Science.gov

Sample records for actinomyces viscosus atcc

  1. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    SciTech Connect

    Stroemberg, N.K.; Karlsson, K.A. )

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose were active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.

  2. Evidence that Porphyromonas (Bacteroides) gingivalis fimbriae function in adhesion to Actinomyces viscosus.

    PubMed Central

    Goulbourne, P A; Ellen, R P

    1991-01-01

    Porphyromonas (Bacteroides) gingivalis adheres to gram-positive bacteria, such as Actinomyces viscosus, when colonizing the tooth surface. However, little is known of the adhesins responsible for this interaction. A series of experiments were performed to determine whether P. gingivalis fimbriae function in its coadhesion with A. viscosus. Fimbriae typical of P. gingivalis were isolated from strain 2561 (ATCC 33277) by the method of Yoshimura et al. (F. Yoshimura, K. Takahashi, Y. Nodasaka, and T. Suzuki, J. Bacteriol. 160:949-957, 1984) in fractions enriched with a 40-kDa subunit, the fimbrillin monomer, P. gingivalis-A. viscosus coaggregation was inhibited by purified rabbit antifimbrial immunoglobulin G (IgG) at dilutions eightfold higher than those of preimmune IgG, providing indirect evidence implicating P. gingivalis fimbriae in coadhesion. Three types of direct binding assays further supported this observation. (i) Mixtures of isolated P. gingivalis fimbriae and A. viscosus WVU627 cells were incubated for 1 h, washed vigorously with phosphate-buffered saline (pH 7.2), and subjected to electrophoresis. Transblots onto nitrocellulose were probed with antifimbrial antiserum. Fimbrillin labeled positively on these blots. No reaction occurred with the control protein, porcine serum albumin, when blots were exposed to anti-porcine serum albumin, (ii) A. viscosus cells incubated with P. gingivalis fimbriae were agglutinated only after the addition of antifimbrial antibodies. (iii) Binding curves generated from an enzyme immunoassay demonstrated concentration-dependent binding of P. gingivalis fimbriae to A. viscosus cells. From these lines of evidence, P. gingivalis fimbriae appear to be capable of binding to A. viscosus and mediating the coadhesion of these species. Images PMID:1679428

  3. Adhesion of Actinomyces viscosus to Porphyromonas (Bacteroides) gingivalis-coated hexadecane droplets.

    PubMed Central

    Rosenberg, M; Buivids, I A; Ellen, R P

    1991-01-01

    Interbacterial adhesion (coadhesion) is considered a major determinant of dental plaque ecology. In this report, we studied several aspects of the adhesion of Porphyromonas (Bacteroides) gingivalis to hexadecane in order to use the liquid hydrocarbon as a convenient substratum for coadhesion assays. Washed suspensions of hydrophobic P. gingivalis 2561 cells were vortexed with hexadecane to yield highly stable cell-coated droplets. Kinetics of coadhesion between Actinomyces viscosus cells and P. gingivalis-coated hexadecane droplets (PCHD) was subsequently studied. Aliquots of PCHD were added to A. viscosus suspensions, and the mixtures were gently rotated. Avid adhesion of A. viscosus cells to the immobilized P. gingivalis layer could be readily measured by the decrease in turbidity in the aqueous phase, following phase separation. Despite the ability of A. viscosus cells to adsorb to hexadecane following vigorous mixing, gentle mixing did not appreciably promote adhesion to bare hexadecane. Moreover, extensive microscopic examinations revealed that A. viscosus cells adhered exclusively to the bound P. gingivalis cells rather than to exposed areas of hexadecane. Coadhesion of A. viscosus to the PCHD appeared to follow first-order kinetics, attaining 80% levels within 30 min. Electron micrographs revealed A. viscosus cells adhering to the P. gingivalis cell layer adsorbed at the hexadecane-water interface. Interestingly, P. gingivalis cells did not appear to penetrate the hexadecane. A viscosus mutants lacking type 1 or type 2 fimbriae or both were still able to bind to the PCHD. No obvious correlation was observed between relative hydrophobicity of A. viscosus strains and their binding to PCHD. However, defatted bovine serum albumin, an inhibitor of hydrophobic interactions, was the most potent inhibitor among those tested. The data suggest that this approach provides a simple, quantitative technique for studying kinetics of bacterial coadhesion which is amenable

  4. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    SciTech Connect

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-10-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of /sup 3/H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HA (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence.

  5. A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V.

    PubMed Central

    McIntire, F C; Crosby, L K; Vatter, A E; Cisar, J O; McNeil, M R; Bush, C A; Tjoa, S S; Fennessey, P V

    1988-01-01

    Coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34 depends on interaction of a lectin on A. viscosus T14V with a cell surface carbohydrate on S. sanguis 34. This carbohydrate was isolated, and its chemical makeup was established. The carbohydrate remained attached to S. sanguis 34 cells through extraction with Triton X-100 and treatment with pronase. It was cleaved from the cell residue by autoclaving and purified by differential centrifugation and column chromatography on DEAE-Sephacel and Sephadex G-75. The polysaccharide contained phosphate which was neither inorganic nor monoester. Treatment with NaOH-NaBH4, followed by Escherichia coli alkaline phosphatase, or with 48% HF at 4 degrees C, followed by NaBH4, yielded inorganic phosphate and oligosaccharide alditols. Therefore, the polysaccharide is composed of oligosaccharide units joined together by phosphodiester bridges. The structure and stereochemistry of the main oligosaccharide alditol was established previously (F. C. McIntire, C. A. Bush, S.-S. Wu, S.-C. Li, Y.-T. Li, M. McNeil, S. Tjoa, and P. V. Fennessey, Carbohydr. Res. 166:133-143). Permethylation analysis, 1H and 31P nuclear magnetic resonance studies on the whole polysaccharide revealed the position of the phosphodiester linkages. The polysaccharide is mainly a polymer of (6) GalNAc(alpha 1-3)Rha(beta 1-4)Glc(beta 1-6)Galf(beta 1-6)GalNAc(beta 1- 3)Gal(alpha 1)-OPO3. It reacted as a single antigen with antiserum to S. sanguis 34 cells and was a potent inhibitor of coaggregation between A. viscosus T14V and S. sanguis 34. Quantitative inhibition of precipitation assays with oligosaccharides, O-allyl N-acetylgalactosaminides, and simple sugars indicated that specific antibodies were directed to the GalNAc end of the hexasaccharide unit. In contrast, coaggregation was inhibited much more effectively by saccharides containing betaGalNAc. Thus, the specificity of the A. viscosus T14V lectin is strikingly different from that of

  6. Relative adherence of Bacteroides species and strains to Actinomyces viscosus on saliva-coated hydroxyapatite

    SciTech Connect

    Li, J.; Ellen, R.P. )

    1989-09-01

    The study was designed to compare the adherence of several Bacteroides species to A. viscosus. Using 3H, we labeled 24 laboratory strains, including 13 Bacteroides species and 11 fresh clinical isolates of three Bacteroides species. Their adherence to A. viscosus bound to a saliva-coated mineral surface was quantified by liquid scintillation. Adherence relative to a standard strain, B. gingivalis 2561, was compared. Among the lab bacteroides, those of B. gingivalis (eight strains) were the greatest binders (mean, 80.5 {plus minus} 12.4%). Strains of other lab bacteroides bound less well (mean, 33.4 {plus minus} 6.3%). The difference in means was statistically significant (p less than 0.01). The mean for B. gingivalis strains was also significantly greater than that for strains of B. intermedius (51.7 {plus minus} 6.2%). Attachment of B. gingivalis was saturable in experiments in which either input concentration or time was the independent variable, indicating that B. gingivalis cells do not accumulate in this vitro simulation of plaque formation by binding to each other. Subculture did not seem to affect the degree of binding.

  7. Fimbria-specific antibodies in serum and saliva of mice immunized with Actinomyces viscosus T14V fimbriae.

    PubMed Central

    Crawford, P C; Clark, W B

    1986-01-01

    Fimbria-specific antibody responses were compared in mice immunized with purified fimbrial adhesins in the region of the submandibular gland (i.e., local site) or at a remote site in the back. One hundred micrograms of fimbriae isolated from Actinomyces viscosus T14V was used as the vaccine. Four subcutaneous injections of the vaccine in the local site induced greater amounts of fimbria-specific immunoglobulin G (IgG) in serum and saliva than three injections. However, there was no difference in the response of fimbria-specific IgA in serum and saliva. Fimbria-specific IgG in serum and saliva were first detected 21 days after the primary immunization at both the local or remote sites. Fimbria-specific IgA in serum was first detected 28 days after the primary immunization at both the local or remote sites. However, fimbria-specific IgA in saliva occurred only in mice immunized with the fimbrial vaccine at the local site and was first detected 14 days after the primary immunization. Both serum and saliva from mice immunized 4 times with the fimbrial vaccine in the local site inhibited in vitro adsorption of strain T14V cells to hydroxyapatite beads pretreated with normal mouse saliva, whereas adsorption of strain T14V cells suspended in serum and saliva from sham-immunized animals was not inhibited. Collectively, these data suggest that mice immunized locally in the submandibular gland region with a vaccine composed of purified fimbrial adhesins provide a potential model for evaluating the efficacy of fimbria-specific antibodies in saliva to inhibit strain T14V colonization of tooth surfaces. PMID:2876962

  8. Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963.

    PubMed

    Henssge, Uta; Do, Thuy; Radford, David R; Gilbert, Steven C; Clark, Douglas; Beighton, David

    2009-03-01

    Actinomyces naeslundii is an important early colonizer in the oral biofilm and consists of three genospecies (1, 2 and WVA 963) which cannot be readily differentiated using conventional phenotypic testing or on the basis of 16S rRNA gene sequencing. We have investigated a representative collection of type and reference strains and clinical and oral isolates (n=115) and determined the partial gene sequences of six housekeeping genes (atpA, rpoB, pgi, metG, gltA and gyrA). These sequences identified the three genospecies and differentiated them from Actinomyces viscosus isolated from rodents. The partial sequences of atpA and metG gave best separation of the three genospecies. A. naeslundii genospecies 1 and 2 formed two distinct clusters, well separated from both genospecies WVA 963 and A. viscosus. Analysis of the same genes in other oral Actinomyces species (Actinomyces gerencseriae, A. israelii, A. meyeri, A. odontolyticus and A. georgiae) indicated that, when sequence data were obtained, these species each exhibited <90 % similarity with the A. naeslundii genospecies. Based on these data, we propose the name Actinomyces oris sp. nov. (type strain ATCC 27044(T) =CCUG 34288(T)) for A. naeslundii genospecies 2 and Actinomyces johnsonii sp. nov. (type strain ATCC 49338(T) =CCUG 34287(T)) for A. naeslundii genospecies WVA 963. A. naeslundii genospecies 1 should remain as A. naeslundii sensu stricto, with the type strain ATCC 12104(T) =NCTC 10301(T) =CCUG 2238(T).

  9. Interaction of Inflammatory Cells and Oral Microorganisms VII. In Vitro Polymorphonuclear Responses to Viable Bacteria and to Subcellular Components of Avirulent and Virulent Strains of Actinomyces viscosus

    PubMed Central

    Taichman, Norton S.; Hammond, Benjamin F.; Tsai, Chi-Cheng; Baehni, Pierre C.; McArthur, William P.

    1978-01-01

    Both virulent (V) and avirulent (AV) strains of Actinomyces viscosus T14 are capable of colonizing the oral cavity of gnotobiotic rats, but only T14-V causes destructive periodontal disease. The basis for this difference in in vivo pathogenicity has not been adequately defined. In the present study we compared the capacities of T14-AV and T14-V to provoke in vitro extracellular release of lysosomal constituents from human polymorphonuclear leukocytes (PMNs). In serum-free cultures, viable T14-V but not T14-AV stimulated discharge of PMN lysosomes. The release response was correlated with PMN phagocytic activity; thus, PMNs readily ingested T14-V but not T14-AV. To explain these differences in PMN-bacteria interactions, subcellular fractions of T14-AV or T14-V were incubated with PMNs. A crude, insoluble sonic extract derived from T14-V caused PMN lysosome release, but a similar fraction from T14-AV was inactive. However, following extensive washing and treatment with deoxyribonuclease or sodium dodecyl sulfate, cell wall fractions of T14-AV stimulated lysosome release. These procedures apparently removed an extracellular polysaccharide slime which is synthesized by T14-AV but not by T14-V. There was a significant reduction in the capacities of viable T14-V or cell wall fractions of T14-V or T14-AV to provoke PMN lysosome release when these agents were preincubated with a slime material isolated from T14-AV. This inhibitory influence of slime was overcome by the addition of fresh or heated (56°C, 30 min) serum to the PMN-bacteria cultures. The data suggest a relationship between the abilities of the avirulent and virulent strains of A. viscosus T14 to act as periodontal pathogens in vivo and to serve as stimuli for PMN lysosome release in vitro. Images PMID:689737

  10. Common antigens of streptococcal and non-streptococcal oral bacteria: immunochemical studies of extracellular and cell-wall-associated antigens from Streptococcus sanguis, Streptococcus mutans, Lactobacillus salivarius, and Actinomyces viscosus.

    PubMed Central

    Schöller, M; Klein, J P; Frank, R M

    1981-01-01

    Soluble extracellular antigens (ESA) were prepared from the culture supernatant of exponential growing cells of Streptococcus sanguis OMZ 9 by a combination of ammonium sulfate precipitation and chromatography on a Bio-Gel P6 column. Soluble cell wall antigens (WEA) were obtained from the bacterial pellet by extraction with 1 M phosphate buffer (pH 6). Antisera against whole cells of S. sanguis and S. mutans of different serotypes, 10% trichloroacetic extracts of bacterial cell walls, dextran, ESA, and WEA were prepared by injecting the different antigens several times in rabbits. ESA and WEA were prepared from a representative strain of Bratthall's seven serological groups, Lactobacillus salivarius, and Actinomyces viscosus. All sera showed various agglutinin titers against heat-killed cells, and titers were generally higher with homologous cells. The comparison of the different antigens using agar gel diffusion and immunoelectrophoresis showed the presence of extracellular common antigens in both ESA and WEA between the different strains. Absorption of anti-ESA sera with WEA, and anti-WEA sera with ESA, showed the existence of a specific antigen common to all bacteria in each fraction. Enzymatic treatment of the antigen before immunodiffusion demonstrated the protein nature of the two antigens present in ESA and WEA. Images PMID:6783541

  11. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  12. Characterization of Actinomyces species isolated from failed dental implant fixtures.

    PubMed

    Sarkonen, Nanna; Könönen, Eija; Eerola, Erkki; Könönen, Mauno; Jousimies-Somer, Hannele; Laine, Pekka

    2005-08-01

    In the oral cavity, Actinomyces form a fundamental component of the indigenous microflora, being among initial colonizers in polymicrobial biofilms. However, some differences may exist between different species in terms of their attachment not only to teeth but also to biomaterials. In this study we investigated the distribution of Actinomyces in 33 dental implant fixtures explanted from 17 patients. The identification was based on comprehensive biochemical testing and gas-liquid chromatography and when needed, 16S rRNA sequencing. Actinomyces was the most prevalent bacterial genus in these failed implants, colonizing 31/33 (94%) of the fixtures. Proportions of Actinomyces growth of the total bacterial growth in the Actinomyces-positive fixtures varied from 0.01% up to 75%. A. odontolyticus was the most common Actinomyces finding, present in 26/31 (84%) Actinomyces-positive fixtures. Actinomyces naeslundii and A. viscosus were both detected in 10/31 (32%) and A. israelii in 7/31 (23%) fixtures. Other Actinomyces species, including A. georgiae, A. gerencseriae and A. graevenitzii, were detected less frequently. Our results suggest that Actinomyces species are frequent colonizers on failed implant surfaces, where A. odontolyticus was the far most prominent Actinomyces species.

  13. In vitro activity of amoxicillin, clindamycin, doxycycline, metronidazole, and moxifloxacin against oral Actinomyces.

    PubMed

    LeCorn, Demetrick W; Vertucci, Frank J; Rojas, Maria F; Progulske-Fox, Ann; Bélanger, Myriam

    2007-05-01

    Actinomyces spp have been increasingly associated with endodontic infections. However, the antimicrobial susceptibility of this genus has not been studied extensively. The objective of this study was to determine the susceptibility of oral isolates of Actinomyces naeslundii, Actinomyces gerencseriae, Actinomyces israelii, Actinomyces viscosus, and Actinomyces odontolyticus to amoxicillin, clindamycin, doxycycline, metronidazole, and moxifloxacin using in vitro assays. The minimum inhibitory concentration (MIC) of each bacterial isolate was determined by using E-test strips (AB Biodisk, Solna, Sweden). The MIC(90) was 0.19 microg/mL for amoxicillin, 0.25 microg/mL for doxycycline, 0.50 microg/mL for moxifloxacin, and 1.00 microg/mL for clindamycin. However, metronidazole was not active against any of the Actinomyces spp tested (MIC(90)>256 microg/mL).

  14. Evidence for recombination between a sialidase (nanH) of Actinomyces naeslundii and Actinomyces oris, previously named 'Actinomyces naeslundii genospecies 1 and 2'.

    PubMed

    Do, Thuy; Henssge, Uta; Gilbert, Steven C; Clark, Douglas; Beighton, David

    2008-11-01

    Actinomyces spp., predominant members of human oral biofilms, may use extracellular sialidase to promote adhesion, deglycosylate immunoglobulins and liberation of nutrients. Partial nanH gene sequences (1,077 bp) from Actinomyces oris (n=74), Actinomyces naeslundii (n=30), Actinomyces viscosus (n=1) and Actinomyces johnsonii (n=2) which included the active-site region and the bacterial neuraminidase repeats (BNRs) were compared. The sequences were aligned and each species formed a distinct cluster with five isolates having intermediate positions. These five isolates (two A. oris and three A. naeslundii) exhibited interspecies recombination. The nonsynonymous/synonymous ratio was <1 for both A. oris and A. naeslundii indicating that nanH in both species is under stabilizing selective pressure; nonsynonymous mutations are not selected. However, for A. oris significant negative values in tests for neutral selection suggested the rate of mutation in A. oris was greater than in A. naeslundii but with selection against nonsynonymous mutations. This was supported by the observation that the frequency of polymorphic sites in A. oris, which were monomorphic in A. naeslundii was significantly greater than the frequency of polymorphic sites in A. naeslundii which were monomorphic in A. oris (chi(2)=7.011; P=0.00081). The higher proportions of A. oris in the oral biofilm might be explained by the higher mutation rate facilitating an increased ability to respond successfully to environmental stress.

  15. Actinomyces lymphadenitis: case report.

    PubMed

    Arik, Deniz

    2013-01-01

    In this paper an unusual case of lymphadenopathy associated with Actinomyces infection is reported. In the literature, there are only two cases presented with histopathologic features. A forty-year-old male patient was admitted to the hospital with painless mass on the neck. Clinical examination revealed a firm mass on the right submandibular region. The patient had no malignancy history. A cystic mass radiologically compatible with abscess was detected adjacent to the submandibular gland. Sialadenitis and lymphadenitis were considered but the mass was refractory to the antibiotherapy. The mass and the right submandibular gland were excised. Histopathologic evaluation of the lymph node revealed characteristic sulfur granules of Actinomyces.

  16. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp.

    PubMed Central

    Yeung, M K; Cisar, J O

    1990-01-01

    Nucleotide sequencing of the type 1 fimbrial subunit gene of Actinomyces viscosus T14V revealed a consensus ribosome-binding site followed by an open reading frame of 1,599 nucleotides. The encoded protein of 533 amino acids (Mr = 56,899) was predominantly hydrophilic except for an amino-terminal signal peptide and a carboxy-terminal region identified as a potential membrane-spanning segment. Edman degradation of the cloned protein expressed in Escherichia coli and the type 1 fimbriae of A. viscosus T14V showed that both began with alanine at position 31 of the deduced amino acid sequence. The amino acid compositions of the cloned protein and fimbriae also were comparable and in close agreement with the composition of the deduced protein. The amino acid sequence of the A. viscosus T14V type 1 fimbrial subunit showed no significant global homology with various other proteins, including the pilins of gram-negative bacteria. However, 34% amino acid sequence identity was noted between the type 1 fimbrial subunit of strain T14V and the type 2 fimbrial subunit of Actinomyces naeslundii WVU45 (M. K. Yeung and J. O. Cisar, J. Bacteriol. 170:3803-3809, 1988). This homology included several different conserved sequences of up to eight identical amino acids that were distributed in both the amino- and carboxy-terminal thirds of each Actinomyces fimbrial subunit. These findings indicate that the different types of fimbriae on these gram-positive bacteria share a common ancestry. PMID:1970561

  17. [Actinomyces empyema treated with decortications].

    PubMed

    Shteinberg, Michal; Perek, Shoshan; Ghanem, Nesrin; Sarafov, Israel; Peysakhovich, Yury; Adir, Yochai

    2012-04-01

    Actinomyces infections are rare infections, involving the head and neck, abdominal cavity, and the lung. We report a case of a 66 year old woman with shortness of breath and a pleural effusion from which Actinomyces meyeriwas cultured. The diagnosis was confirmed by the polymerase chain reaction technique. The infection was successfully treated with a combination of ampicillin and surgical decortication. Due to their rarity, Actinomyces infections are not often suspected. These infections are difficult to diagnose due to specific microbiologic requirements for isolation of Actinomyces. In many reviewed cases of Actinomyces infection, patients underwent surgery for presumed cancer but were eventually diagnosed as being infected with actinomycosis. Due to lack of improvement of our patient, surgical decortication was performed, which led to a successful outcome.

  18. Actinomyces and related organisms in human infections.

    PubMed

    Könönen, Eija; Wade, William G

    2015-04-01

    Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections.

  19. Actinomyces and Related Organisms in Human Infections

    PubMed Central

    Wade, William G.

    2015-01-01

    SUMMARY Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections. PMID:25788515

  20. [Two cases of anaerobic empyema including Actinomyces].

    PubMed

    Matsuura, Yukiko; Ishikawa, Satoru; Takiguchi, Yasuo

    2009-03-01

    We report 2 cases of empyema including Actinomyces spp. Case 1 was a 66-year-old man with fever and left pleural effusion, Actinomyces israelii and 2 other microbes were isolated. Case 2 was a 52-year-old male inpatient who developed empyema during treatment of upper gastrointestinal bleeding. Actinomyces odontolyticus and 3 other microbes were cultured in pleural effusion. Empyema caused by Actinomyces spp. is rare, in particular Actinomyces odontolyticus is rarely isolated and only 4 cases have been reported in Japan.

  1. Actinomyces suimastitidis sp. nov., isolated from pig mastitis.

    PubMed

    Hoyles, L; Falsen, E; Holmström, G; Persson, A; Sjödén, B; Collins, M D

    2001-07-01

    An unusual Actinomyces-like bacterium originating from a pig with mastitis was subjected to a polyphasic taxonomic investigation. The morphological and biochemical characteristics of the organism were consistent with its preliminary assignment to the genus Actinomyces but it did not appear to correspond to any recognized species. PAGE analysis of whole-cell proteins confirmed the phenotypic distinctiveness of the bacterium and 16S rRNA gene sequence analysis demonstrated that it represents a hitherto unknown sub-line amongst a cluster of Actinomyces species which embraces Actinomyces canis, Actinomyces georgiae, Actinomyces hyovaginalis, Actinomyces meyeri, Actinomyces odontolyticus, Actinomyces radingae and Actinomyces turicensis. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium isolated from pig mastitis be classified as Actinomyces suimastitidis sp. nov. The type strain of Actinomyces suimastitidis is CCUG 39279T (= CIP 106779T). PMID:11491328

  2. Actinomyces Species Isolated from Breast Infections.

    PubMed

    Bing, A U; Loh, S F; Morris, T; Hughes, H; Dixon, J M; Helgason, K O

    2015-10-01

    Actinomycosis is a chronic infection caused by Actinomyces species characterized by abscess formation, tissue fibrosis, and draining sinuses. The spectrum of infections caused by Actinomyces species ranges from classical invasive actinomycosis to a less invasive form of superficial skin and soft tissue infection. We present a review detailing all Actinomyces species isolated from breast infections in NHS Lothian between 2005 and 2013, Actinomyces species isolated from breast infections referred to the United Kingdom Anaerobe Reference Unit between 1988 and 2014, and cases describing Actinomyces breast infections published in the medical literature since 1994. Actinomyces species are fastidious organisms which can be difficult to identify and are likely to be underascertained as a cause of breast infections. Due to improved diagnostic methods, they are increasingly associated with chronic, recurrent breast infections and may play a more significant role in these infections than has previously been appreciated.

  3. Actinomyces Species Isolated from Breast Infections

    PubMed Central

    Loh, S. F.; Morris, T.; Hughes, H.; Dixon, J. M.

    2015-01-01

    Actinomycosis is a chronic infection caused by Actinomyces species characterized by abscess formation, tissue fibrosis, and draining sinuses. The spectrum of infections caused by Actinomyces species ranges from classical invasive actinomycosis to a less invasive form of superficial skin and soft tissue infection. We present a review detailing all Actinomyces species isolated from breast infections in NHS Lothian between 2005 and 2013, Actinomyces species isolated from breast infections referred to the United Kingdom Anaerobe Reference Unit between 1988 and 2014, and cases describing Actinomyces breast infections published in the medical literature since 1994. Actinomyces species are fastidious organisms which can be difficult to identify and are likely to be underascertained as a cause of breast infections. Due to improved diagnostic methods, they are increasingly associated with chronic, recurrent breast infections and may play a more significant role in these infections than has previously been appreciated. PMID:26224846

  4. Subcutaneous fistulae in a patient with femoral hypoplasia due to Actinomyces europaeus and Actinomyces turicensis.

    PubMed

    Zautner, A E; Schmitz, S; Aepinus, C; Schmialek, A; Podbielski, A

    2009-06-01

    Infections due to Actinomyces europaeus or Actinomyces turicensis have only rarely been reported. We describe a case of chronic fistulae caused by a coinfection with A. europaeus and A. turicensis in an immunocompetent male patient with a severe congenital femur hypoplasia. Actinomycosis is most probably the consequence of a postoperative wound infection after a prior surgical intervention. Both Actinomyces species were identified by 16S rRNA gene sequencing. The Actinomyces-caused fistulae were treated by excision and a 1-week course of i.v. vancomycin followed by a 1-week course of p.o. cefuroxime.

  5. Importance of Actinomyces and certain gram-negative anaerobic organisms in the transformation of lymphocytes from patients with periodontal disease.

    PubMed Central

    Baker, J J; Chan, S P; Socransky, S S; Oppenheim, J J; Mergenhagen, S E

    1976-01-01

    Dental plaque deposits are known to be potent stimulants of lymphocyte transformation in patients with periodontal disease but not in normal subjects. Since plaque deposits consist mainly of whole bacteria, the cell walls of the most commonly found organisms in plaque were tested for their capacity to induce lymphocyte transformation. There was a direct correlation between the severity of peridontal disease and the amount of transformation induced by the cell walls of oral bacteria and by solubilized dental plaque. Cord blood leukocytes and lymphocytes from clinically normal people did not respond, which indicates that these stimulants are antigens rather than mitogens. Of the eleven bacteria tested, four members of the family Actinomycetaceae (Actinomyces viscosus, A. israelii, A. naeslundii, and Arachnia propionica), the related Propionibacterium acnes, and an anaerobic gram-negative anaerobic rod (27N). The high prevalence of the former organisms in the mature dental plaque that forms around the gingival crevice area and the potent efficacy with which they stimulate lymphocytes indicates that Actinomyces and certain gram-negative anaerobes may be important etiological agents in chronic periodontal inflammation in man. PMID:1270144

  6. Actinomyces weissii sp. nov., isolated from dogs.

    PubMed

    Hijazin, Muaz; Alber, Jörg; Lämmler, Christoph; Kämpfer, Peter; Glaeser, Stefanie P; Busse, Hans-Jürgen; Kassmannhuber, Johannes; Prenger-Berninghoff, Ellen; Förnges, Thorsten; Hassan, Abdulwahed Ahmed; Abdulmawjood, Amir; Zschöck, Michael

    2012-08-01

    Two Gram-positive, rod-shaped, non-spore-forming bacteria were isolated from the oral cavities of two dogs. On the basis of 16S rRNA gene sequence similarities both strains were shown to belong to the genus Actinomyces and were most closely related to Actinomyces bovis (97.3% and 97.5%, respectively). The polyamine profile of the two isolates and Actinomyces bovis DSM 43014(T) was composed of spermidine and spermine as the major components. Menaquinone MK-9 was the major compound in the quinone system of the two strains and Actinomyces bovis. The polar lipid profiles of strains 2298(T) and 4321 were almost identical, containing diphosphatidylglycerol as the major compound, and moderate to trace amounts of phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside, phosphatidylglycerol and several unidentified lipids. A highly similar polar lipid profile was detected in Actinomyces bovis DSM 43014(T) supporting the affiliation of strains 2298(T) and 4321 to the genus Actinomyces. The typical major fatty acids were C(16:0), C(18:0) and C(18:1)ω9c. Fatty acids C(14:0) and C(18:2)ω6,9c were found in minor amounts. The results of physiological and biochemical analyses revealed clear differences between both strains and the most closely related species of the genus Actinomyces. Thus, strains 2298(T) and 4321 represent a novel species, for which the name Actinomyces weissii sp. nov., is proposed, with strain 2298(T) ( = CIP 110333(T) = LMG 26472(T) = CCM 7951(T) = CCUG 61299(T)) as the type strain.

  7. Actinomyces turicensis Bacteremia Secondary to Pyometra.

    PubMed

    Hagiya, Hideharu; Ogawa, Hiroko; Takahashi, Yusuke; Kimura, Kosuke; Hasegawa, Kan; Otsuka, Fumio

    2015-01-01

    We herein present a rare case of Actinomyces turicensis bacteremia that was caused by pyometra. The patient was successfully treated with transvaginal drainage and antibiotic therapy. A literature review in MEDLINE showed that there have been only 8 previously reported cases of A. turicensis bacteremia. This infection frequently occurs in patients with visceral abscesses, and blood culture examinations usually reveal a polymicrobial pattern. However, the prognosis of such patients has been reported to generally be benign. Due to difficulties in performing bacterial identification and the wide-spectrum clinical pictures associated with this bacteremia, no comprehensive understanding of the clinical features of each Actinomyces species has yet been established.

  8. Actinomyces turicensis Bacteremia Secondary to Pyometra.

    PubMed

    Hagiya, Hideharu; Ogawa, Hiroko; Takahashi, Yusuke; Kimura, Kosuke; Hasegawa, Kan; Otsuka, Fumio

    2015-01-01

    We herein present a rare case of Actinomyces turicensis bacteremia that was caused by pyometra. The patient was successfully treated with transvaginal drainage and antibiotic therapy. A literature review in MEDLINE showed that there have been only 8 previously reported cases of A. turicensis bacteremia. This infection frequently occurs in patients with visceral abscesses, and blood culture examinations usually reveal a polymicrobial pattern. However, the prognosis of such patients has been reported to generally be benign. Due to difficulties in performing bacterial identification and the wide-spectrum clinical pictures associated with this bacteremia, no comprehensive understanding of the clinical features of each Actinomyces species has yet been established. PMID:26521910

  9. Actinomyces massiliensis sp. nov., isolated from a patient blood culture.

    PubMed

    Renvoise, Aurélie; Raoult, Didier; Roux, Véronique

    2009-03-01

    Gram-positive, non-spore-forming rods (strain 4401292(T)) were isolated from a human blood sample. Based on cellular morphology and the results of biochemical tests, this strain was tentatively identified as belonging to an undescribed species of the genus Actinomyces. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that the bacterium was related closely to Actinomyces gerencseriae (95.1 % 16S rRNA gene sequence similarity), Actinomyces israelii (95.2 %), Actinomyces oricola (95.2 %), Actinomyces ruminicola (93.3 %) and Actinomyces dentalis (91.4 %). The predominant fatty acids were C18 : 1omega9c and C16 : 0. On the basis of phenotypic data and phylogenetic inference, the novel species Actinomyces massiliensis sp. nov. is proposed; the type strain is 4401292(T) (=CSUR P18(T)=CCUG 53522(T)).

  10. Actinomyces bowdenii ulcerative keratitis in a dog.

    PubMed

    Sherman, Amanda; Daniels, Joshua B; Wilkie, David A; Lutz, Elizabeth

    2013-09-01

    A 5-year-old spayed female diabetic mixed-breed dog underwent phacoemulsification and intraocular lens implantation to correct bilateral hypermature cataracts. Two months postsurgery, the patient presented with ulcerative keratitis and multifocal stromal abscessation OD, which was controlled, but never resolved, with topical fluoroquinolone therapy. The patient re-presented 2 months later with a new, raised, white gritty corneal opacity associated with hyperemia, chemosis, and blepharospasm OD. Cytology of the right cornea revealed filamentous bacteria, suggestive of Actinomyces spp. Actinomyces bowdenii was subsequently isolated in pure culture and identified via 16s rDNA sequencing. Actinomyces bowdenii has never before been described as a cause of ocular infection. An immunosuppressed corneal environment likely contributed to this opportunistic Actinomycosis. The infection was not controlled with fluoroquinolone therapy, and the isolate, in vitro, was resistant to three fluoroquinolones (ciprofloxacin, ofloxacin, and levofloxacin), which also has not been previously reported for this species of Actinomyces. A superficial keratectomy with conjunctival graft was employed to successfully manage the infection.

  11. Actinomyces canaliculitis and its surgical treatment.

    PubMed

    Yuksel, Dilek; Hazirolan, Dicle; Sungur, Gulten; Duman, Sunay

    2012-04-01

    The objective of this article is to describe four rare cases of Actinomyces israelii canaliculitis and their surgical treatment in a case series consisting of four cases of Actinomyces israelii canaliculitis. Patient charts were reviewed retrospectively. All four patients presented with epiphora, recurrent conjunctivitis, swelling around the superior canaliculus, and mucopurulent punctal discharge persisting despite medical treatments. Two patients with large canalicular dilation were treated with canaliculoplasty and the other two patients with minimal canalicular dilation were treated with one-snip punctoplasty. The specimens that were evacuated were sent for microbiological and histopathological examinations. The results showed that Actinomyces israelii was isolated in all patients. After medical and surgical treatment, the patients experienced resolution of signs and symptoms. The disease did not recur during the 2-4-year follow-up period. In conclusion Canaliculoplasty with canalicular intubation and one-snip punctoplasty may be safe and efficacious techniques in largely dilated canaliculum and mildly dilated canaliculum, respectively, with no demonstrable risk of post-treatment epiphora in patients with Actinomyces canaliculitis.

  12. Breast abscess due to Actinomyces europaeus.

    PubMed

    Silva, W A; Pinheiro, A M; Jahns, B; Bögli-Stuber, K; Droz, S; Zimmerli, S

    2011-06-01

    Actinomyces europaeus was first described in 1997 as a new species causing predominantly skin and soft-tissue infections. Mastitis due to A. europaeus is an unusual condition. This article reports a case of primary breast abscess caused by A. europaeus in a postmenopausal woman.

  13. Vibrio viscosus in farmed Atlantic salmon Salmo salar in Scotland: field and experimental observations.

    PubMed

    Bruno, D W; Griffiths, J; Petrie, J; Hastings, T S

    1998-11-30

    Winter mortality occurred in market-sized (2 to 3 kg) Atlantic salmon Salmo salar reared in sea cages in Scottish waters. Many of the fish had skin ulcers. Internally prominent dark-brown petechiae or ecchymotic haemorrhage was observed. Splenomegaly was associated with congestion and widespread necrosis. A Vibrio sp. was isolated from internal organs. Biochemically isolates of the bacterium were similar to a previously described bacterium, Vibrio viscosus, recorded in a phenotypic study from farmed salmon in Norway. This work examines the occurrence of V. viscosus in marine-reared Atlantic salmon for the first time in Scottish waters. An experimental study reproduced the field observations and Koch's postulates were fulfilled. The histopathology associated with natural infection was compared with that in laboratory-infected fish. PMID:9891731

  14. Actinomyces cardiffensis septicemia: a case report.

    PubMed

    Seo, Jeong Youn; Yeom, Joon-Sup; Ko, Kwan Soo

    2012-05-01

    Actinomyces cardiffensis is an anaerobic, Gram-positive, non-spore-forming rod that was first identified by Hall et al. (Hall V. et al. (2002) J Clin Microbiol 40:3427-31). Here we report a case of bacteremia with liver and lung abscesses associated with A. cardiffensis. A 67-year-old man was hospitalized with fever and headache for 20 days. Blood culture revealed an Actinomyces species, which was ultimately identified as A. cardiffensis by 16S rRNA gene sequencing. A computed tomography scan of his chest showed small abscesses in his lung and liver. After a 3-week course of intravenous ceftriaxone, the patient showed rapid improvement. The patient was transitioned to oral amoxicillin for the remainder of his antibiotic treatment.

  15. Actinomyces meyeri: from "lumpy jaw" to empyema.

    PubMed

    Attaway, A; Flynn, T

    2013-10-01

    While the most common presentation of actinomycosis is cervicofacial disease, or "lumpy jaw syndrome," Actinomyces meyeri has a predilection for pulmonary disease as well as dissemination to distant organs. We describe a 61-year-old Caucasian male with a relapsing-remitting mandibular sinus tract who would go on to develop weight loss, dyspnea, and a cough productive of malodorous sputum. Imaging revealed a right lower lobe pneumonia and a large left sided empyema. He underwent thoracotomy and decortication on the left side, and 1 L of foul-smelling purulent fluid was drained. Culture grew Actinomyces meyeri. He completed an extended antibiotic course and had his teeth extracted with good clinical outcome.

  16. Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation.

    PubMed

    Ferreira, L; Cobas, M; Tavares, T; Sanromán, M A; Pazos, M

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 μM and phenanthrene 100 μM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation. PMID:23640390

  17. Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation.

    PubMed

    Ferreira, L; Cobas, M; Tavares, T; Sanromán, M A; Pazos, M

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 μM and phenanthrene 100 μM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.

  18. Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities

    PubMed Central

    Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas

    2001-01-01

    Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both

  19. Roles of Fructosyltransferase and Levanase-Sucrase of Actinomyces naeslundii in Fructan and Sucrose Metabolism

    PubMed Central

    Bergeron, Lori J.; Burne, Robert A.

    2001-01-01

    The ability of Actinomyces naeslundii to convert sucrose to extracellular homopolymers of fructose and to catabolize these types of polymers is suspected to be a virulence trait that contributes to the initiation and progression of dental caries and periodontal diseases. Previously, we reported on the isolation and characterization of the gene, ftf, encoding the fructosyltransferase (FTF) of A. naeslundii WVU45. Allelic exchange mutagenesis was used to inactivate ftf, revealing that FTF-deficient stains were completely devoid of the capacity to produce levan-type (β2,6-linked) polysaccharides. A polyclonal antibody was raised to a histidine-tagged, purified A. naeslundii FTF, and the antibody was used to localize the enzyme in the supernatant fluid. A sensitive technique was developed to detect levan formation by proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the method was used to confirm that the levan-synthesizing activity of A. naeslundii existed predominantly in a cell-free form, that a small amount of the activity was cell associated, and that the ftf mutant was unable to produce levans. By using the nucleotide sequence of the levanase gene of a genospecies 2 A. naeslundii, formerly Actinomyces viscosus, a portion of a homologue of this gene (levJ) was amplified by PCR and inserted into a suicide vector, and the resulting construct was used to inactivate the levJ gene in the genospecies 1 strain WVU45. A variety of physiologic and biochemical studies were performed on the wild-type and LevJ-deficient strains to demonstrate that (i) this enzyme was the dominant levanase and sucrase of A. naeslundii; (ii) that LevJ was inducible by growth in sucrose; (iii) that the LevJ activity was found predominantly (>90%) in a cell-associated form; and (iv) that there was a second, fructose-inducible fructan hydrolase activity produced by these strains. The data provide the first detailed molecular analysis of fructan

  20. Characterization of fimbriae of Actinomyces naeslundii N16 using monoclonal and polyclonal antibodies

    SciTech Connect

    Bragg, S.L.

    1988-01-01

    Two populations of fimbriae, which differ both in antigenicity and biological activity, have been identified on Actinomyces viscosus T14V cells. Although A. naeslundii serotype 1 isolates possess only one of these fimbrial populations (type 2 fimbriae), there was functional evidence to suggest that A. naeslundii serotype 3 strain N16 had both types of fimbriae. The purpose of this study was to characterize the fimbriae of A. naeslundii N16 immunologically by using both monoclonal and polyclonal antibodies. Three monoclonal antibodies (MAbs) to N16 were produced; all three bound to N16 fimbriae as determined by immunoelectron microscopy. In a solid-phase radioimmunoassay MAb 3B5.A1 reacted with 100% of the A. naeslundii serotype 3 isolates tested, but it did not react with any heterologous isolates. Type 1 and type 2 fimbriae were detected in Lancefield extracts of N16 cells by crossed immunoelectrophoresis (XIEP) using rabbit antiserum against N16 whole cells. When {sup 125}I-MAb 3B5.A1 was also incorporated into the gel, autoradiography indicated that MAb 3B5.A1 was specific for type 2 fimbriae. The N16 type 2 fimbriae were purified by gel filtration and immunoaffinity chromatography on a MAb 3B5.A1 column. Fimbriae-specific polyclonal and monoclonal antibodies were used in various immunological assays to determine that (a) N16 type 1 fimbriae are not related antigenically to type 2 fimbriae, (b) each type of fimbriae has epitopes that are present on the corresponding fimbriae of certain heterologous strains, and (c) MAb 3B5.A1 recognizes a serotype-specific epitope residing on the type 2 fimbriae of A. naeslundii serotype 3 strains.

  1. Nitrogen-Containing and Carbohydrate-Containing Antigen from Actinomyces bovis

    PubMed Central

    Pirtle, E. C.; Rebers, P. A.; Weigel, W. W.

    1965-01-01

    Pirtle, E. C. (National Animal Disease Laboratory, Ames, Iowa), P. A. Rebers, and W. W. Weigel. Nitrogen-containing and carbohydrate-containing antigen from Actinomyces bovis. J. Bacteriol. 89:880–888. 1965.—Water-soluble, heat-stable antigens have been isolated from the supernatant fluids of broth cultures of Actinomyces bovis ATCC 10048 after 8 days of growth in a broth medium composed of Casamino Acids, yeast extract, Tween 80 (polyoxyethylene sorbitan monooleate), sodium thioglycolate, dextrose, and sodium chloride. The antigens were precipitated from the culture supernatant fluid with alcohol and purified by fractional precipitation with alcohol in the presence of calcium or zinc and by chromatography on diethylaminoethyl Sephadex. Two serologically active substances which differed in chemical composition and size were characterized. The larger one contained 71% hexose and 2.8% nitrogen, and the smaller one contained 45% hexose and 5.4% nitrogen. Heterogeneity of these fractions could not be demonstrated by electrophoresis in free solution at pH 7.8 or 2, by ultracentrifugal analysis, by double diffusion in agar, or by immunoelectrophoresis. Despite their differences in chemical composition and size, they appeared identical in activity as antigens in complement fixation and in double-diffusion tests in agar. Each was found to contain mannose as its chief component after hydrolysis and paper chromatography with three solvent systems. A small percentage of the total nitrogen may be attributed to the presence of amino sugars but the remainder is as yet unidentified. Images PMID:14273674

  2. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  3. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  4. Prevalence of Actinomyces spp. in patients with chronic periodontitis.

    PubMed

    Vielkind, Paul; Jentsch, Holger; Eschrich, Klaus; Rodloff, Arne C; Stingu, Catalina-Suzana

    2015-10-01

    This study investigated the prevalence of Actinomyces spp. in shallow, deep and very deep pockets of patients with chronic periodontitis compared to healthy controls and correlated the results with clinical status. Twenty patients with chronic periodontitis and 15 healthy subjects were enrolled in this study. Clinical indices were recorded in a six-point measurement per tooth. From each patient samples of supra and subgingival plaque were taken separately from teeth with shallow, deep and very deep pockets. Samples of supragingival plaque and sulcular microflora were collected from the healthy subjects. All the samples were cultivated on different media at 37̊C in an anaerobic atmosphere for 7 days. All the suspect colonies were identified using a rapid ID 32 A system (bioMèrieux) and MALDI-TOF-MS analysis using an Autoflex II Instrument (Bruker Daltonics) together with in house developed identification software and a reference spectra database. A total of 977 strains were identified as Actinomyces. Actinomyces naeslundii/oris/johnsonii (430 isolates) was the most prevalent species and was found in all patients and in almost all of the healthy subjects. Significant differences (p=0.003) between the groups were found for Actinomyces odontolyticus/meyeri and Actinomyces israelii which were associated with periodontitis patients. Actinomyces dentalis was found in higher percentage (p=0.015) in the periodontitis group. Actinomyces gerencseriae and Actinomyces massiliensis were significantly more often found supragingivally than subgingivally (p=0.004, p=0.022, respectively) in the periodontitis group. Whether some Actinomyces species, definitely important plaque formers, are actively involved in the pathogenicity of chronic periodontitis needs further investigation.

  5. Prevalence of Actinomyces spp. in patients with chronic periodontitis.

    PubMed

    Vielkind, Paul; Jentsch, Holger; Eschrich, Klaus; Rodloff, Arne C; Stingu, Catalina-Suzana

    2015-10-01

    This study investigated the prevalence of Actinomyces spp. in shallow, deep and very deep pockets of patients with chronic periodontitis compared to healthy controls and correlated the results with clinical status. Twenty patients with chronic periodontitis and 15 healthy subjects were enrolled in this study. Clinical indices were recorded in a six-point measurement per tooth. From each patient samples of supra and subgingival plaque were taken separately from teeth with shallow, deep and very deep pockets. Samples of supragingival plaque and sulcular microflora were collected from the healthy subjects. All the samples were cultivated on different media at 37̊C in an anaerobic atmosphere for 7 days. All the suspect colonies were identified using a rapid ID 32 A system (bioMèrieux) and MALDI-TOF-MS analysis using an Autoflex II Instrument (Bruker Daltonics) together with in house developed identification software and a reference spectra database. A total of 977 strains were identified as Actinomyces. Actinomyces naeslundii/oris/johnsonii (430 isolates) was the most prevalent species and was found in all patients and in almost all of the healthy subjects. Significant differences (p=0.003) between the groups were found for Actinomyces odontolyticus/meyeri and Actinomyces israelii which were associated with periodontitis patients. Actinomyces dentalis was found in higher percentage (p=0.015) in the periodontitis group. Actinomyces gerencseriae and Actinomyces massiliensis were significantly more often found supragingivally than subgingivally (p=0.004, p=0.022, respectively) in the periodontitis group. Whether some Actinomyces species, definitely important plaque formers, are actively involved in the pathogenicity of chronic periodontitis needs further investigation. PMID:26324012

  6. Draft genome sequence of Actinomyces massiliensis strain 4401292T.

    PubMed

    Roux, Véronique; Robert, Catherine; Gimenez, Grégory; Gharbi, Reem; Raoult, Didier

    2012-09-01

    A draft genome sequence of Actinomyces massiliensis, an anaerobic bacterium isolated from a patient's blood culture, is described here. CRISPR-associated proteins, insertion sequences, and toxin-antitoxin loci were found on the genome.

  7. Actinomyces meyeri brain abscess following dental extraction.

    PubMed

    Clancy, U; Ronayne, A; Prentice, M B; Jackson, A

    2015-04-13

    We describe the rare occurrence of an Actinomyces meyeri cerebral abscess in a 55-year-old woman following a dental extraction. This patient presented with a 2-day history of hemisensory loss, hyper-reflexia and retro-orbital headache, 7 days following a dental extraction for apical peridonitis. Neuroimaging showed a large left parietal abscess with surrounding empyema. The patient underwent craniotomy and drainage of the abscess. A. meyeri was cultured. Actinomycosis is a rare cause of cerebral abscess. The A. meyeri subtype is particularly rare, accounting for less than 1% of specimens. This case describes an unusually brief course of the disease, which is usually insidious. Parietal lobe involvement is unusual as cerebral abscesses usually have a predilection for the frontal and temporal regions of the brain. Although there are no randomised trials to guide therapy, current consensus is to use a prolonged course of intravenous antibiotics, followed by 6-12 months of oral therapy.

  8. Actinomyces--gathering evidence of human colonization and infection.

    PubMed

    Hall, Val

    2008-02-01

    The roles of the 'classical'Actinomyces spp. as colonizers of oral cavities of man and animals, in development of intra-oral infections and as agents of actinomycosis have been well documented. This mini-review focuses on perceptions of human colonization and infection that have emerged in the past decade, largely as a result of advances in classification, identification and direct detection from clinical material. Arguably, of the greatest importance is the recognition of actinomycosis as a major factor and indicator of poor prognosis in both infected osteoradionecrosis and bisphosphonate-associated osteonecrosis of the jaws. Among recently described species, Actinomyces graevenitzii has been isolated almost exclusively from oral and respiratory sites and may be a causative agent of actinomycosis. Conversely, several other Actinomyces spp. are isolated commonly from superficial soft tissue infections. Members of the genus Actinobaculum, which is closely related to Actinomyces, are strongly associated with urosepsis. Isolation and identification of Actinomyces and related genera by conventional methods remain difficult. Diagnosis is commonly belated and based solely upon histological findings. Development of direct detection methods may aid patient management and further elucidate clinical associations.

  9. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy.

    PubMed

    Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M

    2015-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices.

  10. Actinomyces hominis sp. nov., isolated from a wound swab.

    PubMed

    Funke, Guido; Englert, Ralf; Frodl, Reinhard; Bernard, Kathryn A; Stenger, Steffen

    2010-07-01

    A coryneform bacterium (strain 1094(T)) was isolated from a wound swab taken from an 89-year-old female patient. Chemotaxonomic investigations suggested that this bacterium was related to the genera Actinomyces, Arcanobacterium and Actinobaculum. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 1094(T) was most closely related to Actinomyces europaeus CCUG 32789 A(T) (94.3 % similarity). Phenotypically, the isolate could be separated from its closest phylogenetic neighbours on the basis of being positive for catalase, CAMP reaction, acid phosphatase, N-acetyl-beta-glucosaminidase and raffinose fermentation. Based on the data presented, it is proposed that strain 1094(T) should be classified in a novel species, Actinomyces hominis sp. nov. The type strain is 1094(T) (=CCUG 57540(T) =DSM 22168(T)).

  11. Actinomyces meyeri infection: case report and review of the literature.

    PubMed

    Fazili, Tasaduq; Blair, Donald; Riddell, Scott; Kiska, Deanna; Nagra, Shehzadi

    2012-10-01

    Actinomyces meyeri is an uncommon cause of actinomycosis. We present a patient with pneumonia and empyema due to A. meyeri. The patient underwent open thoracotomy with decortication and was discharged home on a twelve-month course of oral penicillin. Review of the English literature revealed thirty-two cases of infection due to A. meyeri. The majority of patients were male, and a significant number had poor dental hygiene and a history of alcoholism. More than other Actinomyces species, A. meyeri causes pulmonary infection and has a predilection for dissemination. Prognosis is favorable with prolonged penicillin therapy combined with surgical debridement, if needed.

  12. The association of medication-related osteonecrosis of the jaw with Actinomyces spp. infection

    PubMed Central

    Russmueller, Guenter; Seemann, Rudolf; Weiss, Kathrin; Stadler, Victoria; Speiss, Manuel; Perisanidis, Christos; Fuereder, Thorsten; Willinger, Birgit; Sulzbacher, Irene; Steininger, Christoph

    2016-01-01

    Medication-related osteonecrosis of the jaw (MRONJ) represents a complication of bisphosphonate treatment that responds poorly to standard treatment. In a retrospective cohort study we investigated a possible role of Actinomyces spp. in the pathogenesis of MRONJ. Deep biopsies of necrotic bone were collected during surgical treatment of MRONJ and evaluated by histology and microbiology for the presence of Actinomyces spp. Microbiological, demographic and clinicpathological data were analyzed for risk of Actinomyces-associated MRONJ. Between 2005 and 2014, 111 patients suffering from histologically-confirmed MRONJ were identified. Actinomyces spp. were detected in 99 cases (89%) by histology and in six further patients by microbiological culture. A diverse microbial flora was found in all specimens without association with Actinomyces spp. Demographic and clinicopathological characteristics did not separate significantly Actinomyces-positive from Actinomyces-negative cases. Our observations confirm previous reports of a high prevalence of Actinomyces spp. in MRONJ in the single largest cohort available up to now. The high prevalence of Actinomyces spp. and the lack of clinicopathological risk factors underline the prominent role of Actinomyces spp. in MRONJ and may change the current understanding of MRONJ. Established prolonged antimicrobial treatment regimens against Actinomyces spp. infection could therefore be a mainstay of future MRONJ management. PMID:27530150

  13. Paediatric ventriculoperitoneal shunt infection caused by Actinomyces neuii.

    PubMed

    Anderson, Ian A; Jarral, Fazain; Sethi, Kavita; Chumas, Paul D

    2014-05-23

    We present the first reported case of ventriculoperitoneal shunt infection secondary to Actinomyces neuii in a paediatric patient. Our patient was managed with temporary shunt removal, intrathecal antibiotics and a prolonged course of intravenous and then oral antibiotics. She went on to make a complete recovery. Subsequent cerebrospinal fluid analysis at 5 months post-treatment demonstrated no evidence of residual infection.

  14. Actinomyces spp. gene expression in root caries lesions

    PubMed Central

    Dame-Teixeira, Naile; Parolo, Clarissa Cavalcanti Fatturi; Maltz, Marisa; Tugnait, Aradhna; Devine, Deirdre; Do, Thuy

    2016-01-01

    Background The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design The oral biofilms from exposed sound root surface (SRS; n=10) and active root caries (RC; n=30) samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA) libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]<0.001). Results Actinomyces spp. had similar numbers of reads (Mann-Whitney U-test; p>0.05), except for Actinomyces OT178 (p=0.001) and Actinomyces gerencseriae (p=0.004), which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL), enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase), adhesion (Type-2 fimbrial and collagen-binding protein), and cell growth (EF-Tu) were highly – but not differentially (p>0.001) – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17). The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05). Conclusion There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic

  15. Actinomyces naturae sp. nov., the first Actinomyces sp. isolated from a non-human or animal source.

    PubMed

    Rao, Jyoti U; Rash, Brian A; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2012-01-01

    Three facultatively anaerobic, Gram-positive staining, rod-shaped, non-spore forming, flagellated bacterial strains, BL-75, BL-79(T) and BL-104, were isolated from chlorinated solvent-contaminated groundwater. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed them to represent a distinct lineage within the genus Actinomyces with sequence identities in the range of <88-95.4% with previously described Actinomyces species. The strains were oxidase and catalase negative. Nitrate was not reduced. Esculin was hydrolyzed. Growth occurred in the temperature range of 20-43°C (optimum 30-37°C) and pH range 4.5-9.0 (optimum pH 6.5). Substrates supporting growth included various mono-, di-, and tri-saccharides. The end products of glucose fermentation were acetate, lactate, succinate and formate. Fermentative growth was observed in the presence of near saturation concentrations of perchloroethene (PCE) and toluene and in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations up to at least 24.4 mM and 11.2 mM, respectively. The dominant cellular fatty acids when grown in peptone/yeast extract/glucose (PYG) medium were C(18:1) ω9c, C(16:0), and C(14:0). The peptidoglycan was found to contain the amino acids alanine, glutamic acid, lysine, and ornithine at approximate molar ratios of 1.7 Ala: 2.3 Glu: 1.3 Lys: 1.0 Orn. The cell wall sugars were found to include rhamnose and mannose. The polar lipids were found to include diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phospholipid (PL), phosphoglycolipids (PGL), and glycolipids (GL). The main respiratory quinone of strain BL-79(T) was MK-9(H(4)), with minor components MK-10(H(4)) and MK-8(H(4)). The DNA mol% G+C content of the type strain is 69.8%. On the basis of phylogenetic and phenotypic characteristics, these strains could be differentiated from previously described species of the genus Actinomyces. Strains BL-75, BL-79(T) and BL-104 are designated as a novel

  16. Low-grade infection after a total knee arthroplasty caused by Actinomyces naeslundii.

    PubMed

    Hedke, J; Skripitz, R; Ellenrieder, M; Frickmann, H; Köller, T; Podbielski, A; Mittelmeier, W

    2012-08-01

    Here, we present a case of an 85-year-old woman with a low-grade-infection caused by Actinomyces naeslundii after total-knee arthroplasty (TKA) followed by septic loosening. Actinomyces naeslundii was cultured from a tissue sample from the knee joint capsule/synovial tissue obtained after the initial TKA. A review of the literature revealed two cases of periprosthetic infection and another three cases of arthritis due to Actinomyces naeslundii. So far, no standard treatment for periprosthetic infections caused by Actinomyces species has been established.

  17. Mediastinitis by Actinomyces meyeri after oesophageal stent placement.

    PubMed

    Branquinho, Diogo Ferreira; Andrade, Daniel Ramos; Almeida, Nuno; Sofia, Carlos

    2014-06-05

    Actinomyces meyeri is a Gram-positive anaerobic forming bacterium of the genus Actinomyces, part of the oral cavity's flora, and its classification remains an unresolved issue. It is an extremely rare cause of disease, occurring in middle-aged immunocompetent patients and frequently misdiagnosed as malignancy or lung abscess. A 56-year-old man diagnosed with oesophageal squamous cell carcinoma had an endoscopically placed stent to palliate his dysphagia. Two weeks later he presented with thoracalgia and fever, interpreted as a common lung infection. Owing to lack of improvement, additional examinations were undertaken revealing mediastinum involvement. Unlike the good prognosis usually associated with this infection, the patient eventually died, reflecting the aggressive nature of his underlying condition. To our knowledge, this is the first report of mediastinitis by A. meyeri, supporting the described propensity of this agent to disseminate, particularly to the thoracic cavity, although probably in this case with an iatrogenic contribution.

  18. Actinomyces neuii: review of an unusual infectious agent.

    PubMed

    von Graevenitz, Alexander

    2011-04-01

    Actinomyces neuii, a species first described in 1994, has proven to be an exception in this genus on account of its aerobic growth, microscopic morphology (no branching), and the types and location of infections. Abscesses and infected atheromas are the most frequent types of infections, followed by infected skin structures, endophthalmitis, and bacteremias, including endocarditis. They are most likely of endogenous origin. To date, approximately 100 cases have been recorded in the literature. Intra-abdominal and intrathoracic infections, however, have not yet been described, and cases of classical actinomycosis seem to be extremely rare. Prognosis has generally been good with antibiotic and/or surgical treatment. Susceptibility to antibiotics has paralleled that of other Actinomyces spp.

  19. Actinomyces and nocardia infections in immunocompromised and nonimmunocompromised patients.

    PubMed Central

    Dominguez, D. C.; Antony, S. J.

    1999-01-01

    A retrospective survey of nocardia and actinomyces infections in five local hospitals was conducted over a 3-year period in El Paso, Texas, a border city, in the southwestern United States. The medical records of 42 patients with suspected nocardiosis or actinomycosis were reviewed. One patient was diagnosed with actinomyces and 12 patients with nocardia. Microbiological data included morphologic characteristics, biochemical profile, and susceptibility testing. Predisposing factors included leukemia, renal insufficiency, renal transplant, and lymphoma. No predisposing factors were found in 67% (n = 8) of patients (including the patient with actinomycosis). Twenty-three percent (n = 3) of patients had disseminated disease without evidence of underlying disease or immunosuppression. The mortality and morbidity of these infections appeared to be low. PMID:10063786

  20. Antimicrobial Effects of Novel Triple Antibiotic Paste–Mimic Scaffolds on Actinomyces naeslundii Biofilm

    PubMed Central

    Albuquerque, Maria T.P.; Ryan, Stuart J.; Münchow, Eliseu A.; Kamocka, Maria M.; Gregory, Richard L.; Valera, Marcia C.; Bottino, Marco C.

    2015-01-01

    Introduction Actinomyces naeslundii has been recovered from traumatized permanent teeth diagnosed with necrotic pulps. In this work, a triple antibiotic paste (TAP)–mimic scaffold is proposed as a drug-delivery strategy to eliminate A. naeslundii dentin biofilm. Methods Metronidazole, ciprofloxacin, and minocycline were added to a polydioxanone (PDS) polymer solution and spun into fibrous scaffolds. Fiber morphology, mechanical properties, and drug release were investigated by using scanning electron microscopy, microtensile testing, and high-performance liquid chromatography, respectively. Human dentin specimens (4 × 4 × 1 mm3, n = 4/group) were inoculated with A. naeslundii (ATCC 43146) for 7 days for biofilm formation. The infected dentin specimens were exposed to TAP-mimic scaffolds, TAP solution (positive control), and pure PDS (drug-free scaffold). Dentin infected (7-day biofilm) specimens were used for comparison (negative control). Confocal laser scanning microscopy was done to determine bacterial viability. Results Scaffolds displayed a submicron mean fiber diameter (PDS = 689 ± 312 nm and TAP-mimic = 718 ± 125 nm). Overall, TAP-mimic scaffolds showed significantly (P ≤ .040) lower mechanical properties than PDS. Within the first 24 hours, a burst release for all drugs was seen. A sustained maintenance of metronidazole and ciprofloxacin was observed over 4 weeks, but not for minocycline. Confocal laser scanning microscopy demonstrated complete elimination of all viable bacteria exposed to the TAP solution. Meanwhile, TAP-mimic scaffolds led to a significant (P < .05) reduction in the percentage of viable bacteria compared with the negative control and PDS. Conclusions Our findings suggest that TAP-mimic scaffolds hold significant potential in the eradication/elimination of bacterial biofilm, a critical step in regenerative endodontics. PMID:25917945

  1. Multiple lung abscesses caused by Actinomyces graevenitzii mimicking acute pulmonary coccidioidomycosis.

    PubMed

    Nagaoka, Kentaro; Izumikawa, Koichi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Ohkusu, Kiyofumi; Kohno, Shigeru

    2012-09-01

    Actinomyces graevenitzii is a newly recognized Actinomyces species that is seldom isolated from clinical specimens. A case of multiple pulmonary abscesses mimicking acute pulmonary coccidioidomycosis is described in this study, and the findings indicate that this organism is an opportunistic human pathogen.

  2. Multiple Lung Abscesses Caused by Actinomyces graevenitzii Mimicking Acute Pulmonary Coccidioidomycosis

    PubMed Central

    Nagaoka, Kentaro; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Ohkusu, Kiyofumi; Kohno, Shigeru

    2012-01-01

    Actinomyces graevenitzii is a newly recognized Actinomyces species that is seldom isolated from clinical specimens. A case of multiple pulmonary abscesses mimicking acute pulmonary coccidioidomycosis is described in this study, and the findings indicate that this organism is an opportunistic human pathogen. PMID:22760049

  3. Comparison of PCR, culturing and Pap smear microscopy for accurate diagnosis of genital Actinomyces.

    PubMed

    Kaya, Dilek; Demirezen, Şayeste; Hasçelik, Gülşen; Gülmez Kivanç, Dolunay; Beksaç, Mehmet Sinan

    2013-05-01

    Members of the genus Actinomyces, Gram-positive, non-spore-forming anaerobic bacteria, are normal inhabitants of the mucosal surfaces of the oral, gastrointestinal and genital tracts. Identification of these bacteria using conventional methods is generally difficult because of their complex transport and growth requirements and their fastidious and slow-growing nature. However, in recent years, the advancement of molecular techniques has provided much improved identification and differentiation of closely related Actinomyces species. The aim of the present study was to evaluate the efficacy of the PCR technique in the diagnosis of genital Actinomyces in comparison with culturing and Papanicolaou (Pap) smear microscopy. Multiple sampling was conducted from 200 women using smear microscopy, culturing and PCR. Cyto-brushes were smeared on glass slides and stained using the routine Pap technique. Culturing was performed from a sterile swab, and Actinomyces were determined using the BBL Crystal ANR ID kit. PCR was performed from a second swab, and the Actinomyces type was determined using type-specific primers designed in our laboratory. Only one vaginal fluid sample (0.5%) revealed Actinomyces-like organisms on Pap smear examination. Actinomyces were detected in nine samples (4.5%) using the BBL Crystal ANR ID kit. Using PCR, eight samples (4%) were found positive for Actinomyces. No specimens that gave positive results by Pap smear microscopy and culturing could be confirmed by PCR. Pap smear microscopy and culturing were both found to have zero sensitivity for Actinomyces. PCR appears to be a sensitive and reliable diagnostic method for the detection of Actinomyces, which are difficult to cultivate from genital samples. PCR can be used for diagnostic confirmation in cases diagnosed by conventional methods, to prevent false-positive results.

  4. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with gram-positive oral bacteria.

    PubMed Central

    Weiss, E I; London, J; Kolenbrander, P E; Kagermeier, A S; Andersen, R N

    1987-01-01

    The interactions between Capnocytophaga ochracea ATCC 33596 and Streptococcus sanguis H1, Actinomyces naeslundii PK984, or Actinomyces israelii PK16 are dependent on specific recognitions between heat-sensitive adhesins on C. ochracea and heat-stable structures (probably carbohydrate-containing receptors) on the surfaces of these gram-positive coaggregation partners. The coaggregation of C. ochracea with each of these three organisms was inhibited by L-rhamnose and D-fucose and to a lesser extent by beta-methyl-galactoside. The reaction with S. sanguis was the most sensitive, while the coaggregation with A. israelii was the least sensitive and was only partially inhibited by each of the sugars that were considered to be effective inhibitors. A more effective inhibition of the coaggregation between C. ochracea and A. israelii was achieved by adding a combination of the 6-deoxysugars and N-acetylneuraminic acid. To further characterize the coaggregations, naturally occurring coaggregation-defective (Cog-) mutants of C. ochracea were obtained from several different selections. Three phenotypically distinct groups of mutants were were isolated. Type 1 mutants failed to coaggregate with S. sanguis only. Type 2 mutants lost ability to interact with both S. sanguis and A. naeslundii. Type 3 mutants failed to coaggregate with all three coaggregation partners. Characterization of the Cog- mutants by sugar inhibition studies made it possible to distinguish three classes of adhesin activity. PMID:3570460

  5. Actinomyces meyeri meningitis: the need for anaerobic cerebrospinal fluid cultures.

    PubMed

    Hagiya, Hideharu; Otsuka, Fumio

    2014-01-01

    We herein present a rare case of Actinomyces meyeri-induced meningitis that occurred in a patient of advanced age with poor oral hygiene. Although Gram staining of the cerebrospinal fluid (CSF) revealed Gram-positive rods and a blood culture was positive for the organism, a bacterial culture of the CSF was negative. Anaerobic cultures of CSF specimens are not routinely performed; however, anaerobes are sometimes involved in central nervous system infection. We therefore believe that anaerobic cultures should be considered in high-risk cases, such as those involving necrotizing bowel lesions or poor oral hygiene. A negative result on a CSF culture can result in misdiagnosis and inappropriate treatment.

  6. Application of MLST and pilus gene sequence comparisons to investigate the population structures of Actinomyces naeslundii and Actinomyces oris.

    PubMed

    Henssge, Uta; Do, Thuy; Gilbert, Steven C; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A J M; Radford, David R; Beighton, David

    2011-01-01

    Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established.

  7. Actinomyces denticolens colonisation identified in equine tonsillar crypts

    PubMed Central

    Murakami, S.; Otaki, M.; Hayashi, Y.; Higuchi, K.; Kobayashi, T.; Torii, Y.; Yokoyama, E.; Azuma, R.

    2016-01-01

    Recently, submandibular abscesses associated with Actinomyces denticolens have been reported in horses. The actinomycotic clumps have been observed in the tonsillar crypts. The aim of this study was to demonstrate colonisation of A denticolens in equine tonsils. Twelve equine tonsils obtained from a slaughterhouse were divided into two parts for histopathological examination and for isolation of A denticolens. When actinomycotic clumps were found in these tonsillar crypts, immunohistochemistry using hyperimmune serum against A denticolens (DMS 20671) was performed on the serial sections. To determine whether Actinomyces-like bacteria isolated using immunoantigenic separation technique were A denticolens, the isolates were analysed for the 16S rRNA gene sequence. Actinomycotic clumps were found in the tonsillar crypts of 11 (91.7 per cent) horses. The clumps were of the saprophytic type accompanied with the feedstuffs, but a few clumps were surrounded by inflammatory cells. A denticolens antigens were immunodetected not only in the clumps of 11 (100 per cent) tonsils, but also in the tonsillar parenchyma. Six isolates obtained from four tonsils showed 99.7–99.9 per cent similarity to A denticolens in the 16S rRNA gene sequence. In horses, the colonisation sites of A denticolens are the tonsils, thus the authors suggest that the tonsils provide the intrinsic infection site for A denticolens.

  8. Actinomyces denticolens colonisation identified in equine tonsillar crypts.

    PubMed

    Murakami, S; Otaki, M; Hayashi, Y; Higuchi, K; Kobayashi, T; Torii, Y; Yokoyama, E; Azuma, R

    2016-01-01

    Recently, submandibular abscesses associated with Actinomyces denticolens have been reported in horses. The actinomycotic clumps have been observed in the tonsillar crypts. The aim of this study was to demonstrate colonisation of A denticolens in equine tonsils. Twelve equine tonsils obtained from a slaughterhouse were divided into two parts for histopathological examination and for isolation of A denticolens. When actinomycotic clumps were found in these tonsillar crypts, immunohistochemistry using hyperimmune serum against A denticolens (DMS 20671) was performed on the serial sections. To determine whether Actinomyces-like bacteria isolated using immunoantigenic separation technique were A denticolens, the isolates were analysed for the 16S rRNA gene sequence. Actinomycotic clumps were found in the tonsillar crypts of 11 (91.7 per cent) horses. The clumps were of the saprophytic type accompanied with the feedstuffs, but a few clumps were surrounded by inflammatory cells. A denticolens antigens were immunodetected not only in the clumps of 11 (100 per cent) tonsils, but also in the tonsillar parenchyma. Six isolates obtained from four tonsils showed 99.7-99.9 per cent similarity to A denticolens in the 16S rRNA gene sequence. In horses, the colonisation sites of A denticolens are the tonsils, thus the authors suggest that the tonsils provide the intrinsic infection site for A denticolens. PMID:27651913

  9. A Pathological Analysis of Canaliculitis Concretions: More Than Just Actinomyces

    PubMed Central

    Carlson, John Andrew

    2016-01-01

    Purpose. Canaliculitis is classically associated with Actinomyces species, which are filamentous bacteria; the purpose of this study was to evaluate the extent to which nonfilamentous bacteria colonize canalicular concretions by using graded histopathological analysis. Methods. This is a series of 16 cases. The percentage of Gram-positive/Gomori's methenamine silver-positive filamentous bacteria (Actinomyces) versus the total bacteria identified was graded, and the types of bacteria seen were recorded. Nonfilamentous bacteria were categorized based upon Gram stain (positive or negative) and morphology (cocci or rods). Results. There were 11 females and 5 males. Nonfilamentous bacteria were identified in 16 of 16 (100%) specimens and filamentous bacteria were identified in 15 of 16 (94%) specimens. The mean percentage of filamentous bacteria relative to total bacteria was 57%. Regarding the nonfilamentous bacteria present, 69% of specimens had Gram-positive cocci only, 25% had Gram-positive and Gram-negative cocci, and 6% had Gram-positive cocci and Gram-positive rods. Conclusion. In the current study, there was a mix of filamentous and nonfilamentous bacteria in almost all canalicular concretions analyzed. Nonfilamentous bacteria may contribute to the pathogenesis of canaliculitis. In addition, the success of bacterial culture can be variable; therefore, pathological analysis can assist in determining the etiology. PMID:27403375

  10. A Pathological Analysis of Canaliculitis Concretions: More Than Just Actinomyces.

    PubMed

    Perumal, Balaji; Carlson, John Andrew; Meyer, Dale Robert

    2016-01-01

    Purpose. Canaliculitis is classically associated with Actinomyces species, which are filamentous bacteria; the purpose of this study was to evaluate the extent to which nonfilamentous bacteria colonize canalicular concretions by using graded histopathological analysis. Methods. This is a series of 16 cases. The percentage of Gram-positive/Gomori's methenamine silver-positive filamentous bacteria (Actinomyces) versus the total bacteria identified was graded, and the types of bacteria seen were recorded. Nonfilamentous bacteria were categorized based upon Gram stain (positive or negative) and morphology (cocci or rods). Results. There were 11 females and 5 males. Nonfilamentous bacteria were identified in 16 of 16 (100%) specimens and filamentous bacteria were identified in 15 of 16 (94%) specimens. The mean percentage of filamentous bacteria relative to total bacteria was 57%. Regarding the nonfilamentous bacteria present, 69% of specimens had Gram-positive cocci only, 25% had Gram-positive and Gram-negative cocci, and 6% had Gram-positive cocci and Gram-positive rods. Conclusion. In the current study, there was a mix of filamentous and nonfilamentous bacteria in almost all canalicular concretions analyzed. Nonfilamentous bacteria may contribute to the pathogenesis of canaliculitis. In addition, the success of bacterial culture can be variable; therefore, pathological analysis can assist in determining the etiology. PMID:27403375

  11. Actinomyces denticolens colonisation identified in equine tonsillar crypts

    PubMed Central

    Murakami, S.; Otaki, M.; Hayashi, Y.; Higuchi, K.; Kobayashi, T.; Torii, Y.; Yokoyama, E.; Azuma, R.

    2016-01-01

    Recently, submandibular abscesses associated with Actinomyces denticolens have been reported in horses. The actinomycotic clumps have been observed in the tonsillar crypts. The aim of this study was to demonstrate colonisation of A denticolens in equine tonsils. Twelve equine tonsils obtained from a slaughterhouse were divided into two parts for histopathological examination and for isolation of A denticolens. When actinomycotic clumps were found in these tonsillar crypts, immunohistochemistry using hyperimmune serum against A denticolens (DMS 20671) was performed on the serial sections. To determine whether Actinomyces-like bacteria isolated using immunoantigenic separation technique were A denticolens, the isolates were analysed for the 16S rRNA gene sequence. Actinomycotic clumps were found in the tonsillar crypts of 11 (91.7 per cent) horses. The clumps were of the saprophytic type accompanied with the feedstuffs, but a few clumps were surrounded by inflammatory cells. A denticolens antigens were immunodetected not only in the clumps of 11 (100 per cent) tonsils, but also in the tonsillar parenchyma. Six isolates obtained from four tonsils showed 99.7–99.9 per cent similarity to A denticolens in the 16S rRNA gene sequence. In horses, the colonisation sites of A denticolens are the tonsils, thus the authors suggest that the tonsils provide the intrinsic infection site for A denticolens. PMID:27651913

  12. The cause of Actinomyces canalictulis--a case study.

    PubMed

    Olender, Alina; Matysik-Woźniak, Anna; Rymgayłło-Jankowska, Beata; Rejdak, Robert

    2013-01-01

    Actinomycosis of the lacrimal ducts is a rare chronic infection, caused by bacteria of the genus Actinomyces, usually A. israelii. The analyzed case of a 72-year-old man draws attention to the chronic nature of the infection and the need to thoroughly investigate the microbiological material sampled from the lacrimal ducts. Good effects of treatment resulted from oral use of doxycycline and local application of erythromycin. A precise removal of actinomycotic deposits and the applied antibiotic therapy resulted in a complete recovery without recurrences. The analyzed case confirms incidents in Poland of actinomycosis of the lacrimal ducts, and draws attention to this group of microorganisms that may cause infections in ophthalmology. This confirms the need for accurate diagnosis of microbial infections in the lacrimal ducts towards anaerobic bacteria. This would contribute to greater detection of a rare form of infection.

  13. Cervical spondylitis and spinal abscess due to Actinomyces meyeri.

    PubMed

    Duvignaud, Alexandre; Ribeiro, Emmanuel; Moynet, Daniel; Longy-Boursier, Maïté; Malvy, Denis

    2014-01-01

    Human actinomycosis with involvement of the spine is a rare condition although it has been first described a long time ago. It is probably underrecognized since its clinical presentation is often misleading and accurate bacteriological diagnosis is challenging. We herein report a rare case of cervical actinomycosis with paravertebral abscess and spondylitis imputed to an infection by Actinomyces meyeri in a 52-year-old immunocompetent Caucasian man. A. meyeri should be considered as a potential cause for subacute or chronic spondylitis, even in immunocompetent subjects. Modern diagnostic tools such as Matrix-Assisted Laser Desorption-Ionization Time of Flight mass spectrometry and 16S rRNA sequencing are efficient for accurate microbiological identification.

  14. Actinomyces infection causing acute right iliac fossa pain

    PubMed Central

    Govindarajah, Narendranath; Hameed, Waseem; Middleton, Simon; Booth, Michael

    2014-01-01

    This is a case of a 75-year-old man being admitted to the on-call surgical department with acute abdominal pain. On arrival he was clinically dehydrated and shocked with localised pain over McBurney's point and examination findings were suggestive of appendiceal or other colonic pathology. Full blood testing revealed a white cell count of 38×109/L and a C reactive protein (CRP) of 278 mg/L. A CT scan revealed a gallbladder empyema that extended into the right iliac fossa. This case highlights the potential for a hyperdistended gallbladder empyema to present as acute right iliac fossa pain with blood tests suggestive of complicated disease. Further analysis confirmed Actinomyces infection as the underlying aetiology prior to a laparoscopic subtotal cholecystectomy. This case serves to remind clinicians of this as a rare potential cause of atypical gallbladder pathology. PMID:24872493

  15. Spontaneous Bacterial Peritonitis due to Actinomyces Mimicking a Perforation of the Proximal Jejunum

    PubMed Central

    Eenhuis, Louise L.; de Lange, Marleen E.; Samson, Anda D.; Busch, Olivier R.C.

    2016-01-01

    Patient: Female, 42 Final Diagnosis: Spontaneous pelvic-abdominal peritonitis due to actinomyces Symptoms: Abdominal distension • abdominal pain • acute abdomen • fever • intermenstrual bleeding • nausea • sepsis • septic shock Medication: — Clinical Procedure: — Specialty: Surgery Objective: Unusual clinical course Background: Pelvic-abdominal actinomycosis is a rare chronic condition caused by an anaerobic, gram-negative rod-shaped commensal bacterium of the Actinomyces species. When Actinomyces becomes pathogenic, it frequently causes a chronic infection with granulomatous abscess formation with pus. Due to diversity in clinical and radiological presentation, actinomycosis can easily be mistaken for several other conditions. Peritonitis without preceding abscess formation caused by Actinomyces species has been described in only few cases before in literature. Case report: We report a case of spontaneous pelvic-abdominal peritonitis with presence of pneumoperitoneum and absence of preceding abscesses due to acute actinomycosis mimicking a perforation of the proximal jejunum in a 42-year-old female with an intra-uterine contraceptive device in place. Explorative laparotomy revealed 2 liters of odorless pus but no etiological explanation for the peritonitis. The intra-uterine contraceptive device was removed. Cultivation showed growth of Actinomyces turicensis. The patient was successfully treated with penicillin. Conclusions: In the case of primary bacterial peritonitis or lower abdominal pain without focus in a patient with an intrauterine device in situ, Actinomyces should be considered as a pathogen. PMID:27561364

  16. Genome Sequence of Propionibacterium acidipropionici ATCC 55737.

    PubMed

    Luna-Flores, Carlos H; Nielsen, Lars K; Marcellin, Esteban

    2016-01-01

    Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer. PMID:27198010

  17. Actinomyces osteomyelitis in bisphosphonate-related osteonecrosis of the jaw (BRONJ): the missing link?

    PubMed

    De Ceulaer, J; Tacconelli, E; Vandecasteele, S J

    2014-11-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare complication of bisphosphonate treatment characterized by the development of exposed, necrotic bone in the jaw with inflammatory signs. The pathogenesis of BRONJ is not yet fully understood. This review analyzes the evidence supporting the hypothesis that BRONJ may be considered as a bisphosphonate-induced Actinomyces infection of the jaw according to the modified Koch's postulates. The main arguments relies on the following factors: (1) the high prevalence of isolation of Actinomyces from bone BRONJ lesions (73.2 % in retrospective series); (2) the similar pathological appearance of BRONJ and Actinomyces osteomyelitis in most studies, although BRONJ lesions without inflammation have been reported; (3) the high incidence of events that disrupt the normal mucosal barrier as a necessary trigger to develop BRONJ in bisphosphonate-exposed patients; (4) the predilection of bisphosphonate-induced osteonecrosis for the bones of the jaws; and (5) the favorable response of BRONJ on treatment that is active on Actinomyces. If BRONJ confirms to be a bisphosphonate-induced Actinomyces osteomyelitis of the jaw, this has major consequences for the prevention and treatment of this condition.

  18. Spontaneous Bacterial Peritonitis due to Actinomyces Mimicking a Perforation of the Proximal Jejunum.

    PubMed

    Eenhuis, Louise L; de Lange, Marleen E; Samson, Anda D; Busch, Olivier R C

    2016-01-01

    BACKGROUND Pelvic-abdominal actinomycosis is a rare chronic condition caused by an anaerobic, gram-negative rod-shaped commensal bacterium of the Actinomyces species. When Actinomyces becomes pathogenic, it frequently causes a chronic infection with granulomatous abscess formation with pus. Due to diversity in clinical and radiological presentation, actinomycosis can easily be mistaken for several other conditions. Peritonitis without preceding abscess formation caused by Actinomyces species has been described in only few cases before in literature. CASE REPORT We report a case of spontaneous pelvic-abdominal peritonitis with presence of pneumoperitoneum and absence of preceding abscesses due to acute actinomycosis mimicking a perforation of the proximal jejunum in a 42-year-old female with an intra-uterine contraceptive device in place. Explorative laparotomy revealed 2 liters of odorless pus but no etiological explanation for the peritonitis. The intra-uterine contraceptive device was removed. Cultivation showed growth of Actinomyces turicensis. The patient was successfully treated with penicillin. CONCLUSIONS In the case of primary bacterial peritonitis or lower abdominal pain without focus in a patient with an intra-uterine device in situ, Actinomyces should be considered as a pathogen. PMID:27561364

  19. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai.

    PubMed

    Hyun, Dong-Wook; Shin, Na-Ri; Kim, Min-Soo; Kim, Pil Soo; Kim, Joon Yong; Whon, Tae Woong; Bae, Jin-Woo

    2014-02-01

    A novel, Gram-staining-positive, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain WL80(T), was isolated from the gut of an abalone, Haliotis discus hannai, collected from the northern coast of Jeju in Korea. Optimal growth occurred at 30 °C, pH 7-8 and with 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain WL80(T) fell within the cluster of the genus Actinomyces, with highest sequence similarity to the type strains of Actinomyces radicidentis (98.8% similarity) and Actinomyces urogenitalis (97.0% similarity). The major cellular fatty acids were C18 : 1ω9c and C16 : 0. Menaquinone-10 (H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 70.4 mol%. DNA-DNA hybridization values with closely related strains indicated less than 7.6% genomic relatedness. The results of physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WL80(T) represents a novel species of the genus Actinomyces, for which the name Actinomyces haliotis sp. nov. is proposed. The type strain is WL80(T) ( = KACC 17211(T) = JCM 18848(T)).

  20. Actinomyces naeslundii and Eikenella corrodens as rare causes of liver abscesses.

    PubMed

    Jaqua, Nathan Thomas; Smith, Adam J; Shin, Terry T; Jahanmir, Jay

    2013-07-17

    A 48-year-old man with an unremarkable medical history was admitted with vague conditions of fever, chills, myalgias and malaise. Physical examination was remarkable for only scleral icterus. Laboratory evaluation revealed elevated aminotransferases, alkaline phosphatase and bilirubin. Imaging demonstrated two masses in the right lobe of his liver, which were ultimately drained and cultures demonstrated Actinomyces and Eikenella. He continued to have fever on broad-spectrum antibiotics until catheter drainage of the abscesses was performed. He was eventually discharged in improved condition on amoxicillin-clavulanate. His aminotransferases, alkaline phosphatase and bilirubin continued to improve and he remained afebrile and asymptomatic. A repeat CT 2 months after discharge demonstrated resolution of the abscesses. Actinomyces and Eikenella are rare causes of liver abscesses and treatment requires drainage and an extended course of antibiotics. The polymicrobial character typical of liver abscesses makes antibiotic therapy challenging when cultures reveal rare organisms such as Actinomyces and Eikenella.

  1. Purulent meningitis caused by Actinomyces successfully treated with rifampicin: a case report.

    PubMed

    Imamura, Keiko; Kamitani, Hideki; Nakayasu, Hiroyuki; Asai, Yasumasa; Nakashima, Kenji

    2011-01-01

    A 64-year-old woman presented with fever and headache. Lumbar puncture revealed cerebrospinal fluid (CSF) that contained 67,386 /mm(3) of WBC; CSF culture revealed Actinomyces species. She was diagnosed with purulent meningitis caused by actinomyces, and treated with intravenous ampicillin 12 g/day. The administration of ampicillin was effective, but not sufficient to control the inflammation in CSF. CSF inflammation persisted and a gradual increase in granulation tissue was found in the subdural space on lumbar MRI. After administration of rifampicin 450 mg/day, the CSF was normalized and the enhancement of granulation tissue decreased. The patient completely recovered 5 months after the therapy was initiated. We suggest that rifampicin may be an option for the treatment of meningitis caused by actinomyces.

  2. [Screening of antifungi endophytic actinomyces strains from salvia przewalskii in Tibean Plateau].

    PubMed

    Liu, Song-Qing; Jiang, Hua-Ming; Guan, Tong-Wei; Qi, Shan-Shan; Gu, Yun-Fu; Zhao, Ke; Wang, Xu; Zhang, Xiao-Ping

    2013-10-01

    Twenty-four endophytic actinomycetes strains were isolated from the Salvia przewalskii in Tibetan Plateau of China by tablet coating method. Fusarium moniliforme, Helminthosporium turcicum and Bipolaris maydis were selected as indicator fungi to test the antimicrobial activities of these endophytic actinomycetes by tablet confrontation method. The results showed that 21 strains can produce antimicrobial substances which accounts for 85.7% of the total separates number. Four strains of endogenous actinomyces have more obvious antifungi activity. According to results of morphology and culture properties and 16S rDNA sequences of endophytic actinomyces, it is concluded that all of the isolates were streptomycetes trains.

  3. Further characteristics of Actinomyces weissii, a novel species isolated from the oral cavity of dogs.

    PubMed

    Hijazin, Muaz; Alber, Jörg; Lämmler, Christoph; Hassan, Abdulwahed Ahmed; Timke, Markus; Kostrzewa, Markus; Prenger-Berninghoff, Ellen; Zschöck, Michael

    2012-01-01

    Comparable to previously conducted phenotypical and genotypical investigations (Hijazin et al., 2011c), three strains of the newly described species Actinomyces weissii, isolated from infections of the oral cavity of three dogs could be classified by matrix-assisted laser desorption ionization-time of flight mass spectrometry and by sequencing the target genes 23S rDNA and cpn60 as novel species of genus Actinomyces. The detection of peptidic spectra and both genotypic approaches might help to identify A. weissii in future and elucidate the role this species plays in infections of dogs.

  4. Fluoride-sensitivity of growth and acid production of oral Actinomyces: comparison with oral Streptococcus.

    PubMed

    Kawashima, Junko; Nakajo, Kazuko; Washio, Jumpei; Mayanagi, Gen; Shimauchi, Hidetoshi; Takahashi, Nobuhiro

    2013-12-01

    Actinomyces are predominant oral bacteria; however, their cariogenic potential in terms of acid production and fluoride sensitivity has not been elucidated in detail and compared with that of other caries-associated oral bacteria, such as Streptococcus. Therefore, this study aimed to elucidate and compare the acid production and growth of Actinomyces and Streptococcus in the presence of bicarbonate and fluoride to mimic conditions in the oral cavity. Acid production from glucose was measured by pH-stat at pH 5.5 and 7.0 under anaerobic conditions. Growth rate was assessed by optical density in anaerobic culture. Although Actinomyces produced acid at a lower rate than did Streptococcus, their acid production was more tolerant of fluoride (IDacid production 50 = 110-170 ppm at pH 7.0 and 10-13 ppm at pH 5.5) than that of Streptococcus (IDacid production 50 = 36-53 ppm at pH 7.0 and 6.3-6.5 ppm at pH 5.5). Bicarbonate increased acid production by Actinomyces with prominent succinate production and enhanced their fluoride tolerance (IDacid production 50 = 220-320 ppm at pH 7.0 and 33-52 ppm at pH 5.5). Bicarbonate had no effect on these variables in Streptococcus. In addition, although the growth rate of Actinomyces was lower than that of Streptococcus, Actinomyces growth was more tolerant of fluoride (IDgrowth 50 = 130-160 ppm) than was that of Streptococcus (IDgrowth 50 = 27-36 ppm). These results indicate that oral Actinomyces are more tolerant of fluoride than oral Streptococcus, and bicarbonate enhances the fluoride tolerance of oral Actinomyces. Because of the limited number of species tested here, further study is needed to generalize these findings to the genus level.

  5. Super Infection of An Ovarian Dermoid Cyst with Actinomyces in An Infertile Woman

    PubMed Central

    Salehpour, Saghar; Akbari Sene, Azadeh

    2013-01-01

    We present super infection of an ovarian dermoid cyst with actinomyces in an infertile patient. This is a case-report study for evaluation a couple with male factor infertility, who was a good candidate for intracytoplasmic sperm injection (ICSI), while a 10 cm dermoid cyst was found in the woman’s right ovary. Patient complained of pelvic pain, intermittent fever, dysmenorrhea, and dyspareunia. The cyst was extracted using laparoscopy, whilst in histopathological examination, an actinomycosis super infection was reported. Actinomyc super infection of an ovarian dermoid cyst is a very rare incident which can also occur in women with no history of intrauterine device (IUD) usage or previous fertility. PMID:24520476

  6. Proteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482.

    PubMed

    Wakarchuk, Warren W; Brochu, Denis; Foote, Simon; Robotham, Anna; Saxena, Hirak; Erak, Tamara; Kelly, John

    2016-01-01

    The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes). Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC), as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization.

  7. Proteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482

    PubMed Central

    Wakarchuk, Warren W.; Brochu, Denis; Foote, Simon; Robotham, Anna; Saxena, Hirak; Erak, Tamara; Kelly, John

    2016-01-01

    The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes). Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC), as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization. PMID:26950732

  8. The rising tide of bloodstream infections with Actinomyces species: bimicrobial infection with Actinomyces odontolyticus and Escherichia coli in an intravenous drug user.

    PubMed

    Weiand, Daniel; Barlow, Gavin

    2014-12-01

    Clinicians of all specialties need to be aware of a recent, nationwide increase in the number of Actinomyces bloodstream infections. We report a case of bimicrobial bloodstream infection with Actinomyces odontolyticus and Escherichia coli in an intravenous drug user. A 36-year-old, male intravenous drug user was admitted with acute-onset pleuritic chest pain, back pain, pyrexia, tachycardia, tachypnoea and hypotension. Chest CT showed multiple, bilateral, cavitating lung lesions, most likely the result of septic emboli originating from an infected deep venous thrombosis (DVT). Blood cultures led to a mixed growth of A. odontolyticus, identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), and E. coli. The rising tide of bloodstream infections with Actinomyces species is likely to continue with the increasing availability of sophisticated molecular identification techniques, including MALDI-TOF. In this case, the results of antimicrobial susceptibility tests were particularly important because the E. coli was susceptible to ciprofloxacin, whereas the A. odontolyticus was resistant.

  9. The rising tide of bloodstream infections with Actinomyces species: bimicrobial infection with Actinomyces odontolyticus and Escherichia coli in an intravenous drug user

    PubMed Central

    Weiand, Daniel; Barlow, Gavin

    2014-01-01

    Clinicians of all specialties need to be aware of a recent, nationwide increase in the number of Actinomyces bloodstream infections. We report a case of bimicrobial bloodstream infection with Actinomyces odontolyticus and Escherichia coli in an intravenous drug user. A 36-year-old, male intravenous drug user was admitted with acute-onset pleuritic chest pain, back pain, pyrexia, tachycardia, tachypnoea and hypotension. Chest CT showed multiple, bilateral, cavitating lung lesions, most likely the result of septic emboli originating from an infected deep venous thrombosis (DVT). Blood cultures led to a mixed growth of A. odontolyticus, identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), and E. coli. The rising tide of bloodstream infections with Actinomyces species is likely to continue with the increasing availability of sophisticated molecular identification techniques, including MALDI-TOF. In this case, the results of antimicrobial susceptibility tests were particularly important because the E. coli was susceptible to ciprofloxacin, whereas the A. odontolyticus was resistant. PMID:25988064

  10. [Effect of organic acids on the biosynthesis of carotenes by an Actinomyces chrysomallus strain].

    PubMed

    Nefelova, M V; Sverdlova, A N; Alekseeva, L N

    1978-01-01

    Synthesis of carotenes by Actinomyces chrysomallus var. carotenoides was stimulated by citric, acetic, oxalacetic, fumaric, succinic, malic, alpha-ketoglutaric, tartaric, pyruvic, and propionic acids. Acetic acid acts as a precursor of carotene synthesis and also has another stimulating mechanism of action on carotenogenesis of the actinomycete. Acetic, furmaric, malic, succinic, and alpha-ketoglutaric acids stimulate cyclization of lycopene yielding beta-carotene.

  11. [The effect of beta-ionine on biosynthesis of carotenes by Actinomyces chrysomallus var. carotenoides].

    PubMed

    Sverdlova, A N; Alekseeva, L N; Nefelova, M V

    1977-01-01

    Biosynthesis of carotenoids by a growing culture of Actinomyces chrysomallus var. carotenoides is totally inhibited by beta-ionone added at different concentrations, at various time of the cultural growth, and in various combinations with oil. The inhibition of carotenoid synthesis by beta-ionone is of a specific character since the biomass growth under the same conditions does not increase.

  12. Coinfection of Fusobacterium nucleatum and Actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing.

    PubMed

    Salipante, Stephen J; Hoogestraat, Daniel R; Abbott, April N; SenGupta, Dhruba J; Cummings, Lisa A; Butler-Wu, Susan M; Stephens, Karen; Cookson, Brad T; Hoffman, Noah G

    2014-05-01

    Some bacterial infections involve potentially complex mixtures of species that can now be distinguished using next-generation DNA sequencing. We present a case of mastoiditis where Gram stain, culture, and molecular diagnosis were nondiagnostic or discrepant. Next-generation sequencing implicated coinfection of Fusobacterium nucleatum and Actinomyces israelii, resolving these diagnostic discrepancies.

  13. Draft genome sequences of Actinomyces timonensis strain 7400942T and its prophage.

    PubMed

    Gorlas, Aurore; Gimenez, Grégory; Raoult, Didier; Roux, Véronique

    2012-12-01

    A draft genome sequence of Actinomyces timonensis, an anaerobic bacterium isolated from a human clinical osteoarticular sample, is described here. CRISPR-associated proteins, insertion sequence, and toxin-antitoxin loci were found on the genome. A new virus or provirus, AT-1, was characterized.

  14. Submandibular lymph node abscess caused by Actinomyces denticolens in a horse in Ontario

    PubMed Central

    Beck, Aswin; Baird, John D.; Slavić, Đurda

    2011-01-01

    This is the first report of the isolation of Actinomyces denticolens, an opportunistic pathogen, from a draining submandibular lymph node abscess in a horse in Ontario. Due to the similarity of the clinical signs with strangles, this pathogen should be included in the differential diagnosis of submandibular lymphadenopathy in the horse. PMID:22043071

  15. In situ hybridization for the differentiation of Actinomyces and Nocardia in tissue sections.

    PubMed

    Isotalo, Phillip A; Qian, Xiang; Hayden, Randall T; Roberts, Glenn D; Lloyd, Ricardo V

    2009-09-01

    The specific identification of filamentous bacteria in tissue sections can be difficult. The filamentous bacteria Actinomyces and Nocardia often produce similar host responses and single bacterial organisms seem morphologically similar; however, their differentiation may be clinically significant. In situ hybridization (ISH) may assist in the rapid and accurate identification of these microorganisms. In this study, DNA probes were directed against the variable regions of 16S ribosomal RNA genes of multiple Actinomyces and Nocardia spp. Probes were tested on 26 formalin-fixed, paraffin-embedded tissue specimens, each of which contained diagnostic foci of filamentous bacteria confirmed by both Gram and Grocott methenamine silver stains. On the basis of histology and clinical features, cases were classified as Actinomyces-related, n = 13 with 6 culture-proven cases and Nocardia-related, n = 13 with 11 culture-proven cases. Using this classification, all cases were assessed for cross-reactivity using other species-specific probes and probe specificity was determined. Overall, Gram and Grocott methenamine silver histochemical stains (100% sensitivity) were more sensitive than ISH (77% sensitivity for both Actinomyces and Nocardia probes). The slender caliber of filamentous bacteria was a limitation for ISH interpretation and necessitated careful examination of some slides. Probes demonstrated 100% specificity for identifying both species, 100% positive predictive value and 81% negative predictive value. No mixed infections were observed. This study demonstrates that ISH is highly specific for distinguishing between Actinomyces and Nocardia spp. in tissue sections. Although histochemical stains demonstrate greater sensitivity for organism detection, ISH is a rapid and specific technique that is especially useful for evaluating culture-negative or clinically unsuspected cases of filamentous bacterial infection.

  16. [Ovarian abscess due to Actinomyces sp. in absence of an intrauterine contraceptive device].

    PubMed

    Burlando, S C; Paz, L A; De Feo, L G; Benchetrit, G; Rimoldi, D; Predari, S C

    2001-01-01

    The disease caused by Actinomyces spp. is often of difficult diagnosis. Actinomyces spp. are anaerobic or microaerophilic non-spore-forming gram-positive rods that may reach, occasionally, the normal female genital tract. IUD and pessaries facilitate the access of the microorganisms to the pelvis. We report an unusual case of ovarian infection by Actinomyces sp. in a 41 year-old female without IUD, admitted at the Institute in November 1998, with persistent fever. She had had an early menopause 3 years before, and had received hormonal replacement therapy. Usual and unusual infections were discarded by microbiological and serologic studies. Abdominal ultrasonography showed a slight left pyelocalycial dilatation and a simple cyst in the left ovary; heart ultrasonography was normal. Gynecological examination showed an enlarged uterus, similar to an 8 week pregnancy, painless, and fixed anexial masses. The transvaginal ultrasonography showed uterine myomas, one of them of 42 mm in the isthmus region, large ovaries, cystic, with acoustic shadows, and the left one with a septum. The preoperative diagnosis was infected bilateral cystic teratoma. The procedure was an exploratory laparotomy, followed by a bilateral salpingo-oophorectomy. The specimen studies showed an endometrioma with calcium deposits in the wall of the right ovary, and an abscess in the left ovary, also with calcification of the wall. The sample from the left abscess developed Actinomyces sp. After surgery, and treatment with penicillin, the fever disappeared. It is important to remark that the ovarian infection by Actinomyces sp. can also occur in patients without an IUD or a pessary; it might cause anexial images that can be interpreted as a tumour, inducing to erroneous diagnosis and treatment.

  17. Identification of Actinomyces meyeri actinomycosis in middle ear and mastoid by 16S rRNA analysis.

    PubMed

    Kakuta, Risako; Hidaka, Hiroshi; Yano, Hisakazu; Miyazaki, Hiromitsu; Suzaki, Hiroshi; Nakamura, Yasuhiro; Kanamori, Hajime; Endo, Shiro; Hirakata, Yoichi; Kaku, Mitsuo; Kobayashi, Toshimitsu

    2013-08-01

    Actinomycosis of the middle ear and mastoid is extremely rare. Here, we report a unique case of actinomycosis of the middle ear and mastoid caused by Actinomyces meyeri diagnosed by 16S rRNA gene sequence analysis.

  18. Genome sequence and description of Actinomyces polynesiensis str. MS2 sp. nov. isolated from the human gut.

    PubMed

    Cimmino, T; Metidji, S; Labas, N; Le Page, S; Musso, D; Raoult, D; Rolain, J-M

    2016-07-01

    Actinomyces polynesiensis strain MS2 gen. nov., sp. nov. is a newly proposed genus within the family Actinomycetaceae, isolated from the stools of a healthy individual in Raiatea Island (French Polynesia, South Pacific). Actinomyces massiliensis is an anaerobic, Gram-positive organism. Here we describe the features of this organism, together with the complete genome sequence and annotation-2 943 271 bp with a 70.80% G+C content, assembled into 15 scaffolds and containing 2080 genes.

  19. Actinomyces urogenitalis bacteremia and tubo-ovarian abscess after an in vitro fertilization (IVF) procedure.

    PubMed

    Van Hoecke, Frederik; Beuckelaers, Ellen; Lissens, Peter; Boudewijns, Michael

    2013-12-01

    We describe the first case of bacteremia due to Actinomyces urogenitalis. Bacteremia was secondary to a tubo-ovarian abscess following transvaginal oocyte retrieval. Identification was established by matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and confirmed by 16S rRNA gene sequencing. A. urogenitalis should be considered as a potential causative agent of infection after gynecological procedures.

  20. Empyema Secondary to Actinomyces meyeri Treated Successfully with Ceftriaxone Followed by Doxycycline

    PubMed Central

    Piscopo, Tonio; Cassar, Karen

    2016-01-01

    Actinomycosis is a relatively rare infection caused by Gram-positive bacteria. We present the case of a 54-year-old, previously healthy, male patient with a history of severe penicillin allergy who developed severe pneumonia and empyema caused by Actinomyces meyeri. Presenting symptoms included productive cough, right upper quadrant pain, and chills and rigors. He required drainage of the empyema via tube and prolonged antibiotic treatment with intravenous ceftriaxone for 2 weeks followed by oral doxycycline for 6 months. PMID:27752374

  1. Study of precipitation reactions to Actinomyces israelii antigens in uterine secretions.

    PubMed

    Persson, E; Holmberg, K

    1985-01-01

    Uterine secretions were obtained from 110 women and analysed by counterimmunoelectrophoresis for the occurrence of precipitation reactions against Actinomyces israelii antigens. Precipitation reactions were found in secretions from seven women and a correlation was found between these reactions and long term use of plastic intrauterine devices. The precipitating components could not be proved to be immunoglobulins; neither could identity be shown with IgG precipitins in reference serum. The nature and the importance of the precipitating components are discussed.

  2. Draft Genome Sequence of Mycobacterium brumae ATCC 51384

    PubMed Central

    D'Auria, Giuseppe

    2016-01-01

    Here, we report the draft genome sequence of Mycobacterium brumae type strain ATCC 51384. This is the first draft genome sequence of M. brumae, a nonpathogenic, rapidly growing, nonchromogenic mycobacterium, with immunotherapeutic capacities. PMID:27125480

  3. Draft Genome Sequence of Mycobacterium brumae ATCC 51384.

    PubMed

    D'Auria, Giuseppe; Torrents, Eduard; Luquin, Marina; Comas, Iñaki; Julián, Esther

    2016-01-01

    Here, we report the draft genome sequence of Mycobacterium brumae type strain ATCC 51384. This is the first draft genome sequence of M. brumae, a nonpathogenic, rapidly growing, nonchromogenic mycobacterium, with immunotherapeutic capacities. PMID:27125480

  4. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a Gram-negative, rod shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. ...

  5. Solitary plasmacytoma of the tonsillar site associated with actinomyces infection: the possible role of IL-6.

    PubMed

    Zappacosta, R; Rosini, S; Aiello, F B; Rullo, A; Croce, A; Lattanzio, G; Viola, P

    2012-01-01

    ExtraMedullary Plasmacytoma (EMP) is a rare plasma cell tumor. It can occur in the upper aerodigestive tract and presents as a large nodule causing local compressive symptoms. A 79-year old woman presented to Otorhinolaryngology Department with progressive hearing loss and no other symptoms. Following PET/TC examination due to the suspicion of a lymphoproliferative disease, the patient underwent tonsillectomy and the diagnosis of solitary EMP was formulated. In addition to that, the histological examination of the tonsillar tissue revealed large colonies of filamentous bacteria, showing abundant sulphur granules and Splendore-Hoeppli phenomenon; these evidences indicating the presence of a chronic Actinomyces infection. Immunohistochemical analysis demonstrated a marked IL-6 immunoreactivity of the neoplastic plasma cells. Interestingly, a marked IL-6 immunoreactivity was also found in the tissue surrounding the Actinomyces colonies. In the present study we report for the first time a solitary EMP associated with Actinomycosis. It is tempting to speculate that the unsuspected and untreated Actinomyces infection, through chronic IL-6 production, could contribute to the neoplastic transformation of plasma cells.

  6. Actinomyces timonensis sp. nov., isolated from a human clinical osteo-articular sample.

    PubMed

    Renvoise, Aurélie; Raoult, Didier; Roux, Véronique

    2010-07-01

    Gram-positive, non-spore-forming rods were isolated from a human osteo-articular sample (strain 7400942(T)). Based on cellular morphology and the results of biochemical analysis, this strain was tentatively identified as a novel species of the genus Actinomyces. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the bacterium was closely related to the type strain of Actinomyces denticolens (96.9 % 16S rRNA gene sequence similarity). A comparison of biochemical traits showed that strain 7400942(T) was distinct from A. denticolens in a number of characteristics, i.e. in contrast with A. denticolens, strain 7400942(T) was negative for nitrate reduction and for beta-galactosidase, alpha-glucosidase and alanine arylamidase activities, it was positive for acid production from N-acetylglucosamine, melezitose and glycogen, and it was negative for acid production from turanose. Matrix-assisted laser-desorption/ionization time-of-flight MS protein analysis confirmed that strain 7400942(T) represents a novel species, as scores obtained for its spectra were significant (>2.2) only with strain 7400942(T). On the basis of phenotypic data and phylogenetic inference, it is proposed that this strain should be designated Actinomyces timonensis sp. nov.; the type strain is strain 7400942(T) (=CSUR P35(T)=CCUG 55928(T)).

  7. Primary actinomycosis of the breast caused by Actinomyces turicensis with associated Peptoniphilus harei.

    PubMed

    Abdulrahman, Ganiy Opeyemi; Gateley, Christopher Alan

    2015-01-01

    Actinomycosis of the breast is a rare disease which may mimic malignancy in presentation. Clinical presentation may make it difficult to distinguish primary actinomycosis from mastitis and inflammatory carcinoma. A 22-year-old lady presented with a 3-week history of right breast pain and greenish discharge through her nipple piercing. Physical examination revealed a palpable fluctuant lump in the upper inner quadrant of the right breast and a nipple jewelry in-situ in the upper inner quadrant of the right breast with an abscess at the edge of the areola. Needle aspiration was performed and microbiological examination of the aspirate isolated Actinomyces turicensis and Peptoniphilus harei. Actinomycosis of the breast is rare and the specie, Actinomyces turicensis, is even rarer especially in association with Peptoniphilus harei. Actinomyces is a difficult organism to treat due to its relative indolent course with potential scarring and disruption of local tissue. However, surgical intervention could be avoided with an intensive course of high-dose intravenous antibiotics and prolonged oral antibiotics afterwards.

  8. [Isolation and identification of imazethapyr degradable actinomyces S181 and its degradation characteristics].

    PubMed

    Huo, Ying; Xu, Jing-gang; Li, Shu-qin; Wang, Lei

    2011-05-01

    A selection of actinomyces that could degrade imazethapyr was conducted to provide actinomyces source for bioremediation of soil contaminated by imazethapyr. A strain of actinomyces was isolated from the samples of soil where imazethapyr had been applied for a long-term by use of bottle enriched culture and named S181. The strain had strong ability to degrade imazethapyr and could grow using mazethapyr as the sole nitrogen. The strain was related and shared characteristics to genus Streptomyces omiyaensis according to the physiological and biochemical properties as well as 16S rRNA sequence analysis. The influencing factors (temperature, pH, concentration and inoculum) were studied with fungus growth mass and degradation ratio as indexes. The results showed that the optimal degradation ratio occurred at the condition of inoculation ratio of 3%, 200 mg x L(-1) imazethapyr, at 30 degrees C and pH 7.0. Under these conditions, 84% imazethapyr had been degraded by S181 in medium Gao 1 without nitrogen after 5 days.

  9. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo.

  10. Genome sequence and description of Actinomyces polynesiensis str. MS2 sp. nov. isolated from the human gut.

    PubMed

    Cimmino, T; Metidji, S; Labas, N; Le Page, S; Musso, D; Raoult, D; Rolain, J-M

    2016-07-01

    Actinomyces polynesiensis strain MS2 gen. nov., sp. nov. is a newly proposed genus within the family Actinomycetaceae, isolated from the stools of a healthy individual in Raiatea Island (French Polynesia, South Pacific). Actinomyces massiliensis is an anaerobic, Gram-positive organism. Here we describe the features of this organism, together with the complete genome sequence and annotation-2 943 271 bp with a 70.80% G+C content, assembled into 15 scaffolds and containing 2080 genes. PMID:27200177

  11. Fournier's gangrene caused by Actinomyces funkei, Fusobacterium gonidiaformans and Clostridium hathewayi.

    PubMed

    Tena, Daniel; Losa, Cristina; Medina-Pascual, María José; Sáez-Nieto, Juan Antonio

    2014-06-01

    We report the first case of Fournier's gangrene caused by three unusual anaerobic organisms: Actinomyces funkei, Fusobacterium gonidiaformans and Clostridium hathewayi. The infection occurred in a 73-year-old man without typical risk factors for the development of Fournier's gangrene. Clinical outcome was good after prolonged antibiotic treatment and extensive debridement of the perineum. The case suggests that A. funkei, F. gonidiaformans and C. hathewayi should be considered as potential pathogens of Fournier's gangrene. Human infections caused by these organisms are very rare but can be underestimated because correct identification is very difficult, especially in polymicrobial infections such as Fournier's gangrene.

  12. Intrauterine device infection causing concomitant streptococcal toxic shock syndrome and pelvic abscess with Actinomyces odontolyticus bacteraemia.

    PubMed

    Wu, Carolyn M Yu; Noska, Amanda

    2016-01-01

    Intrauterine devices (IUDs) are rarely associated with serious infections. We report an unusual concomitant infection of group A Streptococcus (GAS) causing toxic shock syndrome and pelvic abscess with Actinomyces odontolyticus associated with an IUD in a healthy 50-year-old patient. The IUD was subsequently removed and the patient recovered on the appropriate antibiotics. This case highlights the importance of clinicians' high index of suspicion of an IUD infection and prompt removal of the infected foreign body to obtain source control. PMID:26965406

  13. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii.

    PubMed

    Jakubovics, Nicholas S; Gill, Steven R; Vickerman, M Margaret; Kolenbrander, Paul E

    2008-12-01

    In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque.

  14. Pulmonary Actinomyces graevenitzii infection presenting as organizing pneumonia diagnosed by PCR analysis.

    PubMed

    Fujita, Yu; Iikura, Motoyasu; Horio, Yuko; Ohkusu, Kiyofumi; Kobayashi, Nobuyuki

    2012-08-01

    We report what is believed to be the first case of pulmonary Actinomyces graevenitzii infection presenting as organizing pneumonia. Fever and night sweats developed in a 69-year-old male. The only abnormal laboratory data were an elevated erythrocyte sedimentation rate and C-reactive protein level. On chest images, multiple consolidations with air bronchograms were seen in the bilateral lungs. Histological examination from lung biopsy revealed a pattern of organizing pneumonia with microabscesses, but definitive diagnosis was not obtained because culture from lung specimen was negative. A. graevenitzii was eventually identified in the lung biopsy specimen by detection of an Actinomyces-specific PCR product followed by 16S rRNA gene sequencing. The patient was treated with high-dose ampicillin intravenously for 1 month, followed by oral amoxicillin and clarithromycin for 6 months, and recovered. We suggest that actinomycosis can present as organizing pneumonia, and identification of infection by PCR analysis and rRNA gene sequencing is a useful strategy in cases that are difficult to diagnose.

  15. Actinomyces-induced inflammatory myofibroblastic tumor of the colon: A rare cause of an abdominal mass

    PubMed Central

    Akbulut, Sami; Yagmur, Yusuf; Gumus, Serdar; Sogutcu, Nilgun; Demircan, Firat

    2015-01-01

    Introduction Inflammatory myofibroblastic tumors (IMFTs) are neoplastic lesions that are either benign or have low-grade malignancy potential. Although the etiopathogenesis is not entirely clear, many factors play a role in their development, including trauma, autoimmune disorders, and infectious and inflammatory processes. However, IMFTs caused by Actinomyces spp. infection are rare, with a limited number of cases reported in the literature. Presentation of case A 30-year-old woman was admitted to our clinic with abdominal pain and a palpable abdominal mass. Contrast-enhanced computed tomography revealed a tumoral lesion (11 × 10 × 7 cm) in the right colon. A right hemicolectomy and ileocolic anastomosis were performed, during which almost complete obstruction of the lumen by the 7.5 × 7.0 × 5.0 cm tumor was observed. Histopathology and immunohistochemical findings revealed that the tumor was consistent with an IMFT that developed from an Actinomyces infection. The patient was then placed on amoxicillin and doxycycline therapy. Conclusion This case demonstrates that the development of IMFT secondary to actinomycosis is difficult to predict in the preoperative period. Once an exact diagnosis is confirmed by histopathologic examination, affected patients should receive prolonged antibiotherapy. PMID:25704558

  16. Genome Sequence of Ureaplasma diversum Strain ATCC 49782

    PubMed Central

    Marques, Lucas M.; Guimarães, Ana M. S.; Martins, Hellen B.; Rezende, Izadora S.; Barbosa, Maysa S.; Campos, Guilherme B.; do Nascimento, Naíla C.; dos Santos, Andrea P.; Amorim, Aline T.; Santos, Verena M.; Messick, Joanne B.

    2015-01-01

    Here, we report the complete genome sequence of Ureaplasma diversum strain ATCC 49782. This species is of bovine origin, having an association with reproductive disorders in cattle, including placentitis, fetal alveolitis, abortion, and birth of weak calves. It has a small circular chromosome of 975,425 bp. PMID:25883297

  17. Genome Sequence of Ureaplasma diversum Strain ATCC 49782.

    PubMed

    Marques, Lucas M; Guimarães, Ana M S; Martins, Hellen B; Rezende, Izadora S; Barbosa, Maysa S; Campos, Guilherme B; do Nascimento, Naíla C; Dos Santos, Andrea P; Amorim, Aline T; Santos, Verena M; Messick, Joanne B; Timenetsky, Jorge

    2015-04-16

    Here, we report the complete genome sequence of Ureaplasma diversum strain ATCC 49782. This species is of bovine origin, having an association with reproductive disorders in cattle, including placentitis, fetal alveolitis, abortion, and birth of weak calves. It has a small circular chromosome of 975,425 bp.

  18. Draft Genome Sequence of Vibrio (Listonella) anguillarum ATCC 14181

    PubMed Central

    Grim, Christopher J.

    2016-01-01

    We report the draft genome sequence of Vibrio anguillarum ATCC 14181, a Gram-negative, hemolytic, O2 serotype marine bacterium that causes mortality in mariculture species. The availability of this genome sequence will add to our knowledge of diversity and virulence mechanisms of Vibrio anguillarum as well as other pathogenic Vibrio spp.

  19. Draft Genome Sequence of Rhodococcus rhodochrous Strain ATCC 21198

    SciTech Connect

    Shields-Menard, Sara A.; Brown, Steven D; Klingeman, Dawn Marie; Indest, Karl; Hancock, Dawn; Wewalwela, Jayani; French, Todd; Donaldson, Janet

    2014-01-01

    Rhodococcus rhodochrous is a Gram-positive red-pigmented bacterium commonly found in the soil. The draft genome sequence for R. rhodochrous strain ATCC 21198 is presented here to provide genetic data for a better understanding of its lipid-accumulating capabilities.

  20. Draft Genome Sequence of Mycobacterium interjectum Strain ATCC 51457T

    PubMed Central

    Levasseur, Anthony; Asmar, Shady; Robert, Catherine

    2016-01-01

    Mycobacterium interjectum is a nontuberculosis species rarely responsible for human infection. The draft genome of M. interjectum ATCC 51457T comprises 5,927,979 bp, exhibiting 67.91% G+C content, 5,314 protein-coding genes, and 51 predicted RNA genes. PMID:27231376

  1. Draft Genome Sequence of Mycobacterium houstonense Strain ATCC 49403T

    PubMed Central

    Levasseur, Anthony; Asmar, Shady; Robert, Catherine

    2016-01-01

    Mycobacterium houstonense is a nontuberculous species rarely responsible for human infection. The draft genome of M. houstonense ATCC 49403T comprises 6,451,020 bp, exhibiting a 66.96% G+C content, 5,881 protein-coding genes, and 65 predicted RNA genes. PMID:27231371

  2. Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581

    PubMed Central

    Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D.

    2014-01-01

    Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

  3. Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581.

    PubMed

    Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D; Shwed, Philip S

    2014-01-01

    Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

  4. Complete genome sequence of Campylobacter gracilis ATCC 33236T

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human oral pathogen Campylobacter gracilis has been isolated from periodontal and endodontal infections, and also from non-oral head, neck or lung infections. This study describes the whole-genome sequence of the human periodontal isolate ATCC 33236T (=FDC 1084), which is the first closed genome...

  5. Draft Genome Sequence of Rhizobium rhizogenes Strain ATCC 15834

    PubMed Central

    Kajala, Kaisa; Coil, David A.

    2014-01-01

    Here, we present the draft genome of Rhizobium rhizogenes strain ATCC 15834. The genome contains 7,070,307 bp in 43 scaffolds. R. rhizogenes, also known as Agrobacterium rhizogenes, is a plant pathogen that causes hairy root disease. This hairy root induction has been used in biotechnology for the generation of transgenic root cultures. PMID:25359916

  6. Draft Genome Sequence of Alicyclobacillus acidoterrestris Strain ATCC 49025

    PubMed Central

    Pasvolsky, Ronit; Sela, Noa; Green, Stefan J.; Zakin, Varda

    2013-01-01

    Alicyclobacillus acidoterrestris is a spore-forming Gram-positive, thermo-acidophilic, nonpathogenic bacterium which contaminates commercial pasteurized fruit juices. The draft genome sequence for A. acidoterrestris strain ATCC 49025 is reported here, providing genetic data relevant to the successful adaptation and survival of this strain in its ecological niche. PMID:24009113

  7. Draft Genome Sequence of Strain ATCC 33958, Reported To Be Elizabethkingia miricola

    PubMed Central

    Matyi, Stephanie A.; Hoyt, Peter R.; Ayoubi-Canaan, Patricia; Hasan, Nabeeh A.

    2015-01-01

    We report the draft genome of Elizabethkingia strain ATCC 33958, which has been classified as Elizabethkingia miricola. Similar to other Elizabethkingia species, the ATCC 33958 draft genome contains numerous β-lactamase genes. ATCC 33958 also harbors a urease gene cluster which supports classification as E. miricola. PMID:26205869

  8. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used...

  9. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used...

  10. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.

  11. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. PMID:27049131

  12. Actinomyces israelii in osteoradionecrosis of the jaws. Histopathologic and immunocytochemical study of five cases

    SciTech Connect

    Happonen, R.P.; Viander, M.; Pelliniemi, L.; Aitasalo, K.

    1983-06-01

    Five surgically treated patients with osteoradionecrosis of the jaws are presented. The clinical history of the disease varied from 3 to 17 years. In three cases the progression of the disease was enhanced by surgical procedures performed in the irradiated area causing exfoliation of the premaxillary area in one case and spontaneous mandibular fracture in two cases. Actinomyces israelii was demonstrated in tissue sections of all five cases by using FITC-labeled specific antiserum and additionally with peroxidase-antiperoxidase method in one case. Candida was found in histologic sections of three cases. Radiation damage in the oral soft tissues and jawbones makes the atmosphere favorable for anaerobic microorganisms. The present results indicate that the role of A. israelii in the pathogenesis of osteoradionecrosis of the jaws has not been fully appreciated.

  13. Isolation of Actinomyces hyovaginalis from sheep and comparison with isolates obtained from pigs.

    PubMed

    Foster, Geoffrey; Wragg, Peter; Koylass, Mark S; Whatmore, Adrian M; Hoyles, Lesley

    2012-06-15

    Actinomyces hyovaginalis, an organism initially described from pigs, was recovered from nine sheep and a moufflon. Further strains of A. hyovaginalis were recovered from five samples from pigs over the same period. 16S rRNA sequencing and extensive phenotyping demonstrated high similarity between the ovine and porcine isolates; however differences with respect to erythritol, adonitol and l-arabitol fermentation were detected. Ovine isolates were made from various sample sites including abscesses and highlight the importance of the accurate identification of the various coryneform isolates which affect sheep. A. hyovaginalis can be added to the growing list of coryneforms which can cause disease in sheep including Corynebacterium pseudotuberculosis, Trueperella pyogenes and Arcanobacterium pluranimalium.

  14. Olecranon Osteomyelitis due to Actinomyces meyeri: Report of a Culture-Proven Case

    PubMed Central

    Kang, Eun Kyung; Moon, Song Mi; Seo, Yiel-Hea; Jeong, Juhyeon; Cho, Hyuni; Yang, Dongki

    2016-01-01

    Actinomyces meyeri is a Gram positive, strict anaerobic bacterium, which was first described by Meyer in 1911. Primary actinomycotic osteomyelitis is rare and primarily affects the cervicofacial region, including mandible. We present an unusual case of osteomyelitis of a long bone combined with myoabscess due to A. meyeri. A 70-year-old man was admitted for pain and pus discharge of the right elbow. Twenty-five days before admission, he had hit his elbow against a table. MRI of the elbow showed a partial tear of the distal triceps tendon and myositis. He underwent open debridement and partial bone resection for the osteomyelitis of the olecranon. Biopsy showed no sulfur granules, but acute and chronic osteomyelitis. The excised tissue grew A. meyeri and Peptoniphilus asaccharolyticus. Intravenous ceftriaxone was administered and switched to oral amoxicillin. Infection of the extremities of actinomycosis often poses diagnostic difficulties, but it should not be neglected even when the characteristic pathologic findings are not present. PMID:27659433

  15. Draft Genome Sequence of Mycobacterium chelonae Type Strain ATCC 35752

    PubMed Central

    Hasan, Nabeeh A.; Davidson, Rebecca M.; de Moura, Vinicius Calado Nogueira; Garcia, Benjamin J.; Reynolds, Paul R.; Epperson, L. Elaine; Farias-Hesson, Eveline; DeGroote, Mary Ann; Jackson, Mary

    2015-01-01

    Mycobacterium chelonae is a rapidly growing opportunistic nontuberculous mycobacterial (NTM) species that causes infections in humans and other hosts. Here, we report the draft genome sequence of Mycobacterium chelonae type strain ATCC 35752, consisting of 4.89 Mbp, 63.96% G+C content, 4,489 protein-coding genes, 48 tRNAs, and 3 rRNA genes. PMID:26021923

  16. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  17. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    PubMed

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation. PMID:3582582

  18. Long-term survival in a dog with meningoencephalitis and epidural abscessation due to Actinomyces species.

    PubMed

    Song, Rachel B; Vitullo, Carina A; da Costa, Ronaldo C; Daniels, Joshua B

    2015-07-01

    A 2-year-old, female spayed Golden Retriever dog was presented to The Ohio State University Veterinary Medical Center for evaluation of ataxia, cervical pain, 1 episode of acute collapse, dull mentation, and inappetence. Physical examination revealed an elevated temperature of 39.7°C and severe cervical pain. Blood work revealed a mature neutrophilia. Cerebrospinal fluid (CSF) analysis revealed nondegenerative neutrophilic pleocytosis with no infectious agents. A presumptive diagnosis of steroid-responsive meningitis-arteritis was made, and corticosteroid therapy was started. The patient improved initially but experienced a vestibular episode characterized by falling and vertical nystagmus. A magnetic resonance imaging of the brain revealed an epidural abscess in the cervical vertebral canal and diffuse meningeal enhancement in the brain and cranial cervical spine. Abscess drainage revealed degenerate neutrophils and several filamentous, branching organisms. Culture of the initial CSF using an enrichment broth revealed growth of a Gram-positive organism 5 days after fluid collection. The isolate was identified by partial 16S ribosomal DNA sequencing as Actinomyces spp. The patient was successfully treated with long-term antibiotics. Our study reports the long-term survival after medical treatment of bacterial meningoencephalitis and epidural abscessation due to Actinomyces sp. infection in a dog. Bacterial meningoencephalitis should be included as a differential diagnosis in patients with cervical pain and fever, even when a nondegenerative neutrophilic pleocytosis is found on CSF analysis. Culture of the CSF with use of an enrichment broth should be considered in all cases of neutrophilic pleocytosis to rule out infections of the central nervous system.

  19. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    PubMed

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles. PMID:26344281

  20. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    PubMed

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles.

  1. [Amino acid composition and quaternary structure of glucosoisomerase (d-xylose-ketol-isomerase) from Actinomyces olivocinereus 154].

    PubMed

    Rezchikov, A A; Ulezlo, I V; Ananichev, A V; Bezborodov, A M

    1980-01-01

    The amino acid composition of glucosoisomerase from Actinomyces olivocinereus 154 was investigated. The content of dicarboxylic acids--aspartic and glutamic--was found to be greater than that of basic acids--lysine, arginine and histidine. Hydrophobic acids were also detected to occur on appreciable quantities. No cysteine was seen in the enzyme. The experimental data on the effect of sodium dodecyl sulfate and urea suggests that the enzyme has a quaternary structure consisting of four nonidentical subunits. PMID:7220510

  2. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  3. Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895

    PubMed Central

    Chen, Bi-Shuang; Otten, Linda G.; Resch, Verena; Muyzer, Gerard; Hanefeld, Ulf

    2013-01-01

    Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. PMID:24501654

  4. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  5. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  6. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  7. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  8. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  9. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    PubMed

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater. PMID:26237683

  10. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    PubMed

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater.

  11. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system.

  12. In vitro bactericidal effect of Nd:YAG laser on Actinomyces israelii.

    PubMed

    Vescovi, Paolo; Conti, Stefania; Merigo, Elisabetta; Ciociola, Tecla; Polonelli, Luciano; Manfredi, Maddalena; Meleti, Marco; Fornaini, Carlo; Rocca, Jean-Paul; Nammour, S Amir

    2013-07-01

    A bactericidal effect has been reported by the use of near-infrared laser light on both Gram-positive and Gram-negative bacteria. The aim of this study was to evaluate the effect of Nd:YAG laser on Actinomyces israelii, filamentous bacteria causing cervicofacial actinomycosis. Experiments were realized on bacterial cells in saline suspension or streaked on Mueller-Hinton (MH) agar plates with or without India ink. Laser application was performed in Eppendorf tubes with different powers and frequencies for 40 s; bacterial suspensions were then streaked on agar plates and incubated at 35 °C in proper conditions for 5 days before colony enumeration. A reduction of colony number variable from 60.13 to 100 % for powers of 2, 4, and 6 W at 25-50 Hz of frequency was observed in comparison with growth control. For agar plates, laser application was performed with different powers at 50 Hz for 60 s. A growth inhibition was observed after 5 days of incubation on MH plates with powers of 6 W and on MH-ink plates with all applied powers. This preliminary study showed a bactericidal effect caused by Nd:YAG laser application worthy to be evaluated in further experiments in vivo.

  13. Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein.

    PubMed

    Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung

    2014-12-01

    Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harbouring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalysed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens.

  14. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent.

    PubMed

    Arzmi, Mohd Hafiz; Dashper, Stuart; Catmull, Deanne; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2015-08-01

    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.

  15. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01.

    PubMed

    Lu, Cai Ge; Liu, Wei Cheng; Qiu, Ji Yan; Wang, Hui Min; Liu, Ting; De Liu, Wen

    2008-10-01

    Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503%) was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with U V, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases.

  16. Lethality of Sortase Depletion in Actinomyces oris Caused by Excessive Membrane Accumulation of a Surface Glycoprotein

    PubMed Central

    Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung

    2014-01-01

    Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351

  17. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium

    PubMed Central

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  18. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01

    PubMed Central

    Lu, Cai Ge; Liu, Wei Cheng; Qiu, Ji Yan; Wang, Hui Min; Liu, Ting; De Liu, Wen

    2008-01-01

    Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503%) was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with U V, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases. PMID:24031293

  19. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium.

    PubMed

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  20. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  1. Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062 T.

    PubMed

    Saha, Ratul; Spröer, Cathrin; Beck, Brian; Bagley, Susan

    2010-04-01

    Isolate RS1(T) isolated from used metalworking fluid was found to be a Gram-negative, motile, and non-spore forming rod. Based on phylogenetic analyses with 16S rRNA, isolate RS1(T) was placed into the mendocina sublineage of Pseudomonas. The major whole cell fatty acids were C(18:1)omega7c (32.6%), C(16:0) (25.5%), and C(15:0) ISO 2OH/C(16:1)omega7c (14.4%). The sequence similarities of isolate RS1(T) based on gyrB and rpoD genes were 98.9 and 98.0% with Pseudomonas pseudoalcaligenes, and 98.5 and 98.1% with Pseudomonas oleovorans, respectively. The ribotyping pattern showed a 0.60 similarity with P. oleovorans ATCC 8062(T) and 0.63 with P. pseudoalcaligenes ATCC17440(T). The DNA G + C content of isolate RS1(T) was 62.2 mol.%. The DNA-DNA relatedness was 73.0% with P. oleovorans ATCC 8062(T) and 79.1% with P. pseudoalcaligenes ATCC 17440(T). On the basis of morphological, biochemical, and molecular studies, isolate RS1(T) is considered to represent a new subspecies of P. oleovorans. Furthermore, based on the DNA-DNA relatedness (>70%), chemotaxonomic, and molecular profile, P. pseudoalcaligenes ATCC 17440(T) and P. oleovorans ATCC 8062(T) should be united under the same name; according to the rules of priority, P. oleovorans, the first described species, is the earlier synonym and P. pseudoalcaligenes is the later synonym. As a consequence, the division of the species P. oleovorans into two novel subspecies is proposed: P. oleovorans subsp. oleovorans subsp. nov. (type strain ATCC 8062(T) = DSM 1045(T) = NCIB 6576(T)), P. oleovorans subsp. lubricantis subsp. nov. (type strain RS1(T) = ATCC BAA-1494(T) = DSM 21016(T)). PMID:19936829

  2. ATCC 43642 replaces ATCC 23581 as the type strain of Leptospira interrogans (Stimson 1907) Wenyon 1926. Opinion 91. Judicial Commission of the International Committee on Systematics of Prokaryotes.

    PubMed

    Tindall, B J

    2014-10-01

    The Judicial Commission affirms that, according to information presented to it, the type strain of Leptospira interrogans (Stimson 1907) Wenyon 1926 designated on the Approved Lists of Bacterial Names (ATCC 23581) has been shown not to represent an authentic culture of strain RGA (a member of the serovar Icterohaemorrhagiae) and ATCC 43642, derived from an authentic strain of strain RGA, a member of the serovar Icterohaemorrhagiae, is designated the type strain of Leptospira interrogans (Stimson 1907) Wenyon 1926.

  3. Growth of Lactobacillus paracasei ATCC334 in a cheese model system: A biochemical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densit...

  4. Complete Genome Sequence of Arthrobacter sp. ATCC 21022, a Host for Bacteriophage Discovery

    PubMed Central

    Russell, Daniel A.

    2016-01-01

    We report the complete genome sequence of Arthrobacter sp. ATCC 21022, a strain maintained by ATCC and a commonly used host for bacteriophage isolation and genomic analysis. The strain is prophage-free and CRISPR-free but codes for two predicted restriction-modification systems. PMID:27013048

  5. Identification of the Herboxidiene Biosynthetic Gene Cluster in Streptomyces chromofuscus ATCC 49982

    PubMed Central

    Shao, Lei; Zi, Jiachen; Zeng, Jia

    2012-01-01

    The 53-kb biosynthetic gene cluster for the novel anticholesterol natural product herboxidiene was identified in Streptomyces chromofuscus ATCC 49982 by genome sequencing and gene inactivation. In addition to herboxidiene, a biosynthetic intermediate, 18-deoxy-herboxidiene, was also isolated from the fermentation broth of S. chromofuscus ATCC 49982 as a minor metabolite. PMID:22247174

  6. Complete Genome Sequence of the Type Strain of Aeromonas schubertii, ATCC 43700

    PubMed Central

    Liu, Lihui; Zhang, Defeng; Fu, Xiaozhe; Shi, Cunbin; Lin, Qiang

    2016-01-01

    We sequenced the complete genome of the type strain of Aeromonas schubertii, ATCC 43700. The full genome sequence of A. schubertii ATCC 43700 is 4,356,858 bp, which encodes 3,842 proteins and contains 110 predicted RNA genes. PMID:26893413

  7. Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073▿

    PubMed Central

    Li, Qingyan; Seffernick, Jennifer L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2009-01-01

    Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications. PMID:19767460

  8. Complete genome sequence of Anabaena variabilis ATCC 29413

    SciTech Connect

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne A.; Copeland, A; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L; Kyrpides, Nikos C; Woyke, Tanja

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  9. Complete genome sequence of Anabaena variabilis ATCC 29413.

    PubMed

    Thiel, Teresa; Pratte, Brenda S; Zhong, Jinshun; Goodwin, Lynne; Copeland, Alex; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L; Kyrpides, Nikos C; Woyke, Tanja

    2014-06-15

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40(°) C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. PMID:25197444

  10. Biotransformation of (-)beta-pinene by Aspergillus niger ATCC 9642.

    PubMed

    Toniazzo, Geciane; de Oliveira, Débora; Dariva, Cláudio; Oestreicher, Enrique Guillermo; Antunes, Octávio A C

    2005-01-01

    The main objective of this work was to investigate the biotransformations of (-)alpha-pinene, (-)beta-pinene, and (+) limonene by Aspergillus niger ATCC 9642. The culture conditions involved--concentration of cosolvent (EtOH), substrate applied, and sequential addition of substrates were--investigated. Adaptation of the precultures with small amounts of substrate was also studied. The experiments were performed in conical flasks with liquid cultures. This strain of A. niger was able to convert only (-)beta-pinene into alpha-terpineol. An optimum conversion of (-)beta-pinene into alpha-terpineol of about 4% was obtained when the substrate was applied as a diluted solution in EtOH and sequential addition of substrate was used.

  11. [Effect of organic acids on the biosynthesis of macrotetralide antibiotics by an Actinomyces chrysomallus var. carotenoides strain].

    PubMed

    Nefelova, M V; Sverdlova, A N; Silaev, A B

    1978-07-01

    The biosynthesis of macrotetrolides by Actinomyces chrysomalus var. carotenoides was stimulated by acetic, succinic, propionic, oxalic, malic, tartaric, citric, pyruvic, alpha-ketoglutaric and fumaric acids. Incorporation of 14C-acetate into the molecule of the antibiotic and the data on dependence of the stimulating effect upon the quantitative ratio and time of the organic acid addition were indicative of the role of acetic, succinic and propionic acids as precursors of macrotetrolides. The other organic acids increased the biosynthesis of macrotetolides when added to the culture within wide time ranges of the culture development and prolonged the period of the mycelium productive state.

  12. [Separation of the biosynthesis products of a mutant strain of Actinomyces chrysomallus var. carotenoides and the identification of actinomycin antibiotics].

    PubMed

    Sverdlova, A N; Nefelova, M V; Silaev, A B

    1979-01-01

    An orange antibiotically active substance isolated from the mycelium of a mutant strain of Actinomyces chrysomallus var. carotenoides was identified as a mixture of actinomycins according to its light absorption spectra, circular dichroism spectra, IR spectra and chromatographic comparison with the standard samples. A scheme for successive extraction of the biologically active substances from the mycelium resulting in isolation of a fraction enriched with antibiotic substances and a fraction enriched with pigments is presented. A method for separation and purification of 3 groups of biologically active substances from the mycelium enriched extract was developed.

  13. Identification of a novel 16S rRNA gene variant of Actinomyces funkei from six patients with purulent infections.

    PubMed

    Hinić, V; Straub, C; Schultheiss, E; Kaempfer, P; Frei, R; Goldenberger, D

    2013-07-01

    Little is known about the clinical significance and laboratory diagnosis of Actinomyces funkei. In this report we describe six clinical cases where A. funkei was isolated from purulent, polymicrobial infections. Conventional identification procedures were compared with molecular methods including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique. Analysis of the full 16S rRNA gene sequence of the six investigated strains revealed differences from the A. funkei type strain. DNA-DNA hybridization showed that the clinical strains represent a novel 16S rRNA gene variant within the species of A. funkei.

  14. Phenotypic and Physiological Characterization of the Epibiotic Interaction Between TM7x and Its Basibiont Actinomyces.

    PubMed

    Bor, Batbileg; Poweleit, Nicole; Bois, Justin S; Cen, Lujia; Bedree, Joseph K; Zhou, Z Hong; Gunsalus, Robert P; Lux, Renate; McLean, Jeffrey S; He, Xuesong; Shi, Wenyuan

    2016-01-01

    Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth.

  15. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    PubMed

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S

    2016-02-01

    Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family.

  16. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    PubMed

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development.

  17. Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40.

    PubMed

    Kim, Sung Chan; Kang, Seung Ha; Choi, Eun Young; Hong, Yeon Hee; Bok, Jin Duck; Kim, Jae Yeong; Lee, Sang Suk; Choi, Yun Jaie; Choi, In Soon; Cho, Kwang Keun

    2016-01-01

    A gene from Actinomyces sp. Korean native goat (KNG) 40 that encodes an endo-β-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli) DH5α. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC) was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli DH5α harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine-Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was 55°C, but it retained over 90% of maximum activity in a broad temperature range (40°C to 60°C). The optimal pH for the enzyme activity was 6.0. Kinetic parameters, Km and Vmax of rEG1 were 0.39% CMC and 143 U/mg, respectively. PMID:26732336

  18. Streptococci and actinomyces inhibit regrowth of Streptococcus mutans on gnotobiotic rat molar teeth after chlorhexidine varnish treatment.

    PubMed

    van der Hoeven, J S; Schaeken, M J

    1995-01-01

    Clinical studies suggest that the long-term suppression of mutans streptococci on tooth surfaces after intensive chlorhexidine therapy is mainly due to bacterial interference. Other streptococci and also Actinomyces naeslundii are proposed to inhibit regrowth of mutans streptococci after suppression by the agent. We have tested this hypothesis in gnotobiotic rats associated with Streptococcus mutans alone, or associated with S. mutans and strains of Streptococcus oralis, Streptococcus sanguis, Streptococcus gordonii, Streptococcus mitis biovar I, and A. naeslundii. Left lower jaws in these rats were treated with concentrated chlorhexidine varnish, and the return of S. mutans on the treated jaws monitored. In mono-associated rats, S. mutans regained the level of the untreated right lower jaw in approximately 1 week. In contrast, S. mutans remained suppressed for several weeks in rats multi-associated with other streptococci and actinomyces strains. The suppression was more pronounced in the rats fed on basal diet with little free sugars than in rats fed on a sucrose-containing diet. Counts of other streptococci recovered quickly from the intensive chlorhexidine treatment, but A. naeslundii remained suppressed for at least 1 week. The findings demonstrate the crucial importance of the oral microflora in controlling regrowth of mutans streptococci after chemotherapy.

  19. Clinical spectrum of infections due to the newly described Actinomyces species A. turicensis, A. radingae, and A. europaeus.

    PubMed

    Sabbe, L J; Van De Merwe, D; Schouls, L; Bergmans, A; Vaneechoutte, M; Vandamme, P

    1999-01-01

    Over a 7-year period, we isolated 294 Actinomyces-like organisms (ALOs) which were not clearly identifiable. Using well-defined probes coding for sequences specific for recently described Actinomyces species (A. turicensis, A. radingae, and A. europaeus), we were able to identify 128 strains. The majority belonged to the A. turicensis species. A. radingae was found only in patients with skin-related pathologies. A. europaeus was also detected in patients with urinary tract infections. The main sources of A. turicensis were genital infections, followed by skin-related and urinary tract infections. Additional clinical pictures were appendicitis, cholecystitis, ear, nose, and throat infections, and bacteremia. In a small number of patients these ALOs were found as the only pathogen. Strains of the three species were tested by two widely used biochemical identification methods. A. turicensis was easily identifiable by both these methods. We conclude that these ALOs are not infrequent pathogens and are found in a wide range of human infections. At least A. turicensis is easily identifiable by clinical diagnostic laboratories.

  20. Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. mobilis Lectotype Strain ATCC 10988 ▿

    PubMed Central

    Pappas, Katherine M.; Kouvelis, Vassili N.; Saunders, Elizabeth; Brettin, Thomas S.; Bruce, David; Detter, Chris; Balakireva, Mariya; Han, Cliff S.; Savvakis, Giannis; Kyrpides, Nikos C.; Typas, Milton A.

    2011-01-01

    Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. PMID:21725006

  1. Identification by 16S rRNA gene sequencing of an Actinomyces hongkongensis isolate recovered from a patient with pelvic actinomycosis.

    PubMed

    Flynn, A N; Lyndon, C A; Church, D L

    2013-08-01

    A case of Actinomyces hongkongensis pelvic actinomycosis in an adult woman is described. Conventional phenotypic tests failed to identify the Gram-positive bacillus isolated from a fluid aspirate of a pelvic abscess. The bacterium was identified by 16S rRNA gene sequencing and analysis using the SmartGene Integrated Database Network System software.

  2. Dielectric characterization of forespores isolated from Bacillus megaterium ATCC 19213.

    PubMed Central

    Marquis, R E; Bender, G R; Carstensen, E L; Child, S Z

    1983-01-01

    Isolated stage III forespores of Bacillus megaterium ATCC 19213 in aqueous suspensions were nearly as dehydrated as mature spores, as indicated by low dextran-impermeable volumes of ca. 3.0 ml per g (dry weight) of cells compared with values of ca. 2.6 for mature spores and 7.3 for vegetative cells. The forespores lacked dipicolinate, had only minimal levels of calcium, magnesium, manganese, potassium, and sodium, and were more heat sensitive than vegetative cells. The effective homogeneous conductivities and dielectric constants measured over a frequency range of 1 to 200 MHz indicated that the inherent conductivities of the forespores were unusually low, in keeping with their low mineral contents, but that the forespores could be invaded by environmental ions which could penetrate dielectrically effective membranes. Overall, our findings support the view that the dehydration of a forespore during stage III of sporogenesis may be the result of ion movements out of the forespore into the sporangium. PMID:6401285

  3. Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399

    SciTech Connect

    Dermoun, Z.; Belaich, J.P.

    1985-07-01

    A newly designed batch calorimeter was used to investigate the degradability of some celluloses having varying degrees of crystallinity. The PTC of an aerobic culture of Cellulomonas uda ATCC 21399 obtained revealed a diauxic growth which is attributed to the presence of hemicellulose contaminating Avicel and MN300 cellulose. The microcrystalline celluloses used were not completely utilized, whereas amorphous cellulose was easily metabolized, indicating that under the growth conditions used here, the physical structure of cellulose strongly influenced its microbial degradability. An equivalent growth yield of ca. 0.44 g/g was found with all the substrates used. The heat evolved by metabolism of one g cellulose was - 5.86 kJ/g, a value similar to that obtained with glucose culture. The growth rate was the only variable parameter. The data obtained showed as expected that the hydrolysis product of cellulose was consumed in the same way as that of glucose and that the only limiting factor to the biodegradability of cellulose was the breakdown of the polymeric substrate. It is concluded that data obtained with glucose metabolism can be used to evaluate the extent of cellulose degradation.

  4. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  5. New insights into chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712.

    PubMed

    Fernández-Martínez, Lorena T; Borsetto, Chiara; Gomez-Escribano, Juan Pablo; Bibb, Maureen J; Al-Bassam, Mahmoud M; Chandra, Govind; Bibb, Mervyn J

    2014-12-01

    Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916-sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway.

  6. New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712

    PubMed Central

    Fernández-Martínez, Lorena T.; Borsetto, Chiara; Gomez-Escribano, Juan Pablo; Bibb, Maureen J.; Al-Bassam, Mahmoud M.; Chandra, Govind

    2014-01-01

    Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916–sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na+/H+ antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway. PMID:25267678

  7. Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: A 600-MHz NMR study

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-09-03

    Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. Receptor polysaccharide was isolated form S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The {sup 1}H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by {sup 1}H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments ({sup 1}H and {sup 13}C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages.

  8. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene.

    PubMed

    Lynch, T; Gregson, D; Church, D L

    2016-03-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized.

  9. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract.

    PubMed

    Valeur, Nana; Engel, Peter; Carbajal, Noris; Connolly, Eamonn; Ladefoged, Karin

    2004-02-01

    Lactobacillus reuteri ATCC 55730 is a probiotic (health-promoting) bacterium widely used as a dietary supplement. This study was designed to examine local colonization of the human gastrointestinal mucosa after dietary supplementation with L. reuteri ATCC 55730 and to determine subsequent immune responses at the colonized sites. In this open clinical investigation, 10 healthy volunteers and 9 volunteers with ileostomy underwent gastroscopy or ileoscopy and biopsy samples were taken from the stomach, duodenum, or ileum before and after supplementation with 4 x 10(8) CFU of live L. reuteri ATCC 55730 lactobacilli per day for 28 days. Biopsy specimen colonization was analyzed using fluorescence in situ hybridization with a molecular beacon probe, and immune cell populations were determined by immunostaining. Endogenous L. reuteri was detected in the stomach of 1 subject and the duodenum of 3 subjects (out of 10 subjects). After L. reuteri ATCC 55730 supplementation, the stomachs of 8 and the duodenums of all 10 subjects were colonized. Three ileostomy subjects (of six tested) had endogenous L. reuteri at baseline, while all six displayed colonization after L. reuteri supplementation. Gastric mucosal histiocyte numbers were reduced and duodenal B-lymphocyte numbers were increased by L. reuteri ATCC 55730 administration. Furthermore, L. reuteri administration induced a significantly higher amount of CD4-positive T-lymphocytes in the ileal epithelium. Dietary supplementation with the probiotic L. reuteri ATCC 55730 induces significant colonization of the stomach, duodenum, and ileum of healthy humans, and this is associated with significant alterations of the immune response in the gastrointestinal mucosa. These responses may be key components of a mechanism by which L. reuteri ATCC 55730 exerts its well-documented probiotic effects in humans.

  10. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  11. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    PubMed Central

    2011-01-01

    Background The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. Results A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Conclusions Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide

  12. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  13. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  14. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures.

    PubMed

    Dams, Rosemeri I; Guilherme, Alexandre A; Vale, Maria S; Nunes, Vanja F; Leitão, Renato C; Santaella, Sandra T

    2016-12-01

    The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.

  15. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.

    PubMed

    Tsai, Yu-Kuo; Chen, Hung-Wen; Lo, Ta-Chun; Lin, Thy-Hou

    2009-03-01

    Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139. PMID:19246746

  16. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  17. Relationship between Glycopeptide Production and Resistance in the Actinomycete Nonomuraea sp. ATCC 39727

    PubMed Central

    Binda, Elisa; Carrano, Lucia; Bibb, Mervyn; Marinelli, Flavia

    2014-01-01

    Glycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens. Nonomuraea sp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonical vanHAX genes. Consequently, we investigated the role of the β-lactam-sensitive d,d-peptidase/d,d-carboxypeptidase encoded by vanYn, the only van-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic in Nonomuraea sp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we varied vanYn gene dosage and expressed vanHatAatXat from the teicoplanin producer Actinoplanes teichomyceticus in Nonomuraea sp. ATCC 39727. Knocking out vanYn, complementing a vanYn mutant, or duplicating vanYn had no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production. Nonomuraea sp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYn activity. The heterologous expression of vanHatAatXat increased A40926 resistance in Nonomuraea sp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. The vanYn-based self-resistance in Nonomuraea sp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants of Enterococcus faecium selected in vitro for high-level resistance to glycopeptides and penicillins. PMID:24957828

  18. Relationship between glycopeptide production and resistance in the actinomycete Nonomuraea sp. ATCC 39727.

    PubMed

    Marcone, Giorgia Letizia; Binda, Elisa; Carrano, Lucia; Bibb, Mervyn; Marinelli, Flavia

    2014-09-01

    Glycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens. Nonomuraea sp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonical vanHAX genes. Consequently, we investigated the role of the β-lactam-sensitive D,D-peptidase/D,D-carboxypeptidase encoded by vanYn, the only van-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic in Nonomuraea sp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we varied vanYn gene dosage and expressed vanHatAatXat from the teicoplanin producer Actinoplanes teichomyceticus in Nonomuraea sp. ATCC 39727. Knocking out vanYn, complementing a vanYn mutant, or duplicating vanYn had no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production. Nonomuraea sp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYn activity. The heterologous expression of vanHatAatXat increased A40926 resistance in Nonomuraea sp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. The vanYn-based self-resistance in Nonomuraea sp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants of Enterococcus faecium selected in vitro for high-level resistance to glycopeptides and penicillins.

  19. CAMP test detected Staphylococcus delphini ATCC 49172 beta-haemolysin production.

    PubMed

    Savini, Vincenzo; Kosecka, Maja; Marrollo, Roberta; Carretto, Edoardo; Miedzobrodzki, Jacek

    2013-01-01

    Through a CAMP test, we first observed a Staphylococcus delphini strain (ATCC 49172) to release beta-haemolysin. Production of the latter in this coagulase-positive species of the 'Staphylococcus intermedius Group', in fact, has been labeled to be undetermined, thus far. Of course, a wider number of strains have to be investigated in order to define whether this property is constitutive (like in Staphylococcus (pseud)intermedius), or strain-dependent (like in Staphylococcus aureus), and which clinical impact it has; nevertheless, we can state that S. delphini ATCC 49172 indeed produces this toxin.

  20. Draft Genome Sequence of Clostridium scatologenes ATCC 25775, a Chemolithoautotrophic Acetogenic Bacterium Producing 3-Methylindole and 4-Methylphenol

    PubMed Central

    Song, Yoseb; Jeong, Yujin; Shin, Hyeon Seok

    2014-01-01

    Clostridium scatologenes ATCC 25775 is a strictly anaerobic and chemolithoautotrophic acetogenic bacterium that converts syngas into multi-carbon compounds such as acetate, indole, 3-methylindole, and 4-methylphenol. Here we report the draft genome sequence of C. scatologenes ATCC 25775 (7.3 Mbp) to elucidate its metabolic pathway for syngas fermentation. PMID:24831152

  1. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  2. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  3. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    PubMed Central

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity. PMID:27010592

  4. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.

    PubMed

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S; Ellis, Tom

    2016-03-24

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  5. Complete Genome Sequence of the Larval Shellfish Pathogen Vibrio tubiashii Type Strain ATCC 19109.

    PubMed

    Richards, Gary P; Needleman, David S; Watson, Michael A; Bono, James L

    2014-12-18

    Vibrio tubiashii is a larval shellfish pathogen. Here, we report the first closed genome sequence for this species (ATCC type strain 19109), which consists of two chromosomes (3,294,490 and 1,766,582 bp), two megaplasmids (251,408 and 122,808 bp), and two plasmids (57,076 and 47,973 bp).

  6. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255

    PubMed Central

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-01-01

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%. PMID:27257211

  7. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Kang; Duan, Xuguo; Wu, Jing

    2016-01-01

    Bacillus subtilis ATCC 6051a is an undomesticated strain used in the industrial production of enzymes. Because it is poorly transformable, genetic manipulation in this strain requires a highly efficient genome editing method. In this study, a Streptococcus pyogenes CRISPR/Cas9 system consisting of an all-in-one knockout plasmid containing a target-specific guide RNA, cas9, and a homologous repair template was established for highly efficient gene disruption in B. subtilis ATCC 6051a. With an efficiency of 33% to 53%, this system was used to disrupt the srfC, spoIIAC, nprE, aprE and amyE genes of B. subtilis ATCC 6051a, which hamper its use in industrial fermentation. Compared with B. subtilis ATCC 6051a, the final mutant, BS5 (ΔsrfC, ΔspoIIAC, ΔnprE, ΔaprE, ΔamyE), produces much less foam during fermentation, displays greater resistant to spore formation, and secretes 2.5-fold more β-cyclodextrin glycosyltransferase into the fermentation medium. Thus, the CRISPR/Cas9 system proved to be a powerful tool for targeted genome editing in an industrially relevant, poorly transformable strain. PMID:27305971

  8. Complete Genome Sequence of Brachyspira hyodysenteriae Type Strain B-78 (ATCC 27164).

    PubMed

    Mirajkar, Nandita S; Johnson, Timothy J; Gebhart, Connie J

    2016-01-01

    Reported herein is the complete genome sequence of the type strain B-78 (ATCC 27164) of Brachyspira hyodysenteriae, the etiological agent of swine dysentery. The 3.1-Mb genome consists of a 3.056-Mb chromosome and a 45-kb plasmid, with 2,617 protein-coding genes, 39 RNA genes, and 40 pseudogenes. PMID:27540064

  9. Finished Genome Sequence of the Laboratory Strain Escherichia coli K-12 RV308 (ATCC 31608).

    PubMed

    Krempl, Peter M; Mairhofer, Juergen; Striedner, Gerald; Thallinger, Gerhard G

    2014-11-20

    Escherichia coli strain K-12 substrain RV308 is an engineered descendant of the K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is heavily used for the expression of single-chain variable fragments. Here, we report the complete genome sequence of E. coli K-12 RV308 (ATCC 31608).

  10. Finished Genome Sequence of Escherichia coli K-12 Strain HMS174 (ATCC 47011).

    PubMed

    Mairhofer, Juergen; Krempl, Peter M; Thallinger, Gerhard G; Striedner, Gerald

    2014-11-20

    Escherichia coli strain K-12 substrain HMS174 is an engineered descendant of the E. coli K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is used in fermentation processes for heterologous protein production. Here, we report the complete genome sequence of E. coli HMS174 (ATCC 47011).

  11. Interaction of Pseudomonas putida ATCC 12633 and Bacteriophage gh-1 in Berea Sandstone Rock

    PubMed Central

    Chang, Philip Lee; Yen, Teh Fu

    1985-01-01

    Measurements of the passage of Pseudomonas putida ATCC 12633 and a phage-resistant mutant through Berea sandstone rock were made. When bacteriophage gh-1 was adsorbed within the rock matrix, a reduction in the passage of the susceptible but not the resistant cells through the rock was observed. PMID:16346956

  12. Interaction of Pseudomonas putida ATCC 12633 and Bacteriophage gh-1 in Berea Sandstone Rock.

    PubMed

    Chang, P L; Yen, T F

    1985-12-01

    Measurements of the passage of Pseudomonas putida ATCC 12633 and a phage-resistant mutant through Berea sandstone rock were made. When bacteriophage gh-1 was adsorbed within the rock matrix, a reduction in the passage of the susceptible but not the resistant cells through the rock was observed.

  13. Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774.

    PubMed Central

    Odom, J M; Wall, J D

    1987-01-01

    A mutant of Desulfovibrio desulfuricans ATCC 27774 has been obtained which is incapable of sulfate respiration with molecular hydrogen but which grows normally on lactate plus sulfate under argon. Growth characteristics of the mutant suggest that the defect is involved in electron transfer to sulfate or nitrate but not thiosulfate. PMID:3818548

  14. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255.

    PubMed

    Doi, Katsumi; Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-06-02

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%.

  15. Complete Genome Sequence and Methylome Analysis of Bacillus globigii ATCC 49760.

    PubMed

    Morgan, Richard D

    2016-05-26

    Bacillus subtilis (Ehrenburg) Cohn ATCC 49760, deposited as Bacillus globigii, is the source strain for the restriction enzymes BglI and BglII. Its complete sequence and full methylome were determined using single-molecule real-time (SMRT) sequencing.

  16. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    SciTech Connect

    Davis, Jennifer R.; Goodwin, Lynne A.; Teshima, Hazuki; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Szeto, Ernest; Markowitz, Victor; Ivanova, N; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam L; Sello, Jason K.

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  17. Draft Genome Assembly of Bordetella bronchiseptica ATCC 10580, a Historical Canine Clinical Isolate.

    PubMed

    Daligault, H E; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Meincke, L; Munk, C; Palacios, G F; Redden, C L; Johnson, S L

    2014-01-01

    We present the scaffolded genome of Bordetella bronchiseptica ATCC 10580, assembled into 98 contigs. This 5.1-Mb assembly (68.2% G+C content) contains 4,870 coding regions. The strain was originally isolated from canine lung tissue and is used in quality control testing. PMID:25237025

  18. Genome Assembly of Shigella flexneri ATCC 12022, a Quality Control Reference Strain

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Freitas, T.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Lo, C.-C.; Meincke, L.; Munk, A. C.; Redden, C. L.; Rosenzweig, C. N.

    2014-01-01

    Shigella flexneri causes shigellosis, severe and potentially life-threatening diarrhea, and accounts for 18% of shigellosis cases in the United States. Here, we present the 4.51-Mbp genome assembly of S. flexneri ATCC 12022, a quality control and reference strain, in 10 scaffolds. PMID:25359907

  19. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923

    PubMed Central

    Treangen, Todd J.; Maybank, Rosslyn A.; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F.; Karaolis, David K. R.; Koren, Sergey; Ondov, Brian; Phillippy, Adam M.; Bergman, Nicholas H.

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  20. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    PubMed

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  1. Complete Genome Sequence of Brachyspira hyodysenteriae Type Strain B-78 (ATCC 27164)

    PubMed Central

    Mirajkar, Nandita S.; Johnson, Timothy J.

    2016-01-01

    Reported herein is the complete genome sequence of the type strain B-78 (ATCC 27164) of Brachyspira hyodysenteriae, the etiological agent of swine dysentery. The 3.1-Mb genome consists of a 3.056-Mb chromosome and a 45-kb plasmid, with 2,617 protein-coding genes, 39 RNA genes, and 40 pseudogenes. PMID:27540064

  2. Effect of Calcium in Assay Medium on D Value of Bacillus stearothermophilus ATCC 7953 Spores

    PubMed Central

    Sasaki, Koichi; Shintani, Hideharu; Itoh, Junpei; Kamogawa, Takuji; Kajihara, Yousei

    2000-01-01

    The D value of commercial biological indicator spore strips using Bacillus stearothermophilus ATCC 7953 was increased by higher calcium concentrations in assay media. The calcium concentration in assay media varied among the manufacturers. The calcium concentration in assay media is an important factor to consider to minimize the variation of D value. PMID:11097939

  3. Draft Genome Sequence of the Probiotic Strain Lactobacillus acidophilus ATCC 4356

    PubMed Central

    Palomino, Maria Mercedes; Allievi, Mariana C.; Fina Martin, Joaquina; Waehner, Pablo M.; Prado Acosta, Mariano; Sanchez Rivas, Carmen

    2015-01-01

    We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes. PMID:25593259

  4. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    NASA Astrophysics Data System (ADS)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun

    2014-06-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  5. Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T.

    PubMed

    Pittet, Vanessa; Abegunde, Teju; Marfleet, Travis; Haakensen, Monique; Morrow, Kendra; Jayaprakash, Teenus; Schroeder, Kristen; Trost, Brett; Byrns, Sydney; Bergsveinson, Jordyn; Kusalik, Anthony; Ziola, Barry

    2012-03-01

    Pediococcus claussenii is a common brewery contaminant. We have sequenced the chromosome and plasmids of the type strain P. claussenii ATCC BAA-344. A ropy variant was chosen for sequencing to obtain genetic information related to growth in beer, as well as exopolysaccharide and possibly biofilm formation by this organism. PMID:22328764

  6. Draft Genome Sequence of Streptomyces silvensis ATCC 53525, a Producer of Novel Hormone Antagonists

    PubMed Central

    Johnston, Chad W.; Li, Yongchang

    2016-01-01

    Streptomyces silvensis produces nonribosomal peptides that act as antagonists of the human oxytocin and vasopressin receptors. Here, we present the genome sequence of S. silvensis ATCC 53525 and demonstrate that this organism possesses a number of additional biosynthetic gene clusters and might be a promising source for genome-guided drug discovery efforts. PMID:26893408

  7. Draft Genome Assembly of Bordetella bronchiseptica ATCC 10580, a Historical Canine Clinical Isolate.

    PubMed

    Daligault, H E; Davenport, K W; Minogue, T D; Bishop-Lilly, K A; Bruce, D C; Chain, P S; Coyne, S R; Frey, K G; Jaissle, J; Koroleva, G I; Ladner, J T; Lo, C-C; Meincke, L; Munk, C; Palacios, G F; Redden, C L; Johnson, S L

    2014-01-01

    We present the scaffolded genome of Bordetella bronchiseptica ATCC 10580, assembled into 98 contigs. This 5.1-Mb assembly (68.2% G+C content) contains 4,870 coding regions. The strain was originally isolated from canine lung tissue and is used in quality control testing.

  8. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model.

    PubMed

    Zhang, Xi; Senpuku, Hidenobu

    2013-01-01

    Actinomyces naeslundii and Streptococcus gordonii are the predominant bacteria and initial colonizers of oral microflora. The binding of A. naeslundii and S. gordonii and the interaction between them on the salivary pellicle-coated tooth surface play an important role in the biofilm development. Recently, we reported that NOD/SCID.e2f1(-) mice are a useful model for studying oral biofilm formation by Streptococcus mutans on the tooth surface. In this study, we aimed to determine whether NOD/SCID.e2f1(-) mice can be used for studying oral colonization of A. naeslundii and S. gordonii. Colonization of A. naeslundii in mice fed with 1% sucrose water for 24 h before inoculation was higher than that among mice fed with sucrose water for 1 h. A. naeslundii colonization using mixed species-inoculation was lower than that using single-species inoculation 30-90 min after inoculation; however, the colonization was higher 120-180 min after inoculation. The mixed inoculation induced better colonization of S. gordonii than single-species inoculation 60-180 min after inoculation. Polyclonal and fluorescein isothiocyanate-labeled antibody stained bacteria showed better colonization of S. gordonii when a mixed culture is used in vivo. NOD/SCID.e2f1(-) mice were useful for studying the initial colonization of A. naeslundii and S. gordonii. Long-term supply of sucrose water creates a favorable environment for the initial colonization of A. naeslundii that, in turn, supports the colonization of S. gordonii.

  9. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. PMID:26755532

  10. Isolation and characterization of flagellar filaments from Bacillus cereus ATCC 14579.

    PubMed

    Tagawa, Yuichi

    2014-12-01

    Isolated flagellar filaments from the type strain of Bacillus cereus, ATCC 14579, were shown to consist of 34, 32 and 31 kDa proteins in similar proportions as judged by band intensities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequences of these three proteins of strain ATCC 14579 were identical with the deduced sequences of three flagellin genes BC1657, BC1658 and BC1659 in the whole genome sequence. Strain ATCC 14579 was classified into serotype T2 by a flagellar serotyping scheme for B. cereus strains that are untypeable into known flagellar serotypes H1 to H23. Flagellar filaments from a reference strain of serotype T2 contained two protein bands at 34 and 32 kDa, but a single protein band at 39 kDa was detected in flagellar filaments of a reference strain of serotype H1. Two murine monoclonal antibodies, 1A5 and 2A5, which recognize both the 34 and 32 kDa flagellins and a single flagellin of 32 kDa, respectively, were specifically reactive with B. cereus strains ATCC 14579 and serotype T2 in whole-cell ELISA and bacterial motility inhibition tests. In immunoelectron microscopy with monoclonal antibodies 1A5 and 2A5, colloidal gold spheres were shown to localize almost evenly over the entire part of flagellar filaments. Since strain ATCC 14579, and presumably strain serotype T2, are unusual among B. cereus strains in possessing multiple genes that encode flagellin subunits, a possible unique mechanism may contribute to assembly of multiple flagellin subunits into the filament over its entire length.

  11. Identification of Campylobacter jejuni ATCC 43431-Specific Genes by Whole Microbial Genome Comparisons

    PubMed Central

    Poly, Frédéric; Threadgill, Deborah; Stintzi, Alain

    2004-01-01

    This study describes a novel approach to identify unique genomic DNA sequences from the unsequenced strain C. jejuni ATCC 43431 by comparison with the sequenced strain C. jejuni NCTC 11168. A shotgun DNA microarray was constructed by arraying 9,600 individual DNA fragments from a C. jejuni ATCC 43431 genomic library onto a glass slide. DNA fragments unique to C. jejuni ATCC 43431 were identified by competitive hybridization to the array with genomic DNA of C. jejuni NCTC 11168. The plasmids containing unique DNA fragments were sequenced, allowing the identification of up to 130 complete and incomplete genes. Potential biological roles were assigned to 66% of the unique open reading frames. The mean G+C content of these unique genes (26%) differs significantly from the G+C content of the entire C. jejuni genome (30.6%). This suggests that they may have been acquired through horizontal gene transfer from an organism with a G+C content lower than that of C. jejuni. Because the two C. jejuni strains differ by Penner serotype, a large proportion of the unique ATCC 43431 genes encode proteins involved in lipooligosaccharide and capsular biosynthesis, as expected. Several unique open reading frames encode enzymes which may contribute to genetic variability, i.e., restriction-modification systems and integrases. Interestingly, many of the unique C. jejuni ATCC 43431 genes show identity with a possible pathogenicity island from Helicobacter hepaticus and components of a potential type IV secretion system. In conclusion, this study provides a valuable resource to further investigate Campylobacter diversity and pathogenesis. PMID:15231810

  12. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-08-04

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials. 5 figs.

  13. Processing of cellulosic material by a cellulase-containing cell-free fermentate produced from cellulase-producing bacteria, ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate, have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase degrading bacterium ATCC 55702, which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic materials.

  14. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  15. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    PubMed

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system.

  16. Structural determinants of Actinomyces sortase SrtC2 required for membrane localization and assembly of type 2 fimbriae for interbacterial coaggregation and oral biofilm formation.

    PubMed

    Wu, Chenggang; Mishra, Arunima; Reardon, Melissa E; Huang, I-Hsiu; Counts, Sarah C; Das, Asis; Ton-That, Hung

    2012-05-01

    As a pioneer colonizer of the oral cavity, Actinomyces oris expresses proteinaceous pili (also called fimbriae) to mediate the following two key events in biofilm formation: adherence to saliva deposits on enamel and interbacterial associations. Assembly of type 2 fimbriae that directly facilitate coaggregation with oral streptococci and Actinomyces biofilm development requires the class C sortase SrtC2. Although the general sortase-associated mechanisms have been elucidated, several structural attributes unique to the class C sortases require functional investigation. Mutational studies reported here suggest that the N-terminal transmembrane (TM) region of SrtC2, predicted to contain a signal peptide sequence, is cleaved off the mature protein and that this processing is critical for the proper integration of the enzyme at the cytoplasmic membrane, which is mediated by the extended hydrophobic C terminus containing a TM domain and a cytoplasmic tail. Deletion of this putative TM or the entire cytoplasmic domain abolished the enzyme localization and functionality. Alanine substitution of the conserved catalytic Cys-His dyad abrogated the SrtC2 enzymatic activity. In contrast, mutations designed to alter a "lid" domain that covers the catalytic pocket of a class C sortase showed no effect on enzyme activity. Finally, each of the deleterious mutations that affected SrtC2 activity or membrane localization also eliminated Actinomyces species biofilm development and bacterial coaggregation with streptococci. We conclude that the N terminus of SrtC2, which contains the signal sequence, is required for proper protein translocation and maturation, while the extended C-terminal hydrophobic region serves as a stable membrane anchor for proper enzyme functionality.

  17. Humoral Immunity to Commensal Oral Bacteria in Human Infants: Salivary Antibodies Reactive with Actinomyces naeslundii Genospecies 1 and 2 during Colonization

    PubMed Central

    Cole, Michael F.; Bryan, Stacey; Evans, Mishell K.; Pearce, Cheryl L.; Sheridan, Michael J.; Sura, Patricia A.; Wientzen, Raoul; Bowden, George H. W.

    1998-01-01

    The secretory immune response in saliva to colonization by Actinomyces naeslundii genospecies 1 and 2 was studied in 10 human infants from birth to 2 years of age. Actinomyces species were not recovered from the mouths of the infants until approximately 4 months after the eruption of teeth. However, low levels of secretory immunoglobulin A1 (SIgA1) and SIgA2 antibodies reactive with whole cells of A. naeslundii genospecies 1 and 2 were detected within the first month after birth. Although there was a fivefold increase in the concentration of SIgA between birth and age 2 years, there were no differences between the concentrations of SIgA1 and SIgA2 antibodies reactive with A. naeslundii genospecies 1 and 2 over this period. When the concentrations of SIgA1 and SIgA2 antibodies reactive with whole cells of A. naeslundii genospecies 1 and 2 were normalized to the concentrations of SIgA1 and SIgA2 in saliva, the A. naeslundii genospecies 1- and 2-reactive SIgA1 and SIgA2 antibodies showed a significant decrease from birth to 2 years of age. The fine specificities of A. naeslundii genospecies 1- and 2-reactive SIgA1 and SIgA2 antibodies were examined by Western blotting of envelope proteins. Similarities in the molecular masses of proteins recognized by SIgA1 and SIgA2 antibodies, both within and between subjects over time, were examined by cluster analysis and showed considerable variability. Taken overall, our data suggest that among the mechanisms Actinomyces species employ to persist in the oral cavity are the induction of a limited immune response and clonal replacement with strains differing in their antigen profiles. PMID:9712779

  18. Genetic and biochemical properties of a hemolysin (pyolysin) produced by a swine isolate of Arcanobacterium (Actinomyces) pyogenes.

    PubMed

    Ikegami, M; Hashimoto, N; Kaidoh, T; Sekizaki, T; Takeuchi, S

    2000-01-01

    Arcanobacterium (Actinomyces) pyogenes, a causative agent of various pyogenic diseases in domestic animals, produces a hemolysin which is thought to be an important virulence factor. This hemolysin was purified from the culture supernatant of A. pyogenes swine isolate. The purified hemolysin showed a single band with a molecular mass of 56 kDa on SDS-polyacrylamide gel electrophoresis, and its isoelectric point was 9.2. The activity of this hemolysin was not enhanced by the addition of L-cysteine or sodium thioglycolate, but it was inhibited by cholesterol. The gene encoding the hemolysin was cloned, sequenced and expressed in Escherichia coli by means of ZAP Express vector. Analysis by SDS-polyacrylamide gel electrophoresis with immunoblotting showed that the molecular weight of the hemolysin expressed in E. coli is the same as that of the hemolysin purified from A. pyogenes. Nucleotide sequence analysis revealed an open reading frame of 1,605 bp encoding a 534 amino acid protein of 57,989 Da. The nucleotide sequence of the hemolysin gene from A. pyogenes swine isolate differed only slightly (97.6% identity) from the sequence of plo gene from A. pyogenes strain BBR1 reported by Billington et al (J. Bacteriol. 179: 6100-6106, 1997). The cysteine residue existed in the undecapeptide region of the hemolysin, which is highly conserved in thiol-activated cytolysins (cholesterol-binding cytolysins), and is replaced with alanine. Therefore, the hemolysin of A. pyogenes seems to be a novel member of the thiol-activated cytolysin family. PMID:10711593

  19. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419.

    PubMed

    Wu, Xiumei; Flatt, Patricia M; Xu, Hui; Mahmud, Taifo

    2009-01-26

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacterium isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-dependent dehydrogenase (CetF2), two oxidoreductases (CetF1 and CetG), two aminotransferases (CetH and CetM), and a pyranose oxidase (CetL). CetA has previously been demonstrated to catalyze the cyclization of sedoheptulose 7-phosphate to the cyclic intermediate, 2-epi-5-epi-valiolone. In this report, the glyoxalase/bleomycin resistance protein homolog CetB was identified as a 2-epi-5-epi-valiolone epimerase (EVE), a new member of the vicinal oxygen chelate (VOC) superfamily. The 24 kDa recombinant histidine-tagged CetB was found to form a homodimer; each monomer contains two betaalphabetabetabeta scaffolds that form a metal binding site with two histidine and two glutamic acid residues. A BLAST search using the newly isolated cet biosynthetic genes revealed an analogous suite of genes in the genome of Frankia alni ACN14a, suggesting that this plant symbiotic nitrogen-fixing bacterium is capable of producing a secondary metabolite related to the cetoniacytones. PMID:19101977

  20. Effect of the Environment on Genotypic Diversity of Actinomyces naeslundii and Streptococcus oralis in the Oral Biofilm

    PubMed Central

    Paddick, James S.; Brailsford, Susan R.; Kidd, Edwina A. M.; Gilbert, Steven C.; Clark, Douglas T.; Alam, Sharmin; Killick, Zoe J.; Beighton, David

    2003-01-01

    The genotypic diversity of Actinomyces naeslundii genospecies 2 (424 isolates) and Streptococcus oralis (446 isolates) strains isolated from two sound approximal sites in all subjects who were either caries active (seven subjects) or caries free (seven subjects) was investigated by using the repetitive extragenic palindromic PCR. The plaque from the caries-active subjects harbored significantly greater proportions of mutans streptococci and lactobacilli and a smaller proportion of A. naeslundii organisms than the plaque sampled from the caries-free subjects. These data confirmed that the sites of the two groups of subjects were subjected to different environmental stresses, probably determined by the prevailing or fluctuating acidic pH values. We tested the hypothesis that the microfloras of the sites subjected to greater stresses (the plaque samples from the caries-active subjects) would exhibit reduced genotypic diversity since the sites would be less favorable. We found that the diversity of A. naeslundii strains did not change (χ2 = 0.68; P = 0.41) although the proportional representation of A. naeslundii was significantly reduced (P < 0.05). Conversely, the diversity of the S. oralis strains increased (χ2 = 11.71; P = 0.0006) and the proportional representation of S. oralis did not change. We propose that under these environmental conditions the diversity and number of niches within the oral biofilm that could be exploited by S. oralis increased, resulting in the increased genotypic diversity of this species. Apparently, A. naeslundii was not able to exploit the new niches since the prevailing conditions within the niches may have been deleterious and not supportive of its proliferation. These results suggest that environmental stress may modify a biofilm such that the diversity of the niches is increased and that these niches may be successfully exploited by some, but not necessarily all, members of the microbial community. PMID:14602602

  1. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice.

    PubMed

    Wang, Bao-gui; Xu, Hai-bo; Xu, Feng; Zeng, Zhe-ling; Wei, Hua

    2016-03-01

    This study aimed to examine whether Bifidobacterium bifidum ATCC 29521, a species of colonic microflora in humans, is involved in the intestinal tract of mice. This study was also conducted to determine the antioxidant activity of this species by evaluating different microbial populations and reactive oxygen species isolated from feces and intestinal contents for 28 days of oral administration. Microbial diversities were assessed through bacterial culture techniques, PCR-DGGE, and real-time PCR. This study showed that the intake of B. bifidum ATCC 29521 significantly (p < 0.05) improved the ecosystem of the intestinal tract of BALB/c mice by increasing the amount of probiotics (Lactobacillus intestinalis and Lactobacillus crispatus) and by reducing unwanted bacterial populations (Enterobacter, Escherichia coli). Antioxidative activities of incubated cell-free extracts were evaluated through various assays, including the scavenging ability of DPPH radical (64.5% and 67.54% (p < 0.05), respectively, at 21 days in nutrients and 28 days in MRS broth), superoxide anion, and hydroxyl radical (85% and 61.5% (p < 0.05), respectively, at intestinal contents in nutrients and 21 days in MRS broth). Total reducing power (231.5 μmol/L (p < 0.05), 14 days in MRS broth) and mRNA level of genes related to oxidative stress were also determined. Results indicated that B. bifidum ATCC 29521 elicits a beneficial effect on murine gut microbiota and antioxidant activities compared with the control samples. This species can be considered as a potential bioresource antioxidant to promote health. Bifidobacterium bifidum ATCC 29521 may also be used as a promising material in microbiological and food applications. PMID:26863255

  2. Complete Genome Sequence of Pseudomonas syringae pv. lapsa Strain ATCC 10859, Isolated from Infected Wheat

    PubMed Central

    Kong, Jun; Jiang, Hongshan; Li, Baiyun; Zhao, Wenjun

    2016-01-01

    Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence. PMID:26941133

  3. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. PMID:26168906

  4. Complete genome sequence of a malodorant-producing acetogen, Clostridium scatologenes ATCC 25775(T).

    PubMed

    Zhu, Zhengang; Guo, Ting; Zheng, Huajun; Song, Tianshun; Ouyang, Pingkai; Xie, Jingjing

    2015-10-20

    Clostridium scatologenes ATCC 25775(T) is an acetogenic anaerobic bacteria known to be capable of synthesizing volatile fatty acids and solvents from CO2 or CO on its autotrophic mode and producing 3-methylindole and 4-methylphenol on its heterotrophic mode. Here, we report the complete genome sequence of this strain, which might provide a lot of valuable information for developing metabolic engineering strategies to produce biofuels or chemicals from greenhouse gases. PMID:26210291

  5. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum.

  6. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  7. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  8. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  9. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  10. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  11. Trehalose induces antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400.

    PubMed Central

    Gaballa, A; Abeysinghe, P D; Urich, G; Matthijs, S; De Greve, H; Cornelis, P; Koedam, N

    1997-01-01

    Pseudomonas fluorescens ATCC 17400 shows in vitro activity against Pythium debaryanum under conditions of iron limitation. A lacZ reporter gene introduced by transposon mutagenesis into the P. fluorescens ATCC 17400 trehalase gene (treA) was induced by a factor released by the phytopathogen Pythium debaryanum. The induction of the lacZ gene was lost upon treatment of the Pythium supernatant with commercial trehalase. A trehalose concentration as low as 1 microM could induce the expression of treA. The mutation did not affect the wild-type potential for fungus antagonism but drastically decreased the osmotolerance of the mutant in liquid culture and suppressed the ability of P. fluorescens ATCC 17400 to utilize trehalose as a carbon source. A subsequent transposon insertion in treP, one of the trehalose phosphotransferase genes upstream of treA, silenced the lacZ gene. This double mutant restricted fungal growth only under conditions of high osmolarity, which probably results in internal trehalose accumulation. These data confirm the role of the disaccharide trehalose in osmotolerance, and they indicate its additional role as an initiator of or a signal for fungal antagonism. PMID:9361421

  12. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541.

    PubMed

    Giacomucci, L; Toja, F; Sanmartín, P; Toniolo, L; Prieto, B; Villa, F; Cappitelli, F

    2012-09-01

    Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.

  13. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  14. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  15. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456.

    PubMed Central

    Shen, H; Wang, Y T

    1993-01-01

    Chromium reduction by Escherichia coli ATCC 33456 quantitatively transferred hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III). The reduced chromium was predominantly present in the external medium. Supernatant fluids of cell extract, obtained by centrifugation at 12,000 and 150,000 x g, showed almost the same Cr(VI) reduction activity, indicating that Cr(VI) reduction by E. coli ATCC 33456 was a largely soluble reductase activity. In studies with respiratory inhibitors, no inhibitory effects on aerobic and anaerobic Cr(VI) reduction were demonstrated by addition of cyanide, azide, and rotenone into both intact cell cultures and supernatant fluids of E. coli ATCC 33456. Although cytochromes b and d were identified in the membrane fraction of cell extracts, Cr(VI) was not reduced by the membrane fraction alone. The cytochrome difference spectra analysis also indicated that these cytochromes of the respiratory chain require the presence of the soluble Cr(VI) reductase to mediate electron transport to Cr(VI). Stimulation of Cr(VI) reduction by an uncoupler, 2,4-dinitrophenol, indicated that the respiratory-chain-linked electron transport to Cr(VI) was limited by the rate of dissipation of the proton motive force. PMID:8285683

  16. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  17. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development

    SciTech Connect

    Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.; Dwivedi, Prabhat; Krishnan, Vengadesan; Cisar, John O.; Das, Asis; Narayana, Sthanam V.L.; Ton-That, Hung

    2011-09-06

    By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.

  18. Comparison of phenotypic methods and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for the identification of aero-tolerant Actinomyces spp. isolated from soft-tissue infections.

    PubMed

    Ng, L S Y; Sim, J H C; Eng, L C; Menon, S; Tan, T Y

    2012-08-01

    Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.

  19. In Vitro Evaluation of Seven Cationic Detergents as Antiplaque Agents

    PubMed Central

    Tanzer, J. M.; Slee, A. M.; Kamay, B.; Scheer, E. R.

    1979-01-01

    The bactericidal efficacy of seven cationic detergents was studied in vitro against intact performed plaques of representative strains of four oral dental plaque-forming microorganisms: Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indexes of antiplaque activity were established. Only cetyltrimethylammonium bromide was more efficacious than the reference agent, the bisbiguanide chlorhexidine, for the apparently more potent tooth-adherent cariogenic and periodontopathic elements, respectively, of the in vivo plaque microflora, S. mutans and A. viscosus. PMID:464568

  20. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    PubMed

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  1. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    PubMed

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin. PMID:23064333

  2. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    SciTech Connect

    Robas, N.; Zouheiry, H.; Branlant, G.; Branlant, C. )

    1993-01-05

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.

  3. Evaluating Chemical Mitigation of Salmonella Typhimurium ATCC 14028 in Animal Feed Ingredients.

    PubMed

    Cochrane, Roger A; Huss, Anne R; Aldrich, Gregory C; Stark, Charles R; Jones, Cassandra K

    2016-04-01

    Salmonella Typhimurium is a potential feed safety hazard in animal feed ingredients. Thermal mitigation of Salmonella spp. during rendering is effective but does not eliminate the potential for cross-contamination. Therefore, the objective of this experiment was to evaluate the effectiveness of chemicals to mitigate postrendering Salmonella Typhimurium ATCC 14028 contamination in rendered proteins over time. Treatments were arranged in a 6 × 4 factorial with six chemical treatments and four rendered protein meals. The chemical treatments included (i) control without chemical treatment, (ii) 0.3% commercial formaldehyde product, (iii) 2% essential oil blend, (iv) 2% medium chain fatty acid blend, (v) 3% organic acid blend, and (vi) 1% sodium bisulfate. The four rendered protein meals included (i) feather meal, (ii) blood meal, (iii) meat and bone meal, and (iv) poultry by-product meal. After matrices were chemically treated, they were inoculated with Salmonella Typhimurium ATCC 14028, stored at room temperature, and enumerated via plate counts on days 0, 1, 3, 7, 14, 21, and 42 postinoculation. The Salmonella concentration in ingredients treated with medium chain fatty acid and commercial formaldehyde were similar to one another (P = 0.23) but were 2 log lower than the control (P < 0.05). Ingredients treated with organic acids and essential oils also had lower Salmonella concentrations than the control (P < 0.05). Time also played a significant role in Salmonella mitigation, because all days except days 14 and 21 (P = 0.92) differed from one another. Rendered protein matrix also affected Salmonella stability, because concentrations in meat and bone meal and blood meal were similar to one another (P = 0.36) but were greater than levels in feather meal and poultry by-product meal (P < 0.05). In summary, chemical treatment and time both mitigated Salmonella Typhimurium ATCC 14028, but their effectiveness was matrix dependent. Time and chemical treatment with medium

  4. Multicenter Investigation of Gepotidacin (GSK2140944) Agar Dilution Quality Control Determinations for Neisseria gonorrhoeae ATCC 49226.

    PubMed

    Jones, Ronald N; Fedler, Kelley A; Scangarella-Oman, Nicole E; Ross, James E; Flamm, Robert K

    2016-07-01

    Gepotidacin, a novel triazaacenaphthylene antibacterial agent, is the first in a new class of type IIA topoisomerase inhibitors with activity against many biothreat and conventional pathogens, including Neisseria gonorrhoeae To assist ongoing clinical studies of gepotidacin to treat gonorrhea, a multilaboratory quality assurance investigation determined the reference organism (N. gonorrhoeae ATCC 49226) quality control MIC range to be 0.25 to 1 μg/ml (88.8% of gepotidacin MIC results at the 0.5 μg/ml mode). PMID:27161642

  5. Complete genome sequence of Vibrio alginolyticus ATCC 33787(T) isolated from seawater with three native megaplasmids.

    PubMed

    Wang, Pengxia; Wen, Zhongling; Li, Baiyuan; Zeng, Zhenshun; Wang, Xiaoxue

    2016-08-01

    Vibrio alginolyticus, an opportunistic pathogen, is commonly associated with vibriosis in fish and shellfish and can also cause superficial and ear infections in humans. V. alginolyticus ATCC 33787(T) was originally isolated from seawater and has been used as one of the type strains for exploring the virulence factors of marine bacteria and for developing vaccine against vibriosis. Here we sequenced and assembled the whole genome of this strain, and identified three megaplasmids and three Type VI secretion systems, thus providing useful information for the study of virulence factors and for the development of vaccine for Vibrio.

  6. Coinfection by Ureaplasma spp., Photobacterium damselae and an Actinomyces-like microorganism in a bottlenose dolphin (Tursiops truncatus) with pleuropneumonia stranded along the Adriatic coast of Italy.

    PubMed

    Di Francesco, Gabriella; Cammà, Cesare; Curini, Valentina; Mazzariol, Sandro; Proietto, Umberto; Di Francesco, Cristina Esmeralda; Ferri, Nicola; Di Provvido, Andrea; Di Guardo, Giovanni

    2016-04-01

    A case of pleuropneumonia is reported in an adult male bottlenose dolphin (Tursiops truncatus) found stranded in 2014 along the Central Adriatic coast of Italy. A severe pyogranulomatous pneumonia and thoracic lymphadenopathy were present at necropsy. Numerous Splendore-Hoeppli bodies were found microscopically scattered throughout the lung. Histochemical evidence of Actinomyces-like organisms was obtained from the pulmonary parenchyma, with a strain of Photobacterium damselae subsp. piscicida and Ureaplasma spp. being also isolated from the same tissue. For the latter, a genome fragment of approximately 1400 bp from the 16s rDNA was amplified and sequenced. BLAST analysis revealed 100% identity with an uncultured Ureaplasma spp. (JQ193826.1).

  7. Coinfection by Ureaplasma spp., Photobacterium damselae and an Actinomyces-like microorganism in a bottlenose dolphin (Tursiops truncatus) with pleuropneumonia stranded along the Adriatic coast of Italy.

    PubMed

    Di Francesco, Gabriella; Cammà, Cesare; Curini, Valentina; Mazzariol, Sandro; Proietto, Umberto; Di Francesco, Cristina Esmeralda; Ferri, Nicola; Di Provvido, Andrea; Di Guardo, Giovanni

    2016-04-01

    A case of pleuropneumonia is reported in an adult male bottlenose dolphin (Tursiops truncatus) found stranded in 2014 along the Central Adriatic coast of Italy. A severe pyogranulomatous pneumonia and thoracic lymphadenopathy were present at necropsy. Numerous Splendore-Hoeppli bodies were found microscopically scattered throughout the lung. Histochemical evidence of Actinomyces-like organisms was obtained from the pulmonary parenchyma, with a strain of Photobacterium damselae subsp. piscicida and Ureaplasma spp. being also isolated from the same tissue. For the latter, a genome fragment of approximately 1400 bp from the 16s rDNA was amplified and sequenced. BLAST analysis revealed 100% identity with an uncultured Ureaplasma spp. (JQ193826.1). PMID:27033917

  8. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs. PMID:18810518

  9. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, D; Mayer, D A; Moritz, D E; Oliveira, D; de Souza, A A Ulson; Souza, S M A Guelli

    2015-10-01

    Biodesulfurization is an eco-friendly technology applied in the removal of sulfur from fossil fuels. This technology is based on the use of microorganisms as biocatalysts to convert the recalcitrant sulfur compounds into others easily treatable, as sulfides. Despite it has been studied during the last decades, there are some unsolved questions, as per example the kinetic model which appropriately describes the biodesulfurization globally. In this work, different kinetic models were tested to a batch desulfurization process using dibenzothiophene (DBT) as a model compound, n-dodecane as organic solvent, and Rhodococcus erythropolis ATCC 4277 as biocatalyst. The models were solved by ODE45 function in the MATLAB. Monod model was capable to describe the biodesulfurization process predicting all experimental data with a very good fitting. The coefficients of determination achieved to organic phase concentrations of 20, 80, and 100 % (v/v) were 0.988, 0.995, and 0.990, respectively. R. erythropolis ATCC 4277 presented a good affinity with the substrate (DBT) since the coefficients of saturation obtained to reaction medium containing 20, 80, and 100 % (v/v) were 0.034, 0.07, and 0.116, respectively. This kinetic evaluation provides an improvement in the development of biodesulfurization technology because it showed that a simple model is capable to describe the throughout process. PMID:26201481

  10. Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli.

    PubMed Central

    Saito, T; Ishihara, K; Kato, T; Okuda, K

    1997-01-01

    We have isolated and characterized an N-benzoyl-Val-Gly-Arg-p-nitroanilide-specific protease gene, designated prtH, from Bacteroides forsythus ATCC 43037. Nucleotide sequencing of the DNA insert from the clone (hereafter referred to as clone FST) revealed that the protease activity corresponded to an open reading frame consisting of 1,272 bp coding for a 47.8-kDa protein. When plasmid pFST was used as a probe in Southern hybridization, Sau3AI-digested chromosomal DNA of B. forsythus ATCC 43037 as well as the chromosomal DNAs of the isolated strains Ta4, TR5, and YG2 showed 0.6- and 0.8-kb hybridizing bands. The cell-free extracts of clone FST showed hemolytic activity on human blood cells. The hydrolytic activity of cell extracts of the pFST clone was inhibited by p-toluenesulfonyl-L-lysine chloromethyl ketone hydrochloride, leupeptin, N-ethylmaleimide, iodoacetic acid, iodoaceteamide, and EDTA. PMID:9353083

  11. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116.

    PubMed

    Pérez-Rodríguez, Noelia; Oliveira, Ricardo Pinheiro de Souza; Agrasar, Ana María Torrado; Domínguez, José Manuel

    2016-02-01

    The wild strain Amycolatopsis sp. ATCC 39116 was explored in ferulic acid-based media to produce naturally the aroma components of the cured vanilla pod, namely vanillin,vanillic acid, and vanillyl alcohol. Other phenolic compounds(4-vinyl guaiacol, guaiacol, and protocatechuic acid) were also evaluated. The influence of medium composition,fermentation technology (batch or fed-batch), supplementation with vanillic acid, and inoculum concentration on ferulic acid biotransformation were evaluated. The results postulate the initial concentration of cell mass as the variable with the strongest impact on ferulic acid metabolization under the studied conditions. The highest amounts of vanillin and vanillic acid were achieved at intermediate values of cell mass.Vanillyl alcohol and protocatechuic acid were more closely linked to high cell mass concentrations. Conversely, 4-vinyl guaiacol reached its highest amount at the lowest amount of cell mass. Guaiacol was not detected in any case. Therefore,the initial cell concentration must be considered a critical parameter when using Amycolaptosis sp. ATCC 39116 for the production of vanillin and related compounds. PMID:26476645

  12. Genome Sequence of Aeromonas hydrophila ATCC 7966T: Jack of All Trades▿

    PubMed Central

    Seshadri, Rekha; Joseph, Sam W.; Chopra, Ashok K.; Sha, Jian; Shaw, Jonathan; Graf, Joerg; Haft, Daniel; Wu, Martin; Ren, Qinghu; Rosovitz, M. J.; Madupu, Ramana; Tallon, Luke; Kim, Mary; Jin, Shaohua; Vuong, Hue; Stine, O. Colin; Ali, Afsar; Horneman, Amy J.; Heidelberg, John F.

    2006-01-01

    The complete genome of Aeromonas hydrophila ATCC 7966T was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966T. Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments. PMID:16980456

  13. In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply.

    PubMed

    Gallardo, Roberto; Acevedo, Alejandro; Quintero, Julián; Paredes, Ivan; Conejeros, Raúl; Aroca, Germán

    2016-02-01

    The biological production of butanol has become an important research field and thanks to genome sequencing and annotation; genome-scale metabolic reconstructions have been developed for several Clostridium species. This work makes use of the iCAC490 model of Clostridium acetobutylicum ATCC 824 to analyze its metabolic capabilities and response to an external electron supply through a constraint-based approach using the Constraint-Based Reconstruction Analysis Toolbox. Several analyses were conducted, which included sensitivity, production envelope, and phenotypic phase planes. The model showed that the use of an external electron supply, which acts as co-reducing agent along with glucose-derived reducing power (electrofermentation), results in an increase in the butanol-specific productivity. However, a proportional increase in the butyrate uptake flux is required. Besides, the uptake of external butyrate leads to the coupling of butanol production and growth, which coincides with results reported in literature. Phenotypic phase planes showed that the reducing capacity becomes more limiting for growth at high butyrate uptake fluxes. An electron uptake flux allows the metabolism to reach the growth optimality line. Although the maximum butanol flux does not coincide with the growth optimality line, a butyrate uptake combined with an electron uptake flux would result in an increased butanol volumetric productivity, being a potential strategy to optimize the production of butanol by C. acetobutylicum ATCC 824.

  14. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116.

    PubMed

    Pérez-Rodríguez, Noelia; Oliveira, Ricardo Pinheiro de Souza; Agrasar, Ana María Torrado; Domínguez, José Manuel

    2016-02-01

    The wild strain Amycolatopsis sp. ATCC 39116 was explored in ferulic acid-based media to produce naturally the aroma components of the cured vanilla pod, namely vanillin,vanillic acid, and vanillyl alcohol. Other phenolic compounds(4-vinyl guaiacol, guaiacol, and protocatechuic acid) were also evaluated. The influence of medium composition,fermentation technology (batch or fed-batch), supplementation with vanillic acid, and inoculum concentration on ferulic acid biotransformation were evaluated. The results postulate the initial concentration of cell mass as the variable with the strongest impact on ferulic acid metabolization under the studied conditions. The highest amounts of vanillin and vanillic acid were achieved at intermediate values of cell mass.Vanillyl alcohol and protocatechuic acid were more closely linked to high cell mass concentrations. Conversely, 4-vinyl guaiacol reached its highest amount at the lowest amount of cell mass. Guaiacol was not detected in any case. Therefore,the initial cell concentration must be considered a critical parameter when using Amycolaptosis sp. ATCC 39116 for the production of vanillin and related compounds.

  15. Media optimization studies for Serratiopeptidase production from Serratia marcescens ATCC 13880.

    PubMed

    Badhe, Ravindra V; Nanda, Rabindra K; Kulkarni, Manasi B; Bhujbal, Mayur N; Patil, Pradeep S; Badhe, Sonali R

    2009-01-01

    Production of an anti-inflammatory enzyme serratiopeptidase by fermentation with Serratia marcescens ATCC 13880 was studied to ascertain optimal nutritional conditions for large scale production. To study biosynthesis and production of serratiopeptidase by Serratia marcescens ATCC 13880, different physicochemical parameters were studied and optimized. The optimized medium contain, (g/l) glycerine 10.0, maltose 10.0 as carbon source, peptone 10.0 as organic nitrogen source, ammonium sulphate 10.0 as inorganic nitrogen source, dihydrogen phosphate 10.0, sodium bicarbonate 10.0, sodium acetate 10.0 as inorganic salt source, ascorbic acid 10.0 as stabilizer, distilled water 1000 ml and the optimized fermentation conditions were pH 7.0, temperature 37 degrees C and duration 24 hr. The modified fermentation medium produced 27.36 IU/ml of serratiopeptidase compared to 17.97 IU/ml in basal medium and the molecular weight of the purified serratiopeptidase was found to be 52 kD.

  16. The Glycopeptide Antitumor Antibiotic Zorbamycin from Streptomyces flavoviridis ATCC 21892: Strain Improvement and Structure Elucidation⊥

    PubMed Central

    Wang, Liyan; Yun, Bong-Sik; George, Nicholas P.; Wendt-Pienkowski, Evelyn; Galm, Ute; Oh, Tae-Jin; Coughlin, Jane M.; Zhang, Guodong; Tao, Meifeng; Shen, Ben

    2008-01-01

    Zorbamycin (1, ZBM) is a glycopeptide antitumor antibiotic first reported in 1971. The partial structures of 1 were speculated on the basis of its acid hydrolysis products, but the structure of the intact molecule has never been established. The low titer of 1 from the wild-type strains, combined with its acid-instability, has so far hampered its isolation. By random mutagensis of Streptomyces flavoviridis ATCC21892, a wild-type producer of 1, with UV irradiation, two high-producing strains of 1, S. flavoviridis SB9000 and SB9001, were isolated. Under the optimized fermentation conditions, these two strains produced about 10 mg/L of 1, which was about 10-fold higher than the wild-type ATCC21892 strain, as estimated by HPLC analysis. Finally, 1 was isolated both as a 1-Cu complex and Cu-free molecule, and the intact structure of 1 was established on the basis of a combination of mass spectrometry and 1H and 13C NMR spectroscopic analyses. PMID:17311457

  17. Assessment of in vitro removal of cholesterol oxidation products by Lactobacillus casei ATCC334.

    PubMed

    Machorro-Méndez, I A; Hernández-Mendoza, A; Cardenia, V; Rodriguez-Estrada, M T; Lercker, G; Spinelli, F; Cellini, A; García, H S

    2013-11-01

    Cholesterol oxidation products (COPs) are a group of compounds formed during processing and storage of foods from animal origin. After ingestion, COPs are absorbed in the intestine and can be distributed to serum and various tissues, potentially promoting a variety of toxic effects. Therefore, inhibition of their intestinal absorption may contribute to reduce the health risks associated with dietary intake of COPs. Some studies have shown that drugs and dietary compounds may inhibit the intestinal absorption of dietary COPs. However, proven cholesterol- and/or food toxins-binding lactic acid bacteria have not been previously evaluated as potential COPs removal agents. The aim of this study was to assess the ability of Lactobacillus casei ATCC334 to remove COPs in aqueous solution. Results showed the ability of both growing and resting cells to remove COPs (ca. 30-60%). All COPs-bacterium interactions were specific and partly reversible, being resting cells the most efficient for COPs removal in a ranking order of 7-KC > 7α-OH/7β-OH > triol > 5,6β-EP > 5,6α-EP > 25-OH. Binding to the cell wall and/or cell membrane incorporation appears to be the most likely mechanisms involved on COPs removal by L. casei ATCC 334.

  18. An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, D; Mayer, D A; Moritz, D E; Oliveira, D; de Souza, A A Ulson; Souza, S M A Guelli

    2015-10-01

    Biodesulfurization is an eco-friendly technology applied in the removal of sulfur from fossil fuels. This technology is based on the use of microorganisms as biocatalysts to convert the recalcitrant sulfur compounds into others easily treatable, as sulfides. Despite it has been studied during the last decades, there are some unsolved questions, as per example the kinetic model which appropriately describes the biodesulfurization globally. In this work, different kinetic models were tested to a batch desulfurization process using dibenzothiophene (DBT) as a model compound, n-dodecane as organic solvent, and Rhodococcus erythropolis ATCC 4277 as biocatalyst. The models were solved by ODE45 function in the MATLAB. Monod model was capable to describe the biodesulfurization process predicting all experimental data with a very good fitting. The coefficients of determination achieved to organic phase concentrations of 20, 80, and 100 % (v/v) were 0.988, 0.995, and 0.990, respectively. R. erythropolis ATCC 4277 presented a good affinity with the substrate (DBT) since the coefficients of saturation obtained to reaction medium containing 20, 80, and 100 % (v/v) were 0.034, 0.07, and 0.116, respectively. This kinetic evaluation provides an improvement in the development of biodesulfurization technology because it showed that a simple model is capable to describe the throughout process.

  19. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  20. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393.

    PubMed

    Zhang, Xi; Lan, Yu; Jiao, Wenchao; Li, Yijing; Tang, Lijie; Jiang, Yanping; Cui, Wen; Qiao, Xinyuan

    2015-12-01

    A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry. PMID:26123178

  1. Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V.

    PubMed

    Back, C R; Douglas, S K; Emerson, J E; Nobbs, A H; Jenkinson, H F

    2015-10-01

    Streptococcus gordonii SspA and SspB proteins, members of the antigen I/II (AgI/II) family of Streptococcus adhesins, mediate adherence to cysteine-rich scavenger glycoprotein gp340 and cells of other oral microbial species. In this article we investigated further the mechanism of coaggregation between S. gordonii DL1 and Actinomyces oris T14V. Previous mutational analysis of S. gordonii suggested that SspB was necessary for coaggregation with A. oris T14V. We have confirmed this by showing that Lactococcus lactis surrogate host cells expressing SspB coaggregated with A. oris T14V and PK606 cells, while L. lactis cells expressing SspA did not. Coaggregation occurred independently of expression of A. oris type 1 (FimP) or type 2 (FimA) fimbriae. Polysaccharide was prepared from cells of A. oris T14V and found to contain 1,4-, 4,6- and 3,4-linked glucose, 1,4-linked mannose, and 2,4-linked galactose residues. When immobilized onto plastic wells this polysaccharide supported binding of L. lactis expressing SspB, but not binding of L. lactis expressing other AgI/II family proteins. Purified recombinant NAVP region of SspB, comprising amino acid (aa) residues 41-847, bound A. oris polysaccharide but the C-domain (932-1470 aa residues) did not. A site-directed deletion of 29 aa residues (Δ691-718) close to the predicted binding cleft within the SspB V-region ablated binding of the NAVP region to polysaccharide. These results infer that the V-region head of SspB recognizes an actinomyces polysaccharide ligand, so further characterizing a lectin-like coaggregation mechanism occurring between two important primary colonizers.

  2. Antimicrobial Efficacy of Ten Commercially Available Herbal Dentifrices against Specific Oral Microflora – In Vitro Study

    PubMed Central

    Reddy, Padma; Hemalatha; Reddy, Srikanth; Doshi, Dolar; Kulkarni, Suhas; Kumar, Manoj

    2015-01-01

    Aim: To determine and compare the antimicrobial efficacy of ten commercially available herbal dentifrices against specific strains of oral microflora using a standard diffusion method at full strength and 1:1 dilution at 24 h. Materials and Methods: The standard strains of Streptococcus. mutans (ATCC 21293), Streptococcus sangius (MTCC 442), Actinomyces viscosus (ATCC 3268), Staphylococcus aureus (ATCC 2592), Streptococcus pyogenes (MTCC 442) and Candida albicans (ATCC 183) were obtained. Antimicrobial efficacy of the dentifrices was tested in triplicate, at full strength and 1:1 dilution with the sterile water using a standard diffusion method for 24 h at 37°C. The antimicrobial efficacy was tested by observing the zones of inhibition in millimeters surrounding disk containing the dentifrice. Mean standard deviation and standard error of mean of the inhibitory zones was calculated for each herbal dentifrice. p<0.05 was considered statistically significant. Results: Danth Kanthi (DK) was the most effective against all the microorganisms producing larger zones of inhibition at 24 h (F.S – 40±1.5; 1:1 dilution – 40±2.71). Amar Premium (AP) also produced larger zones of inhibition against all microorganisms except S. aureus. Of all the dentifrices, least zones of inhibitions i.e., around 5 mm was observed against S. aureus by Amar Premium (AP) and Dabur Babool (DB) at 24 h. Conclusion: Based on the results of the present study, it can be concluded that all herbal dentifrices exhibited antimicrobial activity against the selected oral microorganisms, with DK being the most effective. Hence, it can be inferred that herbal dentifrices can also be recommended like the conventional formulations. PMID:26023642

  3. Complete genome sequence of Actinobacillus equuli subspecies equuli ATCC 19392T

    PubMed Central

    2015-01-01

    Actinobacillus equuli subsp. equuli is a member of the family Pasteurellaceae that is a common resident of the oral cavity and alimentary tract of healthy horses. At the same time, it can also cause a fatal septicemia in foals, commonly known as sleepy foal disease or joint ill disease. In addition, A. equuli subsp. equuli has recently been reported to act as a primary pathogen in breeding sows and piglets. To better understand how A. equuli subsp. equuli can cause disease, the genome of the type strain of A. equuli subsp. equuli, ATCC 19392T, was sequenced using the PacBio RSII sequencing system. Its genome is comprised of 2,431,533 bp and is predicted to encode 2,264 proteins and 82 RNAs. PMID:26203343

  4. Response of electrically stimulated cells of Pseudomonas oleovorans strain ATCC 29347 suspended in silicone oil.

    PubMed

    Anglade, J; Hirschler, A; Le Petit, J; Matheron, R; Scarpitta, A; Iacazio, G

    2001-05-15

    A high intensity direct current was applied for more than 10 min onto a bacterial suspension of Pseudomonas oleovorans ATCC 29347 suspended in silicone oil. The application of a gradually increased electric field from 0 to 2500 V x cm(-1) resulted in a decrease of the optical density of the bacterial suspension and the occurrence of a peak current of several hundred microA for living cells instead of a linear increase (few microA) for killed or lyophilised cells. This procedure is not only a rapid way of investigating the living state of cell cultures but also an efficient experimental tool to study the cellular effects of a controlled electrical stress. PMID:11356578

  5. Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies

    PubMed Central

    Venkataraman, Sowmyalakshmi; Narayan, Shoba; Chadha, Anju

    2016-01-01

    Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC. PMID:27739423

  6. Closing the Carbon Balance for Fermentation by Clostridium thermocellum (ATCC 27405)

    SciTech Connect

    Ellis, Lucas D; Holwerda, Evert K; Hogsett, David; Rogers, Steve; Shao, Xiongjun; Tschaplinski, Timothy J; Thorne, Phil; Lynd, L.

    2012-01-01

    Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, {>=}92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.

  7. Pore-forming ability of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Egli, C; Hancock, R E; Holt, S C

    1992-01-01

    Three major outer membrane proteins with apparent molecular masses of 43, 45, and 51 kDa were purified from Wolinella recta ATCC 33238, and their pore-forming abilities were determined by the black lipid bilayer method. The non-heat-modifiable 45-kDa protein (Omp 45) showed no pore-forming activity even at high KCl concentrations. The single-channel conductances in 1 M KCl of the heat-modifiable proteins with apparent molecular masses of 43 kDa (Omp 43) and 51 kDa (Omp 51) were 0.49 and 0.60 nS, respectively. The proteins formed nonselective channels and, as determined by experiments of ion selectivity and zero-current potential, were weakly anion selective. Images PMID:1370429

  8. L-serine enhances the anaerobic lactate metabolism of Veillonella dispar ATCC 17745.

    PubMed

    Hoshino, E

    1987-06-01

    Under anaerobic conditions, the rate of metabolism of lactate by starved resting cells of Veillonella dispar ATCC 17745 was very low. Because pyruvate was metabolized well by the starved cells, oxidation of lactate to pyruvate, which is the first step of the lactate metabolism, must have been limited in the cells. In the starved cells, the levels of the metabolic intermediates, oxalacetate or fumarate, of which reductions to malate or to succinate could be coupled with lactate oxidation to pyruvate and initiate lactate metabolism, were quite low, suggesting that these had been reduced during the starvation steps under strictly anaerobic conditions. Thus, the starved cells were unable to start the anaerobic lactate metabolism because of shortage of such reducible substrates. L-serine greatly enhanced anaerobic lactate metabolism of the starved cells. This enhancement may have been due to metabolism of L-serine itself and conversion to oxalacetate and fumarate, which made it possible to begin lactate oxidation.

  9. Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048.

    PubMed

    Vértesy, L; Aretz, W; Bonnefoy, A; Ehlers, E; Kurz, M; Markus, A; Schiell, M; Vogel, M; Wink, J; Kogler, H

    1999-08-01

    The actagardine-producing strain Actinoplanes liguriae ATCC 31048, forms an additional lantibiotic when it is cultured on mannitol and soya meal. The new compound, Ala(0)-actagardine (1), has been isolated by solid-phase extraction followed by a two-step chromatographic separation. The molecular formula of 1 is C84H129N21O25S4. Its chemical structure was determined by 2D-NMR analysis and was further confirmed by an amino acid analysis, Edman degradation, and partial synthesis from actagardine. 1 exhibits a slightly higher biological activity than the parent compound actagardine. The synthetic analogs Lys(0)-actagardine (2) and Ile(0)-actagardine (3) demonstrate also antibacterial activities and emphasize the importance of the N-terminus for further derivatization. PMID:10580386

  10. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190.

    PubMed

    Cox, D P; Goldsmith, C D

    1979-09-01

    A culture of Nocardia tartaricans ATCC 31190 was capable of catalyzing the conversion of ethylbenzene to 1-phenethanol and acetophenone while growing in a shake flask culture with hexadecane as the source of carbon and energy. This subterminal oxidative reaction with ethylbenzene appears not to have been previously reported for Nocardia species. When N. tartaricans was grown on glucose as its source of carbon and energy and ethylbenzene was added, no subsequent production of 1-phenethanol or acetophenone was observed. The mechanisms of 1-phenethanol and acetophenone production from ethylbenzene are thought to involve a subterminal oxidation of the alpha-carbon of the alkyl group to 1-phenethanol followed by biological oxidation of the latter to acetophenone.

  11. Pullulan Production by Aureobasidium pullulans ATCC 201253 Cells Adsorbed onto Cellulose Anion and Cation Exchangers

    PubMed Central

    West, Thomas P.

    2012-01-01

    The anion exchanger phosphocellulose and the cation exchanger triethylaminoethyl cellulose were used to immobilize cells of the fungus Aureobasidium pullulans ATCC 201253 and the adsorbed cells were subsequently investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The cells adsorbed on the triethylaminoethyl cellulose at pH 7.5 produced higher pullulan levels than those cells immobilized on phosphocellulose at pH 4.0 for 2 cycles of 168 h at 30 °C. Relative to the initial cycle of 168 h, pullulan production by the cells immobilized on the triethylaminoethyl cellulose decreased slightly after 168 h of the second production cycle while pullulan production by the phosphocellulose-immobilized cells remained about the same after 168 h of the second production cycle. PMID:23762749

  12. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.

    PubMed

    Wang, Pingping; Wu, Zhen; Wu, Jing; Pan, Daodong; Zeng, Xiaoqun; Cheng, Kemeng

    2016-10-01

    Lactic acid bacteria are widely used in fermented foods, especially cheese products. In this study, we observed the salt tolerance of Lactobacillus plantarum ATCC 14917 after exposure to different concentrations of NaCl in MRS medium. Quantitative proteomic profiles using two-dimensional electrophoresis identified 384 proteins, of which 26 were upregulated and 31 downregulated. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry was then used to identify 11 proteins, of which three were linked to carbohydrate metabolism. The downregulation of carbamoyl phosphate synthase in carbohydrate metabolism revealed a bacterial regulation mechanism to save energy in order to survive during the salt tolerance. Other proteins were found involved in transcription-translation processes, fatty acid biosynthesis, and the primary metabolic process.

  13. Biotransformation of the Antimelanoma Agent Betulinic Acid by Bacillus megaterium ATCC 13368

    PubMed Central

    Chatterjee, Parnali; Kouzi, Samir A.; Pezzuto, John M.; Hamann, Mark T.

    2000-01-01

    Microbial transformation of the antimelanoma agent betulinic acid was studied. The main objective of this study was to utilize microorganisms as in vitro models to predict and prepare potential mammalian metabolites of this compound. Preparative-scale biotransformation with resting-cell suspensions of Bacillus megaterium ATCC 13368 resulted in the production of four metabolites, which were identified as 3-oxo-lup-20(29)-en-28-oic acid, 3-oxo-11α-hydroxy-lup-20(29)-en-28-oic acid, 1β-hydroxy-3-oxo-lup-20(29)-en-28-oic acid, and 3β,7β,15α-trihydroxy-lup-20(29)-en-28-oic acid based on nuclear magnetic resonance and high-resolution mass spectral analyses. In addition, the antimelanoma activities of these metabolites were evaluated with two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid). PMID:10966400

  14. Resistance to vanadium in Pseudomonas fluorescens ATCC 17400 caused by mutations in TCA cycle enzymes.

    PubMed

    Denayer, Sarah; Matthijs, Sandra; Cornelis, Pierre

    2006-11-01

    Vanadium inhibits the growth of Pseudomonas fluorescens ATCC 17400 in the low-iron casamino acids medium and even more when iron is added to the medium. Analysis of transposon mutants allowed the isolation of two mutants with increased resistance to vanadium. One mutant had an insertion in the idh gene coding for the tricarboxylic acid enzyme isocitrate dehydrogenase. The second mutant had the transposon inserted into acnD, one out of three genes coding for a 2-methyl-isocitrate dehydratase (aconitase). In this mutant, there was a higher level of acnB aconitase transcripts while the levels of acnA transcripts were unchanged. A nonpolar idh mutant was obtained, which showed the same level of resistance against vanadium as the original transposon mutant. PMID:17020548

  15. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.

    PubMed

    Wang, Pingping; Wu, Zhen; Wu, Jing; Pan, Daodong; Zeng, Xiaoqun; Cheng, Kemeng

    2016-10-01

    Lactic acid bacteria are widely used in fermented foods, especially cheese products. In this study, we observed the salt tolerance of Lactobacillus plantarum ATCC 14917 after exposure to different concentrations of NaCl in MRS medium. Quantitative proteomic profiles using two-dimensional electrophoresis identified 384 proteins, of which 26 were upregulated and 31 downregulated. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry was then used to identify 11 proteins, of which three were linked to carbohydrate metabolism. The downregulation of carbamoyl phosphate synthase in carbohydrate metabolism revealed a bacterial regulation mechanism to save energy in order to survive during the salt tolerance. Other proteins were found involved in transcription-translation processes, fatty acid biosynthesis, and the primary metabolic process. PMID:27342422

  16. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163.

    PubMed

    Mohedano, María de la Luz; Russo, Pasquale; de Los Ríos, Vivian; Capozzi, Vittorio; Fernández de Palencia, Pilar; Spano, Giuseppe; López, Paloma

    2014-02-26

    Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.

  17. Actinomyces naeslundii Displays Variant fimP and fimA Fimbrial Subunit Genes Corresponding to Different Types of Acidic Proline-Rich Protein and β-Linked Galactosamine Binding Specificity

    PubMed Central

    Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.

    1998-01-01

    Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794

  18. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds. PMID:26718561

  19. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.

  20. Genome Sequence of Streptococcus phocae subsp. phocae Strain ATCC 51973T Isolated from a Harbor Seal (Phoca vitulina)

    PubMed Central

    Poblete-Morales, Matías

    2015-01-01

    Streptococcus phocae subsp. phocae is a pathogen that affects different pinniped and mammalian species. This announcement reports the genome sequence of the type strain ATCC 51973 isolated in Norway from clinical specimens of harbor seal (Phoca vitulina), revealing interesting genes related to possible virulence factors. PMID:26586875

  1. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus brevis ATCC 8287, a surface (S-layer) strain, possesses a variety of functional properties that make it both a potential probiotic and a good vaccine vector candidate. With this in mind, our aim was to study the survival of L. brevis in the porcine gut and investigate the effect of th...

  2. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  3. Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts

    PubMed Central

    Romero, Claudia M; DeShazer, David; Feldblyum, Tamara; Ravel, Jacques; Woods, Donald; Kim, H Stanley; Yu, Yan; Ronning, Catherine M; Nierman, William C

    2006-01-01

    Background More than 12,000 simple sequence repeats (SSRs) have been identified in the genome of Burkholderia mallei ATCC 23344. As a demonstrated mechanism of phase variation in other pathogenic bacteria, these may function as mutable loci leading to altered protein expression or structure variation. To determine if such alterations are occurring in vivo, the genomes of various single-colony passaged B. mallei ATCC 23344 isolates, one from each source, were sequenced from culture, a mouse, a horse, and two isolates from a single human patient, and the sequence compared to the published B. mallei ATCC 23344 genome sequence. Results Forty-nine insertions and deletions (indels) were detected at SSRs in the five passaged strains, a majority of which (67.3%) were located within noncoding areas, suggesting that such regions are more tolerant of sequence alterations. Expression profiling of the two human passaged isolates compared to the strain before passage revealed alterations in the mRNA levels of multiple genes when grown in culture. Conclusion These data support the notion that genome variability upon passage is a feature of B. mallei ATCC23344, and that within a host B. mallei generates a diverse population of clones that accumulate genome sequence variation at SSR and other loci. PMID:16953889

  4. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis.

  5. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose

    PubMed Central

    Pfeffer, Sarah; Mehta, Kalpa

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  6. Meta-analysis: Lactobacillus reuteri strain DSM 17938 (and the original strain ATCC 55730) for treating acute gastroenteritis in children.

    PubMed

    Szajewska, H; Urbańska, M; Chmielewska, A; Weizman, Z; Shamir, R

    2014-09-01

    Lactobacillus reuteri ATCC 55730 has been shown to provide a moderate clinical effect in the treatment of acute gastroenteritis (AGE) in children. However, as the L. reuteri ATCC 55730 strain was found to carry potentially transferable resistance traits for tetracycline and lincomycin, it was replaced by a new strain, L. reuteri DSM 17938, without unwanted plasmid-borne antibiotic resistance. Bioequivalence of the two strains has been suggested. We aimed to systematically evaluate data on the effectiveness of L. reuteri DSM 17938 and the original strain, L. reuteri ATCC 55730, in the treatment of AGE in children. The Cochrane Library, MEDLINE, and EMBASE databases, reference lists, and abstract books of major scientific meetings were searched in August 2013, with no language restrictions, for relevant randomised controlled trials (RCTs). Two RCTs (n=196) that evaluated L. reuteri DSM 17938 and three RCTs (n=156) that evaluated L. reuteri ATCC 55730, which involved hospitalised children aged 3 to 60 months, met the inclusion criteria. Compared with placebo or no treatment, DSM 17938 significantly reduced the duration of diarrhoea (mean difference -32 h, 95% confidence interval (CI): -41 to -24) and increased the chance of cure on day 3 (relative risk: 3.5, 95% CI: 1.2 to 10.8, random effects model). Similar results were obtained with the original strain, L. reuteri ATCC 55730. In conclusion, in hospitalised children, use of both strains of L. reuteri reduced the duration of diarrhoea, and more children were cured within 3 days. Data from outpatients and countryspecific cost-effectiveness analyses are needed. Given the limited data and the methodological limitations of the included trials, the evidence should be viewed with caution.

  7. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  8. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    PubMed Central

    Fleige, Christian; Hansen, Gunda; Kroll, Jens

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDHATCC 39116 was purified to apparent electrophoretic homogeneity and exhibited NAD+-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Kmr mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin. PMID:23064333

  9. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production. PMID

  10. Azotobacter Genomes: The Genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)

    PubMed Central

    Robson, Robert L.; Jones, Robert; Robson, R. Moyra; Schwartz, Ariel; Richardson, Toby H.

    2015-01-01

    The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these

  11. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  12. Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727

    PubMed Central

    Lo Grasso, Letizia; Maffioli, Sonia; Sosio, Margherita; Bibb, Mervyn; Puglia, Anna Maria

    2015-01-01

    ABSTRACT The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the dbv gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of dbv6 had no effect. In addition, overexpression of dbv3 led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons, dbv14-dbv8 and dbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4, dbv29, dbv36, and dbv37) and of six operons (dbv2-dbv1, dbv14-dbv8, dbv17-dbv15, dbv21-dbv20, dbv24-dbv28, and dbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of dbv4 and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation. IMPORTANCE This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete Nonomuraea sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis

  13. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    NASA Technical Reports Server (NTRS)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  14. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum.

  15. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  16. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    PubMed

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  17. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  18. Isolation and characterisation of dipeptidyl peptidase IV from Prevotella loescheii ATCC 15930.

    PubMed

    Koreeda, Y; Hayakawa, M; Ikemi, T; Abiko, Y

    2001-08-01

    A proline-specific dipeptidyl aminopeptidase, dipeptidyl peptidase IV (EC 3.4.14.5), was purified from a cell sonicate soluble fraction of Prevotella loescheii ATCC 15930 by sequential column chromatography. The molecular mass of the native enzyme was estimated as 160 kDa by high-pressure liquid gel filtration column chromatography and unheated sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The subunit molecular mass was 80 kDa when the enzyme was heated to 100 degrees C in the presence of 2-mercaptoethanol before SDS-PAGE, suggesting that the native enzyme consists of two identical subunits and is folded in 2% SDS. The optimum pH, with glycyl-prolyl-4-methyl-coumaryl-7-amide as the substrate, was 8.0; the isoelectric point was 5.2. Purified enzyme showed a strong preference for dipeptide substrates containing proline and, less efficiently, alanine in the P1 position. The enzyme was markedly inhibited by Cd(2+), Zn(2+), Hg(2+), Co(2+), and serine proteinase inhibitor di-isopropylfluorophosphate. PMID:11389867

  19. Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.

    PubMed

    Yu, Yang; Tangney, Martin; Aass, Hans C; Mitchell, Wilfrid J

    2007-03-01

    Although the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolize a wide range of carbohydrates offers the potential for revival based on the use of cheap, low-grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolyzed by a phospho-beta-galactosidase. These activities are induced during growth on lactose but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho-beta-galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed. PMID:17209069

  20. Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli

    PubMed Central

    Jaramillo, Michael L; Abanto, Michel; Quispe, Ruth L; Calderón, Julio; del Valle, Luís J; Talledo, Miguel; Ramírez, Pablo

    2012-01-01

    Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases. PMID:23055613

  1. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637.

    PubMed

    Szabados, Florian; Kleine, Britta; Anders, Agnes; Kaase, Martin; Sakinç, Türkân; Schmitz, Inge; Gatermann, Sören

    2008-08-01

    Invasion of bacteria into nonphagocytic host cells is an important pathogenicity factor for escaping the host defence system. Gram-positive organisms, for example Staphylococcus aureus and Listeria monocytogenes, are invasive in nonphagocytic cells, and this mechanism is discussed as an important part of the infection process. Uropathogenic Escherichia coli and Staphylococcus saprophyticus can cause acute and recurrent urinary tract infections as well as bloodstream infections. Staphylococcus saprophyticus shows strong adhesion to human urinary bladder carcinoma and Hep2 cells and expresses the 'Microbial Surface Components Recognizing Adhesive Matrix molecule' (MSCRAMM)-protein SdrI with collagen-binding activity. MSCRAMMs are responsible for adhesion and collagen binding in S. aureus and are discussed as an important pathogenicity factor for invasion. To investigate internalization in S. aureus, several fluorescence activated cell sorting (FACS) assays have been described recently. We used a previously described FACS assay, with slight modifications, in addition to an antibiotic protection assay and transmission electron microscopy to show that S. saprophyticus ATCC 15305 and the wild-type strain 7108 were internalized into the human urinary bladder carcinoma cell line 5637. The discovery of the internalization of S. saprophyticus may be an important step for understanding the pathogenicity of recurrent infections caused by this organism.

  2. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.

    PubMed

    Meyer, Daniel Derrossi; Andrino, Felipe Gabriel; Possedente de Lira, Simone; Fornaro, Adalgiza; Corção, Gertrudes; Brandelli, Adriano

    2016-01-01

    One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.

  3. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia. PMID:26896170

  4. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  5. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS.

    PubMed

    Schneegurt, M A; Arieli, B; Nielsen, S S; Trumbo, P R; Sherman, L A

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.

  6. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; Nielsen, S. S.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.

  7. Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress.

    PubMed

    Longhi, Catia; Ammendolia, Maria Grazia; Conte, Maria Pia; Seganti, Lucilla; Iosi, Francesca; Superti, Fabiana

    2014-09-01

    It has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host. In these conditions, L. ivanovii evidenced a different behaviour compared to L. monocytogenes exposed to similar conditions. L. ivanovii was not able to mount an acid tolerance response (ATR) even if, upon entry into the stationary phase in iron-loaded medium, growth phase-dependent acid resistance (AR) was evidenced. Moreover, bacteria grown in iron excess and acidic pH showed the higher invasion value in Caco-2 cells, even though it was not able to efficiently multiply. On the contrary, low iron and acidic conditions improved invasion ability in amniotic WISH cells.

  8. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products.

    PubMed

    Probst, Kyle V; Vadlani, Praveen V

    2015-12-01

    Single cell oil (SCO) is a valuable noncrop-based renewable oil source. Hemicellulose derived sugars can be utilized to produce SCO using the oleaginous yeast Lipomyces starkeyi ATCC 56304. Bran by-products were tested as hemicellulose-rich feedstocks for the production of SCO. Whole and destarched corn and wheat bran hydrolysates were produced using hydrothermal and dilute sulfuric acid (0%, 0.5%, 1.0%, v/v) pretreatment along with enzymatic hydrolysis. Whole bran hydrolysates produced from hydrothermal pretreatment generated the highest average oil yields of 126.7 and 124.3 mg oil/g sugar for both wheat and corn bran, respectively. 1.0% acid pretreatment was effective for the destarched bran generating a hemicellulose hydrolysis efficiency of 94% and 84% for wheat and corn bran, respectively, resulting in the highest oil yield of 70.7 mg oil/g sugar. The results indicate pretreated corn and wheat bran hydrolysates can serve as viable feedstocks for oleaginous yeast SCO bioconversion.

  9. Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Happe, Thomas; Schütz, Kathrin; Böhme, Herbert

    2000-01-01

    A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation of A. variabilis. The hupSL genes were transcribed as a 2.7-kb operon and were induced only under nitrogen-fixing conditions, as shown by Northern blot experiments and reverse transcriptase PCR. Primer extension experiments with a fluorescence-labeled oligonucleotide primer confirmed these results and identified the 5′ start of the mRNA transcript 103 bp upstream of the ATG initiation codon. A consensus sequence in the promoter that is recognized by the fumarate nitrate reductase regulator (Fnr) could be detected. The hupSL operon in A. variabilis was interrupted by an interposon deletion (mutant strain AVM13). Under N2-fixing conditions, the mutant strain exhibited significantly increased rates in H2 accumulation and produced three times more hydrogen than the wild type. These results indicate that the uptake hydrogenase is catalytically active in the wild type and that the enzyme reoxidizes the H2 developed by the nitrogenase. The Nif phenotype of the mutant strain showed a slight decrease of acetylene reduction compared to that of the wild type. PMID:10692368

  10. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate.

    PubMed

    Pan, Wenyang; Perrotta, Joseph A; Stipanovic, Arthur J; Nomura, Christopher T; Nakas, James P

    2012-03-01

    Sugar maple hemicellulosic hydrolysate containing 71.9 g/l of xylose was used as an inexpensive feedstock to produce polyhydroxyalkanoates (PHAs) by Burkholderia cepacia ATCC 17759. Several inhibitory compounds present in wood hydrolysate were analyzed for effects on cell growth and PHA production with strong inhibition observed at concentrations of 1 g/l furfural, 2 g/l vanillin, 7 g/l levulinic acid, and 1 M acetic acid. Gradual catabolism of lower concentrations of these inhibitors was observed in this study. To increase the fermentability of wood hydrolysate, several detoxification methods were tested. Overliming combined with low-temperature sterilization resulted in the highest removal of total inhibitory phenolics (65%). A fed-batch fermentation exhibited maximum PHA production after 96 h (8.72 g PHA/L broth and 51.4% of dry cell weight). Compositional analysis by NMR and physical-chemical characterization showed that PHA produced from wood hydrolysate was composed of polyhydroxybutyrate (PHB) with a molecular mass (M (N)) of 450.8 kDa, a melting temperature (T (m)) of 174.4°C, a glass transition temperature (T (g)) of 7.31°C, and a decomposition temperature (T (decomp)) of 268.6°C.

  11. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  12. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579.

    PubMed

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Omer, Hélène; Duport, Catherine

    2016-09-01

    This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789. PMID:27547804

  13. A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400.

    PubMed

    Gaballa, A; Koedam, N; Cornelis, P

    1996-08-01

    Pseudomonas fluorescens ATCC 17400 produces pyoverdine under iron-limiting conditions. A Tn5 mutant, 2G11, produced lower amounts of different pyoverdine forms and was unable to grow under iron limitation caused by ethylenediamine-di(o-hydroxy-phenylacetic acid) (EDDHA) or zinc. This mutant was complemented by a 9.6 kb HindIII-BamHI DNA fragment that contained eight contiguous open reading frames (ORFs cytA to cytH). The proteins possibly encoded by this polycistronic gene cluster were all similar to the products of cytochrome c biogenesis genes from, amongst others, Rhodobacter capsulatus and Bradyrhizobium japonicum, not only in terms of amino acid sequence, but also in the overall hydropathy index of these proteins. By TnphoA mutagenesis and site-specific gene replacement it was found that the first three ORFs (cytA to cytC) were essential for cytochrome c production while only the product of cytA was needed for normal pyoverdine production. The presence of a putative haem-binding site in the CytA protein (WGSWWVWD) was confirmed. From analysis of a constructed phoA fusion, a periplasmic location was found for this motif. The ability of the cytA gene to restore both cytochrome c and pyoverdine production suggests the involvement of this particular gene both in haem and in pyoverdine transport in P. fluorescens. PMID:8878040

  14. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952.

    PubMed

    Parajuli, Niranjan; Viet, Hung Trinh; Ishida, Kenji; Tong, Hang Thi; Lee, Hei Chan; Liou, Kwangkyoung; Sohng, Jae Kyung

    2005-01-01

    We have isolated an afsR homologue, called afsR-p, through genome analysis of Streptomyces peucetius ATCC 27952. AfsR-p shares 60% sequence identity with AfsR from Streptomyces coelicolor A3 (2). afsR-p was expressed under the control of the ermE* promoter in its hosts S. peucetius, Streptomyces lividans TK 24, Streptomyces clavuligerus and Streptomyces griseus. We observed overproduction of doxorubicin (4-fold) in S. peucetius, gamma-actinorhodin (2.6-fold) in S. lividans, clavulanic acid (1.5-fold) in S. clavuligerus and streptomycin (slight) in S. griseus. Overproduction was due to expression of the gene in these strains as compared to the wild-type strains harboring the vector only. Comparative study of the expression of afsR-p revealed that regulatory networking in Streptomyces is not uniform. We speculate that phosphorylated AfsR-p becomes bound to the promoter region of afsS. The latter activates other regulatory genes, including pathway regulatory genes, and induces the production of secondary metabolites including antibiotics. We identified specific conserved amino acids and exploited them for the isolation of the partial sequence of the afsR homologue from S. clavuligerus and Streptomyces achromogens (rubradirin producer). Such findings provide additional evidence for the presence of a serine/threonine and tyrosine kinase-dependent global regulatory network in Streptomyces.

  15. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, Danielle; de Oliveira, Débora; de Souza, Antônio A Ulson; Souza, Selene M A Guelli U

    2014-11-01

    The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW(-1) · h(-1), attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase.

  16. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968).

    PubMed

    Oldfield, C; Pogrebinsky, O; Simmonds, J; Olson, E S; Kulpa, C F

    1997-09-01

    Rhodococcus sp. strain IGTS8 (ATCC 53968) is able to utilize dibenzothiophene (DBT) as a sole source of sulphur. The carbon skeleton of DBT is not metabolized and is conserved as 2-hydroxybiphenyl (HBP), which accumulates in the medium. This phenotype is due to the expression of the plasmid-encoded DBT-desulphurization (dsz) operon, which encodes three proteins, DszA, B and C. In this paper it is shown, using [35S]DBT radiolabelling studies, that sulphur is released in the form of inorganic sulphite. The pathway of DBT desulphurization is described in detail. In summary, DszC catalyses the stepwise S-oxidation of DBT, first to dibenzothiophene 5-oxide (DBTO) and then to dibenzothiophene 5,5-dioxide (DBTO2); DszA catalyses the conversion of DBTO2 to 2-(2'-hydroxyphenyl)benzene sulphinate (HBPSi-) and DszB catalyses the desulphination of HBPSi- to give HBP and sulphite. Studies with cell-free extracts show that DszA and DszC, but not DszB, require NADH for activity. 18O2-labelling studies show that each incorporated oxygen atom is derived directly from molecular oxygen. These results are consistent with the role of DszC as a mono-oxygenase, of DszA as an apparently unique enzyme which catalyses the reductive hydroxylation of DBTO2 leading to cleavage of the thiophene ring, and of DszB as an aromatic sulphinic acid hydrolase.

  17. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952.

    PubMed

    Parajuli, Niranjan; Viet, Hung Trinh; Ishida, Kenji; Tong, Hang Thi; Lee, Hei Chan; Liou, Kwangkyoung; Sohng, Jae Kyung

    2005-01-01

    We have isolated an afsR homologue, called afsR-p, through genome analysis of Streptomyces peucetius ATCC 27952. AfsR-p shares 60% sequence identity with AfsR from Streptomyces coelicolor A3 (2). afsR-p was expressed under the control of the ermE* promoter in its hosts S. peucetius, Streptomyces lividans TK 24, Streptomyces clavuligerus and Streptomyces griseus. We observed overproduction of doxorubicin (4-fold) in S. peucetius, gamma-actinorhodin (2.6-fold) in S. lividans, clavulanic acid (1.5-fold) in S. clavuligerus and streptomycin (slight) in S. griseus. Overproduction was due to expression of the gene in these strains as compared to the wild-type strains harboring the vector only. Comparative study of the expression of afsR-p revealed that regulatory networking in Streptomyces is not uniform. We speculate that phosphorylated AfsR-p becomes bound to the promoter region of afsS. The latter activates other regulatory genes, including pathway regulatory genes, and induces the production of secondary metabolites including antibiotics. We identified specific conserved amino acids and exploited them for the isolation of the partial sequence of the afsR homologue from S. clavuligerus and Streptomyces achromogens (rubradirin producer). Such findings provide additional evidence for the presence of a serine/threonine and tyrosine kinase-dependent global regulatory network in Streptomyces. PMID:15921897

  18. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.

    PubMed

    Maass, Danielle; de Oliveira, Débora; de Souza, Antônio A Ulson; Souza, Selene M A Guelli U

    2014-11-01

    The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW(-1) · h(-1), attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase. PMID:25163887

  19. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    PubMed Central

    Song, D D; Jacques, N A

    1999-01-01

    The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the purified mutated forms of the enzyme showed that Asp-312 was most likely an essential amino acid involved in determining acceptor recognition and/or stabilizing a beta-turn in the protein. In contrast, when the Asp-397 of the Ftf present in the conserved triplet RDP motif of all 60 bacterial and plant family-32 glycosylhydrolases was mutated to a Ser residue, both sucrose hydrolysis and polymerization ceased. Tryptophan emission spectra confirmed that this mutation did not alter protein structure. Comparison of published data from other site-directed mutated enzymes implicated the Asp residue in the RDP motif as the one that may form a transient covalent fructosyl intermediate during the catalysis of sucrose by the Ftf of S. salivarius. PMID:10548559

  20. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  1. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  2. Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae.

    PubMed

    Brzuszkiewicz, Elzbieta; Schulz, Tino; Rydzewski, Kerstin; Daniel, Rolf; Gillmaier, Nadine; Dittmann, Christine; Holland, Gudrun; Schunder, Eva; Lautner, Monika; Eisenreich, Wolfgang; Lück, Christian; Heuner, Klaus

    2013-12-01

    Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.

  3. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  4. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.

    PubMed

    Qin, Tianyu; Hu, Xiaoqing; Hu, Jinyu; Wang, Xiaoyuan

    2015-01-01

    L-Methionine-producing strain QW102/pJYW-4-hom(m) -lysC(m) -brnFE was developed from Corynebacterium glutamicum strain ATCC13032, using metabolic engineering strategies. These strategies involved (i) deletion of the gene thrB encoding homoserine kinase to increase the precursor supply, (ii) deletion of the gene mcbR encoding the regulator McbR to release the transcriptional repression to various genes in the l-methionine biosynthetic pathway, (iii) overexpression of the gene lysC(m) encoding feedback-resistant aspartate kinase and the gene hom(m) encoding feedback-resistant homoserine dehydrogenase to further increase the precursor supply, and (iv) overexpression of the gene cluster brnF and brnE encoding the export protein complex BrnFE to increase extracellular l-methionine concentration. QW102/pJYW-4-hom(m) -lysC(m) -brnFE produced 42.2 mM (6.3 g/L) l-methionine after 64-H fed-batch fermentation. These results suggest that l-methionine-producing strains can be developed from wild-type C. glutamicum strains by rationally metabolic engineering.

  5. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    PubMed

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  6. Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032

    SciTech Connect

    Xu Ying; Yan Dazhong; Zhou Ningyi . E-mail: n.zhou@pentium.whiov.ac.cn

    2006-07-28

    Ralstonia sp. strain U2 metabolizes naphthalene via gentisate (2,5-dihydroxybenzoate) to central metabolites, but it was found unable to utilize gentisate as growth substrate. A putative gentisate transporter encoded by ncg12922 from Corynebacterium glutamicum ATCC 13032 was functionally expressed in Ralstonia sp. strain U2, converting strain U2 to a gentisate utilizer. After ncg12922 was inserted into plasmid pGFPe with green fluorescence protein gene gfp, the expressed fusion protein Ncg12922-GFP could be visualized in the periphery of Escherichia coli cells under confocal microscope, consistent with a cytoplasmic membrane location. In contrast, GFP was ubiquitous in the cytoplasm of E. coli cells carrying pGFPe only. Gentisate 1,2-dioxygenase activity was present in the cell extract from strain U2 induced with gentisate but at a much lower level (one-fifth) than that obtained with salicylate. However, it exhibited a similar level in strain U2 containing Ncg12922 induced either by salicylate or gentisate.

  7. Purification and Characterization of Two Endoxylanases from Clostridium acetobutylicum ATCC 824

    PubMed Central

    Lee, Song F.; Forsberg, Cecil W.; Rattray, James B.

    1987-01-01

    Two endoxylanases produced by C. acetobutylicum ATCC 824 were purified to homogeneity by column chromatography. Xylanase A, which has a molecular weight of 65,000, hydrolyzed larchwood xylan randomly, yielding xylohexaose, xylopentaose, xylotetraose, xylotriose, and xylobiose as end products. Xylanase B, which has a molecular weight of 29,000, also hydrolyzed xylan randomly, giving xylotriose and xylobiose as end products. Xylanase A hydrolyzed carboxymethyl cellulose with a higher specific activity than xylan. It also exhibited high activity on acid-swollen cellulose. Xylanase B showed practically no activity against either cellulose or carboxymethyl cellulose but was able to hydrolyze lichenan with a specific activity similar to that for xylan. Both xylanases had no aryl-β-xylosidase activity. The smallest oligosaccharides degraded by xylanases A and B were xylohexaose and xylotetraose, respectively. The two xylanases demonstrated similar Km and Vmax values but had different pH optima and isoelectric points. Ouchterlony immunodiffusion tests showed that xylanases A and B lacked antigenic similarity. Images PMID:16347312

  8. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925

    PubMed Central

    2011-01-01

    Accidental oil spills and waste disposal are important sources for environmental pollution. We investigated the biodegradation of alkanes by Pseudomonas aeruginosa ATCC 55925 in relation to a rhamnolipid surfactant produced by the same bacterial strain. Results showed that the linear C11-C21 compounds in a heating oil sample degraded from 6% to 100%, whereas the iso-alkanes tended to be recalcitrant unless they were exposed to the biosurfactant; under such condition total biodegradation was achieved. Only the biodegradation of the commercial C12-C19 alkanes could be demonstrated, ranging from 23% to 100%, depending on the experimental conditions. Pristane (a C19 branched alkane) only biodegraded when present alone with the biosurfactant and when included in an artificial mixture even without the biosurfactant. In all cases the biosurfactant significantly enhanced biodegradation. The electron scanning microscopy showed that cells depicted several adaptations to growth on hydrocarbons, such as biopolymeric spheres with embedded cells distributed over different layers on the spherical surfaces and cells linked to each other by extracellular appendages. Electron transmission microscopy revealed transparent inclusions, which were associated with hydrocarbon based-culture cells. These patterns of hydrocarbon biodegradation and cell adaptations depended on the substrate bioavailability, type and length of hydrocarbon. PMID:21906343

  9. Production of Surfactant from Bacillus subtilis ATCC 21332 using Potato substrates

    SciTech Connect

    Fox, Sandra Lynn; Bala, Greg Alan

    2000-12-01

    Surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis is known to reduce the surface tension of water from 72 to 27 mN/m. Potato substrates were evaluated as a carbon source for surfactant production by B. subtilis ATCC 21332. An established potato medium, simulated liquid and solid potato waste media, and a commercially prepared potato starch in a mineral salts medium were evaluated in shake flask experiments to verify growth, surface tension reduction, and carbohydrate reduction capabilities. Total carbohydrate assays and glucose monitoring indicated that B. subtilis was able to degrade potato substrates to produce surfactant. Surface tensions dropped from 71.3±0.1 to 28.3±0.3 mN/m (simulated solid potato medium) and to 27.5±0.3 mN/m (mineral salts medium). A critical micelle concentration (CMC) of 0.10 g/l was obtained from a methylene chloride extract of the simulated solid potato medium.

  10. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461.

    PubMed

    Bajaj, Ishwar B; Saudagar, Parag S; Singhal, Rekha S; Pandey, Ashok

    2006-09-01

    Gellan gum, a high-molecular-weight anionic linear polysaccharide produced by pure-culture fermentation from Sphingomonas paucimobilis ATCC 31461, has elicited industrial interest in recent years as a high-viscosity biogum, a suspending agent, a gelling agent, and an agar substitute in microbial media. In this paper we report on the optimization of gellan gum production using a statistical approach. In the first step, the one factor-at-a-time method was used to investigate the effect of medium constituents such as carbon and nitrogen sources; subsequently, the intuitive analysis based on statistical calculations carried out using the L16 -orthogonal array method. The design for the L16 -orthogonal array was developed and analyzed using MINITAB 13.30 software. All the fermentation runs were carried out at 30+/-2 degrees C on a rotary orbital shaker at 180 rpm for 48 h. In the second step, the effects of amino acids and gellan precursors such as uridine-5'-diphospate (UDP) and adenosine-5'-diphospate (ADP) on the fermentative production of gellan gum were studied. Media containing 4% soluble starch, 0.025% yeast extract, 1.0 mM ADP and 0.05% tryptophan gave a maximum yield of 43.6 g l(-1) starch-free gellan gum, which was significantly higher than reported values in the literature.

  11. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium.

    PubMed

    Wang, Xia; Xu, Ping; Yuan, Yong; Liu, Changlong; Zhang, Dezhong; Yang, Zhengting; Yang, Chunyu; Ma, Cuiqing

    2006-05-01

    Gellan gum production was carried out by Sphingomonas paucimobilis ATCC 31461 in a simplified medium with a short incubation time, and a kinetic model for understanding, controlling, and optimizing the fermentation process was proposed. The results revealed that glucose was the best carbon source and that the optimal concentration was 30 g liter(-1). As for the fermenting parameters, considerably large amounts of gellan gum were yielded by an 8-h-old culture and a 4% inoculum at 200 rpm on a rotary shaker. Under the optimized conditions, the maximum level of gellan gum (14.75 g liter(-1)) and the highest conversion efficiency (49.17%) were obtained in a 30-liter fermentor in batch fermentation. Logistic and Luedeking-Piret models were confirmed to provide a good description of gellan gum fermentation, which gave some support for the study of gellan gum fermentation kinetics. Additionally, this study is the first demonstration that gellan gum production is largely growth associated by analysis of kinetics in its batch fermentation process. Based on model prediction, higher gellan gum production (17.71 g liter(-1)) and higher conversion efficiency (57.12%) were obtained in fed-batch fermentation at the same total glucose concentration (30 g liter(-1)).

  12. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727.

    PubMed

    Gunnarsson, Nina; Bruheim, Per; Nielsen, Jens

    2004-12-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embden-Meyerhof-Parnas (EMP) pathway is present in this organism. Moreover, Nonomuraea utilizes a PPi-dependent phosphofructokinase, an enzyme that has been connected with anaerobic metabolism in eukaryotes and higher plants, but recently has been recognized in several actinomycetes. In order to study its primary carbon metabolism in further detail, Nonomuraea was cultivated with [1-13C] glucose as the only carbon source and the 13C-labeling patterns of proteinogenic amino acids were determined by GC-MS analysis. Through this method, the fluxes in the central carbon metabolism during balanced growth were estimated. Moreover, a shift in the label incorporation pattern was observed in connection with phosphate limitation and increased antibiotic productivity in Nonomuraea. The shift indicated an increased flux through the EMP pathway at the expense of the flux through the ED pathway, a suggestion that was supported by alterations in intracellular metabolite levels during phosphate limitation. In contrast, expression levels of genes encoding enzymes in the ED and EMP pathways were not affected by phosphate limitation.

  13. Relationship between glycocalyx and povidone-iodine resistance in Pseudomonas aeruginosa (ATCC 27853) biofilms.

    PubMed

    Brown, M L; Aldrich, H C; Gauthier, J J

    1995-01-01

    Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. In vitro and in vivo activities of ticarcillin-loaded nanoliposomes with different surface charges against Pseudomonas aeruginosa (ATCC 29248)

    PubMed Central

    2012-01-01

    Background Pseudomonas aeruginosa exhibits multiple antibiotic resistance mechanisms. Different studies have shown that entrapment of antibiotics into liposomes could increase their anti-Pseudomonas activity. The objectives of this study were to prepare ticarcillin loaded-nanoliposomes with variable surface charges and evaluate their in vitro and in vivo efficacies against Pseudomonas aeruginosa (ATCC 29248). Methods Ticarcillin-loaded nanoliposomes with positive, negative and neutral surface charges were prepared by extrusion method. Ticarcillin encapsulation efficacies for different formulations were measured by HPLC method. Minimum inhibitory concentration (MIC) of ticarcillin nanoliposomal forms against strain ATCC 29248 were determined by broth dilution method. The killing rate of Pseudomonas aeruginosa was exposed to various concentrations of ticarcillin in free and nanoliposomal forms were analyzed. Ultimately, in vivo therapeutic efficacy of nanoliposomes in burned mice skin infected with strain ATCC 29248 was investigated. Results The encapsulation efficacies for ticarcillin-loaded cationic nanoliposomes were significantly higher (76% ± 0.17) than those of neutral (55% ± 0.14) and anionic (43% ± 0.14) nanoliposomes. The MIC of free, cationic, neutral and anionic nanoliposomal forms of ticarcillin against ATCC 29248 were to 24, 3, 6 and 48 mg/L, respectively. The killing rates of ticarcillin-loaded cationic nanoliposomes were higher than those of free and other drug formulations. Treatment by ticarcillin-loaded nanoliposomes with positive, neutral and negative surface charges resulted in almost 100, 60 and 20% survival rates, respectively. Conclusion Our data suggested that cationic ticarcillin-loaded nanoliposomes because of high effectiveness would be a good choice to treatment of Pseudomonas aeruginosa infections. PMID:23351156

  15. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  16. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.

    PubMed

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2014-05-16

    The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development. PMID:24674930

  17. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544.

    PubMed

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol

    2015-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage.

  18. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract. PMID:26481623

  19. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella.

    PubMed

    Vilela, Simone F G; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia C A; Anbinder, Ana Lia; Jorge, Antonio O C; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.

  20. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 favorably modulates gut microbiota and reduces circulating endotoxins in F344 rats.

    PubMed

    Rodes, Laetitia; Saha, Shyamali; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2014-01-01

    The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases. PMID:24967382

  1. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  2. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella

    PubMed Central

    Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Anbinder, Ana Lia; Jorge, Antonio OC; Junqueira, Juliana C

    2015-01-01

    Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo. PMID:25654408

  3. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  4. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.

    PubMed

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source.

  5. Sensitive and specific modified Hodge test for KPC and metallo-beta- lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603.

    PubMed

    Pasteran, Fernando; Veliz, Omar; Rapoport, Melina; Guerriero, Leonor; Corso, Alejandra

    2011-12-01

    We evaluated the ability of the modified Hodge test to discriminate between KPC- and metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa isolates and carbapenemase nonproducers. With Escherichia coli ATCC 25922 as the indicator strain, the MHT resulted in low sensitivity, specificity, and repeatability. Replacing the indicator strain with Klebsiella pneumoniae ATCC 700603 led to an improved performance (100%, 97%, 0%, and 100% sensitivity, specificity, indeterminate results and repeatability, respectively).

  6. Genome Sequences of Ralstonia insidiosa Type Strain ATCC 49129 and Strain FC1138, a Strong Biofilm Producer Isolated from a Fresh-Cut Produce-Processing Plant

    PubMed Central

    Xu, Yunfeng; Nagy, Attila; Yan, Xianghe; Haley, Bradd J.; Kim, Seon Woo; Liu, Nancy T.

    2016-01-01

    Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. PMID:27540070

  7. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens.

    PubMed

    Koo, H; Gomes, B P; Rosalen, P L; Ambrosano, G M; Park, Y K; Cury, J A

    2000-02-01

    Arnica and propolis have been used for thousands of years in folk medicine for several purposes. They possess several biological activities such as anti-inflammatory, antifungal, antiviral and tissue regenerative, among others. Although the antibacterial activity of propolis has already been demonstrated, very few studies have been done on bacteria of clinical relevance in dentistry. Also, the antimicrobial activity of Arnica has not been extensively investigated. Therefore the aim here was to evaluate in vitro the antimicrobial activity, inhibition of adherence of mutans streptococci and inhibition of formation of water-insoluble glucan by Arnica and propolis extracts. Arnica montana (10%, w/v) and propolis (10%, w/v) extracts from Minas Gerais State were compared with controls. Fifteen microorganisms were used as follows: Candida albicans--NTCC 3736, F72; Staphylococcus aureus--ATCC 25923; Enterococcus faecalis--ATCC 29212; Streptococcus sobrinus 6715; Strep. sanguis--ATCC 10556; Strep. cricetus--HS-6; Strep. mutans--Ingbritt 1600; Strep. mutans--OMZ 175; Actinomyces naeslundii--ATCC 12104, W 1053; Act. viscosus OMZ 105; Porphyromonas gingivalis; Porph. endodontalis and Prevotella denticola (the last three were clinical isolates). Antimicrobial activity was determined by the agar diffusion method and the zones of growth inhibition were measured. To assess cell adherence to a glass surface, the organisms were grown for 18 h at 37 degrees C in test-tubes at a 30 degree angle. To assay water-insoluble glucan formation, a mixture of crude glucosyltransferase and 0.125 M sucrose was incubated for 18 h at 37 degrees C in test-tubes at a 30 degree angle. Arnica and propolis extracts (20 microl) were added to these tubes to evaluate the % of inhibition of cell adherence and water-insoluble glucan formation. The propolis extract significantly inhibited all the microorganisms tested (p < 0.05), showing the largest inhibitory zone for Actinomyces spp. The Arnica extract did

  8. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec.

  9. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. PMID:25457795

  10. Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids

    SciTech Connect

    Wiesenborn, D.P.; Rudolph, F.B.; Papoutsakis, E.T. )

    1989-02-01

    Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the K{sub m} values at pH 7.5 and 30{degree}C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the K{sub m} value for acetoacetyl-CoA ranged from about 7 to 56{mu}M, depending on the acid substrate. The K{sub m} values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.

  11. Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133

    PubMed Central

    Ferreira, Daniela; Garcia-Pichel, Ferran

    2016-01-01

    The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms. PMID:27242750

  12. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis.

    PubMed Central

    Wiesenborn, D P; Rudolph, F B; Papoutsakis, E T

    1989-01-01

    Phosphotransbutyrylase (phosphate butyryltransferase [EC 2.3.1.19]) from Clostridium acetobutylicum ATCC 824 was purified approximately 200-fold to homogeneity with a yield of 13%. Steps used in the purification procedure were fractional precipitation with (NH4)2SO4, Phenyl Sepharose CL-4B chromatography, DEAE-Sephacel chromatography, high-pressure liquid chromatography with an anion-exchange column, and high-pressure liquid chromatography with a hydrophobic-interaction column. Gel filtration and denaturing gel electrophoresis data were consistent with a native enzyme having eight 31,000-molecular-weight subunits. Within the physiological range of pH 5.5 to 7, the enzyme was very sensitive to pH change in the butyryl phosphate-forming direction and showed virtually no activity below pH 6. This finding indicates that a change in internal pH may be one important factor in the regulation of the enzyme. The enzyme was less sensitive to pH change in the reverse direction. The enzyme could use a number of substrates in addition to butyryl coenzyme A (butyryl-CoA) but had the highest relative activity with butyryl-CoA, isovaleryl-CoA, and valeryl-CoA. The Km values at 30 degrees C and pH 8.0 for butyryl-CoA, phosphate, butyryl phosphate, and CoASH (reduced form of CoA) were 0.11, 14, 0.26, and 0.077 mM, respectively. Results of product inhibition studies were consistent with a random Bi Bi binding mechanism in which phosphate binds at more than one site. Images PMID:2719475

  13. Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484.

    PubMed

    Gao, Juan; Wakarchuk, Warren

    2014-12-01

    The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.

  14. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  15. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  16. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    da Silva, Sofia Marques; Pacheco, Isabel; Pereira, Inês A Cardoso

    2012-06-01

    Desulfovibrio spp. are sulfate-reducing organisms characterized by having multiple periplasmic hydrogenases and formate dehydrogenases (FDHs). In contrast to enzymes in most bacteria, these enzymes do not reduce directly the quinone pool, but transfer electrons to soluble cytochromes c. Several studies have investigated electron transfer with hydrogenases, but comparatively less is known about FDHs. In this work we conducted experiments to assess potential electron transfer pathways resulting from formate oxidation in Desulfovibrio desulfuricans ATCC 27774. This organism can grow on sulfate and on nitrate, and contains a single soluble periplasmic FDH that includes a cytochrome c (3) like subunit (FdhABC(3)). It has also a unique cytochrome c composition, including two cytochromes c not yet isolated from other species, the split-Soret and nine-heme cytochromes, besides a tetraheme type I cytochrome c (3) (TpIc (3)). The FDH activity and cytochrome composition of cells grown with lactate or formate and nitrate or sulfate were determined, and the electron transfer between FDH and these cytochromes was investigated. We studied also the reduction of the Dsr complex and of the monoheme cytochrome c-553, previously proposed to be the physiological partner of FDH. FdhABC(3) was able to reduce the c-553, TpIc (3), and split-Soret cytochromes with a high rate. For comparison, the same experiments were performed with the [NiFe] hydrogenase from the same organism. This study shows that FdhABC(3) can directly reduce the periplasmic cytochrome c network, feeding electrons into several alternative metabolic pathways, which explains the advantage of not having an associated membrane subunit.

  17. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis. PMID:26603760

  18. gamma-Glutamyltransferase from the outer cell envelope of Treponema denticola ATCC 35405.

    PubMed Central

    Mäkinen, P L; Mäkinen, K K

    1997-01-01

    The human oral spirochete Treponema denticola ATCC 35405 was shown to exhibit relatively high enzyme activity toward the gamma-glutamyl amide bond present in N-gamma-L-glutamyl-4-nitroaniline. The enzyme responsible for this catalysis (gamma-glutamyltransferase [GGT]; EC 2.3.2.2) was purified by means of fast protein liquid chromatography to two sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-pure forms from a mild (0.1%) Triton X-100 extract of washed cells. The GGT was studied primarily with regard to its hydrolytic activity by using N-gamma-L-glutamyl-4-nitroaniline as a substrate, although the GGT was shown to catalyze transpeptidation reactions. The high-molecular-mass form of the GGT gave a value of about 213 kDa by SDS-PAGE when heat treatment was omitted and one of 26 kDa after heat treatment; mass spectrometry gave a value of 26.877. The larger form may represent an aggregate with nonprotein structures (possibly of a carbohydrate nature). The preliminary N-terminal sequence of the GGT is MKKPLIGITGSXLYETSQXXF. The enzyme was highly active on glutathione, transferring its Glu residue either to a water molecule or to the Gly-L-Leu dipeptide. The GGT stability was absolutely dependent on the presence of free thiol(s), while no evidence of metalloenzyme nature was obtained. The proposed location of the GGT in the outer cell envelope and its high activity on glutathione, a major nonprotein thiol present in virtually all cells, suggest that the GGT may play a role in the propagation of T. denticola within inflamed periodontal tissues. PMID:9009331

  19. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

  20. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.

  1. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633.

    PubMed Central

    Klein, C; Entian, K D

    1994-01-01

    Subtilin is a ribosomally synthesized peptide antibiotic produced by Bacillus subtilis ATCC 6633. Recently, we reported regarding genes spaB, spaT, and spaC (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992) which are involved in the biosynthesis of subtilin, and genes spaR and spaK (C. Klein, C. Kaletta, and K.-D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), which regulate subtilin biosynthesis via a histidine kinase/response regulator system. Further sequence analysis revealed the presence of three additional open reading frames, spaI, spaF, and spaG, downstream of the structural gene spaS. The spaI gene encodes a hydrophilic 19.3-kDa lipoprotein containing a consensus signal sequence, indicating that this protein might be membrane anchored. A similar gene, nisI, has been identified in the nisin producer. SpaF shows strong homology to members of the family of ABC transporters. spaG encodes a hydrophobic protein which might form the active transporter together with SpaF. Gene disruption mutants in all three genes were still able to produce subtilin; however, these mutants were more sensitive to subtilin than the wild-type strain. These results show that these genes are involved in the immunity mechanism of the producer strain. A similar involvement of an ABC transporter in the self-protection mechanism has been described for the McbE and McbF transporter, which confers immunity against microcin B17 in Escherichia coli. Mutants containing mutations in the genes spaR and spaK, which are responsible for regulation of subtilin biosynthesis, also became more sensitive to subtilin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8085823

  2. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707†

    PubMed Central

    Klotz, Martin G.; Arp, Daniel J.; Chain, Patrick S. G.; El-Sheikh, Amal F.; Hauser, Loren J.; Hommes, Norman G.; Larimer, Frank W.; Malfatti, Stephanie A.; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa M.; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type). PMID:16957257

  3. Immobilization of Lactobacillus salivarius ATCC 11741 on loofa sponge coated with chitosan for lactic acid fermentation.

    PubMed

    Chantawongvuti, Ratchat; Veerajetbodithat, Juntanee; Jaturapiree, Phimchanok; Muangnapoh, Chirakarn

    2010-01-01

    Lactic acid (LA) fermentation by Lactobacillus salivarius ATCC 11741 immobilized on loofa sponge (LS) was evaluated. To increase the surface area of LS for cell immobilization, H2O2 and chitosan were introduced as surface modifying reagents. Four chitosan of different molecular weight were separately coated on LS. All experiments were conducted in shaking flask mode at 100 rpm rotating speed and 37 degrees with 5% CaCO3 as a pH regulating agent. The effects of initial glucose concentration were investigated in the range of 20-100 g L-1 on LA fermentation by free cells. The results indicate that the maximum concentration of LA was produced with 50 g L-1 glucose concentration. The immobilized cell system produced 1.5 times higher concentration than free cells for 24 h of fermentation. Moreover, immobilized cells can shorten the fermentation time by 2 fold compared with free cells at the same level of LA concentration. At 1% w/v chitosan in 2% v/v acetic acid, Yp/s and productivities of various molecular weight of chitosan were insignificantly different. Repeated batch fermentations showed 5 effective recycles with Yp/s and productivity in the range of 0.55-0.85 and 0.90-1.20 g L-1 h-1, respectively. It is evident that immobilization of L. salivarius onto LS permits reuse of the system under these fermentation conditions. Scanning electron micrographs indicated that there were more intact cells on the chitosan-treated LS than on the untreated LS, thus confirming the effectiveness of the LS-chitosan combination when being utilized as a promising immobilization carrier for LA fermentation. PMID:20134241

  4. Characterization of Five β-Glycoside Hydrolases from Cellulomonas fimi ATCC 484

    PubMed Central

    Gao, Juan

    2014-01-01

    The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose. PMID:25225266

  5. Streptococcus salivarius ATCC 25975 possesses at least two genes coding for primer-independent glucosyltransferases.

    PubMed Central

    Simpson, C L; Giffard, P M; Jacques, N A

    1995-01-01

    Fractionation of the culture medium showed that Streptococcus salivarius ATCC 25975 secreted a glucosyltransferase (Gtf) that was primer independent. On the basis of this observation, a gene library of S. salivarius chromosomal DNA cloned into lambda L47.1 was screened for a gene(s) coding for such an activity. As a result of this screening process, two new gtf genes, gtfL and gtfM, both of which coded for primer-independent Gtf activities, were isolated. GtfL produced an insoluble glucan that was refractory to digestion by the endo-(1-->6)-alpha-D-glucanase. of Chaetonium gracile, while GtfM produced a soluble glucan that was readily degraded by the glucanase. Comparison of the deduced amino acid sequences of gtfL and gtfM with 10 other available Gtf sequences allowed the relatedness of the conserved catalytic regions to be assessed. This analysis showed that the 12 enzymes did not form clusters based on their primer dependencies or on their product solubilities. Further analysis of the YG repeats in the C-terminal glucan-binding domains of GtfJ, GtfK, GtfL, and GtfM from S. salivarius showed that there was strong homology between a block of contiguous triplet YG repeats present in the four alleles. These blocks of YG repeats were coded for by a region of each gene that appeared to have arisen as a result of a recent duplication event(s). PMID:7822030

  6. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  7. Multicopy Integration and Expression of Heterologous Genes in Methylobacterium extorquens ATCC 55366†

    PubMed Central

    Choi, Young J.; Bourque, Denis; Morel, Lyne; Groleau, Denis; Míguez, Carlos B.

    2006-01-01

    High-level expression of chromosomally integrated genes in Methylobacterium extorquens ATCC 55366 was achieved under the control of the strong M. extorquens AM1 methanol dehydrogenase promoter (PmxaF) using the mini-Tn7 transposon system. Stable maintenance and expression of the integrated genes were obtained in the absence of antibiotic selective pressure. Furthermore, using this technology, a multicopy integration protocol for M. extorquens was also developed. Chromosomal integration of one to five copies of the gene encoding the green fluorescent protein (gfp) was achieved. The multicopy-based expression system permitted expression of a preset number of gene copies. A unique specific Tn7 integration locus in the chromosome of M. extorquens, known as the Tn7 attachment site (attTn7 site), was identified. This single attTn7 site was identified in an intergenic region between glmS, which encodes the essential enzyme glucosamine-6-phosphate synthetase, and dhaT, which encodes 1,3-propanediol dehydrogenase. The fact that the integration event is site specific and the fact that the attTn7 site is a noncoding region of the chromosome make the mini-Tn7 transposon system very useful for insertion of target genes and subsequent expression. In all transformants tested, expression and segregation of the transforming gene were stable without generation of secondary mutations in the host. In this paper, we describe single and multicopy chromosome integration and stable expression of heterologous genes (bgl [β-galactosidase], est [esterase], and gfp [green fluorescent protein]) in M. extorquens. PMID:16391115

  8. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase.

    PubMed

    Talà, Adelfia; Wang, Guojun; Zemanova, Martina; Okamoto, Susumu; Ochi, Kozo; Alifano, Pietro

    2009-02-01

    There is accumulating evidence that the ability of actinomycetes to produce antibiotics and other bioactive secondary metabolites has been underestimated due to the presence of cryptic gene clusters. The activation of dormant genes is therefore one of the most important areas of experimental research for the discovery of drugs in these organisms. The recent observation that several actinomycetes possess two RNA polymerase beta-chain genes (rpoB) has opened up the possibility, explored in this study, of developing a new strategy to activate dormant gene expression in bacteria. Two rpoB paralogs, rpoB(S) and rpoB(R), provide Nonomuraea sp. strain ATCC 39727 with two functionally distinct and developmentally regulated RNA polymerases. The product of rpoB(R), the expression of which increases after transition to stationary phase, is characterized by five amino acid substitutions located within or close to the so-called rifampin resistance clusters that play a key role in fundamental activities of RNA polymerase. Here, we report that rpoB(R) markedly activated antibiotic biosynthesis in the wild-type Streptomyces lividans strain 1326 and also in strain KO-421, a relaxed (rel) mutant unable to produce ppGpp. Site-directed mutagenesis demonstrated that the rpoB(R)-specific missense H426N mutation was essential for the activation of secondary metabolism. Our observations also indicated that mutant-type or duplicated, rpoB often exists in nature among rare actinomycetes and will thus provide a basis for further basic and applied research.

  9. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    PubMed

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  10. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  11. Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133.

    PubMed

    Ferreira, Daniela; Garcia-Pichel, Ferran

    2016-01-01

    The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms. PMID:27242750

  12. A Model of Cyclic Transcriptomic Behavior in Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    McDermott, Jason E.; Oehmen, Christopher S.; McCue, Lee Ann; Hill, Eric A.; Choi, Daniel M.; Stockel, Jana; Liberton, Michelle L.; Pakrasi, Himadri B.; Sherman, Louis A.

    2011-07-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. Useful and predictive models aim to summarize complex and dynamic processes and represent the relationships between these processes. The cyanobacterial Cyanothece species Strain sp. ATCC 51142 is an excellent candidate for such systems studies because: (i) it displays tight functional regulation as it must separate the opposing processes of oxygen-generating photosynthesis and oxygen-sensitive nitrogen fixation temporally in the same cell, ; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels, ; and (iii) and it has potential applications for bioenergy and carbon sequestration, and thus a predictive model of its function is of practical use. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in Cyanothece 51142. Our model provides a way to integrate disparate data types into a framework that can be used to explain behavior, generate high-quality predictions for validation, and to suggest future experiments. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions robustly, and represents a significant advance in the understanding of gene regulation in this important organism.

  13. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.

    PubMed

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-08-28

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria.

  14. Study of Humoral Immunity to Commensal Oral Bacteria in Human Infants Demonstrates the Presence of Secretory Immunoglobulin A Antibodies Reactive with Actinomyces naeslundii Genospecies 1 and 2 Ribotypes

    PubMed Central

    Cole, Michael F.; Evans, Mishell K.; Kirchherr, Jennifer L.; Sheridan, Michael J.; Bowden, G. H. W.

    2004-01-01

    The mouths of three human infants were examined from birth to age 2 years to detect colonization of Actinomyces naeslundii genospecies 1 and 2. These bacteria did not colonize until after tooth eruption. The diversity of posteruption isolates was determined by ribotyping. Using immunoblotting and enzyme-linked immunosorbent assay, we determined the reactivity of secretory immunoglobulin A (SIgA) antibodies in saliva samples collected from each infant before and after colonization against cell wall proteins from their own A. naeslundii strains and carbohydrates from standard A. naeslundii genospecies 1 and 2 strains. A. naeslundii genospecies 1 and 2 carbohydrate-reactive SIgA antibodies were not detected in any saliva sample. However, SIgA antibodies reactive with cell wall proteins were present in saliva before these bacteria colonized the mouth. These antibodies could be almost completely removed by absorption with A. odontolyticus, a species known to colonize the human mouth shortly after birth. However, after colonization by A. naeslundii genospecies 1 and 2, specific antibodies were induced that could not be removed by absorption with A. odontolyticus. Cluster analysis of the patterns of reactivity of postcolonization salivary antibodies from each infant with antigens from their own strains showed that not only could these antibodies discriminate among strains but antibodies in saliva samples collected at different times showed different reactivity patterns. Overall, these data suggest that, although much of the salivary SIgA antibodies reactive with A. naeslundii genospecies 1 and 2 are directed against genus-specific or more broadly cross-reactive antigens, species, genospecies, and possibly strain-specific antibodies are induced in response to colonization. PMID:15138172

  15. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  16. Proline iminopeptidase from the outer cell envelope of the human oral spirochete Treponema denticola ATCC 35405.

    PubMed Central

    Mäkinen, K K; Chen, C Y; Mäkinen, P L

    1996-01-01

    Certain periodontopathic organisms have been shown to exhibit high activity of proline iminopeptidase (PIPase). The human oral spirochete Treponema denticola ATCC 35405 was found to contain an easily extractable, novel PIPase (EC 3.4.11.5), which was purified to a sodium dodecyl sulfate- polyacrylamide gel electrophoresis-pure form by means of fast protein liquid chromatographic procedures. The range of the minimum monomeric molecular mass (280 amino acid residues) of the PIPase, based on amino acid analysis, was 30.35 to 30.39 kDa, but the likely in vivo form of the enzyme is a tetramer (minimum mass, 120.2 to 120.4 kDa). The molecular masses based on laser desorption mass spectrometry were 36.058 kDa for the monomer and 72.596 kDa for a dimer. The PIPase cleaves specifically the Pro-Y bond in dipeptides where Y is preferably Arg or Lys. Pro-Gln, Pro-Asn, and Pro-Ala were also good substrates, while Pro-Glu was hydrolyzed slowly and Pro-Asp was not hydrolyzed at all. Tripeptides were poor substrates or were not hydrolyzed (an exception was Pro-Gly-Gly, which cleaved at a moderate rate). Larger molecules, such as poly-L-Pro, were not hydrolyzed. The T. denticola enzyme can be regarded as a true PIPase, since replacing Pro in Pro-Y with other amino acid residues resulted in no hydrolysis. The activity of the PIPase may depend on an active carboxyl group and on an active seryl residue but not on metal cations. Diethylpyrocarbonate inactivated the enzyme in a reaction that was not reversible upon addition of NH2OH. The enzyme contains a relatively large percentage (ca. 15%) of proline residues. The dominance of the PIPase activity among aminopeptidase activities present in T. denticola and the proposed location of the enzyme in the outer cell envelope suggest that it has a vital function in the propagation of the cells within their biological niche (inflamed human periodontal tissues). The biologic role of the PIPase may be envisaged as in the termination of the

  17. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  18. Characterizations of Metal Binding in the Active Sites of Acireductone Dioxygenase Isoforms from Klebsiella ATCC 8724

    SciTech Connect

    Chai,S.; Ju, T.; Dang, M.; Goldsmith, R.; Maroney, M.; Pochapsky, T.

    2008-01-01

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1, 2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M2+ metal ion bound in the active site. The Ni2+-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe2+-bound FeARD' catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD' and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates metal in vivo but

  19. Characterization of Metal Binding in the Active Sites of acireductone dioxygenase Isoforms from Klebsiella ATCC 8724

    SciTech Connect

    S Chai; T Ju; M Dang; R Goldsmith; M Maroney; T Pochapsky

    2011-12-31

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M{sup 2+} metal ion bound in the active site. The Ni{sup 2+}-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe{sup 2+}-bound FeARD catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates

  20. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  1. Design and production of functionalized biopolyesters by Methylobacterium extorquens ATCC 55366: Toward new tissue engineering materials

    NASA Astrophysics Data System (ADS)

    Hoefer, Heinrich Friedrich Philipp Till Nikolaus

    Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C ≤ 5) and unsaturated medium-chain-length (mcl, 6 ≤ C ≤ 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 ≤ C ≤ 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl

  2. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618

    PubMed Central

    2011-01-01

    Background Succinic acid is a building-block chemical which could be used as the precursor of many industrial products. The dissolved CO2 concentration in the fermentation broth could strongly regulate the metabolic flux of carbon and the activity of phosphoenolpyruvate (PEP) carboxykinase, which are the important committed steps for the biosynthesis of succinic acid by Actinobacillus succinogenes. Previous reports showed that succinic acid production could be promoted by regulating the supply of CO2 donor in the fermentation broth. Therefore, the effects of dissolved CO2 concentration and MgCO3 on the fermentation process should be investigated. In this article, we studied the impacts of gaseous CO2 partial pressure, dissolved CO2 concentration, and the addition amount of MgCO3 on succinic acid production by Actinobacillus succinogenes ATCC 55618. We also demonstrated that gaseous CO2 could be removed when MgCO3 was fully supplied. Results An effective CO2 quantitative mathematical model was developed to calculate the dissolved CO2 concentration in the fermentation broth. The highest succinic acid production of 61.92 g/L was obtained at 159.22 mM dissolved CO2 concentration, which was supplied by 40 g/L MgCO3 at the CO2 partial pressure of 101.33 kPa. When MgCO3 was used as the only CO2 donor, a maximal succinic acid production of 56.1 g/L was obtained, which was just decreased by 7.03% compared with that obtained under the supply of gaseous CO2 and MgCO3. Conclusions Besides the high dissolved CO2 concentration, the excessive addition of MgCO3 was beneficial to promote the succinic acid synthesis. This was the first report investigating the replaceable of gaseous CO2 in the fermentation of succinic acid. The results obtained in this study may be useful for reducing the cost of succinic acid fermentation process. PMID:22040346

  3. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    PubMed Central

    2012-01-01

    Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C) for 10 days and at refrigerated temperature (4°C) for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea extracts to improve the

  4. Isolation, Sequence Analysis, and Comparison of Two Plasmids (28 and 29 Kilobases) from the Biomining Bacterium Leptospirillum ferrooxidans ATCC 49879

    PubMed Central

    Coram, Nicolette J.; van Zyl, Leonardo J.; Rawlings, Douglas E.

    2005-01-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented. PMID:16269793

  5. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  6. Characterization of Methylglyoxal Synthase from Clostridium acetobutylicum ATCC 824 and Its Use in the Formation of 1,2-Propanediol

    PubMed Central

    Huang, Ke-xue; Rudolph, Frederick B.; Bennett, George N.

    1999-01-01

    A gene encoding a putative 150-amino-acid methylglyoxal synthase was identified in Clostridium acetobutylicum ATCC 824. The enzyme was overexpressed in Escherichia coli and purified. Methylglyoxal synthase has a native molecular mass of 60 kDa and an optimum pH of 7.5. The Km and Vmax values for the substrate dihydroxyacetone phosphate were 0.53 mM and 1.56 mmol min−1 μg−1, respectively. When E. coli glycerol dehydrogenase was coexpressed with methylglyoxal synthase in E. coli BL21(DE3), 3.9 mM 1,2-propanediol was produced. PMID:10388730

  7. The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525.

    PubMed

    Meyer, J M; Stintzi, A; Poole, K

    1999-01-01

    FpvA, the ferripyoverdine outer membrane receptor of Pseudomonas aeruginosa ATCC 15692 (PAO1 strain), is not specific to the pyoverdine produced by PAO1, but is also able to recognize the structurally different (ferri)pyoverdine of P. fluorescens ATCC 13525. The specificity of FpvA was assessed by iron uptake competitions using the wild-type strains P. aeruginosa ATCC 15692 and P. fluorescens ATCC 13525 and their respective ferripyoverdines, and by fpvA gene complementation of a FpvA-deficient mutant of P. aeruginosa ATCC 15692. The receptor mutant was able to utilize none of the two pyoverdines, while the same but fpvA-complemented mutant recovered simultaneously the ability to incorporate iron thanks to each of the two siderophores. The broad specificity of recognition of FpvA is viewed as an advantage for the strain in iron competition. Moreover, it allows an interesting approach for the understanding of the recognition mechanism between a (ferri)pyoverdine and its cognate outer membrane receptor. PMID:9919663

  8. Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH

    PubMed Central

    2013-01-01

    Background With the rising demand for osseointegrated titanium implants for replacing missing teeth, often in patients with a history of periodontitis, implant-related infections have become an issue of growing concern. Novel methods for treating and preventing implant-associated infections are urgently needed. The aim of this study was to investigate if different pH, atmosphere and surface properties could restrict bacterial adhesion to titanium surfaces used in dental implants. Methods Titanium discs with machined or anodized (TiUnite™) surface were incubated with a co-culture of Streptococcus mitis and Actinomyces oris (early colonizers of oral surfaces) at pH 5.0, 7.0 and 9.0 at aerobic or anaerobic atmosphere. The adhesion was analysed by counting colony forming (CFU) units on agar and by confocal laser scanning microscopy (CLSM). Results The CFU analysis showed that a pH of 5.0 was found to significantly decrease the adhesion of S. mitis, and an aerobic atmosphere, the adhesion of A. oris. S. mitis was found in significantly less amounts on the anodized surface than the machined surface, while A. oris was found in equal amounts on both surfaces. The CLSM analysis confirmed the results from the CFU count and provided additional information on how the two oral commensal species adhered to the surfaces: mainly in dispersed clusters oriented with the groves of the machined surface and the pores of the anodized surface. Conclusions Bacterial adhesion by S. mitis and A. oris can be restricted by acidic pH and aerobic atmosphere. The anodized surface reduced the adhesion of S. mitis compared to the machined surface; while A. oris adhered equally well to the pores of the anodized surface and to the grooves of the machined surface. It is difficult to transfer these results directly into a clinical situation. However, it is worth further investigating these findings from an in vitro perspective, as well as clinically, to gain more knowledge of the effects acid pH and

  9. Inactivation of Listeria monocytogenes ATCC 7644 on fresh-cut tomato using nisin in combinations with organic salts.

    PubMed

    Oladunjoye, Adebola O; Singh, Suren; Ijabadeniyi, Oluwatosin A

    2016-01-01

    The inhibition of Listeria monocytogenes ATCC 7644 on fresh-cut tomato was investigated using nisin alone, and in combinations with organic salts. Nisin at a concentration of 5000UI/mL was introduced alone or in combination with an organic salt (sodium citrate or sodium acetate each at 3 and 5g/100mL each) on fresh-cut tomato previously inoculated with 10(8)CFU/mL of L. monocytogenes ATCC 7644. Chlorine at 200ppm was used as a control. The inoculated samples were incubated at different temperatures (4, 10 and 25°C) and examined at 0, 24, 48 and 72h. The effects of the antimicrobial treatments on quality parameters of tomato (pH, soluble solids, titratable acidity and vitamin C) were also evaluated, and colour parameters were observed at the lowest storage temperature for 10 days. Both nisin and the organic salts inhibited growth of L. monocytogenes, but the combinations of two compounds were more effective. The nisin-sodium citrate (5%) combination was significantly (p≤0.05) effective, while chlorine was least effective against L. monocytogenes. The quality parameters were substantially retained, especially at 4°C, suggesting good shelf stability at a low temperature. These results substantiate the use of the cheap and eco-friendly approach to reducing this pathogen of health concern in common fresh produce. PMID:27261167

  10. Antiserum against Raoultella terrigena ATCC 33257 identifies a large number of Raoultella and Klebsiella clinical isolates as serotype O12.

    PubMed

    Mertens, Katja; Müller-Loennies, Sven; Stengel, Petra; Podschun, Rainer; Hansen, Dennis S; Mamat, Uwe

    2010-12-01

    Raoultella terrigena ATCC 33257, recently reclassified from the genus Klebsiella, is a drinking water isolate and belongs to a large group of non-typeable Klebsiella and Raoultella strains. Using an O-antiserum against a capsule-deficient mutant of this strain, we could show a high prevalence (10.5%) of the R. terrigena O-serotype among non-typeable, clinical Klebsiella and Raoultella isolates. We observed a strong serological cross-reaction with the K. pneumoniae O12 reference strain, indicating that a large percentage of these non-typeable strains may belong to the O12 serotype, although these are currently not detectable by the K. pneumoniae O12 reference antiserum in use. Therefore, we analyzed the O-polysaccharide (O-PS) structure and genetic organization of the wb gene cluster of R. terrigena ATCC 33257, and both confirmed a close relation of R. terrigena and K. pneumoniae O12. The two strains possess an identical O-PS, lipopolysaccharide core structure, and genetic organization of the wb gene cluster. Heterologous expression of the R. terrigena wb gene cluster in Escherichia coli K-12 resulted in the WecA-dependent synthesis of an O-PS reactive with the K. pneumoniae O12 antiserum. The serological data presented here suggest a higher prevalence of the O12-serotype among Klebsiella and Raoultella isolates than generally assumed.

  11. Efficient Simultaneous Saccharification and Fermentation of Inulin to 2,3-Butanediol by Thermophilic Bacillus licheniformis ATCC 14580

    PubMed Central

    Li, Lixiang; Chen, Chao; Li, Kun; Wang, Yu; Gao, Chao; Ma, Cuiqing

    2014-01-01

    2,3-Butanediol (2,3-BD) is an important starting material for the manufacture of bulk chemicals. For efficient and large-scale production of 2,3-BD through fermentation, low-cost substrates are required. One such substrate, inulin, is a polydisperse fructan found in a wide variety of plants. In this study, a levanase with high inulinase activity and high pH and temperature stability was identified in Bacillus licheniformis strain ATCC 14580. B. licheniformis strain ATCC 14580 was found to efficiently produce 2,3-BD from fructose at 50°C. Then, the levanase was used for simultaneous saccharification and fermentation (SSF) of inulin to 2,3-BD. A fed-batch SSF yielded 103.0 g/liter 2,3-BD in 30 h, with a high productivity of 3.4 g/liter · h. The results suggest that the SSF process developed with the thermophilic B. licheniformis strain used might be a promising alternative for efficient 2,3-BD production from the favorable substrate inulin. PMID:25107977

  12. Growth and nitrite and nitrous oxide accumulation of Paracoccus denitrificans ATCC 19367 in the presence of selected pesticides.

    PubMed

    Sáez, Florentina; Pozo, Clementina; Gómez, Miguel Angel; Rodelas, Belén; Gónzalez-López, Jesús

    2003-09-01

    The effects of the application of eight pesticides (aldrin, lindane, dimetoate, methylparathion, methidation, atrazine, simazine, and captan) on growth, respiratory activity (as CO2 production), denitrifying activity (as N2O released), and nitrite accumulation in the culture medium by Paracoccus denitrificans strain ATCC 19367 were studied. The fungicide captan totally inhibited growth and biological activity of P. denitrificans, while the rest of the tested pesticides delayed the growth and CO2 release of P. denitrificans but did not drastically affect the bacterial growth or respiratory capacity after 96 h of culture. The denitrifying activity of P. denitrificans ATCC 19367 (as N2O released) was negatively affected by all tested pesticides. The release of N2O was strongly inhibited by several organochlorinated and organophosphorated insecticides (aldrin, lindane, dimetoate, and methidation), which led to high accumulation of nitrite in the surrounding medium. Atrazine decreased N2O release after 48 h of culture because of negative effects on growth, and methylparathion and simazine delayed the onset of N2O release by P. denitrificans. These three pesticides reduced the accumulation of NO2- compared to unamended control cultures. PMID:12959522

  13. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN. PMID:8606159

  14. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Schneegurt, M A; Sherman, D M; Nayar, S; Sherman, L A

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms. Images PMID:8132452

  15. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride.

    PubMed

    Lee, H Y; Chai, L C; Pui, C F; Mustafa, S; Cheah, Y K; Nishibuchi, M; Radu, S

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1-10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.

  16. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance.

  17. A Novel Metallo-β-Lactamase Involved in the Ampicillin Resistance of Streptococcus pneumoniae ATCC 49136 Strain

    PubMed Central

    Chang, Chia-Yu; Lin, Hui-Jen; Li, Yaw-Kuen

    2016-01-01

    Streptococcus pneumoniae, a penicillin-sensitive bacterium, is recognized as a major cause of pneumonia and is treated clinically with penicillin-based antibiotics. The rapid increase in resistance to penicillin and other antibiotics affects 450 million people globally and results in 4 million deaths every year. To unveil the mechanism of resistance of S. pneumoniae is thus an important issue to treat streptococcal disease that might consequently save millions of lives around the world. In this work, we isolated a streptococci-conserved L-ascorbate 6-phosphate lactonase, from S. pneumoniae ATCC 49136. This protein reveals a metallo-β-lactamase activity in vitro, which is able to deactivate an ampicillin-based antibiotic by hydrolyzing the amide bond of the β-lactam ring. The Michaelis parameter (Km) = 25 μM and turnover number (kcat) = 2 s-1 were obtained when nitrocefin was utilized as an optically measurable substrate. Through confocal images and western blot analyses with a specific antibody, the indigenous protein was recognized in S. pneumoniae ATCC 49136. The protein-overexpressed S. pneumonia exhibits a high ampicillin-tolerance ability in vivo. In contrast, the protein-knockout S. pneumonia reveals the ampicillin-sensitive feature relative to the wild type strain. Based on these results, we propose that this protein is a membrane-associated metallo-β-lactamase (MBL) involved in the antibiotic-resistant property of S. pneumoniae. PMID:27214294

  18. Complementary and dose-dependent action of AtCCS52A isoforms in endoreduplication and plant size control.

    PubMed

    Baloban, Mikhail; Vanstraelen, Marleen; Tarayre, Sylvie; Reuzeau, Christophe; Cultrone, Antonietta; Mergaert, Peter; Kondorosi, Eva

    2013-06-01

    · The dimension of organs depends on the number and the size of their component cells. Formation of polyploid cells by endoreduplication cycles is predominantly associated with increases in the cell size and implicated in organ growth. In plants, the CCS52A proteins play a major role in the switch from mitotic to endoreduplication cycles controlling thus the number of mitotic cells and the endoreduplication events in the differentiating cells. · Arabidopsis has two CCS52A isoforms; AtCCS52A1 and AtCCS52A2. Here we focused on their roles in endoreduplication and cell size control during plant development. We demonstrate their complementary and dose-dependent actions that are dependent on their expression patterns. Moreover, the impact of CCS52A overexpression on organ size in transgenic plants was dependent on the expression level; while enhanced expression of the CCS52A genes positively correlated with the ploidy levels, organ sizes were negatively affected by strong overexpression whereas milder overexpression resulted in a significant increase in the organ sizes. · Taken together, these finding support both complementary and dose-dependent actions for the Arabidopsis CCS52A isoforms in plant development and demonstrate that elevated ectopic CCS52A expression positively correlates with organ size, opening a route to higher biomass production.

  19. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  20. Gene Cluster Involved in the Biosynthesis of Griseobactin, a Catechol-Peptide Siderophore of Streptomyces sp. ATCC 700974▿

    PubMed Central

    Patzer, Silke I.; Braun, Volkmar

    2010-01-01

    The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces. PMID:19915026

  1. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142.

    PubMed

    Bernstein, Hans C; Charania, Moiz A; McClure, Ryan S; Sadler, Natalie C; Melnicki, Matthew R; Hill, Eric A; Markillie, Lye Meng; Nicora, Carrie D; Wright, Aaron T; Romine, Margaret F; Beliaev, Alexander S

    2015-01-01

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process. PMID:26525576

  2. Multi-omic dynamics associate oxygenic photosynthesis with nitrogenase-mediated H2 production in Cyanothece sp. ATCC 51142

    DOE PAGES

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; Sadler, Natalie C.; Melnicki, Matthew R.; Hill, Eric A.; Markillie, Lye Meng; Nicora, Carrie D.; Wright, Aaron T.; Romine, Margaret F.; et al

    2015-11-03

    This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized withmore » nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the likely role of photocatalytic H2O oxidation as a major participating process.« less

  3. Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish.

    PubMed

    Pulgar, Rodrigo; Travisany, Dante; Zuñiga, Alejandro; Maass, Alejandro; Cambiazo, Verónica

    2015-10-20

    Piscirickettsia salmonis, the causative agent of salmonid rickettsial septicemia (SRS), is a significant threat to the healthy and sustainable production of salmonid farming industry. This Gram-negative bacterium, originally isolated from a coho salmon in Southern Chile, produces a systemic infection characterized by colonization of several fish organs. P. salmonis is able to infect, survive, and replicate inside salmonid macrophages however little is known about its mechanisms of pathogenesis. Here, we present the whole genome sequence and annotation of the P. salmonis reference strain LF-89 (ATCC VR-1361). The genome contains one circular chromosome of 3,184,851 bp and three plasmids, pPSLF89-1 (180,124 bp), pPSLF89-2 (33,516 bp) and pPSLF89-3 (51,573 bp). A total of 2850 protein-coding genes, 56 tRNAs and six copies of 5S-16S-23S rRNA. PMID:26220311

  4. Supporting data for comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration of nisin

    PubMed Central

    Miyamoto, Kendi Nishino; Mariante Monteiro, Karina; da Silva Caumo, Karin; Rodrigues Lorenzatto, Karina; Bunselmeyer Ferreira, Henrique; Brandelli, Adriano

    2015-01-01

    Here we provide the LC–MS/MS data from a comparative analysis of Listeria monocytogenes ATCC 7644 treated and non-treated with a sublethal concentration of nisin (10−3 mg/mL). Protein samples were analyzed by multidimensional protein identification technology (MudPIT) approach, in an off-line configuration. The raw MS/MS data allowed the detection of 49,591 spectra which resulted in 576 protein identifications. After Scaffold validation, 179 proteins were identified with high confidence. A label-free quantitative analysis based of normalized spectral abundance factor (NSAF) was used and 13 proteins were found differentially expressed between nisin-treated and non-treated cells. Gene ontology analysis of differentially expressed proteins revealed that most of them are correlated to metabolic process, oxidative stress response mechanisms and molecular binding. A detailed analysis and discussion of these data may be found in Miyamoto et al. [1]. PMID:26217729

  5. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression.

    PubMed

    Yang, Fan; Gong, Yanfen; Liu, Gang; Zhao, Shengming; Wang, Juan

    2015-07-01

    The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

  6. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    DOE PAGES

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, TBK; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; et al

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp.more » It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  7. Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays.

    PubMed

    Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan

    2016-10-01

    Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed. PMID:27519020

  8. [Effect of cinnamon and lavender oils on FtsZ gene expression in the Staphylococus aureus ATCC 29213].

    PubMed

    Herman, A; Bochenek, J; Herman, A P

    2013-01-01

    This study was designed to determine the effect of lavender and cinnamon oils on FtsZ gene expression in Staphylococcus aureus ATCC 29213. The cinnamon and lavender oils at least partially results from the inhibition of FtsZ transcription and disruption of cell division process at the level of the septum synthesis, what is similar to mechanisms of drug action used in anti-staphylococcal therapies. The presented results could be an important background for the further detailed research, which is needed to clarify the effect of essential oils on FtsZ synthesis at the posttranscriptional level and other stages of cell division process of S. aureus and other pathogenic bacteria.

  9. A role for the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in nitrogen cycling for CELSS applications.

    PubMed

    Schneegurt, M A; Sherman, L A

    1996-01-01

    Simple calculations show that fixed nitrogen regeneration in a CELSS may not be as efficient as stowage and resupply of fixed nitrogen compounds. However, fixed nitrogen regeneration may be important for the sustainability and safety of a deployed CELSS. Cyanothece sp. strain ATCC 51142, a unicellular, aerobic, diazotrophic cyanobacterium, with high growth rates and a robust metabolism, is a reasonable candidate organism for a biological, fixed nitrogen regeneration system. In addition, Cyanothece sp. cultures may be used to balance gas exchange ratio imparities between plants and humans. The regeneration of fixed nitrogen compounds by cyanobacterial cultures was examined in the context of a broad computer model/simulation (called CELSS-3D). When cyanothece sp. cultures were used to balance gas exchange imparities, the biomass harvested could supply as much as half of the total fixed nitrogen needed for plant biomass production.

  10. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142.

    PubMed

    Bernstein, Hans C; Charania, Moiz A; McClure, Ryan S; Sadler, Natalie C; Melnicki, Matthew R; Hill, Eric A; Markillie, Lye Meng; Nicora, Carrie D; Wright, Aaron T; Romine, Margaret F; Beliaev, Alexander S

    2015-11-03

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.

  11. Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacterium Anabaena sp. strain ATCC 33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1987-04-01

    Synthesis of ammonia from dinitrogen and water by suspensions of Anabaena sp. strain ATCC 33047 treated with the glutamine synthetase inhibitor L-methionine-D,L-sulfoximine is strictly dependent on light. Under otherwise optimal conditions, the yield of ammonia production is influenced by irradiance, as well as by the density, depth, and turbulence of the cell suspension. The interaction among these factors seems to determine the actual amount of light available to each single cell or filament in the suspension for the photoproduction process. Under convenient illumination, the limiting factor in the synthesis of ammonia seems to be the cellular nitrogenase activity level, but under limiting light conditions the limiting factor could, however, be the assimilatory power required for nitrogen fixation. Photosynthetic ammonia production from atmospheric nitrogen and water can operate with an efficiency of ca. 10% of its theoretical maximum, representing a remarkable process for the conversion of light energy into chemical energy.

  12. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium anabaena sp. strain CA (ATCC 33047)

    SciTech Connect

    Smith, R.L.; Van Baalen, C. ); Tabita, F.R. Ohio State Univ., Columbus )

    1990-05-01

    The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO{sub 2} in air was inhibited by exposure to 1% CO{sub 2}-99% O{sub 2} and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH{sub 4}NO{sub 3} were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH{sub 4}{sup +} rather than NO{sub 3}{sup {minus}}.

  13. Cloning and sequencing of the trpE gene from Arthrobacter globiformis ATCC 8010 and several related subsurface Arthrobacter isolates

    SciTech Connect

    Chernova, T.; Viswanathan, V.K.; Austria, N.; Nichols, B.P.

    1998-09-01

    Tryptophan dependent mutants of Arthrobacter globiformis ATCC 8010 were isolated and trp genes were cloned by complementation and marker rescue of the auxotrophic strains. Rescue studies and preliminary sequence analysis reveal that at least the genes trpE, trpC, and trpB are clustered together in this organism. In addition, sequence analysis of the entire trpE gene, which encodes component I of anthranilate synthase, is described. Segments of the trpE gene from 17 subsurface isolates of Arthrobacter sp. were amplified by PCR and sequenced. The partial trpE sequences from the various strains were aligned and subjected to phylogenetic analysis. The data suggest that in addition to single base changes, recombination and genetic exchange play a major role in the evolution of the Arthrobacter genome.

  14. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. strain CA (ATCC 33047).

    PubMed Central

    Smith, R L; Van Baalen, C; Tabita, F R

    1990-01-01

    The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO2 in air was inhibited by exposure to 1% CO2-99% O2 and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH4NO3 were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH4+ rather than NO3-. PMID:2110151

  15. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  16. Cloning, expression, and catabolite repression of a gene encoding beta-galactosidase of Bacillus megaterium ATCC 14581.

    PubMed

    Shaw, G C; Kao, H S; Chiou, C Y

    1998-09-01

    A gene encoding beta-galactosidase, designated mbgA, was isolated from Bacillus megaterium ATCC 14581. Chromosomal beta-galactosidase production could be dramatically induced by lactose but not by isopropyl-beta-D-thiogalactopyranoside (IPTG) and was subject to catabolite repression by glucose. Disruption of mbgA in the B. megaterium chromosome resulted in loss of lactose-inducible beta-galactosidase production. A 27-bp inverted repeat was found to overlap the mbgA promoter sequence. Two partially overlapping catabolite-responsive elements (CREs) were identified within the inverted repeat. Base substitutions within CRE-I and/or CRE-II caused partial relief from catabolite repression. The results suggest that the 27-bp inverted repeat may serve as a target for a catabolite repressor(s). PMID:9721318

  17. Cloning, Expression, and Catabolite Repression of a Gene Encoding β-Galactosidase of Bacillus megaterium ATCC 14581

    PubMed Central

    Shaw, Gwo-Chyuan; Kao, Hsun-Sheng; Chiou, Chih-Yung

    1998-01-01

    A gene encoding β-galactosidase, designated mbgA, was isolated from Bacillus megaterium ATCC 14581. Chromosomal β-galactosidase production could be dramatically induced by lactose but not by isopropyl-β-d-thiogalactopyranoside (IPTG) and was subject to catabolite repression by glucose. Disruption of mbgA in the B. megaterium chromosome resulted in loss of lactose-inducible β-galactosidase production. A 27-bp inverted repeat was found to overlap the mbgA promoter sequence. Two partially overlapping catabolite-responsive elements (CREs) were identified within the inverted repeat. Base substitutions within CRE-I and/or CRE-II caused partial relief from catabolite repression. The results suggest that the 27-bp inverted repeat may serve as a target for a catabolite repressor(s). PMID:9721318

  18. Conditions required for citrate utilization during growth of Lactobacillus casei ATCC334 in chemically defined medium and cheddar cheese extract.

    PubMed

    Díaz-Muñiz, Ilenys; Steele, James L

    2006-10-01

    Conditions required for citrate utilization by Lactobacillus casei ATCC334 were identified. Citrate was utilized by this microorganism in modified Chemically Defined Media (mCDM) as an energy source, solely in the presence of limiting concentrations of galactose. The presence of glucose inhibited citrate utilization by this microorganism even when added in limiting concentrations. Utilization of citrate occurred at pH 6.0 +/- 0.2 and 5.1 +/- 0.2. Together these observations suggest that citrate is an energy source for L. casei in ripening cheese only when the residual levels of carbohydrate post-fermentation are limiting (<2.5 mM), and lactose or glucose are absent. However, citrate utilization by this organism was observed in Cheddar cheese extract (CCE), which naturally contains both lactose and galactose, at the beginning of late-logarithmic phase and regardless of the galactose concentration present in the media.

  19. Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H2 Production in Cyanothece sp. ATCC 51142

    PubMed Central

    Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; Sadler, Natalie C.; Melnicki, Matthew R.; Hill, Eric A.; Markillie, Lye Meng; Nicora, Carrie D.; Wright, Aaron T.; Romine, Margaret F.; Beliaev, Alexander S.

    2015-01-01

    To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process. PMID:26525576

  20. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  1. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H)

    SciTech Connect

    Capobianco, J.O.; Goldman, R.C. )

    1990-09-01

    The effect of collapsing the electrochemical proton gradient (delta mu H) on ({sup 3}H)erythromycin and ({sup 14}C)azithromycin transport in Haemophilus influenzae ATCC 19418 was studied. The proton gradient and membrane potential were determined from the distribution of (2-{sup 14}C)dimethadione and rubidium-86, respectively. delta mu H was reduced from 124 to 3 mV in EDTA-valinomycin-treated cells at 22{degrees}C with 150 mM KCl and 0.1 mM carbonyl cyanide m-chlorophenylhydrazone. During the collapse of delta mu H, macrolide uptake increased. Erythromycin efflux studies strongly suggested that this increase was not due to an energy-dependent efflux pump but was likely due to increased outer membrane permeability. These data indicated that macrolide entry was not a delta mu H-driven active transport process but rather a passive diffusion process.

  2. Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Digmurti, Madhuri G; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is marked by an extended respiratory phase compared with photoautotrophy. It can be argued that glycerol provides supplementary energy for nitrogen fixation, which is derived primarily from the glycogen reserves during photoautotrophy. The genes of NDH complex, cytochrome c oxidase and ATP synthase are significantly overexpressed in mixotrophy during the day compared to autotrophy with synchronous expression of the bidirectional hydrogenase genes possibly to maintain redox balance. However, nitrogenase complex remains exclusive to nighttime metabolism concomitantly with uptake hydrogenase. This study throws light on interrelations between metabolic pathways with implications in design of hydrogen producer strains.

  3. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology.

    PubMed

    Banik, R M; Santhiagu, A; Upadhyay, S N

    2007-03-01

    A molasses based medium for the production of gellan by Sphingomonas paucimobilis ATCC-31461 was developed. Placket-Burman design criterion was applied to study the effect of various nutrient supplements on gellan production using molasses. Among the 20 variables tested, molasses, tryptone, casaminoacid, disodium hydrogen orthophosphate and manganese chloride showed significant effect on gellan production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Placket-Burman design. Most suitable medium composition for production of gellan was (g/l): molasses-112.5; tryptone-1; casaminoacid-1; disodium hydrogen orthophosphate-1; manganese chloride-0.947 and the optimum gellan production was 13.814 g/l.

  4. The Biosynthetic Gene Cluster of Zorbamycin, a Member of the Bleomycin Family of Antitumor Antibiotics, from Streptomyces flavoviridis ATCC 21892

    PubMed Central

    Galm, Ute; Wendt-Pienkowski, Evelyn; Wang, Liyan; George, Nicholas P.; Oh, Tae-Jin; Yi, Fan; Tao, Meifeng; Coughlin, Jane M.; Shen, Ben

    2011-01-01

    The biosynthetic gene cluster for the glycopeptide-derived antitumor antibiotic zorbamycin (ZBM) was cloned by screening a cosmid library of Streptomyces flavoviridis ATCC 21892. Sequence analysis revealed 40 ORFs belonging to the ZBM biosynthetic gene cluster. However, only 23 and 22 ORFs showed striking similarities to the biosynthetic gene clusters for the bleomycins (BLMs) and tallysomycins (TLMs), respectively; the remaining ORFs do not show significant homology to ORFs from the related BLM and TLM clusters. The ZBM gene cluster consists of 16 nonribosomal peptide synthetase (NRPS) genes encoding eight complete NRPS modules, three incomplete didomain NRPS modules, and eight freestanding single NRPS domains or associated enzymes, a polyketide synthase (PKS) gene encoding one PKS module, six sugar biosynthesis genes, as well as genes encoding other biosynthesis and resistance proteins. A genetic system using Escherichia coli-Streptomyces flavoviridis intergeneric conjugation was developed to enable ZBM gene cluster boundary determinations and biosynthetic pathway manipulations. PMID:19081934

  5. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.

  6. Genome sequences of three tunicamycin-producing Streptomyces strains; S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396

    Technology Transfer Automated Retrieval System (TEKTRAN)

    S. chartreusis strains NRRL 12338 and NRRL 3882, S. clavuligerus NRRL 3585, and S. lysosuperificus ATCC 31396, are known producers of tunicamycins, and also of charteusins, clavulinate, cephalosporins, holomycins, and calcimycin. Here we announce the sequencing of the S. lysosuperificus and the two...

  7. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    PubMed

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  8. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    SciTech Connect

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Sims, David; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ovchinnikova, Galina; Richardson, Paul; De Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  9. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  10. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  11. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  12. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  13. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  14. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovar Berta ATCC 8392 and a Nalidixic Acid-Resistant Isolate of This Strain

    PubMed Central

    Cooper, Ashley; Koziol, Adam G.; Carrillo, Catherine D.

    2016-01-01

    Salmonella enterica subspecies enterica serovar Berta has been isolated in multiple animal species and has been implicated in human disease. Here, we report a 4.7-Mbp draft genome sequence of S. enterica serovar Berta (ATCC strain 8392) and a nalidixic acid-resistant isolate derived from this strain. PMID:27103707

  15. Complete Genome Sequence of Streptomyces venezuelae ATCC 15439, Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using PacBio Technology

    PubMed Central

    He, Jingxuan; Sundararajan, Anitha; Devitt, Nicholas P.; Schilkey, Faye D.; Ramaraj, Thiruvarangan

    2016-01-01

    Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikromycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequencing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene clusters. PMID:27151802

  16. Identification of the Replication Origins from Cyanothece ATCC 51142 and Their Interactions with the DnaA Protein: From In Silico to In Vitro Studies

    PubMed Central

    Huang, He; Song, Cheng-Cheng; Yang, Zhi-Liang; Dong, Yan; Hu, Yao-Zhong; Gao, Feng

    2015-01-01

    Based on the complete genome of Cyanothece ATCC 51142, the oriCs of both the circular and linear chromosomes in Cyanothece ATCC 51142 have been predicted by utilizing a web-based system Ori-Finder. Here, we provide experimental support for the results of Ori-Finder to identify the replication origins of Cyanothece ATCC 51142 and their interactions with the initiator protein, DnaA. The two replication origins are composed of three characteristically arranged DnaA boxes and an AT-rich stretch, and the oriC in the circular chromosome is followed by the dnaN gene. The dnaA gene is located downstream of the origin of the circular chromosome and it expresses a typical DnaA protein that is divided into four domains (I, II, III, IV), as with other members of the DnaA protein family. We purify DnaA (IV) and characterize the interaction of the purified protein with the replication origins, so as to offer experimental support for the prediction. The results of the electrophoretic mobility shift assay and DNase I footprint assay demonstrate that the C-terminal domain of the DnaA protein from Cyanothece ATCC 51142 specifically binds the oriCs of both the circular and linear chromosomes, and the DNase I footprint assay demonstrates that DnaA (IV) exhibits hypersensitive affinity with DnaA boxes in both oriCs. PMID:26696980

  17. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a Phase I Open Label Study to assess safety, tolerability and cytokine responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed since the mid 1990s by between 2 and 5 million people daily, the scientific literature lacks rigorous clinical trials that describe the potential harms of LGG, particularly in the elderly. The primary objective of this open label...

  18. Genome Sequences of Three Tunicamycin-Producing Streptomyces Strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396

    PubMed Central

    Doroghazi, James R.; Ju, Kou-San; Brown, Daren W.; Labeda, David P.; Deng, Zixin; Metcalf, William W.; Chen, Wenqing; Price, Neil P. J.

    2011-01-01

    We announce the sequencing of Streptomyces chartreusis NRRL 12338 and NRRL 3882 and Streptomyces lysosuperificus ATCC 31396. These are producers of tunicamycins, chartreusins, cephalosporins, holomycins, and calcimycin. The announced genomes, together with the published Streptomyces clavuligerus genome, will facilitate data mining of these secondary metabolites. PMID:22123769

  19. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  20. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis.

  1. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis

    PubMed Central

    Mehta, Kalpa

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  2. Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing.

    PubMed

    Saha, Ratul; Bechanko, Robin; Bestervelt, Lorelle L; Donofrio, Robert S

    2011-09-01

    Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID(®) 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 10(6) CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing. PMID:21132347

  3. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606

    PubMed Central

    Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  4. Toxic Accumulation of LPS Pathway Intermediates Underlies the Requirement of LpxH for Growth of Acinetobacter baumannii ATCC 19606.

    PubMed

    Richie, Daryl L; Takeoka, Kenneth T; Bojkovic, Jade; Metzger, Louis E; Rath, Christopher M; Sawyer, William S; Wei, Jun-Rong; Dean, Charles R

    2016-01-01

    The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195

  5. Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing.

    PubMed

    Saha, Ratul; Bechanko, Robin; Bestervelt, Lorelle L; Donofrio, Robert S

    2011-09-01

    Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID(®) 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 10(6) CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing.

  6. Viability of Escherichia coli ATCC 8739 in Nutrient Broth, Luria-Bertani Broth and Brain Heart Infusion over 11 Weeks

    PubMed Central

    Low, Samuel Xin Zher; Aw, Zhen Qin; Loo, Bryan Zong Lin; Lee, Kun Cheng; Oon, Jack Si Hao; Lee, Chin How; Ling, Maurice Han Tong

    2013-01-01

    Background: Escherichia coli is a widely studied prokaryotic system. A recent study had demonstrated that reduced growth of E. coli after extended culture in Luria-Bertani broth is a result of depletion of fermentable sugars but able to sustain extended cell culture due to the presence of amino acids, which can be utilized as a carbon source. However, this had not been demonstrated in other media. The study aimed to determine the growth and viability of E. coli ATCC 8739 in 3 different media, Nutrient Broth (NB), Brain Heart Infusion (BHI) and Luria-Bertani Broth (LB) over 11 weeks. Methods: Growth of E. coli ATCC 8739 was determined by optical density. Viability was determined by serial dilution/spread-plate enumeration. After 11 weeks, the media were exhausted by repeated culture. Glucose was added to the exhausted media to determine whether glucose is the growth-limiting factor. Results: Our results showed that cell density in all 3 media increased to about 1 × 109 cells/ml by the end of week 1, from the inoculation density of 2.67 × 105 cells/ml, peaked at about 1 × 1013 cells/ml at week 4, before declining to about 5 × 107 cells/ml at week 7. Cell density is highly correlated to genomic DNA content (r2 = 0.93) but poorly correlated to optical density (r2< 0.2). Our results also showed that the spent media were able to support further growth after glucose-supplementation. Conclusion: NB, LB and BHI are able to support extended periods of culture and glucose depletion is the likely reason for declining cell growth. PMID:26120385

  7. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  8. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity. PMID:27376794

  9. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS.

  10. Influence of sweetening agents in solution on dental caries in desalivated rats.

    PubMed

    Bowen, W H; Pearson, S K; Falany, J L

    1990-01-01

    Sucralose (trichlorogalactosucrose), sorbitol and aspartame in drinking water induced little or no caries in desalivated rats infected with Streptococcus sobrinus and Actinomyces viscosus and receiving their essential nutrition by gastric gavage. In contrast, sucrose and fructose induced extensive decay. Only sucrose could sustain implantation of Strep. sobrinus in these animals. The populations of A. viscosus were sparse (0.3-0.5%) in the animals given fructose and sucrose. Large populations of A. viscosus occurred in the controls and in those given sucralose, sorbitol and aspartame. In a second experiment, where animals were also desalivated and receive diet 2000 ad libitum, sucrose in solution promoted caries whereas sucralose, aspartame and saccharin were without effect. Addition of 10 parts/10(6) F overcame the caries-promoting effect of sucrose in solution. There was no interaction between fluoride and other sweetening agents that affected the incidence of caries.

  11. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    SciTech Connect

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-07-01

    Native zinc-containing ATP sulfurylase from D. desulfuricans ATCC 27774 was purified to homogeneity and crystallized. Diffraction data were collected to 2.5 Å resolution. Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

  12. Relative activity of N-(beta-D-glucopyranosyl)nicotinic acid to nicotinic acid as a niacin nutrient in rats and in Lactobacillus plantarum ATCC 8014.

    PubMed

    Nishitani, H; Taguchi, H; Yonezima, M; Shibata, K

    1996-02-01

    We investigated the relative activity of N-(beta-D-glucopyranosyl)-nicotinic acid as a niacin nutrient in rats and in Lactobacillus plantarum ATCC 8014. N-(beta-D-Glucopyranosyl)-nicotinic acid is a detoxified product or storage form of nicotinic acid that is found in plants. The relative activity of N-(beta-D-glucopyranosyl)nicotinic acid to nicotinic acid in rats was 1/2.3, 1/2.2, 1/1.0, and 1/1.7 as indices of the body weight gain, food intake, blood NAD content, and the increased urinary excretion of niacin and its metabolites, respectively. N-(beta-D-Glucopyranosyl)nicotinic acid had no niacin activity in Lactobacillus plantarum ATCC 8014.

  13. The complete genome sequence and analysis of vB_VorS-PVo5, a Vibrio phage infectious to the pathogenic bacterium Vibrio ordalii ATCC-33509.

    PubMed

    Echeverría-Vega, Alex; Morales-Vicencio, Pablo; Saez-Saavedra, Camila; Ceh, Janja; Araya, Rubén

    2016-01-01

    The bacterium Vibrio ordalii is best known as the causative agent of vibriosis outbreaks in fish and thus recognized for generating serious production losses in aquaculture systems. Here we report for the first time on the isolation and the genome sequencing of phage vB_VorS-PVo5, infectious to Vibrio ordalii ATCC 33509. The features as well as the complete genome sequence and annotation of the Vibrio phage are described; vB_VorS-PVo5 consists of a lineal double stranded DNA totaling ~ 80.6 Kb in length. Considering its ability to lyse Vibrio ordalii ATCC 33509, the phage is likely to gain importance in future aquaculture applications by controlling the pathogen and as such replacing antibiotics as the treatment of choice. PMID:27382430

  14. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin.

    PubMed

    Williamson, N R; Simonsen, H T; Harris, A K P; Leeper, F J; Salmond, George P C

    2006-02-01

    The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB-pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2'-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.

  15. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation.

  16. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.

    PubMed

    Zhong, Hua; Jiang, Yongbing; Zeng, Guangming; Liu, Zhifeng; Liu, Liuxia; Liu, Yang; Yang, Xin; Lai, Mingyong; He, Yibin

    2015-03-21

    The effects of low-concentration monorhamnolipid (monoRL) on the adsorption of Pseudomonas aeruginosa ATCC 9027 grown on glucose or hexadecane to glass beads with hydrophobic or hydrophilic surfaces was investigated using batch adsorption experiments. Results showed that adsorption isotherms of the cells on both types of glass beads fitted the Freundlich equation better than the Langmuir equation. The Kf of the Freundlich equation for adsorption of hexadecane-grown cell to glass beads with hydrophobic surface was remarkably higher than that for adsorption of hexadecane-grown cell to glass beads with hydrophilic surface, or glucose-grown cell to glass beads with either hydrophilic or hydrophobic surface. Furthermore, it decreased with the increasing monoRL concentration. For both groups of cells, the zeta potential was close to each other and stable with the increase of monoRL concentration. The surface hydrophobicity of hexadecane-grown cells, however, was significantly higher than that of the glucose-grown cells and it decreased with the increase of monoRL concentration. The results indicate the importance of hydrophobic interaction on adsorption of bacterial cells to surfaces and monoRL plays a role in reducing the bacterial adsorption by affecting cell surface hydrophobicity.

  17. Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922

    PubMed Central

    García-Álvarez, Lara; Busto, Jesús H.; Avenoza, Alberto; Sáenz, Yolanda; Peregrina, Jesús Manuel

    2015-01-01

    Antimicrobial drug susceptibility tests involving multiple time-consuming steps are still used as reference methods. Today, there is a need for the development of new automated instruments that can provide faster results and reduce operating time, reagent costs, and labor requirements. Nuclear magnetic resonance (NMR) spectroscopy meets those requirements. The metabolism and antimicrobial susceptibility of Escherichia coli ATCC 25922 in the presence of gentamicin have been analyzed using NMR and compared with a reference method. Direct incubation of the bacteria (with and without gentamicin) into the NMR tube has also been performed, and differences in the NMR spectra were obtained. The MIC, determined by the reference method found in this study, would correspond with the termination of the bacterial metabolism observed with NMR. Experiments carried out directly into the NMR tube enabled the development of antimicrobial drug susceptibility tests to assess the effectiveness of the antibiotic. NMR is an objective and reproducible method for showing the effects of a drug on the subject bacterium and can emerge as an excellent tool for studying bacterial activity in the presence of different antibiotic concentrations. PMID:25972417

  18. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation.

    PubMed

    Li, Hua-Xiang; Lu, Zhen-Ming; Geng, Yan; Gong, Jin-Song; Zhang, Xiao-Juan; Shi, Jin-Song; Xu, Zheng-Hong; Ma, Yan-He

    2015-10-01

    Large-scale submerged fermentation (SmF) of Antrodia camphorata (A. camphorata) usually encounters challenges including tedious preparation of mycelial inoculum, long fermentation period (10-14 d), and poor repeatability. Here we developed an asexual reproduction-based repeated batch fermentation (RBF) process for bioactive metabolites production by A. camphorata ATCC 200183. Compared with traditional batch fermentation, production time was shortened to 58 d from 80 d (overall time for eight cycles) using the RBF process established in this study, and accordingly, the productivities of bioactive metabolites (including antrodins) were improved by 40-60%. Kinetic parameters (α is 2.1-18.7 times as β) indicated that the cell growth was the major contribution for bioactive metabolites production. The RBF shows excellent batch-repeatability (Pearson correlation coefficient of 0.998±0.001), together with advantages of energy-efficient, low cost, and labor-saving, RBF process can be implemented to SmF by other filamentous fungi. PMID:26210148

  19. Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803

    PubMed Central

    Saha, Rajib; Verseput, Alex T.; Berla, Bertram M.; Mueller, Thomas J.; Pakrasi, Himadri B.; Maranas, Costas D.

    2012-01-01

    Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731) for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen) and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively) span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100) and a sensitivity of 1 (19/19) for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark) biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models. PMID:23133581

  20. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine.

    PubMed

    Mossialos, D; Meyer, J M; Budzikiewicz, H; Wolff, U; Koedam, N; Baysse, C; Anjaiah, V; Cornelis, P

    2000-02-01

    Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of (59)Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine. PMID:10653708

  1. Mutation Rate, Spectrum, Topology, and Context-Dependency in the DNA Mismatch Repair-Deficient Pseudomonas fluorescens ATCC948

    PubMed Central

    Long, Hongan; Sung, Way; Miller, Samuel F.; Ackerman, Matthew S.; Doak, Thomas G.; Lynch, Michael

    2015-01-01

    High levels of genetic diversity exist among natural isolates of the bacterium Pseudomonas fluorescens, and are especially elevated around the replication terminus of the genome, where strain-specific genes are found. In an effort to understand the role of genetic variation in the evolution of Pseudomonas, we analyzed 31,106 base substitutions from 45 mutation accumulation lines of P. fluorescens ATCC948, naturally deficient for mismatch repair, yielding a base-substitution mutation rate of 2.34 × 10−8 per site per generation (SE: 0.01 × 10−8) and a small-insertion-deletion mutation rate of 1.65 × 10−9 per site per generation (SE: 0.03 × 10−9). We find that the spectrum of mutations in prophage regions, which often contain virulence factors and antibiotic resistance, is highly similar to that in the intergenic regions of the host genome. Our results show that the mutation rate varies around the chromosome, with the lowest mutation rate found near the origin of replication. Consistent with observations from other studies, we find that site-specific mutation rates are heavily influenced by the immediately flanking nucleotides, indicating that mutations are context dependent. PMID:25539726

  2. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium

    PubMed Central

    Vinh, Nguyen X.; Viswanathan, Ganesh A.; Chetty, Madhu; Wangikar, Pramod P.

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell’s metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production. PMID:25973856

  3. Integrated bioconversion of pulp and paper primary sludge to second generation bioethanol using Saccharomyces cerevisiae ATCC 26602.

    PubMed

    Mendes, Cátia V T; Cruz, Crispin H G; Reis, Diana F N; Carvalho, M Graça V S; Rocha, Jorge M S

    2016-11-01

    Primary sludge, from different pulp and paper mills, was used as feedstock in simultaneous saccharification and fermentation (SSF) processes to produce ethanol. SSF was carried out with Saccharomyces cerevisiae ATCC 26602 yeast and NS 22192 enzymatic extract using 150gL(-1) of carbohydrates (CH) from primary sludge. The effect of sterilization, reduction of enzyme dosage and fed-batch vs. batch conditions were studied. The removal of sterilization can be considered since no contamination or atypical by-products were observed, although SSF efficiency slightly decreased. The reduction of the enzyme dosage from 35 to 15FPUgCH(-1) was successful. Despite of initial mixing difficulties, batch SSF enabled higher ethanol concentration (41.7gL(-1)), conversion yield (48.9%) and productivity (0.78gL(-1)h(-1)), compared to the fed-batch process at the same conditions of low enzyme dosage of 5FPUgCH(-1) and high solids content of 21.7%, rarely found in literature.

  4. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

    PubMed

    Aguiar, André; Gavioli, Daniela; Ferraz, André

    2014-11-01

    Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. PMID:25442296

  5. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    PubMed

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis. PMID:26545758

  6. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Vinh, Nguyen X; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell's metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production.

  7. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    PubMed

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.

  8. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1984-07-01

    Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

  9. Integrated bioconversion of pulp and paper primary sludge to second generation bioethanol using Saccharomyces cerevisiae ATCC 26602.

    PubMed

    Mendes, Cátia V T; Cruz, Crispin H G; Reis, Diana F N; Carvalho, M Graça V S; Rocha, Jorge M S

    2016-11-01

    Primary sludge, from different pulp and paper mills, was used as feedstock in simultaneous saccharification and fermentation (SSF) processes to produce ethanol. SSF was carried out with Saccharomyces cerevisiae ATCC 26602 yeast and NS 22192 enzymatic extract using 150gL(-1) of carbohydrates (CH) from primary sludge. The effect of sterilization, reduction of enzyme dosage and fed-batch vs. batch conditions were studied. The removal of sterilization can be considered since no contamination or atypical by-products were observed, although SSF efficiency slightly decreased. The reduction of the enzyme dosage from 35 to 15FPUgCH(-1) was successful. Despite of initial mixing difficulties, batch SSF enabled higher ethanol concentration (41.7gL(-1)), conversion yield (48.9%) and productivity (0.78gL(-1)h(-1)), compared to the fed-batch process at the same conditions of low enzyme dosage of 5FPUgCH(-1) and high solids content of 21.7%, rarely found in literature. PMID:27566524

  10. Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952.

    PubMed

    Pokhrel, Anaya Raj; Chaudhary, Amit Kumar; Nguyen, Hue Thi; Dhakal, Dipesh; Le, Tuoi Thi; Shrestha, Anil; Liou, Kwangkyoung; Sohng, Jae Kyung

    2016-11-01

    The dnrO gene is the first regulator to be activated in the daunorubicin (DNR) biosynthesis pathway of Streptomyces peucetius ATCC 27952. DnrO is known for its self-repression capability while it activates rest of the DNR biosynthesis pathway through cascades of regulatory events. S. peucetius was found to contain no functional copy of bldA-tRNA while a detailed examination of dnrO codons reveals the presence of TTA codon, which is rarely encoded by bldA-tRNA. Therefore, for evaluating the role of dnrO in DNR production, multiple engineered strains of S. peucetius were generated by heterologously expressing bldA, dnrO and combination of bldA and dnrO. Using these strains, the effects of heterologously expressed bldA and overexpressed dnrO were evaluated on pathway specific regulators, mycelial densities and production of DNR. The results showed that the transcription level of dnrO and master regulator dnrI, was found to be elevated in bldA containing strain in comparison to dnrO overexpressed strain. The bldA containing strain produces 45.7% higher DNR than bldA deficient wild type strain from culture broth with OD600 of 1.45 at 72h. Heterologous expression of bldA-tRNA is accounted for increased transcription levels of the DNR pathway specific regulators and enhanced DNR production. PMID:27664727

  11. Heterologous production of paromamine in Streptomyces lividans TK24 using kanamycin biosynthetic genes from Streptomyces kanamyceticus ATCC12853.

    PubMed

    Nepal, Keshav Kumar; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-05-31

    The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans Sk-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 [M + H]+, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of 324 [M + H]+. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.

  12. Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans.

    PubMed

    Young, Travis S; Walsh, Christopher T

    2011-08-01

    Thiazolyl peptides are bacterial secondary metabolites that potently inhibit protein synthesis in Gram-positive bacteria and malarial parasites. Recently, our laboratory and others reported that this class of trithiazolyl pyridine-containing natural products is derived from ribosomally synthesized preproteins that undergo a cascade of posttranslational modifications to produce architecturally complex macrocyclic scaffolds. Here, we report the gene cluster responsible for production of the elongation factor Tu (EF-Tu)-targeting 29-member thiazolyl peptide GE37468 from Streptomyces ATCC 55365 and its heterologous expression in the model host Streptomyces lividans. GE37468 harbors an unusual β-methyl-δ-hydroxy-proline residue that may increase conformational rigidity of the macrocycle and impart reduced entropic costs of target binding. Isotope feeding and gene knockout were employed in the engineered S. lividans strain to identify the P450 monooxygenase GetJ as the enzyme involved in posttranslational transformation of isoleucine 8 to β-methyl-δ-hydroxy-proline through a predicted tandem double hydroxylation/cyclization mechanism. Loss of Ile8 oxygenative cyclization or mutation of Ile8 to alanine via preprotein gene replacement resulted in a 4-fold and 2-fold drop in antibiotic activity, respectively. This report of genetic manipulation of a 29-member thiazolyl peptide sets the stage for further genetic examination of structure activity relationships in the EF-Tu targeting class of thiazolyl peptides.

  13. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.

  14. Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581.

    PubMed

    Kühn, S; Fortnagel, P

    1993-01-01

    The gene nprM encoding the calcium-dependent extracellular proteinase from Bacillus megaterium ATCC 14581 was cloned in the vector pBR322 and expressed in Escherichia coli HB101. The DNA sequence of the cloned 3.7 kb fragment revealed only one open reading frame consisting of 1686 bp with a coding capacity of 562 amino acid residues. A predicted Shine-Dalgarno (SD) sequence was observed 9 bp upstream from the presumptive translation start site (ATG). A possible promoter sequence (TAGACG for the -35 region and TATAAT for the -10 region) was found about 69 bp upstream of the ATG start site. The deduced amino acid sequence exhibited a 24 amino acid residue signal peptide and an additional polypeptide 'pro' sequence of 221 amino acids preceding the putative mature protein of 317 amino acid residues. Amino acid sequence comparison revealed 84.5% homology between the mature protein and that of a thermolabile neutral protease from B. cereus. It also shares 73% homology with the thermostable neutral proteases of B. thermoproteolyticus and B. stearothermophilus. The zinc-binding sites and the catalytic residues are completely conserved in all four proteases. NprM has a temperature optimum of 58 degrees C, a pH optimum of between 6.4 and 7.2, and is stimulated by calcium ions and inhibited by EDTA. These results indicate that the enzyme is a neutral (metallo-) protease. PMID:8450307

  15. Simulated microgravity affects ciprofloxacin susceptibility and expression of acrAB-tolC genes in E. coli ATCC25922

    PubMed Central

    Xu, Bingxin; Li, Chenglin; Zheng, Yanhua; Si, Shaoyan; Shi, Yuhua; Huang, Yuling; Zhang, Jianzhong; Cui, Yan; Cui, Yimin

    2015-01-01

    As a representative fluoroquinolone antibacterial, ciprofloxacin is frequently used to treat infections caused by bacteria such as E. coli. It is much meaningful to explore ciprofloxacin susceptibility and investigate a possible mechanism of drug susceptibility changes in E. coli ATCC25922 exposed to the environmental stress of simulated microgravity. The subculture of E. coli lasted for 7 days under simulated microgravity conditions (SMG) and normal microgravity (NG) conditions. On the 8th day, the cultures were divided into three groups: (1) NG group (continuous NG cultures); (2) SMG group (continuous SMG cultures); (3) SMCNG group (simulated microgravity change into normal gravity cultures). Ciprofloxacin (a final concentration of 0.125 μg/ml) sensitivity and expression of acrAB-tolC genes were detected in E. coli cells. The count and percentage of viable cells in the SMG cultures bacteria exposed to ciprofloxacin were higher than that in NG cultures and reduced to the levels of NG group when they were subcultivated from SMG to NG. The expressions of efflux pump genes (acrA, acrB and tolC) were upregulated in SMG culture and downregulated to the levels of NG group when they were subcultivated from SMG to NG. Susceptibility to ciprofloxacin and expression of acrAB-tolC genes in E. coli could be reversibly affected by SMG conditions. Over expression of efflux pump genes acrAB-tolC perhaps played an important role in decreased CIP susceptibility under SMG. PMID:26339360

  16. Cloning, expression, purification, crystallization and preliminary X-ray characterization of allantoinase from Bacillus licheniformis ATCC 14580

    PubMed Central

    Conejero-Muriel, Mayte; Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Gavira, Jose A.

    2014-01-01

    Allantoinase, a member of the amidohydrolase superfamily, exists in a wide variety of organisms, including bacteria, fungi, plants and a few animals, such as fishes and amphibians. Allantoinase catalyzes the reversible hydrolysis of allantoin into allantoate by hydrolytic cleavage of the N1—C2 amide bond of the five-membered hydantoin ring. Allantoinase from Bacillus licheniformis (AllBali) presents an inverted enantioselectivity towards allantoin (R-enantioselective), which is a distinguishable feature that is not observed for other allantoinases. In this work, B. licheniformis ATCC 14580 allantoinase (AllBali) containing a C-terminal His6 tag was overproduced in Escherichia coli and purified to homogeneity. Crystals of AllBali were obtained by the vapour-diffusion method using 0.1 M potassium thiocyanate, 20%(w/v) polyethylene glycol 3350 as a crystallization solution. X-ray diffraction data were collected to a resolution of 3.5 Å with an R merge of 29.2% from a crystal belonging to space group P1211, with unit-cell parameters a = 54.93, b = 164.74, c = 106.89 Å, β = 98.49°. There are four molecules in the asymmetric unit with a solvent content of 47% as estimated from the Matthews coefficient (V M = 2.34 Å3 Da−1). PMID:25372819

  17. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions. PMID:26919821

  18. Quinolobactin, a New Siderophore of Pseudomonas fluorescens ATCC 17400, the Production of Which Is Repressed by the Cognate Pyoverdine

    PubMed Central

    Mossialos, Dimitris; Meyer, Jean-Marie; Budzikiewicz, Herbert; Wolff, Ulrich; Koedam, Nico; Baysse, Christine; Anjaiah, Vanamala; Cornelis, Pierre

    2000-01-01

    Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of 59Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine. PMID:10653708

  19. Genomic Sequence of Bacteriophage ATCC 8074-B1 and Activity of Its Endolysin and Engineered Variants against Clostridium sporogenes

    PubMed Central

    Gasson, Michael J.; Narbad, Arjan

    2012-01-01

    Lytic bacteriophage ATCC 8074-B1 produces large plaques on its host Clostridium sporogenes. Sequencing of the 47,595-bp genome allowed the identification of 82 putative open reading frames, including those encoding proteins for head and tail morphogenesis and lysis. However, sequences commonly associated with lysogeny were absent. ORF 22 encodes an endolysin, CS74L, that shows homology to N-acetylmuramoyl-l-alanine amidases, and when expressed in Escherichia coli, the protein causes effective lysis of C. sporogenes cells when added externally. CS74L was also active on Clostridium tyrobutyricum and Clostridium acetobutylicum. The catalytic domain expressed alone (CS74L1–177) exhibited a similar activity and the same host range as the full-length endolysin. A chimeric endolysin consisting of the CS74L catalytic domain fused to the C-terminal domain of endolysin CD27L, derived from Clostridium difficile bacteriophage ΦCD27, was produced. This chimera (CSCD) lysed C. sporogenes cells with an activity equivalent to that of the catalytic domain alone. In contrast, the CD27L C-terminal domain reduced the efficacy of the CS74L catalytic domain when tested against C. tyrobutyricum. The addition of the CD27L C-terminal domain did not enable the lysin to target C. difficile or other CD27L-sensitive bacteria. PMID:22427494

  20. Replacement of Soybean Meal with Animal Origin Protein Meals Improved Ramoplanin A2 Production by Actinoplanes sp. ATCC 33076.

    PubMed

    Erkan, Deniz; Kayali, Hulya Ayar

    2016-09-01

    Ramoplanin A2 is the last resort antibiotic for treatment of many high morbidity- and mortality-rated hospital infections, and it is expected to be marketed in the forthcoming years. Therefore, high-yield production of ramoplanin A2 gains importance. In this study, meat-bone meal, poultry meal, and fish meal were used instead of soybean meal for ramoplanin A2 production by Actinoplanes sp. ATCC 33076. All animal origin nitrogen sources stimulated specific productivity. Ramoplanin A2 levels were determined as 406.805 mg L(-1) in fish meal medium and 374.218 mg L(-1) in poultry meal medium. These levels were 4.25- and 4.09-fold of basal medium, respectively. However, the total yield of poultry meal was higher than that of fish meal, which is also low-priced. In addition, the variations in pH levels, protein levels, reducing sugar levels, extracellular protease, amylase and lipase activities, and intracellular free amino acid levels were monitored during the incubation period. The correlations between ramoplanin production and these variables with respect to the incubation period were determined. The intracellular levels of L-Phe, D-Orn, and L-Leu were found critical for ramoplanin A2 production. The strategy of using animal origin nitrogen sources can be applied for large-scale ramoplanin A2 production. PMID:27142271