Science.gov

Sample records for actinomucor elegans var

  1. Abutilon theophrasti's defense against the allelochemical benzoxazolin-2(3H)-one: support by Actinomucor elegans.

    PubMed

    Kia, Sevda Haghi; Schulz, Margot; Ayah, Emmanuel; Schouten, Alexander; Müllenborn, Carmen; Paetz, Christian; Schneider, Bernd; Hofmann, Diana; Disko, Ulrich; Tabaglio, Vincenzo; Marocco, Adriano

    2014-12-01

    Abutilon theophrasti Medik., previously found to be rather insensitive to benzoxazinoid containing rye mulch and the allelochemical benzoxazolin-2(3H)-one (BOA), can be associated with the zygomycete Actinomucor elegans, whereby the fungus colonizes the root relatively superficially and mainly in the maturation zone. The fungus mitigates necrosis of the cotyledons when seedlings are incubated with 2 mM BOA, in contrast to those that lack the fungus. In liquid cultures of the fungus, tryptophan was identified. The accumulation of tryptophan is increased in presence of BOA. This amino acid seems to be important in protecting Abutilon against BOA and its derivatives since it suppressed the accumulation of BOA derived, highly toxic 2-aminophen-oxazin-3-one (APO) in the medium and on the root surface during BOA incubations of Abutilon seedlings. Although A. elegans is insensitive to BOA and APO, the fungus is not able to protect the plant against harmful effects of APO, when seedlings are treated with the compound. Abutilon can detoxify BOA via BOA-6-OH glucosylation probably by a cell wall associated glucosyltransferase, but only low amounts of the product accumulate. Low tryptophan concentrations can contribute to a degradation of the toxic intermediate BOA-6-OH by Fenton reactions, whereby the amino acid is oxidized. One of the oxidation products was identified as 4(1H)-quinolinone, which is the core substructure of the quorum sensing molecule 2-heptyl-3-hydroxy-4-quinolone. The mutualistic association of Abutilon theophrasti with Actinomucor elegans is considered as opportunistic and facultative. Such plant-fungus associations depend rather likely on environmental conditions, such as the mode of fertilization.

  2. New Record of Mariannaea elegans var. elegans in Korea.

    PubMed

    Tang, Longqing; Hyun, Min Woo; Yun, Yeo Hong; Suh, Dong Yeon; Kim, Seong Hwan; Sung, Gi Ho

    2012-03-01

    A Mariannaea fungus was isolated during investigation of an elm tree infested with unidentified beetles. Based on morphological characteristics and molecular analysis of the internal transcribed spacer rDNA sequence, the fungus was identified as Mariannaea elegans var. elegans. Fungal growth was better on malt extract agar than on potato dextrose agar and oatmeal agar. Optimal temperature and pH for growth of the fungus were 30℃ and pH 7.0, respectively. The fungus was found to have the ability to produce extracellular enzymes such as amylase, β-glucosidase, cellulase, and protease. This is first report on M. elegans var. elegans in Korea. PMID:22783129

  3. C. elegans TRP channels.

    PubMed

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  4. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  5. Transgenesis in C. elegans.

    PubMed

    Praitis, Vida; Maduro, Morris F

    2011-01-01

    The ability to manipulate the genome of organisms at will is perhaps the single most useful ability for the study of biological systems. Techniques for the generation of transgenics in the nematode Caenorhabditis elegans became available in the late 1980s. Since then, improvements to the original approach have been made to address specific limitations with transgene expression, expand on the repertoire of the types of biological information that transgenes can provide, and begin to develop methods to target transgenes to defined chromosomal locations. Many recent, detailed protocols have been published, and hence in this chapter, we will review various approaches to making C. elegans transgenics, discuss their applications, and consider their relative advantages and disadvantages. Comments will also be made on anticipated future developments and on the application of these methods to other nematodes. PMID:22118277

  6. Laser Microsurgery in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Gabel, Christopher V.; Samuel, Aravinthan D. T.; Bargmann, Cornelia I.; Avery, Leon

    2013-01-01

    Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans. PMID:22226524

  7. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.

  8. Antioxidant activity and delayed aging effects of hot water extract from Chamaecyparis obtusa var. formosana leaves.

    PubMed

    Cheng, Szu-Chin; Li, Wen-Hsuan; Shi, Yeu-Ching; Yen, Pei-Ling; Lin, Huan-You; Liao, Vivian Hsiu-Chuan; Chang, Shang-Tzen

    2014-05-01

    The antioxidant activity and delayed aging effects of hot water extracts from leaves of Chamaecyparis obtusa var. formosana were investigated. Free radical, superoxide radical scavenging, and total phenolic content assays were employed to evaluate the in vitro activities of the extracts. In addition, in vivo assays using the nematode Caenorhabditis elegans were also performed in this study. The results showed that among all soluble fractions obtained from the extracts, the ethyl acetate-soluble fraction has the best in vitro and in vivo antioxidant activities. Moreover, it decreased significantly the deposition of lipofuscin (aging pigment) and extended the lifespan of C. elegans. Bioactivity-guided fractionation yielded six potent antioxidant constituents from the ethyl acetate-soluble fraction, namely, catechin, quercetin, quercetin-3-O-α-rhamnoyranoside, myricetin-3-O-α-rhamnoyranoside, vanillic acid, and 4-hydroxybenzoic acid. Quercetin-3-O-α-rhamnoyranoside pretreatment showed the highest survival of C. elegans upon juglone exposure. Taken together, the results revealed that hot water extracts from C. obtusa var. formosana leaves have the potential to be used as a source for antioxidant or delayed aging health food. PMID:24766147

  9. Toxicity testing using Caenorhabditis elegans

    SciTech Connect

    Middendorf, P.J.; Dusenbery, D.B.; Williams, P.L.

    1995-12-31

    Caenorhabditis elegans is a small free-living nematode that is representative of what may be the most abundant animal group. It has been promoted as a possible model organism for toxicity testing in the laboratory and in field evaluations in part because more is known about its biology than any other animal, Toxicity tests using C. elegans have been developed with lethality, reproduction, and behavior as end points. The tests have also been developed to varying degrees using standard laboratory media, water, and soil. The results of the tests when exposing C. elegans to a variety of metals, inorganic, and organic compounds indicate it is typically at least as sensitive as other species currently used, such as Daphnia and earthworms, and is generally much easier to maintain in the laboratory. The advantages and disadvantages of C. elegans and the state of development of the tests will be discussed.

  10. Mitochondrial division in Caenorhabditis elegans.

    PubMed

    Gandre, Shilpa; van der Bliek, Alexander M

    2007-01-01

    The study of mitochondrial division proteins has largely focused on yeast and mammalian cells. We describe methods to use Caenorhabditis elegans as an alternative model for studying mitochondrial division, taking advantage of the many wonderful resources provided by the C. elegans community. Our methods are largely based on manipulation of gene expression using classic and molecular genetic techniques combined with fluorescence microscopy. Some biochemical methods are also included. As antibodies become available, these biochemical methods are likely to become more sophisticated. PMID:18314747

  11. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses. PMID:26795488

  12. The glia of Caenorhabditis elegans

    PubMed Central

    Oikonomou, Grigorios; Shaham, Shai

    2010-01-01

    Glia have been, in many ways, the proverbial elephant in the room. Although glia are as numerous as neurons in vertebrate nervous systems, technical and other concerns had left research on these cells languishing, while research on neurons marched on. Importantly, model systems to study glia had lagged considerably behind. A concerted effort in recent years to develop the canonical invertebrate model animals, Drosophila melanogaster and Caenorhabditis elegans, as settings to understand glial roles in nervous system development and function has begun to bear fruit. In this review we summarize our current understanding of glia and their roles in the nervous system of the nematode C. elegans. The recent studies we describe highlight the similarities and differences between C. elegans and vertebrate glia, and focus on novel insights that are likely to have general relevance to all nervous systems. PMID:21732423

  13. C. elegans chemotaxis assay.

    PubMed

    Margie, Olivia; Palmer, Chris; Chin-Sang, Ian

    2013-01-01

    Many organisms use chemotaxis to seek out food sources, avoid noxious substances, and find mates. Caenorhabditis elegans has impressive chemotaxis behavior. The premise behind testing the response of the worms to an odorant is to place them in an area and observe the movement evoked in response to an odorant. Even with the many available assays, optimizing worm starting location relative to both the control and test areas, while minimizing the interaction of worms with each other, while maintaining a significant sample size remains a work in progress (1-10). The method described here aims to address these issues by modifying the assay developed by Bargmann et al.(1). A Petri dish is divided into four quadrants, two opposite quadrants marked "Test" and two are designated "Control". Anesthetic is placed in all test and control sites. The worms are placed in the center of the plate with a circle marked around the origin to ensure that non-motile worms will be ignored. Utilizing a four-quadrant system rather than one 2 or two 1 eliminates bias in the movement of the worms, as they are equidistant from test and control samples, regardless of which side of the origin they began. This circumvents the problem of worms being forced to travel through a cluster of other worms to respond to an odorant, which can delay worms or force them to take a more circuitous route, yielding an incorrect interpretation of their intended path. This method also shows practical advantages by having a larger sample size and allowing the researcher to run the assay unattended and score the worms once the allotted time has expired. PMID:23644543

  14. Durotaxis in Nematode Caenorhabditis elegans.

    PubMed

    Parida, Lipika; Padmanabhan, Venkat

    2016-08-01

    Durotaxis is a process where cells are able to sense the stiffness of substrates and preferentially migrate toward stiffer regions. Here, we show that the 1-mm-long nematode, Caenorhabditis elegans are also able to detect the rigidity of underlying substrates and always migrate to regions of higher stiffness. Our results indicate that C. elegans are able to judiciously make a decision to stay on stiffer regions. We found that the, undulation frequency, and wavelength of worms, crawling on surfaces show nonmonotonic behavior with increasing stiffness. A number of control experiments were also conducted to verify whether C. elegans are really able to detect the rigidity of substrates or whether the migration to stiffer regions is due to other factors already reported in the literature. As it is known that bacteria and other single-celled organisms exhibit durotaxis toward stiffer surfaces, we conjecture that durotaxis in C. elegans may be one of the strategies developed to improve their chances of locating food.

  15. Durotaxis in Nematode Caenorhabditis elegans.

    PubMed

    Parida, Lipika; Padmanabhan, Venkat

    2016-08-01

    Durotaxis is a process where cells are able to sense the stiffness of substrates and preferentially migrate toward stiffer regions. Here, we show that the 1-mm-long nematode, Caenorhabditis elegans are also able to detect the rigidity of underlying substrates and always migrate to regions of higher stiffness. Our results indicate that C. elegans are able to judiciously make a decision to stay on stiffer regions. We found that the, undulation frequency, and wavelength of worms, crawling on surfaces show nonmonotonic behavior with increasing stiffness. A number of control experiments were also conducted to verify whether C. elegans are really able to detect the rigidity of substrates or whether the migration to stiffer regions is due to other factors already reported in the literature. As it is known that bacteria and other single-celled organisms exhibit durotaxis toward stiffer surfaces, we conjecture that durotaxis in C. elegans may be one of the strategies developed to improve their chances of locating food. PMID:27508449

  16. Transducing touch in Caenorhabditis elegans.

    PubMed

    Goodman, Miriam B; Schwarz, Erich M

    2003-01-01

    Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction.

  17. The elegans of spindle assembly

    PubMed Central

    Greenan, Garrett; O’Toole, Eileen

    2010-01-01

    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly. PMID:20339898

  18. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  19. Germline Transformation of Caenorhabditis elegans by Injection

    NASA Astrophysics Data System (ADS)

    Kadandale, Pavan; Chatterjee, Indrani; Singson, Andrew

    Microinjection is a commonly used technique for DNA transformation in Caenorhabditis elegans. It is a powerful tool that links genetic and molecular analysis to phenotypic analysis. In this chapter we shall provide an overview of microinjection for germline transformation in worms. Our discussion will emphasize C. elegans reproductive biology, applications and protocols for carrying out microinjection in order to successfully obtain transgenic worms.

  20. Regulation of body fat in Caenorhabditis elegans.

    PubMed

    Srinivasan, Supriya

    2015-01-01

    Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.

  1. Antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and Pimenta racemosa var. grisea.

    PubMed

    Saenz, M T; Tornos, M P; Alvarez, A; Fernandez, M A; García, M D

    2004-09-01

    The antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and P. racemosa var. grisea was determined against Gram (+) and Gram (-) bacteria. P. racemosa var. grisea demonstrated a more pronounced activity. These data would indicate the potential usefulness of the variety grisea as a microbiostatic, antiseptic or disinfectant agent.

  2. TabVar: Tabulated Variables

    2015-12-15

    TabVar: A Python library for manipulating datasets in the form of tabulated variables. Tables in tabvar contain many columns representing independent variables, but exactly one distinguished column for the dependent variable. Having a single distinguished column allows a natural lifting of arithmetic operators to tables, much (and in fact fully generalizing) multidimensional array arithmetic. The convenient syntax of whole-table arithmetic, along with the usual operations of filtering and aggregation, and all in the setting ofmore » python's interactive REPL allows for rapid exploration of datasets.« less

  3. TabVar: Tabulated Variables

    SciTech Connect

    Bachan, John

    2015-12-15

    TabVar: A Python library for manipulating datasets in the form of tabulated variables. Tables in tabvar contain many columns representing independent variables, but exactly one distinguished column for the dependent variable. Having a single distinguished column allows a natural lifting of arithmetic operators to tables, much (and in fact fully generalizing) multidimensional array arithmetic. The convenient syntax of whole-table arithmetic, along with the usual operations of filtering and aggregation, and all in the setting of python's interactive REPL allows for rapid exploration of datasets.

  4. Using C. elegans for antimicrobial drug discovery

    PubMed Central

    Desalermos, Athanasios; Muhammed, Maged; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2011-01-01

    Introduction The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. Areas covered This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. Expert opinion C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer’s disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway. PMID:21686092

  5. Using Caenorhabditis elegans to Study Serpinopathies

    PubMed Central

    Long, Olivia S.; Gosai, Sager J.; Kwak, Joon Hyeok; King, Dale E.; Perlmutter, David H.; Silverman, Gary A.; Pak, Stephen C.

    2015-01-01

    Protein misfolding, polymerization, and/or aggregation are hallmarks of serpinopathies and many other human genetic disorders including Alzheimer’s, Huntington’s, and Parkinson’s disease. While higher organism models have helped shape our understanding of these diseases, simpler model systems, like Caenorhabditis elegans, offer great versatility for elucidating complex genetic mechanisms underlying these diseases. Moreover, recent advances in automated high-throughput methodologies have promoted C. elegans as a useful tool for drug discovery. In this chapter, we describe how one could model serpinopathies in C. elegans and how one could exploit this model to identify small molecule compounds that can be developed into effective therapeutic drugs. PMID:21683258

  6. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  7. Untwisting the Caenorhabditis elegans embryo

    PubMed Central

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  8. Scorpion antivenom effect of micropropagated Aristolochia elegans.

    PubMed

    Izquierdo, Alejandro Mora; Zapata, Elsa Ventura; Jiménez-Ferrer, J Enrique; Muñoz, Crescencio Bazaldúa; Aparicio, Antonio Jiménez; Torres, Kalina Bermúdez; Torres, Lidia Osuna

    2010-08-01

    Aristolochia elegans Mast. (Aristolochiaceae) has been used to treat scorpion envenoming in Mexican traditional medicine. In vitro studies of the pharmacological activity of raw extracts from A. elegans roots have shown activity against scorpion bite. The aim of the present study was to determine for the first time the antagonistic effect of hexane and methanol extracts of the aerial parts and roots from micropropagated A. elegans plants in a model of isolated guinea-pig ileum contracted by scorpion bite. Results showed that the methanol extracts of aerial organs (74%) and roots (65%) of micropropagated plants have a similar antitoxin activity against scorpion poisoning to hexane extracts of wild plants (65%). These results suggest that using methanol extracts from the micropropagated plant material instead of wild plant root extracts from A. elegans is an alternative for treatment against scorpion bite symptoms, and will contribute to the conservation of this medicinal species.

  9. C. elegans outside the Petri dish.

    PubMed

    Frézal, Lise; Félix, Marie-Anne

    2015-01-01

    The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology. PMID:25822066

  10. C. elegans outside the Petri dish

    PubMed Central

    Frézal, Lise; Félix, Marie-Anne

    2015-01-01

    The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology. DOI: http://dx.doi.org/10.7554/eLife.05849.001 PMID:25822066

  11. Cancer models in C. elegans

    PubMed Central

    Kirienko, Natalia V.; Mani, Kumaran; Fay, David S.

    2013-01-01

    Although now dogma, the idea that non-vertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis. PMID:20175192

  12. The C. elegans Lifespan Machine

    PubMed Central

    Stroustrup, Nicholas; Ulmschneider, Bryne E.; Nash, Zachary M.; López Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2013-01-01

    The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The action of molecular mechanisms on lifespan is therefore visible only through their statistical effects on populations. Survival assays in C. elegans provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8 μm resolution. The method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with the manual method for several mutants in both standard and stressful environments. Our approach allows rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging. PMID:23666410

  13. Variable cosmological term \\varLambda(t)

    NASA Astrophysics Data System (ADS)

    Socorro, J.; D'oleire, M.; Pimentel, Luis O.

    2015-11-01

    We present the case of time-varying cosmological term \\varLambda(t). The main idea arises by proposing that as in the cosmological constant case, the scalar potential is identified as V(φ)=2\\varLambda, with \\varLambda a constant, this identification should be kept even when the cosmological term has a temporal dependence, i.e., V(φ(t))=2\\varLambda(t). We use the Lagrangian formalism for a scalar field φ with standard kinetic energy and arbitrary potential V(φ) and apply this model to the Friedmann-Robertson-Walker (FRW) cosmology. Exact solutions of the field equations are obtained by a special ansatz to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.

  14. Natural habitat of Cryptococcus neoformans var. gattii.

    PubMed Central

    Ellis, D H; Pfeiffer, T J

    1990-01-01

    Environmental isolations have established that Cryptococcus neoformans var. gattii appears to have a specific ecological association with Eucalyptus camaldulensis. So far, we have isolated C. neoformans var. gattii on 35 separate occasions, all from samples associated with E. camaldulensis. The global distribution of E. camaldulensis appears to correspond to the epidemiologic distribution of cryptococcosis caused by C. neoformans var. gattii. No other environmental source for the fungus has yet been detected, and no other eucalypt has the distribution pattern corresponding to reported cases caused by this fungus. These findings may provided an explanation for the high incidence of infections caused by C. neoformans var. gattii in Australian aborigines living in the Northern Territory and for its low worldwide incidence in acquired immunodeficiency syndrome patients. Images PMID:2199524

  15. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  16. Is Caenorhabditis elegans the Magic Bullet for Anthelminthic Drug Discovery?

    PubMed

    Keiser, Jennifer

    2015-10-01

    Recent advances in handling and readout have facilitated high-throughput screens with Caenorhabditis elegans. A new study demonstrates that C. elegans is a useful tool in high-throughput anthelminthic drug discovery. Despite challenges, drug discovery using C. elegans offers opportunities that might lead the way to novel anthelminthic drugs.

  17. Caenorhabditis elegans proteomics comes of age.

    PubMed

    Shim, Yhong-Hee; Paik, Young-Ki

    2010-02-01

    Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-beta and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant- or animal-nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode. PMID:20029841

  18. Microfluidic Devices in Advanced Caenorhabditis elegans Research.

    PubMed

    Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin

    2016-01-01

    The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology. PMID:27490525

  19. Chemically defined medium and Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Kozak, Elena; Conley, Catharine A.

    2003-01-01

    BACKGROUND: C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals. RESULTS: We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats to using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change the composition of the defined medium. CONCLUSIONS: As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  20. Optogenetic mutagenesis in Caenorhabditis elegans

    PubMed Central

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  1. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth. PMID:26921458

  2. Regulation of Body Fat in C. elegans

    PubMed Central

    Srinivasan, Supriya

    2016-01-01

    Studies conducted in C. elegans over the last decade highlight the ancient and complex origins of body fat regulation. In this critical review, I introduce the major functional approaches used to study energy balance and body fat, the lipid composition of C. elegans, the regulation of cellular fat metabolism and its transcriptional control. Next I describe the influence of the sensory nervous system on body fat and the major regulatory mechanisms that couple food perception in the nervous system with the production of energy via fat metabolism. The final section describes the opportunities for the discovery of neuroendocrine factors that control communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans. PMID:25340962

  3. Host-Microbe Interactions in Caenorhabditis elegans

    PubMed Central

    Hou, Aixin

    2013-01-01

    A good understanding of how microbes interact with hosts has a direct bearing on our capability of fighting infectious microbial pathogens and making good use of beneficial ones. Among the model organisms used to study reciprocal actions among microbes and hosts, C. elegans may be the most advantageous in the context of its unique attributes such as the short life cycle, easiness of laboratory maintenance, and the availability of different genetic mutants. This review summarizes the recent advances in understanding host-microbe interactions in C. elegans. Although these investigations have greatly enhanced our understanding of C. elegans-microbe relationships, all but one of them involve only one or few microbial species. We argue here that more research is needed for exploring the evolution and establishment of a complex microbial community in the worm's intestine and its interaction with the host. PMID:23984180

  4. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  5. Complete mitochondrial genome sequence of Nectogale elegans.

    PubMed

    Huang, Ting; Yan, Chaochao; Tan, Zheng; Tu, Feiyun; Yue, Bisong; Zhang, Xiuyue

    2014-08-01

    The elegant water shrew (Nectogale elegans) belongs to the family Soricidae, and distributes in northern South Asia, central and southern China and northern Southeast Asia. In this study, the complete mitochondrial genome of N. elegans was sequenced. It was determined to be 17,460 bases, and included 13 protein-coding genes (PCGs), 22 tRNA genes, 2 ribosomal RNA genes and one non-coding region, which is similar to other mammalian mitochondrial genomes. Bayesian inference and maximum likelihood methods were used to construct phylogenetic trees based on 12 heavy-strand concatenated PCGs. Phylogenetic analyses further confirmed that Crocidurinae diverged prior to Soricinae, and Sorex unguiculatus differentiated earlier than N. elegans.

  6. Volatiles of Chrysanthemum zawadskii var. latilobum K

    PubMed Central

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-01-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  7. Volatiles of Chrysanthemum zawadskii var. latilobum K.

    PubMed

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-09-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  8. VarSITI - SCOSTEP's scientific program

    NASA Astrophysics Data System (ADS)

    Georgieva, Katya; Shiokawa, Kazuo

    2016-07-01

    With the aim to promote international scientific activity in the different branches of solar terrestrial physics and its application for the benefit of humanity, SCOSTEP runs long-term (4-5 years) international interdisciplinary scientific programs. The current SCOSTEP's scientific program (2014-2018) is VarSITI - Variability of the Sun and Its Terrestrial Impacts. It has four scientific projects covering solar terrestrial problems all the way from the Sun through the interplanetary space, magnetosphere, ionosphere, and down to the Earth's atmosphere. We will present the VarSITI's projects and activities, and will highlight some of the results so far and plans for the future.

  9. Xenobiotic Detoxification in the Nematode Caenorhabditis elegans

    PubMed Central

    Lindblom, Tim H.; Dodd, Allyn K.

    2009-01-01

    The nematode Caenorhabditis elegans is an important model organism for the study of such diverse aspects of animal physiology and behavior as embryonic development, chemoreception, and the genetic control of lifespan. Yet, even though the entire genome sequence of this organism was deposited into public databases several years ago, little is known about xenobiotic metabolism in C. elegans. In part, the paucity of detoxification information may be due to the plush life enjoyed by nematodes raised in the laboratory. In the wild, however, these animals experience a much greater array of chemical assaults. Living in the interstitial water of the soil, populations of C. elegans exhibit a boom and bust lifestyle characterized by prodigious predation of soil microbes punctuated by periods of dispersal as a non-developing alternative larval stage. During the booming periods of population expansion, these animals almost indiscriminately consume everything in their environment including any number of compounds from other animals, microorganisms, plants, and xenobiotics. Several recent studies have identified many genes encoding sensors and enzymes these nematodes may use in their xeno-coping strategies. Here, we will discuss these recent advances, as well as the efforts by our lab and others to utilize the genomic resources of the C. elegans system to elucidate this nematode’s molecular defenses against toxins. PMID:16902959

  10. Cytological Analysis of Meiosis in Caenorhabditis elegans

    PubMed Central

    Phillips, Carolyn M.; McDonald, Kent L.; Dernburg, Abby F.

    2011-01-01

    The nematode Caenorhabditis elegans has emerged as an informative experimental system for analysis of meiosis, in large part because of the advantageous physical organization of meiotic nuclei as a gradient of stages within the germline. Here we provide tools for detailed observational studies of cells within the worm gonad, including techniques for light and electron microscopy. PMID:19685325

  11. Guidelines for monitoring autophagy in Caenorhabditis elegans.

    PubMed

    Zhang, Hong; Chang, Jessica T; Guo, Bin; Hansen, Malene; Jia, Kailiang; Kovács, Attila L; Kumsta, Caroline; Lapierre, Louis R; Legouis, Renaud; Lin, Long; Lu, Qun; Meléndez, Alicia; O'Rourke, Eyleen J; Sato, Ken; Sato, Miyuki; Wang, Xiaochen; Wu, Fan

    2015-01-01

    The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood.

  12. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.

    PubMed

    Patananan, Alexander N; Budenholzer, Lauren M; Pedraza, Maria E; Torres, Eric R; Adler, Lital N; Clarke, Steven G

    2015-03-01

    l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.

  13. Xenobiotic detoxification in the nematode Caenorhabditis elegans.

    PubMed

    Lindblom, Tim H; Dodd, Allyn K

    2006-09-01

    The nematode Caenorhabditis elegans is an important model organism for the study of such diverse aspects of animal physiology and behavior as embryonic development, chemoreception, and the genetic control of lifespan. Yet, even though the entire genome sequence of this organism was deposited into public databases several years ago, little is known about xenobiotic metabolism in C. elegans. In part, the paucity of detoxification information may be due to the plush life enjoyed by nematodes raised in the laboratory. In the wild, however, these animals experience a much greater array of chemical assaults. Living in the interstitial water of the soil, populations of C. elegans exhibit a boom and bust lifestyle characterized by prodigious predation of soil microbes punctuated by periods of dispersal as a non-developing alternative larval stage. During the booming periods of population expansion, these animals almost indiscriminately consume everything in their environment including any number of compounds from other animals, microorganisms, plants, and xenobiotics. Several recent studies have identified many genes encoding sensors and enzymes these nematodes may use in their xeno-coping strategies. Here, we will discuss these recent advances, as well as the efforts by our lab and others to utilize the genomic resources of the C. elegans system to elucidate this nematode's molecular defenses against toxins.

  14. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate

    PubMed Central

    Patananan, Alexander N.; Budenholzer, Lauren M.; Pedraza, Maria E.; Torres, Eric R.; Adler, Lital N.; Clarke, Steven G.

    2015-01-01

    L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role. PMID:25668719

  15. Hormetic effect of methylmercury on Caenorhabditis elegans.

    PubMed

    Helmcke, Kirsten J; Aschner, Michael

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.

  16. Hormetic effect of methylmercury on Caenorhabditis elegans

    SciTech Connect

    Helmcke, Kirsten J. Aschner, Michael

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.

  17. Chemical constituents from Clematis delavayi var. spinescens.

    PubMed

    Li, Yang; Wang, Si-Feng; Zhao, Yan-Li; Liu, Ke-Chun; Wang, Xi-Min; Yang, Yong-Ping; Li, Xiao-Li

    2009-01-01

    A new coumarin, 7-hydroxy-4,6-dimethoxy-5-methylcoumarin (1), was isolated from the aerial parts of Clematis delavayi var. spinescens together with 17 known compounds. Their structures were identified by extensive spectral analysis, especially 2D NMR techniques. Antiangiogenic effects of all compounds were evaluated using a zebrafish model. PMID:19924077

  18. Saponins from Furcraea selloa var. marginata.

    PubMed

    Simmons-Boyce, Joanne L; Tinto, Winston F; McLean, Stewart; Reynolds, William F

    2004-12-01

    Four steroidal saponins were isolated from the leaves of Furcraea selloa var. marginata. These included one furostanol saponin, furcreafurostatin (1), and three known spirostanol saponins, furcreastatin (3), yuccaloeside C (4) and cantalasaponin-1 (5). The 22-O-methyl ether (2) of furcreafurostatin (1) was also characterized. The structures were determined by using a combination of spectroscopic techniques.

  19. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  20. Why are there males in the hermaphroditic species Caenorhabditis elegans?

    PubMed Central

    Chasnov, J R; Chow, King L

    2002-01-01

    The free-living nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, yet males are maintained in wild-type populations at low frequency. To determine the role of males in C. elegans, we develop a mathematical model for the genetic system of hermaphrodites that can either self-fertilize or be fertilized by males and we perform laboratory observations and experiments on both C. elegans and a related dioecious species C. remanei. We show that the mating efficiency of C. elegans is poor compared to a dioecious species and that C. elegans males are more attracted to C. remanei females than they are to their conspecific hermaphrodites. We postulate that a genetic mutation occurred during the evolution of C. elegans hermaphrodites, resulting in the loss of an attracting sex pheromone present in the ancestor of both C. elegans and C. remanei. Our findings suggest that males are maintained in C. elegans because of the particular genetic system inherited from its dioecious ancestor and because of nonadaptive spontaneous nondisjunction of sex chromosomes, which occurs during meiosis in the hermaphrodite. A theoretical argument shows that the low frequency of male mating observed in C. elegans can support male-specific genes against mutational degeneration. This results in the continuing presence of functional males in a 99.9% hermaphroditic species in which outcrossing is disadvantageous to hermaphrodites. PMID:11901116

  1. C. elegans in high-throughput drug discovery

    PubMed Central

    O’Reilly, Linda P.; Luke, Cliff J.; Perlmutter, David H.; Silverman, Gary A.; Pak, Stephen C.

    2014-01-01

    C. elegans has proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens. PMID:24333896

  2. Proteomics applications in Caenorhabditis elegans research.

    PubMed

    Husson, Steven J; Moyson, Sofie; Valkenborg, Dirk; Baggerman, Geert; Mertens, Inge

    2015-12-25

    The free-living nematode Caenorhabditis elegans is one of the most studied models in a wide variety of research fields with applications in agro- or pharmaceutical industries. It has been used for the development of new anthelminthic drugs and was proven to yield key insights in neurodegenerative diseases and metabolic syndromes. Due to its suitability for high-throughput genetic screens, efficiency for RNA interference approaches and the availability of thousands of mutants, most studies were carried out at the genetic level. However, determining the cellular function of each gene product remains an unfinished goal in this post-genomic era. A systems biology approach focusing on the actual gene products (i.e. proteins) can help unraveling this puzzle. A fundamental pillar in this research is mass spectrometry-based proteomics. We here provide an in-depth overview of proteomics-related studies in C. elegans research, with special emphasis on the methodologies and biological applications. PMID:26585491

  3. RNASeq in C. elegans Following Manganese Exposure.

    PubMed

    Parmalee, Nancy L; Maqbool, Shahina B; Ye, Bin; Calder, Brent; Bowman, Aaron B; Aschner, Michael

    2015-08-06

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin, are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions and a ranked list of differentially expressed genes for further study.

  4. Metal-induced neurodegeneration in C. elegans

    PubMed Central

    Chen, Pan; Martinez-Finley, Ebany J.; Bornhorst, Julia; Chakraborty, Sudipta; Aschner, Michael

    2013-01-01

    The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60–80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm. PMID:23730287

  5. The laboratory domestication of Caenorhabditis elegans

    PubMed Central

    Sterken, Mark G.; Snoek, L. Basten; Kammenga, Jan E.; Andersen, Erik C.

    2015-01-01

    Model organisms are of great importance to understanding basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares to natural strains. Here, we describe potential selective pressures that led to fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influences of laboratory-derived alleles and to harness the full power of C. elegans. PMID:25804345

  6. Dietary choice behavior in Caenorhabditis elegans.

    PubMed

    Shtonda, Boris Borisovich; Avery, Leon

    2006-01-01

    Animals have evolved diverse behaviors that serve the purpose of finding food in the environment. We investigated the food seeking strategy of the soil bacteria-eating nematode Caenorhabditis elegans. C. elegans bacterial food varies in quality: some species are easy to eat and support worm growth well, while others do not. We show that worms exhibit dietary choice: they hunt for high quality food and leave hard-to-eat bacteria. This food seeking behavior is enhanced in animals that have already experienced good food. When hunting for good food, worms alternate between two modes of locomotion, known as dwelling: movement with frequent stops and reversals; and roaming: straight rapid movement. On good food, roaming is very rare, while on bad food it is common. Using laser ablations and mutant analysis, we show that the AIY neurons serve to extend roaming periods, and are essential for efficient food seeking. PMID:16354781

  7. The Caenorhabditis elegans genome: a multifractal analysis.

    PubMed

    Vélez, P E; Garreta, L E; Martínez, E; Díaz, N; Amador, S; Tischer, I; Gutiérrez, J M; Moreno, P A

    2010-05-25

    The Caenorhabditis elegans genome has several regular and irregular characteristics in its nucleotide composition; these are observed within and between chromosomes. To study these particularities, we carried out a multifractal analysis, which requires a large number of exponents to characterize scaling properties. We looked for a relationship between the genetic information content of the chromosomes and multifractal parameters and found less multifractality compared to the human genome. Differences in multifractality among chromosomes and in regions of chromosomes, and two group averages of chromosome regions were observed. All these differences were mainly dependent on differences in the contents of repetitive DNA. Based on these properties, we propose a nonlinear model for the structure of the C. elegans genome, with some biological implications. These results suggest that examining differences in multifractality is a viable approach for measuring local variations of genomic information contents along chromosomes. This approach could be extended to other genomes in order to characterize structural and functional regions of chromosomes.

  8. Maximally informative foraging by Caenorhabditis elegans

    PubMed Central

    Calhoun, Adam J; Chalasani, Sreekanth H; Sharpee, Tatyana O

    2014-01-01

    Animals have evolved intricate search strategies to find new sources of food. Here, we analyze a complex food seeking behavior in the nematode Caenorhabditis elegans (C. elegans) to derive a general theory describing different searches. We show that C. elegans, like many other animals, uses a multi-stage search for food, where they initially explore a small area intensively (‘local search’) before switching to explore a much larger area (‘global search’). We demonstrate that these search strategies as well as the transition between them can be quantitatively explained by a maximally informative search strategy, where the searcher seeks to continuously maximize information about the target. Although performing maximally informative search is computationally demanding, we show that a drift-diffusion model can approximate it successfully with just three neurons. Our study reveals how the maximally informative search strategy can be implemented and adopted to different search conditions. DOI: http://dx.doi.org/10.7554/eLife.04220.001 PMID:25490069

  9. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  10. Cyclin-dependent kinases in C. elegans

    PubMed Central

    Boxem, Mike

    2006-01-01

    Cell division is an inherent part of organismal development, and defects in this process can lead to developmental abnormalities as well as cancerous growth. In past decades, much of the basic cell-cycle machinery has been identified, and a major challenge in coming years will be to understand the complex interplay between cell division and multicellular development. Inevitably, this requires the use of more complex multicellular model systems. The small nematode Caenorhabditis elegans is an excellent model system to study the regulation of cell division in a multicellular organism, and is poised to make important contributions to this field. The past decade has already seen a surge in cell-cycle research in C. elegans, yielding information on the function of many basic cell-cycle regulators, and making inroads into the developmental control of cell division. This review focuses on the in vivo roles of cyclin-dependent kinases in C. elegans, and highlights novel findings implicating CDKs in coupling development to cell-cycle progression. PMID:16759361

  11. Programmed Cell Death During Caenorhabditis elegans Development.

    PubMed

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  12. Analysis of xbx genes in C. elegans.

    PubMed

    Efimenko, Evgeni; Bubb, Kerry; Mak, Ho Yi; Holzman, Ted; Leroux, Michel R; Ruvkun, Gary; Thomas, James H; Swoboda, Peter

    2005-04-01

    Cilia and flagella are widespread eukaryotic subcellular components that are conserved from green algae to mammals. In different organisms they function in cell motility, movement of extracellular fluids and sensory reception. While the function and structural description of cilia and flagella are well established, there are many questions that remain unanswered. In particular, very little is known about the developmental mechanisms by which cilia are generated and shaped and how their components are assembled into functional machineries. To find genes involved in cilia development we used as a search tool a promoter motif, the X-box, which participates in the regulation of certain ciliary genes in the nematode Caenorhabditis elegans. By using a genome search approach for X-box promoter motif-containing genes (xbx genes) we identified a list of about 750 xbx genes (candidates). This list comprises some already known ciliary genes as well as new genes, many of which we hypothesize to be important for cilium structure and function. We derived a C. elegans X-box consensus sequence by in vivo expression analysis. We found that xbx gene expression patterns were dependent on particular X-box nucleotide compositions and the distance from the respective gene start. We propose a model where DAF-19, the RFX-type transcription factor binding to the X-box, is responsible for the development of a ciliary module in C. elegans, which includes genes for cilium structure, transport machinery, receptors and other factors. PMID:15790967

  13. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  14. CLC chloride channels in Caenorhabditis elegans.

    PubMed

    Schriever, A M; Friedrich, T; Pusch, M; Jentsch, T J

    1999-11-26

    The genome of the nematode Caenorhabditis elegans encodes six putative chloride channels (CeCLC-1 through CeCLC-6) that represent all three known branches of the mammalian CLC gene family. Using promoter fragments to drive the expression of the green fluorescent protein, CeCLC-2, -3, and -4 expression was studied in transgenic C. elegans. CeCLC-4 was specifically expressed in the large H-shaped excretory cell, where it was co-expressed with CeCLC-3, which is also expressed in other cells, including neurons, muscles, and epithelial cells. Also, CeCLC-2 was expressed in several cells of the nervous system, intestinal cells, and vulval muscle cells. Similar to mammalian CLC proteins, only two nematode CLC channels elicited detectable plasma membrane currents in Xenopus oocytes. CeCLC-3 currents were inwardly rectifying and were activated by positive prepulses. Its complex gating behavior can be explained by two gates, at least one of which depends on extracellular anions. In this respect it resembles some mammalian chloride channels with which it also shares a preference of chloride over iodide. C. elegans thus provides new opportunities to understand common mechanisms underlying structure and function in CLC channels and will allow for a genetic dissection of chloride channels in this simple model organism. PMID:10567397

  15. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955

  16. Nucleotide Excision Repair in Caenorhabditis elegans

    PubMed Central

    Lans, Hannes; Vermeulen, Wim

    2011-01-01

    Nucleotide excision repair (NER) plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR) mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage. PMID:22091407

  17. Steroidal saponins from Hemerocallis fulva var. kwanso.

    PubMed

    Konishi, T; Fujiwara, Y; Konoshima, T; Kiyosawa, S; Nishi, M; Miyahara, K

    2001-03-01

    Two steroidal saponins, hemeroside A and B, were isolated from the aerial part of Hemerocallis fulva var. kwanso for the first time. The structures of these compounds were established as 24S-hydroxy-neotokorogenin 1-O-alpha-L-arabinopyranosyl 24-O-beta-D-glucopyranoside (1) and isorhodeasapogenin 3-O-beta-D-glucopyranosyl-(1-->3)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside (2) through NMR experiments. PMID:11253923

  18. Stable nuclear transformation of Eudorina elegans

    PubMed Central

    2013-01-01

    Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co

  19. Caenorhabditis elegans chemical biology: lessons from small molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  20. C. elegans locomotion analysis using algorithmic information theory.

    PubMed

    Skandari, Roghieh; Le Bihan, Nicolas; Manton, Jonathan H

    2015-01-01

    This article investigates the use of algorithmic information theory to analyse C. elegans datasets. The ability of complexity measures to detect similarity in animals' behaviours is demonstrated and their strengths are compared to methods such as histograms. Introduced quantities are illustrated on a couple of real two-dimensional C. elegans datasets to investigate the thermotaxis and chemotaxis behaviours.

  1. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  2. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.

    PubMed

    Friebe; Vilich; Hennig; Kluge; Sicker

    1998-07-01

    The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.

  3. The Caenorhabditis elegans lipidome: A primer for lipid analysis in Caenorhabditis elegans.

    PubMed

    Witting, Michael; Schmitt-Kopplin, Philippe

    2016-01-01

    Lipids play important roles in biology, ranging from building blocks of membranes to signaling lipids. The nematode and model organism Caenorhabditis elegans has been used to explore lipid metabolism and several techniques for their analysis have been employed. These techniques include different possibilities ranging from visualization of lipid droplets, analysis of total fatty acids to analysis of complex lipids using lipidomics approaches. Lipidomics evolved from metabolomics, the latest off-spring of the "omics"-technologies and aims to characterize the lipid content of a given organism or system. Although being an extensively studied model organism, only a few applications of lipidomics to C. elegans have been reported to far, but the number is steadily increasing with more applications expected in the near future. This review gives an overview on the C. elegans lipidome, lipid classes it contains and ways to analyze them. It serves as primer for scientists interested in studying lipids in this model organism and list methods used so far and what information can be derived from them. Lastly, challenges and future (methodological) research directions, together with new methods potentially useful for C. elegans lipid research are discussed.

  4. TGF-β signaling in C. elegans *

    PubMed Central

    Gumienny, Tina L.; Savage-Dunn, Cathy

    2016-01-01

    Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions. PMID:23908056

  5. Endogenous RNAi pathways in C. elegans.

    PubMed Central

    Billi, Allison C; Fischer, Sylvia E J; Kim, John K

    2014-01-01

    In addition to several hundred microRNAs, C. elegans produces thousands of other small RNAs targeting coding genes, pseudogenes, transposons, and other noncoding RNAs. Here we review what is currently known about these endogenous small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), providing an overview of their biogenesis, their associated protein factors, and their effects on mRNA dynamics and chromatin structure. Additionally, we describe how the molecular actions of these classes of endogenous small RNAs connect to their physiological roles in the organism. PMID:24816713

  6. The model Caenorhabditis elegans in diabetes mellitus and Alzheimer's disease.

    PubMed

    Morcos, Michael; Hutter, Harald

    2009-01-01

    Diabetes mellitus, with its complications, and Alzheimer's disease (AD) share many similarities. Both are age-related and associated with enhanced formation of advanced glycation endproducts (AGEs) and oxidative stress, factors that can be observed during the normal aging process as well. AGE deposits can be found in areas of atherosclerotic lesions in diabetes and in senile plaques and neurofibrillary tangles in AD. A classical model organism in aging research is the nematode Caenorhabditis elegans (C. elegans). Though C. elegans lacks a vascular system, it has been introduced in diabetes and AD research since it shares many similarities at the molecular level to pathological processes found in humans. AGEs accumulate in C. elegans, and increased AGE-formation and mitochondrial AGE-modification are responsible for increased oxidative stress and limiting life span. Moreover, C. elegans has an accessible and well characterized nervous system and features several genes homologous to human genes implicated in AD like amyloid-beta protein precursor, presenilins and tau. In addition, human genes linked to AD, such as amyloid-beta or tau, can be expressed and studied in C. elegans. So far, C. elegans research has contributed to a better understanding of the function of AD-related genes and the development of this disease.

  7. Characterization of the effects of methylmercury on Caenorhabditis elegans

    SciTech Connect

    Helmcke, Kirsten J.; Syversen, Tore; Miller, David M.; Aschner, Michael

    2009-10-15

    The rising prevalence of methylmercury (MeHg) in seafood and in the global environment provides an impetus for delineating the mechanism of the toxicity of MeHg. Deleterious effects of MeHg have been widely observed in humans and in other mammals, the most striking of which occur in the nervous system. Here we test the model organism, Caenorhabditis elegans (C. elegans), for MeHg toxicity. The simple, well-defined anatomy of the C. elegans nervous system and its ready visualization with green fluorescent protein (GFP) markers facilitated our study of the effects of methylmercuric chloride (MeHgCl) on neural development. Although MeHgCl was lethal to C. elegans, induced a developmental delay, and decreased pharyngeal pumping, other traits including lifespan, brood size, swimming rate, and nervous system morphology were not obviously perturbed in animals that survived MeHgCl exposure. Despite the limited effects of MeHgCl on C. elegans development and behavior, intracellular mercury (Hg) concentrations ({<=} 3 ng Hg/mg protein) in MeHgCl-treated nematodes approached levels that are highly toxic to mammals. If MeHgCl reaches these concentrations throughout the animal, this finding indicates that C. elegans cells, particularly neurons, may be less sensitive to MeHgCl toxicity than mammalian cells. We propose, therefore, that C. elegans should be a useful model for discovering intrinsic mechanisms that confer resistance to MeHgCl exposure.

  8. Caenorhabditis elegans as a model for obesity research.

    PubMed

    Zheng, J; Greenway, F L

    2012-02-01

    Caenorhabditis elegans (C. elegans) is a small nematode that conserves 65% of the genes associated with human disease, has a 21-day lifespan, reproductive cycles of 3 days, large brood sizes, lives in an agar dish and does not require committee approvals for experimentation. Research using C. elegans is encouraged and a Caenorhabditis Genetics Center (CGC, Minnesota) is funded by the National Institutes of Health-National Center for Research Resources. Many genetically manipulated strains of C. elegans are available at nominal cost from the CGC. Studies using the C. elegans model have explored insulin signaling, response to dietary glucose, the influence of serotonin on obesity, satiety, feeding and hypoxia-associated illnesses. C. elegans has also been used as a model to evaluate potential obesity therapeutics, explore the mechanisms behind single gene mutations related to obesity and to define the mechanistic details of fat metabolism. Obesity now affects a third of the US population and is becoming a progressively more expensive public health problem. Faster and less expensive methods to reach more effective treatments are clearly needed. We present this review hoping to stimulate interest in using the C. elegans model as a vehicle to advance the understanding and future treatment of obesity. PMID:21556043

  9. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    PubMed

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  10. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  11. Non-microfluidic methods for imaging live C. elegans

    PubMed Central

    Luke, Cliff J.; Niehaus, Jason Z.; O’Reilly, Linda P.; Watkins, Simon C.

    2016-01-01

    There are many challenges to live C. elegans imaging including the high motility of the animals and sustaining their viability for extended periods of time. Commonly used anesthetics to immobilize the C. elegans for imaging purpose prevents feeding of the animals and can cause cellular physiologic changes. Here we present three adapted or novel methodologies to image live C. elegans over different imaging microscopy equipment to allow for visualization of animals by DIC and fluorescence without the use of microfluidic technologies. The methods present here use common microscopy consumables and equipment found in many imaging core facilities and can be easily adapted to fit on multiple microscopy systems. PMID:24836996

  12. C. elegans Tracking and Behavioral Measurement

    PubMed Central

    Likitlersuang, Jirapat; Stephens, Greg; Palanski, Konstantine; Ryu, William S.

    2012-01-01

    We have developed instrumentation, image processing, and data analysis techniques to quantify the locomotory behavior of C. elegans as it crawls on the surface of an agar plate. For the study of the genetic, biochemical, and neuronal basis of behavior, C. elegans is an ideal organism because it is genetically tractable, amenable to microscopy, and shows a number of complex behaviors, including taxis, learning, and social interaction1,2. Behavioral analysis based on tracking the movements of worms as they crawl on agar plates have been particularly useful in the study of sensory behavior3, locomotion4, and general mutational phenotyping5. Our system works by moving the camera and illumination system as the worms crawls on a stationary agar plate, which ensures no mechanical stimulus is transmitted to the worm. Our tracking system is easy to use and includes a semi-automatic calibration feature. A challenge of all video tracking systems is that it generates an enormous amount of data that is intrinsically high dimensional. Our image processing and data analysis programs deal with this challenge by reducing the worms shape into a set of independent components, which comprehensively reconstruct the worms behavior as a function of only 3-4 dimensions6,7. As an example of the process we show that the worm enters and exits its reversal state in a phase specific manner. PMID:23183548

  13. Alcohol disinhibition of behaviors in C. elegans.

    PubMed

    Topper, Stephen M; Aguilar, Sara C; Topper, Viktoria Y; Elbel, Erin; Pierce-Shimomura, Jonathan T

    2014-01-01

    Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water) that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals. PMID:24681782

  14. Widespread Genomic Incompatibilities in Caenorhabditis elegans

    PubMed Central

    Snoek, L. Basten; Orbidans, Helen E.; Stastna, Jana J.; Aartse, Aafke; Rodriguez, Miriam; Riksen, Joost A.G.; Kammenga, Jan E.; Harvey, Simon C.

    2014-01-01

    In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nematode Caenorhabditis elegans by looking for genomic regions that disrupt egg laying; a complex, highly regulated, and coordinated phenotype. Investigation of introgression lines and recombinant inbred lines derived from the isolates CB4856 and N2 uncovered multiple incompatibility quantitative trait loci (QTL). These QTL produce a synthetic egg-laying defective phenotype not seen in CB4856 and N2 nor in other wild isolates. For two of the QTL regions, results are inconsistent with a model of pairwise interaction between two loci, suggesting that the incompatibilities are a consequence of complex interactions between multiple loci. Analysis of additional life history traits indicates that the QTL regions identified in these screens are associated with effects on other traits such as lifespan and reproduction, suggesting that the incompatibilities are likely to be deleterious. Taken together, these results indicate that numerous BDM incompatibilities that could contribute to reproductive isolation can be detected and mapped within C. elegans. PMID:25128438

  15. Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis

    PubMed Central

    Wernike, Denise; van Oostende, Chloe; Piekny, Alisa

    2014-01-01

    This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues. PMID:24686748

  16. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.

    PubMed

    Mukai, Daisuke; Matsuda, Noriko; Yoshioka, Yu; Sato, Masashi; Yamasaki, Toru

    2008-04-01

    A novel gallate of tannin, (-)-epigallocatechin-(2 beta-->O-->7',4 beta-->8')-epicatechin-3'-O-gallate (8), together with (-)-epicatechin-3-O-gallate (4), (-)-epigallocatechin (5), (-)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4 alpha-->8')-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (-)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, 7 approximately 6, 9, 4, 5, 1. The LC(50) (96 h) values of 8 and 9 were evaluated as 49 and 334 micromol L(-1), respectively. These data show that many green tea polyphenols may be potential anthelmintics. PMID:18404315

  17. High-resolution imaging of cellular processes in Caenorhabditis elegans.

    PubMed

    Maddox, Amy S; Maddox, Paul S

    2012-01-01

    Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans. PMID:22226519

  18. Caenorhabditis elegans, a Model Organism for Investigating Immunity

    PubMed Central

    Marsh, Elizabeth K.

    2012-01-01

    The nematode Caenorhabditis elegans has been a powerful experimental organism for almost half a century. Over the past 10 years, researchers have begun to exploit the power of C. elegans to investigate the biology of a number of human pathogens. This work has uncovered mechanisms of host immunity and pathogen virulence that are analogous to those involved during pathogenesis in humans or other animal hosts, as well as novel immunity mechanisms which appear to be unique to the worm. More recently, these investigations have uncovered details of the natural pathogens of C. elegans, including the description of a novel intracellular microsporidian parasite as well as new nodaviruses, the first identification of viral infections of this nematode. In this review, we consider the application of C. elegans to human infectious disease research, as well as consider the nematode response to these natural pathogens. PMID:22286994

  19. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  20. Microfluidics as a tool for C. elegans research.

    PubMed

    San-Miguel, Adriana; Lu, Hang

    2013-09-24

    Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies.

  1. Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans, a bacterivorous soil nematode, lives in a complex environment that requires chemical communication for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied...

  2. Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris).

    PubMed

    Rugini, Eddo; Silvestri, Cristian

    2016-01-01

    Protocols for olive somatic embryogenesis from zygotic embryos and mature tissues have been described for both Olea europaea sub. europaea var. sativa and var. sylvestris. Immature zygotic embryos (no more than 75 days old), used after fruit collection or stored at 12-14 °C for 2-3 months, are the best responsive explants and very slightly genotype dependent, and one single protocol can be effective for a wide range of genotypes. On the contrary, protocols for mature zygotic embryos and for mature tissue of cultivars are often genotype specific, so that they may require many adjustments according to genotypes. The use of thidiazuron and cefotaxime seems to be an important trigger for induction phase particularly for tissues derived from cultivars. Up to now, however, the application of this technique for large-scale propagation is hampered also by the low rate of embryo germination; it proves nonetheless very useful for genetic improvement.

  3. The Geometry of Locomotive Behavioral States in C. elegans

    PubMed Central

    Bjorness, Theresa; Greene, Robert; You, Young-Jai

    2013-01-01

    We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming, dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive repertoire of C elegans foraging and feeding behavior. PMID:23555813

  4. Building a Cell and Anatomy Ontology of Caenorhabditis Elegans

    PubMed Central

    Sternberg, Paul W.

    2003-01-01

    We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation of cell-based information concerning gene expression, and the role of specific cells in developmental signalling and behavioural circuits. To make the information more accessible to sophisticated queries and automated retrieval systems, WormBase has begun to construct a C. elegans cell and anatomy ontology. Here we present our strategies and progress. PMID:18629098

  5. Genomic response of the nematode Caenorhabditis elegans to spaceflight

    NASA Astrophysics Data System (ADS)

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J.; Conley, Catharine A.

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The “International Caenorhabditis elegans Experiment FIRST” (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-β regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  6. Genomic response of the nematode Caenorhabditis elegans to spaceflight.

    PubMed

    Selch, Florian; Higashibata, Akira; Imamizo-Sato, Mari; Higashitani, Atsushi; Ishioka, Noriaki; Szewczyk, Nathaniel J; Conley, Catharine A

    2008-01-01

    On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The "International Caenorhabditis elegans Experiment FIRST" (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-beta regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.

  7. Cytotoxic diterpenoids from Rabdosia lophanthoides var. gerardianus.

    PubMed

    Lin, Chao-Zhan; Zhao, Wei; Feng, Xiu-Li; Liu, Fang-Le; Zhu, Chen-Chen

    2016-03-01

    Two new abietane diterpenoids, Gerardianin B (1) and Gerardianin C (2), one new lignan glycoside, Gerardianin D (3) and one new lupane-type triterpenoid, Gerardianol A (4), together with seven known abietane diterpenoids were isolated from the aerial parts of Rabdosia lophanthoides var. gerardianus. Their structures were determined by 1D and 2D NMR spectroscopic data. The cytotoxic activities of the nine diterpenoids were evaluated on human cancer cell lines. Compounds 6-11 exhibited significant cytotoxic activities against HepG2 cell lines with IC50 from 4.68 to 9.43μM and HCF-8 cell lines with IC50 from 9.12 to 13.53μM. PMID:26608401

  8. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  9. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.

  10. Caenorhabditis elegans responses to bacteria from its natural habitats.

    PubMed

    Samuel, Buck S; Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-07-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  11. A Transparent Window into Biology: A Primer on Caenorhabditis elegans

    PubMed Central

    Corsi, Ann K.; Wightman, Bruce; Chalfie, Martin

    2015-01-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. PMID:26088431

  12. Caenorhabditis elegans responses to bacteria from its natural habitats

    PubMed Central

    Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-01-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  13. Flow analysis of C. elegans swimming

    NASA Astrophysics Data System (ADS)

    Montenegro-Johnson, Thomas; Gagnon, David; Arratia, Paulo; Lauga, Eric

    2015-11-01

    Improved understanding of microscopic swimming has the potential to impact numerous biomedical and industrial processes. A crucial means of analyzing these systems is through experimental observation of flow fields, from which it is important to be able to accurately deduce swimmer physics such as power consumption, drag forces, and efficiency. We examine the swimming of the nematode worm C. elegans, a model system for undulatory micro-propulsion. Using experimental data of swimmer geometry and kinematics, we employ the regularized stokeslet boundary element method to simulate the swimming of this worm outside the regime of slender-body theory. Simulated flow fields are then compared with experimentally extracted values confined to the swimmer beat plane, demonstrating good agreement. We finally address the question of how to estimate three-dimensional flow information from two-dimensional measurements.

  14. Chemotaxis of crawling and swimming Caenorhabditis Elegans

    NASA Astrophysics Data System (ADS)

    Patel, Amar; Bilbao, Alejandro; Padmanabhan, Venkat; Khan, Zeina; Armstrong, Andrew; Rumbaugh, Kendra; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2012-11-01

    A soil-dwelling nematode Caenorhabditis Elegans efficiently navigates through complex environments, responding to chemical signals to find food or avoid danger. According to previous studies, the nematode uses both gradual-turn and run-and-tumble strategies to move in the direction of the increasing concentration of chemical attractants. We show that both these chemotaxis strategies can be described using our kinematic model [PLoS ONE, 7: e40121 (2012)] in which harmonic-curvature modes represent elementary nematode movements. In our chemotaxis model, the statistics of mode changes is governed by the time history of the chemoattractant concentration at the position of the nematode head. We present results for both nematodes crawling without transverse slip and for swimming nematodes. This work was supported by NSF grant No. CBET 1059745.

  15. Rapid RNA analysis of individual Caenorhabditis elegans.

    PubMed

    Ly, Kien; Reid, Suzanne J; Snell, Russell G

    2015-01-01

    Traditional RNA extraction methods rely on the use of hazardous chemicals such as phenol, chloroform, guanidinium thiocyanate to disrupt cells and inactivate RNAse simultaneously. RNA isolation from Caenorhabditis elegans presents another challenge due to its tough cuticle, therefore several repeated freeze-thaw cycles may be needed to disrupt the cuticle before the cell contents are released. In addition, a large number of animals are required for successful RNA isolation. To overcome these issues, we have developed a simple and efficient method using proteinase K and a brief heat treatment to release RNA of quality suitable for quantitative PCR analysis.The benefits of the method are: •Faster and safer compared to conventional RNA extraction methods•Released RNA can be used directly for cDNA synthesis without purification•As little as a single worm is sufficient.

  16. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

    PubMed Central

    Watanabe, Shigeki; Liu, Qiang; Davis, M Wayne; Hollopeter, Gunther; Thomas, Nikita; Jorgensen, Nels B; Jorgensen, Erik M

    2013-01-01

    Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI: http://dx.doi.org/10.7554/eLife.00723.001 PMID:24015355

  17. Mainstreaming Caenorhabditis elegans in experimental evolution.

    PubMed

    Gray, Jeremy C; Cutter, Asher D

    2014-03-01

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  18. Quantification of Glutathione in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Aschner, Michael

    2015-01-01

    Glutathione (GSH) is the most abundant intracellular thiol with diverse functions from redox signaling, xenobiotic detoxification, and apoptosis. The quantification of GSH is an important measure for redox capacity and oxidative stress. This protocol quantifies total GSH from Caenorhabditis elegans, an emerging model organism for toxicology studies. GSH is measured using the 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) cycling method originally created for cell and tissue samples but optimized for whole worm extracts. DTNB reacts with GSH to from a 5′-thio-2-nitrobenzoic acid (TNB) chromophore with maximum absorbance of 412 nm. This method is both rapid and sensitive, making it ideal for studies involving a large number of transgenic nematode strains. PMID:26309452

  19. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed

    Hutter, Harald; Moerman, Donald

    2015-11-01

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell.

  20. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed Central

    Hutter, Harald; Moerman, Donald

    2015-01-01

    A clear definition of what constitutes “Big Data” is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of “complete” data sets for this organism is actually rather small—not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein–protein interaction—important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  1. Immunomodulatory Activity of Xanthones from Calophyllum teysmannii var. inuphylloide.

    PubMed

    Gonzalez, M J; Nascimento, M S; Cidade, H M; Pinto, M M; Kijjoa, A; Anantachoke, C; Silva, A M; Herz, W

    1999-05-01

    Nine xanthones, including 3-(4-hydroxy-3-metnylbutyl)-4,8-dihydroxyxanthone, were isolated from the wood of a Thai collection of CALOPHYLLUM TEYSMANNII Miq. var. INUPHYLLOIDE (King) P. Stephen. Immunomodulatory activities of eight of these have been investigated.

  2. The dynamics of the thermal memory of C. elegans

    NASA Astrophysics Data System (ADS)

    Ryu, William; Palanski, Konstantine; Bartumeus, Frederic; Nemenman, Ilya

    2014-03-01

    C. elegans has the capacity to learn associatively. For example, C. elegans associates temperature with food and performs thermotaxis towards this temperature when placed on a spatial thermal gradient. However, very little is understood how C. elegans acquires this thermal memory. We have developed a novel droplet-based microfluidic assay to measure the dynamics of the thermal memory of C. elegans. Individual animals are placed in an array of microdroplets on a slide, and a linear temperature gradient of 0.5 deg/cm is applied to the array. By measuring the swimming motions of C. elegans in the droplets, we show that they can perform thermotaxis. By calculating an index of this taxis behavior over time, we quantify the worm's thermal memory and measure its dynamics when the animals are exposed to different conditions of feeding and starvation. Over a time scale of hours, we find that the thermal preference of wild-type worms decays and will actually become inverted and that mutations in the insulin signaling pathway perturb the dynamics. This biphasic conditional association can be explained with a reinforcement learning model with independent reinforcement and avoidance pathways with distinct time scales. Human Frontier Science Program.

  3. Caenorhabditis elegans swimming in a saturated particulate system

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2010-03-01

    Caenorhabditis elegans (C. elegans) is a nematode that often swims in saturated soil in nature. We investigated the locomotive behavior of C. elegans swimming in a fluid with particles of various sizes and found that the nematode swims a greater distance per undulation than it does in a fluid without particles. The Strouhal number (a ratio of lateral to forward velocity) of C. elegans significantly decreases in a saturated particulate medium (0.50±0.13) in comparison to a fluid without particles (1.6±0.27). This result was unexpected due to the generally low performance of a body moving in a high drag medium. In our model, a saturated granular system is approximated as a porous medium where only the hydrodynamic forces on the body are considered. Combining these assumptions with resistive force theory, we find that a porous medium provides more asymmetric drag on a slender body, and consequently that C. elegans locomotes with a greater distance per undulation.

  4. Function and regulation of TRP family channels in C. elegans.

    PubMed

    Xiao, Rui; Xu, X Z Shawn

    2009-09-01

    Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm-egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo. PMID:19421772

  5. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-01

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  6. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans.

    PubMed

    Holden-Dye, Lindy; Walker, Robert J

    2014-01-01

    Parasitic nematodes infect many species of animals throughout the phyla, including humans. Moreover, nematodes that parasitise plants are a global problem for agriculture. As such, these nematodes place a major burden on human health, on livestock production, on the welfare of companion animals and on crop production. In the 21st century there are two major challenges posed by the wide-spread prevalence of parasitic nematodes. First, many anthelmintic drugs are losing their effectiveness because nematode strains with resistance are emerging. Second, serious concerns regarding the environmental impact of the nematicides used for crop protection have prompted legislation to remove them from use, leaving agriculture at increased risk from nematode pests. There is clearly a need for a concerted effort to address these challenges. Over the last few decades the free-living nematode Caenorhabditis elegans has provided the opportunity to use molecular genetic techniques for mode of action studies for anthelmintics and nematicides. These approaches continue to be of considerable value. Less fruitful so far, but nonetheless potentially very useful, has been the direct use of C. elegans for anthelmintic and nematicide discovery programmes. Here we provide an introduction to the use of C. elegans as a 'model' parasitic nematode, briefly review the study of nematode control using C. elegans and highlight approaches that have been of particular value with a view to facilitating wider-use of C. elegans as a platform for anthelmintic and nematicide discovery and development. PMID:25517625

  7. Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach

    NASA Technical Reports Server (NTRS)

    Szewczyk, N. J.; Kozak, E.; Conley, C. A.

    2003-01-01

    C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.

  8. LRRK2 modulates vulnerability to mitochondrial dysfunction in C. elegans

    PubMed Central

    Saha, Shamol; Guillily, Maria; Ferree, Andrew; Lanceta, Joel; Chan, Diane; Ghosh, Joy; Hsu, Cindy H.; Segal, Lilach; Raghavan, Kesav; Matsumoto, Kunihiro; Hisamoto, Naoki; Kuwahara, Tomoki; Iwatsubo, Takeshi; Moore, Landon; Goldstein, Lee; Cookson, Mark; Wolozin, Benjamin

    2009-01-01

    Summary Mutations in leucine rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson’s disease. We generated lines of C. elegans expressing neuronally directed human LRRK2. Expressing human LRRK2 expression increased nematode survival in response to rotenone or paraquat, which are agents that cause mitochondrial dysfunction. Protection by G2019S, R1441C or kinase dead LRRK2 was less than protection by wild type LRRK2. Knockdown of lrk-1, the endogenous orthologue of LRRK2 in C. elegans, reduced survival associated with mitochondrial dysfunction. C. elegans expressing LRRK2 showed rapid loss of dopaminergic markers (DAT∷GFP fluorescence and dopamine levels) beginning in early adulthood. Loss of dopaminergic markers was greater for the G2019S LRRK2 line than for the WT line. Rotenone treatment induced a larger loss of dopamine markers in C. elegans expressing G2019S LRRK2 than in C. elegans expressing WT LRRK2; however loss of dopaminergic markers in the G2019S LRRK2 nematode lines was not statistically different than that in the control line. These data suggest that LRRK2 plays an important role in modulating the response to mitochondrial inhibition, and raises the possibility that mutations in LRRK2 selectively enhance the vulnerability of dopaminergic neurons to a stressor associated with Parkinson’s disease. PMID:19625511

  9. Function and regulation of TRP family channels in C. elegans

    PubMed Central

    Xiao, Rui; Xu, X. Z. Shawn

    2010-01-01

    Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm-egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo. PMID:19421772

  10. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Hodgkin, Jonathan; Horvitz, H. Robert; Brenner, Sydney

    1979-01-01

    The frequency of males (5AA; XO) among the self progeny of wild-type Caenorhabditis elegans hermaphrodites (5AA; XX) is about one in 500. Fifteen him (for "high incidence of males") mutations have been identified that increase this frequency by a factor of ten to 150, as a result of increased X-chromosome nondisjunction. The mutations define ten complementation groups, which have been mapped: nine are autosomal, and one sex linked. Most of the mutants are superficially wild type in anatomy and behavior; however, him-4 mutants display gonadal abnormalities, and unc-86 mutants, which have a Him phenotype, exhibit a variety of anatomical and behavioral abnormalities. All the mutants segregate fertile 3X hermaphrodite progeny as well as XO male progeny. Some produce large numbers of inviable zygotes. Mutants in all ten genes produce diplo-X and nullo-X exceptional ova, and in the four strains tested, diplo-X and nullo-X exceptional sperm are produced by 2X "transformed" males. It appears likely that most of the mutants have defects in both gamete lines of the hermaphrodite. XO males of him strains other than him-4 and unc-86 are similar to wild-type males in anatomy and behavior, and all produce equal or almost equal numbers of haplo-X and nullo-X sperm, and no diplo-X sperm. Male fertility is reduced to varying extents in all him mutants. In four of the strains, nondisjunction during oogenesis has been shown to occur at a reductional division, and in three of these strains, abnormalities in recombination have been demonstrated. One mutant also exhibits autosomal nondisjunction, but many of the others probably do not. Therefore, the X chromosome of C. elegans may differ from the autosomes in the mechanisms controlling its meiotic behavior.——3X hermaphrodites are shorter and less fertile than 2X hermaphrodites, and they produce many inviable zygotes among their self progeny: these are probably 4X zygotes. Haplo-X and diplo-X ova are produced in 2:1 ratio by 3X

  11. The Genetics of Feeding in Caenorhabditis Elegans

    PubMed Central

    Avery, L.

    1993-01-01

    The pharynx of Caenorhabditis elegans is a nearly self-contained neuromuscular organ responsible for feeding. To identify genes involved in the development or function of the excitable cells of the pharynx, I screened for worms with visible defects in pharyngeal feeding behavior. Fifty-two mutations identified 35 genes, at least 22 previously unknown. The genes broke down into three broad classes: 2 pha genes, mutations in which caused defects in the shape of the pharynx, 7 phm genes, mutations in which caused defects in the contractile structures of the pharyngeal muscle, and 26 eat genes, mutants in which had abnormal pharyngeal muscle motions, but had normally shaped and normally birefringent pharynxes capable of vigorous contraction. Although the Eat phenotypes were diverse, most resembled those caused by defects in the pharyngeal nervous system. For some of the eat genes there is direct evidence from previous genetic mosaic and pharmacological studies that they do in fact affect nervous system. In eat-5 mutants the motions of the different parts of the pharynx were poorly synchronized. eat-6 and eat-12 mutants failed to relax their pharyngeal muscles properly. These pharyngeal motion defects are most easily explained as resulting from abnormal electrical excitability of the pharyngeal muscle membrane. PMID:8462849

  12. Caenorhabditis elegans vulval cell fate patterning

    NASA Astrophysics Data System (ADS)

    Félix, Marie-Anne

    2012-08-01

    The spatial patterning of three cell fates in a row of competent cells is exemplified by vulva development in the nematode Caenorhabditis elegans. The intercellular signaling network that underlies fate specification is well understood, yet quantitative aspects remain to be elucidated. Quantitative models of the network allow us to test the effect of parameter variation on the cell fate pattern output. Among the parameter sets that allow us to reach the wild-type pattern, two general developmental patterning mechanisms of the three fates can be found: sequential inductions and morphogen-based induction, the former being more robust to parameter variation. Experimentally, the vulval cell fate pattern is robust to stochastic and environmental challenges, and minor variants can be detected. The exception is the fate of the anterior cell, P3.p, which is sensitive to stochastic variation and spontaneous mutation, and is also evolving the fastest. Other vulval precursor cell fates can be affected by mutation, yet little natural variation can be found, suggesting stabilizing selection. Despite this fate pattern conservation, different Caenorhabditis species respond differently to perturbations of the system. In the quantitative models, different parameter sets can reconstitute their response to perturbation, suggesting that network variation among Caenorhabditis species may be quantitative. Network rewiring likely occurred at longer evolutionary scales.

  13. The Caenorhabditis elegans septin complex is nonpolar

    PubMed Central

    John, Corinne M; Hite, Richard K; Weirich, Christine S; Fitzgerald, Daniel J; Jawhari, Hatim; Faty, Mahamadou; Schläpfer, Dominik; Kroschewski, Ruth; Winkler, Fritz K; Walz, Tom; Barral, Yves; Steinmetz, Michel O

    2007-01-01

    Septins are conserved GTPases that form heteromultimeric complexes and assemble into filaments that play a critical role in cell division and polarity. Results from budding and fission yeast indicate that septin complexes form around a tetrameric core. However, the molecular structure of the core and its influence on the polarity of septin complexes and filaments is poorly defined. The septin complex of the nematode Caenorhabditis elegans is formed entirely by the core septins UNC-59 and UNC-61. We show that UNC-59 and UNC-61 form a dimer of coiled-coil-mediated heterodimers. By electron microscopy, this heterotetramer appears as a linear arrangement of four densities representing the four septin subunits. Fusion of GFP to the N termini of UNC-59 and UNC-61 and subsequent electron microscopic visualization suggests that the sequence of septin subunits is UNC-59/UNC-61/UNC-61/UNC-59. Visualization of GFP extensions fused to the extremity of the C-terminal coiled coils indicates that these extend laterally from the heterotetrameric core. Together, our study establishes that the septin core complex is symmetric, and suggests that septins form nonpolar filaments. PMID:17599066

  14. The neurexin superfamily of Caenorhabditis elegans.

    PubMed

    Haklai-Topper, Liat; Soutschek, Jürgen; Sabanay, Helena; Scheel, Jochen; Hobert, Oliver; Peles, Elior

    2011-01-01

    The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes. Based on reporter gene analysis, we find that nrx-1 is exclusively expressed in most if not all cells of the nervous system and localizes to presynaptic specializations. itx-1 and nrx-1 reporter genes are expressed in non-overlapping patterns within and outside the nervous system. ITX-1 protein co-localizes with β-G-spectrin to a subapical domain within intestinal cells. These studies provide a starting point for further functional analysis of this family of proteins.

  15. Muscle cell attachment in Caenorhabditis elegans

    PubMed Central

    1991-01-01

    In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle. PMID:1860880

  16. Chromosome I duplications in Caenorhabditis elegans

    SciTech Connect

    McKim, K.S.; Rose, A.M. )

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.

  17. Developmental genetics of the Caenorhabditis elegans pharynx.

    PubMed

    Pilon, Marc

    2014-01-01

    The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists.

  18. Extracellular proteins needed for C. elegans mechanosensation.

    PubMed

    Du, H; Gu, G; William, C M; Chalfie, M

    1996-01-01

    The mec-5 and mec-9 genes encode putative extracellular proteins that allow a set of six touch receptor neurons in C. elegans to respond to gentle touch. MEC-5 is a collagen made by the epidermal cells that surround the touch cells. Mutations causing touch insensitivity affect the Gly-X-Y repeats of this collagen. mec-9 produces two transcripts, the larger of which is expressed in the touch cells and two PVD neurons. This transcript encodes a protein with 5 Kunitz-type protease inhibitor domains, 6 EGF-like repeats (2 of the Ca(2+)-binding type), and a glutamic acid-rich region. Missense mutations causing touch insensitivity affect both the EGF-like and Kunitz domains. Since mec-9 loss of function mutations dominantly enhance the touch insensitive phenotype of several mec-5 mutations, MEC-5 and MEC-9 may interact. We propose that these proteins provide an extracellular attachment point for the mechanosensory channels of the touch cells.

  19. CRISPR-Cas9-Guided Genome Engineering in C. elegans.

    PubMed

    Kim, Hyun-Min; Colaiácovo, Monica P

    2016-07-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms, including the nematode C. elegans. Recent studies have developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning, as well as injection methods required for delivering Cas9, sgRNAs, and repair template DNA into the C. elegans germline. © 2016 by John Wiley & Sons, Inc.

  20. Caenorhabditis elegans as a model organism to study APP function

    PubMed Central

    Ewald, Collin Y.; Li, Chris

    2013-01-01

    The brains of Alzheimer's disease patients show an increased number of senile plaques compared with normal patients. The major component of the plaques is the β-amyloid peptide, a cleavage product of the amyloid precursor protein (APP). Although the processing of APP has been well-described, the physiological functions of APP and its cleavage products remain unclear. This article reviews the multifunctional roles of an APP orthologue, the C. elegans APL-1. Understanding the function of APL-1 may provide insights into the functions and signaling pathways of human APP. In addition, the physiological effects of introducing human β-amyloid peptide into C. elegans are also reviewed. The C. elegans system provides a powerful genetic model to identify genes regulating the molecular mechanisms underlying intracellular β-amyloid peptide accumulation. PMID:22038715

  1. The effects of short-term hypergravity on Caenorhabditis elegans.

    PubMed

    Saldanha, Jenifer N; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms. PMID:27662786

  2. The effects of short-term hypergravity on Caenorhabditis elegans.

    PubMed

    Saldanha, Jenifer N; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.

  3. CRISPR-Cas9-Guided Genome Engineering in C. elegans.

    PubMed

    Kim, Hyun-Min; Colaiácovo, Monica P

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms, including the nematode C. elegans. Recent studies have developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning, as well as injection methods required for delivering Cas9, sgRNAs, and repair template DNA into the C. elegans germline. © 2016 by John Wiley & Sons, Inc. PMID:27366893

  4. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  5. Microbial pathogenesis and host defense in the nematode C. elegans

    PubMed Central

    Cohen, Lianne B.; Troemel, Emily R.

    2014-01-01

    Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode C. elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans. PMID:25461579

  6. Dissection of C. elegans behavioral genetics in 3-D environments.

    PubMed

    Kwon, Namseop; Hwang, Ara B; You, Young-Jai; V Lee, Seung-Jae; Je, Jung Ho

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.

  7. Dynamical complexity in the C.elegans neural network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, C. G.; Fokas, A. S.; Bountis, T. C.

    2016-09-01

    We model the neuronal circuit of the C.elegans soil worm in terms of a Hindmarsh-Rose system of ordinary differential equations, dividing its circuit into six communities which are determined via the Walktrap and Louvain methods. Using the numerical solution of these equations, we analyze important measures of dynamical complexity, namely synchronicity, the largest Lyapunov exponent, and the ΦAR auto-regressive integrated information theory measure. We show that ΦAR provides a useful measure of the information contained in the C.elegans brain dynamic network. Our analysis reveals that the C.elegans brain dynamic network generates more information than the sum of its constituent parts, and that attains higher levels of integrated information for couplings for which either all its communities are highly synchronized, or there is a mixed state of highly synchronized and desynchronized communities.

  8. Caenorhabditis elegans is a useful model for anthelmintic discovery.

    PubMed

    Burns, Andrew R; Luciani, Genna M; Musso, Gabriel; Bagg, Rachel; Yeo, May; Zhang, Yuqian; Rajendran, Luckshika; Glavin, John; Hunter, Robert; Redman, Elizabeth; Stasiuk, Susan; Schertzberg, Michael; Angus McQuibban, G; Caffrey, Conor R; Cutler, Sean R; Tyers, Mike; Giaever, Guri; Nislow, Corey; Fraser, Andy G; MacRae, Calum A; Gilleard, John; Roy, Peter J

    2015-06-25

    Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery.

  9. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  10. Mechanisms of innate immunity in C. elegans epidermis

    PubMed Central

    Taffoni, Clara; Pujol, Nathalie

    2015-01-01

    The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals. PMID:26716073

  11. The effects of short-term hypergravity on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Saldanha, Jenifer N.; Pandey, Santosh; Powell-Coffman, Jo Anne

    2016-08-01

    As we seek to recognize the opportunities of advanced aerospace technologies and spaceflight, it is increasingly important to understand the impacts of hypergravity, defined as gravitational forces greater than those present on the earth's surface. The nematode Caenorhabditis elegans has been established as a powerful model to study the effects of altered gravity regimens and has displayed remarkable resilience to space travel. In this study, we investigate the effects of short-term and defined hypergravity exposure on C. elegans motility, brood size, pharyngeal pumping rates, and lifespan. The results from this study advance our understanding of the effects of shorter durations of exposure to increased gravitational forces on C. elegans, and also contribute to the growing body of literature on the impacts of altered gravity regimens on earth's life forms.

  12. Metabotropic GABA signalling modulates longevity in C. elegans

    PubMed Central

    Chun, Lei; Gong, Jianke; Yuan, Fengling; Zhang, Bi; Liu, Hongkang; Zheng, Tianlin; Yu, Teng; Xu, X. Z. Shawn; Liu, Jianfeng

    2015-01-01

    The nervous system plays an important but poorly understood role in modulating longevity. GABA, a prominent inhibitory neurotransmitter, is best known to regulate nervous system function and behaviour in diverse organisms. Whether GABA signalling affects aging, however, has not been explored. Here we examined mutants lacking each of the major neurotransmitters in C. elegans, and find that deficiency in GABA signalling extends lifespan. This pro-longevity effect is mediated by the metabotropic GABAB receptor GBB-1, but not ionotropic GABAA receptors. GBB-1 regulates lifespan through G protein-PLCβ signalling, which transmits longevity signals to the transcription factor DAF-16/FOXO, a key regulator of lifespan. Mammalian GABAB receptors can functionally substitute for GBB-1 in lifespan control in C. elegans. Our results uncover a new role of GABA signalling in lifespan regulation in C. elegans, raising the possibility that a similar process may occur in other organisms. PMID:26537867

  13. Tools to Study SUMO Conjugation in Caenorhabditis elegans.

    PubMed

    Pelisch, Federico; Hay, Ronald T

    2016-01-01

    The cell biology of sumoylation has mostly been studied using transformed cultured cells and yeast. In recent years, genetic analysis has demonstrated important roles for sumoylation in the biology of C. elegans. Here, we expand the existing set of tools making it possible to address the role of sumoylation in the nematode C. elegans using a combination of genetics, imaging, and biochemistry. Most importantly, the dynamics of SUMO conjugation and deconjugation can be followed very precisely both in space and time within living worms. Additionally, the biochemistry of SUMO conjugation and deconjugation can be addressed using recombinant purified components of the C. elegans sumoylation machinery, including E3 ligases and SUMO proteases. These tools and reagents will be useful to gain insights into the biological role of SUMO in the context of a multicellular organism. PMID:27631810

  14. Effect of vitamin D3 on lifespan in Caenorhabditis elegans.

    PubMed

    Messing, Jennifer A; Heuberger, Roschelle; Schisa, Jennifer A

    2013-12-01

    Vitamin D is an essential micronutrient, necessary for human health. To determine if Caenorhabditis elegans (C. elegans) could function as an effective model to study the mechanisms of action of vitamin D, we asked if vitamin D3 affects C. elegans lifespan. Multiple factors positively impact lifespan in this system including dietary restriction and vitamin E. In addition, the C. elegans DAF-12 nuclear hormone receptor is homologous to the vitamin D receptor in humans and is therefore a candidate for a functional vitamin D receptor. It was hypothesized that vitamin D3 supplementation would increase the lifespan of C. elegans in a DAF-12-dependent manner. Dose-response curves were completed, and results indicate that exposure to 1,000 µg/ml vitamin D3 significantly increased the lifespan of wild-type worms by up to 39% (p<0.001). The daf-12 mutants exposed to 1,000 µg/ml vitamin D3 lived significantly longer than daf-12 controls exposed to 0 µg/ml (p<0.001), but among worms exposed to 1,000 µg/ml vitamin D3, wild type lived significantly longer than daf-12 (p<0.01). The data suggest that vitamin D3 can interact with multiple receptors, possibly implicating the NHR family of nuclear hormone receptors related to DAF-12. This research is the first to our knowledge to utilize C. elegans as a model to study the impact of vitamin D3 on longevity and supports the use of this model system to increase our understanding of vitamin D function at the cellular level, its role in cellular health, and its potential medicinal utility in humans.

  15. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    PubMed

    Begun, Jakob; Gaiani, Jessica M; Rohde, Holger; Mack, Dietrich; Calderwood, Stephen B; Ausubel, Frederick M; Sifri, Costi D

    2007-04-01

    Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA) in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP) kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  16. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering

    PubMed Central

    Dickinson, Daniel J.; Goldstein, Bob

    2016-01-01

    The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications. PMID:26953268

  17. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    PubMed

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  18. An integrated theory of ageing in the nematode Caenorhabditis elegans

    PubMed Central

    GEMS, DAVID

    2000-01-01

    Numerous theories of ageing have been proposed, and many have been tested experimentally, particularly using nematode models such as Caenorhabditis elegans. By combining those theories of ageing that remain plausible with recent findings from studies of C. elegans life span mutants, an integrated theory of ageing has been devised. This is formed from 3 interconnected elements: the evolutionary theory of ageing, the oxidative damage theory of ageing, and a nonadaptive programmed ageing theory. This tripartite theory of ageing gives rise to a number of predictions that may be tested experimentally. PMID:11197524

  19. Regulation of the X Chromosomes in Caenorhabditis elegans

    PubMed Central

    Kelly, William G.; Ercan, Sevinc; Lieb, Jason D.

    2014-01-01

    Dosage compensation, which regulates the expression of genes residing on the sex chromosomes, has provided valuable insights into chromatin-based mechanisms of gene regulation. The nematode Caenorhabditis elegans has adopted various strategies to down-regulate and even nearly silence the X chromosomes. This article discusses the different chromatin-based strategies used in somatic tissues and in the germline to modulate gene expression from the C. elegans X chromosomes and compares these strategies to those used by other organisms to cope with similar X-chromosome dosage differences. PMID:24591522

  20. Searching for the elusive mitochondrial longevity signal in C. elegans.

    PubMed

    Bennett, Christopher F; Choi, Haeri; Kaeberlein, Matt

    2014-01-01

    There is a growing list of examples where perturbed mitochondrial function is associated with increased longevity, yet the exact mechanisms have remained elusive. This phenomenon was first documented, and has been studied most extensively, in C. elegans. One prominent model proposed that lifespan extension resulting from electron transport chain inhibition is due to induction of the mitochondrial unfolded protein response. This model requires revision in light of recent data showing that the mitochondrial unfolded protein response, as defined by the field, is neither necessary nor sufficient for lifespan extension in C. elegans. Several additional factors have been proposed to underlie this lifespan extension, which is likely to be multifactorial and complex.

  1. Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans.

    PubMed

    Sese, Beke T; Grant, Alastair; Reid, Brian J

    2009-01-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in the environment has attracted much concern owing to their mutagenic and carcinogenic properties. Regulatory authorities have favored the use of biological indicators as an essential means of assessing potential toxicity of environmental pollutants. This study aimed to assess the toxicity of acenaphthene, phenanthrene, anthracene, fluoranthene, pyrene, and benzo[a]pyrene to Caenorhabditis elegans by measuring LC50 and EC50 values for growth and reproduction. The exposure to all chemicals was carried out in aqueous medium. All PAHs showed a low acute toxicity to C. elegans. There was no significant mortality in C. elegans after 24 h of exposure at PAH concentrations within (and indeed above) their respective solubility limits. Prolonged exposure (72 h) at high concentrations for acenaphthene (70,573 microg/L), phenanthrene (3758 microg/L), anthracene (1600 microg/L), fluoranthene (1955 microg/L), pyrene (1653 microg/L), and benzo[a]pyrene (80 microg/L) produced mortality. Results also showed that reproduction and growth were much more sensitive parameters of adverse response than lethality, and consequently may be more useful in assessing PAH toxicity using C. elegans. In comparison with previous studies, C. elegans was found to be approximately 2-fold less sensitive to acenaphthene, 5-fold less sensitive to phenanthrene, and 20-fold less sensitive to fluoranthene than Daphnia magna. However, the 48-h LC50 for benzo[a]pyrene (174 microg/L) reported in the present study with C. elegans was similar to that reported elsewhere for Daphnia magna (200 microg/L). Although C. elegans indicated greater sensitivity to benzo[a]pyrene than Artemia salina (174 microg/L vs. 10000 microg/L), the organism showed less sensitivity to pyrene (8 microg/L vs. 2418 microg/L), fluoranthene (40 microg/L vs. 2719 microg/L), and phenanthrene (677 microg/L vs. 4772 microg/L) than Artemia salina. Caenorhabditis elegans, while not the

  2. A Method for Evaluating Volt-VAR Optimization Field Demonstrations

    SciTech Connect

    Schneider, Kevin P.; Weaver, T. F.

    2014-08-31

    In a regulated business environment a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. For traditional technologies there are well established procedures for determining what benefits will be derived from the deployment. But for many emerging technologies procedures for determining benefits are less clear and completely absent in some cases. Volt-VAR Optimization is a technology that is being deployed across the nation, but there are still numerous discussions about potential benefits and how they are achieved. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to the basic methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the proposed method.

  3. The temporal scaling of Caenorhabditis elegans ageing.

    PubMed

    Stroustrup, Nicholas; Anthony, Winston E; Nash, Zachary M; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  4. The temporal scaling of Caenorhabditis elegans ageing

    NASA Astrophysics Data System (ADS)

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  5. The temporal scaling of Caenorhabditis elegans ageing

    PubMed Central

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-01-01

    The process of ageing makes death increasingly likely, but involves a random aspect that produces a wide distribution of lifespan even in homogeneous populations1,2. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating how and how much specific molecular processes contribute to the aspect of ageing that determines lifespan. PMID:26814965

  6. Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae).

    PubMed

    Klimek, Barbara; Modnicki, Daniel

    2005-01-01

    Isolation and GC/MS quantitative determination of ursolic acid in the herb of Nepeta cataria var. citriodora have been performed. The content of this compound was in the range 0.95-1.30%. Daucosterol (beta-sitosterol 3-O-beta-D-glucoside) was also isolated from the plant, in addition to small amounts of beta-sitosterol, campesterol, alpha-amyrin and beta-amyrin. The content and composition of essential oil in samples of the Nepeta cataria var. citriodora herb have been analysed as well.

  7. BZ UMa and Var Her 04: Orphan TOADS

    NASA Astrophysics Data System (ADS)

    Price, A.; Howell, S.

    2005-05-01

    Both BZ UMa and Var Her 04 are cataclysmic variable stars without a home. Neither fit easily into current classification systems so may extend the population distribution of two unique CV types: UGWZ dwarf novae and intermediate polars. New outburst photometry and archival X-Ray data shed some new light on BZ UMa's high energy state and new spectral and IR observations from Spitzer of dust around the newly discovered cataclysmic variable Var Her 04 may help find it a home as well.

  8. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  9. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  10. ROS in Aging Caenorhabditis elegans: Damage or Signaling?

    PubMed Central

    Back, Patricia; Braeckman, Bart P.; Matthijssens, Filip

    2012-01-01

    Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematode Caenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for the process of aging for many years, but reviewing the recent studies in C. elegans calls this theory into question. Thus, it becomes more and more evident that ROS are not merely toxic byproducts of the oxidative metabolism. Rather it seems more likely that tightly controlled concentrations of ROS and fluctuations in redox potential are important mediators of signaling processes. We therefore discuss some theories that explain how redox signaling may be involved in aging and provide some examples of ROS functions and signaling in C. elegans metabolism. To understand the role of ROS and the redox status in physiology, stress response, development, and aging, there is a rising need for accurate and reversible in vivo detection. Therefore, we comment on some methods of ROS and redox detection with emphasis on the implementation of genetically encoded biosensors in C. elegans. PMID:22966416

  11. The C. elegans rab family: identification, classification and toolkit construction.

    PubMed

    Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324

  12. Enhanced Caenorhabditis elegans Locomotion in a Structured Microfluidic Environment

    PubMed Central

    Park, Sungsu; Hwang, Hyejin; Nam, Seong-Won; Martinez, Fernando; Austin, Robert H.; Ryu, William S.

    2008-01-01

    Background Behavioral studies of Caenorhabditis elegans traditionally are done on the smooth surface of agar plates, but the natural habitat of C. elegans and other nematodes is the soil, a complex and structured environment. In order to investigate how worms move in such environments, we have developed a technique to study C. elegans locomotion in microstructures fabricated from agar. Methodology/Principal Findings When placed in open, liquid-filled, microfluidic chambers containing a square array of posts, we discovered that worms are capable of a novel mode of locomotion, which combines the fast gait of swimming with the more efficient movements of crawling. When the wavelength of the worms matched the periodicity of the post array, the microstructure directed the swimming and increased the speed of C. elegans ten-fold. We found that mutants defective in mechanosensation (mec-4, mec-10) or mutants with abnormal waveforms (unc-29) did not perform this enhanced locomotion and moved much more slowly than wild-type worms in the microstructure. Conclusion/Significance These results show that the microstructure can be used as a behavioral screen for mechanosensory and uncoordinated mutants. It is likely that worms use mechanosensation in the movement and navigation through heterogeneous environments. PMID:18575618

  13. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  14. Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes.

    PubMed

    Pellerone, F I; Archer, S K; Behm, C A; Grant, W N; Lacey, M J; Somerville, A C

    2003-09-30

    The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.

  15. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  16. Biophysical and biological meanings of healthspan from C. elegans cohort

    SciTech Connect

    Suda, Hitoshi

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  17. Caenorhabditis elegans pathways that surveil and defend mitochondria

    PubMed Central

    Liu, Ying; Samuel, Buck S.; Breen, Peter C.; Ruvkun, Gary

    2014-01-01

    Mitochondrial function is challenged by toxic byproducts of metabolism as well as by pathogen attack1,2. Caenorhabditis elegans normally responds to mitochondrial dysfunction with activation of mitochondrial repair, drug detoxification, and pathogen-response pathways1–7. From a genome-wide RNAi screen, we identified 45 C. elegans genes that are required to upregulate detoxification, pathogen-response, and mitochondrial repair pathways after inhibition of mitochondrial function by drugs or genetic disruption. Animals defective in ceramide biosynthesis are deficient in mitochondrial surveillance, and addition of particular ceramides can rescue the surveillance defects. Ceramide can also rescue the mitochondrial surveillance defects of other gene inactivations, mapping these gene activities upstream of ceramide. Inhibition of the mevalonate pathway, either by RNAi or statin drugs also disrupts mitochondrial surveillance. Growth of C. elegans with a significant fraction of bacterial species from their natural habitat causes mitochondrial dysfunction. Other bacterial species inhibit C. elegans defense responses to a mitochondrial toxin, revealing bacterial countermeasures to animal defense. PMID:24695221

  18. The C. elegans Rab Family: Identification, Classification and Toolkit Construction

    PubMed Central

    Gallegos, Maria E.; Balakrishnan, Sanjeev; Chandramouli, Priya

    2012-01-01

    Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324

  19. The emergence of stereotyped behaviors in C. elegans

    NASA Astrophysics Data System (ADS)

    Stephens, Greg; Ryu, William; Bialek, William

    2010-03-01

    Many organisms, including humans, engage in stereotyped behaviors and these are often attributed to a deterministic command process within the nervous system. Here we use the locomotor dynamics of the nematode C. elegans to suggest an alternative explanation in which stereotyped behavior emerges due to noise within a non-linear dynamical system. In previous work (PLoS Comp Bio 4, e1000028 (2008)) we found that the body shapes of freely-crawling C. elegans are well-captured by four `eigenworms', two of which encode the phase of a locomotory wave that generates forward and backward motion. We also used this representation to infer a non-linear dynamical model for the phase in which forward and backward crawling emerge as attractors of the deterministic dynamics. Here we show that noise induces reversals between forward and backward crawling and that the predicted reversal rate is in good agreement with experiment, with no adjustable parameters. In this model, reversals follow a stereotyped trajectory for the same reason that Brownian escape over a barrier is dominated by a narrowly defined class of trajectories. Stereotypy becomes even clearer in the dynamics with lower noise levels; the real C. elegans is just outside the regime where the reversal rate follows an Arrhenius dependence on the noise level. We discus the implications of our results for C. elegans and other organisms.

  20. Modulating Behavior in C. elegans Using Electroshock and Antiepileptic Drugs

    PubMed Central

    Jia, Kailiang; Grill, Brock; Dawson-Scully, Ken

    2016-01-01

    The microscopic nematode Caenorhabditis elegans has emerged as a valuable model for understanding the molecular and cellular basis of neurological disorders. The worm offers important physiological similarities to mammalian models such as conserved neuron morphology, ion channels, and neurotransmitters. While a wide-array of behavioral assays are available in C. elegans, an assay for electroshock/electroconvulsion remains absent. Here, we have developed a quantitative behavioral method to assess the locomotor response following electric shock in C. elegans. Electric shock impairs normal locomotion, and induces paralysis and muscle twitching; after a brief recovery period, shocked animals resume normal locomotion. We tested electric shock responses in loss-of-function mutants for unc-25, which encodes the GABA biosynthetic enzyme GAD, and unc-49, which encodes the GABAA receptor. unc-25 and unc-49 mutants have decreased inhibitory GABAergic transmission to muscles, and take significantly more time to recover normal locomotion following electric shock compared to wild-type. Importantly, increased sensitivity of unc-25 and unc-49 mutants to electric shock is rescued by treatment with antiepileptic drugs, such as retigabine. Additionally, we show that pentylenetetrazol (PTZ), a GABAA receptor antagonist and proconvulsant in mammalian and C. elegans seizure models, increases susceptibility of worms to electric shock. PMID:27668426

  1. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  2. Microbial transformation of 6-nitrobenzo(a)pyrene. [Cunninghamella elegans

    SciTech Connect

    Millner, G.C.; Fu, P.P.; Cerniglia, C.E.

    1986-01-01

    The fungal metabolism of the potent mutagenic and carcinogenic nitropolycyclic aromatic hydrocarbon (nitro-PAH) 6-nitrobenzo(a)pyrene (6-NO/sub 2/-BaP) was investigated. Cunninghamella elegans was incubated with 6-NO/sub 2/-BaP for periods ranging between 1 and 7 d, and the metabolites formed were separated by high-performance liquid chromatography and identified by their UV-visible absorption, mass, and /sup 1/H nuclear magnetic resonance spectra. The results of the study indicate that C. elegans metabolized 6-NO/sub 2/-BaP to glucoside and sulfate conjugates of 1- and 3-hydroxy 6-NO/sub 2/-BaP and suggests that glycosylation and sulfation reactions may represent detoxification pathways in the fungal metabolism of nitro-PAHs. Experiments using (G-/sup 3/H)-6-NO/sub 2/-BaP indicated that C. elegans metabolized 62% of 6-NO/sub 2/-BaP with 168 h. The data also indicated that the nitro group at the C-6 position of benzo(a)pyrene blocked metabolism at the regions peri to the nitro substituent (C-7, C-8 positions) and enhanced metabolism at the C-1 and C-3 positions. The ability of the fungus C. elegans to metabolize 6-NO/sub 2/-BaP to biologically inactive compounds may have practical applications in the detoxification of nitro-PAH-contaminated wastes.

  3. Caenorhabditis elegans glia modulate neuronal activity and behavior

    PubMed Central

    Stout Jr., Randy F.; Verkhratsky, Alexei; Parpura, Vladimir

    2014-01-01

    Glial cells of Caenorhabditis elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived Glial-Like cells in the nerve Ring (GLRs) appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general. PMID:24672428

  4. The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR.

    PubMed

    Tsou, Amy M; Liu, Zhi; Cai, Tao; Zhu, Jun

    2011-06-01

    The human pathogen Vibrio cholerae uses quorum sensing to regulate the expression of a number of phenotypes, including virulence factor production, in response to changes in cell density. It produces small molecules called autoinducers that increase in concentration as cell density increases, and these autoinducers bind to membrane sensors once they reach a certain threshold. This binding leads to signalling through a downstream phosphorelay pathway to alter the expression of the transcriptional regulator HapR. Previously, it was shown that the VarS/VarA two-component system acts on a component of the phosphorelay pathway upstream of HapR to regulate HapR expression levels. Here, we show that in addition to this mechanism of regulation, VarS and VarA also indirectly modulate HapR protein activity. This modulation is mediated by the small RNA CsrB but is independent of the known quorum-sensing system that links the autoinducers to HapR. Thus, the VarS/VarA two-component system intersects with the quorum-sensing network at two levels. In both cases, the effect of VarS and VarA on quorum sensing is dependent on the Csr small RNAs, which regulate carbon metabolism, suggesting that V. cholerae may integrate nutrient status and cell density sensory inputs to tailor its gene expression profile more precisely to surrounding conditions.

  5. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans.

    PubMed

    Blackwell, T Keith; Steinbaugh, Michael J; Hourihan, John M; Ewald, Collin Y; Isik, Meltem

    2015-11-01

    The mammalian Nrf/CNC proteins (Nrf1, Nrf2, Nrf3, p45 NF-E2) perform a wide range of cellular protective and maintenance functions. The most thoroughly described of these proteins, Nrf2, is best known as a regulator of antioxidant and xenobiotic defense, but more recently has been implicated in additional functions that include proteostasis and metabolic regulation. In the nematode Caenorhabditis elegans, which offers many advantages for genetic analyses, the Nrf/CNC proteins are represented by their ortholog SKN-1. Although SKN-1 has diverged in aspects of how it binds DNA, it exhibits remarkable functional conservation with Nrf/CNC proteins in other species and regulates many of the same target gene families. C. elegans may therefore have considerable predictive value as a discovery model for understanding how mammalian Nrf/CNC proteins function and are regulated in vivo. Work in C. elegans indicates that SKN-1 regulation is surprisingly complex and is influenced by numerous growth, nutrient, and metabolic signals. SKN-1 is also involved in a wide range of homeostatic functions that extend well beyond the canonical Nrf2 function in responses to acute stress. Importantly, SKN-1 plays a central role in diverse genetic and pharmacologic interventions that promote C. elegans longevity, suggesting that mechanisms regulated by SKN-1 may be of conserved importance in aging. These C. elegans studies predict that mammalian Nrf/CNC protein functions and regulation may be similarly complex and that the proteins and processes that they regulate are likely to have a major influence on mammalian life- and healthspan. PMID:26232625

  6. Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.

    PubMed

    Maglioni, Silvia; Schiavi, Alfonso; Runci, Alessandra; Shaik, Anjumara; Ventura, Natascia

    2014-08-01

    Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.

  7. MicroRNA binding sites in C. elegans 3' UTRs.

    PubMed

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org. PMID:24827614

  8. Structural analysis of hyperperiodic DNA from Caenorhabditis elegans.

    PubMed

    Moreno-Herrero, Fernando; Seidel, Ralf; Johnson, Steven M; Fire, Andrew; Dekker, Nynke H

    2006-01-01

    Several bioinformatics studies have identified an unexpected but remarkably prevalent approximately 10 bp periodicity of AA/TT dinucleotides (hyperperiodicity) in certain regions of the Caenorhabditis elegans genome. Although the relevant C.elegans DNA segments share certain sequence characteristics with bent DNAs from other sources (e.g. trypanosome mitochondria), the nematode sequences exhibit a much more extensive and defined hyperperiodicity. Given the presence of hyperperiodic structures in a number of critical C.elegans genes, the physical characteristics of hyperperiodic DNA are of considerable interest. In this work, we demonstrate that several hyperperiodic DNA segments from C.elegans exhibit structural anomalies using high-resolution atomic force microscopy (AFM) and gel electrophoresis. Our quantitative analysis of AFM images reveals that hyperperiodic DNA adopts a significantly smaller mean square end-to-end distance, hence a more compact coil structure, compared with non-periodic DNA of similar length. While molecules remain capable of adopting both bent and straight (rod-like) configurations, indicating that their flexibility is still retained, examination of the local curvatures along the DNA contour length reveals that the decreased mean square end-to-end distance can be attributed to the presence of long-scale intrinsic bending in hyperperiodic DNA. Such bending is not detected in non-periodic DNA. Similar studies of shorter, nucleosome-length DNAs that survived micrococcal nuclease digestion show that sequence hyperperiodicity in short segments can likewise induce strong intrinsic bending. It appears, therefore, that regions of the C.elegans genome display a significant correlation between DNA sequence and unusual mechanical properties. PMID:16738142

  9. Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs.

    PubMed

    Jan, Calvin H; Friedman, Robin C; Ruby, J Graham; Bartel, David P

    2011-01-01

    Post-transcriptional gene regulation frequently occurs through elements in mRNA 3' untranslated regions (UTRs). Although crucial roles for 3'UTR-mediated gene regulation have been found in Caenorhabditis elegans, most C. elegans genes have lacked annotated 3'UTRs. Here we describe a high-throughput method for reliable identification of polyadenylated RNA termini, and we apply this method, called poly(A)-position profiling by sequencing (3P-Seq), to determine C. elegans 3'UTRs. Compared to standard methods also recently applied to C. elegans UTRs, 3P-Seq identified 8,580 additional UTRs while excluding thousands of shorter UTR isoforms that do not seem to be authentic. Analysis of this expanded and corrected data set suggested that the high A/U content of C. elegans 3'UTRs facilitated genome compaction, because the elements specifying cleavage and polyadenylation, which are A/U rich, can more readily emerge in A/U-rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,480 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes use palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3'UTRs have median length only one-sixth that of mammalian 3'UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying post-transcriptional gene regulation.

  10. [Induction and identification of polyploid of Astragalus membranaceus var. mongholicus].

    PubMed

    Wu, Yuxiang; Gao, Jianping; Zhao, Xiaoming

    2003-05-01

    In this article, improved agar painting method, with semi-solid of 0.2% colchicine and 0.1% agar, was adopted to treat apical buds of Astragalus membranaceus var. mongholicus (Bge.) Hsiao seedlings. Obtained plants were proved to be tetraploids by identification of biological characteristics and chromosome numbers. PMID:14535010

  11. [Experiment on polyploid induction of Angelica dahurica var. formosana].

    PubMed

    Peng, F; Zhou, R; Liu, J

    1999-12-01

    Colchicine solution was applied to the primary adventitious buds of Angelica dahurica var. formosana in vitro to induce the polyploid. Compared with non-treated plantlet, the morphology, microhisology, and chromosome number of treated plantlets are varied. It proved that the polyploid induction was effective. PMID:12571900

  12. New diterpenes from the heartwood of Chamaecyparis obtusa var. formosana.

    PubMed

    Kuo, Y H; Chen, C H; Huang, S L

    1998-06-26

    An abietane diterpene, 11,14-dihydroxy-8,11,13-abietatrien-7-one (1); a seco-abietane diterpene, obtuanhydride (2); and an isopimarane diterpene, 18,19-O-isopropylidene-18, 19-dihydroxyisopimara-8(14),15-diene (3) were isolated from the heartwood of Chamaecyparis obtusa var. formosana. The structures of these new compounds were elucidated by spectroscopic methods. PMID:9644078

  13. Indolizidine, Antiinfective and Antiparasitic Compounds from Prosopis glandulosa var. glandulosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prosopilosidine, a new potent antiinfective and antiparasitic 2,3-dihydro-1H-indolizinium chloride, (1), was isolated from Prosopis glandulosa Torr. var. glandulosa. Furthermore, three additional new and one known indolizidines, prosopilosine (2), isoprosopilosine (3), isoprosopilosidine (4) and jul...

  14. Cycloartane-Type Saponins from Astragalus tmoleus var. tmoleus.

    PubMed

    Avunduk, Sibel; Mitaine-Offer, Anne-Claire; Miyamoto, Tomofumi; Tanaka, Chiaki; Lacaille-Dubois, Marie-Aleth

    2016-01-01

    Five known cycloartane-type glycosides were isolated from the roots of A. tmoleus Boiss. var. tmoleus. The identification of these compounds was mainly achieved by 1D and 2D NMR spectroscopic techniques and FABMS. The results of our studies confirm that triterpene saponins with the cycloartane-type skeleton might be chemotaxonomically significant for the genus Astragalus.

  15. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  16. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts

    PubMed Central

    Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun

    2014-01-01

    Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587

  17. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  18. C.V. Riley’s lost aphids: Siphonophora fragariae var. immaculata and Aphis rapae var. laevigata (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The syntypes of Siphonophora fragariae var. immaculata Riley were rediscovered in the Aphidoidea collection of the United States of America National Museum of Natural History. Previously, S. fragariae immaculata was largely lost and forgotten. Through examination of the specimens, we hereby establ...

  19. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  20. Life Span and Motility Effects of Ethanolic Extracts from Sophora moorcroftiana Seeds on Caenorhabditis elegans

    PubMed Central

    Li, Xin; Han, Junxian; Zhu, Rongyan; Cui, Rongrong; Ma, Xingming; Dong, Kaizhong

    2016-01-01

    Background: Sophora moorcroftiana is an endemic shrub species with a great value in folk medicine in Tibet, China. In this study, relatively little is known about whether S. moorcroftiana is beneficial in animals' nervous system and life span or not. Materials and Methods: To address this question, under survival normal temperature (25°C), S. moorcroftiana seeds were extracted with 95% ethanol, and Caenorhabditis elegans were exposed to three different extract concentrations (100 mg/L, 200 mg/L, and 400 mg/mL) from S. moorcroftiana seeds. Results: The 95% ethanolic extracts from S. moorcroftiana seeds could increase life span and slow aging-related increase in C. elegans and could not obviously influence the motility of C. elegans. Conclusion: Given these results by our experiment for life span and motility with 95% ethanolic extracts from S. moorcroftiana seeds in C. elegans, the question whether S. moorcroftiana acts as an anti-aging substance in vivo arises. SUMMARY The 95% ethanolic extracts from S. moorcroftiana seeds have no effect on the life span in C. elegans when extract concentrations from S. moorcroftiana seeds <400 mg/LThe 400 mg/L 95% ethanolic extracts from S. moorcroftiana seeds could increase life span in C. elegansThe 95% ethanolic extracts from S. moorcroftiana seeds could not obviously influence the motility in C. elegans. Abbreviation used: S. moorcroftiana: Sophora moorcroftiana; C. elegan: Caenorhabditis elegan; E. coli OP50: Escherichia coli OP50; DMSO: Dimethyl sulfoxide. PMID:27279712

  1. Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements

    NASA Astrophysics Data System (ADS)

    Tserevelakis, George J.; Filippidis, George; Megalou, Evgenia V.; Fotakis, Costas; Tavernarakis, Nektarios

    2011-04-01

    In this study, we demonstrate the potential of employing third harmonic generation (THG) imaging microscopy measurements for cell tracking studies in live Caenorhabditis elegans (C. elegans) embryos. A 1028-nm femtosecond laser was used for the excitation of unstained C. elegans samples. Different C. elegans embryonic stages (from two-cell to threefold) were imaged. Live biological specimens were irradiated for prolonged periods of time (up to 7 h), testifying to the nondestructive nature of this nonlinear imaging technique. Thus, THG image contrast modality is a powerful diagnostic tool for probing in vivo cell division during early embryogenesis.

  2. Unidirectional, electrotactic-response valve for Caenorhabditis elegans in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Carr, John A.; Lycke, Roy; Parashar, Archana; Pandey, Santosh

    2011-04-01

    We report a nematode electrotactic-response valve (NERV) to control the locomotion of Caenorhabditis elegans (C. elegans) in microfluidic devices. This nonmechanical, unidirectional valve is based on creating a confined region of lateral electric field that is switchable and reversible. We observed that C. elegans do not prefer to pass through this region if the field lines are incident to its forward movement. Upon reaching the boundary of the NERV, the incident worms partially penetrate the field region, pull back, and turn around. The NERV is tested on three C. elegans mutants: wild-type (N2), lev-8, and acr-16.

  3. Caenorhabditis elegans Egg-Laying Detection and Behavior Study Using Image Analysis

    NASA Astrophysics Data System (ADS)

    Geng, Wei; Cosman, Pamela; Palm, Megan; Schafer, William R.

    2005-12-01

    Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans). Previous studies examined egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking and behavioral analysis.

  4. Dynamics of the Model of the Caenorhabditis Elegans Neural Network

    NASA Astrophysics Data System (ADS)

    Kosinski, R. A.; Zaremba, M.

    2007-06-01

    The model of the neural network of nematode worm C. elegans resulting from the biological investigations and published in the literature, is proposed. In the model artificial neurons Siin (-1,1) are connected in the same way as in the C. elegans neural network. The dynamics of this network is investigated numerically for the case of simple external simulation, using the methods developed for the nonlinear systems. In the computations a number of different attractors, e.g. point, quasiperiodic and chaotic, as well as the range of their occurrence, were found. These properties are similar to the dynamical properties of a simple one dimensional neural network with comparable number of neurons investigated earlier.

  5. Calcineurin may regulate multiple endocytic processes in C. elegans.

    PubMed

    Song, Hyun-Ok; Ahnn, Joohong

    2011-02-01

    Calcineurin is a serine/threonine protein phosphatase controlled by Ca(2+) and calmodulin that has been implicated in various signaling pathways. Previously, we reported that calcineurin regulates coelomocyte endocytosis in Caenorhabditis elegans. So far, simple and powerful in vivo approaches have been developed to study various endocytic processes in C. elegans. Using these in vivo assays, we further analyzed the endocytic phenotypes of calcineurin mutants. We observed that the calcineurin mutants were defective in apical endocytosis in the intestine as well as synaptic vesicle recycling in the nerve cord. However, we found that calcineurin mutants displayed normal receptor-mediated endocytosis in oocytes. Therefore, our results suggest that calcineurin may regulate specific sets of endocytic processes in nematode.

  6. C. elegans as a model for membrane traffic

    PubMed Central

    Sato, Ken; Norris, Anne; Sato, Miyuki; Grant, Barth D.

    2014-01-01

    The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to changes in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine. PMID:24778088

  7. C. elegans as a model for membrane traffic.

    PubMed

    Sato, Ken; Norris, Anne; Sato, Miyuki; Grant, Barth D

    2014-01-01

    The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.

  8. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans.

    PubMed

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-01-01

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. PMID:26083711

  9. Endogenous RNAi and adaptation to environment in C. elegans

    PubMed Central

    Grishok, Alla

    2012-01-01

    The contributions of short RNAs to the control of repetitive elements are well documented in animals and plants. Here, the role of endogenous RNAi and AF10 homolog ZFP-1 in the adaptation of C. elegans to the environment is discussed. First, modulation of insulin signaling through regulation of transcription of the PDK-1 kinase (Mansisidor et al., PLoS Genetics, 2011) is reviewed. Second, an siRNA-based natural selection model is proposed in which variation in endogenous siRNA pools between individuals is subject to natural selection similarly to DNA-based genetic variation. The value of C. elegans for the research of siRNA-based epigenetic variation and adaptation is highlighted. PMID:24058837

  10. Caenorhabditis elegans ATAD-3 modulates mitochondrial iron and heme homeostasis.

    PubMed

    van den Ecker, Daniela; Hoffmann, Michael; Müting, Gesine; Maglioni, Silvia; Herebian, Diran; Mayatepek, Ertan; Ventura, Natascia; Distelmaier, Felix

    2015-11-13

    ATAD3 (ATPase family AAA domain-containing protein 3) is a mitochondrial protein, which is essential for cell viability and organismal development. ATAD3 has been implicated in several important cellular processes such as apoptosis regulation, respiratory chain function and steroid hormone biosynthesis. Moreover, altered expression of ATAD3 has been associated with several types of cancer. However, the exact mechanisms underlying ATAD3 effects on cellular metabolism remain largely unclear. Here, we demonstrate that Caenorhabditis elegans ATAD-3 is involved in mitochondrial iron and heme homeostasis. Knockdown of atad-3 caused mitochondrial iron- and heme accumulation. This was paralleled by changes in the expression levels of several iron- and heme-regulatory genes as well as an increased heme uptake. In conclusion, our data indicate a regulatory role of C. elegans ATAD-3 in mitochondrial iron and heme metabolism.

  11. Dietary and microbiome factors determine longevity in Caenorhabditis elegans.

    PubMed

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K; Mollinedo, Faustino

    2016-07-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225

  12. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans.

    PubMed

    Lashmanova, Ekaterina; Proshkina, Ekaterina; Zhikrivetskaya, Svetlana; Shevchenko, Oksana; Marusich, Elena; Leonov, Sergey; Melerzanov, Alex; Zhavoronkov, Alex; Moskalev, Alexey

    2015-10-01

    The pharmacological activation of stress-defense mechanisms is one of the perspective ways to increase human lifespan. The goal of the present study was to study the effects on lifespan of Drosophila melanogaster and Caenorhabditis elegans of two carotenoids: ß-carotene and fucoxanthin, which are bioactive natural substances in human diet. In addition, the effects of carotenoids on the flies survival were studied under stress conditions, including starvation, thermal stress (35°C), oxidative stress (20 mM paraquat), as well as locomotor activity, fecundity, and genes expression level. Our results demonstrated lifespan extension of flies by both carotenoids. However, the positive effects on the lifespan of C. elegans were revealed only for fucoxanthin. In presence of carotenoids decreased flies' fecundity, increased spontaneous locomotor activity and resistance to oxidative stress were detected.

  13. Noncanonical cell death in the nematode Caenorhabditis elegans

    PubMed Central

    Kinet, Maxime J.; Shaham, Shai

    2014-01-01

    The nematode Caenorhabditis. elegans has served as a fruitful setting for cell death research for over three decades. A conserved pathway of four genes, egl-1/BH3-only, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase, coordinates most developmental cell deaths in C. elegans. However, other cell death forms, programmed and pathological, have also been described in this animal. Some of these share morphological and/or molecular similarities with the canonical apoptotic pathway, while others do not. Indeed, recent studies suggest the existence of an entirely novel mode of programmed developmental cell destruction that may also be conserved beyond nematodes. Here we review evidence for these noncanonical pathways. We propose that different cell death modalities can function as backup mechanisms for apoptosis, or as tailor-made programs that allow specific dying cells to be efficiently cleared from the animal. PMID:25065890

  14. Dietary and microbiome factors determine longevity in Caenorhabditis elegans

    PubMed Central

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K.; Mollinedo, Faustino

    2016-01-01

    Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225

  15. A comparison of tracking methods for swimming C. Elegans

    NASA Astrophysics Data System (ADS)

    Restif, Christophe; Metaxas, Dimitris

    2010-03-01

    Tracking the swimming motion of C. elegans worms is of high interest for a variety of research projects on behavior in biology, from aging to mating studies. We compare six different tracking methods, derived from two types of image preprocessing, namely local and global thresholding methods, and from three types of segmentation methods: low-level vision, and articulated models of either constant or varying width. All these methods have been successfully used in recent related works, with some modifications to adapt them to swimming motions. We show a quantitative comparison of these methods using computer-vision measures. To discuss their relative strengths and weaknesses, we consider three scenarios of behavior studies, depending on the constraints of a C. elegans project, and give suggestions as to which methods are more adapted to each case, and how to further improve them.

  16. The time-resolved transcriptome of C. elegans

    PubMed Central

    Boeck, Max E.; Huynh, Chau; Gevirtzman, Lou; Thompson, Owen A.; Wang, Guilin; Kasper, Dionna M.; Reinke, Valerie; Hillier, LaDeana W.; Waterston, Robert H.

    2016-01-01

    We generated detailed RNA-seq data for the nematode Caenorhabditis elegans with high temporal resolution in the embryo as well as representative samples from post-embryonic stages across the life cycle. The data reveal that early and late embryogenesis is accompanied by large numbers of genes changing expression, whereas fewer genes are changing in mid-embryogenesis. This lull in genes changing expression correlates with a period during which histone mRNAs produce almost 40% of the RNA-seq reads. We find evidence for many more splice junctions than are annotated in WormBase, with many of these suggesting alternative splice forms, often with differential usage over the life cycle. We annotated internal promoter usage in operons using SL1 and SL2 data. We also uncovered correlated transcriptional programs that span >80 kb. These data provide detailed annotation of the C. elegans transcriptome. PMID:27531719

  17. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  18. Sensory regulation of C. elegans male mate-searching behaviour

    PubMed Central

    Barrios, Arantza; Nurrish, Stephen; Emmons, Scott W.

    2009-01-01

    Summary How do animals integrate internal drives and external environmental cues to coordinate behaviours? We address this question studying mate-searching behaviour in C. elegans. C. elgans males explore their environment in search of mates (hermaphrodites) and will leave food if mating partners are absent. However, when mates and food coincide, male exploratory behaviour is suppressed and males are retained on the food source. We show that the drive to explore is stimulated by male specific neurons in the tail, the ray neurons. Periodic contact with the hermaphrodite detected through ray neurons changes the male’s behaviour during periods of no contact and prevents the male from leaving the food source. The hermaphrodite signal is conveyed by male-specific interneurons that are post-synaptic to the rays and that send processes to the major integrative center in the head. This study identifies key parts of the neural circuit that regulates a sexual appetitive behaviour in C. elegans. PMID:19062284

  19. C. elegans: a model system for systems neuroscience

    PubMed Central

    Sengupta, Piali; Samuel, Aravinthan D.T.

    2009-01-01

    Summary The nematode C. elegans is an excellent model organism for a systems-level understanding of neural circuits and behavior. Advances in the quantitative analyses of behavior and neuronal activity, and the development of new technologies to precisely control and monitor the workings of interconnected circuits, now allow investigations into the molecular, cellular and systems-level strategies that transform sensory inputs into precise behavioral outcomes. PMID:19896359

  20. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    PubMed

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  1. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  2. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  3. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  4. A mutational analysis of Caenorhabditis elegans in space.

    PubMed

    Zhao, Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight. PMID:16765996

  5. Chaperone-interacting TPR proteins in Caenorhabditis elegans.

    PubMed

    Haslbeck, Veronika; Eckl, Julia M; Kaiser, Christoph J O; Papsdorf, Katharina; Hessling, Martin; Richter, Klaus

    2013-08-23

    The ATP-hydrolyzing molecular chaperones Hsc70/Hsp70 and Hsp90 bind a diverse set of tetratricopeptide repeat (TPR)-containing cofactors via their C-terminal peptide motifs IEEVD and MEEVD. These cochaperones contribute to substrate turnover and confer specific activities to the chaperones. Higher eukaryotic genomes encode a large number of TPR-domain-containing proteins. The human proteome contains more than 200 TPR proteins, and that of Caenorhabditis elegans, about 80. It is unknown how many of them interact with Hsc70 or Hsp90. We systematically screened the C. elegans proteome for TPR-domain-containing proteins that likely interact with Hsc70 and Hsp90 and ranked them due to their similarity with known chaperone-interacting TPRs. We find C. elegans to encode many TPR proteins, which are not present in yeast. All of these have homologs in fruit fly or humans. Highly ranking uncharacterized open reading frames C33H5.8, C34B2.5 and ZK370.8 may encode weakly conserved homologs of the human proteins RPAP3, TTC1 and TOM70. C34B2.5 and ZK370.8 bind both Hsc70 and Hsp90 with low micromolar affinities. Mutation of amino acids involved in EEVD binding disrupts the interaction. In vivo, ZK370.8 is localized to mitochondria in tissues with known chaperone requirements, while C34B2.5 colocalizes with Hsc70 in intestinal cells. The highest-ranking open reading frame with non-conserved EEVD-interacting residues, F52H3.5, did not show any binding to Hsc70 or Hsp90, suggesting that only about 15 of the TPR-domain-containing proteins in C. elegans interact with chaperones, while the many others may have evolved to bind other ligands.

  6. Nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans (chlorophyceae)

    SciTech Connect

    Toby, A.L.; Kemp, C.L.

    1980-06-01

    Reversion of an acetate requiring strain and the induction of sectored colonies are used to establish optimal conditions for nitrosoguanidine and ultraviolet light mutagenesis in Eudorina elegans Ehrenberg. Nitrosoguanidine is more effective in causing reversion of the acetate requiring strain and inducing auxotrophs. Morphogenetic mutants are more readily induced by ultraviolet light. The effectiveness of ultraviolet light as a mutagen is cell cycle dependent whereas the mutagenic action of nitrosoguanidine is not.

  7. A mutational analysis of Caenorhabditis elegans in space.

    PubMed

    Zhao, Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  8. Biotransformation of Malachite Green by the Fungus Cunninghamella elegans

    PubMed Central

    Cha, Chang-Jun; Doerge, Daniel R.; Cerniglia, Carl E.

    2001-01-01

    The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized the triphenylmethane dye malachite green with a first-order rate constant of 0.029 μmol h−1 (mg of cells)−1. Malachite green was enzymatically reduced to leucomalachite green and also converted to N-demethylated and N-oxidized metabolites, including primary and secondary arylamines. Inhibition studies suggested that the cytochrome P450 system mediated both the reduction and the N-demethylation reactions. PMID:11526047

  9. A soil bioassay using the nematode Caenorhabditis elegans

    SciTech Connect

    Freeman, M.N.; Peredney, C.L.; Williams, P.L.

    1999-07-01

    Caenorhabditis elegans is a free-livings soil nematode that is commonly used as a biological model. Recently, much work has been done using the nematode as a toxicological model as well. Much of the work involving C. elegans has been performed in aquatic media, since it lives in the interstitial water of soil. However, testing in soil would be expected to more accurately reproduce the organism's normal environment and may take into consideration other factors not available in an aquatic test, i.e., toxicant availability effects due to sorption, various chemical interactions, etc. This study used a modification of a previous experimental protocol to determine 24h LC{sub 50} values for Cu in a Cecil series soil mixture, and examined the use of CuCl{sub 2} as a reference toxicant for soil toxicity testing with C. elegans. Three different methods of determining percent lethality were used, each dependent on how the number of worms missing after the recovery process was used in the lethality calculations. Only tests having {ge}80% worm recovery and {ge}90% control survival were used in determining the LC{sub 50}s, by Probit analysis. The replicate LC{sub 50} values generated a control chart for each method of calculating percent lethality. The coefficient of variation (CV) for each of the three methods was {le}14%. The control charts and the protocol outlined in this study are intended to be used to assess test organism health and monitor precision of future soil toxicity tests with C. elegans.

  10. Genomic Analysis of Stress Response against Arsenic in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H.; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  11. Biotransformation of fluorene by the fungus Cunninghamella elegans

    SciTech Connect

    Pothuluri, J.V.; Freeman, J.P.; Evans, F.E.; Cerniglia, C.E. )

    1993-06-01

    Fluorene, a tricyclic aromatic hydrocarbon, is formed during the combustion of fossil fuels and is an important pollutant of aquatic ecosystems where it is highly toxic to fish and algae. Few studies on microbial biodegradation of fluorene have been reported. This investigation describes the metabolism of fluorene by the fungus Cunninghamella elegans ATCC 36112 and the identification of major metabolites. 26 refs., 2 figs., 1 tab.

  12. Mating Damages the Cuticle of C. elegans Hermaphrodites

    PubMed Central

    Woodruff, Gavin C.; Knauss, Christine M.; Maugel, Timothy K.; Haag, Eric S.

    2014-01-01

    Lifespan costs to reproduction are common across multiple species, and such costs could potentially arise through a number of mechanisms. In the nematode Caenorhabditis elegans, it has been suggested that part of the lifespan cost to hermaphrodites from mating results from physical damage owing to the act of copulation itself. Here, we examine whether mating damages the surface of the hermaphrodite cuticle via scanning electron microscopy. It is found that mated hermaphrodites suffered delamination of cuticle layers surrounding the vulva, and that the incidence of such damage depends on genetic background. Unmated hermaphrodites demonstrated almost no such damage, even when cultured in soil with potentially abrasive particles. Thus, a consequence of mating for C. elegans hermaphrodites is physical cuticle damage. These experiments did not assess the consequences of cuticle damage for lifespan, and the biological significance of this damage remains unclear. We further discuss our results within the context of recent studies linking the lifespan cost to mating in C. elegans hermaphrodites to male secretions. PMID:25105881

  13. Undulatory Locomotion of Caenorhabditis elegans on Wet Surfaces

    NASA Astrophysics Data System (ADS)

    Shen, X. N.; Sznitman, J.; Krajacic, P.; Lamitina, T.; Arratia, P. E.

    2012-06-01

    The physical and bio-mechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode {\\it C. elegans}, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the {\\it C. elegans} crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels. We find that the normal and tangential surface drag force coefficients during crawling are approximately 220 and 22, respectively, and the drag coefficient ratio is approximately 10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that changes in the motility gait of {\\it C. elegans} is most likely due to the nematode's adaptive response to environments characterized by different drag coefficient ratios.

  14. Mechanistic analysis of the search behaviour of Caenorhabditis elegans

    PubMed Central

    Salvador, Liliana C. M.; Bartumeus, Frederic; Levin, Simon A.; Ryu, William S.

    2014-01-01

    A central question in movement research is how animals use information and movement to promote encounter success. Current random search theory identifies reorientation patterns as key to the compromise between optimizing encounters for both nearby and faraway targets, but how the balance between intrinsic motor programmes and previous environmental experience determines the occurrence of these reorientation behaviours remains unknown. We used high-resolution tracking and imaging data to describe the complete motor behaviour of Caenorhabditis elegans when placed in a novel environment (one in which food is absent). Movement in C. elegans is structured around different reorientation behaviours, and we measured how these contributed to changing search strategies as worms became familiar with their new environment. This behavioural transition shows that different reorientation behaviours are governed by two processes: (i) an environmentally informed ‘extrinsic’ strategy that is influenced by recent experience and that controls for area-restricted search behaviour, and (ii) a time-independent, ‘intrinsic’ strategy that reduces spatial oversampling and improves random encounter success. Our results show how movement strategies arise from a balance between intrinsic and extrinsic mechanisms, that search behaviour in C. elegans is initially determined by expectations developed from previous environmental experiences, and which reorientation behaviours are modified as information is acquired from new environments. PMID:24430127

  15. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.

    PubMed

    Hu, Liang; Ye, Jinjuan; Tan, Haowei; Ge, Anle; Tang, Lichun; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2015-08-01

    Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs.

  16. Genome Editing in C. elegans and Other Nematode Species.

    PubMed

    Sugi, Takuma

    2016-01-01

    Caenorhabditis elegans, a 1 mm long free-living nematode, is a popular model animal that has been widely utilized for genetic investigations of various biological processes. Characteristic features that make C. elegans a powerful model of choice for eukaryotic genetic studies include its rapid life cycle (development from egg to adult in 3.5 days at 20 °C), well-annotated genome, simple morphology (comprising only 959 somatic cells in the hermaphrodite), and transparency (which facilitates non-invasive fluorescence observations). However, early approaches to introducing mutations in the C. elegans genome, such as chemical mutagenesis and imprecise excision of transposons, have required large-scale mutagenesis screens. To avoid this laborious and time-consuming procedure, genome editing technologies have been increasingly used in nematodes including C. briggsae and Pristionchus pacificus, thereby facilitating their genetic analyses. Here, I review the recent progress in genome editing technologies using zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in nematodes and offer perspectives on their use in the future. PMID:26927083

  17. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.

    PubMed

    Hu, Liang; Ye, Jinjuan; Tan, Haowei; Ge, Anle; Tang, Lichun; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2015-08-01

    Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs. PMID:26320797

  18. Homologue pairing, recombination and segregation in Caenorhabditis elegans.

    PubMed

    Zetka, M

    2009-01-01

    Meiosis in the free-living, hermaphroditic nematode Caenorhabditis elegans is marked by the same highly conserved features observed in other sexually reproducing systems. Accurate chromosome segregation at the meiotic divisions depends on earlier landmark events of meiotic prophase, including the pairing of homologous chromosomes, synapsis between them, and the formation of crossovers. Dissection of these processes has revealed a unique simplification of meiotic mechanisms that impact the interpretation of meiotic chromosome behaviour in more complex systems. Chromosome sites required for chromosome pairing are consolidated to one end of each chromosome, the many sites of recombination initiation are resolved into a single crossover for each chromosome pair, and the diffuse (holocentric) kinetic activity that extends along the length of the mitotic chromosomes is reduced to a single end of each meiotic chromosome. Consequently, studies from the nematode have illuminated and challenged long-standing concepts of homologue pairing mechanisms, crossover interference, and kinetochore structure. Because chromosome pairing, synapsis, and recombination can proceed independently of one another, C. elegans has provided a simplified system for studying these processes and the mechanisms mediating their coordination during meiosis. This review covers the major features of C. elegans meiosis with emphasis on its contributions to understanding essential meiotic processes. PMID:18948706

  19. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  20. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  1. Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans.

    PubMed

    Stastna, Jana J; Snoek, L Basten; Kammenga, Jan E; Harvey, Simon C

    2015-11-05

    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction.

  2. Black tea increased survival of Caenorhabditis elegans under stress.

    PubMed

    Xiong, Li-Gui; Huang, Jian-An; Li, Juan; Yu, Peng-Hui; Xiong, Zhe; Zhang, Jian-Wei; Gong, Yu-Shun; Liu, Zhong-Hua; Chen, Jin-Hua

    2014-11-19

    The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans. PMID:25345740

  3. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    SciTech Connect

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru . E-mail: ogura@gpo.kumamoto-u.ac.jp; Yamanaka, Kunitoshi . E-mail: yamanaka@gpo.kumamoto-u.ac.jp

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.

  4. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    PubMed

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  5. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  6. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans

    PubMed Central

    Kesäniemi, Jenni E.; Heikkinen, Liisa; Knott, K. Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  7. Direct micro-mechanical measurements on C. elegans

    NASA Astrophysics Data System (ADS)

    Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari

    2013-03-01

    The millimeter-sized nematode Caenorhabditis elegans provides an excellent biophysical system for both static and dynamic biomechanical studies. The undulatory motion exhibited by this model organism as it crawls or swims through a medium is ubiquitous in nature at scales from microns to meters. A successful description of this form of locomotion requires knowledge of the material properties of the crawler, as well as its force output as it moves. Here we present an experimental technique with which the material properties and dynamics of C. elegans can be directly probed. By using the deflection of a flexible micropipette, the bending stiffness of C. elegans has been measured at all stages of its life cycle, as well as along the body of the adult worm. The mechanical properties of the worm are modelled as a viscoelastic material which provides new insights into its material properties. The forces exerted by the worm during undulatory motion are also discussed. Direct experimental characterization of this model organism provides guidance for theoretical treatments of undulatory locomotion in general.

  8. Caenorhabditis elegans is a useful model for anthelmintic discovery

    PubMed Central

    Burns, Andrew R.; Luciani, Genna M.; Musso, Gabriel; Bagg, Rachel; Yeo, May; Zhang, Yuqian; Rajendran, Luckshika; Glavin, John; Hunter, Robert; Redman, Elizabeth; Stasiuk, Susan; Schertzberg, Michael; Angus McQuibban, G.; Caffrey, Conor R.; Cutler, Sean R.; Tyers, Mike; Giaever, Guri; Nislow, Corey; Fraser, Andy G.; MacRae, Calum A.; Gilleard, John; Roy, Peter J.

    2015-01-01

    Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery. PMID:26108372

  9. RNAi-Mediated Inactivation of Autophagy Genes in Caenorhabditis elegans.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-02-01

    RNA interference (RNAi) is a process that results in the sequence-specific silencing of endogenous mRNA through the introduction of double-stranded RNA (dsRNA). In the nematode Caenorhabditis elegans, RNA inactivation can be used at any specific developmental stage or during adulthood to inhibit a given target gene. Investigators can take advantage of the fact that, in C. elegans, RNAi is unusual in that it is systemic, meaning that dsRNA can spread throughout the animal and can affect virtually all tissues except neurons. Here, we describe a protocol for the most common method to achieve RNAi in C. elegans, which is to feed them bacteria that express dsRNA complementary to a specific target gene. This method has various advantages, including the availability of libraries that essentially cover the whole genome, the ability to treat animals at any developmental stage, and that it is relatively cost effective. We also discuss how RNAi specific to autophagy genes has proven to be an excellent method to study the role of these genes in autophagy, as well as other cellular and developmental processes, while also highlighting the caveats that must be applied. PMID:26832686

  10. Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans

    PubMed Central

    Stastna, Jana J.; Snoek, L. Basten; Kammenga, Jan E.; Harvey, Simon C.

    2015-01-01

    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction. PMID:26539794

  11. Caenorhabditis elegans as an undergraduate educational tool for teaching RNAi.

    PubMed

    Andersen, Janet; Krichevsky, Alexander; Leheste, Joerg R; Moloney, Daniel J

    2008-11-01

    Discovery of RNA-mediated interference (RNAi) is widely recognized as one of the most significant molecular biology breakthroughs in the past 10 years. There is a need for science educators to develop teaching tools and laboratory activities that demonstrate the power of this new technology and help students to better understand the RNAi process. C. elegans is an ideal model organism for the undergraduate laboratory because of the simplicity of worm maintenance, its well-studied genetic background, and the fact that it can be employed as a model organism in laboratory environments where vertebrate research is restricted. Certain unique features of C. elegans make it a very suitable organism for RNAi studies. Specifically, nematode strains highly sensitive to RNAi are readily available from public sources, and RNAi induction by a feeding method is an uncomplicated procedure that lends itself readily as an educational tool. In this article, we provide a detailed depiction of the use of C. elegans as an RNAi educational tool, describing two separate RNAi-based experiments. One is a qualitative experiment where students can examine the effects of knocking down the unc-22 gene involved in the regulation of muscle contraction, which results in a "twitching" phenotype. The other experiment is a quantitative RNAi experiment, where students measure the effect of knocking down the lsy-2 gene involved in neuronal development. Although these experiments are designed for a college-level study, nematode research projects can also be accomplished in secondary school facilities.

  12. Genome Editing in C. elegans and Other Nematode Species

    PubMed Central

    Sugi, Takuma

    2016-01-01

    Caenorhabditis elegans, a 1 mm long free-living nematode, is a popular model animal that has been widely utilized for genetic investigations of various biological processes. Characteristic features that make C. elegans a powerful model of choice for eukaryotic genetic studies include its rapid life cycle (development from egg to adult in 3.5 days at 20 °C), well-annotated genome, simple morphology (comprising only 959 somatic cells in the hermaphrodite), and transparency (which facilitates non-invasive fluorescence observations). However, early approaches to introducing mutations in the C. elegans genome, such as chemical mutagenesis and imprecise excision of transposons, have required large-scale mutagenesis screens. To avoid this laborious and time-consuming procedure, genome editing technologies have been increasingly used in nematodes including C. briggsae and Pristionchus pacificus, thereby facilitating their genetic analyses. Here, I review the recent progress in genome editing technologies using zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in nematodes and offer perspectives on their use in the future. PMID:26927083

  13. Mechanosensitive unpaired innexin channels in C. elegans touch neurons

    PubMed Central

    Sangaletti, Rachele; Dahl, Gerhard

    2014-01-01

    Invertebrate innexin proteins share sequence homology with vertebrate pannexins and general membrane topology with both pannexins and connexins. While connexins form gap junctions that mediate intercellular communication, pannexins are thought to function exclusively as plasma membrane channels permeable to both ions and small molecules. Undoubtedly, certain innexins function as gap junction proteins. However, due to sequence similarity to pannexins, it was postulated that innexins also function as plasma membrane channels. Indeed, some of the leech innexins were found to mediate ATP release as unpaired membrane channels with shared pharmacology to pannexin channels. We show here that Caenorhabditis elegans touch-sensing neurons express a mechanically gated innexin channel with a conductance of ∼1 nS and voltage-dependent and K+-selective subconductance state. We also show that C. elegans touch neurons take up ethidium bromide through a mechanism that is activated and blocked by innexin activating stimuli and inhibitors, respectively. Finally, we present evidence that touch neurons' innexins are required for cell death induced by chemical ischemia. Our work demonstrates that innexins function as plasma membrane channels in native C. elegans neurons, where they may play a role in pathological cell death. PMID:25252948

  14. The assembly and maintenance of epithelial junctions in C. elegans

    PubMed Central

    Lynch, Allison M.; Hardin, Jeff

    2010-01-01

    The epithelial tissues of the C. elegans embryo provide a “minimalist” system for examining phylogenetically conserved proteins that function in epithelial polarity and cell-cell adhesion in a multicellular organism. In this review, we provide an overview of three major molecular complexes at the apical surface of epithelial cells in the C. elegans embryo: the cadherin-catenin complex, the more basal DLG-1/AJM-1 complex, and the apical membrane domain, which shares similarities with the subapical complex in Drosophila and the PAR/aPKC complex in vertebrates. We discuss how the assembly of these complexes contributes to epithelial polarity and adhesion, proteins that act as effectors and/or regulators of each subdomain, and how these complexes functionally interact during embryonic morphogenesis. Although much remains to be clarified, significant progress has been made in recent years to clarify the role of these protein complexes in epithelial morphogenesis, and suggests that C. elegans will continue to be a fruitful system in which to elucidate functional roles for these proteins in a living embryo. PMID:19273138

  15. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.

    PubMed

    Kesäniemi, Jenni E; Heikkinen, Liisa; Knott, K Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  16. Two-color GFP expression system for C. elegans.

    PubMed

    Miller, D M; Desai, N S; Hardin, D C; Piston, D W; Patterson, G H; Fleenor, J; Xu, S; Fire, A

    1999-05-01

    We describe the use of modified versions of the Aequora victoria green fluorescent protein (GFP) to simultaneously follow the expression and distribution of two different proteins in the nematode, Caenorhabditis elegans. A cyan-colored GFP derivative, designated CFP, contains amino acid (aa) substitutions Y66W, N146I, M153T and V163A relative to the original GFP sequence and is similar to the previously reported "W7" form. A yellow-shifted GFP derivative, designated YFP, contains aa substitutions S65G, V68A, S72A and T203Y and is similar to the previously described "I0C" variant. Coding regions for CFP and YFP were constructed in the context of a high-activity C. elegans expression system. Previously characterized promoters and localization signals have been used to express CFP and YFP in C. elegans. Filter sets designed to distinguish YFP and CFP fluorescence spectra allowed visualization of the two distinct forms of GFP in neurons and in muscle cells. A series of expression vectors carrying CFP and YFP have been constructed and are being made available to the scientific community.

  17. Control of Oocyte Growth and Meiotic Maturation in C. elegans

    PubMed Central

    Kim, Seongseop; Spike, Caroline; Greenstein, David

    2013-01-01

    In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. C. elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gαs-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition. PMID:22872481

  18. Tat-mediated protein delivery in living Caenorhabditis elegans

    SciTech Connect

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric . E-mail: eric.chevet@mcgill.ca

    2007-01-19

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm.

  19. Black tea increased survival of Caenorhabditis elegans under stress.

    PubMed

    Xiong, Li-Gui; Huang, Jian-An; Li, Juan; Yu, Peng-Hui; Xiong, Zhe; Zhang, Jian-Wei; Gong, Yu-Shun; Liu, Zhong-Hua; Chen, Jin-Hua

    2014-11-19

    The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans.

  20. Pan-neuronal imaging in roaming Caenorhabditis elegans.

    PubMed

    Venkatachalam, Vivek; Ji, Ni; Wang, Xian; Clark, Christopher; Mitchell, James Kameron; Klein, Mason; Tabone, Christopher J; Florman, Jeremy; Ji, Hongfei; Greenwood, Joel; Chisholm, Andrew D; Srinivasan, Jagan; Alkema, Mark; Zhen, Mei; Samuel, Aravinthan D T

    2016-02-23

    We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.

  1. Electrotaxis of Caenorhabditis elegans in a microfluidic environment.

    PubMed

    Rezai, Pouya; Siddiqui, Asad; Selvaganapathy, Ponnambalam Ravi; Gupta, Bhagwati P

    2010-01-21

    The nematode (worm) Caenorhabditis elegans is one of the most widely studied organisms for biomedical research. Currently, C. elegans assays are performed either on petri dishes, 96-well plates or using pneumatically controlled microfluidic devices. In this work, we demonstrate that the electric field can be used as a powerful stimulus to control movement of worms in a microfluidic environment. We found that this response (termed electrotaxis) is directional, fully penetrant and highly sensitive. The characterization of electrotaxis revealed that it is mediated by neuronal activity that varies with the age and size of animals. Although the speed of swimming is unaffected by changes in the electric field strength and direction, our results show that each developmental stage responds to a specific range of electric field with a specific speed. Finally, we provide evidence that the exposure to the electric field has no discernible effect on the ability of animals to survive and reproduce. Our method has potential in precisely controlling, directing, and transporting worms in an efficient and automated manner. This opens up significant possibilities for high-throughput screening of C. elegans for drug discovery and other applications. PMID:20066250

  2. An analysis of behavioral plasticity in male Caenorhabditis elegans.

    PubMed

    Mah, K B; Rankin, C H

    1992-11-01

    Caenorhabditis elegans is a simple soil-dwelling nematode which has two sexes, hermaphrodite and male. The male C. elegans is differentiated from the hermaphrodite by the presence of 14 sensory structures in the tail. In this study, we compared the behavioral responses of males and hermaphrodites to head-touch and to tap. We hypothesized that the anatomical difference in sensory structures might result in behavioral differences in the reversal response to vibratory stimulation (a tap to the side of the holding dish). In the response to increasing intensities of tap, both sexes showed an increase in response magnitude, with the males showing larger responses than hermaphrodites. In addition, the male was shown to be capable of simple nonassociative learning: it demonstrated habituation and recovery from habituation in a similar manner as the hermaphrodite. Tail-touch-induced inhibition of the reversal response appeared to be similar in males and hermaphrodites. The evidence suggests that the touch withdrawal circuit in hermaphrodites is also present in the male C. elegans, and that the subtle differences in response to tap seen in males may result from the additional sensory receptors of the copulatory bursa of the tail. It seems clear from these studies that these structures do not play a key role in the male worm's response to tap. PMID:1456943

  3. [Physiological characteristics of Pinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica seedlings on sandy lands under salt-alkali stresses].

    PubMed

    Meng, Peng; Li, Yu-Ling; Zhang, Bai-xi

    2013-02-01

    For the popularization of Pinus densiflora var. zhangwuensis, a new afforestation tree species on the desertified and salinized-alkalized lands in Northern China, and to evaluate the salinity-alkalinity tolerance of the tree species and to better understand the tolerance mechanisms, a pot experiment with 4-year old P. densiflora var. zhangwuensis and P. sylvestris var. mongolica was conducted to study their seedlings growth and physiological and biochemical indices under the effects of three types salt (NaCl, Na2CO3, and NaHCO3 ) stresses and of alkali (NaOH) stress. Under the salt-alkali stresses, the injury level of P. densiflora var. zhangwuensis was lower, and the root tolerance index was higher. The leaf catalase (CAT) activity increased significantly by 22. 6 times at the most, as compared with the control; the leaf malondialdehyde (MDA) content had no significant increase; the leaf chlorophyll (Chl) content had a smaller decrement; and the leaf water content (LWC) increased slightly. P. sylvestris var. mongolica responded differently to the salt-alkali stresses. Its leaf CAT activity had less change, MDA content increased significantly, Chl content had significant decrease, and LWC decreased slightly. It was suggested that P. densi-flora var. zhangwuensis had a greater salinity-alkalinity tolerance than P. sylvestris var. mongolica. The higher iron concentration in P. densiflora var. zhangwuensis needles enhanced the CAT activity and Chl content, whereas the higher concentrations of zinc and copper were associated with the stronger salinity-alkalinity tolerance. PMID:23705379

  4. [Photosynthetic parameters and physiological indexes of Paris polyphylla var. yunnanensis influenced by arbuscular mycorrhizal fungi].

    PubMed

    Wei, Zheng-xin; Guo, Dong-qin; Li, Hai-feng; Ding, Bo; Zhang, Jie; Zhou, Nong; Yu, Jie

    2015-10-01

    Through potted inoculation test at room temperature and indoor analysis, the photosynthetic parameters and physiological and biochemical indexes of Paris polyphylla var. yunnanensis were observed after 28 arbuscular mycorrhizal (AM) fungi were injected into the P. polyphylla var. yunnanensis growing in a sterile soil environment. The results showed that AM fungi established a good symbiosis with P. polyphylla var. yunnanensis. The AM fungi influenced the photosynthetic parameters and physiological and biochemical indexes of P. polyphylla var. yunnanensis. And the influences were varied depending on different AM fungi. The application of AM fungi improved photosynthesis intensity of P. polyphylla var. yunnanensis mesophyll cells, the contents of soluble protein and soluble sugar, protective enzyme activity of P. polyphylla var. yunnanensis leaf, which was beneficial to resist the adverse environment and promote the growth of P. polyphylla var. yunnanensis. Otherwise, there was a certain mutual selectivity between P. polyphylla var. yunnanensis and AM fungi. From the comprehensive effect of inoculation, Racocetra coralloidea, Scutellospora calospora, Claroideoglomus claroideum, S. pellucida and Rhizophagus clarus were the most suitable AM fungi to P. polyphylla var. yunnanensis when P. polyphylla var. yunnanensis was planted in the field.

  5. [Photosynthetic parameters and physiological indexes of Paris polyphylla var. yunnanensis influenced by arbuscular mycorrhizal fungi].

    PubMed

    Wei, Zheng-xin; Guo, Dong-qin; Li, Hai-feng; Ding, Bo; Zhang, Jie; Zhou, Nong; Yu, Jie

    2015-10-01

    Through potted inoculation test at room temperature and indoor analysis, the photosynthetic parameters and physiological and biochemical indexes of Paris polyphylla var. yunnanensis were observed after 28 arbuscular mycorrhizal (AM) fungi were injected into the P. polyphylla var. yunnanensis growing in a sterile soil environment. The results showed that AM fungi established a good symbiosis with P. polyphylla var. yunnanensis. The AM fungi influenced the photosynthetic parameters and physiological and biochemical indexes of P. polyphylla var. yunnanensis. And the influences were varied depending on different AM fungi. The application of AM fungi improved photosynthesis intensity of P. polyphylla var. yunnanensis mesophyll cells, the contents of soluble protein and soluble sugar, protective enzyme activity of P. polyphylla var. yunnanensis leaf, which was beneficial to resist the adverse environment and promote the growth of P. polyphylla var. yunnanensis. Otherwise, there was a certain mutual selectivity between P. polyphylla var. yunnanensis and AM fungi. From the comprehensive effect of inoculation, Racocetra coralloidea, Scutellospora calospora, Claroideoglomus claroideum, S. pellucida and Rhizophagus clarus were the most suitable AM fungi to P. polyphylla var. yunnanensis when P. polyphylla var. yunnanensis was planted in the field. PMID:27062807

  6. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  7. Polyprenols from the needles of Taxus chinensis var. mairei.

    PubMed

    Yu, Jinhui; Wang, Yanbin; Qian, Hua; Zhao, Yunpeng; Liu, Bentong; Fu, Chengxin

    2012-07-01

    Polyprenols with various pharmacological activities were first isolated from Taxus chinensis var. mairei, which is native to China, and were identified by a high performance liquid chromatography/mass spectrometry (HPLC/MS), (1)H nuclear magnetic resonance ((1)H NMR), (13)C NMR and infrared (IR) spectroscopy. The taxus polyprenols (TPs) had two maxima of polyprenol-17 and polyprenol-21 and different from polyprenols distributed in other plant species. A reversed-phase HPLC method with a simple gradient elution was established, and the proposed combined peak area method for the quantification of polyprenols was verified. The analysis indicated that TPs were present in the old needles at levels as high as 3% and that T. chinensis var. mairei could be an alternative botanical source for the extraction of polyprenols.

  8. [Isoflavones and flavans from Millettia nitida var. hirsutissima].

    PubMed

    Yu, Wan-wan; Jin, Chen; Shuang, Peng-cheng; Liao, Hui; Zhang, Ling

    2015-06-01

    The current study to separate and identify constituents from Millettia nitida var. hirsutissima. The compounds from Millettia nitida var. hirsutissima were isolated by means of various chromatographic techniques such as column chromatography over ODS and Sephadex LH-20, preparative HPLC, and the structures of these isolated compounds were identified through spectroscopic analyses. Nine isoflavonoids and two flavans were isolated and identified as 5-O-methy genistein (1), 7-hydroxy-3',4'-dimethoxyisoflavone (2), ononin (3), catechin (4), formononetin (5), genistein (6), calycosin (7), (-)-gallocatechin (8), sissotrin (9), wistin (10), daidzin (11). Compounds 1, 2, 9 are obtained from the genus Millettia for the first time,and compounds 4, 8 are isolated from this plant for the first time. PMID:26591526

  9. New clerodane diterpenes from Tinospora sagittata var. yunnanensis.

    PubMed

    Jiang, Zhi-Yong; Li, Wen-Juan; Jiao, Li-Xiang; Guo, Jun-Ming; Tian, Kai; Yang, Chun-Tao; Huang, Xiang-Zhong

    2014-03-01

    Four new clerodane diterpenes, namely sagittatayunnanosides A-D (1-4), were isolated from the roots of Tinospora sagittata var. yunnanensis, together with two known compounds, tinospinoside C (5) and tinospinoside E (6). The structures of the four new compounds were well elucidated by extensive analyses of the MS, IR, and 1D and 2D NMR data. The cytotoxic and antifouling activities of compounds 1-6 were evaluated. PMID:24634023

  10. New lignans from the heartwood of Chamaecyparis obtusa var. formosana.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chia-Hsien; Lin, Yun-Lian

    2002-07-01

    Four new lignans, 3',4'-O,O-demethylenehinokinin (1), chamalignolide (2), 8'beta-hydroxyhinokinin (3) and 7beta,8beta-epoxyzuonin A (4), as well as (-)-hinokinin (5), and (-)-zuonin A (6), were isolated from the heartwood of Chamaecyparis obtusa var. formosana. The structures of these lignans were unambiguously determined by spectroscopic methods. And the absolute configuration of 1 was elucidated with a circular dichroism (CD) spectrum. PMID:12130860

  11. Synthesis of Calocybe indica var. APK2 polysaccharide repeating unit.

    PubMed

    Zhang, Lei; Zhu, Xiangming

    2014-06-01

    The first total synthesis of p-methoxyphenyl α-l-fucopyranosyl-(1→6)-α-d-galactopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2) was achieved starting from five monosaccharide building blocks. This structure represents the repeating unit of the polysaccharide isolated from edible mushroom Calocybe indica var. APK2, and was synthesized in high overall yield via a convergent '3+2' glycosylation strategy.

  12. Graft-related endocarditis caused by Neosartorya fischeri var. spinosa.

    PubMed Central

    Summerbell, R C; de Repentigny, L; Chartrand, C; St Germain, G

    1992-01-01

    The first case of endocarditis caused by Neosartorya fischeri var. spinosa is reported. The patient was a child who received a calf pericardium graft after removal of a previously inserted Dacron graft associated with deterioration of adjacent tissue. Copious vegetations removed from the heart were found to be composed of septate hyaline fungal filaments. The fungus was recognized in culture by its bivalved, winged, spiny ascospores, its Aspergillus fischerianus anamorph, and its thermotolerance. Images PMID:1624579

  13. Allozyme Variation in Endangered Castanea pumila var. pumila

    PubMed Central

    FU, YUQING; DANE, FENNY

    2003-01-01

    Allozyme genetic variation in 12 populations of the endangered Castanea pumila var. pumila (Allegheny chinkapin), sampled across the natural range of the species in the United States, was evaluated using 11 loci from seven enzyme systems. At the species level, the percentage of polymorphic loci (Ps) was 72·7 %, the mean number of alleles per locus (As) was 1·9, the mean number of alleles per polymorphic locus (APs) was 2·3, the effective number of alleles per locus (Aes) was 1·5 and the genetic diversity (Hes) was 0·296. At the population level, Pp = 49·2 %, Ap = 1·5, Aep = 1·4, APp = 2·1 and Hep = 0·21. Most of the allozyme variation (70 %) in C. pumila var. pumila occurred within populations. Wright’s gene flow rate [Nm(W)] was as low as 0·57. Population differentiation along the species range was not detected. Populations of C. pumila var. pumila in Florida had the most variable levels of genetic diversity, but populations in Virginia and Mississippi also showed high levels. Based on the results of this study, conservation management strategies are discussed. PMID:12829445

  14. [Transcriptome profiling and analysis of Panax japonicus var. major].

    PubMed

    Zhang, Shao-peng; Jin, Jian; Hu, Bing-xiong; Wu, Ya-yun; Yan, Qi; Zeng, Wan-yong; Zheng, Yong-lian; Zhang Xi-feng; Chen, Ping

    2015-06-01

    The rhizome of Panax japonicus var. major have been used as the natural medicinal agent by Chinese traditional doctors for more than thousand years. Most of the therapeutic effects of P. japonicus var. major had been reported due to the presence of tetracyclic or pentacyclic triterpene saponins. In this study, Illumina pair-end RNA-sequencing and de novo splicing were done in order to understand the pathway of triterpenoid saponins in this species. The valid reads data of 15. 6 Gb were obtained. The 62 240 unigenes were finally obtained by de novo splicing. After annotation, we discovered 19 unigenes involved in ginsenoside backbone biosynthesis. Additionally, 69 unigenes and 18 unigenes were predicted to have potential function of cytochrome P450 and UDP-glycosyltransferase based on the annotation results, which may encode enzymes responsible for ginsenoside backbone modification. This study provides global expressed datas for P. japonicus var. major, which will contribute significantly to further genome-wide research and analysis for this species.

  15. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning

    PubMed Central

    Oliver, C. Ryan; Gourgou, Eleni; Bazopoulou, Daphne; Chronis, Nikos; Hart, A. John

    2016-01-01

    Caenorhabditis elegans (C. elegans) is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar) substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry. PMID:26730604

  16. Neuronal regulation of ascaroside response during mate response behavior in the nematode Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-molecule signaling plays an important role in the biology of Caenorhabditis elegans. We have previously shown that ascarosides, glycosides of the dideoxysugar ascarylose regulate both development and behavior in C. elegans The mating signal consists of a synergistic blend of three dauer-induc...

  17. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  18. Using RNAi in C. "elegans" to Demonstrate Gene Knockdown Phenotypes in the Undergraduate Biology Lab Setting

    ERIC Educational Resources Information Center

    Roy, Nicole M.

    2013-01-01

    RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…

  19. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  20. A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed "C. elegans" Research

    ERIC Educational Resources Information Center

    Lindblom, Tim

    2006-01-01

    The model organism, "Caenorhabditis elegans," in addition to being well suited to genetics and cell biology teaching applications, can also be useful in the physiology laboratory. In this article, the author describes how students in a junior level college Comparative Physiology course have made use of "C. elegans" in semester-long,…

  1. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning.

    PubMed

    Oliver, C Ryan; Gourgou, Eleni; Bazopoulou, Daphne; Chronis, Nikos; Hart, A John

    2016-01-01

    Caenorhabditis elegans (C. elegans) is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar) substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry.

  2. Mapping a Mutation in "Caenorhabditis elegans" Using a Polymerase Chain Reaction-Based Approach

    ERIC Educational Resources Information Center

    Myers, Edith M.

    2014-01-01

    Many single nucleotide polymorphisms (SNPs) have been identified within the "Caenorhabditis elegans" genome. SNPs present in the genomes of two isogenic "C. elegans" strains have been routinely used as a tool in forward genetics to map a mutation to a particular chromosome. This article describes a laboratory exercise in which…

  3. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning.

    PubMed

    Oliver, C Ryan; Gourgou, Eleni; Bazopoulou, Daphne; Chronis, Nikos; Hart, A John

    2016-01-01

    Caenorhabditis elegans (C. elegans) is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar) substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry. PMID:26730604

  4. Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans

    PubMed Central

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2014-01-01

    Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway. PMID:25147937

  5. FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    G-protein coupled receptors (GPCRs) are ancient molecules that sense environmental and physiological signals. Currently, the majority of the predicted Caenorhabditis elegans GPCRs are orphan. Here, we describe the characterization of such an orphan C. elegans GPCR, which is categorized in the tachyk...

  6. Oil composition and some morphological characters of Crambe orientalis var. orientalis and Crambe tataria var. tataria from Turkey.

    PubMed

    Comlekcioglu, N; Karaman, S; Ilcim, A

    2008-04-15

    Native Crambe orientalis var. orientalis and Crambe tataria var. tataria collected from Kahramanmaras flora were morphologically examined and seed oil composition was determined. Volatile acid and fatty acid composition of seeds were examined with GC and GC/MS and the ratio of volatile acids to total oil was 3.49% in C. orientalis and 17.49% in C. tataria. The ratio of fatty acids to total oil was 92.03 and 67.28% in C. orientalis, and C. Tataria, respectively. The amount of erucic acid was 39.29% in C. orientalis and 29.87% in C. tataria. High linolenic acid (21.21%) and linoleic acid (12.42%) was found in C. orientalis oil, and high linolenic acid (15.01%) and linoleic acid (9.00%) was also found in C. tataria oil.

  7. Comparative Functional Analysis of the Caenorhabditis elegans and Drosophila melanogaster Proteomes

    PubMed Central

    Schrimpf, Sabine P; Weiss, Manuel; Reiter, Lukas; Ahrens, Christian H; Jovanovic, Marko; Malmström, Johan; Brunner, Erich; Mohanty, Sonali; Lercher, Martin J; Hunziker, Peter E; Aebersold, Ruedi; von Mering, Christian; Hengartner, Michael O

    2009-01-01

    The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge, we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster). We found that the abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in transcript abundance may have been partially offset during evolution by opposing changes in protein abundance. PMID:19260763

  8. Using ClinVar as a Resource to Support Variant Interpretation.

    PubMed

    Harrison, Steven M; Riggs, Erin R; Maglott, Donna R; Lee, Jennifer M; Azzariti, Danielle R; Niehaus, Annie; Ramos, Erin M; Martin, Christa L; Landrum, Melissa J; Rehm, Heidi L

    2016-01-01

    ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489

  9. Twenty novel polymorphic microsatellite primers in the critically endangered Melastoma tetramerum var. tetramerum (Melastomataceae)1

    PubMed Central

    Narita, Ayu; Izuno, Ayako; Komaki, Yoshiteru; Tanaka, Takefumi; Murata, Jin; Isagi, Yuji

    2016-01-01

    Premise of the study: Microsatellite markers were identified for Melastoma tetramerum var. tetramerum (Melastomataceae), a critically endangered shrub endemic to the Bonin Islands, to reveal genetic characteristics in wild and restored populations. Methods and Results: Using next-generation sequencing, 27 microsatellite markers were identified. Twenty of these markers were polymorphic in M. tetramerum var. tetramerum, with two to nine alleles per locus and expected heterozygosity ranging from 0.10 to 0.71. Among the 20 polymorphic markers, 15 were applicable to other closely related taxa, namely M. tetramerum var. pentapetalum, M. candidum var. candidum, and M. candidum var. alessandrense. Conclusions: These markers can be potentially useful to investigate the genetic diversity, population genetic structure, and reproductive ecology of M. tetramerum var. tetramerum as well as of the three related taxa to provide appropriate genetic information for conservation. PMID:27672521

  10. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections

    PubMed Central

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A. M.; Li, Tao; Sim, B. Kim Lee; Hoffman, Stephen L.; Kremsner, Peter G.; Mordmüller, Benjamin; Duffy, Michael F.; Tannich, Egbert

    2016-01-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  11. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    PubMed

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  12. Twenty novel polymorphic microsatellite primers in the critically endangered Melastoma tetramerum var. tetramerum (Melastomataceae)1

    PubMed Central

    Narita, Ayu; Izuno, Ayako; Komaki, Yoshiteru; Tanaka, Takefumi; Murata, Jin; Isagi, Yuji

    2016-01-01

    Premise of the study: Microsatellite markers were identified for Melastoma tetramerum var. tetramerum (Melastomataceae), a critically endangered shrub endemic to the Bonin Islands, to reveal genetic characteristics in wild and restored populations. Methods and Results: Using next-generation sequencing, 27 microsatellite markers were identified. Twenty of these markers were polymorphic in M. tetramerum var. tetramerum, with two to nine alleles per locus and expected heterozygosity ranging from 0.10 to 0.71. Among the 20 polymorphic markers, 15 were applicable to other closely related taxa, namely M. tetramerum var. pentapetalum, M. candidum var. candidum, and M. candidum var. alessandrense. Conclusions: These markers can be potentially useful to investigate the genetic diversity, population genetic structure, and reproductive ecology of M. tetramerum var. tetramerum as well as of the three related taxa to provide appropriate genetic information for conservation.

  13. Engineering Recombinant Orsay Virus Directly in the Metazoan Host Caenorhabditis elegans

    PubMed Central

    Jiang, Hongbing; Franz, Carl J.

    2014-01-01

    ABSTRACT The recent identification of Orsay virus, the first virus that is capable of naturally infecting Caenorhabditis elegans, provides a unique opportunity to explore host-virus interaction studies in this invaluable model organism. A key feature of this system is the robust genetic tractability of the host, C. elegans, which would ideally be complemented by the ability to genetically manipulate Orsay virus in parallel. To this end, we developed a plasmid-based reverse genetics system for Orsay virus by creating transgenic C. elegans strains harboring Orsay virus cDNAs. Both wild-type and mutant Orsay viruses, including a FLAG epitope-tagged recombinant Orsay virus, were generated by use of the reverse genetics system. This is the first plasmid-based virus reverse genetics system in the metazoan C. elegans. The Orsay virus reverse genetics we established will serve as a fundamental tool in host-virus interaction studies in the model organism C. elegans. IMPORTANCE To date, Orsay virus is the first and the only identified virus capable of naturally infecting Caenorhabditis elegans. C. elegans is a simple multicellular model organism that mimics many fundamental features of human biology and has been used to define many biological properties conserved through evolution. Thus, the Orsay virus-C. elegans infection system provides a unique opportunity to study host-virus interactions. In order to take maximal advantage of this system, the ability to genetically engineer mutant forms of Orsay virus would be highly desirable. Most efforts to engineer viruses have been done with cultured cells. Here we describe the creation of mutant viruses directly in the multicellular organism C. elegans without the use of cell culture. We engineered a virus expressing a genetically tagged protein that could be detected in C. elegans. This provides proof of concept for modifying Orsay virus, which will greatly facilitate studies in this experimental system. PMID:25078701

  14. VT-1161 Protects Immunosuppressed Mice from Rhizopus arrhizus var. arrhizus Infection

    PubMed Central

    Gebremariam, Teclegiorgis; Wiederhold, Nathan P.; Fothergill, Annette W.; Garvey, Edward P.; Hoekstra, William J.; Schotzinger, Robert J.; Patterson, Thomas F.; Filler, Scott G.

    2015-01-01

    We studied the efficacy of the investigational drug VT-1161 against mucormycosis. VT-1161 had more potent in vitro activity against Rhizopus arrhizus var. arrhizus than against R. arrhizus var. delemar. VT-1161 treatment demonstrated dose-dependent plasma drug levels with prolonged survival time and lowered tissue fungal burden in immunosuppressed mice infected with R. arrhizus var. arrhizus and was as effective as high-dose liposomal amphotericin B treatment. These results support further development of VT-1161 against mucormycosis. PMID:26369977

  15. An unusual clinical presentation of tinea faciei caused by Trichophyton mentagrophytes var. erinacei.

    PubMed

    Lee, Deok-Woo; Yang, Ji-Hye; Choi, Seok-Joo; Won, Chong-Hyun; Chang, Sung-Eun; Lee, Mi-Woo; Choi, Jee-Ho; Moon, Kee-Chan; Kim, Mi-Na

    2011-01-01

    Trichophyton mentagrophytes var. erinacei, the natural host of which is the hedgehog, has been found to cause highly inflammatory and pruritic eruptions, including tinea manuum, tinea corporis, nail infection, kerion, scalp infection, and tinea barbae. To our knowledge, however, no reports have been made of tinea faciei caused by Trichophyton mentagrophytes var. erinacei in the English language literature. We provide here the case of tinea faciei caused by Trichophyton mentagrophytes var. erinacei.

  16. VT-1161 Protects Immunosuppressed Mice from Rhizopus arrhizus var. arrhizus Infection.

    PubMed

    Gebremariam, Teclegiorgis; Wiederhold, Nathan P; Fothergill, Annette W; Garvey, Edward P; Hoekstra, William J; Schotzinger, Robert J; Patterson, Thomas F; Filler, Scott G; Ibrahim, Ashraf S

    2015-12-01

    We studied the efficacy of the investigational drug VT-1161 against mucormycosis. VT-1161 had more potent in vitro activity against Rhizopus arrhizus var. arrhizus than against R. arrhizus var. delemar. VT-1161 treatment demonstrated dose-dependent plasma drug levels with prolonged survival time and lowered tissue fungal burden in immunosuppressed mice infected with R. arrhizus var. arrhizus and was as effective as high-dose liposomal amphotericin B treatment. These results support further development of VT-1161 against mucormycosis. PMID:26369977

  17. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Nakajima, Masahiro; Tajima, Hirotaka; Huang, Qiang; Fukuda, Toshio

    2013-08-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system.

  18. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    PubMed

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-01

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  19. Characterizing temporal patterns in the swimming activity of Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Choi, Yeontaek; Jeon, Wonju; Kang, Seung-Ho; Lee, Sang-Hee; Chon, Tae-Soo

    2012-06-01

    The locomotion behavior of Caenorhabditis elegans has been studied extensively to understand the respective roles of neural control and biomechanics as well as the interaction between them. In the present study, we suggest a new approach to characterize the temporal patterns in the swimming behavior of the organism. The approach is based on the branching length similarity (BLS) entropy defined on a simple branching network consisting of a single node and branches. The organism's swimming activity is recorded using a charge-coupled device (CCD) camera for 3 h at a rate of 4 frames per second. In each frame, we place 13 points as nodes, those points being distributed at equal intervals along the organism's length. Thus, the organism is represented by 13 nodes and 12 edges between nodes. By using the nodes and edges, we construct two simple networks. One is formed by connecting the center point to all other points, and the other is generated from the angles between edges. The BLS entropy values are calculated as S L for the former network and S θ for the latter. We investigate the distributions of the S L and the S θ values in the phase space of S L — S θ and compare those with the values obtained from a simulated C. elegans generated by using randomly-moving chained particles along a certain angle. The comparison revealed distinctive features of the movement patterns of C. elegans during swimming activity. In addition, we briefly discuss the application of our method to bio-monitoring systems to capture behavioral changes of test organisms before and after chemical treatment at low concentrations.

  20. Anti-aging properties of Ribes fasciculatum in Caenorhabditis elegans.

    PubMed

    Jeon, Hoon; Cha, Dong Seok

    2016-05-01

    The present study investigated the effects and underlying mechanism of ethylacetate fraction of Ribes fasciculatum (ERF) on the lifespan and stress tolerance using a Caenorhabditis elegans model. The longevity activity of ERF was determined by lifespan assay under normal culture condition. The survival rate of nematodes under various stress conditions was assessed to validate the effects of ERF on the stress tolerance. To determine the antioxidant potential of ERF, the superoxide dismutase (SOD) activities and intracellular reactive oxygen species (ROS) levels were investigated. The ERF-mediated change in SOD-3 expression was examined using GFP-expressing transgenic strain. The effects of ERF on the aging-related factors were investigated by reproduction assay and pharyngeal pumping assay. The intestinal lipofuscin levels of aged nematodes were also measured. The mechanistic studies were performed using selected mutant strains. Our results indicated that ERF showed potent lifespan extension effects on the wild-type nematode under both normal and various stress conditions. The ERF treatment also enhanced the activity and expression of superoxide dismutase (SOD) and attenuated the intracellular ROS levels. Moreover, ERF-fed nematodes showed decreased lipofuscin accumulation, indicating ERF might affect age-associated changes in C. elegans. The results of mechanistic studies indicated that there was no significant lifespan extension in ERF-treated daf-2, age-1, sir-2.1, and daf-16 null mutants, suggesting that they were involved in ERF-mediated lifespan regulation. In conclusion, R. fasciculatum confers increased longevity and stress resistance in C. elegans via SIR-2.1-mediated DAF-16 activation, dependent on the insulin/IGF signaling pathway. PMID:27478096

  1. Structural properties of the Caenorhabditis elegans neuronal network.

    PubMed

    Varshney, Lav R; Chen, Beth L; Paniagua, Eric; Hall, David H; Chklovskii, Dmitri B

    2011-02-03

    Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.

  2. Polyamine-independent Expression of Caenorhabditis elegans Antizyme.

    PubMed

    Stegehake, Dirk; Kurosinski, Marc-André; Schürmann, Sabine; Daniel, Jens; Lüersen, Kai; Liebau, Eva

    2015-07-17

    Degradation of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis, is promoted by the protein antizyme. Expression of antizyme is positively regulated by rising polyamine concentrations that induce a +1 translational frameshift required for production of the full-length protein. Antizyme itself is negatively regulated by the antizyme inhibitor. In our study, the regulation of Caenorhabditis elegans antizyme was investigated, and the antizyme inhibitor was identified. By applying a novel GFP-based method to monitor antizyme frameshifting in vivo, we show that the induction of translational frameshifting also occurs under stressful conditions. Interestingly, during starvation, the initiation of frameshifting was independent of polyamine concentrations. Because frameshifting was also prevalent in a polyamine auxotroph double mutant, a polyamine-independent regulation of antizyme frameshifting is suggested. Polyamine-independent induction of antizyme expression was found to be negatively regulated by the peptide transporter PEPT-1, as well as the target of rapamycin, but not by the daf-2 insulin signaling pathway. Stress-dependent expression of C. elegans antizyme occurred morely slowly than expression in response to increased polyamine levels, pointing to a more general reaction to unfavorable conditions and a diversion away from proliferation and reproduction toward conservation of energy. Interestingly, antizyme expression was found to drastically increase in aging individuals in a postreproductive manner. Although knockdown of antizyme did not affect the lifespan of C. elegans, knockdown of the antizyme inhibitor led to a significant reduction in lifespan. This is most likely caused by an increase in antizyme-mediated degradation of ornithine decarboxylase-1 and a resulting reduction in cellular polyamine levels.

  3. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Berman, R. S.; Kenneth, O.; Sznitman, J.; Leshansky, A. M.

    2013-07-01

    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that even though the amplitude and the wavenumber of undulations are similar to those determined for the best performing sinusoidal swimmer, C. elegans overperforms the latter in terms of both displacement and hydrodynamic efficiency. Further comparison with other undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the optimal model swimmer, yet real swimmers still manage to beat the best performing sine-wave swimmer in terms of distance covered per period. Overall our results underline the importance of further waveform optimization, as periodic undulations adopted by C. elegans and other organisms deviate considerably from a simple sine wave.

  4. Genetic diversity in Tetrachaetum elegans, a mitosporic aquatic fungus.

    PubMed

    Laitung, Beryl; Chauvet, Eric; Feau, Nicolas; Fève, Katia; Chikhi, Lounès; Gardes, Monique

    2004-06-01

    Tetrachaetum elegans Ingold is a saprobic aquatic hyphomycete for which no sexual stage has yet been described. It occurs most commonly during the initial decay of tree leaves in temperate freshwater habitats and typically sporulates under water. Dispersal of the aquatic fungus takes place primarily in the water column and has a large passive component. Differences in substrate composition (e.g. quality of leaf litter) may also play a role in the distribution of different species or genotypes. The population genetic structure of T. elegans was studied using amplified fragment length polymorphism (AFLP) multilocus fingerprints. The populations were isolated from the leaf litter of three different tree genera, sampled in nine streams distributed throughout a mixed deciduous forest. Molecular markers were developed for 97 monosporic isolates using four selective primer pairs. A total of 247 fragments were scored, of which only 32 were polymorphic. Significant stream differentiation was detected for the isolates considered in this study. Analysis of molecular variance revealed that 20% of the genetic variation observed was the result of differences between streams. No correlation between genetic and geographical distances was found but a few multilocus genotypes were observed in different locations. Altogether these results suggest that environmental barriers play a role in the population structure of this aquatic fungus. No clear-cut effect of leaf litter composition on genetic variation could be demonstrated. Finally, tests of linkage disequilibrium between the 32 polymorphic AFLP loci as well as simulations did not provide a final answer regarding clonality in T. elegans. Indeed, it was possible to reject linkage equilibrium at different sampling levels and show that full linkage was unlikely.

  5. Google matrix analysis of C.elegans neural network

    NASA Astrophysics Data System (ADS)

    Kandiah, V.; Shepelyansky, D. L.

    2014-05-01

    We study the structural properties of the neural network of the C.elegans (worm) from a directed graph point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and node classifications are discussed and compared with physiological properties of the cells. Our results are obtained by a proper definition of neural directed network and subsequent eigenvector analysis which recovers some results of previous studies. Our analysis highlights particular sets of important neurons constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to characterization of interdependency of neurons are discussed.

  6. Caenorhabditis elegans - A model system for space biology studies

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas E.; Nelson, Gregory A.

    1991-01-01

    The utility of the nematode Caenorhabditis elegans in studies spanning aspects of development, aging, and radiobiology is reviewed. These topics are interrelated via cellular and DNA repair processes especially in the context of oxidative stress and free-radical metabolism. The relevance of these research topics to problems in space biology is discussed and properties of the space environment are outlined. Exposure to the space-flight environment can induce rapid changes in living systems that are similar to changes occurring during aging; manipulation of these environmental parameters may represent an experimental strategy for studies of development and senescence. The current and future opportunities for such space-flight experimentation are presented.

  7. An elegant mind: learning and memory in Caenorhabditis elegans.

    PubMed

    Ardiel, Evan L; Rankin, Catharine H

    2010-04-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode Caenorhabditis elegans. Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that predict aversive chemicals or the presence or absence of food. In each case, the neural circuit underlying the behavior has been at least partially described, and forward and reverse genetics are being used to elucidate the underlying cellular and molecular mechanisms. Several genes have been identified with no known role other than mediating behavior plasticity.

  8. Mortality Rates in a Genetically Heterogeneous Population of Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brooks, Anne; Lithgow, Gordon J.; Johnson, Thomas E.

    1994-02-01

    Age-specific mortality rates in isogenic populations of the nematode Caenorhabditis elegans increase exponentially throughout life. In genetically heterogeneous populations, age-specific mortality increases exponentially until about 17 days and then remains constant until the last death occurs at about 60 days. This period of constant age-specific mortality results from genetic heterogeneity. Subpopulations differ in mean life-span, but they all exhibit near exponential, albeit different, rates of increase in age-specific mortality. Thus, much of the observed heterogeneity in mortality rates later in life could result from genetic heterogeneity and not from an inherent effect of aging.

  9. Scratching the Niche That Controls C. elegans Germline Stem Cells

    PubMed Central

    Byrd, Dana T.; Kimble, Judith

    2010-01-01

    The C. elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle. PMID:19765664

  10. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.

    PubMed

    Fang-Yen, Christopher; Alkema, Mark J; Samuel, Aravinthan D T

    2015-09-19

    The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.

  11. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Orsini, F.; Batani, D.; Bernardinello, A.; Desai, T.; Ullschmied, J.; Skala, J.; Kralikova, B.; Krousky, E.; Juha, L.; Pfeifer, M.; Kadlec, Ch.; Mocek, T.; Präg, A.; Renner, O.; Cotelli, F.; Lora Lamia, C.; Zullini, A.

    2004-08-01

    Soft X-ray Contact Microscopy (SXCM) of Caenorhabditis elegans nematodes with typical length ~800 μ m and diameter ~30 μ m has been performed using the PALS laser source of wavelength λ = 1.314~μ m and pulse duration τ (FWHM) = 400 ps. Pulsed soft X-rays were generated using molybdenum and gold targets with laser intensities I ≥ 1014 W/cm2. Images have been recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Cuticle features and several internal organs have been identified in the SXCM images including lateral field, cuticle annuli, pharynx, and hypodermal and neuronal cell nuclei.

  12. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics

    PubMed Central

    Fang-Yen, Christopher; Alkema, Mark J.; Samuel, Aravinthan D. T.

    2015-01-01

    The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits. PMID:26240427

  13. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides)

    PubMed Central

    Thies, Judy A.; Ariss, Jennifer J.; Kousik, Chandrasekar S.; Hassell, Richard L.; Levi, Amnon

    2016-01-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  14. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    PubMed

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.

  15. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    PubMed

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  16. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans.

    PubMed

    Lee, Jiyun; Kwon, Gayeung; Lim, Young-Hee

    2015-11-25

    The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction.

  17. Longevity and resistance to stress correlate with DNA repair capacity in Caenorhabditis elegans.

    PubMed

    Hyun, Moonjung; Lee, Jihyun; Lee, Kyungjin; May, Alfred; Bohr, Vilhelm A; Ahn, Byungchan

    2008-03-01

    DNA repair is an important mechanism by which cells maintain genomic integrity. Decline in DNA repair capacity or defects in repair factors are thought to contribute to premature aging in mammals. The nematode Caenorhabditis elegans is a good model for studying longevity and DNA repair because of key advances in understanding the genetics of aging in this organism. Long-lived C. elegans mutants have been identified and shown to be resistant to oxidizing agents and UV irradiation, suggesting a genetically determined correlation between DNA repair capacity and life span. In this report, gene-specific DNA repair is compared in wild-type C. elegans and stress-resistant C. elegans mutants for the first time. DNA repair capacity is higher in long-lived C. elegans mutants than in wild-type animals. In addition, RNAi knockdown of the nucleotide excision repair gene xpa-1 increased sensitivity to UV and reduced the life span of long-lived C. elegans mutants. These findings support that DNA repair capacity correlates with longevity in C. elegans.

  18. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-01-01

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli. PMID:26392561

  19. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans

    PubMed Central

    Lee, Jiyun; Kwon, Gayeung; Lim, Young-Hee

    2015-01-01

    The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction. PMID:26601690

  20. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-01

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  1. Novel diterpenes from the heartwood of Chamaecyparis obtusa var. formosana.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chia-Hsien; Chien, Shih-Chang; Lin, Hsiu-Chuan

    2004-06-01

    Two novel diterpenes, obtusanal B (1) and obtusadione (2), along with obtusanal A (3), obtunone (4), 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial, 8,12-dihydroxydielmentha-5,9-diene-7,11-dione and myrcene, isolated from the heartwood of Chamaecyparis obtusa var. formosana, were characterized by spectroscopic means, including 2D-NMR techniques. Compounds 1 and 2 are 7(6-->2)abeoabietane and 14(8-->9)abeoabietane type diterpenes, respectively. Their biosyntheses were proposed. PMID:15187404

  2. AmeriFlux US-Var Vaira Ranch- Ione

    SciTech Connect

    Baldocchi, Dennis

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Var Vaira Ranch- Ione. Site Description - Located in the lower foothills of the Sierra Nevada Mountains on privately owned land, the Vaira Ranch site is classified as a grassland dominated by C3 annual grasses. Managed by local rancher, Fran Vaira, brush has been periodically removed for cattle grazing. Species include a variety of grasses and herbs, including purple false brome, smooth cat's ear, and rose clover. Growing season is confined to the wet season only, typically from October to early May.

  3. Analgesic and antiinflammatory properties of Sideritis lotsyi var. Mascaensis.

    PubMed

    Hernández-Pérez, Margarita; Rabanal Gallego, Rosa M

    2002-05-01

    The antiinflammatory, analgesic and antimicrobial activities of crude ethanol extracts of Sideritis lotsyi var. mascaensis (Lamiaceae), and chloroform and aqueous fractions were evaluated in mice using paw and ear oedema induced by carrageenan and 12-o-tetradecanoyl-phorbol-acetate (TPA), respectively, as inflammation models, the writhing test induced by acetic acid for evaluating analgesic activity and the disk-diffusion method for testing antimicrobial actions. The results obtained demonstrated significant topical antiinflammatory and analgesic activities for the ethanol extract and chloroform fraction, but no relevant antimicrobial activity against the microorganisms tested.

  4. Phenolic acids in the flowers of Althaea rosea var. nigra.

    PubMed

    Dudek, Marlena; Matławska, Irena; Szkudlarek, Maurycy

    2006-01-01

    Distribution of phenolic acids in the flowers of Althaea rosea var. nigra has been studied by 2D-TLC and HPLC methods. The phenolic acids occurring in these fractions have been identified as ferulic, vanillic, syringic, p-coumaric, p-hydroxybenzoic, p-hydroxyphenylacetic and caffeic acids. By means of the HPLC methods the contents of major phenolic acids were estimated. From among the phenolic acids analyzed the syringic, p-hydroxybenzoic and p-coumaric acids are dominant. Total content of phenolic acids was determined by the Arnov's method.

  5. Pungent Alkamides from Spilanthes acmella L. var. oleracea Clarke.

    PubMed

    Nakatani, N; Nagashima, M

    1992-01-01

    A main pungent amide, spilanthol (1), and three alkamides, (2E)-N-(2-methylbutyl)-2-undecene-8,10-diynamide (2), (2E,7Z)-N-isobutyl-2,7-tridecadiene-10,12-diynamide (3), and (7Z)-N-isobutyl-7-tridecene-10,12-diynamide (4) were isolated from the flower heads of Spilanthes acmella L. var. oleracea Clarke. Their structures were established by spectroscopic methods. Compounds 2 and 4 were new and 3 was found for the first time in Spilanthes species. Chemotaxonomic aspects are discussed. PMID:27286203

  6. Regulation of Sugar Transport Systems in Fusarium oxysporum var. lini

    PubMed Central

    Brandão, Rogélio L.; Loureiro-Dias, Maria C.

    1990-01-01

    Fusarium oxysporum var. lini (ATCC 10960) formed a facilitated diffusion system for glucose (Ks, about 10 mM) when grown under repressed conditions. Under conditions of derepression, the same system was present together with a high-affinity (Ks, about 40 μM) active system. The maximum velocity of the latter was about 5% of that of the facilitated diffusion system. The high-affinity system was under the control of glucose repression and glucose inactivation. When lactose was the only carbon source in the medium, a facilitated diffusion system for lactose was found (Ks, about 30 mM). PMID:16348256

  7. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    PubMed Central

    2012-01-01

    Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures. PMID:22731941

  8. Characterization of 12 polymorphic microsatellite loci of Pityopsis graminifolia var. latifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pityopsis graminifolia (Michx.) Small var. latifolia (Fern.) Semple is an herbaceous perennial that grows in close proximity to the federally endangered species P. ruthii (Small) Small. Twelve polymorphic microsatellite loci were identified from 87 samples of P. graminifolia var. latifolia and addit...

  9. Silence, Metaperformance, and Communication in Pedro Almodóvar's "Hable con ella"

    ERIC Educational Resources Information Center

    Fellie, Maria C.

    2016-01-01

    Many scenes in Pedro Almodóvar's "Hable con ella" (2002) include shots of metaperformances such as silent films, dances, television shows, concerts, and bullfights. Spectators often observe passive characters who are in turn observing. By presenting these performances within cinematic performance, Almodóvar highlights our role as viewers…

  10. Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis

    PubMed Central

    Kekre, Mihir; Otto, Thomas D.; Faizullabhoy, Adnan; Rayner, Julian C.; Kwiatkowski, Dominic

    2014-01-01

    The most polymorphic gene family in P. falciparum is the ∼60 var genes distributed across parasite chromosomes, both in the subtelomeres and in internal regions. They encode hypervariable surface proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) that are critical for pathogenesis and immune evasion in Plasmodium falciparum. How var gene sequence diversity is generated is not currently completely understood. To address this, we constructed large clone trees and performed whole genome sequence analysis to study the generation of novel var gene sequences in asexually replicating parasites. While single nucleotide polymorphisms (SNPs) were scattered across the genome, structural variants (deletions, duplications, translocations) were focused in and around var genes, with considerable variation in frequency between strains. Analysis of more than 100 recombination events involving var exon 1 revealed that the average nucleotide sequence identity of two recombining exons was only 63% (range: 52.7–72.4%) yet the crossovers were error-free and occurred in such a way that the resulting sequence was in frame and domain architecture was preserved. Var exon 1, which encodes the immunologically exposed part of the protein, recombined in up to 0.2% of infected erythrocytes in vitro per life cycle. The high rate of var exon 1 recombination indicates that millions of new antigenic structures could potentially be generated each day in a single infected individual. We propose a model whereby var gene sequence polymorphism is mainly generated during the asexual part of the life cycle. PMID:25521112

  11. Phenazine derivatives cause proteotoxicity and stress in C. elegans.

    PubMed

    Ray, Arpita; Rentas, Courtney; Caldwell, Guy A; Caldwell, Kim A

    2015-01-01

    It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased protein misfolding of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines.

  12. Gait Modulation in C. elegans: An Integrated Neuromechanical Model

    PubMed Central

    Boyle, Jordan H.; Berri, Stefano; Cohen, Netta

    2012-01-01

    Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body. PMID:22408616

  13. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu

    2014-04-01

    It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.

  14. High Throughput Interrogation of Behavioral Transitions in C. elegans

    NASA Astrophysics Data System (ADS)

    Liu, Mochi; Shaevitz, Joshua; Leifer, Andrew

    We present a high-throughput method to probe transformations from neural activity to behavior in Caenorhabditis elegans to better understand how organisms change behavioral states. We optogenetically deliver white-noise stimuli to target sensory or inter neurons while simultaneously recording the movement of a population of worms. Using all the postural movement data collected, we computationally classify stereotyped behaviors in C. elegans by clustering based on the spectral properties of the instantaneous posture. (Berman et al., 2014) Transitions between these behavioral clusters indicate discrete behavioral changes. To study the neural correlates dictating these transitions, we perform model-driven experiments and employ Linear-Nonlinear-Poisson cascades that take the white-noise stimulus as the input. The parameters of these models are fitted by reverse-correlation from our measurements. The parameterized models of behavioral transitions predict the worm's response to novel stimuli and reveal the internal computations the animal makes before carrying out behavioral decisions. Preliminary results are shown that describe the neural-behavioral transformation between neural activity in mechanosensory neurons and reversal behavior.

  15. From Modes to Movement in the Behavior of Caenorhabditis elegans

    PubMed Central

    Stephens, Greg J.; Johnson-Kerner, Bethany; Bialek, William; Ryu, William S.

    2010-01-01

    Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence of orientational memory in the intervals between abrupt turns. Building on recent work demonstrating that C. elegans movements are restricted to a low-dimensional shape space, we construct a map from the dynamics in this shape space to the trajectory of the worm along the agar. We use this connection to illustrate that changes in the continuous dynamics reveal subtle differences in movement strategy that occur among mutants defective in two classes of dopamine receptors. PMID:21103370

  16. Metabolism of methoxychlor by Cunninghamella elegans ATCC36112.

    PubMed

    Keum, Young Soo; Lee, Youn Hyung; Kim, Jeong-Han

    2009-09-01

    Methoxychlor is considered as pro-estrogen, while some of its metabolites are more potent endocrine disruptors than the parent insecticide. Major activation of methoxychlor is through cytochrome P450-catalyzed demethylation to bisphenol A-like metabolites. Cunninghamella elegans is a well-known fungal species with its strong resemblance of the xenobiotic metabolism of the mammalian system. In this study, the metabolism of methoxychlor was investigated with the corresponding organism. Methoxychlor was rapidly transformed to approximately 11 metabolites in phase I metabolism, including oxidation, hydroxylation, and dechlorination. Concentrations of phase I metabolites reached a maximum at 4-6 days and gradually decreased until the end of the experiments. Most metabolites from the phase I reaction were further transformed to sugar conjugates. Approximately 11 or more glucose conjugates were found in culture supernatants and gradually increased, while no glucuronides were observed throughout the experiments. Piperonyl butoxide and chlorpyrifos strongly inhibit the degradation of methoxychlor and concomitant accumulation of metabolites, indicating cytochrome P450 mediated metabolism. Little or no glycosides were detected in chlorpyrifos- and piperonyl butoxide-treated cultures. From the results, Cunninghamella elegans has shown strong similarities of the phase I metabolism of methoxychlor, while the conjugation reaction is different from those of animal metabolism.

  17. Comparative Developmental Expression Profiling of Two C. elegans Isolates

    PubMed Central

    Capra, Emily J.; Skrovanek, Sonja M.; Kruglyak, Leonid

    2008-01-01

    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism. PMID:19116648

  18. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos.

    PubMed

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-03-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  19. Functional analysis of a C. elegans trans-splice acceptor.

    PubMed Central

    Conrad, R; Liou, R F; Blumenthal, T

    1993-01-01

    The rol-6 gene is trans-spliced to the 22 nt leader, SL1, 173 nt downstream of the transcription start. We have analyzed splicing in transformants carrying extrachromosomal arrays of rol-6 with mutations in the trans-splice acceptor site. This site is a close match to the consensus, UUUCAG, that is highly conserved in both trans-splice and intron acceptor sites in C. elegans. When the trans-splice site was inactivated by mutating the perfectly-conserved AG, trans-splicing still occurred, but at a cryptic site 20 nt upstream. We tested the frequency with which splicing switched from the normal site to the cryptic site when the pyrimidines at this site were changed to A's. Since most C. elegans 3' splice sites lack an obvious polypyrimidine tract, we hypothesized that these four pyrimidines might play this role, and indeed mutation of these bases caused splicing to switch to the cryptic site. We also demonstrated that a major reason the downstream site is normally favored is because it occurs at a boundary between A+U rich and non-A+U rich RNA. When the RNA between the two splice sites was made less A+U rich, splicing occurred preferentially at the upstream site. Images PMID:8451190

  20. Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping.

    PubMed

    Gilleland, Cody L; Falls, Adam T; Noraky, James; Heiman, Maxwell G; Yanik, Mehmet F

    2015-09-01

    A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering.

  1. Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans.

    PubMed

    Calvo, Ana C; Pey, Angel L; Ying, Ming; Loer, Curtis M; Martinez, Aurora

    2008-08-01

    In humans, liver phenylalanine hydroxylase (PAH) has an established catabolic function, and mutations in PAH cause phenylketonuria, a genetic disease characterized by neurological damage, if not treated. To obtain novel evolutionary insights and information on molecular mechanisms operating in phenylketonuria, we investigated PAH in the nematode Caenorhabditis elegans (cePAH), where the enzyme is coded by the pah-1 gene, expressed in the hypodermis. CePAH presents similar molecular and kinetic properties to human PAH [S(0.5)(L-Phe) approximately 150 microM; K(m) for tetrahydrobiopterin (BH(4)) approximately 35 microM and comparable V(max)], but cePAH is devoid of positive cooperativity for L-Phe, an important regulatory mechanism of mammalian PAH that protects the nervous system from excess L-Phe. Pah-1 knockout worms show no obvious neurological defects, but in combination with a second cuticle synthesis mutation, they display serious cuticle abnormalities. We found that pah-1 knockouts lack a yellow-orange pigment in the cuticle, identified as melanin by spectroscopic techniques, and which is detected in C. elegans for the first time. Pah-1 mutants show stimulation of superoxide dismutase activity, suggesting that cuticle melanin functions as oxygen radical scavenger. Our results uncover both an important anabolic function of PAH and the change in regulation of the enzyme along evolution. PMID:18460651

  2. C. elegans screening strategies to identify pro-longevity interventions.

    PubMed

    Maglioni, Silvia; Arsalan, Nayna; Ventura, Natascia

    2016-07-01

    Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug. PMID:27473404

  3. Do proximate, C. elegans swimmers synchronize their gait?

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2012-11-01

    We imaged two C. elegans swimming, one after the other, in a tapered conduit. The conduit was subjected to a DC electric field, with the negative pole at the narrow end and applied flow directed from the narrow end. As a result of their attraction to the negative pole (electrotaxis), both animals swam upstream. As the conduit narrowed, the average adverse flow velocity increased and the swimming speed of the leading animal decreased faster than that of the trailing animal, allowing the latter to catch up with the former. We quantified synchronization by measuring the phase lag between the gait of one animal and the extended wave pattern of the other as a function of the distance between the two animals. Only when the distance between the two animals' body centers was nearly equal to or smaller than one body length were the animals' motions synchronized. When the nematodes were parallel to one another, synchronization was essential to prevent the animals from colliding. Direct numerical simulations indicate that when the trailing animal's head is immediately downstream of the leading animal's tail, the animals derive just a slight hydrodynamic advantage from their proximity compared to a single swimmer. We thank Kun He Lee from the University of Pennsylvania for preparing C. elegans.

  4. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour.

    PubMed

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V; Ramanathan, Sharad

    2012-10-11

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal. PMID:23000898

  5. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  6. Our evolving view of Wnt signaling in C. elegans

    PubMed Central

    Robertson, Scott M.; Lin, Rueyling

    2012-01-01

    In this commentary, we discuss how our recent paper by Yang et al. contributes a new wrinkle to the already somewhat curious Wnt signaling pathway in C. elegans. We begin with a historical perspective on the Wnt pathway in the worm, followed by a summary of the key salient point from Yang et al., 2011, namely demonstration of mutually inhibitory binding of a β-catenin SYS-1 to the N-terminus and another β-catenin WRM-1 to the C-terminus of the TCF protein POP-1, and a plausible structural explanation for these differential binding specificities. The mutually inhibitory binding creates one population of POP-1 that is bound by WRM-1, phosphorylated by the NLK kinase and exported from the nucleus, and another bound by coactivator SYS-1 that remains in the nucleus. We speculate on the evolutionary history of the four β-catenins in C. elegans and suggest a possible link between multiple β-catenin gene duplications and the requirement to reduce nuclear POP-1 levels to activate Wnt target genes. PMID:24058829

  7. Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping.

    PubMed

    Gilleland, Cody L; Falls, Adam T; Noraky, James; Heiman, Maxwell G; Yanik, Mehmet F

    2015-09-01

    A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering. PMID:26163188

  8. Proteomic identification of germline proteins in Caenorhabditis elegans

    PubMed Central

    Turner, B Elizabeth; Basecke, Sophia M; Bazan, Grace C; Dodge, Eric S; Haire, Cassy M; Heussman, Dylan J; Johnson, Chelsey L; Mukai, Chelsea K; Naccarati, Adrianna M; Norton, Sunny-June; Sato, Jennifer R; Talavera, Chihara O; Wade, Michael V; Hillers, Kenneth J

    2015-01-01

    Sexual reproduction involves fusion of 2 haploid gametes to form diploid offspring with genetic contributions from both parents. Gamete formation represents a unique developmental program involving the action of numerous germline-specific proteins. In an attempt to identify novel proteins involved in reproduction and embryonic development, we have carried out a proteomic characterization of the process in Caenorhabditis elegans. To identify candidate proteins, we used 2D gel electrophoresis (2DGE) to compare protein abundance in nucleus-enriched extracts from wild-type C. elegans, and in extracts from mutant worms with greatly reduced gonads (glp-4(bn2) worms reared at 25°C); 84 proteins whose abundance correlated with germline presence were identified. To validate candidates, we used feeding RNAi to deplete candidate proteins, and looked for reduction in fertility and/or germline cytological defects. Of 20 candidates so screened for involvement in fertility, depletion of 13 (65%) caused a significant reduction in fertility, and 6 (30%) resulted in sterility (<5 % of wild-type fertility). Five of the 13 proteins with demonstrated roles in fertility have not previously been implicated in germline function. The high frequency of defects observed after RNAi depletion of candidate proteins suggests that this approach is effective at identifying germline proteins, thus contributing to our understanding of this complex organ. PMID:26435885

  9. Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes.

    PubMed

    Geng, Wei; Cosman, Pamela; Baek, Joong-Hwan; Berry, Charles C; Schafer, William R

    2003-11-01

    Genetic analysis of nervous system function relies on the rigorous description of behavioral phenotypes. However, standard methods for classifying the behavioral patterns of mutant Caenorhabditis elegans rely on human observation and are therefore subjective and imprecise. Here we describe the application of machine learning to quantitatively define and classify the behavioral patterns of C. elegans nervous system mutants. We have used an automated tracking and image processing system to obtain measurements of a wide range of morphological and behavioral features from recordings of representative mutant types. Using principal component analysis, we represented the behavioral patterns of eight mutant types as data clouds distributed in multidimensional feature space. Cluster analysis using the k-means algorithm made it possible to quantitatively assess the relative similarities between different behavioral phenotypes and to identify natural phenotypic clusters among the data. Since the patterns of phenotypic similarity identified in this study closely paralleled the functional similarities of the mutant gene products, the complex phenotypic signatures obtained from these image data appeared to represent an effective diagnostic of the mutants' underlying molecular defects.

  10. Propulsion of C. elegans crawling on a wet surface

    NASA Astrophysics Data System (ADS)

    Bilbao, A.; Alavalapadu, A.; Khan, Z. S.; Salomon, D. E.; Vanapalli, S. A.; Rumbaugh, K.; Blawzdziewicz, J.

    2011-11-01

    Nematodes, such as soil-dwelling worms C. elegans, propel themselves by producing undulatory body motion. An important requirement for effective propulsion is to have large transverse and small longitudinal friction forces acting on a crawling worm. Recently, Sauvage et al. have shown that soft-lubrication forces between the worm body and a moist supporting substrate can produce, at most, the transverse friction coefficient twice as large as the longitudinal friction coefficient (and this ratio is too small for efficient propulsion). Here we show that hydrodynamic resistance of the fluid in liquid film adjacent to the worm body can generate significantly larger transverse friction, which moreover, is wavelength dependent. By modeling the worm as a long chain of spheres in Hele--Shaw flow, we have determined the optimal wavelength and amplitude of the undulatory motion that optimizes propulsion efficiency for a given rate of energy dissipation. The optimal worm shape qualitatively agrees with our experimental observations of C. elegans crawling in moist environments. This work was supported by NSF Grant No. CBET-1059745.

  11. Differential Toxicities of Nickel Salts to the Nematode Caenorhabditis elegans.

    PubMed

    Meyer, Dean; Birdsey, Jennifer M; Wendolowski, Mark A; Dobbin, Kevin K; Williams, Phillip L

    2016-08-01

    This study focused on assessing whether nickel (Ni) toxicity to the nematode Caenorhabditis elegans was affected by the molecular structure of the Ni salt used. Nematodes were exposed to seven Ni salts [Ni sulfate hexahydrate (NiSO4·6H2O), Ni chloride hexahydrate (NiCl2·6H2O), Ni acetate tetrahydrate (Ni(OCOCH3)2·4H2O), Ni nitrate hexahydrate (N2NiO6·6H2O), anhydrous Ni iodide (NiI2), Ni sulfamate hydrate (Ni(SO3NH2)2·H2O), and Ni fluoride tetrahydrate (NiF2·4H2O)] in an aquatic medium for 24 h, and lethality curves were generated and analyzed. Ni fluoride, Ni iodide, and Ni chloride were most toxic to C. elegans, followed by Ni nitrate, Ni sulfamate, Ni acetate, and Ni sulfate. The LC50 values of the halogen-containing salts were statistically different from the corresponding value of the least toxic salt, Ni sulfate. This finding is consistent with the expected high bioavailability of free Ni ions in halide solutions. We recommend that the halide salts be used in future Ni testing involving aquatic invertebrates. PMID:27278637

  12. Phenazine derivatives cause proteotoxicity and stress in C. elegans

    PubMed Central

    Ray, Arpita; Rentas, Courtney; Caldwell, Guy A.; Caldwell, Kim A.

    2014-01-01

    It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines. PMID:25304539

  13. Starvation-induced collective behavior in C. elegans

    PubMed Central

    Artyukhin, Alexander B.; Yim, Joshua J.; Cheong Cheong, Mi; Avery, Leon

    2015-01-01

    We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies. PMID:26013573

  14. Meiotic Recombination, Noncoding DNA and Genomic Organization in Caenorhabditis Elegans

    PubMed Central

    Barnes, T. M.; Kohara, Y.; Coulson, A.; Hekimi, S.

    1995-01-01

    The genetic map of each Caenorhabditis elegans chromosome has a central gene cluster (less pronounced on the X chromosome) that contains most of the mutationally defined genes. Many linkage group termini also have clusters, though involving fewer loci. We examine the factors shaping the genetic map by analyzing the rate of recombination and gene density across the genome using the positions of cloned genes and random cDNA clones from the physical map. Each chromosome has a central gene-dense region (more diffuse on the X) with discrete boundaries, flanked by gene-poor regions. Only autosomes have reduced rates of recombination in these gene-dense regions. Cluster boundaries appear discrete also by recombination rate, and the boundaries defined by recombination rate and gene density mostly, but not always, coincide. Terminal clusters have greater gene densities than the adjoining arm but similar recombination rates. Thus, unlike in other species, most exchange in C. elegans occurs in gene-poor regions. The recombination rate across each cluster is constant and similar; and cluster size and gene number per chromosome are independent of the physical size of chromosomes. We propose a model of how this genome organization arose. PMID:8536965

  15. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans

    PubMed Central

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-01-01

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711

  16. A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans

    PubMed Central

    Chang, Andy J; Chronis, Nikolas; Karow, David S; Marletta, Michael A; Bargmann, Cornelia I

    2006-01-01

    The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-β homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen. PMID:16903785

  17. Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans.

    PubMed

    Stephens, Greg J; Bueno de Mesquita, Matthew; Ryu, William S; Bialek, William

    2011-05-01

    Animal behaviors often are decomposable into discrete, stereotyped elements, well separated in time. In one model, such behaviors are triggered by specific commands; in the extreme case, the discreteness of behavior is traced to the discreteness of action potentials in the individual command neurons. Here, we use the crawling behavior of the nematode Caenorhabditis elegans to demonstrate the opposite view, in which discreteness, stereotypy, and long timescales emerge from the collective dynamics of the behavior itself. In previous work, we found that as C. elegans crawls, its body moves through a "shape space" in which four dimensions capture approximately 95% of the variance in body shape. Here we show that stochastic dynamics within this shape space predicts transitions between attractors corresponding to abrupt reversals in crawling direction. With no free parameters, our inferred stochastic dynamical system generates reversal timescales and stereotyped trajectories in close agreement with experimental observations. We use the stochastic dynamics to show that the noise amplitude decreases systematically with increasing time away from food, resulting in longer bouts of forward crawling and suggesting that worms can use noise to modify their locomotory behavior. PMID:21502536

  18. Manganese Disturbs Metal and Protein Homeostasis in Caenorhabditis elegans

    PubMed Central

    Angeli, Suzanne; Barhydt, Tracy; Jacobs, Ross; Killilea, David W.; Lithgow, Gordon J.; Andersen, Julie K.

    2014-01-01

    Parkinson's disease (PD) is a debilitating motor and cognitive neurodegenerative disorder for which there is no cure. While aging is the major risk factor for developing PD, clear environmental risks have also been identified. Environmental exposure to the metal manganese (Mn) is a prominent risk factor for developing PD and occupational exposure to high levels of Mn can cause a syndrome known as manganism, which has symptoms that closely resemble PD. In this study, we developed a model of manganism in the environmentally tractable nematode, Caenorhabditis elegans. We find that, in addition to previously described modes of Mn toxicity, which primarily include mitochondrial dysfunction and oxidative stress, Mn exposure also significantly antagonizes protein homeostasis, another key pathological feature associated with PD and many age-related neurodegenerative diseases. Mn treatment activates the ER unfolded protein response, severely exacerbates toxicity in a disease model of protein misfolding, and alters aggregate solubility. Further, aged animals, which have previously been shown to exhibit decreased protein homeostasis, are particularly susceptible to Mn toxicity when compared to young animals, indicating the aging process sensitizes animals to metal toxicity. Mn exposure also significantly alters iron (Fe) and calcium (Ca) homeostasis, which are important for mitochondrial and ER health and which may further compound toxicity. These finding indicate that modeling manganism in C. elegans can provide a useful platform for identifying therapeutic interventions for ER stress, proteotoxicity, and age-dependent susceptibilities, key pathological features of PD and other related neurodegenerative diseases. PMID:25057947

  19. Cell cycle controls stress response and longevity in C. elegans

    PubMed Central

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  20. miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans.

    PubMed

    Wang, Ning; Liu, Jing; Xie, Fang; Gao, Xu; Ye, Jian-Han; Sun, Lu-Yao; Wei, Ran; Ai, Jing

    2015-02-01

    MicroRNAs (miRNAs), especially evolutionarily conserved miRNAs play critical roles in regulating various biological process. However, the functions of conserved miRNAs in longevity are still largely unknown. Astragalus polysaccharide (APS) was recently shown to extend lifespan of Caenorhabditis elegans, but its molecular mechanisms have not been fully understood. In the present study, we characterize that microRNA mediated a novel longevity pathway of APS in C. elegans. We found that APS markedly extended the lifespan of C. elegans at the second and the fourth stages. A highly conserved miRNA miR-124 was significantly upregulated in APS-treated C. elegans. Overexpression miR-124 caused the lifespan extension of C. elegans and vice versa, indicating miR-124 regulates the longevity of C. elegans. Using luciferase assay, atf-6 was established as a target gene of miR-124 which acting on three binding sites at atf-6 3'UTR. Consistently, agomir-cel-miR-124 was also shown to inhibit ATF-6 expression in C. elegans. APS-treated C. elegans showed the down-regulation of atf-6 at protein level. Furthermore, the knockdown of atf-6 by RNAi extended the lifespan of C. elegans, indicating atf-6 regulated by miR-124 contributes to lifespan extension. Taken together, miR-124 regulating ATF-6 is a new potential longevity signal pathway, which underlies the lifespan-extending effects of APS in C. elegans.

  1. Two matrix metalloproteinases inhibitors from Ferula persica var. persica.

    PubMed

    Shahverdi, A R; Saadat, F; Khorramizadeh, M R; Iranshahi, M; Khoshayand, M R

    2006-11-01

    Matrix metalloproteinases (MMPs) play a role in several physiologic and pathologic events. There is some evidence indicating the involvement of MMPs in tumor invasion and inflammatory diseases. Here we studied the chloroform extract of Ferula persica var. persica. The influence of these extracts vs. a reference drug, diclofenac sodium, on MMP production by the fibrosarcoma cell line was investigated using an in vitro cytotoxicity assay, sodium dodecyl sulfate-polyacrylamide, and gelatin zymography. The total extract of the roots was found to exhibit a selective inhibitory effect on tumor cell invasion. The bioactivity-guided fractionation of this extract led to the isolation of two compounds. These compounds showed highest MMP inhibitory effect at minimal toxic dose levels. Using conventional spectroscopy methods, the active fractions were identified as t-butyl 3-[(1-methylthiopropyl)dithio]-2-propenyl malonate (persicasulphide B) and umbelliprenin, previously isolated from F. persica var. latisecta. Since inhibition of MMP activity has been employed in modality therapy in diseases such as cancer, this compound might be promising in the preparation of anti-MMP therapeutic derivatives.

  2. Metabolic and bioactivity insights into Brassica oleracea var. acephala.

    PubMed

    Ferreres, Federico; Fernandes, Fátima; Sousa, Carla; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-10-14

    Seeds of Brassica oleracea var. acephala (kale) were analyzed by HPLC/UV-PAD/MSn-ESI. Several phenolic acids and flavonol derivatives were identified. The seeds of this B. oleracea variety exhibited more flavonol derivatives than those of tronchuda cabbage (Brassica oleracea var. costata), also characterized in this paper. Quercetin and isorhamnetin derivatives were found only in kale seeds. Oxalic, aconitic, citric, pyruvic, malic, quinic, shikimic, and fumaric acids were the organic acids present in these matrices, malic acid being predominant in kale and citric acid in tronchuda cabbage seeds. Acetylcholinesterase (AChE) inhibitory activity was determined in aqueous extracts from both seeds. Kale leaves and butterflies, larvae, and excrements of Pieris brassicae reared on kale were also evaluated. Kale seeds were the most effective AChE inhibitor, followed by tronchuda cabbage seeds and kale leaves. With regard to P. brassicae material, excrements exhibited stronger inhibitory capacity. These results may be explained by the presence of sinapine, an analogue of acetylcholine, only in seed materials. A strong concentration-dependent antioxidant capacity against DPPH, nitric oxide, and superoxide radicals was observed for kale seeds.

  3. The Development and Application of an Integrated VAR Process Model

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. Stewart

    2016-07-01

    The VAR ingot has been the focus of several modelling efforts over the years with the result that the thermal regime in the ingot can be simulated quite realistically. Such models provide important insight into solidification of the ingot but present some significant challenges to the casual user such as a process engineer. To provide the process engineer with a tool to assist in the development of a melt practice, a comprehensive model of the complete VAR process has been developed. A radiation heat transfer simulation of the arc has been combined with electrode and ingot models to develop a platform which accepts typical operating variables (voltage, current, and gap) together with process parameters (electrode size, crucible size, orientation, water flow, etc.) as input data. The output consists of heat flow distributions and solidification parameters in the form of text, comma-separated value, and visual toolkit files. The resulting model has been used to examine the relationship between the assumed energy distribution in the arc and the actual energy flux which arrives at the ingot top surface. Utilizing heat balance information generated by the model, the effects of electrode-crucible orientation and arc gap have been explored with regard to the formation of ingot segregation defects.

  4. A weak-constraint 4DEnsembleVar

    NASA Astrophysics Data System (ADS)

    Amezcua, Javier; Goodliff, Michael; van Leeuwen, Peter Jan

    2016-04-01

    4DEnsembleVar is a hybrid data assimilation method which, besides making use of flow-dependent ensemble covariance information, avoids the computation of tangent-linear and adjoint models for the evolution and observation operators. In this method, the information from the observation time is communicated to the initial time via 4D cross-time covariances. Large systems require localisation of covariance matrices to suppress long-distance spurious elements. In a 4D covariance, however, using static localisation matrices (as it is done in practice) can eliminate the effect of observations if their location (at observational time) is far from that of the variable they are influencing (at the initial time). In lack of time-dependent localisation functions, in this work we propose a simpler option to ameliorate this problem. We exploit the presence of model error to spread the information of observations to more time steps, introducing a weak-constrained 4DEnsembleVar. The benefits of this method are illustrated in the Korteweg-de-Vries system, the Lorenz 1996 system, and a modified shallow water system with simulated convection.

  5. Baccharis megapotamica var. weirii poisoning in water buffalo (Bubalus bubalis).

    PubMed

    Oliveira-Filho, José C; Carmo, Priscila M S; Lucena, Ricardo B; Pierezan, Felipe; Barros, Claudio S L

    2011-05-01

    An outbreak of an acute disease in buffalo (Bubalus bubalis) caused by the ingestion of Baccharis megapotamica var. weirii occurred in the southern region of Brazil. Ten out of 50 buffalo died 24-48 hr after being introduced into a pasture containing abundant amounts of the plant. Factors influencing the ingestion of the plant and consequent toxicosis included hunger, stress caused by shipment, and unfamiliarity with the plant. Clinical signs included serous ocular discharge, incoordination, mild bloat, and muscle trembling. One buffalo was necropsied. Gross findings included dehydration, abundant liquid in the rumen, reddening of the mucosa of forestomachs, abomasum, and intestine, and edema of the wall of the rumen. The main histologic lesions were superficial to full thickness degeneration and necrosis of the stratified epithelium lining the forestomachs, necrosis of the intestinal mucosa, and widespread lymphoid necrosis. A calf (Bos taurus) was fed a single dose of 5 g/kg/body weight of B. megapotamica var. weirii harvested from the same site where the buffalo died. Twenty hours after the administration of the plant this calf died with clinical signs and lesions similar to those observed in the naturally poisoned buffalo.

  6. Impact of EnVar hybrid assimilation using EnKF ensembles

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Johny, C. J.; Sodhi, Jagdeep Singh; Rajagopal, E. N.

    2016-05-01

    Performance of an EnVar hybrid data assimilation system based on 3D Var NGFS (NCMRWF Global Forecast System) of T574 configuration and Ensemble Kalman Filter is investigated. The experiment is conducted during the Indian monsoon season (June-September) 2015 and compared against operational GSI 3D Var system. Two way coupled dual resolution hybrid system with 80 member ensemble of T254L64 configuration are used and forecasts are done for 10days. In hybrid experiment 75% weight is given to ensemble covariance and 25% for static covariance. The forecast skill of experiments over different spatial domains is compared against observations and respective analysis. The hybrid experiment produced significant improvement in forecasts compared to 3D Var in all fields except lower level temperature over tropical regions. Improvement is also seen in the prediction of extreme rainfall events. The prediction of monsoon onset and track of cyclone Ashobaa with hybrid and 3D var system is discussed.

  7. Empirical analysis on future-cash arbitrage risk with portfolio VaR

    NASA Astrophysics Data System (ADS)

    Chen, Rongda; Li, Cong; Wang, Weijin; Wang, Ze

    2014-03-01

    This paper constructs the positive arbitrage position by alternating the spot index with Chinese Exchange Traded Fund (ETF) portfolio and estimating the arbitrage-free interval of futures with the latest trade data. Then, an improved Delta-normal method was used, which replaces the simple linear correlation coefficient with tail dependence correlation coefficient, to measure VaR (Value-at-risk) of the arbitrage position. Analysis of VaR implies that the risk of future-cash arbitrage is less than that of investing completely in either futures or spot market. Then according to the compositional VaR and the marginal VaR, we should increase the futures position and decrease the spot position appropriately to minimize the VaR, which can minimize risk subject to certain revenues.

  8. Variability of chemical composition and antioxidant activity of essential oils between Myrtus communis var. Leucocarpa DC and var. Melanocarpa DC.

    PubMed

    Petretto, Giacomo Luigi; Maldini, Mariateresa; Addis, Roberta; Chessa, Mario; Foddai, Marzia; Rourke, Jonathan P; Pintore, Giorgio

    2016-04-15

    Essential oils (EOs) from several individuals of Myrtus communis L. (M. communis) growing in different habitats in Sardinia have been studied. The analyses were focused on four groups of samples, namely cultivated and wild M. communis var. melanocarpa DC, characterized by red/purple berries, and cultivated and wild M. communis var. leucocarpa DC, characterized by white berries. Qualitative and quantitative analyses demonstrated different EO fingerprints among the studied samples: cultivated and wild leucocarpa variety differs mainly from the melanocarpa variety by a high amount of myrtenyl acetate (>200 mg/mL and 0.4 mg/mL in leucocarpa and melanocarpa varieties respectively). Conversely, the wild group is characterized by a higher amount, compared with the cultivated species, of linalool (about 110 mg/mL and 20 mg/mL respectively), linalyl acetate (about 24 mg/mL and about 6 mg/mL respectively) whereas EOs of the cultivated plants were rich in pinocarveol-cis compared with wild plants (about 2 mg/mL and about 0.5 mg/mL respectively). Principal component analysis applied to the chromatographic data confirm a differentiation and classification of EOs from the four groups of M. communis plants. Finally, antioxidant activity of the studied EOs shows differences between the various categories of samples. PMID:26616932

  9. Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans.

    PubMed

    Bae, Young-Kyung; Barr, Maureen M

    2008-01-01

    In the free-living nematode Caenorhabditis elegans, cilia are found on the dendritic endings of sensory neurons. C. elegans cilia are classified as 'primary' or 'sensory' according to the '9+0' axonemal ultrastructure (nine doublet outer microtubules with no central microtubule pair) and lack of motility, characteristics of '9+2' cilia. The C. elegans ciliated nervous system allows the animal to perceive environmental stimuli and make appropriate developmental, physiological, and behavioral decisions. In vertebrates, the biological significance of primary cilia had been largely neglected. Recent findings have placed primary/sensory cilia in the center of cellular signaling and developmental processes. Studies using genetic model organisms such as C. elegans identified the link between ciliary dysfunction and human ciliopathies. Future studies in the worm will address important basic questions regarding ciliary development, morphogenesis, specialization, and signaling functions. PMID:18508635

  10. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans

    PubMed Central

    Leighton, Daniel H. W.; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W.

    2014-01-01

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  11. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection.

    PubMed

    Hwang, Hyundoo; Krajniak, Jan; Matsunaga, Yohei; Benian, Guy M; Lu, Hang

    2014-09-21

    This paper describes a novel selective immobilization technique based on optical control of the sol-gel transition of thermoreversible Pluronic gel, which provides a simple, versatile, and biocompatible approach for high-resolution imaging and microinjection of Caenorhabditis elegans.

  12. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate.

    PubMed

    Van Voorhies, W A; Ward, S

    1999-09-28

    Mutations that increase the longevity of the soil nematode Caenorhabditis elegans could define genes involved in a process specific for aging. Alternatively, these mutations could reduce animal metabolic rate and increase longevity as a consequence. In ectotherms, longevity is often negatively correlated with metabolic rate. Consistent with these observations, environmental conditions that reduce the metabolic rate of C. elegans also extend longevity. We found that the metabolic rate of long-lived C. elegans mutants is reduced compared with that of wild-type worms and that a genetic suppressor that restored normal longevity to long-lived mutants restored normal metabolic rate. Thus, the increased longevity of some long-lived C. elegans mutants may be a consequence of a reduction in their metabolic rate, rather than an alteration of a genetic pathway that leads to enhanced longevity while maintaining normal physiology. The actual mechanism responsible for the inverse correlation between metabolic rate and longevity remains unknown.

  13. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.

    PubMed

    Feng, Shiling; Cheng, Haoran; Xu, Zhou; Shen, Shian; Yuan, Ming; Liu, Jing; Ding, Chunbang

    2015-11-01

    Panax notoginseng attract public attention due to their potential biomedical properties and corresponding health benefits. The present study investigated the anti-aging and thermal stress resistance effects of polysaccharides from P. notoginseng on Caenorhabditis elegans. Results showed polysaccharides had little scavenging ability of reactive oxygen species (ROS) in vitro, but significantly extended lifespan of C. elegans, especially the main root polysaccharide (MRP) which prolongs the mean lifespan of wild type worms by 21%. Further study demonstrated that the heat stress resistance effect of polysaccharides on C. elegans might be attributed to the elevation of antioxidant enzyme activities (both superoxide dismutase (SOD) and catalase (CAT)) and the reduction lipid peroxidation of malondialdehyde (MDA) level. Taken together, the results provided a scientific basis for the further exploitation of the mechanism of longer lifespan controlled by P. notoginseng polysaccharides on C. elegans. The P. notoginseng polysaccharides might be considered as a potential source to delay aging.

  14. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-01

    Translation in eukaryotes is followed to detect toxins and virulence factors and coupled to the induction of defence pathways. Caenorhabditis elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNA interference screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways upstream of MAP kinase to mediate the systemic communication of translation defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from the wild type can also rescue detoxification gene induction in lipid-biosynthesis-defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors.

  15. Profiling the Anaerobic Response of C. elegans Using GC-MS

    PubMed Central

    Bokov, Alex F.; Hakala, Kevin W.; Weintraub, Susan T.; Rea, Shane L.

    2012-01-01

    The nematode Caenorhabditis elegans is a model organism that has seen extensive use over the last four decades in multiple areas of investigation. In this study we explore the response of the nematode Caenorhabditis elegans to acute anoxia using gas-chromatography mass-spectrometry (GC-MS). We focus on the readily-accessible worm exometabolome to show that C. elegans are mixed acid fermenters that utilize several metabolic pathways in unconventional ways to remove reducing equivalents – including partial reversal of branched-chain amino acid catabolism and a potentially novel use of the glyoxylate pathway. In doing so, we provide detailed methods for the collection and analysis of excreted metabolites that, with minimal adjustment, should be applicable to many other species. We also describe a procedure for collecting highly volatile compounds from C. elegans. We are distributing our mass spectral library in an effort to facilitate wider use of metabolomics. PMID:23029411

  16. Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans.

    PubMed

    Cong, Wenshu; Wang, Peng; Qu, Ying; Tang, Jinglong; Bai, Ru; Zhao, Yuliang; Chunying Chen; Bi, Xiaolin

    2015-02-01

    Fullerene derivatives have attracted extensive attention in biomedical fields and polyhydroxyl fullerene (fullerenol), a water-soluble fullerene derivative, is demonstrated as a powerful antioxidant. To further assess their anti-aging and anti-stress potential, we employed Caenorhabditis elegans (C. elegans) as a model organism to evaluate the effects of fullerenol on the growth, development, behavior and anti-stress ability in vivo. The data show that fullerenol has no obviously toxic effect on nematodes and can delay C. elegans aging progress under normal condition. Further studies demonstrate that fullerenol attenuates endogenous levels of reactive oxygen species and provides protection to C. elegans under stress conditions by up-regulating stress-related genes in a DAF-16 depend manner and improving lifespan. In summary, our data suggest that fullerenol might be a safe and reasonable anti-aging candidate with great potential in vivo.

  17. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans.

    PubMed

    Kim, Heesun; Ishidate, Takao; Ghanta, Krishna S; Seth, Meetu; Conte, Darryl; Shirayama, Masaki; Mello, Craig C

    2014-08-01

    Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes.

  18. piRNAs and siRNAs collaborate in Caenorhabditis elegans genome defense

    PubMed Central

    2012-01-01

    Caenorhabditis elegans piRNAs promote genome surveillance by triggering siRNA-mediated silencing of nonself DNA in competition with licensing programs that support endogenous gene expression. PMID:22818087

  19. The neural circuits and sensory channels mediating harsh touch sensation in C. elegans

    PubMed Central

    Li, Wei; Kang, Lijun; Piggott, Beverly J.; Feng, Zhaoyang; Shawn Xu, X. Z.

    2011-01-01

    Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, but the underlying mechanisms are not well understood. C. elegans is a highly successful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We show that C. elegans exhibits differential behavioral responses to harsh touch and gentle touch. Laser ablations identify distinct sets of sensory neurons and interneurons required for harsh touch sensation at different body segments. Optogenetic stimulation of the circuitry can drive behavior. Patch-clamp recordings reveal that TRP family and amiloride-sensitive Na+ channels mediate touch-evoked currents in different sensory neurons. Our work identifies the neural circuits and characterizes the sensory channels mediating harsh touch sensation in C. elegans, establishing it as a genetic model for studying this sensory modality. PMID:21587232

  20. Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans.

    PubMed

    Wescott, Seth A; Ronan, Elizabeth A; Xu, X Z Shawn

    2016-02-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.

  1. Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus

    PubMed Central

    Irazoqui, Javier E.; Troemel, Emily R.; Feinbaum, Rhonda L.; Luhachack, Lyly G.; Cezairliyan, Brent O.; Ausubel, Frederick M.

    2010-01-01

    The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with

  2. Invasive cutaneous infection caused by Apophysomyces elegans associated with a spider bite.

    PubMed

    Saravia-Flores, Marcos; Guaran, Dennya M; Argueta, Victor

    2010-05-01

    Cutaneous infections by Zygomycetes may have underestimated clinical consequences. Apophysomyces elegans is a Zygomycete that rarely causes disease in humans. However, it has been reported with increasing frequency in warm climate zones as a result of infection in healthy patients after injury to the cutaneous barrier. The following case report describes a 30-year-old woman with deep tissue involvement of A. elegans associated with a spider bite and a fatal outcome.

  3. Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.

    PubMed

    Barr, Maureen M

    2005-02-01

    The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.

  4. Redescription of Pseudotropheus livingstonii and Pseudotropheus elegans from Lake Malaŵi, Africa.

    PubMed

    Stauffer, J R Jr; Konings, A F; Ryan, T M

    2016-01-01

    Pseudotropheus livingstonii and P. elegans are two sand-dwelling cichlid species that belong to the so-called mbuna, a group of predominantly rock-dwelling haplochromines of Lake Malaŵi. The identity of these two species has confused taxonomists for almost a century until a recent rediscovery of representatives of P. elegans close to its type locality. New diagnoses for both species are provided. PMID:27615832

  5. A conserved checkpoint monitors meiotic chromosome synapsis inCaenorhabditis elegans

    SciTech Connect

    Bhalla, Needhi; Dernburg, Abby F.

    2005-07-14

    We report the discovery of a checkpoint that monitorssynapsis between homologous chromosomes to ensure accurate meioticsegregation. Oocytes containing unsynapsed chromosomes selectivelyundergo apoptosis even if agermline DNA damage checkpoint is inactivated.This culling mechanism isspecifically activated by unsynapsed pairingcenters, cis-acting chromosomesites that are also required to promotesynapsis in Caenorhabditis elegans. Apoptosis due to synaptic failurealso requires the C. elegans homolog of PCH2,a budding yeast pachytenecheckpoint gene, which suggests that this surveillance mechanism iswidely conserved.

  6. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    SciTech Connect

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  7. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics

    PubMed Central

    Lai, Chun-Hung; Chou, Chang-Yuan; Ch'ang, Lan-Yang; Liu, Chung-Shyan; Lin, Wen-chang

    2000-01-01

    Modern biomedical research greatly benefits from large-scale genome-sequencing projects ranging from studies of viruses, bacteria, and yeast to multicellular organisms, like Caenorhabditis elegans. Comparative genomic studies offer a vast array of prospects for identification and functional annotation of human ortholog genes. We presented a novel comparative proteomic approach for assembling human gene contigs and assisting gene discovery. The C. elegans proteome was used as an alignment template to assist in novel human gene identification from human EST nucleotide databases. Among the available 18,452 C. elegans protein sequences, our results indicate that at least 83% (15,344 sequences) of C. elegans proteome has human homologous genes, with 7,954 records of C. elegans proteins matching known human gene transcripts. Only 11% or less of C. elegans proteome contains nematode-specific genes. We found that the remaining 7,390 sequences might lead to discoveries of novel human genes, and over 150 putative full-length human gene transcripts were assembled upon further database analyses. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF132936–AF132973, AF151799–AF151909, and AF152097.] PMID:10810093

  8. Aminopeptidase-like activities in Caenorhabditis elegans and the soybean cyst nematode, Heterodera glycines.

    PubMed

    Masler, E P; Kovaleva, E S; Sardanelli, S

    2001-09-01

    Aminopeptidase-like activities in crude whole body extracts of the free-living nematode Caenorhabditis elegans and the plant parasitic soybean cyst nematode Heterodera glycines were examined. General characteristics including pH optima, heat lability, and inactivation of enzyme by organic solvent were the same for the two species. All developmental stages of H. glycines exhibited activity. In older females, activity was present primarily in the eggs. Affinity for the substrate L-alanine-4-nitroanilide was the same regardless of the stage examined, and was similar for the two species (m for C. elegans and m for H. glycines). Nearly all (>95%) of C. elegans aminopeptidase-like activity was present in the soluble fraction of the extract, while H. glycines activity was distributed between the soluble and membrane fractions. Specific activities of the soluble enzymes were highest in C. elegans and H. glycines juveniles. The C. elegans enzyme was susceptible to a number of aminopeptidase inhibitors, particularly to amastatin and leuhistin, each of which inhibited aminopeptidase-like activity more than 90% at 90 microm. In H. glycines, aminopeptidase-like activity was inhibited 39% by amastatin at 900 microm. The apparent molecular weight of the soluble C. elegans enzyme is 70-80 kDa. Some activity in H. glycines is present in the 70-80 kDa range, but most activity (80-90%) is associated with a very high molecular weight (>240 kDa) component.

  9. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    PubMed

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.

  10. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    PubMed

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food. PMID:25367047

  11. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    SciTech Connect

    Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek; Lee, Weontae

    2014-01-10

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.

  12. The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals.

    PubMed

    Kanazawa, Takayuki; Zappaterra, Mauro D; Hasegawa, Ayako; Wright, Ashley P; Newman-Smith, Erin D; Buttle, Karolyn F; McDonald, Kent; Mannella, Carmen A; van der Bliek, Alexander M

    2008-02-29

    The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.

  13. Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes*

    PubMed Central

    Woon, Shiau Mei; Seng, Yew Wei; Ling, Anna Pick Kiong; Chye, Soi Moi; Koh, Rhun Yian

    2014-01-01

    Objective: This study examined the anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 adipocytes. Methods: Methanol and water extracts of leaves of the F. deltoidea varieties were analyzed to determine their total flavonoid content (TFC) and total phenolic content (TPC), respectively. The study was initiated by determining the maximum non-toxic dose (MNTD) of the methanol and water extracts for 3T3-L1 preadipocytes. Possible anti-adipogenic effects were then examined by treating 2-d post confluent 3T3-L1 preadipocytes with either methanol extract or water extract at MNTD and half MNTD (½MNTD), after which the preadipocytces were induced to form mature adipocytes. Visualisation and quantification of lipid content in mature adipocytes were carried out through oil red O staining and measurement of optical density (OD) at 520 nm, respectively. Results: The TFCs of the methanol extracts were 1.36 and 1.97 g quercetin equivalents (QE)/100 g dry weight (DW), while the TPCs of the water extracts were 5.61 and 2.73 g gallic acid equivalents (GAE)/100 g DW for var. deltoidea and var. angustilofia, respectively. The MNTDs determined for methanol and water extracts were (300.0±28.3) and (225.0±21.2) μg/ml, respectively, for var. deltoidea, while much lower MNTDs [(60.0±2.0) μg/ml for methanol extracts and (8.0±1.0) μg/ml for water extracts] were recorded for var. angustifolia. Studies revealed that the methanol extracts of both varieties and the water extracts of var. angustifolia at either MNTD or ½MNTD significantly inhibited the maturation of preadipocytes. Conclusions: The inhibition of the formation of mature adipocytes indicated that leaf extracts of F. deltoidea could have potential anti-obesity effects. PMID:24599694

  14. [Correlation between distribution of rhizospheric microorganisms and contents of steroidal saponins of Paris polyphylla var. yunnanensis].

    PubMed

    Zhou, Nong; Qi, Wen-hua; Xiao, Guo-sheng; Ding, Bo; Zhang, Hua; Guo, Dong-qin; Shen, Wei

    2015-03-01

    In this paper, the varying pattern of the amount of rhizospheric microorganisms, including bacteria, actinomycetes and fungus, was observed during the cultivation of Paris polyphylla var. yunnanensis. And the correlations between number of rhizospheric microorganisms and the quality of P. polyphylla var. yunnanensis were also studied. The results showed that the rhizospheric microorganism source of P. polyphylla var. yunnanensis was rich. The distribution of rhizospheric microorganisms (soil bacteria, fungus, actinomycetes, potassium-solubilizing bacteria, inorganic phosphorus-solubilizing bacteria, organic phosphorus-solubilizing bacteria) collected from different origin places existed significant difference (P < 0.05). The varying pattern for the amount of rhizospheric microorganisms was showed as following: the amount of bacteria > the amount of actinomycetes > the amount of fungus. The medicinal quality of P. polyphylla var. yunnanensis was influenced by their habits, and the increase of cultivation years caused the obvious decrease of the quality of P. polyphylla var. yunnanensis. Therefore, the increase of cultivation years will cause the variation of the soil micro-ecology flora, and decrease the nutrient absorption and the utilization of P. polyphylla var. yunnanensis, which will make the decrease of the medical quality of P. polyphylla var. yunnanensis.

  15. Genetic relationships among turnip (Brassica rapa var. rapa) genotypes.

    PubMed

    Yildirim, E; Yildirim, N; Ercisli, S; Agar, G; Karlidag, H

    2010-01-01

    Turnip (Brassica rapa var. rapa) is one of the main vegetables consumed by people living in Eastern Anatolia in Turkey. In this region, farmers obtain their own seeds for production, which results in considerable morphological variability. We examined the genetic variation and relationships among 11 turnip genotypes sampled from diverse environments of the Erzurum region located in Eastern Anatolia in Turkey. Thirty-two Operon RAPD primers were screened; among them, 20 gave reproducible and clear DNA fragments after amplification. The average polymorphism ratio was 90.4%. The genetic distance between turnip genotypes were found to range from 0.302 to 0.733, indicating high genetic variability. Eleven genotypes were divided into three main clusters in a dendrogram; ETS2 and ETS8 genotypes were the most distant. We conclude that RAPD analysis would be useful for genotyping turnip genotypes.

  16. Steroidal saponins from the flowers of Dioscorea bulbifera var. sativa.

    PubMed

    Tapondjou, Léon Azefack; Jenett-Siems, Kristina; Böttger, Stefan; Melzig, Matthias F

    2013-11-01

    Eleven steroidal saponins, dioscoreanosides A-K, along with five known congeners, were isolated from the flowers of Dioscorea bulbifera var. sativa. Their structures were established by extensive NMR experiments in conjunction with mass spectrometry. The isolated compounds were tested for cytotoxicity against urinary bladder carcinoma cells (ECV-304 cells). Our results revealed a moderate activity for spiroconazol A (15), pennogenin 3-O-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-β-d-glucopyranoside (12), and 26-O-ß-d-glucopyranosyl-(25R)-5-en-furost-3ß,17α,22α,26-tetraol-3-O-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-β-d-glucopyranoside (13).

  17. Microsatellite markers for Senna spectabilis var. excelsa (Caesalpinioideae, Fabaceae)1

    PubMed Central

    López-Roberts, M. Cristina; Barbosa, Ariane R.; Paganucci de Queiroz, Luciano; van den Berg, Cássio

    2016-01-01

    Premise of the study: Senna spectabilis var. excelsa (Fabaceae) is a South and Central American tree of great ecological importance and one of the most common species in several sites of seasonally dry forests. Our goal was to develop microsatellite markers to assess the genetic diversity and structure of this species. Methods and Results: We designed and assessed 53 loci obtained from a microsatellite-enriched library and an intersimple sequence repeat library. Fourteen loci were polymorphic, and they presented a total of 39 alleles in a sample of 61 individuals from six populations. The mean values of observed and expected heterozygosities were 0.355 and 0.479, respectively. Polymorphism information content was 0.390 and the Shannon index was 0.778. Conclusions: Polymorphism information content and Shannon index indicate that at least nine of the 14 microsatellite loci developed are moderate to highly informative, and potentially useful for population genetic studies in this species. PMID:26819856

  18. Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke.

    PubMed

    Avato, P; Pesante, M A; Fanizzi, F P; Santos, C Aimbiré de Moraes

    2003-07-01

    The chemical composition of the oil extracted from the seeds of Paullinia cupana var. sorbilis (Mart.) Ducke (syn. P. sorbilis) was investigated. Cyanolipids constituted 3% of the total oil from guaraná seeds, whereas acylglycerols accounted for 28%. 1H and 13C NMR analyses indicated that type I cyanolipids (1-cyano-2-hydroxymethylprop-2-ene-1-ol diesters) are present in the oil from P. cupana. GC and GC-MS analysis showed that cis-11-octadecenoic (cis-vaccenic acid) and cis-11-eicosenoic acids were the main FA (30.4 and 38.7%) esterified to the nitrile group. Paullinic acid (7.0%) was also an abundant component. Oleic acid (37.4%) was the dominant fatty acyl chain in the acylglycerols.

  19. Deterioration of expanded polystyrene caused by Aureobasidium pullulans var. melanogenum.

    PubMed

    Castiglia, Valeria C; Kuhar, Francisco

    2015-01-01

    An expanded-polystyrene factory located in northern Buenos Aires reported unusual dark spots causing esthetic damage in their production. A fungal strain forming black-olive colonies on extract malt agar medium was isolated from the damaged material and identified as Aureobasidium pullullans var. melanogenum. This fungus is particularly known for its capacity to produce hydrolytic enzymes and a biodegradable extracellular polysaccharide known as pullulan, which is used in the manufacture of packaging material for food and medicine. Laboratory tests were conducted to characterize its growth parameters. It was found that the organism was resistant to a wide range of pHs but did not survive at temperatures over 65°C. The proposed action plan includes drying of the material prior to packaging and disinfection of the machinery used in the manufacturing process and of the silos used for raw material storage. PMID:26165967

  20. Controlling pool depth during VAR of Alloy 718

    NASA Astrophysics Data System (ADS)

    Lopez, F.; Beaman, J.; Williamson, R.; Evans, D.

    2016-07-01

    A longtime goal of superalloy producers has been to control the geometry of the liquid pool in solidifying ingots. Accurate pool depth control at appropriate values is expected to result in ingots free of segregation defects. This article describes an industrial VAR experiment in which a 430mm (17 in) diameter Alloy 718 electrode was melted into a 510mm (20 in) ingot. In the experiment, the depth of the liquid pool at the mid-radius was controlled to three different set-points: 137 mm (nominal), 193 mm (deep) and 118 mm (shallow). At each level, the pool depth was marked by a power cutback of several minutes. The ingot was sectioned and longitudinal slices were cut out. Analysis of the photographed ingot revealed that accurate control was obtained for both the nominal and deep pool cases, while the third one was not conclusive.

  1. Mechanical systems biology of C. elegans touch sensation

    PubMed Central

    Krieg, Michael; Dunn, Alex; Goodman, Miriam B.

    2015-01-01

    The sense of touch informs us of the physical properties of our surroundings and is a critical aspect of communication. Before touches are perceived, mechanical signals are transmitted quickly and reliably from the skin’s surface to mechano-electrical transduction channels embedded within specialized sensory neurons. We are just beginning to understand how soft tissues participate in force transmission and how they are deformed. Here, we review empirical and theoretical studies of single molecules and molecular ensembles thought to be involved in mechanotransmission and apply the concepts emerging from this work to the sense of touch. We focus on the nematode Caenorhabditis elegans as a well-studied model for touch sensation in which mechanics can be studied on the molecular, cellular, and systems level. Finally, we conclude that force transmission is an emergent property of macromolecular cellular structures that mutually stabilize one another. PMID:25597279

  2. A quantifiably complete repertoire of C. elegans locomotion

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Schwarz, Roland; Branicky, Robyn; Schafer, William

    2014-03-01

    Visible phenotypes have played a critical role in understanding the molecular basis of behaviour in model organisms. However, most current descriptions of behaviour are based on manually identified events or a limited set of quantitative parameters. Here we report an extension of the concept of behavioural motifs to exhaustively catalogue C. elegans locomotion and derive a repertoire that is quantifiably complete. A repertoire learned for spontaneous behaviour in wild-type worms can be used to fit data from mutants or worms in different environmental conditions and provides a sensitive measure of phenotypic similarity. Repertoire comparison can also be used to assess inter-individual variation and the compositionality of behaviour, that is, the extent to which behavioural adaptation involves the creation of novel repertoire elements or the reuse of existing elements in novel sequences. Repertoire derivation is general, so that given a representation of posture, our approach will apply to other organisms.

  3. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    PubMed Central

    Bacik, Karol A.; Schaub, Michael T.; Billeh, Yazan N.; Barahona, Mauricio

    2016-01-01

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios. PMID:27494178

  4. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    PubMed

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-09-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME.

  5. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  6. Dimensionality and Dynamics in the Behavior of C. elegans

    PubMed Central

    Stephens, Greg J.; Johnson-Kerner, Bethany; Bialek, William; Ryu, William S.

    2008-01-01

    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here, we show that the space of shapes adopted by the nematode Caenorhabditis elegans is low dimensional, with just four dimensions accounting for 95% of the shape variance. These dimensions provide a quantitative description of worm behavior, and we partially reconstruct “equations of motion” for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively “steering” the worm in real time. PMID:18389066

  7. Gene silencing in Caenorhabditis elegans by transitive RNA interference

    PubMed Central

    ALDER, MATTHEW N.; DAMES, SHALE; GAUDET, JEFFREY; MANGO, SUSAN E.

    2003-01-01

    When a cell is exposed to double-stranded RNA (dsRNA), mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi). Here, we provide evidence that dsRNA is amplified in Caenorhabditis elegans to ensure a robust RNAi response. Our data suggest a model in which mRNA targeted by RNAi functions as a template for 5′ to 3′ synthesis of new dsRNA (termed transitive RNAi). Strikingly, the effect is nonautonomous: dsRNA targeted to a gene expressed in one cell type can lead to transitive RNAi-mediated silencing of a second gene expressed in a distinct cell type. These data suggest dsRNA synthesized in vivo can mediate systemic RNAi. PMID:12554873

  8. Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans.

    PubMed

    Hu, Zhitao; Hom, Sabrina; Kudze, Tambudzai; Tong, Xia-Jing; Choi, Seungwon; Aramuni, Gayane; Zhang, Weiqi; Kaplan, Joshua M

    2012-08-24

    The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.

  9. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans

    PubMed Central

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  10. Longevity and heat stress regulation in Caenorhabditis elegans.

    PubMed

    Muñoz, Manuel J

    2003-01-01

    Aging is the most complex phenotype for a multicellular organism. This process is now being under severe investigation. Here I will review the different processes known to affect longevity in the nematode Caenorhabditis elegans and their relationship with thermotolerance. All the longevity mutants that have been tested so far show an increase in stress resistance. In particular, long-lived mutants affected in the IGF/insulin pathway and those affected in the germ-line formation are both thermotolerant and long-lived. The mechanisms that activate the stress resistance are now been understood including the DAF-16 fork head transcription factor transport to the nucleus and the activation of genes involved in the defense to stress. The high correlation between stress resistance and longevity suggests that the same molecular activities that defend the cell from stress can defend the cell from the damage caused by aging.

  11. Fragile lifespan expansion by dietary mitohormesis in C. elegans.

    PubMed

    Tauffenberger, Arnaud; Vaccaro, Alexandra; Parker, J Alex

    2016-01-01

    Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but it is not known if diet influences the UPRmt. High dietary glucose reduces lifespan in worms, and we show that high dietary glucose activates the UPRmt to protect against lifespan reduction. While lifelong exposure to glucose reduces lifespan, glucose exposure restricted to developing animals extends lifespan and requires the UPRmt. However, this lifespan extension is abolished by further mitochondrial stress in adult animals. We demonstrate that dietary conditions regulate mitochondrial homeostasis, where induction of the UPRmt during development extends lifespan, but prolonged activation into adulthood reduces lifespan.

  12. Edgetic perturbation of a C. elegans BCL2 ortholog

    PubMed Central

    Dreze, Matija; Charloteaux, Benoit; Milstein, Stuart; Vidalain, Pierre-Olivier; Yildirim, Muhammed A; Zhong, Quan; Svrzikapa, Nenad; Romero, Viviana; Laloux, Géraldine; Brasseur, Robert; Vandenhaute, Jean; Boxem, Mike; Cusick, Michael E; Hill, David E; Vidal, Marc

    2010-01-01

    Genes and gene products do not function in isolation but within highly interconnected “interactome” networks, modeled as graphs of nodes and edges representing macromolecules and interactions between them, respectively. We propose to investigate genotype-phenotype associations by methodical use of alleles that lack single interactions, while retaining all others, in contrast to genetic approaches designed to eliminate gene products completely. We describe an integrated strategy based on the reverse yeast two-hybrid system to isolate and characterize such edge-specific, or “edgetic” alleles. We establish a proof-of-concept with CED-9, a C. elegans BCL2 ortholog involved in apoptosis. Using ced-9 edgetic alleles, we uncover a new potential functional link between apoptosis and a centrosomal protein, demonstrating both the interest and efficiency of our strategy. This approach is amenable to higher throughput and is particularly applicable to interactome network analysis in organisms for which transgenesis is straightforward. PMID:19855391

  13. How Does C. elegans Respond to Altered Gravity?

    NASA Technical Reports Server (NTRS)

    Conley, Catharine A.; Udranszky, Ingrid; Hoffman, David; Kim, Stuart K.

    2001-01-01

    All organisms on Earth have evolved at unit gravity (1xG), and thus are probably adapted to function optimally at 1xG. However, with the advent of space exploration, it has been shown that organisms are capable of surviving at much less than 1xG, as well as at greater than 1xG. Organisms subjected to increased G levels exhibit alterations in physiological processes that compensate for novel environmental stresses, such as increased weight and density-driven sedimentation. These physiological adaptations illustrate the plasticity of organisms when presented with environmental conditions in which they could not possibly have evolved. Investigating the mechanism(s) behind these adaptations may uncover biological pathways that have not previously been identified. An easily-cultured and well-studied organism, such as C. elegans, would be a desirable model system for these studies. Additional information is contained in the original extended abstract.

  14. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  15. Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion.

    PubMed

    Xue, You-Lin; Ahiko, Tomoyuki; Miyakawa, Takuya; Amino, Hisako; Hu, Fangyu; Furihata, Kazuo; Kita, Kiyoshi; Shirasawa, Takuji; Sawano, Yoriko; Tanokura, Masaru

    2011-06-01

    The main flavonoids were isolated from three selected onion cultivars. Three phenolic compounds were obtained by reverse-phase HPLC, and their structures were elucidated by multiple NMR measurements. There were two known compounds, quercetin and quercetin 3'-O-β-D-glucopyranoside (Q3'G), and one novel compound, quercetin 3-O-β-D-glucopyranoside-(4→1)-β-d-glucopyranoside (Q3M), which was identified in onion for the first time. These flavonoids were found to be more abundant in the onion peel than in the flesh or core. Their antioxidative activities were tested using the DPPH method, and their antiaging activities were evaluated using a Caenorhabditis elegans lifespan assay. No direct correlation was found between antioxidative activity and antiaging activity. Quercetin showed the highest antioxidative activity, whereas Q3M showed the strongest antiaging activity among these flavonoids, which might be related to its high hydrophilicity. PMID:21563825

  16. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G.; Chalasani, Sreekanth H.

    2013-01-01

    Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic; however, the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a novel, sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, use BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large but not small changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switch the AWC olfactory sensory neuron into an interneuron in the salt circuit. Animals with disrupted insulin signaling have deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results show that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition. PMID:24013594

  17. Integrating -Omics: Systems Biology as Explored Through C. elegans Research.

    PubMed

    Van Assche, Roel; Broeckx, Valérie; Boonen, Kurt; Maes, Evelyne; De Haes, Wouter; Schoofs, Liliane; Temmerman, Liesbet

    2015-10-23

    -Omics data have become indispensable to systems biology, which aims to describe the full complexity of functional cells, tissues, organs and organisms. Generating vast amounts of data via such methods, researchers have invested in ways of handling and interpreting these. From the large volumes of -omics data that have been gathered over the years, it is clear that the information derived from one -ome is usually far from complete. Now, individual techniques and methods for integration are maturing to the point that researchers can focus on network-based integration rather than simply interpreting single -ome studies. This review evaluates the application of integrated -omics approaches with a focus on Caenorhabditis elegans studies, intending to direct researchers in this field to useful databases and inspiring examples.

  18. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans

    PubMed Central

    Leifer, Andrew M; Fang-Yen, Christopher; Gershow, Marc; Alkema, Mark J; Samuel, Aravinthan D T

    2011-01-01

    We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing Channelrhodopsin-2 or Halorhodopsin/NpHR in specific cell types. Image processing software analyzes the worm’s position within each video frame, rapidly estimates the locations of targeted cells, and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Since each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (~50 frames per second) to provide high spatial resolution (~30 µm). To demonstrate the accuracy, flexibility, and utility of our system, we present optogenetic analyses of the worm motor circuit, egg-laying circuit, and mechanosensory circuits that were not possible with previous methods. PMID:21240279

  19. A circuit for gradient climbing in C. elegans chemotaxis

    PubMed Central

    Larsch, Johannes; Flavell, Steven W.; Liu, Qiang; Gordus, Andrew; Albrecht, Dirk R.; Bargmann, Cornelia I.

    2016-01-01

    Animals have a remarkable ability to track dynamic sensory information. For example, the nematode Caenorhabditis elegans can locate a diacetyl odor source across a 100,000-fold concentration range. Here, we relate neuronal properties, circuit implementation, and behavioral strategies underlying this robust navigation. Diacetyl responses in AWA olfactory neurons are concentration- and history-dependent; AWA integrates over time at low odor concentrations, but as concentrations rise it desensitizes rapidly through a process requiring cilia transport. After desensitization, AWA retains sensitivity to small odor increases. The downstream AIA interneuron amplifies weak odor inputs and desensitizes further, resulting in a stereotyped response to odor increases over three orders of magnitude. The AWA-AIA circuit drives asymmetric behavioral responses to odor increases that facilitate gradient climbing. The adaptation-based circuit motif embodied by AWA and AIA shares computational properties with bacterial chemotaxis and the vertebrate retina, each providing a solution for maintaining sensitivity across a dynamic range. PMID:26365196

  20. A size threshold governs Caenorhabditis elegans developmental progression.

    PubMed

    Uppaluri, Sravanti; Brangwynne, Clifford P

    2015-08-22

    The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction. PMID:26290076

  1. Paternal RNA contributions in the Caenorhabditis elegans zygote

    PubMed Central

    Stoeckius, Marlon; Grün, Dominic; Rajewsky, Nikolaus

    2014-01-01

    Development of the early embryo is thought to be mainly driven by maternal gene products and post-transcriptional gene regulation. Here, we used metabolic labeling to show that RNA can be transferred by sperm into the oocyte upon fertilization. To identify genes with paternal expression in the embryo, we performed crosses of males and females from divergent Caenorhabditis elegans strains. RNA sequencing of mRNAs and small RNAs in the 1-cell hybrid embryo revealed that about one hundred sixty paternal mRNAs are reproducibly expressed in the embryo and that about half of all assayed endogenous siRNAs and piRNAs are also of paternal origin. Together, our results suggest an unexplored paternal contribution to early development. PMID:24894551

  2. A size threshold governs Caenorhabditis elegans developmental progression

    PubMed Central

    Uppaluri, Sravanti; Brangwynne, Clifford P.

    2015-01-01

    The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction. PMID:26290076

  3. Suppressors of the Unc-73 Gene of Caenorhabditis Elegans

    PubMed Central

    Run, J. Q.; Steven, R.; Hung, M. S.; van-Weeghel, R.; Culotti, J. G.; Way, J. C.

    1996-01-01

    The unc-73 gene of Caenorhabditis elegans is necessary for proper axon guidance. Animals mutant in this gene are severely uncoordinated and also exhibit defects in cell migration and cell lineages. We have isolated coordinated revertants of unc-73(e936). These fall into three classes: intragenic revertants, extragenic dominant suppressors (sup-39), and a single apparently intragenic mutation that is a dominant suppressor with a linked recessive lethal phenotype. sup-39 mutations cause early embryonic lethality, but escapers have a wild-type movement phenotype as larvae and adults. Gonads of sup-39 mutant animals show a novel defect: normal gonads have a single row of oocytes, but sup-39 gonads often have two rows of oocytes. This result suggests that the mutant gonad is defective in choosing on its surface only a single site from which nuclei will emerge to form oocytes. These results are interpreted in terms of an effect of unc-73 on determination of cell polarity. PMID:8722777

  4. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    PubMed

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  5. An Engineering Approach to Extending Lifespan in C. elegans

    PubMed Central

    Sagi, Dror; Kim, Stuart K.

    2012-01-01

    We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome. PMID:22737090

  6. Methodological considerations for heat shock of the nematode Caenorhabditis elegans.

    PubMed

    Zevian, Shannin C; Yanowitz, Judith L

    2014-08-01

    Stress response pathways share commonalities across many species, including humans, making heat shock experiments valuable tools for many biologists. The study of stress response in Caenorhabditis elegans has provided great insight into many complex pathways and diseases. Nevertheless, the heat shock/heat stress field does not have consensus as to the timing, temperature, or duration of the exposure and protocols differ extensively between laboratories. The lack of cohesiveness makes it difficult to compare results between groups or to know where to start when preparing your own protocol. We present a discussion of some of the major hurdles to reproducibility in heat shock experiments as well as detailed protocols for heat shock and hormesis experiments.

  7. Redefining the role of syndecans in C. elegans biology.

    PubMed

    Gopal, Sandeep; Couchman, John; Pocock, Roger

    2016-01-01

    Cytosolic calcium is an important factor during fertilization, development and differentiation. Hence, the control of cytosolic calcium levels has been studied extensively for several decades. Numerous calcium channels have been identified and their mechanism of action elucidated. However, the mode of calcium channel regulation remains elusive. Here we discuss our recent findings regarding the role of syndecans in the regulation of cytosolic calcium levels. Syndecans are transmembrane proteoglycans present in both vertebrates and invertebrates that interact with extracellular ligands resulting in the activation of several downstream signaling pathways. We identified a previously unappreciated role of syndecans in cytosolic calcium regulation in mammals that is conserved in C. elegans. We concluded that calcium regulation is the basic, evolutionarily conserved role for syndecans, which enables them to be integral for multiple cellular functions. PMID:27073736

  8. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans

    PubMed Central

    Yamada, Koji; Hirotsu, Takaaki; Matsuki, Masahiro; Butcher, Rebecca A; Tomioka, Masahiro; Ishihara, Takeshi; Clardy, Jon; Kunitomo, Hirofumi; Iino, Yuichi

    2011-01-01

    Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. C. elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and this regulation is mediated by pheromonal signaling. We show that a peptide SNET-1 negatively regulates olfactory plasticity and its expression is down-regulated by the pheromone. NEP-2, a homologue of the extracellular peptidase neprilysin, antagonizes SNET-1 and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior. PMID:20929849

  9. Fragile lifespan expansion by dietary mitohormesis in C. elegans

    PubMed Central

    Tauffenberger, Arnaud; Vaccaro, Alexandra; Parker, J. Alex

    2016-01-01

    Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but it is not known if diet influences the UPRmt. High dietary glucose reduces lifespan in worms, and we show that high dietary glucose activates the UPRmt to protect against lifespan reduction. While lifelong exposure to glucose reduces lifespan, glucose exposure restricted to developing animals extends lifespan and requires the UPRmt. However, this lifespan extension is abolished by further mitochondrial stress in adult animals. We demonstrate that dietary conditions regulate mitochondrial homeostasis, where induction of the UPRmt during development extends lifespan, but prolonged activation into adulthood reduces lifespan. PMID:26764305

  10. Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior

    PubMed Central

    Trojanowski, Nicholas F.; Padovan-Merhar, Olivia; Fang-Yen, Christopher

    2014-01-01

    Degenerate networks, in which structurally distinct elements can perform the same function or yield the same output, are ubiquitous in biology. Degeneracy contributes to the robustness and adaptability of networks in varied environmental and evolutionary contexts. However, how degenerate neural networks regulate behavior in vivo is poorly understood, especially at the genetic level. Here, we identify degenerate neural and genetic mechanisms that underlie excitation of the pharynx (feeding organ) in the nematode Caenorhabditis elegans using cell-specific optogenetic excitation and inhibition. We show that the pharyngeal neurons MC, M2, M4, and I1 form multiple direct and indirect excitatory pathways in a robust network for control of pharyngeal pumping. I1 excites pumping via MC and M2 in a state-dependent manner. We identify nicotinic and muscarinic receptors through which the pharyngeal network regulates feeding rate. These results identify two different mechanisms by which degeneracy is manifest in a neural circuit in vivo. PMID:24872529

  11. Manganese-induced Neurotoxicity: From C. elegans to Humans

    PubMed Central

    Chen, Pan; Chakraborty, Sudipta; Peres, Tanara V.; Bowman, Aaron B.; Aschner, Michael

    2014-01-01

    Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity. PMID:25893090

  12. Molecular biology of thermosensory transduction in C. elegans.

    PubMed

    Aoki, Ichiro; Mori, Ikue

    2015-10-01

    As the environmental temperature prominently influences diverse biological aspects of the animals, thermosensation and the subsequent information processing in the nervous system has attracted much attention in biology. Thermotaxis in the nematode Caenorhabditis elegans is an ideal behavioral paradigm by which to address the molecular mechanism underlying thermosensory transduction. Molecular genetic analysis in combination with other physiological and behavioral studies revealed that sensation of ambient temperature is mediated mainly by cyclic guanosine monophosphate (cGMP) signaling in thermosensory neurons. The information of the previously perceived temperature is also stored within the thermosensory neurons, and the consequence of the comparison between the past and the present temperature is conveyed to the downstream interneurons to further regulate the motor-circuits that encode the locomotion.

  13. Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans

    PubMed Central

    Calhoun, Adam J.; Tong, Ada; Pokala, Navin; Fitzpatrick, James A. J.; Sharpee, Tatyana O.; Chalasani, Sreekanth H.

    2015-01-01

    Summary The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and then modifies its future behavior accordingly. We derived a behavioral model that reveals a critical period over which information about the food environment is acquired and predicts future search behavior. We identified a pair of high-threshold sensory neurons that encode variability in food concentration and downstream dopamine-dependent circuitry that generates appropriate search behavior upon removal from food. Further, we show that CREB is required in a subset of interneurons and determines the timescale over which the variability is integrated. Interestingly, the variability circuit is a subset of a larger circuit driving search behavior, showing that learning directly modifies the very same neurons driving behavior. Our study reveals how a neural circuit decodes environmental variability to generate contextually appropriate decisions. PMID:25864633

  14. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    PubMed

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-01-01

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  15. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome

    PubMed Central

    Harlow, Philippa H.; Perry, Simon J.; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A.; Flemming, Anthony J.

    2016-01-01

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals. PMID:26987796

  16. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    PubMed Central

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-01-01

    Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability. PMID:12396234

  17. Genome-wide analysis of condensin binding in Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II. PMID:24125077

  18. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  19. Malate and Fumarate Extend Lifespan in Caenorhabditis elegans

    PubMed Central

    Edwards, Clare B.; Copes, Neil; Brito, Andres G.; Canfield, John; Bradshaw, Patrick C.

    2013-01-01

    Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors. PMID:23472183

  20. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.

    PubMed

    Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa

    2016-11-01

    Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring.

  1. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.

    PubMed

    Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa

    2016-11-01

    Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring. PMID:27343944

  2. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.

    PubMed

    Song, Xueying; Hu, Xiaojun; Ji, Puhui; Li, Yushuang; Chi, Guangyu; Song, Yufang

    2012-04-01

    A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency. PMID:22286610

  3. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.

    PubMed

    Song, Xueying; Hu, Xiaojun; Ji, Puhui; Li, Yushuang; Chi, Guangyu; Song, Yufang

    2012-04-01

    A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency.

  4. [Correlation between chemical constituents and ecological factors of Astragalus membranaceus var. mongholicus].

    PubMed

    Yang, Qing-zhen; Wang, Zeng-hui; Fu, Juan; Liu, De-wang; Huang, Lin-fang

    2015-03-01

    Principal component analysis (PCA) and correlation analysis (CA) were applied to analyze the correlation of the main chemical components in Astragalus membranaceus var. mongholicus and ecological factors. The results showed that the contents of astragaloside, campanulin, ononin, kaempferol and astragalus polysaccharides (APS) of A. membranaceus var. mongholicus produced. in Shanxi were significantly higher than in Inner Mongolia and Gansu. The main climatic factors for affecting the contents of chemical ingredients in A. membranaceus var. mongholicus were annual average relative humidity, sunshine hours and average July temperature. Calcium was the main factor in the soil affecting the chemical ingredient contents, and calcium was negatively correlated with the contents of calycosin glycosides, kaempferol, ononin, quercetin and APS in A. membranaceus var. mongholicus within a certain range. PMID:26211053

  5. Weinmannia marquesana var. angustifolia (Cunoniaceae), a new variety from the Marquesas Islands

    PubMed Central

    Lorence, David H.; Wagner, Warren L.

    2011-01-01

    Abstract Weinmannia marquesana F. Br. var. angustifolia Lorence & W. L. Wagner, var. nov., a new variety with narrow, simple leaves endemic to Tahuata, Marquesas Islands (French Polynesia) is described and its affinities and conservation status are discussed. It is similar to the other two varieties of this species by having simple leaves, but this new variety has much narrower leaf blades, and it resembles Weinmannia tremuloides in having narrow leaf blades but differs by having simple, not trifoliolate leaves. PMID:22171181

  6. Working alliance inventory applied to virtual and augmented reality (WAI-VAR): psychometrics and therapeutic outcomes

    PubMed Central

    Miragall, Marta; Baños, Rosa M.; Cebolla, Ausiàs; Botella, Cristina

    2015-01-01

    This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, Mage = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman’s Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. “Not changed” patients scored lower on the WAI-VAR than “improved” and “recovered” patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy. PMID:26500589

  7. Working alliance inventory applied to virtual and augmented reality (WAI-VAR): psychometrics and therapeutic outcomes.

    PubMed

    Miragall, Marta; Baños, Rosa M; Cebolla, Ausiàs; Botella, Cristina

    2015-01-01

    This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, M age = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman's Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. "Not changed" patients scored lower on the WAI-VAR than "improved" and "recovered" patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy.

  8. Arundina graminifolia var. revoluta (Arethuseae, Orchidaceae) has fern-type rheophyte characteristics in the leaves.

    PubMed

    Yorifuji, Eri; Ishikawa, Naoko; Okada, Hiroshi; Tsukaya, Hirokazu

    2015-03-01

    Morphological and molecular variation between Arundina graminifolia var. graminifolia and the dwarf variety, A. graminifolia var. revoluta, was examined to assess the validity of their taxonomic characteristics and genetic background for identification. Morphological analysis in combination with field observations indicated that A. graminifolia var. revoluta is a rheophyte form of A. graminifolia characterized by narrow leaves, whereas the other morphological characteristics described for A. graminifolia var. revoluta, such as smaller flowers and short stems, were not always accompanied by the narrower leaf phenotype. Molecular analysis based on matK sequences indicated that only partial differentiation has occurred between A. graminifolia var. graminifolia and A. graminifolia var. revoluta. Therefore, we should consider the rheophyte form an ecotype rather than a variety. Anatomical observations of the leaves revealed that the rheophyte form of A. graminifolia possessed characteristics of the rheophytes of both ferns and angiosperms, such as narrower palisade tissue cells and thinner spongy tissue cells, as well as fewer cells in the leaf-width direction and fewer mesophyll cell layers.

  9. Semi-nonparametric VaR forecasts for hedge funds during the recent crisis

    NASA Astrophysics Data System (ADS)

    Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier

    2014-05-01

    The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.

  10. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species. PMID:25423905

  11. Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene.

    PubMed

    Anyanful, Akwasi; Dolan-Livengood, Jennifer M; Lewis, Taiesha; Sheth, Seema; Dezalia, Mark N; Sherman, Melanie A; Kalman, Lisa V; Benian, Guy M; Kalman, Daniel

    2005-08-01

    Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non-pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin-filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif-1 and egl-9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek-1, mek-1, mev-1, pgp-1,3 and vhl-1, rendered C. elegans more

  12. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system.

    PubMed

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-01-01

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646

  13. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans.

    PubMed

    Koopman, Mandy; Michels, Helen; Dancy, Beverley M; Kamble, Rashmi; Mouchiroud, Laurent; Auwerx, Johan; Nollen, Ellen A A; Houtkooper, Riekelt H

    2016-10-01

    Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes ∼2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format.

  14. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil.

    PubMed

    Peredney, C L; Williams, P L

    2000-07-01

    There is an increasing need for the development of soil bioassay protocols. Currently the only internationally standardized soil test organism is the lumbricid earthworm Eisenia fetida. Many alternate soil test organisms have been proposed. This work compares Caenorhabditis elegans to several other test organisms, including E. fetida, for heavy metals in soil. In this evaluation, such factors as ease of testing and culturing, duration of testing, soil volume needed, and the sensitivity of the organism were considered. Results show that C. elegans is more sensitive than most other organisms evaluated and is similar in response to E. fetida. The second issue compares C. elegans LC(50) values to heavy metals criteria specified in the US EPA regulations for land application of sewage sludge. Currently, the regulations are set on total metals in the soil and do not consider bioavailability of the metals. Regulations do not consider soil physiochemical properties, such as organic matter content, clay content, and cation exchange capacity, which have been shown to affect the availability of metals to soil organisms. While the C. elegans LC(50) values are above standard values in artificial soil, work in our lab indicates that the LC(50)s are below regulation values for other soil types. Due to the ease of culturing and testing, good sensitivity, along with the wealth of biological information and ecological relevance, C. elegans is a good organism for use in soil bioassays.

  15. A microfluidic device and automatic counting system for the study of C. elegans reproductive aging.

    PubMed

    Li, Siran; Stone, Howard A; Murphy, Coleen T

    2015-01-21

    The nematode Caenorhabditis elegans (C. elegans) is an excellent model to study reproductive aging because of its short life span, its cessation of reproduction in mid-adulthood, and the strong conservation of pathways that regulate longevity. During its lifetime, a wild-type C. elegans hermaphrodite usually lays about 200-300 self-fertilized hatchable eggs, which mainly occurs in the first three to five days of adulthood. Here, we report the development of a microfluidic assay and a real-time, automatic progeny counting system that records progeny counting information from many individual C. elegans hermaphrodites. This system offers many advantages compared to conventional plate assays. The flow of non-proliferating bacteria not only feeds the worms but also flushes the just-hatched young progeny through a filter that separates mothers from their offspring. The progeny that are flushed out of the chamber are detected and recorded using a novel algorithm. In our current design, one device contains as many as 16 individual chambers. Here we show examples of real-time progeny production information from wild-type (N2) and daf-2 (insulin receptor) mutants. We believe that this system has the potential to become a powerful, high time-resolution tool to study the detailed reproduction of C. elegans.

  16. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  17. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans

    PubMed Central

    Salom, David; Cao, Pengxiu; Sun, Wenyu; Kramp, Kristopher; Jastrzebska, Beata; Jin, Hui; Feng, Zhaoyang; Palczewski, Krzysztof

    2012-01-01

    New strategies for expression, purification, functional characterization, and structural determination of membrane-spanning G-protein-coupled receptors (GPCRs) are constantly being developed because of their importance to human health. Here, we report a Caenorhabditis elegans heterologous expression system able to produce milligram amounts of functional native and engineered GPCRs. Both bovine opsin [(b)opsin] and human adenosine A2A subtype receptor [(h)A2AR] expressed in neurons or muscles of C. elegans were localized to cell membranes. Worms expressing these GPCRs manifested changes in motor behavior in response to light and ligands, respectively. With a newly devised protocol, 0.6–1 mg of purified homogenous 9-cis-retinal-bound bovine isorhodopsin [(b)isoRho] and ligand-bound (h)A2AR were obtained from C. elegans from one 10-L fermentation at low cost. Purified recombinant (b)isoRho exhibited its signature absorbance spectrum and activated its cognate G-protein transducin in vitro at a rate similar to native rhodopsin (Rho) obtained from bovine retina. Generally high expression levels of 11 native and mutant GPCRs demonstrated the potential of this C. elegans system to produce milligram quantities of high-quality GPCRs and possibly other membrane proteins suitable for detailed characterization.—Salom, D., Cao, P., Sun, W., Kramp, K., Jastrzebska, B., Jin, H., Feng, Z., Palczewski, K. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans. PMID:22090314

  18. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans.

    PubMed

    Pradel, Elizabeth; Zhang, Yun; Pujol, Nathalie; Matsuyama, Tohey; Bargmann, Cornelia I; Ewbank, Jonathan J

    2007-02-13

    The nematode Caenorhabditis elegans is present in soils and composts, where it can encounter a variety of microorganisms. Some bacteria in these rich environments are innocuous food sources for C. elegans, whereas others are pathogens. Under laboratory conditions, C. elegans will avoid certain pathogens, such as Serratia marcescens, by exiting a bacterial lawn a few hours after entering it. By combining bacterial genetics and nematode genetics, we show that C. elegans specifically avoids certain strains of Serratia based on their production of the cyclic lipodepsipentapeptide serrawettin W2. Lawn-avoidance behavior is chiefly mediated by the two AWB chemosensory neurons, probably through G protein-coupled chemoreceptors, and also involves the nematode Toll-like receptor gene tol-1. Purified serrawettin W2, added to an Escherichia coli lawn, can directly elicit lawn avoidance in an AWB-dependent fashion, as can another chemical detected by AWB. These findings represent an insight into chemical recognition between these two soil organisms and reveal sensory mechanisms for pathogen recognition in C. elegans.

  19. Effects of Microcystin-LR Exposure on Spermiogenesis in Nematode Caenorhabditis elegans.

    PubMed

    Li, Yunhui; Zhang, Minhui; Chen, Pan; Liu, Ran; Liang, Geyu; Yin, Lihong; Pu, Yuepu

    2015-09-22

    Little is known about the effect on spermiogenesis induced by microcystin-leucine arginine (MC-LR), even though such data are very important to better elucidate reproductive health. In the current work, with the aid of nematode Caenorhabditis elegans (C. elegans) as an animal model, we investigated the defects on spermiogenesis induced by MC-LR. Our results showed that MC-LR exposure induced sperm morphology abnormality and caused severe defects of sperm activation, trans-activation, sperm behavior and competition. Additionally, the expression levels of spe-15 were significantly decreased in C. elegans exposed to MC-LR lower than 16.0 μg/L, while the expression levels of spe-10 and fer-1 could be significantly lowered in C. elegans even exposed to 1.0 μg/L of MC-LR. Therefore, the present study reveals that MC-LR can induce adverse effects on spermiogenesis, and those defects of sperm functions may be induced by the decreases of spe-10, spe-15 and fer-1 gene expressions in C. elegans.

  20. Enhanced toxicity of silver nanoparticles in transgenic Caenorhabditis elegans expressing amyloidogenic proteins.

    PubMed

    Soria, Cristina; Coccini, Teresa; De Simone, Uliana; Marchese, Loredana; Zorzoli, Irene; Giorgetti, Sofia; Raimondi, Sara; Mangione, P Patrizia; Ramat, Stefano; Bellotti, Vittorio; Manzo, Luigi; Stoppini, Monica

    2015-01-01

    The increasing number of applications of silver nanoparticles (AgNP) prompted us to assess their toxicity in vivo. We have investigated their effects on wild type and transgenic Caenorhabditis elegans (C. elegans) strains expressing two prototypic amyloidogenic proteins: β2-microglobulin and Aβ peptide3-42. The use of C. elegans allowed us to highlight AgNP toxicity in the early phase of the worm's life cycle (LC50 survival, 0.9 µg/ml). A comparative analysis of LC50 values revealed that our nematode strains were more sensitive to assess AgNP toxicity than the cell lines, classically used in toxicity tests. Movement and superoxide production in the adult population were significantly affected by exposure to AgNP; the transgenic strains were more affected than the wild type worms. Our screening approach could be applied to other types of nanomaterials that can enter the body and express any nanostructure-related bioactivities. We propose that C. elegans reproducing the molecular events associated with protein misfolding diseases, e.g. Alzheimer's disease and systemic amyloidosis, may help to investigate the specific toxicity of a range of potentially harmful molecules. Our study suggests that transgenic C. elegans may be used to predict the effect of chemicals in a "fragile population", where an underlying pathologic state may amplify their toxicity.

  1. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans.

    PubMed

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2009-08-01

    G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes. PMID:19489741

  2. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system.

    PubMed

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-08-17

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system.

  3. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    PubMed

    Hunt, Piper R; Son, Tae Gen; Wilson, Mark A; Yu, Quian-Sheng; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta; Wolkow, Catherine A

    2011-01-01

    Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC) transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  4. Caenorhabditis elegans as a platform to study the mechanism of action of synthetic antitumor lipids

    PubMed Central

    Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto G; Reis-Sobreiro, Mariana; Sáenz-Narciso, Beatriz; Cabello, Juan; Mohler, William A; Mollinedo, Faustino

    2014-01-01

    Drugs capable of specifically recognizing and killing cancer cells while sparing healthy cells are of great interest in anti-cancer therapy. An example of such a drug is edelfosine, the prototype molecule of a family of synthetic lipids collectively known as antitumor lipids (ATLs). A better understanding of the selectivity and the mechanism of action of these compounds would lead to better anticancer treatments. Using Caenorhabditis elegans, we modeled key features of the ATL selectivity against cancer cells. Edelfosine induced a selective and direct killing action on C. elegans embryos, which was dependent on cholesterol, without affecting adult worms and larvae. Distinct ATLs ranked differently in their embryonic lethal effect with edelfosine > perifosine > erucylphosphocholine >> miltefosine. Following a biased screening of 57 C. elegans mutants we found that inactivation of components of the insulin/IGF-1 signaling pathway led to resistance against the ATL edelfosine in both C. elegans and human tumor cells. This paper shows that C. elegans can be used as a rapid platform to facilitate ATL research and to further understand the mechanism of action of edelfosine and other synthetic ATLs. PMID:25485582

  5. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system

    PubMed Central

    Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee

    2016-01-01

    Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646

  6. Modeling Molecular and Cellular Aspects of Human Disease using the Nematode Caenorhabditis elegans

    PubMed Central

    Silverman, Gary A.; Luke, Cliff J.; Bhatia, Sangeeta R.; Long, Olivia S.; Vetica, Anne C.; Perlmutter, David H.; Pak, Stephen C.

    2009-01-01

    As an experimental system, Caenorhabditis elegans, offers a unique opportunity to interrogate in vivo the genetic and molecular functions of human disease-related genes. For example, C. elegans has provided crucial insights into fundamental biological processes such as cell death and cell fate determinations, as well as pathological processes such as neurodegeneration and microbial susceptibility. The C. elegans model has several distinct advantages including a completely sequenced genome that shares extensive homology with that of mammals, ease of cultivation and storage, a relatively short lifespan and techniques for generating null and transgenic animals. However, the ability to conduct unbiased forward and reverse genetic screens in C. elegans remains one of the most powerful experimental paradigms for discovering the biochemical pathways underlying human disease phenotypes. The identification of these pathways leads to a better understanding of the molecular interactions that perturb cellular physiology, and forms the foundation for designing mechanism-based therapies. To this end, the ability to process large numbers of isogenic animals through automated work stations suggests that C. elegans, manifesting different aspects of human disease phenotypes, will become the platform of choice for in vivo drug discovery and target validation using high-throughput/content screening technologies. PMID:18852689

  7. A Conserved Upstream Motif Orchestrates Autonomous, Germline-Enriched Expression of Caenorhabditis elegans piRNAs

    PubMed Central

    Day, Amanda M.; Chun, Sang Young; Khivansara, Vishal; Kim, John K.

    2013-01-01

    Piwi-interacting RNAs (piRNAs) fulfill a critical, conserved role in defending the genome against foreign genetic elements. In many organisms, piRNAs appear to be derived from processing of a long, polycistronic RNA precursor. Here, we establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 21 nucleotide (nt) piRNA sequence and an ∼50 nt upstream motif with limited genomic context for expression. Combining computational analyses with a novel, in vivo transgenic system, we demonstrate that this upstream motif is necessary for independent expression of a germline-enriched, Piwi-dependent piRNA. We further show that a single nucleotide position within this motif directs differential germline enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in male or female germline, and comparison of the genes they target suggests that these two populations have evolved independently. Together, our results indicate that C. elegans piRNA upstream motifs act as independent promoters to specify which sequences are expressed as piRNAs, how abundantly they are expressed, and in what germline. As the genome encodes well over 15,000 unique piRNA sequences, our study reveals that the number of transcriptional units encoding piRNAs rivals the number of mRNA coding genes in the C. elegans genome. PMID:23516384

  8. Identification of virulence properties in Salmonella Typhimurium DT104 using Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Anriany, Yuda; Grim, Christopher J; Kim, Sungji; Chang, Zenas; Joseph, Sam W; Cinar, Hediye N

    2013-01-01

    Salmonella enterica serover Typhimurium definitive phage type DT104, resistant to multiple antibiotics, is one of the most widespread Salmonella species in human infection worldwide. Although several cohort studies indicate that DT104 carrying the multidrug resistance (MDR) locus on salmonella genomic island 1 is a possible hyper-virulent strain compared to DT104 strains without MDR, or other Salmonella enterica serotypes, existing experimental evidence regarding virulence properties associated with the MDR region is controversial. To address this question, we constructed an isogenic MDR deletion (∆MDR) mutant strain of DT104, SNS12, by allelic exchange and used Caenorhabditis elegans as a host model to assess differences in virulence between these two strains. SNS12 exhibited decreased virulence in C. elegans, and we observed increased colonization and proliferation of the intestine of C. elegans by DT104. The immune response against MDR-carrying DT104 appears to function through a non-canonical Unfolded Protein Response (UPR) pathway, namely prion-like-(QN-rich)-domain-bearing protein pathway (PQN), in a ced-1 dependent manner in C. elegans. Further, we also demonstrate that genes of the PQN pathway and antimicrobial peptide gene abf-2, are expressed at higher transcriptional levels in worms immediately following exposure to DT104, in comparison with worms exposed to SNS12. Altogether, our results suggest that the MDR region of Salmonella Typhimurium DT104 has a direct role in virulence against Caenorhabditis elegans.

  9. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay.

    PubMed

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-03-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

  10. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans.

    PubMed

    Koopman, Mandy; Michels, Helen; Dancy, Beverley M; Kamble, Rashmi; Mouchiroud, Laurent; Auwerx, Johan; Nollen, Ellen A A; Houtkooper, Riekelt H

    2016-10-01

    Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes ∼2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format. PMID:27583642

  11. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans

    PubMed Central

    Pradel, Elizabeth; Zhang, Yun; Pujol, Nathalie; Matsuyama, Tohey; Bargmann, Cornelia I.; Ewbank, Jonathan J.

    2007-01-01

    The nematode Caenorhabditis elegans is present in soils and composts, where it can encounter a variety of microorganisms. Some bacteria in these rich environments are innocuous food sources for C. elegans, whereas others are pathogens. Under laboratory conditions, C. elegans will avoid certain pathogens, such as Serratia marcescens, by exiting a bacterial lawn a few hours after entering it. By combining bacterial genetics and nematode genetics, we show that C. elegans specifically avoids certain strains of Serratia based on their production of the cyclic lipodepsipentapeptide serrawettin W2. Lawn-avoidance behavior is chiefly mediated by the two AWB chemosensory neurons, probably through G protein-coupled chemoreceptors, and also involves the nematode Toll-like receptor gene tol-1. Purified serrawettin W2, added to an Escherichia coli lawn, can directly elicit lawn avoidance in an AWB-dependent fashion, as can another chemical detected by AWB. These findings represent an insight into chemical recognition between these two soil organisms and reveal sensory mechanisms for pathogen recognition in C. elegans. PMID:17267603

  12. A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

    PubMed Central

    Roberts, William M; Augustine, Steven B; Lawton, Kristy J; Lindsay, Theodore H; Thiele, Tod R; Izquierdo, Eduardo J; Faumont, Serge; Lindsay, Rebecca A; Britton, Matthew Cale; Pokala, Navin; Bargmann, Cornelia I; Lockery, Shawn R

    2016-01-01

    Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms. DOI: http://dx.doi.org/10.7554/eLife.12572.001 PMID:26824391

  13. A Highly Accurate Inclusive Cancer Screening Test Using Caenorhabditis elegans Scent Detection

    PubMed Central

    Uozumi, Takayuki; Shinden, Yoshiaki; Mimori, Koshi; Maehara, Yoshihiko; Ueda, Naoko; Hamakawa, Masayuki

    2015-01-01

    Early detection and treatment are of vital importance to the successful eradication of various cancers, and development of economical and non-invasive novel cancer screening systems is critical. Previous reports using canine scent detection demonstrated the existence of cancer-specific odours. However, it is difficult to introduce canine scent recognition into clinical practice because of the need to maintain accuracy. In this study, we developed a Nematode Scent Detection Test (NSDT) using Caenorhabditis elegans to provide a novel highly accurate cancer detection system that is economical, painless, rapid and convenient. We demonstrated wild-type C. elegans displayed attractive chemotaxis towards human cancer cell secretions, cancer tissues and urine from cancer patients but avoided control urine; in parallel, the response of the olfactory neurons of C. elegans to the urine from cancer patients was significantly stronger than to control urine. In contrast, G protein α mutants and olfactory neurons-ablated animals were not attracted to cancer patient urine, suggesting that C. elegans senses odours in urine. We tested 242 samples to measure the performance of the NSDT, and found the sensitivity was 95.8%; this is markedly higher than that of other existing tumour markers. Furthermore, the specificity was 95.0%. Importantly, this test was able to diagnose various cancer types tested at the early stage (stage 0 or 1). To conclude, C. elegans scent-based analyses might provide a new strategy to detect and study disease-associated scents. PMID:25760772

  14. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span

    PubMed Central

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-01-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabdtitis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  15. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans.

    PubMed

    Yang, Wen; Hekimi, Siegfried

    2010-01-01

    The nuo-6 and isp-1 genes of C. elegans encode, respectively, subunits of complex I and III of the mitochondrial respiratory chain. Partial loss-of-function mutations in these genes decrease electron transport and greatly increase the longevity of C. elegans by a mechanism that is distinct from that induced by reducing their level of expression by RNAi. Electron transport is a major source of the superoxide anion (O(⋅) (-)), which in turn generates several types of toxic reactive oxygen species (ROS), and aging is accompanied by increased oxidative stress, which is an imbalance between the generation and detoxification of ROS. These observations have suggested that the longevity of such mitochondrial mutants might result from a reduction in ROS generation, which would be consistent with the mitochondrial oxidative stress theory of aging. It is difficult to measure ROS directly in living animals, and this has held back progress in determining their function in aging. Here we have adapted a technique of flow cytometry to directly measure ROS levels in isolated mitochondria to show that the generation of superoxide is elevated in the nuo-6 and isp-1 mitochondrial mutants, although overall ROS levels are not, and oxidative stress is low. Furthermore, we show that this elevation is necessary and sufficient to increase longevity, as it is abolished by the antioxidants NAC and vitamin C, and phenocopied by mild treatment with the prooxidant paraquat. Furthermore, the absence of effect of NAC and the additivity of the effect of paraquat on a variety of long- and short-lived mutants suggest that the pathway triggered by mitochondrial superoxide is distinct from previously studied mechanisms, including insulin signaling, dietary restriction, ubiquinone deficiency, the hypoxic response, and hormesis. These findings are not consistent with the mitochondrial oxidative stress theory of aging. Instead they show that increased superoxide generation acts as a signal in young

  16. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span.

    PubMed

    Kumar, Sandeep; Dietrich, Nicholas; Kornfeld, Kerry

    2016-02-01

    Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new

  17. Acylated iridoids from the roots of Valeriana officinalis var. latifolia.

    PubMed

    Han, Zhu-zhen; Yan, Zhao-hui; Liu, Qing-xin; Hu, Xian-qing; Ye, Ji; Li, Hui-liang; Zhang, Wei-dong

    2012-10-01

    Phytochemical investigation of the roots of Valeriana officinalis var. latifolia resulted in the isolation and characterization of six new acylated iridoids, (5S,7S,8S,9S)-7-hydroxy-8-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (1), (5S,7S,8S,9S)-7-hydroxy-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (2), (5S,8S,9S)-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (3), (5S,6S,8S,9R)-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (4), (5S,6S,8S,9R)-1,3-isovaleroxy-Δ4,11-1,3-diol (5), and (5S,6S,8S,9R)-3-isovaleroxy-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (6). Their structures were determined mainly by 1D and 2D NMR spectroscopic techniques. We also report herein for the first time the single crystal X-ray structure of compound 1. In addition, the cytotoxic activities of compounds 1-6 were evaluated against A549 (human lung adenocarcinoma), HCT116 (human colon carcinoma), SK-BR-3 (human breast carcinoma), and HepG2 (human hepatoma) cell lines. Compound 6 showed weak cell growth inhibition of A549, HCT116, SK-BR-3, and HepG2 cells.

  18. The "firing cannons" of Dipodascopsis uninucleata var. uninucleata.

    PubMed

    Olivier, Andries P S; Swart, Chantel W; Pohl, Carolina H; van Wyk, Pieter W J; Swart, Hendrik C; Coetsee, Elizabeth; Schoombie, Schalk W; Smit, Jon; Kock, Johan Lodewyk F

    2013-06-01

    According to literature, the elongated ascospores of Dipodascopsis uninucleata var. uninucleata exhibit smart movement when forcefully ejected from bottle-shaped asci. This type of movement is defined as the unique patterns of non-random movement of ascospores with specialized morphology thereby facilitating release from asci. Smart movement is required to actively release ascospores individually through the narrow ascus neck, without causing an obstruction and blocking ascospore release. However, little is known about the propulsion mechanism of this cannon-type release system. We show that asci of this yeast contain a central channel (barrel) filled with ascospores. These are surrounded by a sheath-like structure that lines the inner surface of the ascus wall. We found that this sheath is responsible for forcing the naked ascospores out of the ascus by exerting turgor pressure from the bottom towards the tip of the ascus. This cannon firing system is in contrast to that found in Dipodascus geniculatus, where no sheaths lining the ascus interior were observed. Instead, sheaths were found enveloping each ascospore. PMID:23750956

  19. Micropropagation of globe artichoke (Cynara cardunculus L. var. scolymus).

    PubMed

    Iapichino, Giovanni

    2013-01-01

    The globe artichoke (Cynara cardunculus L. var. scolymus) is a perennial plant cultivated in the Mediterranean region and the Americas for its edible young flower heads. Although vegetative propagation by offshoots or by "ovoli" (underground dormant axillary buds) has been the primary method of propagation, the potential for the diffusion of diseases and the phenotypic variability can be very high. The propagation of this species by axillary shoot proliferation from in vitro-cultured meristems produces systemic pathogen-free plants and a higher multiplication rate as compared to that obtained by conventional agamic multiplication. Axillary shoot proliferation can be induced from excised shoot apices cultured on Murashige and Skoog agar solidified medium supplemented with various concentrations of cytokinins and auxins, depending on genotype. For the production of virus-free plants, meristems, 0.3-0.8 mm long are excised from shoot apices and surface sterilized. The transfer of artichoke microshoots to a medium lacking cytokinins or with low cytokinin concentration is critical for rooting. Adventitious roots develop within 3-5 weeks after transfer to root induction MS medium containing NAA or IAA at various concentrations. However, in vitro rooting frequency rate is dependent on the genotype and the protocol used. Acclimatization of in vitro microshoots having 3-4 roots is successfully accomplished; plantlets develop new roots in ex vitro conditions and continue to grow. PMID:23179714

  20. Genetic dissection of agronomic traits in Capsicum baccatum var. pendulum.

    PubMed

    Moulin, M M; Rodrigues, R; Bento, C S; Gonçalves, L S A; Santos, J O; Sudré, C P; Viana, A P

    2015-03-20

    Genetic mapping is very useful for dissecting complex agronomic traits. Genetic mapping allows for identification of quantitative trait loci (QTL), provide knowledge on a gene position and its adjacent region, and enable prediction of evolutionary mechanisms, in addition to contributing to synteny studies. The aim of this study was to predict genetic values associated with different agronomic traits evaluated in an F2 population of Capsicum baccatum var. pendulum. Previously, a reference genetic map for C. baccatum was constructed, which included 183 markers (42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplification of polymorphic DNA) arranged in 16 linkage groups. The map was used to identify QTL associated with 11 agronomic traits, including plant height, crown diameter, number of days to flowering, days to fruiting, number of fruits per plant, average fruit weight, fruit length, fruit diameter, fruit pulp thickness, soluble solids, and fruit dry weight. QTL mapping was performed by standard interval mapping. The number of small QTL effects ranged from 3-11, with a total of 61 QTL detected in 9 linkage groups. This is the first report involving QTL analysis for C. baccatum species.

  1. Transport of Bacillus thuringiensis var. kurstaki via fomites.

    PubMed

    Van Cuyk, Sheila; Veal, Lee Ann B; Simpson, Beverley; Omberg, Kristin M

    2011-09-01

    The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, post-spray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites.

  2. Micropropagation of globe artichoke (Cynara cardunculus L. var. scolymus).

    PubMed

    Iapichino, Giovanni

    2013-01-01

    The globe artichoke (Cynara cardunculus L. var. scolymus) is a perennial plant cultivated in the Mediterranean region and the Americas for its edible young flower heads. Although vegetative propagation by offshoots or by "ovoli" (underground dormant axillary buds) has been the primary method of propagation, the potential for the diffusion of diseases and the phenotypic variability can be very high. The propagation of this species by axillary shoot proliferation from in vitro-cultured meristems produces systemic pathogen-free plants and a higher multiplication rate as compared to that obtained by conventional agamic multiplication. Axillary shoot proliferation can be induced from excised shoot apices cultured on Murashige and Skoog agar solidified medium supplemented with various concentrations of cytokinins and auxins, depending on genotype. For the production of virus-free plants, meristems, 0.3-0.8 mm long are excised from shoot apices and surface sterilized. The transfer of artichoke microshoots to a medium lacking cytokinins or with low cytokinin concentration is critical for rooting. Adventitious roots develop within 3-5 weeks after transfer to root induction MS medium containing NAA or IAA at various concentrations. However, in vitro rooting frequency rate is dependent on the genotype and the protocol used. Acclimatization of in vitro microshoots having 3-4 roots is successfully accomplished; plantlets develop new roots in ex vitro conditions and continue to grow.

  3. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

    PubMed Central

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-01-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family. PMID:26743902

  4. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa.

    PubMed

    Kim, Hyun A; Shin, Ah-Young; Lee, Min-Seon; Lee, Hee-Jeong; Lee, Heung-Ryul; Ahn, Jongmoon; Nahm, Seokhyeon; Jo, Sung-Hwan; Park, Jeong Mee; Kwon, Suk-Yoon

    2016-02-01

    Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family. PMID:26743902

  5. Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto.

    PubMed

    Lampe, Bradley J; English, J Caroline

    2016-02-01

    Subtilisin NAT, commonly known as "nattokinase," is a fibrinolytic enzyme produced by the bacterial strain B. subtilis var. natto, which plays a central role in the fermentation of soybeans into the popular Japanese food natto. Recent studies have reported on the potential anticoagulatory and antihypertensive effects of nattokinase administration in humans, with no indication of adverse effects. To evaluate the safety of nattokinase in a more comprehensive manner, several GLP-compliant studies in rodents and human volunteers have been conducted with the enzyme product, NSK-SD (Japan Bio Science Laboratory Co., Ltd., Japan). Nattokinase was non-mutagenic and non-clastogenic in vitro, and no adverse effects were observed in 28-day and 90-day subchronic toxicity studies conducted in Sprague-Dawley rats at doses up to 167 mg/kg-day and 1000 mg/kg-day, respectively. Mice inoculated with 7.55 × 10(8) CFU of the enzyme-producing bacterial strain showed no signs of toxicity or residual tissue concentrations of viable bacteria. Additionally consumption of 10 mg/kg-day nattokinase for 4 weeks was well tolerated in healthy human volunteers. These findings suggest that the oral consumption of nattokinase is of low toxicological concern. The 90-day oral subchronic NOAEL for nattokinase in male and female Sprague-Dawley rats is 1000 mg/kg-day, the highest dose tested.

  6. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    PubMed

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale. PMID:27045759

  7. The supramolecular organization of the C. elegans nuclear lamin filament.

    PubMed

    Ben-Harush, Kfir; Wiesel, Naama; Frenkiel-Krispin, Daphna; Moeller, Dorothee; Soreq, Eyal; Aebi, Ueli; Herrmann, Harald; Gruenbaum, Yosef; Medalia, Ohad

    2009-03-13

    Nuclear lamins are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. They are nuclear intermediate filament (IF) proteins forming a distinct meshwork-like layer adhering to the inner nuclear membrane, called the nuclear lamina. Here, we present for the first time, the three-dimensional supramolecular organization of lamin 10 nm filaments and paracrystalline fibres. We show that Caenorhabditis elegans nuclear lamin forms 10 nm IF-like filaments, which are distinct from their cytoplasmic counterparts. The IF-like lamin filaments are composed of three and four tetrameric protofilaments, each of which contains two partially staggered anti-parallel head-to-tail polymers. The beaded appearance of the lamin filaments stems from paired globular tail domains, which are spaced regularly, alternating between 21 nm and 27 nm. A mutation in an evolutionarily conserved residue that causes Hutchison-Gilford progeria syndrome in humans alters the supramolecular structure of the lamin filaments. On the basis of our structural analysis, we propose an assembly pathway that yields the observed 10 nm IF-like lamin filaments and paracrystalline fibres. These results serve also as a platform for understanding the effect of laminopathic mutations on lamin supramolecular organization.

  8. Dynamic range in the C. elegans brain network

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chris G.

    2016-01-01

    We study external electrical perturbations and their responses in the brain dynamic network of the Caenorhabditis elegans soil worm, given by the connectome of its large somatic nervous system. Our analysis is inspired by a realistic experiment where one stimulates externally specific parts of the brain and studies the persistent neural activity triggered in other cortical regions. In this work, we perturb groups of neurons that form communities, identified by the walktrap community detection method, by trains of stereotypical electrical Poissonian impulses and study the propagation of neural activity to other communities by measuring the corresponding dynamic ranges and Steven law exponents. We show that when one perturbs specific communities, keeping the rest unperturbed, the external stimulations are able to propagate to some of them but not to all. There are also perturbations that do not trigger any response. We found that this depends on the initially perturbed community. Finally, we relate our findings for the former cases with low neural synchronization, self-criticality, and large information flow capacity, and interpret them as the ability of the brain network to respond to external perturbations when it works at criticality and its information flow capacity becomes maximal.

  9. The assembly of C. elegans lamins into macroscopic fibers.

    PubMed

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.

  10. The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Shen, Amy; Ulrich, Xialing

    2013-11-01

    Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.

  11. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans.

    PubMed

    Wagner, Cynthia R; Kuervers, Lynnette; Baillie, David L; Yanowitz, Judith L

    2010-10-14

    Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization. Chromosomes show different frequencies of nondisjunction (NDJ), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation. PMID:20944745

  12. Sex-specific pruning of neuronal synapses in Caenorhabditis elegans.

    PubMed

    Oren-Suissa, Meital; Bayer, Emily A; Hobert, Oliver

    2016-05-12

    Whether and how neurons that are present in both sexes of the same species can differentiate in a sexually dimorphic manner is not well understood. A comparison of the connectomes of the Caenorhabditis elegans hermaphrodite and male nervous systems reveals the existence of sexually dimorphic synaptic connections between neurons present in both sexes. Here we demonstrate sex-specific functions of these sex-shared neurons and show that many neurons initially form synapses in a hybrid manner in both the male and hermaphrodite pattern before sexual maturation. Sex-specific synapse pruning then results in the sex-specific maintenance of subsets of these connections. Reversal of the sexual identity of either the pre- or postsynaptic neuron alone transforms the patterns of synaptic connectivity to that of the opposite sex. A dimorphically expressed and phylogenetically conserved transcription factor is both necessary and sufficient to determine sex-specific connectivity patterns. Our studies reveal new insights into sex-specific circuit development. PMID:27144354

  13. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans.

    PubMed

    Greer, Eric L; Maures, Travis J; Ucar, Duygu; Hauswirth, Anna G; Mancini, Elena; Lim, Jana P; Benayoun, Bérénice A; Shi, Yang; Brunet, Anne

    2011-10-19

    Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendants. The histone H3 lysine 4 trimethylation (H3K4me3) complex, composed of ASH-2, WDR-5 and the histone methyltransferase SET-2, regulates Caenorhabditis elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5 or SET-2 in the parental generation extend the lifespan of descendants up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendants. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendants.

  14. Antibody Staining in C. Elegans Using "Freeze-Cracking"

    PubMed Central

    Duerr, Janet S.

    2013-01-01

    To stain C. elegans with antibodies, the relatively impermeable cuticle must be bypassed by chemical or mechanical methods. "Freeze-cracking" is one method used to physically pull the cuticle from nematodes by compressing nematodes between two adherent slides, freezing them, and pulling the slides apart. Freeze-cracking provides a simple and rapid way to gain access to the tissues without chemical treatment and can be used with a variety of fixatives. However, it leads to the loss of many of the specimens and the required compression mechanically distorts the sample. Practice is required to maximize recovery of samples with good morphology. Freeze-cracking can be optimized for specific fixation conditions, recovery of samples, or low non-specific staining, but not for all parameters at once. For antibodies that require very hard fixation conditions and tolerate the chemical treatments needed to chemically permeabilize the cuticle, treatment of intact nematodes in solution may be preferred. If the antibody requires a lighter fix or if the optimum fixation conditions are unknown, freeze-cracking provides a very useful way to rapidly assay the antibody and can yield specific subcellular and cellular localization information for the antigen of interest. PMID:24145964

  15. Resolving coiled shapes reveals new reorientation behaviors in C. elegans

    PubMed Central

    Broekmans, Onno D; Rodgers, Jarlath B; Ryu, William S; Stephens, Greg J

    2016-01-01

    We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias. DOI: http://dx.doi.org/10.7554/eLife.17227.001 PMID:27644113

  16. Caenorhabditis elegans glutamylating enzymes function redundantly in male mating

    PubMed Central

    Chawla, Daniel G.; Shah, Ruchi V.; Barth, Zachary K.; Lee, Jessica D.; Badecker, Katherine E.; Naik, Anar; Brewster, Megan M.; Salmon, Timothy P.

    2016-01-01

    ABSTRACT Microtubule glutamylation is an important modulator of microtubule function and has been implicated in the regulation of centriole stability, neuronal outgrowth and cilia motility. Glutamylation of the microtubules is catalyzed by a family of tubulin tyrosine ligase-like (TTLL) enzymes. Analysis of individual TTLL enzymes has led to an understanding of their specific functions, but how activities of the TTLL enzymes are coordinated to spatially and temporally regulate glutamylation remains relatively unexplored. We have undertaken an analysis of the glutamylating TTLL enzymes in C. elegans. We find that although all five TTLL enzymes are expressed in the embryo and adult worm, loss of individual enzymes does not perturb microtubule function in embryonic cell divisions. Moreover, normal dye-filling, osmotic avoidance and male mating behavior indicate the presence of functional amphid cilia and male-specific neurons. A ttll-4(tm3310); ttll-11(tm4059); ttll-5(tm3360) triple mutant, however, shows reduced male mating efficiency due to a defect in the response step, suggesting that these three enzymes function redundantly, and that glutamylation is required for proper function of the male-specific neurons. PMID:27635036

  17. Olfaction Modulates Reproductive Plasticity Through Neuroendocrine Signaling in Caenorhabditis elegans

    PubMed Central

    Sowa, Jessica N.; Mutlu, Ayse Sena; Xia, Fan; Wang, Meng C.

    2015-01-01

    Summary Reproductive plasticity describes the ability of organisms to adjust parameters such as volume, rate, or timing of progeny production in order to maximize successful reproduction under different environmental conditions. Reproductive plasticity in response to environmental variation has been observed in a wide range of animals [1-4]; however, the mechanisms involved in translating environmental cues into reproductive outcomes remain unknown. Here we show that olfaction modulates reproductive timing and senescence through neuroendocrine signaling in Caenorhabditis elegans. On their preferred diet, worms demonstrate an increased rate of reproduction and an early onset of reproductive aging. Perception of the preferred diet's odor by AWB olfactory neurons elicits these adjustments by increasing germline proliferation, and optogenetic stimulation of AWB neurons is sufficient to accelerate reproductive timing in the absence of dietary inputs. Furthermore, AWB neurons act through neuropeptide signaling to regulate reproductive rate and senescence. These findings reveal a neuroendocrine nexus linking olfactory sensation and reproduction in response to environmental variation, and indicate the significance of olfaction in the regulation of reproductive decline during aging. PMID:26279229

  18. xnd-1 Regulates the Global Recombination Landscape in C. elegans

    PubMed Central

    Wagner, Cynthia R.; Kuervers, Lynnette; Baillie, David; Yanowitz, Judith L.

    2010-01-01

    Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots1-3 and significant variation in hotspot usage exists between and among individuals4. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization1, 5-9. Chromosomes show different frequencies of nondisjunction (NDJ)10, reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally-enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation. PMID:20944745

  19. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  20. A remote control for the C. elegans nervous system

    NASA Astrophysics Data System (ADS)

    Leifer, Andrew M.; Fang-Yen, Christopher; Samuel, Aravinthan D. T.

    2010-03-01

    We demonstrate a closed-loop optogenetic illumination system to stimulate or inhibit arbitrary patterns of neurons and muscle in a freely roaming worm. Transgenic worms that express light-sensitive ion channels in neurons or muscle are used. A microscope with a video camera records the worm's posture and motion. As the worm moves unrestrained, custom real-time image processing software analyzes the worm's position and estimates the location of targeted muscle and neuron cells. For each frame captured by the camera, the software generates an illumination pattern and directs a digital mirror device to shine laser light onto the targeted cells. The system can illuminate an arbitrary spatial and temporal pattern and thus can selectively inhibit or stimulate different sets of cells during the course of a single experiment. The image processing software is very fast and analyzes a 1024 by 768 pixel image containing a worm in less than 10ms. The system has been tested using worms expressing Channelrhodopsin and Halorhodopsin in both neurons and muscle. Preliminary results from an investigation of the C. elegans motor circuit are shown.