maintaining the polygonal phase regions, is the first step to avoid collapse of the finite-element grid required by finite-element solvers, such as Basil (Houseman et al. 2008). The second step is to apply a grain-growth routine to the boundaries of polygons that represent phase regions. This way, the development of sharp angles is avoided. A second advantage is that phase regions may merge or become separated (boudinage). Such topological changes are normally not possible in finite element deformation codes. The third step is the use of wrapping vertical model boundaries, with which optimal and unchanging model boundaries are maintained for the application of stress or velocity boundary conditions. The fourth step is to shift the model by a random amount in the vertical direction every time step. This way, the fixed horizontal boundary conditions are applied to different material points within the model every time step. Disturbing boundary effects are thus averaged out over the whole model and not localised to e.g. top and bottom of the model. Reduction of boundary effects has the additional advantage that model can be smaller and, therefore, numerically more efficient. Owing to the combination of these existing and new functionalities it is now possible to simulate the

  16. Strains

    MedlinePlus

    Pulled muscle ... can include: Pain and difficulty moving the injured muscle Discolored and bruised skin Swelling ... if you still have pain. Rest the pulled muscle for at least a day. If possible, keep ...

  17. Time-dependent strains and stresses in a pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  18. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  19. TRANSTRAIN: A program to compute strain transformations in composite materials

    SciTech Connect

    Ahmed, R.

    1990-07-01

    Over the years, the solid rocket motor community has made increasing use of composite materials for thermal and structural applications. This is particularly true of solid rocket nozzles, which have used carbon phenolic and, increasingly, carbon-carbon materials to provide structural integrity and thermal protection at the high temperatures encountered during motor burn. To evaluate the degree of structural performance of nozzles and their materials and to verify analysis models, many subscale and full-scale tests are run. These provide engineers with valuable data needed to optimize design and to analyze nozzle hardware. Included among these data are strains, pressures, thrust, temperatures, and displacements. Recent nozzle test hardware has made increasing use of strain gauges embedded in the carbon composite material to measure internal strains. In order to evaluate strength, these data must be transformed into strains along the fiber directions. The fiber-direction stresses can then be calculated. A computer program written to help engineers correctly manipulate the strain data into a form that can be used to evaluate structural integrity of the nozzle is examined.

  20. Susceptibility of Legionella Strains to the Chlorinated Biocide, Monochloramine

    PubMed Central

    Jakubek, Delphine; Guillaume, Carole; Binet, Marie; Leblon, Gérard; DuBow, Michael; Le Brun, Matthieu

    2013-01-01

    Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased. PMID:24005820

  1. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    SciTech Connect

    Clausen, Bjorn; Brown, Donald W; Tome, Carlos N; Balogh, Levente; Vogel, Sven C

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  2. An experimental/analytical study of strains in encapsulated assemblies

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Burchett, S. N.

    1991-12-01

    A combined experimental and analytical study of strains that develop in encapsulated assemblies during casting, curing and thermal excursions is described. The experimental setup, designed to measure in situ strains, consisted of thin, closed-end, metal tubes that were instrumented with strain gages and thermocouples before being over-potted with an encapsulant. Three epoxy-based materials were studied. After cure of the encapsulant, tube strains were measured over the temperature range of minus 55 C to 90 C. The thermal excursion experiments were then numerically modeled using finite element analyses and the results were compared to the experimental results. The predicted strains are overestimated (conservative) when a linear, elastic, temperature-dependent material model was assumed for the encapsulant and the stress free temperature was assumed to correspond to the cure temperature of the encapsulant. Very good agreement was obtained with the linear elastic calculations provided that the stress free temperature corresponds to the onset of the glassy-to-rubbery transition range of the encapsulant. Finally, very good agreement was obtained when a viscoelastic material model was utilized and a stress free temperature corresponding to the cure temperature was assumed.

  3. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGESBeta

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  4. High strain rate mechanical properties of IM7/8551-7 graphite epoxy composite

    SciTech Connect

    Powers, B.M.; Vinson, J.R.; Hall, I.W.

    1995-12-31

    Polymer matrix composites offer excellent mechanical properties such as high specific strength and stiffness which make them attractive for many naval, aerospace and automotive structural components. Although they are candidate materials for many applications where high strain rate loading is probable, little is known of the material responses to shock loading for most composite materials. Because mechanical properties vary significantly with strain rate, the use of static properties in the analysis and design of structures which undergo dynamic loadings can on one hand lead to a very conservative overweight design, or on the other hand can lead to designs which fail prematurely and unexpectedly. The use of dynamic material properties will ensure the design of composite structures which are weight efficient and structurally sound when they are subjected to dynamic loads. In this study, a Split Hopkinson Pressure Bar is used to obtain compressive mechanical properties of a unidirectional IM7/8551-7 graphite epoxy composite. For each of the three principal directions, the yield stress, yield strain, ultimate stress, ultimate strain, modulus of elasticity, elastic strain energy function and the total strain energy to failure are presented for strain rates varying from 49 sec{sup {minus}1} to 1430 sec{sup {minus}1}. The data from 72 tests are statistically analyzed, represented by equations, and discussed in some detail.

  5. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  6. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  7. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  8. Detector array design

    SciTech Connect

    Lari, S.

    1996-02-01

    Neutron scattering facility at Oak-Ridge National is used to measure residual stresses in many different materials. Neutron beam from the reactor can be used to penetrate the inner atomic distances of metals which then can be diffracted to a detector to measure the strain. The strain data later can be converted to stresses. The facility currently uses only one detector to carry the measurement. By designing an array of detectors data can be obtained at a much faster rate and or having a much better and improved resolution. The purpose of this report is to show design of such array of detectors and their movements (rotation) for possible maximum data collection at a faster rate.

  9. Strain stiffening in collagen I networks.

    PubMed

    Motte, Stéphanie; Kaufman, Laura J

    2013-01-01

    Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain. PMID:23097228

  10. Strains around distally inclined implants retaining mandibular overdentures with Locator attachments: an in vitro study

    PubMed Central

    Setta, Fathi Abo; Khirallah, Ahmed Samir

    2016-01-01

    PURPOSE The aim of the present study was to evaluate, by means of strain gauge analysis, the effect of different implant angulations on strains around two implants retaining mandibular overdenture with Locator attachments. MATERIALS AND METHODS Four duplicate mandibular acrylic models were constructed. Two implants were inserted in the canine regions using the following degrees of distal inclinations: group I (control); 0°, group II; 10°, group III; 20°, and group IV; 30°. Locator pink attachments were used to connect the overdenture to the implants and Locator red (designed for severely angled implants) was used for group IV (group IVred). For each group, two linear strain gauges were attached at the mesial and distal surfaces of the acrylic resin around each implant. Peri-implant strain was measured on loading and non-loading sides during bilateral and unilateral loading. RESULTS For all groups, the mesial surfaces of the implants at loading and non-loading sides experienced compressive (negative) strains, while the distal implant surfaces showed tensile (positive) strains. Group IV showed the highest strain, followed by group III, group II. Both group I and group IVred showed the lowest strain. The strain gauges at the mesial surface of the loading side recorded the highest strain, and the distal surface at non-loading side showed the lowest strain. Unilateral loading recorded significantly higher strain than bilateral loading. CONCLUSION Peri-implant strains around two implants used to retain mandibular overdentures with Locator attachments increase as distal implant inclination increases, except when red nylon inserts were used. PMID:27141255

  11. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  12. Installing strain gauges on composite material

    NASA Astrophysics Data System (ADS)

    Shull, Larry

    The evolution of the strain gage is traced and problems associated with their use on composite materials are discussed. It is believed that the use of the computer in strain gage data systems has caused some of the attitude problems in measuring strains in composite materials. The performance of strain gages on filament-wound Kevlar pressure vessels is discussed as well as graphite composites during 1984-1986, surface preparation, gage location alignment.

  13. Temperature-Compensating Inactive Strain Gauge

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1993-01-01

    Thermal contribution to output of active gauge canceled. High-temperature strain gauges include both active gauge wires sensing strains and inactive gauge wires providing compensation for thermal contributions to gauge readings. Inactive-gauge approach to temperature compensation applicable to commercially available resistance-type strain gauges operating at temperatures up to 700 degrees F and to developmental strain gauges operating at temperatures up to 2,000 degrees F.

  14. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  15. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  16. Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains

    PubMed Central

    Gangaiah, Dharanesh; Webb, Kristen M.; Humphreys, Tricia L.; Fortney, Kate R.; Toh, Evelyn; Tai, Albert; Katz, Samantha S.; Pillay, Allan; Chen, Cheng-Yen; Roberts, Sally A.; Munson, Robert S.; Spinola, Stanley M.

    2015-01-01

    Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions. PMID:26147869

  17. Modal strain energies in COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  18. Strains and Sprains Are a Pain

    MedlinePlus

    ... move the injured part, and you may even think you have broken a bone . How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains can be more likely to happen if ...

  19. Phenotypic and Genotypic Description of Sedimenticola selenatireducens Strain CUZ, a Marine (Per)Chlorate-Respiring Gammaproteobacterium, and Its Close Relative the Chlorate-Respiring Sedimenticola Strain NSS

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana E.; Wang, Ouwei; Engelbrektson, Anna; Clark, Iain; Lucas, Lauren N.; Somasekhar, Pranav Y.

    2015-01-01

    Two (per)chlorate-reducing bacteria, strains CUZ and NSS, were isolated from marine sediments in Berkeley and San Diego, CA, respectively. Strain CUZ respired both perchlorate and chlorate [collectively designated (per)chlorate], while strain NSS respired only chlorate. Phylogenetic analysis classified both strains as close relatives of the gammaproteobacterium Sedimenticola selenatireducens. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations showed the presence of rod-shaped, motile cells containing one polar flagellum. Optimum growth for strain CUZ was observed at 25 to 30°C, pH 7, and 4% NaCl, while strain NSS grew optimally at 37 to 42°C, pH 7.5 to 8, and 1.5 to 2.5% NaCl. Both strains oxidized hydrogen, sulfide, various organic acids, and aromatics, such as benzoate and phenylacetate, as electron donors coupled to oxygen, nitrate, and (per)chlorate or chlorate as electron acceptors. The draft genome of strain CUZ carried the requisite (per)chlorate reduction island (PRI) for (per)chlorate respiration, while that of strain NSS carried the composite chlorate reduction transposon responsible for chlorate metabolism. The PRI of strain CUZ encoded a perchlorate reductase (Pcr), which reduced both perchlorate and chlorate, while the genome of strain NSS included a gene for a distinct chlorate reductase (Clr) that reduced only chlorate. When both (per)chlorate and nitrate were present, (per)chlorate was preferentially utilized if the inoculum was pregrown on (per)chlorate. Historically, (per)chlorate-reducing bacteria (PRB) and chlorate-reducing bacteria (CRB) have been isolated primarily from freshwater, mesophilic environments. This study describes the isolation and characterization of two highly related marine halophiles, one a PRB and the other a CRB, and thus broadens the known phylogenetic and physiological diversity of these unusual metabolisms. PMID:25662971

  20. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted