Science.gov

Sample records for action observation network

  1. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network

    PubMed Central

    Kirsch, Louise P.; Cross, Emily S.

    2015-01-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation. PMID:26209850

  2. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  3. Sensitivity of the Action Observation Network to Physical and Observational Learning

    PubMed Central

    Cross, Emily S.; Kraemer, David J.M.; de C. Hamilton, Antonia F.; Kelley, William M.

    2009-01-01

    Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation of similar actions. Participants trained for 5 days on dance sequences set to music videos. Each day they physically rehearsed one set of dance sequences (“danced”), and passively watched a different set of sequences (“watched”). Functional magnetic resonance imaging was obtained prior to and immediately following the 5 days of training. After training, a subset of the AON showed a degree of common activity for observational and physical learning. Activity in these premotor and parietal regions was sustained during observation of sequences that were danced or watched, but declined for unfamiliar sequences relative to the pretraining scan session. These imaging data demonstrate the emergence of action resonance processes in the human brain based on observational learning without physical practice and identify commonalities in the neural substrates for physical and observational learning. PMID:18515297

  4. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach

    PubMed Central

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P.; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    Background The ability to recognize, understand and interpret other’s actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Method Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Results Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. Conclusion While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON. PMID:26317222

  5. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  6. Stereoscopically Observing Manipulative Actions

    PubMed Central

    Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.

    2016-01-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  7. Stereoscopically Observing Manipulative Actions.

    PubMed

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  8. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  9. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements

    PubMed Central

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S.; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  10. Neural network development in late adolescents during observation of risk-taking action.

    PubMed

    Tamura, Miyuki; Moriguchi, Yoshiya; Higuchi, Shigekazu; Hida, Akiko; Enomoto, Minori; Umezawa, Jun; Mishima, Kazuo

    2012-01-01

    Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression) and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months). The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions) during functional magnetic resonance imaging (fMRI). The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas), and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus). We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed. PMID:22768085

  11. Neural Network Development in Late Adolescents during Observation of Risk-Taking Action

    PubMed Central

    Higuchi, Shigekazu; Hida, Akiko; Enomoto, Minori; Umezawa, Jun; Mishima, Kazuo

    2012-01-01

    Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression) and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months). The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions) during functional magnetic resonance imaging (fMRI). The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas), and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus). We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed. PMID:22768085

  12. Caregiver Action Network

    MedlinePlus

    ... main content Caregiver Action Network Toggle navigation Toolbox Forum Volunteers Donate About Us Join National Family Caregivers ... for caring for a loved one Family Caregiver Forum Share and talk with other caregivers Rare Disease ...

  13. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    PubMed Central

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A. Mark; Munzert, Jörn

    2014-01-01

    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation

  14. Network Observability Transitions

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Jianhui; Motter, Adilson E.

    2012-12-01

    In the modeling, monitoring, and control of complex networks, a fundamental problem concerns the comprehensive determination of the state of the system from limited measurements. Using power grids as example networks, we show that this problem leads to a new type of percolation transition, here termed a network observability transition, which we solve analytically for the configuration model. We also demonstrate a dual role of the network’s community structure, which both facilitates optimal measurement placement and renders the networks substantially more sensitive to “observability attacks.” Aside from their immediate implications for the development of smart grids, these results provide insights into decentralized biological, social, and technological networks.

  15. Tactile perception during action observation.

    PubMed

    Vastano, Roberta; Inuggi, Alberto; Vargas, Claudia D; Baud-Bovy, Gabriel; Jacono, Marco; Pozzo, Thierry

    2016-09-01

    It has been suggested that tactile perception becomes less acute during movement to optimize motor control and to prevent an overload of afferent information generated during action. This empirical phenomenon, known as "tactile gating effect," has been associated with mechanisms of sensory feedback prediction. However, less attention has been given to the tactile attenuation effect during the observation of an action. The aim of this study was to investigate whether and how the observation of a goal-directed action influences tactile perception as during overt action. In a first experiment, we recorded vocal reaction times (RTs) of participants to tactile stimulations during the observation of a reach-to-grasp action. The stimulations were delivered on different body parts that could be either congruent or incongruent with the observed effector (the right hand and the right leg, respectively). The tactile stimulation was contrasted with a no body-related stimulation (an auditory beep). We found increased RTs for tactile congruent stimuli compared to both tactile incongruent and auditory stimuli. This effect was reported only during the observation of the reaching phase, whereas RTs were not modulated during the grasping phase. A tactile two-alternative forced-choice (2AFC) discrimination task was then conducted in order to quantify the changes in tactile sensitivity during the observation of the same goal-directed actions. In agreement with the first experiment, the tactile perceived intensity was reduced only during the reaching phase. These results suggest that tactile processing during action observation relies on a process similar to that occurring during action execution. PMID:27161552

  16. Peer Observation Action Research Project

    ERIC Educational Resources Information Center

    Sandt, Fred-Ole

    2012-01-01

    This paper outlines the initial findings of an action research project that focuses on the possible contribution of peer observation to a more collaborative environment and teachers' professional growth at The University High School. The research component played a significant part as previous attempts to change the culture at the school were…

  17. Mental action simulation synchronizes action-observation circuits across individuals.

    PubMed

    Nummenmaa, Lauri; Smirnov, Dmitry; Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta

    2014-01-15

    A frontoparietal action-observation network (AON) has been proposed to support understanding others' actions and goals. We show that the AON "ticks together" in human subjects who are sharing a third person's feelings. During functional magnetic resonance imaging, 20 volunteers watched movies depicting boxing matches passively or while simulating a prespecified boxer's feelings. Instantaneous intersubject phase synchronization (ISPS) was computed to derive multisubject voxelwise similarity of hemodynamic activity and inter-area functional connectivity. During passive viewing, subjects' brain activity was synchronized in sensory projection and posterior temporal cortices. Simulation induced widespread increase of ISPS in the AON (premotor, posterior parietal, and superior temporal cortices), primary and secondary somatosensory cortices, and the dorsal attention circuits (frontal eye fields, intraparietal sulcus). Moreover, interconnectivity of these regions strengthened during simulation. We propose that sharing a third person's feelings synchronizes the observer's own brain mechanisms supporting sensations and motor planning, thereby likely promoting mutual understanding. PMID:24431433

  18. Multifunctional Mesoscale Observing Networks.

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Schlatter, Thomas W.; Carr, Frederick H.; Friday, Elbert W. Joe; Jorgensen, David; Koch, Steven; Pirone, Maria; Ralph, F. Martin; Sun, Juanzhen; Welsh, Patrick; Wilson, James W.; Zou, Xiaolei

    2005-07-01

    More than 120 scientists, engineers, administrators, and users met on 8 10 December 2003 in a workshop format to discuss the needs for enhanced three-dimensional mesoscale observing networks. Improved networks are seen as being critical to advancing numerical and empirical modeling for a variety of mesoscale applications, including severe weather warnings and forecasts, hydrology, air-quality forecasting, chemical emergency response, transportation safety, energy management, and others. The participants shared a clear and common vision for the observing requirements: existing two-dimensional mesoscale measurement networks do not provide observations of the type, frequency, and density that are required to optimize mesoscale prediction and nowcasts. To be viable, mesoscale observing networks must serve multiple applications, and the public, private, and academic sectors must all actively participate in their design and implementation, as well as in the creation and delivery of value-added products. The mesoscale measurement challenge can best be met by an integrated approach that considers all elements of an end-to-end solution—identifying end users and their needs, designing an optimal mix of observations, defining the balance between static and dynamic (targeted or adaptive) sampling strategies, establishing long-term test beds, and developing effective implementation strategies. Detailed recommendations are provided pertaining to nowcasting, numerical prediction and data assimilation, test beds, and implementation strategies.


  19. The ANTARES observation network

    NASA Astrophysics Data System (ADS)

    Dogliotti, Ana I.; Ulloa, Osvaldo; Muller-Karger, Frank; Hu, Chuanmin; Murch, Brock; Taylor, Charles; Yuras, Gabriel; Kampel, Milton; Lutz, Vivian; Gaeta, Salvador; Gagliardini, Domingo A.; Garcia, Carlos A. E.; Klein, Eduardo; Helbling, Walter; Varela, Ramon; Barbieri, Elena; Negri, Ruben; Frouin, Robert; Sathyendranath, Shubha; Platt, Trevor

    2005-08-01

    The ANTARES network seeks to understand the variability of the coastal environment on a continental scale and the local, regional, and global factors and processes that effect this change. The focus are coastal zones of South America and the Caribbean Sea. The initial approach includes developing time series of in situ and satellite-based environmental observations in coastal and oceanic regions. The network is constituted by experts that seek to exchange ideas, develop an infrastructure for mutual logistical and knowledge support, and link in situ time series of observations located around the Americas with real-time and historical satellite-derived time series of relevant products. A major objective is to generate information that will be distributed publicly and openly in the service of coastal ocean research, resource management, science-based policy making and education in the Americas. As a first stage, the network has linked oceanographic time series located in Argentina, Brazil, Chile and Venezuela. The group has also developed an online tool to examine satellite data collected with sensors such as NASA's MODIS. Specifically, continental-scale high-resolution (1 km) maps of chlorophyll and of sea surface temperature are generated and served daily over the web according to specifications of users within the ANTARES network. Other satellite-derived variables will be added as support for the network is solidified. ANTARES serves data and offers simple analysis tools that anyone can use with the ultimate goal of improving coastal assessments, management and policies.

  20. Eye Movements During Action Observation

    PubMed Central

    Gredebäck, Gustaf; Falck-Ytter, Terje

    2015-01-01

    An important element in social interactions is predicting the goals of others, including the goals of others’ manual actions. Over a decade ago, Flanagan and Johansson demonstrated that, when observing other people reaching for objects, the observer’s gaze arrives at the goal before the action is completed. Moreover, those authors proposed that this behavior was mediated by an embodied process, which takes advantage of the observer’s motor knowledge. Here, we scrutinize work that has followed that seminal article. We include studies on adults that have used combined eye tracking and transcranial magnetic stimulation technologies to test causal hypotheses about underlying brain circuits. We also include developmental studies on human infants. We conclude that, although several aspects of the embodied process of predictive eye movements remain to be clarified, current evidence strongly suggests that the motor system plays a causal role in guiding predictive gaze shifts that focus on another person’s future goal. The early emergence of the predictive gaze in infant development underlines its importance for social cognition and interaction. PMID:26385998

  1. Visual Working Memory for Observed Actions

    ERIC Educational Resources Information Center

    Wood, Justin N.

    2007-01-01

    Human society depends on the ability to remember the actions of other individuals, which is information that must be stored in a temporary buffer to guide behavior after actions have been observed. To date, however, the storage capacity, contents, and architecture of working memory for observed actions are unknown. In this article, the author…

  2. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    Conroy, Michael; Mazzone, Rebecca; Little, William; Elfrey, Priscilla; Mann, David; Mabie, Kevin; Cuddy, Thomas; Loundermon, Mario; Spiker, Stephen; McArthur, Frank; Srey, Tate; Bonilla, Dennis

    2010-01-01

    The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams.

  3. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  4. Simultaneous action execution and observation optimise grasping actions.

    PubMed

    Ménoret, Mathilde; Curie, Aurore; des Portes, Vincent; Nazir, Tatjana A; Paulignan, Yves

    2013-06-01

    Action observation and execution share overlapping neural resonating mechanisms. In the present study, we sought to examine the effect of the activation of this system during concurrent movement observation and execution in a prehension task, when no a priori information about the requirements of grasping action was available. Although it is known that simultaneous activation by observation and execution influences motor performance, the importance of the delays of these two events and the specific effect of movement observation itself (and not the prediction of the to-be-observed movement) on action performance are poorly known. Fine-grained kinematic analysis of both the transport and grasp components of the movement should provide knowledge about the influence of movement observation on the precision and the performance of the executed movement. The experiment involved two real participants who were asked to grasp a different side of a single object that was composed of a large and a small part. In the first experiment, we measured how the transport component and the grasp component were affected by movement observation. We tested whether this influence was greater if the observed movement occurred just before the onset of movement (200 ms) or well before the onset of movement (1 s). In a second experiment, to reproduce the previous experiment and to verify the specificity of the grasping movements, we also included a condition consisting of pointing towards the object. Both experiments showed two main results. A general facilitation of the transport component was found when observing a simultaneous action, independent of its congruency. Moreover, a specific facilitation of the grasp component was present during the observation of a congruent action when movement execution and observation were nearly synchronised. While the general facilitation may arise from a competition between the two participants as they reached for the object, the specific facilitation

  5. Network analysis of perception-action coupling in infants.

    PubMed

    Rotem-Kohavi, Naama; Hilderman, Courtney G E; Liu, Aiping; Makan, Nadia; Wang, Jane Z; Virji-Babul, Naznin

    2014-01-01

    The functional networks that support action observation are of great interest in understanding the development of social cognition and motor learning. How infants learn to represent and understand the world around them remains one of the most intriguing questions in developmental cognitive neuroscience. Recently, mathematical measures derived from graph theory have been used to study connectivity networks in the developing brain. Thus far, this type of analysis in infancy has only been applied to the resting state. In this study, we recorded electroencephalography (EEG) from infants (ages 4-11 months of age) and adults while they observed three types of actions: (a) reaching for an object; (b) walking; and (c) object motion. Graph theory based analysis was applied to these data to evaluate changes in brain networks. Global metrics that provide measures of the structural properties of the network (characteristic path, density, global efficiency, and modularity) were calculated for each group and for each condition. We found statistically significant differences in measures for the observation of walking condition only. Specifically, in comparison to adults, infants showed increased density and global efficiency in combination with decreased modularity during observation of an action that is not within their motor repertoire (i.e., independent walking), suggesting a less structured organization. There were no group differences in global metric measures for observation of object motion or for observation of actions that are within the repertoire of infants (i.e., reaching). These preliminary results suggest that infants and adults may share a basic functional network for action observation that is sculpted by experience. Motor experience may lead to a shift towards a more efficient functional network. PMID:24778612

  6. Action recognition depends on observer's level of action control and social personality traits.

    PubMed

    Ondobaka, Sasha; Newman-Norlund, Roger D; de Lange, Floris P; Bekkering, Harold

    2013-01-01

    Humans recognize both the movement (physical) goals and action (conceptual) goals of individuals with whom they are interacting. Here, we assessed whether spontaneous recognition of others' goals depends on whether the observers control their own behavior at the movement or action level. We also examined the relationship between individual differences in empathy and ASD-like traits, and the processing of other individual's movement and action goals that are known to be encoded in the "mirroring" and "mentalizing" brain networks. In order to address these questions, we used a computer-based card paradigm that made it possible to independently manipulate movement and action congruency of observed and executed actions. In separate blocks, participants were instructed to select either the right or left card (movement-control condition) or the higher or lower card (action-control condition), while we manipulated action- and movement-congruency of both actors' goals. An action-congruency effect was present in all conditions and the size of this effect was significantly correlated with self-reported empathy and ASD-like traits. In contrast, movement-congruency effects were only present in the movement-control block and were strongly dependent on action-congruency. These results illustrate that spontaneous recognition of others' behavior depends on the control scheme that is currently adopted by the observer. The findings suggest that deficits in action recognition are related to abnormal synthesis of perceived movements and prior conceptual knowledge that are associated with activations in the "mirroring" and "mentalizing" cortical networks. PMID:24303046

  7. A neural network model of causative actions.

    PubMed

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013). PMID:26175685

  8. A neural network model of causative actions

    PubMed Central

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to “do” anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the “causative actions” circuit in our model can be identified with a motor pathway reported in other work, specializing in “functional” actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013). PMID:26175685

  9. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  10. Observation and Initiation of Joint Action in Infants

    ERIC Educational Resources Information Center

    Fawcett, Christine; Liszkowski, Ulf

    2012-01-01

    Infants imitate others' individual actions, but do they also replicate others' joint activities? To examine whether observing joint action influences infants' initiation of joint action, forty-eight 18-month-old infants observed object demonstrations by 2 models acting together (joint action), 2 models acting individually (individual action), or 1…

  11. Targeted Cooperative Actions Shape Social Networks.

    PubMed

    Wardil, Lucas; Hauert, Christoph

    2016-01-01

    Individual acts of cooperation give rise to dynamic social networks. Traditionally, models for cooperation in structured populations are based on a separation of individual strategies and of population structure. Individuals adopt a strategy-typically cooperation or defection, which determines their behaviour toward their neighbours as defined by an interaction network. Here, we report a behavioural experiment that amalgamates strategies and structure to empirically investigate the dynamics of social networks. The action of paying a cost c to provide a benefit b is represented as a directed link point from the donor to the recipient. Participants can add and/or remove links to up to two recipients in each round. First, we show that dense networks emerge, where individuals are characterized by fairness: they receive to the same extent they provide. More specifically, we investigate how participants use information about the generosity and payoff of others to update their links. It turns out that aversion to payoff inequity was the most consistent update rule: adding links to individuals that are worse off and removing links to individuals that are better off. We then investigate the effect of direct reciprocation, showing that the possibility of direct reciprocation does not increase cooperation as compared to the treatment where participants are totally unaware of who is providing benefits to them. PMID:26824240

  12. Targeted Cooperative Actions Shape Social Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2016-01-01

    Individual acts of cooperation give rise to dynamic social networks. Traditionally, models for cooperation in structured populations are based on a separation of individual strategies and of population structure. Individuals adopt a strategy—typically cooperation or defection, which determines their behaviour toward their neighbours as defined by an interaction network. Here, we report a behavioural experiment that amalgamates strategies and structure to empirically investigate the dynamics of social networks. The action of paying a cost c to provide a benefit b is represented as a directed link point from the donor to the recipient. Participants can add and/or remove links to up to two recipients in each round. First, we show that dense networks emerge, where individuals are characterized by fairness: they receive to the same extent they provide. More specifically, we investigate how participants use information about the generosity and payoff of others to update their links. It turns out that aversion to payoff inequity was the most consistent update rule: adding links to individuals that are worse off and removing links to individuals that are better off. We then investigate the effect of direct reciprocation, showing that the possibility of direct reciprocation does not increase cooperation as compared to the treatment where participants are totally unaware of who is providing benefits to them. PMID:26824240

  13. Wavelet differential neural network observer.

    PubMed

    Chairez, Isaac

    2009-09-01

    State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown. PMID:19674951

  14. Manipulation Action Understanding for Observation and Execution

    ERIC Educational Resources Information Center

    Yang, Yezhou

    2015-01-01

    Modern intelligent agents will need to learn the actions that humans perform. They will need to recognize these actions when they see them and they will need to perform these actions themselves. We want to propose a cognitive system that interprets human manipulation actions from perceptual information (image and depth data) and consists of…

  15. Modulation of the Intracortical LFP during Action Execution and Observation

    PubMed Central

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N.; Kraskov, Alexander

    2015-01-01

    The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation. The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold). Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain–machine interfaces, although information about grasp was generally low during action observation. PMID:26041914

  16. Time to Tango: expertise and contextual anticipation during action observation.

    PubMed

    Amoruso, Lucía; Sedeño, Lucas; Huepe, David; Tomio, Ailin; Kamienkowski, Juan; Hurtado, Esteban; Cardona, Juan Felipe; Álvarez González, Miguel Ángel; Rieznik, Andrés; Sigman, Mariano; Manes, Facundo; Ibáñez, Agustín

    2014-09-01

    Predictive theories of action observation propose that we use our own motor system as a guide for anticipating and understanding other people's actions through the generation of context-based expectations. According to this view, people should be better in predicting and interpreting those actions that are present in their own motor repertoire compared to those that are not. We recorded high-density event-related potentials (ERPs: P300, N400 and Slow Wave, SW) and source estimation in 80 subjects separated by their level of expertise (experts, beginners and naïves) as they observed realistic videos of Tango steps with different degrees of execution correctness. We also performed path analysis to infer causal relationships between ongoing anticipatory brain activity, evoked semantic responses, expertise measures and behavioral performance. We found that anticipatory activity, with sources in a fronto-parieto-occipital network, early discriminated between groups according to their level of expertise. Furthermore, this early activity significantly predicted subsequent semantic integration indexed by semantic responses (N400 and SW, sourced in temporal and motor regions) which also predicted motor expertise. In addition, motor expertise was a good predictor of behavioral performance. Our results show that neural and temporal dynamics underlying contextual action anticipation and comprehension can be interpreted in terms of successive levels of contextual prediction that are significantly modulated by subject's prior experience. PMID:24830835

  17. Social Mimicry Enhances Mu-Suppression During Action Observation.

    PubMed

    Hogeveen, Jeremy; Chartrand, Tanya L; Obhi, Sukhvinder S

    2015-08-01

    During social interactions, there is a tendency for people to mimic the gestures and mannerisms of others, which increases liking and rapport. Psychologists have extensively studied the antecedents and consequences of mimicry at the social level, but the neural basis of this behavior remains unclear. Many researchers have speculated that mimicry is related to activity in the human mirror system (HMS), a network of parietofrontal regions that are involved in both action execution and observation. However, activity of the HMS during reciprocal social interactions involving mimicry has not been demonstrated. Here, we took an electroencephalographic (EEG) index of mirror activity-mu-suppression during action observation-in a pretest/post-test design with 1 of 3 intervening treatments: 1) social interaction in which the participant was mimicked, 2) social interaction without mimicry, or 3) an innocuous computer task, not involving another human agent. The change in mu-suppression from pre- to post-test varied as a function of the intervening treatment, with participants who had been mimicked showing an increase in mu-suppression during the post-treatment action observation session. We propose that this specific modulation of HMS activity as a function of mimicry constitutes the first direct evidence for mirror system involvement in real social mimicry. PMID:24532320

  18. Code 672 observational science branch computer networks

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  19. Implicit agency in observed actions: evidence for N1 suppression of tones caused by self-made and observed actions.

    PubMed

    Poonian, Simandeep K; McFadyen, Jessica; Ogden, Jessica; Cunnington, Ross

    2015-04-01

    Every day we make attributions about how our actions and the actions of others cause consequences in the world around us. It is unknown whether we use the same implicit process in attributing causality when observing others' actions as we do when making our own. The aim of this research was to investigate the neural processes involved in the implicit sense of agency we form between actions and effects, for both our own actions and when watching others' actions. Using an interval estimation paradigm to elicit intentional binding in self-made and observed actions, we measured the EEG responses indicative of anticipatory processes before an action and the ERPs in response to the sensory consequence. We replicated our previous findings that we form a sense of implicit agency over our own and others' actions. Crucially, EEG results showed that tones caused by either self-made or observed actions both resulted in suppression of the N1 component of the sensory ERP, with no difference in suppression between consequences caused by observed actions compared with self-made actions. Furthermore, this N1 suppression was greatest for tones caused by observed goal-directed actions rather than non-action or non-goal-related visual events. This suggests that top-down processes act upon the neural responses to sensory events caused by goal-directed actions in the same way for events caused by the self or those made by other agents. PMID:25321488

  20. Mitigation of malicious attacks on network observation

    NASA Astrophysics Data System (ADS)

    Xiao, Yan-Dong; Lao, Song-Yang; Hou, Lv-Lin; Bai, Liang

    2015-02-01

    In the modeling, controlling, and monitoring of complex networks, a fundamental problem concerns the determination and observation of the system's states by using measurements or sensors as few as possible, defined as network observation. This work aims to investigate the robustness of network observation when an approach of minimum dominating set is considered in observing a network. We first investigate the structural properties of the minimum dominating sets, e.g. how the size depends on the degree-degree correlations and how to assess the nodes' importance in the malicious attacks. Then, we introduce a new measurement of robustness for network observation, and implement a hill-climbing algorithm to improve its robustness by edge rewiring. Furthermore, we propose a novel rewiring strategy, called smart rewiring, which could speed up the increment of robustness index. In comparison with previous strategy of edge rewiring, the smart rewiring has been found to be successfully useful on real-world and synthetic networks.

  1. Joint action modulates motor system involvement during action observation in 3-year-olds.

    PubMed

    Meyer, Marlene; Hunnius, Sabine; van Elk, Michiel; van Ede, Freek; Bekkering, Harold

    2011-06-01

    When we are engaged in a joint action, we need to integrate our partner's actions with our own actions. Previous research has shown that in adults the involvement of one's own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor. The aim of this study was to investigate whether similar motor system involvement is present at early stages of joint action development and whether it is related to joint action performance. In an EEG experiment with 3-year-old children, we assessed the children's brain activity and performance during a joint game with an adult experimenter. We used a simple button-pressing game in which the two players acted in turns. Power in the mu- and beta-frequency bands was compared when children were not actively moving but observing the experimenter's actions when (1) they were engaged in the joint action game and (2) when they were not engaged. Enhanced motor involvement during action observation as indicated by attenuated sensorimotor mu- and beta-power was found when the 3-year-olds were engaged in the joint action. This enhanced motor activation during action observation was associated with better joint action performance. The findings suggest that already in early childhood the motor system is differentially activated during action observation depending on the involvement in a joint action. This motor system involvement might play an important role for children's joint action performance. PMID:21479943

  2. Using Action Research and Action Learning for Entrepreneurial Network Capability Development

    ERIC Educational Resources Information Center

    McGrath, Helen; O'Toole, Thomas

    2016-01-01

    This paper applies an action research (AR) design and action learning (AL) approach to network capability development in an entrepreneurial context. Recent research suggests that networks are a viable strategy for the entrepreneurial firm to overcome the liabilities associated with newness and smallness. However, a gap emerges as few, if any,…

  3. Observability Transitions in Networks with Betweenness Preference

    PubMed Central

    Shunkun, Yang; Xiaoyun, Xu; Dan, Lu; Daqing, Li

    2016-01-01

    A network is considered observable if its current state can be determined in finite time from knowledge of the observed states. The observability transitions in networks based on random or degree-correlated sensor placement have recently been studied. However, these placement strategies are predominantly based on local information regarding the network. In this paper, to understand the phase transition process of network observability, we analyze the network observability transition for a betweenness-based sensor placement strategy, in which sensors are placed on nodes according to their betweenness. Using numerical simulations, we compute the size of the network’s largest observable component (LOC) and compare the observability transitions for different sensor placements. We find that betweenness-based sensor placement can generate a larger LOC in the observability transition than the random or degree-based placement strategy in both model and real networks. This finding may help to understand the relationship between network observability and the topological properties of the network. PMID:27299338

  4. Exercise Performance and Corticospinal Excitability during Action Observation

    PubMed Central

    Wrightson, James G.; Twomey, Rosie; Smeeton, Nicholas J.

    2016-01-01

    Purpose: Observation of a model performing fast exercise improves simultaneous exercise performance; however, the precise mechanism underpinning this effect is unknown. The aim of the present study was to investigate whether the speed of the observed exercise influenced both upper body exercise performance and the activation of a cortical action observation network (AON). Method: In Experiment 1, 10 participants completed a 5 km time trial on an arm-crank ergometer whilst observing a blank screen (no-video) and a model performing exercise at both a typical (i.e., individual mean cadence during baseline time trial) and 15% faster than typical speed. In Experiment 2, 11 participants performed arm crank exercise whilst observing exercise at typical speed, 15% slower and 15% faster than typical speed. In Experiment 3, 11 participants observed the typical, slow and fast exercise, and a no-video, whilst corticospinal excitability was assessed using transcranial magnetic stimulation. Results: In Experiment 1, performance time decreased and mean power increased, during observation of the fast exercise compared to the no-video condition. In Experiment 2, cadence and power increased during observation of the fast exercise compared to the typical speed exercise but there was no effect of observation of slow exercise on exercise behavior. In Experiment 3, observation of exercise increased corticospinal excitability; however, there was no difference between the exercise speeds. Conclusion: Observation of fast exercise improves simultaneous upper-body exercise performance. However, because there was no effect of exercise speed on corticospinal excitability, these results suggest that these improvements are not solely due to changes in the activity of the AON. PMID:27014037

  5. ALE meta-analysis of action observation and imitation in the human brain

    PubMed Central

    Caspers, Svenja; Zilles, Karl; Laird, Angela R.; Eickhoff, Simon B.

    2016-01-01

    Over the last decade, many neuroimaging studies have assessed the human brain networks underlying action observation and imitation using a variety of tasks and paradigms. Nevertheless, questions concerning which areas consistently contribute to these networks irrespective of the particular experimental design and how such processing may be lateralized remain unresolved. The current study aimed at identifying cortical areas consistently involved in action observation and imitation by combining activation likelihood estimation (ALE) meta-analysis with probabilistic cytoarchitectonic maps. Meta-analysis of 139 functional magnetic resonance and positron emission tomography experiments revealed a bilateral network for both action observation and imitation. Additional subanalyses for different effectors within each network revealed highly comparable activation patterns to the overall analyses on observation and imitation, respectively, indicating an independence of these findings from potential confounds. Conjunction analysis of action observation and imitation meta-analyses revealed a bilateral network within frontal premotor, parietal, and temporo-occipital cortex. The most consistently rostral inferior parietal area was PFt, providing evidence for a possible homology of this region to macaque area PF. The observation and imitation networks differed particularly with respect to the involvement of Broca's area: whereas both networks involved a caudo-dorsal part of BA 44, activation during observation was most consistent in a more rostro-dorsal location, i.e., dorsal BA 45, while activation during imitation was most consistent in a more ventro-caudal aspect, i.e., caudal BA 44. The present meta-analysis thus summarizes and amends previous descriptions of the human brain networks related to action observation and imitation. PMID:20056149

  6. Good is up—spatial metaphors in action observation

    PubMed Central

    Gottwald, Janna M.; Elsner, Birgit; Pollatos, Olga

    2015-01-01

    Positive objects or actions are associated with physical highness, whereas negative objects or actions are related to physical lowness. Previous research suggests that metaphorical connection (“good is up” or “bad is down”) between spatial experience and evaluation of objects is grounded in actual experience with the body. Prior studies investigated effects of spatial metaphors with respect to verticality of either static objects or self-performed actions. By presenting videos of object placements, the current three experiments combined vertically-located stimuli with observation of vertically-directed actions. As expected, participants’ ratings of emotionally-neutral objects were systematically influenced by the observed vertical positioning, that is, ratings were more positive for objects that were observed being placed up as compared to down. Moreover, effects were slightly more pronounced for “bad is down,” because only the observed downward, but not the upward, action led to different ratings as compared to a medium-positioned action. Last, some ratings were even affected by observing only the upward/downward action, without seeing the final vertical placement of the object. Thus, both, a combination of observing a vertically-directed action and seeing a vertically-located object, and observing a vertically-directed action alone, affected participants’ evaluation of emotional valence of the involved object. The present findings expand the relevance of spatial metaphors to action observation, thereby giving new impetus to embodied-cognition research. PMID:26539147

  7. Modulation of neural activity during observational learning of actions and their sequential orders.

    PubMed

    Frey, Scott H; Gerry, Valerie E

    2006-12-20

    How does the brain transform perceptual representations of others' actions into motor representations that can be used to guide behavior? Here we used functional magnetic resonance imaging to record human brain activity while subjects watched others construct multipart objects under varied task demands. We find that relative to resting baseline, passive action observation increases activity within inferior frontal and parietal cortices implicated in action encoding (mirror system) and throughout a distributed network of areas involved in motor representation, including dorsal premotor cortex, pre-supplementary motor area, cerebellum, and basal ganglia (experiments 1 and 2). Relative to passive observation, these same areas show increased activity when subjects observe with the intention to subsequently reproduce component actions using the demonstrated sequential procedures (experiment 1). Observing the same actions with the intention of reproducing component actions, but without the requirement to use the demonstrated sequential procedure, increases activity in the same regions, although to a lesser degree (experiment 2). These findings demonstrate that when attempting to learn behaviors through observation, the observers' intentions modulate responses in a widely distributed network of cortical and subcortical regions implicated previously in action encoding and/or motor representation. Among these regions, only activity within the right intraparietal sulcus predicts the accuracy with which observed procedures are subsequently performed. Successful formation of motor representations of sequential procedures through observational learning is dependent on computations implemented within this parietal region. PMID:17182769

  8. Using Walkthrough Observations to Document Dispositional Actions

    ERIC Educational Resources Information Center

    Danley, Angela; Theiss, Deb

    2015-01-01

    Faculty from a Midwestern university implemented walkthrough observations in a Professional Development Schools (PDS) field experience with elementary and early childhood majors. The instructors researchers used walkthrough observation forms to track, evaluate, and monitor teacher candidate dispositions. The data were collected electronically and…

  9. Eye Gaze Metrics Reflect a Shared Motor Representation for Action Observation and Movement Imagery

    ERIC Educational Resources Information Center

    McCormick, Sheree A.; Causer, Joe; Holmes, Paul S.

    2012-01-01

    Action observation (AO) and movement imagery (MI) have been reported to share similar neural networks. This study investigated the congruency between AO and MI using the eye gaze metrics, dwell time and fixation number. A simple reach-grasp-place arm movement was observed and, in a second condition, imagined where the movement was presented from…

  10. Imitative Response Tendencies Following Observation of Intransitive Actions

    ERIC Educational Resources Information Center

    Bertenthal, Bennett I.; Longo, Matthew R.; Kosobud, Adam

    2006-01-01

    Clear and unequivocal evidence shows that observation of object affordances or transitive actions facilitates the activation of a compatible response. By contrast, the evidence showing response facilitation following observation of intransitive actions is less conclusive because automatic imitation and spatial compatibility have been confounded.…

  11. Action observation: mirroring across our spontaneous movement tempo

    PubMed Central

    Avanzino, Laura; Lagravinese, Giovanna; Bisio, Ambra; Perasso, Luisa; Ruggeri, Piero; Bove, Marco

    2015-01-01

    During action observation (AO), the activity of the “mirror system” is influenced by the viewer’s expertise in the observed action. A question that remains open is whether the temporal aspects of the subjective motor repertoire can influence the “mirror system” activation. PMID:25989029

  12. Reputation in an economic game modulates premotor cortex activity during action observation.

    PubMed

    Farmer, Harry; Apps, Matthew; Tsakiris, Manos

    2016-09-01

    Our interactions with other people - and our processing of their actions - are shaped by their reputation. Research has identified an Action Observation Network (AON) which is engaged when observing other people's actions. Yet, little is known about how the processing of others' actions is influenced by another's reputation. Is the response of the AON modulated by the reputation of the actor? We developed a variant of the ultimatum game in which participants watched either the visible or occluded actions of two 'proposers'. These actions were tied to decisions of how to split a pot of money although the proposers' decisions on each trial were not known to participants when observing the actions. One proposer made fair offers on the majority of trials, establishing a positive reputation, whereas the other made predominantly, unfair offers resulting in a negative reputation. We found significant activations in two regions of the left dorsal premotor cortex (dPMC). The first of these showed a main effect of reputation with greater activation for the negative reputation proposer than the positive reputation proposer. Furthermore individual differences in trust ratings of the two proposers covaried with activation in the right primary motor cortex (M1). The second showed an interaction between visibility and reputation driven by a greater effect of reputation when participants were observing an occluded action. Our findings show that the processing of others' actions in the AON is modulated by an actor's reputation, and suggest a predictive role for the PMC during action observation. PMID:27364606

  13. Neural representation of observed actions in the parietal and premotor cortex.

    PubMed

    Ogawa, Kenji; Inui, Toshio

    2011-05-15

    We investigated the neural representation of observed actions in the human parietal and premotor cortex, which comprise the action observation network or the mirror neuron system for action recognition. Participants observed object-directed hand actions, in which action as well as other properties were independently manipulated: action (grasp or touch), object (cup or bottle), perspective (1st or 3rd person), hand (right or left), and image size (large or small). We then used multi-voxel pattern analysis to determine whether each feature could be correctly decoded from regional activities. The early visual area showed significant above-chance classification accuracy, particularly high in perspective, hand, and size, consistent with pixel-wise dissimilarity of stimuli. In contrast, the highest decoding accuracy for action was observed in the anterior intraparietal sulcus (aIPS) and the ventral premotor cortex (PMv). Moreover, the decoder for action could be correctly generalized for images with high dissimilarity in the parietal and premotor region, but not in the visual area. Our study indicates that the parietal and premotor regions encode observed actions independent of retinal variations, which may subserve our capacity for invariant action recognition of others. PMID:20974271

  14. Interhemispheric inhibition is dynamically regulated during action observation.

    PubMed

    Gueugneau, Nicolas; Bove, Marco; Ballay, Yves; Papaxanthis, Charalambos

    2016-05-01

    It is now well established that the motor system plays a pivotal role in action observation and that the neurophysiological processes underlying perception and action overlaps. However, while various experiments have shown a specific facilitation of the contralateral motor cortex during action observation, no information is available concerning the dynamics of interhemispheric interactions. The aim of the present study was, therefore, to assess interhemispheric inhibition during the observation of others' actions. We designed a transcranial magnetic stimulation (TMS) experiment in which we measured both corticospinal excitability and interhemispheric inhibition, this latter by means of the ipsilateral silent period (iSP), while participants observed two motor tasks (tapping or grasping). We show that the iSP is enhanced during movement observation and that this modulation is tuned to the kinematics of the observed movements. An additional experiment was performed in which the TMS intensity was adjusted to match corticospinal excitability between rest and action observation. This resulted in a relative decrease of iSP. Overall, our data strongly suggest that action observation, as action execution, involves interhemispheric inhibitory mechanisms between the two motor cortices, and that this neural activity appears to be firmly shaped by the ongoing observed movement and its intrinsic dynamics. PMID:27082878

  15. Learning Networks--Enabling Change through Community Action Research

    ERIC Educational Resources Information Center

    Bleach, Josephine

    2016-01-01

    Learning networks are a critical element of ethos of the community action research approach taken by the Early Learning Initiative at the National College of Ireland, a community-based educational initiative in the Dublin Docklands. Key criteria for networking, whether at local, national or international level, are the individual's and…

  16. EUV observations of the chromospheric network.

    NASA Technical Reports Server (NTRS)

    Reeves, E. M.; Parkinson, W. H.

    1972-01-01

    Extreme ultraviolet observations of a quiet region of the sun on Aug. 18, 1969, with the Harvard spectroheliometer on OSO 6 indicate that the chromospheric network can be observed in lines of the chromosphere and transition region (T = 840,000 K) with almost identical structure. At coronal heights, the network changes but some residual structure can still be discerned in Mg X and perhaps Si XII, although there is little or no evidence remaining in Fe XVI.

  17. Viewing Instructions Accompanying Action Observation Modulate Corticospinal Excitability

    PubMed Central

    Wright, David J.; McCormick, Sheree A.; Williams, Jacqueline; Holmes, Paul S.

    2016-01-01

    Action observation interventions may have the potential to contribute to improved motor function in motor (re)learning settings by promoting functional activity and plasticity in the motor regions of the brain. Optimal methods for delivering such interventions, however, have yet to be established. This experiment investigated the effect on corticospinal excitability of manipulating the viewing instructions provided to participants (N = 21) prior to action observation. Specifically, motor evoked potential responses measured from the right hand muscles following single-pulse transcranial magnetic stimulation (TMS) to the left motor cortex were compared when participants were instructed to observe finger-thumb opposition movement sequences: (i) passively; (ii) with the intent to imitate the observed movement; or (iii) whilst simultaneously and actively imagining that they were performing the movement as they observed it. All three action observation viewing instructions facilitated corticospinal excitability to a greater extent than did observation of a static hand. In addition, the extent to which corticospinal excitability was facilitated was greater during combined observation and imagery, compared to passive observation. These findings have important implications for the design of action observation interventions in motor (re)learning settings, where instructions that encourage observers to simultaneously imagine themselves performing the observed movement may offer the current optimal method for improving motor function through action observation. PMID:26869901

  18. Somatosensory Experiences with Action Modulate Alpha and Beta Power during Subsequent Action Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.; Bouquet, Cedric A.; Shipley, Thomas F.

    2013-01-01

    How does prior experience with action change how we perceive a similar action performed by someone else? Previous research has examined the role of sensorimotor and visual experiences in action mirroring during subsequent observation, but the contribution of somatosensory experiences to this effect has not been adequately examined. The current study tests whether prior somatosensory stimulation experienced during action production modulates brain activity during observation of similar actions being performed by others. Specifically, changes in alpha- and beta-range oscillations in the electroencephalogram (EEG) during observation of reaching actions were examined in relation to the observer’s own prior experience of somatosensory stimulation while carrying out similar actions. Analyses revealed that alpha power over central electrodes was significantly decreased during observation of an action expected to result in somatosensory stimulation. Conversely, beta power was increased when an observed action was expected to result in somatosensory stimulation. These results suggest that somatosensory experiences may uniquely contribute to the way in which we process others people’s actions. PMID:23994217

  19. The Collaborative Action Research Network: 30 Years of Agency in Developing Educational Action Research

    ERIC Educational Resources Information Center

    Somekh, Bridget

    2010-01-01

    This article provides an analysis of the Collaborative Action Research Network's (CARN) origins and development since its foundation in 1976. The author brings the unique perspective of active involvement in CARN almost from its inception, and editorship for many years of its journal "Educational Action Research". Cultural-historical activity…

  20. Connecticut observation wells; guidelines for network modification

    USGS Publications Warehouse

    Melvin, R.L.

    1986-01-01

    The U.S. Geological Survey and Connecticut Department of Environmental Protection are developing a baseline observation well network to assess the present status of groundwater storage and relate it to long-term conditions and to describe and characterize natural changes in groundwater storage in relation to climatic variations, topography, and hydrogeologic setting. An evaluation of the present network of 31 observation wells indicates it is not representative of climatic areas or major hydrologic units in the State. Several wells provide equivalent information and six can be discontinued. Network modifications, including deletion of some existing wells and the addition of 50 to 60 new observation wells are needed to meet network objectives. Fourteen existing wells that have long-term records should be retained as a basis for historical comparisons. (USGS)

  1. Neural Mechanisms Underlying Action Observation in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, Naznin; Moiseev, Alexander; Cheung, Teresa; Weeks, Daniel J.; Cheyne, Douglas; Ribary, Urs

    2010-01-01

    Results of a magnetoencephalography (MEG) brain imaging study conducted to examine the cortical responses during action execution and action observation in 10 healthy adults and 8 age-matched adults with Down syndrome are reported. During execution, the motor responses were strongly lateralized on the ipsilateral rather than the contralateral side…

  2. Combined action observation and imagery facilitates corticospinal excitability

    PubMed Central

    Wright, David J.; Williams, Jacqueline; Holmes, Paul S.

    2014-01-01

    Observation and imagery of movement both activate similar brain regions to those involved in movement execution. As such, both are recommended as techniques for aiding the recovery of motor function following stroke. Traditionally, action observation and movement imagery (MI) have been considered as independent intervention techniques. Researchers have however begun to consider the possibility of combining the two techniques into a single intervention strategy. This study investigated the effect of combined action observation and MI on corticospinal excitability, in comparison to either observation or imagery alone. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the hand representation of the left motor cortex during combined action observation and MI, passive observation (PO), or MI of right index finger abduction-adduction movements or control conditions. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the right hand. The combined action observation and MI condition produced MEPs of larger amplitude than were obtained during PO and control conditions. This effect was only present in the FDI muscle, indicating the facilitation of corticospinal excitability during the combined condition was specific to the muscles involved in the observed/imagined task. These findings have implications for stroke rehabilitation, where combined action observation and MI interventions may prove to be more effective than observation or imagery alone. PMID:25505880

  3. Harm avoiders suppress motor resonance to observed immoral actions

    PubMed Central

    Candidi, Matteo; Sforza, Anna Laura; Aglioti, Salvatore Maria

    2015-01-01

    Motor resonance (MR) contingent upon action observation is thought to occur largely automatically. Although recent studies suggest that this process is not completely impervious to top-down modulations, much less is known on the possible role of the moral connotation of observed action goal in modulating MR. Here, we explored whether observing actions with different moral connotations modulates MR and whether any modulation depends on the onlookers’ personality. To this aim, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation from hand muscles of participants who were watching images of a model performing hand actions with the same postures and low-level goals (i.e. grasping an object) but with different moral connotations (‘stealing a wallet’ vs ‘picking up a notepaper’). Participants’ personality traits were measured using the temperament and character inventory. Results show a selective suppression of corticospinal excitability during observation of immoral actions in individuals with high scores in harm avoidance, a personality trait characterized by excessive worrying and fearfulness. Thus, a combination of dispositional (personality traits) and situational (morality of an action) variables appears to influence MR with the observed actions. PMID:24526183

  4. Similarity of actions depends on the functionality of previously observed actions.

    PubMed

    Naber, Marnix; Eijgermans, Wessel; Herman, Anne-Sophie; Bergman, Annemiek; Hommel, Bernhard

    2016-05-01

    People have a tendency to imitate the behavior of others, sometimes even automatically. And yet, evidence suggests that many of our actions are controlled, mediated by current goals and careful considerations. Here, we investigated whether the observation and evaluation of previous actions of another person modulates the similarity of actions between people in present trials. We manipulated the functionality of a confederate's actions and the interactive context in 2 behavioral tasks, which consisted of games that participants played against a confederate or a virtual computer opponent. To measure effects of working memory load on imitation rates, participants additionally performed an easy or difficult auditory n-back task in parallel to the tasks. We show that participants occasionally produced rather bizarre and dysfunctional behavior when the confederate had done so as well. Even more importantly, results from both tasks show that participants most likely copied dysfunctional behavior in the present trial when the confederate performed functional actions in the previous trial. Thus, the positive evaluation of action consequences in previous trials increases the probability of similarity between the participant's and confederate's actions in present trials despite a chance to copy improper actions. Furthermore, we found a trend of increased action similarities when participants were under high working memory load in Experiment 1 but not in Experiment 2. These results suggest that copying an observed action is an efficient and effortless behavioral and social strategy to achieve similar goals as others, though with an increased risk of maladaptive behavior. PMID:26618624

  5. Goal anticipation during action observation is influenced by synonymous action capabilities, a puzzling developmental study.

    PubMed

    Gredebäck, Gustaf; Kochukhova, Olga

    2010-04-01

    Eighteen- and 25-month-old human toddlers' ability to manually solve a puzzle and their ability to anticipate the goal during observation of similar actions were investigated. Results demonstrate that goal anticipation during action observation is dependent on manual ability, both on a group level (only 25-month-olds solved the manual task and anticipated the goal during observation) and individually within the older age group (r (xy) = 0.53). These findings suggests a connection between manual ability and the ability to anticipate the goal of others' actions in toddlers, in accordance with the direct matching hypothesis. PMID:20041233

  6. Perception of race-related features modulates neural activity associated with action observation and imitation.

    PubMed

    Earls, Holly A; Englander, Zoë A; Morris, James P

    2013-05-29

    The present study examines whether race-specific features affect biological motion perception. Activation of the neural action observation and imitation network was measured using functional MRI. During scanning, individuals were asked to imitate and observe basic hand movements of own-race and other-race actors. Results indicate that three key areas often associated with action observation and imitation, the inferior parietal lobule, superior parietal lobule, and superior temporal sulcus, were more active when participants imitated and observed hand movements of own-race relative to other-race actors. These findings indicate that several regions associated with the neural imitation/observation network are sensitive to race-related features. PMID:23571693

  7. The effect of action experience on sensorimotor EEG rhythms during action observation.

    PubMed

    Quandt, Lorna C; Marshall, Peter J

    2014-04-01

    A recent line of inquiry has examined how an observer׳s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n=20 in each group; mean age=22.0 years, SD=2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects׳ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant׳s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions. PMID:24568874

  8. Action observation treatment: a novel tool in neurorehabilitation.

    PubMed

    Buccino, Giovanni

    2014-01-01

    This review focuses on a novel rehabilitation approach known as action observation treatment (AOT). It is now a well-accepted notion in neurophysiology that the observation of actions performed by others activates in the perceiver the same neural structures responsible for the actual execution of those same actions. Areas endowed with this action observation-action execution matching mechanism are defined as the mirror neuron system. AOT exploits this neurophysiological mechanism for the recovery of motor impairment. During one typical session, patients observe a daily action and afterwards execute it in context. So far, this approach has been successfully applied in the rehabilitation of upper limb motor functions in chronic stroke patients, in motor recovery of Parkinson's disease patients, including those presenting with freezing of gait, and in children with cerebral palsy. Interestingly, this approach also improved lower limb motor functions in post-surgical orthopaedic patients. AOT is well grounded in basic neuroscience, thus representing a valid model of translational medicine in the field of neurorehabilitation. Moreover, the results concerning its effectiveness have been collected in randomized controlled studies, thus being an example of evidence-based clinical practice. PMID:24778380

  9. Remote observing with NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  10. Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans.

    PubMed

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding--outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  11. Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans

    PubMed Central

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding - outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  12. The perception-action dynamics of action competency are altered by both physical and observational training.

    PubMed

    Buchanan, John J; Ramos, Jorge; Robson, Nina

    2015-04-01

    Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60° and -120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system. PMID:25618008

  13. Action observation treatment: a novel tool in neurorehabilitation

    PubMed Central

    Buccino, Giovanni

    2014-01-01

    This review focuses on a novel rehabilitation approach known as action observation treatment (AOT). It is now a well-accepted notion in neurophysiology that the observation of actions performed by others activates in the perceiver the same neural structures responsible for the actual execution of those same actions. Areas endowed with this action observation–action execution matching mechanism are defined as the mirror neuron system. AOT exploits this neurophysiological mechanism for the recovery of motor impairment. During one typical session, patients observe a daily action and afterwards execute it in context. So far, this approach has been successfully applied in the rehabilitation of upper limb motor functions in chronic stroke patients, in motor recovery of Parkinson's disease patients, including those presenting with freezing of gait, and in children with cerebral palsy. Interestingly, this approach also improved lower limb motor functions in post-surgical orthopaedic patients. AOT is well grounded in basic neuroscience, thus representing a valid model of translational medicine in the field of neurorehabilitation. Moreover, the results concerning its effectiveness have been collected in randomized controlled studies, thus being an example of evidence-based clinical practice. PMID:24778380

  14. Global Networked Learning: A New Form of Collaborative Action Research

    ERIC Educational Resources Information Center

    Mirny, A.; Wiske, M. S.; Joo, J.; Cunningham, G.; Daniels, D.; Farid, A. B.; Gordon, F.; Madani, R.; Nissen, S. C.

    2010-01-01

    A year-long collaborative action research project used networked technologies to connect researchers at a university-based online professional development program and a group of practitioner researchers based in a range of schools and educational agencies in several countries. They studied the process and effects of online professional development…

  15. Using Action Research to Investigate Social Networking Technologies

    ERIC Educational Resources Information Center

    Worrall, Lisa; Harris, Katy

    2013-01-01

    This article outlines the first cycle of an Action Research (AR) investigation into why professional learners are not using the Social Networking Technologies (SNTs) of their bespoke website. It presents the rationale of how this study came about, the ontological and epistemological stance of the authors and how this led to the particular choice…

  16. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    ERIC Educational Resources Information Center

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  17. Verbal social primes alter motor contagion during action observation.

    PubMed

    Sparks, S; Douglas, T; Kritikos, A

    2016-06-01

    We investigated whether prosocial and nonsocial word primes prior to action observation modify subsequent initiation and execution of the observer's own reach-to-grasp actions. Participants observed a model performing exaggeratedly curved (vertical deviation) or natural straight reaches to a vertical dowel and always performed a straight reach to a dowel themselves. Observing curved movements slowed initiation times and increased the vertical deviation of the participants' movements. Observing curved movements enhanced vertical deviation only in the prosocial word primes condition. We suggest that social context priming can modulate initiation of movement as well as the extent of motor contagion (in this case, the extent of vertical deviation) between model and observer. PMID:26879285

  18. The Effect of Action Experience on Sensorimotor EEG Rhythms during Action Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.

    2014-01-01

    A recent line of inquiry has examined how an observer’s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n = 20 in each group; mean age = 22.0 years, SD = 2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects’ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant’s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions. PMID:24568874

  19. Action Experience, More than Observation, Influences Mu Rhythm Desynchronization

    PubMed Central

    Cannon, Erin N.; Yoo, Kathryn H.; Vanderwert, Ross E.; Ferrari, Pier F.; Woodward, Amanda L.; Fox, Nathan A.

    2014-01-01

    Since the discovery of mirror neurons in premotor and parietal areas of the macaque monkey, the idea that action and perception may share the same neural code has been of central interest in social, developmental, and cognitive neurosciences. A fundamental question concerns how a putative human mirror neuron system may be tuned to the motor experiences of the individual. The current study tested the hypothesis that prior motor experience modulated the sensorimotor mu and beta rhythms. Specifically, we hypothesized that these sensorimotor rhythms would be more desynchronized after active motor experience compared to passive observation experience. To test our hypothesis, we collected EEG from adult participants during the observation of a relatively novel action: an experimenter used a claw-like tool to pick up a toy. Prior to EEG collection, we trained one group of adults to perform this action with the tool (performers). A second group comprised trained video coders, who only had experience observing the action (observers). Both the performers and the observers had no prior motor and visual experience with the action. A third group of novices was also tested. Performers exhibited the greatest mu rhythm desynchronization in the 8–13 Hz band, particularly in the right hemisphere compared to observers and novices. This study is the first to contrast active tool-use experience and observation experience in the mu rhythm and to show modulation with relatively shorter amounts of experience than prior mirror neuron expertise studies. These findings are discussed with respect to its broader implication as a neural signature for a mechanism of early social learning. PMID:24663967

  20. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    NASA Astrophysics Data System (ADS)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  1. VLBI2010: Networks and Observing Strategies

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Corey, Brian; Himwich, Ed; Ma, Chopo; Malkin, Zinovy; Niell, Arthur; Shaffer, David; Vandenberg, Nancy

    2004-01-01

    The Observing Strategies Sub-group of IVS's Working Group 3 has been tasked with producing a vision for the following aspects of geodetic VLBI: antenna-network structure and observing strategies; source strength/structure/distribution; frequency bands, RFI; and field system and scheduling. These are high level considerations that have far reaching impact since they significantly influence performance potential and also constrain requirements for a number of other \\VG3 sub-groups. The paper will present the status of the sub-group's work on these topics.

  2. The Impact of Experience on Affective Responses during Action Observation.

    PubMed

    Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  3. The Stellar Observations Network Group - first results

    NASA Astrophysics Data System (ADS)

    Antoci, Victoria; Grundahl, Frank; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans

    2015-08-01

    SONG - the Stellar Observations Network Group is a Danish-led project set to design and build a global network of 1-m telescopes to carry out detailed studies of solar-like stars using asteroseismology and to discover and characterise exo-planets and their star system. Here we present more than 100 nights of high-precision radial velocity measurements from 2014 of the subgiant mu Herculis. Preliminary analyses of the largest ground-based data set ever obtained for such as star clearly show the detection of stochastically excited pressure modes. The high quality of our data allows unique extraction of individual modes over many orders in the frequency spectrum, leading to studies of rotation, convection, near-surface effects, core structure using mixed modes and stellar activity.

  4. The Impact of Experience on Affective Responses during Action Observation

    PubMed Central

    Kirsch, Louise P.; Snagg, Arielle; Heerey, Erin

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer’s general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  5. The COST Action on cyberbullying: developing an international network.

    PubMed

    Smith, Peter K; Steffgen, Georges

    2013-01-01

    The COST Action IS0801 on cyberbullying had the aim of a) sharing of developing expertise in knowledge base and measurement techniques across researchers, b) sharing of input from outside the research community; specifically, from legal experts as well as from mobile phone companies and internet service providers c) sharing of already nationally published guidelines, and recommended coping strategies, including positive uses of new technologies, and d) increasing awareness of the issue, as well as of the outcomes of the Action. Besides the conferences and Training schools organised, the Action has fostered or facilitated a considerable number of grant applications, publications as well as other outreach activities, and has established a fruitful international network. PMID:23792868

  6. Analyzing Enterprise Networks Needs: Action Research from the Mechatronics Sector

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Luca; Taticchi, Paolo; Bidini, Gianni; Baglieri, Enzo

    New business models and theories are developing nowadays towards collaborative environments direction, and many new tools in sustaining companies involved in these organizations are emerging. Among them, a plethora of methodologies to analyze their needs are already developed for single companies. Few academic works are available about Enterprise Networks (ENs) need analysis. This paper presents the learning from an action research (AR) in the mechatronics sector: AR has been used in order to experience the issue of evaluating network needs and therefore define, develop, and test a complete framework for network evaluation. Reflection on the story in the light of the experience and the theory is presented, as well as extrapolation to a broader context and articulation of usable knowledge.

  7. Brain Activity (fNIRS) in Control State Differs from the Execution and Observation of Object-Related and Object-Unrelated Actions.

    PubMed

    Balconi, Michela; Cortesi, Livia

    2016-01-01

    The authors explored cortical correlates of action execution and observation, directly comparing control condition condition and execution-observation, using functional near-infrared spectroscopy. Transitive actions (meaningful gestures produced in presence of an object) or intransitive actions (meaningful gestures produced in absence of an object) were performed. Increased oxygenated hemoglobin levels were revealed for both action execution and action observation in premotor cortex, and sensorimotor cortex compared to control condition. However, a higher activity in motor areas was observed for action execution than motor observation. In contrast the posterior parietal cortex was similarly activated in case of both execution and observation task. Finally, it was shown that action execution and observation of transitive more than intransitive gestures was supported by similar parietal posterior areas. These findings support the hypothesis of a partial common network for observation and execution of action, and significant implications related to action types (transitive vs. intransitive). PMID:26675979

  8. Towards a Community Environmental Observation Network

    NASA Astrophysics Data System (ADS)

    Mertl, Stefan; Lettenbichler, Anton

    2014-05-01

    The Community Environmental Observation Network (CEON) is dedicated to the development of a free sensor network to collect and distribute environmental data (e.g. ground shaking, climate parameters). The data collection will be done with contributions from citizens, research institutions and public authorities like communities or schools. This will lead to a large freely available data base which can be used for public information, research, the arts,..... To start a free sensor network, the most important step is to provide easy access to free data collection and -distribution tools. The initial aims of the project CEON are dedicated to the development of these tools. A high quality data logger based on open hardware and free software is developed and a software suite of already existing free software for near-real time data communication and data distribution over the Internet will be assembled. Foremost, the development focuses on the collection of data related to the deformation of the earth (such as ground shaking, surface displacement of mass movements and glaciers) and the collection of climate data. The extent to other measurements will be considered in the design. The data logger is built using open hardware prototyping platforms like BeagleBone Black and Arduino. Main features of the data logger are: a 24Bit analog-to-digital converter; a GPS module for time reference and positioning; wireless mesh networking using Optimized Link State Routing; near real-time data transmission and communication; and near real-time differential GNSS positioning using the RTKLIB software. The project CEON is supported by the Internet Foundation Austria (IPA) within the NetIdee 2013 call.

  9. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions.

    PubMed

    Eaves, D L; Behmer, L P; Vogt, S

    2016-07-01

    Recent studies show that participants can engage in motor imagery (MI) and action observation (AO) simultaneously (AO+MI), indicating a capacity for dual action simulation. Here we studied the electrophysiological correlates and behavioural outcomes of two forms of AO+MI, along with pure MI and pure AO control conditions. In synchronised AO+MI, participants imagined performing a rhythmical action in synchrony with an observed distractor action. In contrast in static AO+MI, where the imagery served to conflict with AO, participants imagined holding a static hand posture during AO. Following synchronised AO+MI, rhythmical execution was strongly biased toward the cycle time of the previously observed rhythm ('imitation bias'), whereas a weaker bias was found following pure MI, and particularly for static AO+MI. In line with these findings, event-related desynchronisation (ERD) in primary sensorimotor and parietal regions was more pronounced in synchronised AO+MI compared to both pure AO and pure MI. These ERD amplitudes were, however, highly similar for static and synchronised AO+MI; suggesting that, regardless of co-represented content, both AO+MI states produced stronger motor activations than single action simulation. In contrast, synchronised AO+MI produced significantly stronger ERD in rostral prefrontal cortex compared to the other three conditions. This specific rostral prefrontal involvement most likely reflected additional cognitive processing for aligning dual action simulations. Together these results provide an important empirical validation of different AO+MI states, in that the imitation bias was strongly modulated by the content of the AO+MI instructions, and that synchronised AO+MI produced stronger behavioural and neurophysiological effects compared to pure AO or MI. PMID:27266395

  10. LCOGT Network observations of spacecraft target comets

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Knight, Matthew M.; Snodgrass, Colin; Samarasinha, Nalin H.

    2015-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) network currently has 12 telescopes at 6 locations in the northern and southern hemispheres with expansion plans for more. This network is versatile and can respond rapidly to target of opportunity events and also perform long term monitoring of slowly changing astronomical phenomena.We have been using the LCOGT Network to perform photometric monitoring of comet 67P/Churyumov-Gerasimenko to support the ESA Rosetta comet mission and of C/2013 A1 (Siding Spring) as part of the ground-based observation teams for these important comets. This broadband photometry will allow a vital link between the detailed in-situ measurements made by the spacecraft and the global properties of the coma, at a time when the comet is only visible for short periods from single sites. The science we can extract includes the rotational state of the nucleus, characterization of the nucleus' activity, gas and dust properties in the coma (e.g., outflow velocities), chemical origin of gas species in the coma, and temporal behavior of the coma structure when the comet is close to the sun. Comet Siding Spring is a dynamically new comet on its first approach to the Sun that will pass close to Mars, so we can directly sample the composition of an original unaltered remnant of the protoplanetary disc. We will also be making use of specialized comet filters available at LCOGT's 2-m Faulkes Telescope North (FTN) to obtain a unique data set on comet C/2013 A1 (Siding Spring), as part of a large worldwide campaign. As one of only two robotic telescope equipped with cometary narrowband filters in the Northern hemisphere and having the largest aperture plus a high quality site, FTN can provide critical regular monitoring that cannot be achieved by any other single facility in the campaign.

  11. Scotland's knowledge network: a progress report on Knowledge into Action.

    PubMed

    Wales, Ann; Boyle, Derek

    2015-11-01

    Launched in 2012, Knowledge into Action is the national knowledge management strategy for the health and social care workforce in Scotland. It is transforming the role of the national digital knowledge service--NHS Education for Scotlands' Knowledge Network--and the NHSS librarian role to offer more active, tailored support for translating knowledge into frontline clinical practice. This includes the development of a national evidence search and summary service, help with converting knowledge into practical and usable formats for easy use at point of care and with using digital tools to share clinicians' learning, experience and expertise. Through this practical support, Knowledge into Action is contributing to quality and safety outcomes across NHS Scotland, building clinicians' capacity and capability in applying knowledge in frontline practice and service improvement. PMID:26449922

  12. Observing Arctic Ecology using Networked Infomechanical Systems

    NASA Astrophysics Data System (ADS)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  13. Social class affects Mu-suppression during action observation.

    PubMed

    Varnum, Michael E W; Blais, Chris; Brewer, Gene A

    2016-08-01

    Socioeconomic status (SES) has been linked to differences in the degree to which people are attuned to others. Those who are lower in SES also tend to be more interpersonally attuned. However, to date, this work has not been demonstrated using neural measures. In the present electroencephalogram study, we found evidence that lower SES was linked to stronger Mu-suppression during action observation. This finding adds to the growing literature on factors that affect Mu-suppression and suggests that the mirror neuron system may be influenced by one's social class. PMID:26458132

  14. Gap analysis of the European Earth Observation Networks

    NASA Astrophysics Data System (ADS)

    Closa, Guillem; Serral, Ivette; Maso, Joan

    2016-04-01

    Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on

  15. The right temporoparietal junction encodes efforts of others during action observation.

    PubMed

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    Smooth social interactions require a deep understanding of others' intentions and feelings. In the present study, to investigate brain regions that respond to inference of others' effort level, we recorded brain activity during action observation of different effort levels using functional magnetic resonance imaging (fMRI). We used a dumbbell curl movement to depict a movement requiring effort. To dissociate the factors of effort level of the actor and weight of the dumbbell, we used four combinations of dumbbell weight and actor physique: a thin actor or a built actor lifting a heavy or light dumbbell. During observation of dumbbell curls, the bilateral front-parietal action observation network (AON) was activated. This included the premotor cortices, parietal cortices, visual areas 5/superior temporal cortices (STS), amygdalae, hippocampi, right dorsolateral and ventrolateral frontal cortices. When we evaluated brain regions associated with the actor's effort level, activity in the right temporoparietal junction (TPJ) and STS was observed. However, activity in the front-parietal AON was independent of the actor's effort during action observation. This finding suggests that the right TPJ and STS play an important role in the inference of others' effort levels during the observation of others' movements. PMID:27458025

  16. The right temporoparietal junction encodes efforts of others during action observation

    PubMed Central

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    Smooth social interactions require a deep understanding of others’ intentions and feelings. In the present study, to investigate brain regions that respond to inference of others’ effort level, we recorded brain activity during action observation of different effort levels using functional magnetic resonance imaging (fMRI). We used a dumbbell curl movement to depict a movement requiring effort. To dissociate the factors of effort level of the actor and weight of the dumbbell, we used four combinations of dumbbell weight and actor physique: a thin actor or a built actor lifting a heavy or light dumbbell. During observation of dumbbell curls, the bilateral front-parietal action observation network (AON) was activated. This included the premotor cortices, parietal cortices, visual areas 5/superior temporal cortices (STS), amygdalae, hippocampi, right dorsolateral and ventrolateral frontal cortices. When we evaluated brain regions associated with the actor’s effort level, activity in the right temporoparietal junction (TPJ) and STS was observed. However, activity in the front-parietal AON was independent of the actor’s effort during action observation. This finding suggests that the right TPJ and STS play an important role in the inference of others’ effort levels during the observation of others’ movements. PMID:27458025

  17. Objects tell us what action we can expect: dissociating brain areas for retrieval and exploitation of action knowledge during action observation in fMRI

    PubMed Central

    Schubotz, Ricarda I.; Wurm, Moritz F.; Wittmann, Marco K.; von Cramon, D. Yves

    2014-01-01

    Objects are reminiscent of actions often performed with them: knife and apple remind us on peeling the apple or cutting it. Mnemonic representations of object-related actions (action codes) evoked by the sight of an object may constrain and hence facilitate recognition of unrolling actions. The present fMRI study investigated if and how action codes influence brain activation during action observation. The average number of action codes (NAC) of 51 sets of objects was rated by a group of n = 24 participants. In an fMRI study, different volunteers were asked to recognize actions performed with the same objects presented in short videos. To disentangle areas reflecting the storage of action codes from those exploiting them, we showed object-compatible and object-incompatible (pantomime) actions. Areas storing action codes were considered to positively co-vary with NAC in both object-compatible and object-incompatible action; due to its role in tool-related tasks, we here hypothesized left anterior inferior parietal cortex (aIPL). In contrast, areas exploiting action codes were expected to show this correlation only in object-compatible but not incompatible action, as only object-compatible actions match one of the active action codes. For this interaction, we hypothesized ventrolateral premotor cortex (PMv) to join aIPL due to its role in biasing competition in IPL. We found left anterior intraparietal sulcus (IPS) and left posterior middle temporal gyrus (pMTG) to co-vary with NAC. In addition to these areas, action codes increased activity in object-compatible action in bilateral PMv, right IPS, and lateral occipital cortex (LO). Findings suggest that during action observation, the brain derives possible actions from perceived objects, and uses this information to shape action recognition. In particular, the number of expectable actions quantifies the activity level at PMv, IPL, and pMTG, but only PMv reflects their biased competition while observed action unfolds

  18. What are you doing? How active and observational experience shape infants' action understanding

    PubMed Central

    Hunnius, Sabine; Bekkering, Harold

    2014-01-01

    From early in life, infants watch other people's actions. How do young infants come to make sense of actions they observe? Here, we review empirical findings on the development of action understanding in infancy. Based on this review, we argue that active action experience is crucial for infants' developing action understanding. When infants execute actions, they form associations between motor acts and the sensory consequences of these acts. When infants subsequently observe these actions in others, they can use their motor system to predict the outcome of the ongoing actions. Also, infants come to an understanding of others’ actions through the repeated observation of actions and the effects associated with them. In their daily lives, infants have plenty of opportunities to form associations between observed events and learn about statistical regularities of others’ behaviours. We argue that based on these two forms of experience—active action experience and observational experience—infants gradually develop more complex action understanding capabilities. PMID:24778386

  19. Enactment versus Observation: Item-Specific and Relational Processing in Goal-Directed Action Sequences (and Lists of Single Actions)

    PubMed Central

    Schult, Janette; von Stülpnagel, Rul; Steffens, Melanie C.

    2014-01-01

    What are the memory-related consequences of learning actions (such as “apply the patch”) by enactment during study, as compared to action observation? Theories converge in postulating that enactment encoding increases item-specific processing, but not the processing of relational information. Typically, in the laboratory enactment encoding is studied for lists of unrelated single actions in which one action execution has no overarching purpose or relation with other actions. In contrast, real-life actions are usually carried out with the intention to achieve such a purpose. When actions are embedded in action sequences, relational information provides efficient retrieval cues. We contrasted memory for single actions with memory for action sequences in three experiments. We found more reliance on relational processing for action-sequences than single actions. To what degree can this relational information be used after enactment versus after the observation of an actor? We found indicators of superior relational processing after observation than enactment in ordered pair recall (Experiment 1A) and in emerging subjective organization of repeated recall protocols (recall runs 2–3, Experiment 2). An indicator of superior item-specific processing after enactment compared to observation was recognition (Experiment 1B, Experiment 2). Similar net recall suggests that observation can be as good a learning strategy as enactment. We discuss possible reasons why these findings only partly converge with previous research and theorizing. PMID:24927279

  20. European Marine Observation Data Network - EMODnet Physics

    NASA Astrophysics Data System (ADS)

    Manzella, Giuseppe M. R.; Novellino, Antonio; D'Angelo, Paolo; Gorringe, Patrick; Schaap, Dick; Pouliquen, Sylvie; Loubrieu, Thomas; Rickards, Lesley

    2015-04-01

    The EMODnet-Physics portal (www.emodnet-physics.eu) makes layers of physical data and their metadata available for use and contributes towards the definition of an operational European Marine Observation and Data Network (EMODnet). It is based on a strong collaboration between EuroGOOS associates and its regional operational systems (ROOSs), and it is bringing together two very different marine communities: the "real time" ocean observing institute/centers and the National Oceanographic Data Centres (NODCs) that are in charge of ocean data validation, quality check and update for marine environmental monitoring. The EMODnet-Physics is a Marine Observation and Data Information System that provides a single point of access to near real time and historical achieved data (www.emodnet-physics.eu/map) it is built on existing infrastructure by adding value and avoiding any unless complexity, it provides data access to users, it is aimed at attracting new data holders, better and more data. With a long-term vision for a pan European Ocean Observation System sustainability, the EMODnet-Physics is supporting the coordination of the EuroGOOS Regional components and the empowerment and improvement of their data management infrastructure. In turn, EMODnet-Physics already implemented high-level interoperability features (WMS, Web catalogue, web services, etc…) to facilitate connection and data exchange with the ROOS and the Institutes within the ROOSs (www.emodnet-physics.eu/services). The on-going EMODnet-Physics structure delivers environmental marine physical data from the whole Europe (wave height and period, temperature of the water column, wind speed and direction, salinity of the water column, horizontal velocity of the water column, light attenuation, and sea level) as monitored by fixed stations, ARGO floats, drifting buoys, gliders, and ferry-boxes. It does provide discovering of data sets (both NRT - near real time - and Historical data sets), visualization and free

  1. Melatonin action in a midbrain vocal-acoustic network

    PubMed Central

    Feng, Ni Y.; Bass, Andrew H.

    2014-01-01

    Melatonin is a well-documented time-keeping hormone that can entrain an individual's physiology and behavior to the day–night cycle, though surprisingly little is known about its influence on the neural basis of social behavior, including vocalization. Male midshipman fish (Porichthys notatus) produce several call types distinguishable by duration and by daily and seasonal cycles in their production. We investigated melatonin's influence on the known nocturnal- and breeding season-dependent increase in excitability of the midshipman's vocal network (VN) that directly patterns natural calls. VN output is readily recorded from the vocal nerve as a ‘fictive call’. Five days of constant light significantly increased stimulus threshold levels for calls electrically evoked from vocally active sites in the medial midbrain, supporting previous findings that light suppresses VN excitability, while 2-iodomelatonin (2-IMel; a melatonin analog) implantation decreased threshold. 2-IMel also increased fictive call duration evoked from medial sites as well as lateral midbrain sites that produced several-fold longer calls irrespective of photoregime or drug treatment. When stimulus intensity was incrementally increased, 2-IMel increased duration only at lateral sites, suggesting that melatonin action is stronger in the lateral midbrain. For animals receiving 5 days of constant darkness, known to increase VN excitability, systemic injections of either of two mammalian melatonin receptor antagonists increased threshold and decreased duration for calls evoked from medial sites. Our results demonstrate melatonin modulation of VN excitability and suggest that social context-dependent call types differing in duration may be determined by neuro-hormonal action within specific regions of a midbrain vocal-acoustic network. PMID:24265429

  2. Observability and Controllability of Nonlinear Networks: The Role of Symmetry

    NASA Astrophysics Data System (ADS)

    Schiff, Steven; Whalen, Andrew; Brennan, Sean; Sauer, Timothy

    2015-03-01

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems may have subspaces that influence model behavior, but cannot be controlled by an input. Such subspaces are difficult to determine in complex nonlinear networks. Since most of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. We find that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks. National Academies - Keck Futures Initiative, NSF grant DMS 1216568, and Collaborative Research in Computational Neuroscience NIH Grant 1R01EB014641.

  3. Specializing network analysis to detect anomalous insider actions

    PubMed Central

    Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley

    2012-01-01

    Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks in complex distributed environments. For flexibility, they provide users with broad access privileges, which, as a side-effect, leave such systems vulnerable to various attacks. Some of the more damaging malicious activities stem from internal misuse, where users are authorized to access system resources. A promising class of insider threat detection models for CIS focuses on mining access patterns from audit logs, however, current models are limited in that they assume organizations have significant resources to generate label cases for training classifiers or assume the user has committed a large number of actions that deviate from “normal” behavior. In lieu of the previous assumptions, we introduce an approach that detects when specific actions of an insider deviate from expectation in the context of collaborative behavior. Specifically, in this paper, we introduce a specialized network anomaly detection model, or SNAD, to detect such events. This approach assesses the extent to which a user influences the similarity of the group of users that access a particular record in the CIS. From a theoretical perspective, we show that the proposed model is appropriate for detecting insider actions in dynamic collaborative systems. From an empirical perspective, we perform an extensive evaluation of SNAD with the access logs of two distinct environments: the patient record access logs a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,394,385 revisors, 55,200 articles and 6,482,780 revisions). We compare our model with several competing methods and demonstrate SNAD is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:23399988

  4. Action Research Networks: Role and Purpose in the Evaluation of Research Outcomes and Impacts

    ERIC Educational Resources Information Center

    Zornes, Deborah; Ferkins, Lesley; Piggot-Irvine, Eileen

    2016-01-01

    The focus of this paper is to share thinking about networks in action research (AR) and to consider their role, purpose, and how networks' outcomes and impacts might be evaluated. Networks are often a by-product of AR projects, yet research focused on the network itself as part of a project is rare. The paper is one of several associated with the…

  5. Suppressing epidemics on networks by exploiting observer nodes

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Hasegawa, Takehisa; Yoshida, Yuichi

    2014-07-01

    To control infection spreading on networks, we investigate the effect of observer nodes that recognize infection in a neighboring node and make the rest of the neighbor nodes immune. We numerically show that random placement of observer nodes works better on networks with clustering than on locally treelike networks, implying that our model is promising for realistic social networks. The efficiency of several heuristic schemes for observer placement is also examined for synthetic and empirical networks. In parallel with numerical simulations of epidemic dynamics, we also show that the effect of observer placement can be assessed by the size of the largest connected component of networks remaining after removing observer nodes and links between their neighboring nodes.

  6. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  7. Enhanced Neurobehavioral Outcomes of Action Observation Prosthesis Training.

    PubMed

    Cusack, William F; Thach, Scott; Patterson, Rebecca; Acker, Dan; Kistenberg, Robert S; Wheaton, Lewis A

    2016-07-01

    Background Previous studies have demonstrated improved neurobehavioral outcomes when prosthesis users learn task-specific behaviors by imitating movements of prosthesis users (matched limb) compared with intact limbs (mismatched limb). Objective This study is the first to use a unique combination of neurophysiological and task performance methods to investigate prosthetic device training strategies from a cognitive motor control perspective. Intact nonamputated prosthesis users (NAPUs) donned specially adapted prosthetic devices to simulate the wrist and forearm movement that persons with transradial limb loss experience. The hypothesis is that NAPUs trained with matched limb imitation would show greater engagement of parietofrontal regions and reduced movement variability compared with their counterparts trained with a mismatched limb. Methods Training elapsed over 3 days comprised alternating periods of video demonstration observation followed by action imitation. At the beginning and end of the training protocol, participants performed a cued movement paradigm while electroencephalography and electrogoniometry data were collected to track changes in cortical activity and movement variability, respectively. Results Matched limb participants showed greater engagement of motor-related areas while mismatched limb participants showed greater engagement of the parietooccipital system. Matched limb participants also showed lower movement variability. Conclusions These results indicate that the type of limb imitated influences neural and behavioral strategies for novel prosthetic device usage. This finding is important, as customary prosthetic rehabilitation with intact therapists involves mismatched limb imitation that may exacerbate challenges in adapting to new motor patterns demanded by prosthesis use. PMID:26438442

  8. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  9. Observing accidental and intentional unusual actions is associated with different subregions of the medial frontal cortex.

    PubMed

    Desmet, Charlotte; Brass, Marcel

    2015-11-15

    The literature on action observation revealed contradictory results regarding the activation of different subregions of the medial prefrontal cortex when observing unusual behaviour. Error observation research has shown that the posterior part of the medial prefrontal cortex is more active when observing unusual behaviour compared to usual behaviour while action understanding research has revealed some mixed results concerning the role of the anterior part of the medial prefrontal cortex during the observation of unusual actions. Here, we resolve this discrepancy in the literature by showing that different parts of the medial prefrontal cortex are active depending on whether an observed unusual behaviour is intentional or not. While the posterior medial prefrontal cortex is more active when we observe unusual accidental actions compared to unusual intentional actions, a more anterior part of the medial prefrontal cortex is more active when we observe unusual intentional actions compared to unusual accidental actions. PMID:26279209

  10. Social networks predict selective observation and information spread in ravens

    PubMed Central

    Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-01-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  11. Social networks predict selective observation and information spread in ravens.

    PubMed

    Kulahci, Ipek G; Rubenstein, Daniel I; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-07-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  12. How Equivalent Are the Action Execution, Imagery, and Observation of Intransitive Movements? Revisiting the Concept of Somatotopy during Action Simulation

    ERIC Educational Resources Information Center

    Lorey, Britta; Naumann, Tim; Pilgramm, Sebastian; Petermann, Carmen; Bischoff, Matthias; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter; Munzert, Jorn

    2013-01-01

    Jeannerod (2001) hypothesized that action execution, imagery, and observation are functionally equivalent. This led to the major prediction that these motor states are based on the same action-specific and even effector-specific motor representations. The present study examined whether hand and foot movements are represented in a somatotopic…

  13. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  14. On the Relations between Action Planning, Object Identification, and Motor Representations of Observed Actions and Objects

    ERIC Educational Resources Information Center

    Vainio, Lari; Symes, Ed; Ellis, Rob; Tucker, Mike; Ottoboni, Giovanni

    2008-01-01

    Recent evidence suggests that viewing a static prime object (a hand grasp), can activate action representations that affect the subsequent identification of graspable target objects. The present study explored whether stronger effects on target object identification would occur when the prime object (a hand grasp) was made more action-rich and…

  15. Observation and inverse problems in coupled cell networks

    NASA Astrophysics Data System (ADS)

    Joly, Romain

    2012-03-01

    A coupled cell network is a model for many situations such as food webs in ecosystems, cellular metabolism and economic networks. It consists in a directed graph G, each node (or cell) representing an agent of the network and each directed arrow representing which agent acts on which. It yields a system of differential equations \\dot x(t)=f(x(t)) , where the component i of f depends only on the cells xj(t) for which the arrow j → i exists in G. In this paper, we investigate the observation problems in coupled cell networks: can one deduce the behaviour of the whole network (oscillations, stabilization, etc) by observing only one of the cells? We show that the natural observation properties hold for almost all the interactions f.

  16. Observations on Electronic Networks: Appropriate Activities for Learning.

    ERIC Educational Resources Information Center

    Levin, James A.; And Others

    1989-01-01

    Discussion of the use of electronic networks for learning activities highlights the Noon Observation Project in which students in various locations measured the length of a noontime shadow to determine the earth's circumference. Electronic pen pals are discussed, and the roles of the network and of the class are described. (LRW)

  17. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project.

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine

    2015-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  18. Broca's area processes the hierarchical organization of observed action

    PubMed Central

    Wakita, Masumi

    2014-01-01

    Broca's area has been suggested as the area responsible for the domain-general hierarchical processing of language and music. Although meaningful action shares a common hierarchical structure with language and music, the role of Broca's area in this domain remains controversial. To address the involvement of Broca's area in the processing action hierarchy, the activation of Broca's area was measured using near-infrared spectroscopy. Measurements were taken while participants watched silent movies that featured hand movements playing familiar and unfamiliar melodies. The unfamiliar melodies were reversed versions of the familiar melodies. Additionally, to investigate the effect of a motor experience on the activation of Broca's area, the participants were divided into well-trained and less-trained groups. The results showed that Broca's area in the well-trained participants demonstrated a significantly larger activation in response to the hand motion when an unfamiliar melody was played than when a familiar melody was played. However, Broca's area in the less-trained participants did not show a contrast between conditions despite identical abilities of the two participant groups to identify the melodies by watching key pressing actions. These results are consistent with previous findings that Broca's area exhibits increased activation in response to grammatically violated sentences and musically deviated chord progressions as well as the finding that this region does not represent the processing of grammatical structure in less-proficient foreign language speakers. Thus, the current study suggests that Broca's area represents action hierarchy and that sufficiently long motor training is necessary for it to become sensitive to motor syntax. Therefore, the notion that hierarchical processing in Broca's area is a common function shared between language and music may help to explain the role of Broca's area in action perception. PMID:24478668

  19. Bayesian Network Models for Local Dependence among Observable Outcome Variables

    ERIC Educational Resources Information Center

    Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli

    2009-01-01

    Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…

  20. Deactivation in the Sensorimotor Area during Observation of a Human Agent Performing Robotic Actions

    ERIC Educational Resources Information Center

    Shimada, Sotaro

    2010-01-01

    It is well established that several motor areas, called the mirror-neuron system (MNS), are activated when an individual observes other's actions. However, whether the MNS responds similarly to robotic actions compared with human actions is still controversial. The present study investigated whether and how the motor area activity is influenced by…

  1. Near-Earth asteroids: Observer alert network and database analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1991-01-01

    The Planetary Science Institute (PSI) was funded by SERCulpr to develop a communication network to alert observers of newly discovered near-earth asteroids (NEA's). This network is intended to encourage observers to obtain physical observations of NEA's, which are needed in order to characterize and assess the resource potential of these bodies. This network was declared operational in October 1990 via an announcement to the asteroid observing community. The PSI is also supported to develop the Near-Earth Asteroid Database (NEAD), a comprehensive database of physical and dynamical data on NEA's. In the past year, the database was updated on newly discovered NEA's during 1990, and new data on radar observations and dynamical classifications were added.

  2. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  3. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems. PMID:25725640

  4. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. PMID:26152577

  5. Objects Mediate Goal Integration in Ventrolateral Prefrontal Cortex during Action Observation.

    PubMed

    Hrkać, Mari; Wurm, Moritz F; Kühn, Anne B; Schubotz, Ricarda I

    2015-01-01

    Actions performed by others are mostly not observed in isolation, but embedded in sequences of actions tied together by an overarching goal. Therefore, preceding actions can modulate the observer's expectations in relation to the currently perceived action. Ventrolateral prefrontal cortex (vlPFC), and inferior frontal gyrus (IFG) in particular, is suggested to subserve the integration of episodic as well as semantic information and memory, including action scripts. The present fMRI study investigated if activation in IFG varies with the effort to integrate expected and observed action, even when not required by the task. During an fMRI session, participants were instructed to attend to short videos of single actions and to deliver a judgment about the actor's current goal. We manipulated the strength of goal expectation induced by the preceding action, implementing the parameter "goal-relatedness" between the preceding and the currently observed action. Moreover, since objects point to the probability of certain actions, we also manipulated whether the current and the preceding action shared at least one object or not. We found an interaction between the two factors goal-relatedness and shared object: IFG activation increased the weaker the goal-relatedness between the preceding and the current action was, but only when they shared at least one object. Here, integration of successive action steps was triggered by the re-appearing (shared) object but hampered by a weak goal-relatedness between the actually observed manipulation. These findings foster the recently emerging view that IFG is enhanced by goal-related conflicts during action observation. PMID:26218102

  6. Values in Action: Observations of Effective Principals at Work

    ERIC Educational Resources Information Center

    Parkes, Sharon E.; Thomas, A. Ross

    2007-01-01

    Purpose: The purpose of this research is to report on the values practised by five effective secondary principals and to seek to identify common values that underpin their work practices. Design/methodology/approach: Principals were observed, each for two days, at work in their schools. From the observations of each principal activities were…

  7. Gender equality observations and actions by the European Research Council

    NASA Astrophysics Data System (ADS)

    Rydin, Claudia Alves de Jesus; Farina Busto, Luis; Penny, Martin

    2016-04-01

    Women have historically been underrepresented in science. Much positive progress in attracting women to research careers has been achieved in recent years; however, the most influential and high profile positions in most countries are still predominantly occupied by men. The European Research Council (ERC), Europe's premiere funding agency for frontier research, views gender equality as an important challenge. The ERC monitors closely gender figures on every call and has taken actions to tackle gender imbalances and potential unconscious biases. The ERC talk is focused on efforts made to understand and ensure equal treatment of all candidates, with particular focus on gender balance and with specific attention to geosciences. Data and statistics collected from ERC's internationally recognised funding schemes are presented.

  8. Stimulation over primary motor cortex during action observation impairs effector recognition.

    PubMed

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  9. Modeling Quantum Mechanical Observers via Neural-Glial Networks

    NASA Astrophysics Data System (ADS)

    Konishi, Eiji

    2012-07-01

    We investigate the theory of observers in the quantum mechanical world by using a novel model of the human brain which incorporates the glial network into the Hopfield model of the neural network. Our model is based on a microscopic construction of a quantum Hamiltonian of the synaptic junctions. Using the Eguchi-Kawai large N reduction, we show that, when the number of neurons and astrocytes is exponentially large, the degrees of freedom (d.o.f) of the dynamics of the neural and glial networks can be completely removed and, consequently, that the retention time of the superposition of the wavefunctions in the brain is as long as that of the microscopic quantum system of pre-synaptics sites. Based on this model, the classical information entropy of the neural-glial network is introduced. Using this quantity, we propose a criterion for the brain to be a quantum mechanical observer.

  10. Modulation of Brain Activity during Action Observation: Influence of Perspective, Transitivity and Meaningfulness

    PubMed Central

    Hétu, Sébastien; Mercier, Catherine; Eugène, Fanny; Michon, Pierre-Emmanuel; Jackson, Philip L.

    2011-01-01

    The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process. PMID:21931832

  11. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy

    PubMed Central

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2016-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells. PMID:26793116

  12. Results of Draconid 2011 observations from the BRAMS network

    NASA Astrophysics Data System (ADS)

    Calders, Stijn; Verbeeck, Cis; Lamy, Herve; Ranvier, Sylvain; Gamby, Emmanuel

    2013-01-01

    In this paper, the applicability of the Observability Function (OF) to the BRAMS network is pre- sented. Preliminary results are shown taking into account only geometry. Radiation patterns of the antennas are assumed to be isotropic. Manual counts for the Draconids outburst in 2011 obtained with the BRAMS network data are presented. The differences between the different stations are discussed in terms of the OFs and other parameters.

  13. Crustal Movement Observation Network of China and Its Application

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, R.

    2013-12-01

    China is a country with serious earthquake hazards and active faults, how to use GPS and other new technologies to monitor the crustal deformation and predict earthquakes is an important issue in China. So, we established the Crustal Movement Observation Network of China (CMONOC). The network was a comprehensive, open and unified network of continuous observation for various applications with data shared by many institutions, it based on GNSS observations, and supplemented by the space technology of VLBI and SLR, and it also include precise gravity and leveling. The network includes 260 continuous GNSS stations, and more than 2000 campaign GNSS stations. The continuous stations have been observed since 2010, and the campaign stations were observed irregularly. Some of them are observed annually, and most of them were observed every two years. Use these data, we can study the changes of tectonic environment of China, explore its impact on resource, environment and natural disasters, deepen the understanding of the earth and environmental science and other related disciplines, promote the generation of significant scientific and innovative achievements. It also provides important basic data for solving scientific problems related with present-day crustal movement, earthquake prediction, geodynamics, geodesy, atmospheric science and space science.

  14. Conscious and unconscious representations of observed actions in the human motor system.

    PubMed

    Mattiassi, Alan D A; Mele, Sonia; Ticini, Luca F; Urgesi, Cosimo

    2014-09-01

    Action observation activates the observer's motor system. These motor resonance responses are automatic and triggered even when the action is only implied in static snapshots. However, it is largely unknown whether an action needs to be consciously perceived to trigger motor resonance. In this study, we used single-pulse TMS to study the facilitation of corticospinal excitability (a measure of motor resonance) during supraliminal and subliminal presentations of implied action images. We used a forward and backward dynamic masking procedure that successfully prevented the conscious perception of prime stimuli depicting a still hand or an implied abduction movement of the index or little finger. The prime was followed by the supraliminal presentation of a still or implied action probe hand. Our results revealed a muscle-specific increase of motor facilitation following observation of the probe hand actions that were consciously perceived as compared with observation of a still hand. Crucially, unconscious perception of prime hand actions presented before probe still hands did not increase motor facilitation as compared with observation of a still hand, suggesting that motor resonance requires perceptual awareness. However, the presentation of a masked prime depicting an action that was incongruent with the probe hand action suppressed motor resonance to the probe action such that comparable motor facilitation was recorded during observation of implied action and still hand probes. This suppression of motor resonance may reflect the processing of action conflicts in areas upstream of the motor cortex and may subserve a basic mechanism for dealing with the multiple and possibly incongruent actions of other individuals. PMID:24666166

  15. Effects of Brief Imitative Experience on EEG Desynchronization during Action Observation

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Bouquet, Cedric A.; Shipley, Thomas F.; Young, Thomas

    2009-01-01

    There is a good deal of evidence that observing the actions of other people is associated with activation of the observer's motor system, which may reflect involvement of the mirror neuron system (MNS) in certain aspects of action processing in humans. Furthermore, variation in the extent of this activation appears to be partly dependent on…

  16. Common Coding of Observation and Execution of Action in 9-Month-Old Infants

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Bertenthal, Bennett I.

    2006-01-01

    Do 9-month-old infants motorically simulate actions they perceive others perform? Two experiments tested whether action observation, like overt reaching, is sufficient to elicit the Piagetian A-not-B error. Infants recovered a toy hidden at location A or observed an experimenter recover the toy. After the toy was hidden at location B, infants in…

  17. Ventral Premotor to Primary Motor Cortical Interactions during Noxious and Naturalistic Action Observation

    ERIC Educational Resources Information Center

    Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel

    2010-01-01

    Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…

  18. Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke

    PubMed Central

    Ertelt, Denis; Binkofski, Ferdinand

    2012-01-01

    The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observation alone. This unique capacity of the mirror neuron system to match action perception and action execution stimulated the idea that mirror neuron system plays a crucial role in the understanding of the content of observed actions and may participate in procedural learning. These features bear a high potential for neurorehabilitation of motor deficits and of aphasia following stroke. Since the first articles exploring this principle were published, a growing number of follow-up studies have been conducted in the last decade. Though, the combination of action observation with practice of the observed actions seems to constitute the most powerful approach. In the present review, we present the existing studies analyzing the effects of this neurorehabilitative approach in clinical settings especially in the rehabilitation of stroke associated motor deficits and give a perspective on the ongoing trials by our research group. The data obtained up to date showed significant positive effect of action observation on recovery of motor functions of the upper limbs even in the chronic state after stroke, indicating that our approach might become a new standardized add-on feature of modern neurorehabilitative treatment schemes. PMID:25624838

  19. Walking but Not Barking Improves Verb Recovery: Implications for Action Observation Treatment in Aphasia Rehabilitation

    PubMed Central

    Marangolo, Paola; Cipollari, Susanna; Fiori, Valentina; Razzano, Carmela; Caltagirone, Carlo

    2012-01-01

    Recent studies have shown that action observation treatment without concomitant verbal cue has a positive impact on the recovery of verb retrieval deficits in aphasic patients. In agreement with an embodied cognition viewpoint, a hypothesis has been advanced that gestures and language form a single communication system and words whose retrieval is facilitated by gestures are semantically represented through sensory-motor features. However, it is still an open question as to what extent this treatment approach works. Results from the recovery of motor deficits have suggested that action observation promotes motor recovery only for actions that are part of the motor repertoire of the observer. The aim of the present experiment was to further investigate the role of action observation treatment in verb recovery. In particular, we contrasted the effects induced by observing human actions (e.g. dancing, kicking, pointing, eating) versus non human actions (e.g. barking, printing). Seven chronic aphasic patients with a selective deficit in verb retrieval underwent an intensive rehabilitation training that included five daily sessions over two consecutive weeks. Each subject was asked to carefully observe 115 video-clips of actions, one at a time and, after observing them, they had to produce the corresponding verb. Two groups of actions were randomly presented: humans versus nonhuman actions. In all patients, significant improvement in verb retrieval was found only by observing video-clips of human actions. Moreover, follow-up testing revealed long-term verb recovery that was still present two months after the two treatments had ended. In support of the multimodal concept representation's proposal, we suggest that just the observation of actions pertaining to the human motor repertoire is an effective rehabilitation approach for verb recovery. PMID:22719906

  20. Indian Ocean ridge seismicity observed with a permanent hydroacoustic network

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; Bowman, J. Roger

    2005-03-01

    The distribution of earthquakes along the Indian Ocean ridge system between January 18 and October 20, 2003 is investigated using data from two hydrophone stations of the International Monitoring System's global network. Coherent array processing of earthquake-induced hydroacoustic T-waves is used to determine precise arrival times and back azimuths that allow automatic location of the earthquakes. We observed 4725 events throughout the Indian Ocean Basin. Here, we examine 1146 earthquakes from the Central and Southeast Indian Ridge. Source level estimates from the hydroacoustic signals indicate that the hydroacoustic network is at least one magnitude unit more sensitive than the seismic network for Indian Ocean ridge earthquakes. The seismicity primarily clusters at ridge transform offsets. Events are observed off the ridge axis near Boomerang and St. Pierre Seamounts, the active expression of the Amsterdam-St. Paul Hotspot. Seismic gaps are observed at several ridge segments with anomalous bathymetric highs.

  1. The wireless networking system of Earthquake precursor mobile field observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  2. The Total Carbon Column Observing Network (TCCON): overview and update

    NASA Astrophysics Data System (ADS)

    Griffith, David; Wennberg, Paul; Notholt, Justus

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier Transform Spectrometers that record direct solar absorption spectra of the atmosphere in the near-infrared. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO, are retrieved. TCCON measurements are linked to WMO calibration scales by comparisons with co-incident in situ profiles measured from aircraft. For CO2, TCCON achieves 1-sigma precision of typically 0.2 ppm for single measurements, and a network wide comparability of better than 0.1 In this paper we present an overview and the current status of the network, ongoing efforts to improve network coverage, precision and accuracy, and examples of TCCON data and their application. Further information about TCCON and a full list of sites and TCCON partners is available from the TCCON wiki, https://tccon-wiki.caltech.edu/ and Wunch et al. (2011). Wunch, D., G.C. Toon, J.-F. Blavier, R. Washenfelder, J. Notholt, B. Connor, D.W.T. Griffith and P.O. Wennberg, The Total Carbon Column Observing Network (TCCON). Philosophical Transactions of the Royal Society A 2011. 369: p. 2087-2112.

  3. Update on the GGOS Bureau of Networks and Observations

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Pavlis, Erricos; Ma, Chopo; Noll, Carey; Thaller, Daniela; Gross, Richard; Richter, Bernd; Mueller, Juergen; Neilan, Ruth; Barzaghi, Riccardo; Bergstrand, Sten; Saunier, Jerome; Tamisiea, Mark

    2016-04-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This talk will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  4. Humans but Not Chimpanzees Vary Face-Scanning Patterns Depending on Contexts during Action Observation

    PubMed Central

    Myowa-Yamakoshi, Masako; Yoshida, Chisato; Hirata, Satoshi

    2015-01-01

    Human and nonhuman primates comprehend the actions of other individuals by detecting social cues, including others’ goal-directed motor actions and faces. However, little is known about how this information is integrated with action understanding. Here, we present the ontogenetic and evolutionary foundations of this capacity by comparing face-scanning patterns of chimpanzees and humans as they viewed goal-directed human actions within contexts that differ in whether or not the predicted goal is achieved. Human adults and children attend to the actor’s face during action sequences, and this tendency is particularly pronounced in adults when observing that the predicted goal is not achieved. Chimpanzees rarely attend to the actor’s face during the goal-directed action, regardless of whether the predicted action goal is achieved or not. These results suggest that in humans, but not chimpanzees, attention to actor’s faces conveying referential information toward the target object indicates the process of observers making inferences about the intentionality of an action. Furthermore, this remarkable predisposition to observe others’ actions by integrating the prediction of action goals and the actor’s intention is developmentally acquired. PMID:26535901

  5. Grid-Observing: Creating a Global Network of Telescopes

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.; Gelderman, R.; Naylor, T.; Pennypacker, C.; Steele, I.

    2004-12-01

    With the increasing switch from classical observing campaigns to service observations, the decreasing pressure on a large number of 1 - 2m telescopes, and the rapid growth in the number of robotic, autonomous telescopes, it has become possible to create a truly global network of telescopes - what we call ``Grid-Observing." Such a network would permit a variety of photometric and spectroscopic monitoring and temporal survey projects which cannot be performed either with current or proposed larger telescopes (e.g. LSST) or with individual telescopes operated by a single institution. Participating observatories can be ``paid" for the services they provide to the network by being able to extract an equivalent amount of time on other telescopes, scaled by aperture, spectral resolution, atmospheric conditions, and the costs of operation or willingness to provide such a service. An XML interface - Remote Telescope Markup Language - insures that communications within the network are simple and relatively easily adapted to existent observatory software and procedures. An eBay-like mechanism for the automatic scheduling of telescopes can provide the necessary flexibility needed to perform time-critical projects as well as insure that the participating institutions retain full control over their telescopes. We are planning on networking several robotic telescope in the near future and expect that many other robotic and non-robotic telescopes will follow.

  6. Multi-phenomenology Observation Network Evaluation Tool'' (MONET)

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; North, P.; Vallado, D.

    2014-09-01

    Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.

  7. Design of an optimal snow observation network to estimate snowpack

    NASA Astrophysics Data System (ADS)

    Juan Collados Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    Snow is an important water resource in many river basins that must be taken into account in hydrological modeling. Although the snow cover area may be nowadays estimated from satellite data, the snow pack thickness must be estimated from experimental data by using some interpolation procedure or hydrological models that approximates snow accumulation and fusion processes. The experimental data consist of hand probes and snow samples collected in a given number of locations that constitute the monitoring network. Assuming that there is an existing monitoring network, its optimization may imply the selection of an optimal network as a subset of the existing network (decrease of the existing network in the case that there are no funds for maintaining the full existing network) or to increase the existing network by one or more stations (optimal augmentation problem). In this work we propose a multicriterion approach for the optimal design of a snow network. These criteria include the estimation variance from a regression kriging approach for estimating thickness of the snowpack (using ground and satellite data), to minimize the total snow volume and accessibility criteria. We have also proposed a procedure to analyze the sensitivity of the results to the non-snow data deduced from the satellite information. We intent to minimize the uncertities in snowpack estimation. The methodology has been applied to estimation of the snow cover area and the design of the optimal snow observation network in Sierra Nevada mountain range in the Southern of Spain. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank ERHIN program and NASA DAAC for the data provided for this study.

  8. Library Networking: The Interface of Ideas and Actions.

    ERIC Educational Resources Information Center

    Molholt, Pat

    This report, which considers the role of networking activities associated with the technical telecommunication links that bind libraries, services, and patrons together, begins with a historical review of libraries and automation-based systems over the last 19 years. The importance of the development and implementation of standards in interactive…

  9. Spiderwebs and Flies: Observing Massive Galaxy Formation in Action

    NASA Astrophysics Data System (ADS)

    Miley, George

    2009-07-01

    Distant luminous radio galaxies are among the brightest known galaxies in the early Universe, pinpoint likely progenitors of dominant cluster galaxies and are unique laboratories for studying massive galaxy formation. Spectacular images with the ACS and NICMOS of one such object, the "Spiderweb Galaxy" at z = 2.2, show in exquisite detail, hierarchical merging occurring 11 Gyr ago. By imaging 3 additional Spiderweb-like galaxies we wish to study this potentially crucial phase of massive galaxy evolution, when hierarchical merging, galaxy downsizing and AGN feedback are all likely to be occurring. Properties of the complete sample of Spiderweb galaxies will be used to {i} constrain models for the formation and evolution of the most massive galaxies that dominate rich clusters and {ii} investigate the nature of chain and tadpole galaxies, a fundamental but poorly understood constituent of the early Universe. We shall image rest-frame UV and optical continuum emission from 3 radio galaxies with 2.4 < z < 3.8 that appear clumpy and large in shallow WFPC/PC observations. The new observations will typically reach 2 magnitudes fainter over 20-40 times larger area than previously. Photometric and morphological parameters will be measured for satellite galaxies {"flies"} in the clumpy massive hosts and for galaxies in 1.5 Mpc x 1.5 Mpc regions of surrounding protoclusters. Locations, sizes, elongations, clumpiness, masses, and star formation rates of the merging satellite and protocluster galaxies will be compared with new state of the art simulations. Combination of ACS and WFC3 images will help disentangle the properties of the young and old populations.Specific goals include: {i} investigating star formation histories of the satellite galaxies and the extended emission, {ii} studying "downsizing" and merging scenarios and {iii} measuring the statistics of linear galaxies and relating them to models for the formation of massive galaxies and to the properties of the

  10. Recent Progress of Seismic Observation Networks in Japan

    NASA Astrophysics Data System (ADS)

    Okada, Y.

    2013-04-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  11. Contextual modulation of motor resonance during the observation of everyday actions.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-07-01

    Neuroimaging studies on action observation suggest that context plays a key role in coding high-level components of motor behavior, including the short-term and the end-goal of an action. However, little is known about the possible role of context in shaping lower-levels of action processing such as reading action kinematics and simulating muscular activity. Here, we combined single-pulse TMS and motor-evoked potentials (MEPs) recording to explore whether top-down contextual information is capable of modulating low-level motor representations. We recorded MEPs from FDI and FCR muscles while participants watched videos about everyday actions embedded in congruent, incongruent or ambiguous contexts. Videos were interrupted before action ending, and participants were requested to predict the course of the observed action. A contextual modulation of corticospinal excitability was observed only for the FDI muscle, which is specifically involved in the execution of reaching-to-grasping movements, and whose corticospinal pathway is influenced by the observation of the very same movements. This modulation was reflected in a selective decrease of corticospinal excitability during the observation of actions embedded in incongruent as compared to congruent and ambiguous contexts. These findings indicate that motor resonance is not an entirely automatic process, but it can be modulated by high-level contextual representations. PMID:27039139

  12. SOLAR AND METEOROLOGICAL SURFACE OBSERVATION NETWORK (SAMSON) FOR NC, VA

    EPA Science Inventory

    Solar and Meteorological Surface Observational Network (SAMSON) v1.0 data for 6 NWS stations in North Carolina and 4 in Virginia. Hourly solar elements are: extraterrestrial horizontal and extraterrestrial direct normal radiation; global, diffuse, and direct normal radiation. Met...

  13. Development of Sensor Network for Ecology Observation of Seabirds

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Uchiyama, Shohei; Yamamoto, Maki; Nakamura, Katsuichi; Yamazaki, Katsuyuki

    It becomes so important to observe a wild life for obtaining not only knowledge of its biological behaviors but also interactions with human beings in terms of geoenvironmental investigation and assessment. A sensor network is considered to be a suitable and powerful tool to monitor and observe a wild life in fields. In order to monitor/observe seabirds, a sensor network is deployed in Awashima island, Japan. A sensor platform is useful for early and quick deployment in fields. Atlas, a server-client type sensor platform, is used with several sensors, i.e., infrared sensors, thermometers within a nest and a sound sensor. The experimental results and the first outcome of observation have been reported. Particularly emphasized is that an infrared sensor has detected a leaving and returning of seabirds, and has identified that a leaving and returning is affected by sunrises and sunsets. An infrared sensed data has also shown a chick's practice before flying to the south. These facts and knowledge have not been clearly obtained by observation of human beings, so have demonstrated the usefulness of sensor networking for ecology observations.

  14. Location estimation of approaching objects is modulated by the observer's inherent and momentary action capabilities.

    PubMed

    Kandula, Manasa; Hofman, Dennis; Dijkerman, H Chris

    2016-08-01

    Action capability may be one of the factors that can influence our percept of the world. A distinction can be made between momentary action capability (action capability at that particular moment) and inherent action capability (representing a stable action capability). In the current study, we investigated whether there was a biasing effect of these two forms of action capability on visual perception of location. In a virtual reality room, subjects had to stop a moving ball from hitting a pillar. On some trials, the ball disappeared automatically during its motion. Subjects had to estimate the location of the ball's disappearance in these trials. We expected that if action is necessary but action capability (inherent or momentary) is limiting performance, the location of approaching objects with respect to the observer is underestimated. By judging the objects to be nearer than they really are, the need to select and execute the appropriate action increases, thereby facilitating quick action (Cole et al. in Psychol Sci 24(1):34-40, 2013. doi: 10.1177/0956797612446953 ). As a manipulation of inherent action capability in a virtual environment, two groups of participants (video game players vs. non-video game players) were entered into the study (high and low action capability). Momentary action capability was manipulated by using two difficulty levels in the experiment (Easy vs. Difficult). Results indicated that inherent and momentary action capabilities interacted together to influence online location judgments: Non-players underestimated locations when the task was Difficult. Taken together, our data suggest that both inherent and momentary action capabilities influence location judgments. PMID:27117302

  15. Distinct brain signatures of content and structure violation during action observation.

    PubMed

    Maffongelli, L; Bartoli, E; Sammler, D; Kölsch, S; Campus, C; Olivier, E; Fadiga, L; D'Ausilio, A

    2015-08-01

    Sentences, musical phrases and goal-directed actions are composed of elements that are linked by specific rules to form meaningful outcomes. In goal-directed actions including a non-canonical element or scrambling the order of the elements alters the action's content and structure, respectively. In the present study we investigated event-related potentials of the electroencephalographic (EEG) activity recorded during observation of both alterations of the action content (obtained by violating the semantic components of an action, e.g. making coffee with cola) and alterations of the action structure (obtained by inverting the order of two temporally adjacent pictures of sequences depicting daily life actions) interfering with the normal flow of the motor acts that compose an action. Action content alterations elicited a bilateral posterior distributed EEG negativity, peaking at around 400 ms after stimulus onset similar to the ERPs evoked by semantic violations in language studies. Alteration of the action structure elicited an early left anterior negativity followed by a late left anterior positivity, which closely resembles the ERP pattern found in language syntax violation studies. Our results suggest a functional dissociation between the processing of action content and structure, reminiscent of a similar dissociation found in the language or music domains. Importantly, this study provides further support to the hypothesis that some basic mechanisms, such as the rule-based structuring of sequential events, are shared between different cognitive domains. PMID:26004058

  16. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    PubMed

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system. PMID:17499164

  17. The NUROV: a Networked Underwater Remote Observation Vehicle

    NASA Astrophysics Data System (ADS)

    Rognstad, M. R.; Jones, W. H.

    2006-12-01

    NUROV, a small observation class underwater vehicle, is under development at the Hawaii Mapping Research Group (HMRG) of the University of Hawaii. Connected by tether to a Base100T Internet Protocol (IP) network, such as those presently in use or proposed for cabled ocean observatories, it enables control of the vehicle through a web browser virtual control panel, and delivers live video through the same IP network. The vehicle is simple, with two horizontal thrusters and one vertical thruster, and a motorized tilt function for the video camera. Arrays of Light Emitting Diodes (LEDs) are mounted on either side of the camera so its field of view can be illuminated. Thruster motors and LED arrays are oil filled and pressure tolerant. The video camera, motor controller, and network electronics are enclosed in pressure housings; the initial prototype housings are designed for shallow water, but future housings for water depths to 6000 meters are planned. The LED arrays and camera housing window incorporate ultraviolet LEDs to reduce the effects of biofouling. A pressure sensor allows for automatic depth regulation by the motor controller on command from the vehicle pilot. In addition to applications observing near ocean observatory nodes, NUROV may also be used from a ship, using a standard fiber-optic electromechanical cable connected to a fiber to electrical network converter contained in a pressure housing. In fact, with the addition of a network switch, multiple vehicles could be deployed simultaneously on a single cable. Connection of the NUROV network to the Internet would allow users located around the world to pilot the vehicle and observe the IP video; this would be particularly useful for educational outreach.

  18. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  19. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed Central

    Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people’s actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner’s Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  20. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    PubMed

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed. PMID:26033185

  1. Infants' Grip Strength Predicts Mu Rhythm Attenuation during Observation of Lifting Actions with Weighted Blocks

    ERIC Educational Resources Information Center

    Upshaw, Michaela B.; Bernier, Raphael A.; Sommerville, Jessica A.

    2016-01-01

    Research has established that the body is fundamentally involved in perception: bodily experience influences activation of the shared neural system underlying action perception and production during action observation, and bodily characteristics influence perception of the spatial environment. However, whether bodily characteristics influence…

  2. The Early Development of Object Knowledge: A Study of Infants' Visual Anticipations during Action Observation

    ERIC Educational Resources Information Center

    Hunnius, Sabine; Bekkering, Harold

    2010-01-01

    This study examined the developing object knowledge of infants through their visual anticipation of action targets during action observation. Infants (6, 8, 12, 14, and 16 months) and adults watched short movies of a person using 3 different everyday objects. Participants were presented with objects being brought either to a correct or to an…

  3. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    ERIC Educational Resources Information Center

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  4. Predictive Gaze during Observation of Irrational Actions in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Marsh, L. E.; Pearson, A.; Ropar, D.; Hamilton, A. F. de C.

    2015-01-01

    Understanding irrational actions may require the observer to make mental state inferences about why an action was performed. Individuals with autism spectrum conditions (ASC) have well documented difficulties with mentalizing; however, the degree to which rationality understanding is impaired in autism is not yet clear. The present study uses…

  5. Surprisingly correct: unexpectedness of observed actions activates the medial prefrontal cortex.

    PubMed

    Schiffer, Anne-Marike; Krause, Kim H; Schubotz, Ricarda I

    2014-04-01

    Not only committing errors, but also observing errors has been shown to activate the dorsal medial prefrontal cortex, particularly BA 8 and adjacent rostral cingulate zone (RCZ). Currently, there is a debate on whether this activity reflects a response to the incorrectness of the committed action or to its unexpectedness. This article reports two studies investigating whether activity in BA 8/RCZ is due to the unexpectedness of observed errors or the incorrectness of the specific observed action. Both studies employed an action observation paradigm reliant on the observation of an actor tying sailing knots. The reported behavioral experiment delivered evidence that the paradigm successfully induced the expectation of incorrect actions as well as the expectation of correct actions. The functional magnetic resonance imaging study revealed that unexpectedly correct as well as unexpectedly incorrect actions activate the BA 8/RCZ. The same result was confirmed for a coordinate in the vicinity that has been previously reported to be activated in separate studies either by the error observation or by the unexpectedness of committed errors, and has been associated with the error-related negativity. The present results suggest that unexpectedness has an impact on the medial prefrontal correlate of observed errors. PMID:23670963

  6. Sensitivity of Alpha and Beta Oscillations to Sensorimotor Characteristics of Action: An EEG Study of Action Production and Gesture Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.; Shipley, Thomas F.; Beilock, Sian L.; Goldin-Meadow, Susan

    2012-01-01

    The sensorimotor experiences we gain when performing an action have been found to influence how our own motor systems are activated when we observe others performing that same action. Here we asked whether this phenomenon applies to the observation of gesture. Would the sensorimotor experiences we gain when performing an action on an object influence activation in our own motor systems when we observe others performing a gesture for that object? Participants were given sensorimotor experience with objects that varied in weight, and then observed video clips of an actor producing gestures for those objects. Electroencephalography (EEG) was recorded while participants first observed either an iconic gesture (pantomiming lifting an object) or a deictic gesture (pointing to an object) for an object, and then grasped and lifted the object indicated by the gesture. We analyzed EEG during gesture observation to determine whether oscillatory activity was affected by the observer’s sensorimotor experiences with the object represented in the gesture. Seeing a gesture for an object previously experienced as light was associated with a suppression of power in alpha and beta frequency bands, particularly at posterior electrodes. A similar pattern was found when participants lifted the light object, but over more diffuse electrodes. Moreover, alpha and beta bands at right parieto-occipital electrodes were sensitive to the type of gesture observed (iconic vs. deictic). These results demonstrate that sensorimotor experience with an object affects how a gesture for that object is processed, as measured by the gesture-observer’s EEG, and suggest that different types of gestures recruit the observer’s own motor system in different ways. PMID:22910276

  7. Action Observation and Motor Imagery: Innovative Cognitive Tools in the Rehabilitation of Parkinson's Disease

    PubMed Central

    Abbruzzese, Giovanni; Avanzino, Laura; Marchese, Roberta; Pelosin, Elisa

    2015-01-01

    Parkinson's disease (PD) is characterized by a progressive impairment of motor skills with deterioration of autonomy in daily living activities. Physiotherapy is regarded as an adjuvant to pharmacological and neurosurgical treatment and may provide small and short-lasting clinical benefits in PD patients. However, the development of innovative rehabilitation approaches with greater long-term efficacy is a major unmet need. Motor imagery (MI) and action observation (AO) have been recently proposed as a promising rehabilitation tool. MI is the ability to imagine a movement without actual performance (or muscle activation). The same cortical-subcortical network active during motor execution is engaged in MI. The physiological basis of AO is represented by the activation of the “mirror neuron system.” Both MI and AO are involved in motor learning and can induce improvements of motor performance, possibly mediated by the development of plastic changes in the motor cortex. The review of available evidences indicated that MI ability and AO feasibility are substantially preserved in PD subjects. A few preliminary studies suggested the possibility of using MI and AO as parts of rehabilitation protocols for PD patients. PMID:26495150

  8. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.

    PubMed

    Filimon, Flavia; Rieth, Cory A; Sereno, Martin I; Cottrell, Garrison W

    2015-09-01

    Previous functional magnetic resonance imaging (fMRI) research on action observation has emphasized the role of putative mirror neuron areas such as Broca's area, ventral premotor cortex, and the inferior parietal lobule. However, recent evidence suggests action observation involves many distributed cortical regions, including dorsal premotor and superior parietal cortex. How these different regions relate to traditional mirror neuron areas, and whether traditional mirror neuron areas play a special role in action representation, is unclear. Here we use multi-voxel pattern analysis (MVPA) to show that action representations, including observation, imagery, and execution of reaching movements: (1) are distributed across both dorsal (superior) and ventral (inferior) premotor and parietal areas; (2) can be decoded from areas that are jointly activated by observation, execution, and imagery of reaching movements, even in cases of equal-amplitude blood oxygen level-dependent (BOLD) responses; and (3) can be equally accurately classified from either posterior parietal or frontal (premotor and inferior frontal) regions. These results challenge the presumed dominance of traditional mirror neuron areas such as Broca's area in action observation and action representation more generally. Unlike traditional univariate fMRI analyses, MVPA was able to discriminate between imagined and observed movements from previously indistinguishable BOLD activations in commonly activated regions, suggesting finer-grained distributed patterns of activation. PMID:24862848

  9. Altered Brain Activation During Action Imitation and Observation in Schizophrenia: A Translational Approach to Investigating Social Dysfunction in Schizophrenia

    PubMed Central

    Thakkar, Katharine N.; Peterman, Joel S.; Park, Sohee

    2015-01-01

    Objective Social impairments are a key feature of schizophrenia, but their underlying mechanisms are poorly understood. Imitation, a process through which we understand the minds of others, involves the so-called mirror neuron system, a network comprising the inferior parietal lobe, inferior frontal gyrus, and posterior superior temporal sulcus. The authors examined mirror neuron system function in schizophrenia. Method Sixteen medicated schizophrenia patients and 16 healthy comparison subjects performed an action imitation/ observation task during functional MRI. Participants saw a video of a moving hand or spatial cue and were instructed to either execute finger movements associated with the stimulus or simply observe. Activation in the mirror neuron system was measured during imitative versus nonimitative actions and observation of a moving hand versus a moving spatial cue. These contrasts were compared across groups. Results Activation in the mirror neuron system was less specific for imitation in schizophrenia. Relative to healthy subjects, patients had reduced activity in the posterior superior temporal sulcus during imitation and greater activity in the posterior superior temporal sulcus and inferior parietal lobe during nonimitative action. Patients also showed reduced activity in these regions during action observation. Mirror neuron system activation was related to symptom severity and social functioning in patients and to schizotypal syndrome in comparison subjects. Conclusions Given the role of the inferior parietal lobe and posterior superior temporal sulcus in imitation and social cognition, impaired imitative ability in schizophrenia may stem from faulty perception of biological motion and transformations from perception to action. These findings extend our understanding of social dysfunction in schizophrenia. PMID:24626638

  10. Infants' grip strength predicts mu rhythm attenuation during observation of lifting actions with weighted blocks.

    PubMed

    Upshaw, Michaela B; Bernier, Raphael A; Sommerville, Jessica A

    2016-03-01

    Research has established that the body is fundamentally involved in perception: bodily experience influences activation of the shared neural system underlying action perception and production during action observation, and bodily characteristics influence perception of the spatial environment. However, whether bodily characteristics influence action perception and its underlying neural system is unknown, particularly in early ontogeny. We measured grip strength in 12-month-old infants and investigated relations with mu rhythm attenuation, an electroencephalographic correlate of the neural system underlying action perception, during observation of lifting actions performed with differently weighted blocks. We found that infants with higher grip strength exhibited significant mu attenuation during observation of lifting actions, whereas infants with lower grip strength did not. Moreover, a progressively strong relation between grip strength and mu attenuation during observation of lifts was found with increased block weight. We propose that this relation is attributable to differences in infants' ability to recognize the effort associated with lifting objects of different weights, as a consequence of their developing strength. Together, our results extend the body's role in perception by demonstrating that bodily characteristics influence action perception by shaping the activation of its underlying neural system. PMID:25939632

  11. Social constraints from an observer's perspective: Coordinated actions make an agent's position more predictable.

    PubMed

    Yin, Jun; Xu, Haokui; Ding, Xiaowei; Liang, Junying; Shui, Rende; Shen, Mowei

    2016-06-01

    Action prediction, a crucial ability to support social activities, is sensitive to the individual goals of expected actions. This article reports a novel finding that the predictions of observed actions for a temporarily invisible agent are influenced, and even enhanced, when this agent has a joint/collective goal to implement coordinated actions with others (i.e., with coordination information). Specifically, we manipulated the coordination information by presenting two chasers and one common target to perform coordinated or individual chases, and subjects were required to predict the expected action (i.e., position) for one chaser after it became momentarily invisible. To control for possible low-level physical properties, we also established some intense paired controls for each type of chase, such as backward replay (Experiment 1), making the chasing target invisible (Experiment 2) and a direct manipulation of the goal-directedness of one chaser's movements to disrupt coordination information (Experiment 3). The results show that the prediction error for invisible chasers depends on whether the second chaser is coordinated with the first, and this effect vanishes when the chasers behaves with exactly the same motions, but without coordination information between them; furthermore, this influence results in enhancing the performance of action prediction. These findings extend the influential factors of action prediction to the level of observed coordination information, implying that the functional characteristic of mutual constraints of coordinated actions can be utilized by vision. PMID:26922896

  12. When Your Decisions Are Not (Quite) Your Own: Action Observation Influences Free Choices

    PubMed Central

    Cole, Geoff G.; Wright, Damien; Doneva, Silviya P.; Skarratt, Paul A.

    2015-01-01

    A growing number of studies have begun to assess how the actions of one individual are represented in an observer. Using a variant of an action observation paradigm, four experiments examined whether one person’s behaviour can influence the subjective decisions and judgements of another. In Experiment 1, two observers sat adjacent to each other and took turns to freely select and reach to one of two locations. Results showed that participants were less likely to make a response to the same location as their partner. In three further experiments observers were asked to decide which of two familiar products they preferred or which of two faces were most attractive. Results showed that participants were less likely to choose the product or face occupying the location of their partner’s previous reaching response. These findings suggest that action observation can influence a range of free choice preferences and decisions. Possible mechanisms through which this influence occurs are discussed. PMID:26024480

  13. The GGOS Bureau of Networks and Observations and an Update on the Space Geodesy Networks

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ma, Chopo; Noll, Carey; Pavlis, Erricos; Schuh, Harald; Schoene, Tilo; Barzaghi, Riccardo; Kenyon, Steve

    2015-04-01

    The GGOS Bureau of Networks and Communications is being reorganized into the Bureau of Networks and Observations. Although the GGOS Bureau of Networks and Communication was the Bureau of the Services, it focused primarily on the geometric techniques (VLBI, SLR, GNSS, and DORIS) that provided the foundation for the development and maintenance of the International Terrestrial Reference Frame. Over the course of the last several years the Space Geodesy networks have grown; new systems are in the process of deployment, new sites are being established following the GGOS concept of "core" sites and new technologies are implemented to enhance performance in data yield as well as accuracy. In particular, several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. It has also been long recognized that new data products generated by entities within and outside of GGOS will require integration with those of the geometric and non-geometric Service data in order to produce new and improved products such as a Unified Height System, improved tide and ocean models, and better hazard assessment tools. The role of the new Bureau is now being expanded to better integrate the non-geometric Services (Gravity Service, Tide gauge networks, etc.) and to strengthen communications with the space missions, the simulation activities to project network capability, and some of the data gathering functions. The expanded Bureau will include the GGOS Working Groups on Missions, Simulations, Data and Information Systems, and it will be tightly linked to the IERS Working Group on Survey and Co-location. The reorganized Bureau will now become the GGOS Bureau of Networks and Observations. This poster will outline the plan for the new Bureau and will give an update on the status of the ground networks that will participate as well as its other components.

  14. CNODES: the Canadian Network for Observational Drug Effect Studies.

    PubMed

    Suissa, Samy; Henry, David; Caetano, Patricia; Dormuth, Colin R; Ernst, Pierre; Hemmelgarn, Brenda; Lelorier, Jacques; Levy, Adrian; Martens, Patricia J; Paterson, J Michael; Platt, Robert W; Sketris, Ingrid; Teare, Gary

    2012-01-01

    Although administrative health care databases have long been used to evaluate adverse drug effects, responses to drug safety signals have been slow and uncoordinated. We describe the establishment of the Canadian Network for Observational Drug Effect Studies (CNODES), a collaborating centre of the Drug Safety and Effectiveness Network (DSEN). CNODES is a distributed network of investigators and linked databases in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and Nova Scotia. Principles of operation are as follows: (1) research questions are prioritized by the coordinating office of DSEN; (2) the linked data stay within the provinces; (3) for each question, a study team formulates a detailed protocol enabling consistent analyses in each province; (4) analyses are "blind" to results obtained elsewhere; (5) protocol deviations are permitted for technical reasons only; (6) analyses using multivariable methods are lodged centrally with a methods team, which is responsible for combining the results to provide a summary estimate of effect. These procedures are designed to achieve high internal validity of risk estimates and to eliminate the possibility of selective reporting of analyses or outcomes. The value of a coordinated multi-provincial approach is illustrated by projects studying acute renal injury with high-potency statins, community-acquired pneumonia with proton pump inhibitors, and hyperglycemic emergencies with antipsychotic drugs. CNODES is an academically based distributed network of Canadian researchers and data centres with a commitment to rapid and sophisticated analysis of emerging drug safety signals in study populations totalling over 40 million. PMID:23687528

  15. Imitation and observational learning of hand actions: prefrontal involvement and connectivity.

    PubMed

    Higuchi, S; Holle, H; Roberts, N; Eickhoff, S B; Vogt, S

    2012-01-16

    The first aim of this event-related fMRI study was to identify the neural circuits involved in imitation learning. We used a rapid imitation task where participants directly imitated pictures of guitar chords. The results provide clear evidence for the involvement of dorsolateral prefrontal cortex, as well as the fronto-parietal mirror circuit (FPMC) during action imitation when the requirements for working memory are low. Connectivity analyses further indicated a robust connectivity between left prefrontal cortex and the components of the FPMC bilaterally. We conclude that a mechanism of automatic perception-action matching alone is insufficient to account for imitation learning. Rather, the motor representation of an observed, complex action, as provided by the FPMC, only serves as the 'raw material' for higher-order supervisory and monitoring operations associated with the prefrontal cortex. The second aim of this study was to assess whether these neural circuits are also recruited during observational practice (OP, without motor execution), or only during physical practice (PP). Whereas prefrontal cortex was not consistently activated in action observation across all participants, prefrontal activation intensities did predict the behavioural practice effects, thus indicating a crucial role of prefrontal cortex also in OP. In addition, whilst OP and PP produced similar activation intensities in the FPMC when assessed during action observation, during imitative execution, the practice-related activation decreases were significantly more pronounced for PP than for OP. This dissociation indicates a lack of execution-related resources in observationally practised actions. More specifically, we found neural efficiency effects in the right motor cingulate-basal ganglia circuit and the FPMC that were only observed after PP but not after OP. Finally, we confirmed that practice generally induced activation decreases in the FPMC during both action observation and

  16. Observing expertise-related actions leads to perfect time flow estimations.

    PubMed

    Chen, Yin-Hua; Pizzolato, Fabio; Cesari, Paola

    2013-01-01

    The estimation of the time of exposure of a picture portraying an action increases as a function of the amount of movement implied in the action represented. This effect suggests that the perceiver creates an internal embodiment of the action observed as if internally simulating the entire movement sequence. Little is known however about the timing accuracy of these internal action simulations, specifically whether they are affected by the level of familiarity and experience that the observer has of the action. In this study we asked professional pianists to reproduce different durations of exposure (shorter or longer than one second) of visual displays both specific (a hand in piano-playing action) and non-specific to their domain of expertise (a hand in finger-thumb opposition and scrambled-pixels) and compared their performance with non-pianists. Pianists outperformed non-pianists independently of the time of exposure of the stimuli; remarkably the group difference was particularly magnified by the pianists' enhanced accuracy and stability only when observing the hand in the act of playing the piano. These results for the first time provide evidence that through musical training, pianists create a selective and self-determined dynamic internal representation of an observed movement that allows them to estimate precisely its temporal duration. PMID:23405131

  17. The combined effects of action observation and passive proprioceptive training on adaptive motor learning.

    PubMed

    Lei, Yuming; Bao, Shancheng; Wang, Jinsung

    2016-09-01

    Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. PMID:27298007

  18. Dissociable contributions of motor-execution and action-observation to intramanual transfer.

    PubMed

    Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J

    2012-09-01

    We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA). PMID:22821082

  19. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    PubMed Central

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  20. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  1. Empirical methods of reducing the observations in geodetic networks

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman

    2016-06-01

    The paper presents empirical methodology of reducing various kinds of observations in geodetic network. A special case of reducing the observation concerns cartographic mapping. For numerical illustration and comparison of methods an application of the conformal Gauss-Krüger mapping was used. Empirical methods are an alternative to the classic differential and multi-stages methods. Numerical benefits concern in particular very long geodesics, created for example by GNSS vectors. In conventional methods the numerical errors of reduction values are significantly dependent on the length of the geodesic. The proposed empirical methods do not have this unfavorable characteristics. Reduction value is determined as a difference (or especially scaled difference) of the corresponding measures of geometric elements (distances, angles), wherein these measures are approximated independently in two spaces based on the known and corresponding approximate coordinates of the network points. Since in the iterative process of the network adjustment, coordinates of the points are systematically improved, approximated reductions also converge to certain optimal values.

  2. Observing Children's Learning: Informing Effective Intervention. A Personal Story of Investigative Research in Action.

    ERIC Educational Resources Information Center

    Lockett, Andrew

    This paper outlines the underlying principles that have guided the development of an observational orientation to assessing children's learning. The development of an observation orientation was achieved through a process of a number of action-type research projects within a range of early years settings in the United Kingdom. The paper outlines a…

  3. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    PubMed

    Désy, Marie-Christine; Théoret, Hugo

    2007-01-01

    The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS). Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects. PMID:17912350

  4. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  5. Transcriptional response networks for elucidating mechanisms of action of multitargeted agents.

    PubMed

    Kibble, Milla; Khan, Suleiman A; Saarinen, Niina; Iorio, Francesco; Saez-Rodriguez, Julio; Mäkelä, Sari; Aittokallio, Tero

    2016-07-01

    Drug discovery is moving away from the single target-based approach towards harnessing the potential of polypharmacological agents that modulate the activity of multiple nodes in the complex networks of deregulations underlying disease phenotypes. Computational network pharmacology methods that use systems-level drug-response phenotypes, such as those originating from genome-wide transcriptomic profiles, have proved particularly effective for elucidating the mechanisms of action of multitargeted compounds. Here, we show, via the case study of the natural product pinosylvin, how the combination of two complementary network-based methods can provide novel, unexpected mechanistic insights. This case study also illustrates that elucidating the mechanism of action of multitargeted natural products through transcriptional response-based approaches is a challenging endeavor, often requiring multiple computational-experimental iterations. PMID:26979547

  6. Effect of purposeful action observation on upper extremity function in stroke patients

    PubMed Central

    Kim, Eunjoo; Kim, KyeongMi

    2015-01-01

    [Purpose] The purpose of this study was to identify the effect of purposeful action observation on upper extremity function in patients with stroke. [Subjects and Methods] Twelve subjects were randomly to either the experimental group or control group. The experimental group underwent occupational therapy and a purposeful action observation program. The control group underwent occupational therapy and placebo treatment in which the subjects performed a purposeful action observation program without actually observing the purposeful actions. The Wolf Motor Function Test was used to measure upper extremity function before and after the intervention in both groups. [Results] Both the experimental and control groups demonstrated improved upper extremity function after the intervention, but there was no significant difference between groups. Compared with before the intervention, the experimental group showed significantly improved upper extremity function after the intervention. [Conclusion] Based on these results, a purposeful action observation program can improve upper extremity function in patients with stroke. In future research, more subjects should be included for evaluation of different treatments. PMID:26504313

  7. Inter-university Upper atmosphere Global Observation NETwork (IUGONET)

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Kagitani, M.; Shinbori, A.; Abe, S.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Iugonet Project Team

    2010-12-01

    To investigate the mechanism of long-term variations in the upper atmosphere, we need to create integrated and organic links between various types of ground-based observation made at different locations and altitudes. The databases of such observations, however, have been maintained and made available to the community by each institution that conducted the observations. That is one of the reasons why those data have been used only for studies of specific phenomena. For the same reason some of the observational data have been used by only researcher groups who were involved in the observation campaign and have never been made available to other researchers. A six-year research project, Inter-university Upper atmosphere Global Observation NETwork (IUGONET), was just initiated in 2009 to overcome such problems of data use by the five Japanese research institutes (NiPR, Tohoku Univ., Nagoya Univ., Kyoto Univ., and Kyushu Univ.) that have been leading ground-based observations of the upper atmosphere for decades. We are collaborating to build a database system for the metadata of our various kinds of observational data acquired by the global network of radars, magnetometers, optical sensors, helioscopes, etc. The metadata database (MDB) will be of great help to researchers in efficiently finding and obtaining various observational data we have accumulated over many years. The MDB system will significantly facilitate the analyses of a variety of observational data, which we believe will lead to more comprehensive studies of the mechanisms of long-term variations in the upper atmosphere. Moreover, we expect that researchers will become familiar with not only data in their area of expertise but also data from different atmospheric regions by using the MDB. This will contribute to the promotion of new interdisciplinary studies regarding the upper atmosphere. The IUGONET development team has designed the initial version of our metadata format based on the Space Physics

  8. Bringing Ideals into Dialogue with Practices: On the Principles and Practices of the Nordic Network for Action Research

    ERIC Educational Resources Information Center

    Rönnerman, Karin; Salo, Petri; Furu, Eli Moksnes; Lund, Torbjørn; Olin, Anette; Jakhelln, Rachel

    2016-01-01

    In this article we present the Nordic Network for Action Research, established in 2004. We describe how the network has explored, bridged and nurtured the inherent action research dynamics of ideology and methodology. This has been done through an understanding anchored in educational traditions, and by focus on three important ideal-shaping…

  9. Observed actions affect body-specific associations between space and valence.

    PubMed

    de la Fuente, Juanma; Casasanto, Daniel; Santiago, Julio

    2015-03-01

    Right-handers tend to associate "good" with the right side of space and "bad" with the left. This implicit association appears to arise from the way people perform actions, more or less fluently, with their right and left hands. Here we tested whether observing manual actions performed with greater or lesser fluency can affect observers' space-valence associations. In two experiments, we assigned one participant (the actor) to perform a bimanual fine motor task while another participant (the observer) watched. Actors were assigned to wear a ski glove on either the right or left hand, which made performing the actions on this side of space disfluent. In Experiment 1, observers stood behind the actors, sharing their spatial perspective. After motor training, both actors and observers tended to associate "good" with the side of the actors' free hand and "bad" with the side of the gloved hand. To determine whether observers' space-valence associations were computed from their own perspectives or the actors', in Experiment 2 we asked the observer to stand face-to-face with the actor, reversing their spatial perspectives. After motor training, both actors and observers associated "good" with the side of space where disfluent actions had occurred from their own egocentric spatial perspectives; if "good" was associated with the actor's right-hand side it was likely to be associated with the observer's left-hand side. Results show that vicarious experiences of motor fluency can shape valence judgments, and that observers spontaneously encode the locations of fluent and disfluent actions in egocentric spatial coordinates. PMID:25638409

  10. Upgrade to the Broadband Observation network for Lightning and Thunderstorms

    NASA Astrophysics Data System (ADS)

    Akiyama, Y.; Wu, T.; Stock, M.; Nakamura, Y.; Kikuchi, H.; Yoshida, S.; Ushio, T.; Kawasaki, Z.

    2015-12-01

    Observation sensors for lightning discharges sense electromagnetic waves, mainly in the ELF to UHF range, and especially in the LF and VHF bands. VHF band sensor sensors can observe lightning discharge process in detail but its observation coverage is limited. On the other hand, LF band sensor can observe lightning at much great distances. Therefore, LF sensors are well adapted to observe lightning throughout a thunderstorm's life cycle. Our research group has been designing and developing the Broadband Observation network for Lightning and Thunderstorm (BOLT), which locates radiation sources associated with lightning discharge in three spatial dimensions. BOLT consists of 11 LF band sensors which detect lightning pulses wide frequency range from 5 kHz to 500 kHz. We have been operating BOLT in Kansai area of Japan, locating both cloud-to-ground and intracloud discharges. Currently, the BOLT system observes about 100 to 1000 lightning pulses per flash, but we are striving to improve both the detection efficiency and the location accuracy. Preliminary investigation show that the number of sources located, increases dramatically when only the highest portion of the BLOT frequency band is used far location. So, our research group has proposed improving a new "DDT" antenna sensor design to improve the high frequency sensitivity of the antenna. The DDT antenna consists of a modified charge amplifier circuit. In this research, we present a comparison of the DDT antenna and show the advantages of the DDT antenna.

  11. Recent Advances in Magnetoseismology Using Network Observations by Ground Magnetometers

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.

    2011-12-01

    The rise of modern, synchronized networks of ground magnetometers in recent years has inspired and advanced research and development in magnetoseismology. Like the practice in other geophysical disciplines, magnetoseismology can infer the structure of the magnetosphere from the observations of normal-mode frequencies of the magnetic field. It can also time and locate impulsive events by measuring the signal arrival time at multiple ground stations. We highlight recent advances in using network observations by ground magnetometers for both types of magnetoseismic research. In the area of normal-mode magnetoseismology the increase in ground magnetometers has enabled ever more station pairs suitable for the gradient analysis. We demonstrate progress in automatic detection of field line resonance frequencies and the results that reveal longitudinal structure of the plasmasphere. As a relatively young research topic, travel-time magnetoseismology has shown its capability to time and locate sudden impulses and substorm onsets by using ground-based magnetometer observations. These initial successes in turn motivated detailed examination of MHD wave propagation in the magnetosphere. In the end we discuss how these magnetoseismic studies shed light on the regions in the world where future establishment of ground magnetometers is desirable.

  12. The Things You Do: Internal Models of Others’ Expected Behaviour Guide Action Observation

    PubMed Central

    Schenke, Kimberley C.; Wyer, Natalie A.; Bach, Patric

    2016-01-01

    Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models–how different people behave in different situations–shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others’ behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals’ prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported. PMID:27434265

  13. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis

    PubMed Central

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern “vitality forms”. Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  14. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis.

    PubMed

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern "vitality forms". Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  15. Interaction of cortical networks mediating object motion detection by moving observers.

    PubMed

    Calabro, F J; Vaina, L M

    2012-08-01

    The task of parceling perceived visual motion into self- and object motion components is critical to safe and accurate visually guided navigation. In this paper, we used functional magnetic resonance imaging to determine the cortical areas functionally active in this task and the pattern connectivity among them to investigate the cortical regions of interest and networks that allow subjects to detect object motion separately from induced self-motion. Subjects were presented with nine textured objects during simulated forward self-motion and were asked to identify the target object, which had an additional, independent motion component toward or away from the observer. Cortical activation was distributed among occipital, intra-parietal and fronto-parietal areas. We performed a network analysis of connectivity data derived from partial correlation and multivariate Granger causality analyses among functionally active areas. This revealed four coarsely separated network clusters: bilateral V1 and V2; visually responsive occipito-temporal areas, including bilateral LO, V3A, KO (V3B) and hMT; bilateral VIP, DIPSM and right precuneus; and a cluster of higher, primarily left hemispheric regions, including the central sulcus, post-, pre- and sub-central sulci, pre-central gyrus, and FEF. We suggest that the visually responsive networks are involved in forming the representation of the visual stimulus, while the higher, left hemisphere cluster is involved in mediating the interpretation of the stimulus for action. Our main focus was on the relationships of activations during our task among the visually responsive areas. To determine the properties of the mechanism corresponding to the visual processing networks, we compared subjects' psychophysical performance to a model of object motion detection based solely on relative motion among objects and found that it was inconsistent with observer performance. Our results support the use of scene context (e.g., eccentricity, depth

  16. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  17. Amplitude Correction Factors of Korean VLBI Network Observations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Sung; Byun, Do-Young; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan

    2015-10-01

    We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3, NRAO~512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510-089, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  18. Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience

    PubMed Central

    Gong, Diankun; He, Hui; Ma, Weiyi; Liu, Dongbo; Huang, Mengting; Dong, Li; Gong, Jinnan; Li, Jianfu; Yao, Dezhong

    2016-01-01

    Action video games (AVGs) have attracted increasing research attention as they offer a unique perspective into the relation between active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network (SN) and Central Executive Network (CEN), which are responsible for attention and working memory, respectively, two cognitive functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts' and amateurs' resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation between AVG experience and the neural network plasticity. PMID:26885408

  19. Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience.

    PubMed

    Gong, Diankun; He, Hui; Ma, Weiyi; Liu, Dongbo; Huang, Mengting; Dong, Li; Gong, Jinnan; Li, Jianfu; Luo, Cheng; Yao, Dezhong

    2016-01-01

    Action video games (AVGs) have attracted increasing research attention as they offer a unique perspective into the relation between active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network (SN) and Central Executive Network (CEN), which are responsible for attention and working memory, respectively, two cognitive functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts' and amateurs' resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation between AVG experience and the neural network plasticity. PMID:26885408

  20. Model-based action planning involves cortico-cerebellar and basal ganglia networks.

    PubMed

    Fermin, Alan S R; Yoshida, Takehiko; Yoshimoto, Junichiro; Ito, Makoto; Tanaka, Saori C; Doya, Kenji

    2016-01-01

    Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate future states reached by hypothetical actions, and motor-memory RL selects past successful state-action mapping. In order to investigate the neural substrates that implement these strategies, we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a sequential action selection task under conditions that promoted the use of a specific RL strategy. The ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network implements the model-based RL action selection strategy. PMID:27539554

  1. Model-based action planning involves cortico-cerebellar and basal ganglia networks

    PubMed Central

    Fermin, Alan S. R.; Yoshida, Takehiko; Yoshimoto, Junichiro; Ito, Makoto; Tanaka, Saori C.; Doya, Kenji

    2016-01-01

    Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate future states reached by hypothetical actions, and motor-memory RL selects past successful state-action mapping. In order to investigate the neural substrates that implement these strategies, we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a sequential action selection task under conditions that promoted the use of a specific RL strategy. The ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network implements the model-based RL action selection strategy. PMID:27539554

  2. Distributed Observer Network (DON), Version 3.0, User's Guide

    NASA Technical Reports Server (NTRS)

    Mazzone, Rebecca A.; Conroy, Michael P.

    2015-01-01

    The Distributed Observer Network (DON) is a data presentation tool developed by the National Aeronautics and Space Administration (NASA) to distribute and publish simulation results. Leveraging the display capabilities inherent in modern gaming technology, DON places users in a fully navigable 3-D environment containing graphical models and allows the users to observe how those models evolve and interact over time in a given scenario. Each scenario is driven with data that has been generated by authoritative NASA simulation tools and exported in accordance with a published data interface specification. This decoupling of the data from the source tool enables DON to faithfully display a simulator's results and ensure that every simulation stakeholder will view the exact same information every time.

  3. Groups' Actions Trump Injunctive Reaction in an Incidental Observation by Young Children

    PubMed Central

    Turner, Cameron R.; Nielsen, Mark; Collier-Baker, Emma

    2014-01-01

    Children's ability to use social information to direct their behavior is key to their survival and development. However, in observing adult behavior, children are confronted with multiple forms of social information that may vary in reliability and adaptiveness. Two of the most well established biases influencing human behavior are: (1) following the majority (majority influence or conformity); and (2) the use of emotional signals. The current experiment aimed to evaluate how children respond when both information about the majority behavior of a group (descriptive norm) and attitudes of the group towards a behavior (injunctive norm, expressed through an emotional reaction) are present and what happens when they are in conflict. We used a method designed to mimic the manner in which children might observe group members' behavior during development. Novel apparatuses were constructed for which there were two discrete actions that could be performed to retrieve a reward. Three-year-olds observed four adults demonstrating one set of actions, followed by a fifth adult who presented an alternative set of actions. The first four adults' injunctive responses to this fifth adult's actions were manipulated between-groups: positive, negative, or neutral. It was found that children preferred to copy the majority action, regardless of the injunctive reaction of the group. We argue that this affirms the adaptive utility of copying the majority. PMID:25198163

  4. Action observation in the infant brain: The role of body form and motion

    PubMed Central

    Grossmann, Tobias; Cross, Emily S.; Ticini, Luca F.; Daum, Moritz M.

    2012-01-01

    Much research has been carried out to understand how human brains make sense of another agent in motion. Current views based on human adult and monkey studies assume a matching process in the motor system biased toward actions performed by conspecifics and present in the observer's motor repertoire. However, little is known about the neural correlates of action cognition in early ontogeny. In this study, we examined the processes involved in the observation of full body movements in 4-month-old infants using functional near-infrared spectroscopy to measure localized brain activation. In a 2 × 2 design, infants watched human or robotic figures moving in a smooth, familiar human-like manner, or in a rigid, unfamiliar robot-like manner. We found that infant premotor cortex responded more strongly to observe robot-like motion compared with human-like motion. Contrary to current views, this suggests that the infant motor system is flexibly engaged by novel movement patterns. Moreover, temporal cortex responses indicate that infants integrate information about form and motion during action observation. The response patterns obtained in premotor and temporal cortices during action observation in these young infants are very similar to those reported for adults. These findings thus suggest that the brain processes involved in the analysis of an agent in motion in adults become functionally specialized very early in human development. PMID:22694145

  5. Semantic Sensor Observation Networks in a Billion-Sensor World

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Bogden, P.; Creager, G.; Graybeal, J.

    2008-12-01

    In 2010, there will be 10,000 telemetric devices for every human in the planet (prediction by Ernest and Young). Some of these devices will be collecting data from coastal phenomena. Some will be connected to adaptive sampling systems, which allow observing a phenomenon, forecasting its advance, and triggering of other numerical models, new missions or changes to the sampling frequency of other sensors. These highly sophisticated autonomous and adaptive sensors will help improve the understating of coastal phenomena; however, collaborative arrangements among communities need to happen to be able to interoperate in a world of billions of sensors. Arrangements will allow discovery and sharing of sensor descriptions and understanding and usage of observed data. OOSTethys is an open source collaborative project that helps implement ocean observing system components. Some of these components include sensor interfaces, catalogs of services, and semantic mediators. The OOSTethys team seeks to speed up collaborative arrangements by studying the best standards available, creating easy-to-adopt toolkits, and publishing guides that facilitate the implementation of these components. The interaction of some observing system components, and lessons learned about developing Semantic Sensor Networks using OGC Sensor Observation Services and ontologies, will be discussed.

  6. Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide

    PubMed Central

    Liu, Dan-Dan; Wang, Zheng-Yang; Su, Yan-Nan; Yang, Shao-Zhong; Chen, Ting-Ting; Livnat, Itamar; Vilim, Ferdinand S.; Cropper, Elizabeth C.; Weiss, Klaudiusz R.; Sweedler, Jonathan V.; Jing, Jian

    2016-01-01

    One emerging principle is that neuromodulators, such as neuropeptides, regulate multiple behaviors, particularly motivated behaviors, e.g., feeding and locomotion. However, how neuromodulators act on multiple neural networks to exert their actions remains poorly understood. These actions depend on the chemical form of the peptide, e.g., an alternation of L- to D- form of an amino acid can endow the peptide with bioactivity, as is the case for the Aplysia peptide GdFFD (where dF indicates D-phenylalanine). GdFFD has been shown to act as an extrinsic neuromodulator in the feeding network, while the all L-amino acid form, GFFD, was not bioactive. Given that both GdFFD/GFFD are also present in pedal neurons that mediate locomotion, we sought to determine whether they impact locomotion. We first examined effects of both peptides on isolated ganglia, and monitored fictive programs using the parapedal commissural nerve (PPCN). Indeed, GdFFD was bioactive and GFFD was not. GdFFD increased the frequency with which neural activity was observed in the PPCN. In part, there was an increase in bursting spiking activity that resembled fictive locomotion. Additionally, there was significant activity between bursts. To determine how the peptide-induced activity in the isolated CNS is translated into behavior, we recorded animal movements, and developed a computer program to automatically track the animal and calculate the path of movement and velocity of locomotion. We found that GdFFD significantly reduced locomotion and induced a foot curl. These data suggest that the increase in PPCN activity observed in the isolated CNS during GdFFD application corresponds to a reduction, rather than an increase, in locomotion. In contrast, GFFD had no effect. Thus, our study suggests that GdFFD may act as an intrinsic neuromodulator in the Aplysia locomotor network. More generally, our study indicates that physiological and behavioral analyses should be combined to evaluate peptide actions

  7. The DWD ceilometer network for Saharan dust observations

    NASA Astrophysics Data System (ADS)

    Mattis, Ina; Flentje, Harald; Thomas, Werner; Markl, Hülya

    2013-04-01

    The German Meteorological Service (DWD) operates a dense network of ceilometers for cloud base height observations. About 50 of these ceilometers are CHM15K-Nimbus by Jenoptik, Germany. Those very powerful ceilometers allow for the detection and characterization of aerosol layers. The CHM15K-Nimbus instruments are equipped with a diode-pumped Nd:YAG solid state laser that emits laser pulses with a power of about 8 μJ per pulse at 1064 nm with a repetition rate of 5-7 kHz. The back-scattered light is collected with a Newtonian receiving telescope, then filtered with a narrow-band interference filter before it is detected with an avalanche photodiode in photon counting mode. The signal can be used from about 600 m above ground level up to 15 km with a vertical resolution of 15 m. Raw data of all network ceilometers are transferred online to DWD's data analysis center at the Hohenpeißenberg Meteorological Observatory. The DWD ceilometer network has been used for the detection and estimation of mass concentrations of volcanic ash layers over Germany during and after the eruptions of Eyjafjallajökull (2010) and Grimsvötn (2011). The CHM15k-Nimbus can also be used for the detection of Sahara dust layers in the free troposphere. Such events occur at about 30 days per year over Germany. We will present in detail the episode of August 18-24, 2012, when a Saharan dust plume crossed Germany from West to East. The plume arrived during the evening of August 18, 2012. It was first detected by stations in the North-West of Germany between 2 and 4 km altitude. During the next day, the dust plume became visible also over stations in easterly parts of Germany. Mixing with the planetary boundary layer (PBL) started about noon of August 19. Dust transport to the southernmost part of Germany was observed during 20/21 August in altitudes between 2 and 5 km. The dust was mixed down into the PBL during August 21 and remained only in the southern parts of Germany until August 23

  8. NEON, Establishing a Standardized Network for Groundwater Observations

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Schroeter, N.; Goodman, K. J.; Roehm, C. L.

    2013-12-01

    The National Ecological Observatory Network (NEON) is establishing a standardized set of data collection systems comprised of in-situ sensors and observational sampling to obtain data fundamental to the analysis of environmental change at a continental scale. NEON will be collecting aquatic, terrestrial, and atmospheric data using Observatory-wide standardized designs and methods via a systems engineering approach. This approach ensures a wealth of high quality data, data algorithms, and models that will be freely accessible to all communities such as academic researchers, policy makers, and the general public. The project is established to provide 30 years of data which will enable prediction and forecasting of drivers and responses of ecological change at scales ranging from localized responses through regional gradients and up to the continental scale. The Observatory is a distributed system of sites spread across the United States, including Alaska, Hawaii, and Puerto Rico, which is subdivided into 20 statistically unique domains, based on a set of 18 ecologically important parameters. Each domain contains at least one core aquatic and terrestrial site which are located in unmanaged lands, and up to 2 additional sites selected to study domain specific questions such as nitrogen deposition gradients and responses of land use change activities on the ecosystem. Here, we present the development of NEON's groundwater observation well network design and the timing strategy for sampling groundwater chemistry. Shallow well networks, up to 100 feet in depth, will be installed at NEON aquatic sites and will allow for observation of localized ecohydrologic site conditions, by providing basic spatio-temporal near-real time data on groundwater parameters (level, temperature, conductivity) collected from in situ high-resolution instrumentation positioned in each well; and biannual sampling of geochemical and nutrient (N and P) concentrations in a subset of wells for each

  9. Observation of Back-Action Noise Cancellation in Interferometric and Weak Force Measurements

    SciTech Connect

    Caniard, T.; Verlot, P.; Briant, T.; Cohadon, P.-F.; Heidmann, A.

    2007-09-14

    We experimentally demonstrate a cancellation of back-action noise in optical measurements. Back-action cancellation was first proposed within the framework of gravitational-wave detection by dual resonators as a way to drastically improve their sensitivity. We have developed an experiment based on a high-finesse Fabry-Perot cavity to study radiation-pressure effects in ultrasensitive displacement measurements. Using an intensity-modulated intracavity field to mimic the quantum radiation-pressure noise, we report the first observation of back-action cancellation due to a coherent mechanical response of the mirrors in the cavity to the radiation-pressure noise. We have observed a sensitivity improvement by a factor larger than 20 both in displacement and weak-force measurements.

  10. Federal Cooperation toward a Nationwide Network of Weather and Climate Observing Networks

    NASA Astrophysics Data System (ADS)

    Stailey, J. E.

    2011-12-01

    Weather observing in the US has expanded well beyond its original scope, when it was largely the province of the Federal government. Much of today's observational data is collected by individuals or organizations outside the Federal domain. Application of all weather observations from across the enterprise would be useful in a variety of weather-related disciplines. However, many of those observations are not available or are not used because their quality is suspect or unknown to potential users. A broadly accepted and adopted system of standards to facilitate discovery, access, and selection of acceptable weather observations is needed to fully exploit the wealth of data being collected. Because of its still substantial role in taking and collecting weather observations, it is assumed that a system of standards employed by the Federal government would provide a strong basis for an enterprise-wide system. However, such a system, based on Federal requirements with due consideration of broader needs, does not exist. The effort to establish standards is a first step in a more comprehensive process of recognizing needs for mesoscale observations for a variety of applications, making all current observations-regardless of source-available to meet those needs, and planning for deployment of additional observing capability to fill the gaps. In response to the National Academy of Sciences report Observing Weather and Climate from the Ground Up-a Nationwide Network of Networks, the Office of the Federal Coordinator for Meteorology is working in conjunction with the American Meteorological Society and the National Earth Observation Task Force to address the challenges of building a weather observing and data management capability that meets the needs of a growing community of interest.

  11. Dissociable contributions of motor-execution and action-observation to intermanual transfer.

    PubMed

    Hayes, Spencer J; Andrew, Matthew; Elliott, Digby; Roberts, James W; Bennett, Simon J

    2012-01-11

    We examined the suggestion that some of the processes subserving learning through action-observation and motor-execution are different because sensory motor reafference is not available while the limb is at rest in the former condition. We confirmed the action-observation and motor-execution groups learned equally the absolute time and relative time constraints associated with a movement sequence timing task. However, data from mirror (same motor commands as those in practice) and non-mirror (same visual spatial coordinates as those in practice) intermanual transfer tests showed a clear dissociation in performance following these forms of practice. While positive transfer was exhibited by both groups in the non-mirror condition, there was a significant decrement in relative time performance in the mirror condition only after action-observation. These findings confirm that some of the processes underpinning these forms of motor learning are not somatotopic. Indeed, while motor and visual representations are developed during motor-execution, the absence of sensorimotor reafference during action-observation enables relative time to be represented in visual spatial coordinates only. These behavioural effects for intermanual transfer are discussed with reference to activity in supplementary motor area. PMID:22155050

  12. Development of Functional Connectivity during Adolescence: A Longitudinal Study Using an Action-Observation Paradigm

    ERIC Educational Resources Information Center

    Shaw, Daniel J.; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G. Bruce; Paus, Tomas

    2011-01-01

    Successful interpersonal interactions rely on an ability to read the emotional states of others and to modulate one's own behavior in response. The actions of others serve as valuable social stimuli in this respect, offering the observer an insight into the actor's emotional state. Social cognition continues to mature throughout adolescence. Here…

  13. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials

    PubMed Central

    Kim, KyeongMi

    2015-01-01

    [Purpose] The purpose of this study was to suggest evidenced information about action observation to improve upper limb function after stroke. [Methods] A systematic review of randomized controlled trials involving adults aged 18 years or over and including descriptions of action observation for improving upper limb function was undertaken. Electronic databases were searched, including MEDLINE, CINAHL, and PEDro (the Physiotherapy Evidence Database), for articles published between 2000 to 2014. Following completion of the searches, two reviewers independently assessed the trials and extracted data using a data extraction form. The same two reviewers independently documented the methodological quality of the trials by using the PEDro scale. [Results] Five randomized controlled trials were ultimately included in this review, and four of them (80%) reported statistically significant effects for motor recovery of upper limb using action observation intervention in between groups. [Conclusion] This review of the literature presents evidence attesting to the benefits conferred on stroke patints resulting from participation in an action observation intervention. The body of literature in this field is growing steadily. Further work needs to be done to evaluate the evidence for different conditions after stroke and different duration of intervention. PMID:26644700

  14. An observation-well network concept as applied to North Carolina

    USGS Publications Warehouse

    Winner, M.D., Jr.

    1981-01-01

    A statewide observation-well program is proposed for North Carolina based on four networks of observation wells with different but clearly-defined objectives. These are referred to as the (1) climatic-effects network, (2) terrane-effects network, (3) local-effects network, and (4) areal-effects network. The characteristics of each network are related to natural and man-made stresses in aquifers, and the areas and hydrogeologic units in North Carolina where these networks are needed are identified. Formats for collection, processing, and publication of data from these networks is suggested.

  15. Dynamic noise from action errors enhances network reciprocity in the prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Ogasawara, Takashi

    2015-01-01

    Inspired by the fact that people make mistakes in a transient, fluctuating or chaotic environment, we establish a spatial prisoner's dilemma model where an agent commits action errors proportionally varying with the increasing/decreasing rate of the global cooperation fraction. A series of numerical simulations reveal that the cooperation level is enhanced in games in which the stag hunt (SH)-type dilemma is dominant; however, it is slightly diminished in games in which the chicken-type dilemma is dominant, compared with the standard network reciprocity model. Intensive analysis reveals that the noise created by the action error contribute to the spatial expansion of a cooperators' cluster, because a dilemma that is less chicken-type and more SH-type makes it disadvantageous for defectors to neighbor cooperators. Our finding, that errors in behavior in a chaotic environment contribute to the evolution of cooperation, might aim to explain the problem of how network reciprocity works.

  16. Frederick National Lab and the Pancreatic Cancer Action Network Award Fellowships for KRAS Research | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer The Frederick National Laboratory for Cancer Research (FNLCR) recently formed a partnership with the Pancreatic Cancer Action Network (PanCAN) to award a one-year fellowship to two scientists whose research will help lead to new therapies for pancreatic cancer. The scientists will focus on KRAS, a gene in the RAS family that is mutated in 95 percent of pancreatic cancers, according to the National Cancer Institute (NCI).

  17. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability

    PubMed Central

    Nogueira-Campos, Anaelli A.; Saunier, Ghislain; Della-Maggiore, Valeria; De Oliveira, Laura A. S.; Rodrigues, Erika C.; Vargas, Claudia D.

    2016-01-01

    The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system. PMID:27625602

  18. Motor facilitation during action observation: The role of M1 and PMv in grasp predictions.

    PubMed

    de Beukelaar, Toon T; Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2016-02-01

    Recent theories propose that movement observation is not a "passive mirror" of ongoing actions but might induce anticipatory activity when predictable movements are observed, e.g., because the action goal is known. Here we investigate this mechanism in a series of 3 experiments, by applying transcranial magnetic stimulation (TMS) to primary motor cortex (M1) while subjects observed either whole hand or precision grasping performed by an actor. We show that corticomotor excitability changes in a grip-specific manner but only once the grip can be decoded based on the observed kinematic cues (Exp. 1). By contrast, presenting informative contextual precues evokes anticipatory modulations in M1 already during the reach phase, i.e., well before the grip type could be observed, a finding in line with a predictive coding account (Exp. 2). Finally, we used paired-pulse (PP) TMS to show that ventral premotor cortex (PMv) facilitates grip-specific representations in M1 but only while grip formation is observed. These findings suggest that PMv and M1 interact temporarily and mainly when motor aspects of hand-object interactions are extracted from visual information. By contrast, no sustained input from PMv to M1 seems to be required to maintain action representations that are anticipated based on contextual information or once the grip is formed (Exp. 3). PMID:26800203

  19. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability.

    PubMed

    Nogueira-Campos, Anaelli A; Saunier, Ghislain; Della-Maggiore, Valeria; De Oliveira, Laura A S; Rodrigues, Erika C; Vargas, Claudia D

    2016-01-01

    The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system. PMID:27625602

  20. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    PubMed Central

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  1. Observation and imitation of actions performed by humans, androids, and robots: an EMG study.

    PubMed

    Hofree, Galit; Urgen, Burcu A; Winkielman, Piotr; Saygin, Ayse P

    2015-01-01

    Understanding others' actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others' behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants' arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  2. Observations of Leonids 2009 by the Tajikistan Fireball Network

    NASA Technical Reports Server (NTRS)

    Borovicka, J.; Borovicka, J.

    2011-01-01

    The fireball network in Tajikistan has operated since 2009. Five stations of the network covering the territory of near eleven thousands square kilometers are equipped with all-sky cameras with the Zeiss Distagon "fish-eye" objectives and by digital SLR cameras Nikon with the Nikkor "fish-eye" objectives. Observations of the Leonid activity in 2009 were carried out during November 13-21. In this period, 16 Leonid fireballs have been photographed. As a result of astrometric and photometric reductions, the precise data including atmospheric trajectories, velocities, orbits, light curves, photometric masses and densities were determined for 10 fireballs. The radiant positions during the maximum night suggest that the majority of the fireball activity was caused by the annual stream component with only minor contribution from the 1466 trail. According to the PE criterion, the majority of Leonid fireballs belonged to the most fragile and weak fireball group IIIB. However, one detected Leonid belonged to the fireball group I. This is the first detection of an anomalously strong Leonid individual.

  3. Why bother with a COST Action? The benefits of networking in science

    PubMed Central

    2010-01-01

    A COST Action is a consortium of -mainly- European scientists (but open to international cooperation) working on a common research area, with the same subject; COST provides funding to the Actions for networking and dissemination activities, thus the participating scientists must have secured research funding from other national or European sources. COST funding is in the scale of approximately 100 kEuros per year and in this vein, it is often criticized both in that it does not fund research and the core science and in that its funding is ‘limited’. However, COST with its instruments is an integral pillar of the European Research Area, and it is through its mission that a variety of aspects of the research environment, fundamental to the success of the research, are catered for; these include scientific networking, collaboration/exchange/training and dissemination activities. Through fast procedures, proposals are evaluated and approved for funding in less than one year from submission date and Actions become operational immediately, managed on flexible management. In this way, COST contributes to reducing the fragmentation in European research investments, while opening the European Research Area to cooperation worldwide. COST Actions have an excellent record of building the critical mass for follow up activities in the EU FP or other similarly competitive programmes. PMID:20522262

  4. Mars Observer Propulsion and Pyrotechnics Corrective Actions Test Program Blanket Release

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.; Fries, Joseph (Technical Monitor)

    1999-01-01

    The Mars Observer Propulsion and Pyrotechnic Corrective Actions Test Program has been in progress at the NASA White Sands Test Facility since 1995. This program has developed capabilities to accurately characterize pyrovalve hazards and has established corrective actions that arc helping to preclude loss of spacecraft due to pyrovalve and propellant interaction. Rather than wait for conclusion of the test program, significant rest results, findings, and safety recommendations have been and will continue to be released soon after they became available to meet needs of near-term NASA and commercial space programs. This release will cover approximately three to five papers per year until program end.

  5. Initial Results from the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Lenters, J. D.; Grosse, G.; Arp, C. D.; Jones, B.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Liu, H.; Kim, C.; Townsend-Small, A.

    2011-12-01

    About half of the Arctic Coastal Plain (ACP) of northern Alaska is covered with thermokarst lakes and drained lake basins, making lakes a dominant landscape element and a crucial component of the Arctic permafrost system. However, to date there has been no systematic collection of key lake parameters or baseline data with which to make spatial and temporal comparisons to assess the impact of warmer temperatures, changing cloud cover and precipitation patterns, permafrost degradation, and direct human impacts on lakes. As separate groups, we have been working on lakes in arctic Alaska for the past decade and are currently monitoring some lakes. This effort has recently been organized into the Circumarctic Lakes Observation Network (CALON) with funding from NSF's Arctic Observing Network (AON) program. The objective of CALON is to expand and integrate our existing lake monitoring network across arctic Alaska to provide data for key indices using in situ measurements, field surveys, interviews with members of the indigenous community, and remote sensing/GIS technologies. In 2012, we will enhance the existing in situ network by developing lake monitoring sites to collect year-round baseline data and assess physical, chemical, and biological lake characteristics across environmental gradients. This will be accomplished by implementing a multiscale (hierarchical) lake instrumentation scheme such that basic data are collected from 51 lakes, while a subset of 16 lakes is more intensively instrumented. Regional scaling and extrapolation of key metrics is accomplished through validation of satellite imagery with ground measurements, and standardized protocols will be developed to enable inter-site comparison and to prepare for expansion towards a pan-Arctic network. Initial results are available from lake water profile temperature measurements made in summer 2010 along a 130-km transect extending from Barrow southward toward the interior. Ice-out occurs about 2-4 weeks later

  6. IMITATE: An intensive computer-based treatment for aphasia based on action observation and imitation

    PubMed Central

    Lee, Jaime; Fowler, Robert; Rodney, Daniel; Cherney, Leora; Small, Steven L.

    2009-01-01

    Background Neurophysiological evidence from primates has demonstrated the presence of mirror neurons, with visual and motor properties, that discharge both when an action is performed and during observation of the same action. A similar system for observation-execution matching may also exist in humans. We postulate that behavioral stimulation of this parietal-frontal system may play an important role in motor learning for speech and thereby aid language recovery after stroke. Aims The purpose of this article is to describe the development of IMITATE, a computer-assisted system for aphasia therapy based on action observation and imitation. We also describe briefly the randomized controlled clinical trial that is currently underway to evaluate its efficacy and mechanism of action. Methods and Procedures IMITATE therapy consists of silent observation of audio-visually presented words and phrases spoken aloud by six different speakers, followed by a period during which the participant orally repeats the stimuli. We describe the rationale for the therapeutic features, stimulus selection, and delineation of treatment levels. The clinical trial is a randomized single blind controlled trial in which participants receive two pre-treatment baseline assessments, six weeks apart, followed by either IMITATE or a control therapy. Both treatments are provided intensively (90 minutes per day). Treatment is followed by a post-treatment assessment, and a six-week follow-up assessment. Outcomes & Results Thus far, five participants have completed IMITATE. We expect the results of the randomized controlled trial to be available by late 2010. Conclusions IMITATE is a novel computer-assisted treatment for aphasia that is supported by theoretical rationales and previous human and primate data from neurobiology. The treatment is feasible, and preliminary behavioral data are emerging. However, the results will not be known until the clinical trial data are available to evaluate fully the

  7. Effects of action observation on corticospinal excitability: Muscle specificity, direction, and timing of the mirror response.

    PubMed

    Naish, Katherine R; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2014-11-01

    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour. PMID:25281883

  8. Tajikistan fireball network and results of photographic observations

    NASA Astrophysics Data System (ADS)

    Kokhirova, G. I.; Babadzhanov, P. B.; Khamroev, U. Kh.

    2015-07-01

    The fireball network was created in Tajikistan with the aim of obtaining new data on the near-Earth meteoroid environment concerning large bodies, entering in the Earth's atmosphere and producing fireballs, as well as new observational data on the activity of known meteor/fireball showers. The network consists of five observational stations equipped with the photographic fireball and digital all-sky cameras. Distances between the stations are from 53 to 184 km and the area covered by monitoring is around 11000 km2. For astrometric reduction of fireball photographs, a technique has been developed that allows positions of object details to be determined at an accuracy of about 1', which is a sufficiently good result for negatives of this scale. In the method of photometric reduction, a dependence of measured widths of diurnal star trails on their magnitudes is used. As a result of processing of multi-station photographs of more than 200 fireballs, photographed by the fireball network for 2006-2013, the data on their atmospheric trajectories, coordinates of radiants, velocities, decelerations, orbits in the interplanetary space, light curves, photometric masses, and densities, as well as on the nature of origin of meteoroids which produced the fireballs are obtained; membership of the fireballs to the known fireball/meteor showers is determined. A brightness of the majority of fireballs is within the maximum absolute magnitude range from -5 to -8. It is shown that 62% of fireball-producing meteoroids have a cometary origin and the remaining 38% are of an asteroidal nature. The greater part of the photographed fireballs belongs to the known meteor/fireball showers, while the lesser part (almost 30%) relates to the sporadic background. The obtained results will noticeably replenish the world database with new information on fireballs and are required for solving contemporary astronomy problems associated with studying meteoroid environment in the near-Earth space and

  9. Protecting drinkable water: an analysis of action plans and stakeholders' networks

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Menard, Marjorie

    2015-04-01

    Since WFD the policy for protecting drinkable water has been enhanced in France. This policy establish the main components and the different steps for protecting drinkable water, and ask for defining and implementing an action plan for each contributing catchment. Despite ambitious objectives, the local implementation is difficult. Firstly there is a high diversity of stakeholders involved with local authorities, which are mainly: water agencies, agricultural chambers and consultants, authorities at regional and departmental levels. Most of the local authorities do not feel qualified enough for carrying out such a policy, as they are not really used to deal with technical and political issues related to agricultural diffuse pollutions. As a consequence assessed action plans are based on regulation and/or agri-environmental measures. More ambitious and complementary measures can be included, but without any support measure nor accurate objectives for their implementation. In the end, action plans reflect more a formal implementation of protection approaches than a search for efficiency by defining ambitious measures and the setting-up a consistent support scheme. The way stakeholders' networks mobilize knowledge have been analyzed based on ten case studies located in three different regions. Three local authorities profiles are defined: (1) the "passive" ones, not really convinced of the necessity to undertake actions against diffuse pollutions and/or having low level of knowledge to support local reflexion, that delegate project management; (2) the local authorities that support local protection approach but that, for different reasons, do not search for an effective action plan, and that only consider an improvement approach; (3) the local authorities that more rarely, aim at efficient actions, motivated by the urgent need of action for preserving threatened resources. According to these profiles, local authorities and their project coordinators will be looking

  10. Leadership in complex networks: the importance of network position and strategic action in a translational cancer research network

    PubMed Central

    2013-01-01

    Background Leadership behaviour in complex networks is under-researched, and little has been written concerning leadership of translational research networks (TRNs) that take discoveries made ‘at the bench’ and translate them into practices used ‘at the bedside.’ Understanding leaders’ opportunities and behaviours within TRNs working to solve this key problem in implementing evidence into clinical practice is therefore important. This study explored the network position of governing body members and perceptions of their role in a new TRN in Sydney, Australia. The paper asks three questions: Firstly, do the formal, mandated leaders of this TRN hold key positions of centrality or brokerage in the informal social network of collaborative ties? Secondly, if so, do they recognise the leadership opportunities that their network positions afford them? Thirdly, what activities associated with these key roles do they believe will maximise the TRN’s success? Methods Semi-structured interviews of all 14 governing body members conducted in early 2012 explored perceptions of their roles and sought comments on a list of activities drawn from review of successful transdisciplinary collaboratives combined with central and brokerage roles. An on-line, whole network survey of all 68 TRN members sought to understand and map existing collaborative connections. Leaders’ positions in the network were assessed using UCInet, and graphs were generated in NetDraw. Results Social network analysis identified that governing body members had high centrality and high brokerage potential in the informal network of work-related ties. Interviews showed perceived challenges including ‘silos’ and the mismatch between academic and clinical goals of research. Governing body members recognised their central positions, which would facilitate the leadership roles of leading, making decisions, and providing expert advice necessary for the co-ordination of effort and relevant input across

  11. Deciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action

    PubMed Central

    Sun, Jingchun; Zhao, Min; Jia, Peilin; Wang, Lily; Wu, Yonghui; Iverson, Carissa; Zhou, Yubo; Bowton, Erica; Roden, Dan M.; Denny, Joshua C.; Aldrich, Melinda C.; Xu, Hua; Zhao, Zhongming

    2015-01-01

    A drug exerts its effects typically through a signal transduction cascade, which is non-linear and involves intertwined networks of multiple signaling pathways. Construction of such a signaling pathway network (SPNetwork) can enable identification of novel drug targets and deep understanding of drug action. However, it is challenging to synopsize critical components of these interwoven pathways into one network. To tackle this issue, we developed a novel computational framework, the Drug-specific Signaling Pathway Network (DSPathNet). The DSPathNet amalgamates the prior drug knowledge and drug-induced gene expression via random walk algorithms. Using the drug metformin, we illustrated this framework and obtained one metformin-specific SPNetwork containing 477 nodes and 1,366 edges. To evaluate this network, we performed the gene set enrichment analysis using the disease genes of type 2 diabetes (T2D) and cancer, one T2D genome-wide association study (GWAS) dataset, three cancer GWAS datasets, and one GWAS dataset of cancer patients with T2D on metformin. The results showed that the metformin network was significantly enriched with disease genes for both T2D and cancer, and that the network also included genes that may be associated with metformin-associated cancer survival. Furthermore, from the metformin SPNetwork and common genes to T2D and cancer, we generated a subnetwork to highlight the molecule crosstalk between T2D and cancer. The follow-up network analyses and literature mining revealed that seven genes (CDKN1A, ESR1, MAX, MYC, PPARGC1A, SP1, and STK11) and one novel MYC-centered pathway with CDKN1A, SP1, and STK11 might play important roles in metformin’s antidiabetic and anticancer effects. Some results are supported by previous studies. In summary, our study 1) develops a novel framework to construct drug-specific signal transduction networks; 2) provides insights into the molecular mode of metformin; 3) serves a model for exploring signaling pathways

  12. Distributed Regional Aerosol Gridded Observation Network (DRAGON) - Korea 2012 campaign

    NASA Astrophysics Data System (ADS)

    Kim, J.; Holben, B. N.; Eck, T. F.; Jeong, U.; Kim, W. V.; Choi, M.; Kim, D. S.; Kim, B.; Kim, S.; Ghim, Y.; Kim, Y. J.; Kim, J. H.; Park, R.; Seo, M.; Song, C.; Yum, S.; Woo, J.; Yoon, S.; Lee, K.; Lee, M.; Lim, J.; Chang, I.; Jeong, M. J.; Bae, M.; Sorokin, M.; Giles, D. M.; Schafer, J.; Herman, J. R.

    2013-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. Recently, with the cooperative efforts with NASA (National Aeronautics and Space Administration) / GSFC (Goddard Space Flight Center), Korean University research groups, and KME (Korea Ministry of Environment) / NIER (National Institute of Environmental Research), DRAGON-Korea 2012 campaign was successfully performed from March to May 2012. The campaign sites were divided into two groups, the National scale sites and Seoul metropolitan sites. Thirteen Cimel sunphotometers were distributed at National scale sites including two metropolitan cities and several remote sites. Nine Cimel sunphotometers were distributed at Seoul Metropolitan sites including several residential sites and traffic source areas. The measured datasets are being analyzed in diverse fields of air quality communities including in-situ measurement groups, satellite remote sensing groups, chemical modeling groups, and airplane measurement groups. We will introduce several preliminary results of the analysis and discuss the future planes and corporations in Korea.

  13. Observation of radiation-pressure effects and back-action cancellation in interferometric measurements

    NASA Astrophysics Data System (ADS)

    Heidmann, A.; Caniard, T.; Verlot, P.; Briant, T.; Cohadon, P.-F.

    2008-02-01

    Radiation pressure exerted by light in interferometric measurements is responsible for displacements of mirrors which appear as an additional back-action noise and limit the sensitivity of the measurement. We experimentally study these effects by monitoring in a very highfinesse optical cavity the displacements of a mirror with a sensitivity at the 10 -20 m/√Hz level. This unique sensitivity is a step towards the first observation of the fundamental quantum effects of radiation pressure and the resulting standard quantum limit in interferometric measurements. Our experiment may become a powerful facility to test quantum noise reduction schemes, and we already report the first experimental demonstration of a back-action noise cancellation. Using a classical radiation-pressure noise to mimic the quantum noise of light, we have observed a drastic improvement of sensitivity both in position and force measurements.

  14. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy

    PubMed Central

    de Klerk, Carina C.J.M.; Johnson, Mark H.; Southgate, Victoria

    2015-01-01

    Previous studies have shown that sensorimotor cortex activation is somatotopically-organised during action execution and observation in adulthood. Here we aimed to investigate the development of this phenomenon in infancy. We elicited arm and leg actions from 12-month-old infants and presented them, and a control group of adults, with videos of arm and leg actions while we measured their sensorimotor alpha suppression using EEG. Sensorimotor alpha suppression during action execution was somatotopically organised in 12-month-old infants: there was more suppression over the arm areas when infants performed reaching actions, and more suppression over the leg area when they performed kicking actions. Adults also showed somatotopically-organised activation during the observation of reaching and kicking actions. In contrast, infants did not show somatotopically-organised activation during action observation, but instead activated the arm areas when observing both reaching and kicking actions. We suggest that the somatotopic organisation of sensorimotor cortex activation during action observation may depend on infants’ understanding of the action goal and their expectations about how this goal will be achieved. PMID:26318840

  15. Observation of sonified movements engages a basal ganglia frontocortical network

    PubMed Central

    2013-01-01

    Background Producing sounds by a musical instrument can lead to audiomotor coupling, i.e. the joint activation of the auditory and motor system, even when only one modality is probed. The sonification of otherwise mute movements by sounds based on kinematic parameters of the movement has been shown to improve motor performance and perception of movements. Results Here we demonstrate in a group of healthy young non-athletes that congruently (sounds match visual movement kinematics) vs. incongruently (no match) sonified breaststroke movements of a human avatar lead to better perceptual judgement of small differences in movement velocity. Moreover, functional magnetic resonance imaging revealed enhanced activity in superior and medial posterior temporal regions including the superior temporal sulcus, known as an important multisensory integration site, as well as the insula bilaterally and the precentral gyrus on the right side. Functional connectivity analysis revealed pronounced connectivity of the STS with the basal ganglia and thalamus as well as frontal motor regions for the congruent stimuli. This was not seen to the same extent for the incongruent stimuli. Conclusions We conclude that sonification of movements amplifies the activity of the human action observation system including subcortical structures of the motor loop. Sonification may thus be an important method to enhance training and therapy effects in sports science and neurological rehabilitation. PMID:23496827

  16. Facilitation effect of observed motor deviants in a cooperative motor task: Evidence for direct perception of social intention in action.

    PubMed

    Quesque, François; Delevoye-Turrell, Yvonne; Coello, Yann

    2016-08-01

    Spatiotemporal parameters of voluntary motor action may help optimize human social interactions. Yet it is unknown whether individuals performing a cooperative task spontaneously perceive subtly informative social cues emerging through voluntary actions. In the present study, an auditory cue was provided through headphones to an actor and a partner who faced each other. Depending on the pitch of the auditory cue, either the actor or the partner were required to grasp and move a wooden dowel under time constraints from a central to a lateral position. Before this main action, the actor performed a preparatory action under no time constraint, consisting in placing the wooden dowel on the central location when receiving either a neutral ("prêt"-ready) or an informative auditory cue relative to who will be asked to perform the main action (the actor: "moi"-me, or the partner: "lui"-him). Although the task focused on the main action, analysis of motor performances revealed that actors performed the preparatory action with longer reaction times and higher trajectories when informed that the partner would be performing the main action. In this same condition, partners executed the main actions with shorter reaction times and lower velocities, despite having received no previous informative cues. These results demonstrate that the mere observation of socially driven motor actions spontaneously influences the low-level kinematics of voluntary motor actions performed by the observer during a cooperative motor task. These findings indicate that social intention can be anticipated from the mere observation of action patterns. PMID:26288247

  17. Towards automated observational analysis of leadership in clinical networks.

    PubMed

    McCowan, Iain; Harden, Hazel

    2007-01-01

    Clinical networks are being increasingly employed to drive innovation in health services by encouraging multi-disciplinary clinical engagement in management processes. The effectiveness of a network, however, depends critically on the ability of its leader to coordinate group interactions. This paper discusses leadership of clinical networks, and in this context reviews technologies for analyzing the way team members interact in group conversations. This review will form the foundation for ongoing research to develop the profile of an effective clinical network leader, along with techniques and tools for evaluation and professional development. PMID:17917188

  18. Power-Hop: A Pervasive Observation for Real Complex Networks

    PubMed Central

    Papalexakis, Evangelos; Hooi, Bryan; Pelechrinis, Konstantinos; Faloutsos, Christos

    2016-01-01

    Complex networks have been shown to exhibit universal properties, with one of the most consistent patterns being the scale-free degree distribution, but are there regularities obeyed by the r-hop neighborhood in real networks? We answer this question by identifying another power-law pattern that describes the relationship between the fractions of node pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and describes a large variety of networks, ranging from social and urban to technological and biological networks. In particular, inspired by the definition of the fractal correlation dimension D2 on a point-set, we consider the hop-count r to be the underlying distance metric between two vertices of the network, and we examine the scaling of C(r) with r. We find that this relationship follows a power-law in real networks within the range 2 ≤ r ≤ d, where d is the effective diameter of the network, that is, the 90-th percentile distance. We term this relationship as power-hop and the corresponding power-law exponent as power-hop exponent h. We provide theoretical justification for this pattern under successful existing network models, while we analyze a large set of real and synthetic network datasets and we show the pervasiveness of the power-hop. PMID:26974560

  19. Lessons Learnt from Applying Action Research to Support Strategy Formation Processes in Long-Term Care Networks

    ERIC Educational Resources Information Center

    Cramer, Hendrik; Dewulf, Geert; Voordijk, Hans

    2015-01-01

    This study demonstrates how action research (AR) that is aimed at scaling-up experiments can be applied to support a strategy formation process (SFP) in a subsidized long-term care network. Previous research has developed numerous AR frameworks to support experiments in various domains, but has failed to explain how to apply AR and action learning…

  20. On wireless sensing networks in hydrology: from observation to prediction

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H. R.; Huisman, J. A.; Wei, Q.; Fang, Z.; Vanderborght, J.; Kollet, S. J.

    2015-12-01

    The use of wireless sensor networks (WSN) has gained increasing attention in the field of hydrology, because WSNs offer a unique potential to monitor the spatial and temporal dynamics of soil moisture at scales beyond the field scale. In addition, they provide unique opportunities for the validation of numerical models, hydrogeophysical measurement techniques, as well as for the calibration and validation of remotely sensed soil moisture data. In this presentation, we will discuss results of temporal and spatially resolved measurements of soil moisture using WSNs installed in two different small-scale catchments under forest (Wüstebach, Germany) and grassland (Rollesbroich, Germany). In combination with measurements of hydrological fluxes, we were able to close the water balance of the Wüstebach catchment up to 3% of the yearly rainfall. In addition, changes between wet and dry states of the catchment could be observed and related to a critical soil moisture content. Using stochastic analysis of water flow in the unsaturated zone and pedotransfer functions, we were able to predict subgrid variability of soil moisture. This framework also allowed deriving the spatial variability of soil hydraulic parameters using the relationship between the variance of soil moisture and its mean soil water content. Finally, soil moisture data from the WSN in the Wüstebach catchment were used to validate a detailed hydrologic model of the catchment using empirical orthogonal functions and coherence wavelet analysis. Further development of wireless sensing technologies will include the monitoring of soil moisture potential and biogeochemical properties such as redox potential.

  1. Novel dynamic Bayesian networks for facial action element recognition and understanding

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong

    2011-12-01

    In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.

  2. Social Networks as a Political Resource: Some Insights Drawn from the Community Organizational and Community Action Experiences.

    ERIC Educational Resources Information Center

    Rosenbaum, Allan

    The development and functioning of urban social networks in highly politicized environments--particularly, the neighborhood based community organization, political coalition building of urban mayors, and community action programs--suggest implications for building locally based educational reform capacity through network development. Community…

  3. The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH).

    PubMed

    García-Rojo, Marcial; Gonçalves, Luís; Blobel, Bernd

    2012-01-01

    The COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH) is a European COST Action that has been running from 2007 to 2011. COST Actions are funded by the COST (European Cooperation in the field of Scientific and Technical Research) Agency, supported by the Seventh Framework Programme for Research and Technological Development (FP7), of the European Union. EURO-TELEPATH's main objectives were evaluating and validating the common technological framework and communication standards required to access, transmit and manage digital medical records by pathologists and other medical professionals in a networked environment. The project was organized in four working groups. orking Group 1 "Business modeling in pathology" has designed main pathology processes - Frozen Study, Formalin Fixed Specimen Study, Telepathology, Cytology, and Autopsy -using Business Process Modeling Notation (BPMN). orking Group 2 "Informatics standards in pathology" has been dedicated to promoting the development and application of informatics standards in pathology, collaborating with Integrating the Healthcare Enterprise (IHE), Digital Imaging and Communications in Medicine (DICOM), Health Level Seven (HL7), and other standardization bodies. Working Group 3 "Images: Analysis, Processing, Retrieval and Management" worked on the use of virtual or digital slides that are fostering the use of image processing and analysis in pathology not only for research purposes, but also in daily practice. Working Group 4 "Technology and Automation in Pathology" was focused on studying the adequacy of current existing technical solutions, including, e.g., the quality of images obtained by slide scanners, or the efficiency of image analysis applications. Major outcome of this action are the collaboration with international health informatics standardization bodies to foster the development of standards for digital pathology, offering a new approach for workflow analysis, based in business process

  4. Modulation of Corticospinal Excitability during Acquisition of Action Sequences by Observation

    PubMed Central

    Sakamoto, Masanori; Moriyama, Noriyoshi; Mizuguchi, Nobuaki; Muraoka, Tetsuro; Kanosue, Kazuyuki

    2012-01-01

    Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses. PMID:22615889

  5. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  6. I know what I will see: action-specific motor preparation activity in a passive observation task.

    PubMed

    Bozzacchi, Chiara; Spinelli, Donatella; Pitzalis, Sabrina; Giusti, Maria Assunta; Di Russo, Francesco

    2015-06-01

    Literature on mirror neurons has shown that seeing someone preparing to move generates in the motor areas of the observers a brain activity similar to that generated when the subject prepares his own actions. Thus, the 'mirroring' of action would not be limited to the execution phase but also involves the preparation process. Here we confirm and extend this notion showing that, just as different brain activities prepare different voluntary actions, also different brain activities prepare to observe different predictable actions. Videos of two different actions from egocentric point of view were presented in separate blocks: (i) grasping of a cup and (ii) impossible grasping of a cup. Subjects had to passively observe the videos showing object-directed hand movements. Through the use of the event-related potentials, we found a cortical activity before observing the actions, which was very similar to the one recorded prior to the actual execution of that same action, in terms of both topography and latency. This anticipatory activity does not represent a general preparation state but an action-specific state, because being dependent on the specific meaning of the forthcoming action. These results reinforce our knowledge about the correspondence between action, perception and cognition. PMID:25261822

  7. Action observers implicitly expect actors to act goal-coherently, even if they do not: an fMRI study.

    PubMed

    Hrkać, Mari; Wurm, Moritz F; Schubotz, Ricarda I

    2014-05-01

    Actions observed in everyday life normally consist of one person performing sequences of goal-directed actions. The present fMRI study tested the hypotheses that observers are influenced by the actor's identity, even when this information is task-irrelevant, and that this information shapes their expectation on subsequent actions of the same actor. Participants watched short video clips of action steps that either pertained to a common action with an overarching goal or not, and were performed by either one or by varying actors (2 × 2 design). Independent of goal coherence, actor coherence elicited activation in dorsolateral and ventromedial frontal cortex, together pointing to a spontaneous attempt to integrate all actions performed by one actor. Interestingly, watching an actor performing unrelated actions elicited additional activation in left inferior frontal gyrus, suggesting a search in semantic memory in an attempt to construct an overarching goal that can reconcile the disparate action steps with a coherent intention. Post-experimental surveys indicate that these processes occur mostly unconsciously. Findings strongly suggest a spontaneous expectation bias toward actor-related episodes in action observers, and hence to the immense impact of actor information on action observation. PMID:23983202

  8. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and

  9. The theory-of-mind network in support of action verb comprehension: evidence from an fMRI study.

    PubMed

    Lin, Nan; Bi, Yanchao; Zhao, Ying; Luo, Chunming; Li, Xingshan

    2015-02-01

    The theory-of-mind (ToM) network refers to a specific group of brain regions implicated in the thinking of people's mental states. It remains unclear how this network contributes to verb comprehension. In the present study, we compared brain activations evoked by verbs that refer to social actions, private actions, and nonhuman events. All classic regions of the ToM network, including the posterior superior temporal sulcus (pSTS) whose activation during word comprehension is typically interpreted as the processing of motion properties, showed stronger activations to social action verbs than the others. These findings indicate that the ToM network is involved in the processing of social/mental knowledge of verb meanings. Furthermore, the activation of the pSTS during word comprehension mainly reflects the processing of social/mental properties but not that of biological-motion properties. PMID:25498409

  10. Using theories of action to guide national program evaluation and local strategy in the community care network demonstration.

    PubMed

    Sofaer, Shoshanna; Bazzoli, Gloria J; Alexander, Jeffrey A; Conrad, Douglas A; Hasnain-Wynia, Romana; Shortell, Stephen M; Margolin, Frances; Pittman, Mary; Casey, Elizabeth; Ladenheim, Kala; Mauery, D Richard; Zukoski, Ann P

    2003-12-01

    Evaluations of multisite community-based projects are notoriously difficult to conceptualize and conduct. Projects may share an overarching vision but operate in varying contexts and pursue different initiatives. One tool that can assist evaluators facing these challenges is to develop a "theory of action" (TOA) that identifies critical assumptions regarding how a program expects to achieve its goals. Community Care Network (CCN) evaluators used the TOA to refine research questions, define key variables, relate questions to each other, and identify when we might realistically expect to observe answers. In this article, the authors present their national-level CCN TOA. They also worked with sites to help them "surface" their local TOA; the article analyzes the results to determine the content, clarity, extent of evidence base, and strategic orientation of theories articulated by different sites. PMID:14687428

  11. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    PubMed Central

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  12. Action video game players and deaf observers have larger Goldmann visual fields.

    PubMed

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-01

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field. PMID:19962395

  13. Network-Based Analysis of Nutraceuticals in Human Hepatocellular Carcinomas Reveals Mechanisms of Chemopreventive Action.

    PubMed

    Michailidou, M; Melas, I N; Messinis, D E; Klamt, S; Alexopoulos, L G; Kolisis, F N; Loutrari, H

    2015-06-01

    Chronic inflammation is associated with the development of human hepatocellular carcinoma (HCC), an essentially incurable cancer. Anti-inflammatory nutraceuticals have emerged as promising candidates against HCC, yet the mechanisms through which they influence the cell signaling machinery to impose phenotypic changes remain unresolved. Herein we implemented a systems biology approach in HCC cells, based on the integration of cytokine release and phospoproteomic data from high-throughput xMAP Luminex assays to elucidate the action mode of prominent nutraceuticals in terms of topology alterations of HCC-specific signaling networks. An optimization algorithm based on SigNetTrainer, an Integer Linear Programming formulation, was applied to construct networks linking signal transduction to cytokine secretion by combining prior knowledge of protein connectivity with proteomic data. Our analysis identified the most probable target phosphoproteins of interrogated compounds and predicted translational control as a new mechanism underlying their anticytokine action. Induced alterations corroborated with inhibition of HCC-driven angiogenesis and metastasis. PMID:26225263

  14. Network-Based Analysis of Nutraceuticals in Human Hepatocellular Carcinomas Reveals Mechanisms of Chemopreventive Action

    PubMed Central

    Michailidou, M; Melas, IN; Messinis, DE; Klamt, S; Alexopoulos, LG; Kolisis, FN; Loutrari, H

    2015-01-01

    Chronic inflammation is associated with the development of human hepatocellular carcinoma (HCC), an essentially incurable cancer. Anti-inflammatory nutraceuticals have emerged as promising candidates against HCC, yet the mechanisms through which they influence the cell signaling machinery to impose phenotypic changes remain unresolved. Herein we implemented a systems biology approach in HCC cells, based on the integration of cytokine release and phospoproteomic data from high-throughput xMAP Luminex assays to elucidate the action mode of prominent nutraceuticals in terms of topology alterations of HCC-specific signaling networks. An optimization algorithm based on SigNetTrainer, an Integer Linear Programming formulation, was applied to construct networks linking signal transduction to cytokine secretion by combining prior knowledge of protein connectivity with proteomic data. Our analysis identified the most probable target phosphoproteins of interrogated compounds and predicted translational control as a new mechanism underlying their anticytokine action. Induced alterations corroborated with inhibition of HCC-driven angiogenesis and metastasis. PMID:26225263

  15. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Ponomarenko, Andrey; Apestigue, Victor; Genzer, Maria; Vazquez, Luis; Uspensky, Mikhail; Haukka, Harri

    2016-04-01

    3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the descent phase starting shortly after separation from the spacecraft. MetNet Mission payload instruments are specially designed to operate under very low power conditions. MNL flexible solar panels provides a total of approximately 0.7-0.8 W of electric power during the daylight time. As the provided power output is insufficient to operate all instruments simultaneously they are activated sequentially according to a specially designed cyclogram table which adapts itself to the different environmental constraints. Mission Status Full Qualification Model (QM) of the MetNet landing unit with the Precursor Mission payload is currently under functional tests. In the near future the QM unit will be exposed to environmental tests with qualification levels including vibrations, thermal balance, thermal cycling and mechanical impact shock. One complete flight unit of the entry, descent and landing systems (EDLS) has been manufactured and tested with acceptance levels. Another flight-like EDLS has been exposed to most of the qualification tests, and hence it may be used for flight after refurbishments. Accordingly two flight-capable EDLS systems exist. The eventual goal is to create a network of atmospheric observational posts around the Martian surface. Even if the MetNet mission is focused on the atmospheric science, the mission payload will also include additional kinds of geophysical instrumentation. The next step in the MetNet Precursor Mission is the demonstration of the technical robustness and scientific capabilities of the MetNet type of landing vehicle. Definition of the Precursor Mission and discussions on launch opportunities are currently under way. The baseline program development funding exists for the next five years. Flight unit manufacture of the payload bay takes about 18 months, and it will be commenced after the Precursor Mission has

  16. GIONET (GMES Initial Operations Network for Earth Observation Research Training)

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Balzter, H.

    2013-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. Copernicus (previously known as GMES (Global Monitoring for Environment and Security) is a joint undertaking of the European Space Agency and the European Commission. It develops fully operational Earth Observation monitoring services for a community of end users from the public and private sector. The first services that are considered fully operational are the land monitoring and emergency monitoring core services. In GIONET, 14 early stage researchers are being trained at PhD level in understanding the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers are based in industry and universities across Europe, as well as receiving the best technical training and scientific education. The training programme through supervised research focuses on 14 research topics. Each topic is carried out by an Early Stage Researcher based in one of the partner organisations and is expected to lead to a PhD degree. The 14 topics are grouped in 5 research themes: Forest monitoring Land cover and change Coastal zone and freshwater monitoring Geohazards and emergency response Climate adaptation and emergency response The methods developed and used in GIONET are as diverse as its research topics. GIONET has already held two summer schools; one at Friedrich Schiller University in Jena (Germany), on 'New operational radar satellite applications: Introduction to SAR, Interferometry and Polarimetry for Land Surface Mapping'. The 2nd summer school took place last September at the University of Leicester (UK )on 'Remote sensing of land cover and forest in GMES'. The next Summer School in September 2013

  17. Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    PubMed Central

    Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo

    2011-01-01

    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569

  18. Emergence of collective action and environmental networking in relation to radioactive waste management

    SciTech Connect

    Williams, R.G.; Payne, B.A.

    1985-01-01

    This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this conutry has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values. Because of the antinuclear attitudes of environmentalists and the value orientation of appropriate technologists in the national environmental movement, it seems appropriate for local groups to call on these national groups for assistance regarding nuclear-related issues. A case study is used to illustrate how a local action group, once integrated into a national environmental network, can become an effective, legitimate participant in social change. The formation, emergence, mobilization, and networking of a local group opposed to a specific federal radioactive waste management plan is described based on organizational literature. However, inherent contradictions in defining the local versus national benefits plus inherent problems within the environmental movement could be acting to limit the effectiveness of such networks. 49 refs.

  19. [An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology].

    PubMed

    Gao, Yao; Gao, Li; Gao, Xiao-xia; Zhou, Yu-zhi; Qin, Xue-mei; Tian, Jun-sheng

    2015-12-01

    The present study aims to predict the action targets of antidepressant active ingredients of Xiaoyaosan to understand the "multi-components, multi-targets and multi-pathways" mechanism. Using network pharmacology, the reported antidepressant active ingredients in Xiaoyaosan (saikosaponin A, saikosaponin C, saikosaponin D, ferulic acid, Z-ligustilide, atractylenolide I, atractylenolide II, atractylenolide III, paeoniflorin, albiflorin, liquiritin, glycyrrhizic acid and pachymic acid), were used to predict the targets of main active ingredients of Xiaoyaosan according to reversed pharmacophore matching method. The prediction was made via screening of the antidepressive drug targets approved by FDA in the DrugBank database and annotating the information of targets with the aid of MAS 3.0 biological molecular function software. The Cytoscape software was used to construct the Xiaoyaosan ingredients-targets-pathways network. The network analysis indicates that the active ingredients in Xiaoyaosan involve 25 targets in the energy metabolism-immune-signal transmutation relevant biological processes. The antidepressant effect of Xiaoyaosan reflects the features of traditional Chinese medicine in multi-components, multi-targets and multi-pathways. This research provides a scientific basis for elucidation of the antidepressant pharmacological mechanism of Xiaoyaosan. PMID:27169281

  20. Ocean Observatories and Information: Building a Global Ocean Observing Network

    NASA Astrophysics Data System (ADS)

    Schofield, O.; Glenn, S. M.; Moline, M. A.; Oliver, M.; Irwin, A.; Chao, Y.; Arrott, M.

    Ocean observatories are collections of networks of sensors that are deployed to sample the ocean physics, chemistry, and biology. The goal of these networks is to overcome chronic undersampling of the oceans by providing sustained measurements in space and time. The data collected by these networks are used to address a range of basic and applied research questions, hindered by a lack of data. The ocean observatories represent collections of platforms capable of collecting data over a range of scales. The platforms include ships, satellites, radars, and a range of Lagrangian systems. Data from the individual platforms are aggregated by sophisticated cyberinfrastructure software systems, which when combined with global communications allow for two-way communication between the shoreside personnel and the networks that can be deployed anywhere in the world. This two-way communication allows the networks to be adaptively configured to improve sampling of specific processes. The maturation of these systems comes at a fortuitous time as the oceans are increasingly showing evidence of changes in the physics, chemistry, and biology over the last few decades. Understanding those changes will require the data collected by the ocean observatories.

  1. Ukrainian network of Optical Stations for man-made space objects observation

    NASA Astrophysics Data System (ADS)

    Sybiryakova, Yevgeniya

    2016-07-01

    The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.

  2. [Parenting problems, observation at home and support in a network].

    PubMed

    Legrée, Isabelle; Andro, Gwenaëlle; Baleyte, Jean-Marc

    2015-01-01

    Supporting parenthood in a family with multiple problems requires a strong network. In the case of difficulties in establishing the initial bonds between a couple and their baby, the perinatal psychiatric team, working with the mother and infant welfare protection service and the adult psychiatry service, can also put in place measures to support this family. PMID:26145298

  3. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  4. Neural Correlates of Action Observation and Execution in 14-Month-Old Infants: An Event-Related EEG Desynchronization Study

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Young, Thomas; Meltzoff, Andrew N.

    2011-01-01

    There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants.…

  5. Immature hippocampal neuronal networks do not develop tolerance to the excitatory actions of ethanol.

    PubMed

    Galindo, Rafael; Valenzuela, C Fernando

    2006-10-01

    Ethanol (EtOH) damages the hippocampus, a brain region that is involved in learning and memory processes. The mechanisms responsible for this effect of EtOH are not fully understood. We recently demonstrated that acute EtOH exposure potently stimulates oscillatory activity driven by the excitatory actions of GABA in the CA3 region of the neonatal rat hippocampus. This activity can be recorded during the growth spurt period as giant depolarizing potentials (GDPs). Here, we characterized the effects of prolonged EtOH exposure on GDPs. In the first study, we prepared hippocampal coronal slices from neonatal rats and exposed these to control artificial cerebrospinal fluid (ACSF) or ACSF plus 50 mM EtOH for 3-4 h. We then performed whole-cell patch-clamp electrophysiological recordings from CA3 pyramidal neurons, which revealed that tolerance to the GDP stimulating effects of EtOH did not occur after continuous exposure. In the second study, we exposed neonatal rats to air or air plus 1.9 g/dl EtOH in vapor chambers for 4h/day for 1 or 3 days (neonatal peak blood EtOH concentration = 40-45 mM). We then performed slice electrophysiological studies 24 h after the end of EtOH exposure and found that there was no statistically significant difference in the acute effect of 50 mM EtOH on GDP frequency in samples from neonates exposed to air or air plus EtOH. These findings indicate that EtOH persistently stimulates network-driven oscillatory activity in the developing hippocampus. We propose that the lack of adaptive response to continuous EtOH exposure could make immature neuronal networks particularly vulnerable to the actions of this agent. PMID:17307647

  6. The role of observational reference data for climate downscaling: Insights from the VALUE COST Action

    NASA Astrophysics Data System (ADS)

    Kotlarski, Sven; Gutiérrez, José M.; Boberg, Fredrik; Bosshard, Thomas; Cardoso, Rita M.; Herrera, Sixto; Maraun, Douglas; Mezghani, Abdelkader; Pagé, Christian; Räty, Olle; Stepanek, Petr; Soares, Pedro M. M.; Szabo, Peter

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of downscaling methods. Such assessments can be expected to crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling, observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. We here present a comprehensive assessment of the influence of uncertainties in observational reference data and of scale-related issues on several of the above-mentioned aspects. First, temperature and precipitation characteristics as simulated by a set of reanalysis-driven EURO-CORDEX RCM experiments are validated against three different gridded reference data products, namely (1) the EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. The analysis reveals a considerable influence of the choice of the reference data on the evaluation results, especially for precipitation. It is also illustrated how differences between the reference data sets influence the ranking of RCMs according to a comprehensive set of performance measures.

  7. EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions.

    PubMed

    Liao, Yu; Acar, Zeynep Akalin; Makeig, Scott; Deak, Gedeon

    2015-05-15

    Contemporary active-EEG and EEG-imaging methods show particular promise for studying the development of action planning and social-action representation in infancy and early childhood. Action-related mu suppression was measured in eleven 3-year-old children and their mothers during a 'live,' largely unscripted social interaction. High-density EEG was recorded from children and synchronized with motion-captured records of children's and mothers' hand actions, and with video recordings. Independent Component Analysis (ICA) was used to separate brain and non-brain source signals in toddlers' EEG records. EEG source dynamics were compared across three kinds of epochs: toddlers' own actions (execution), mothers' actions (observation), and between-turn intervals (no action). Mu (6-9Hz) power was suppressed in left and right somatomotor cortex during both action execution and observation, as reflected by independent components of individual children's EEG data. These mu rhythm components were accompanied by beta-harmonic (~16Hz) suppression, similar to findings from adults. The toddlers' power spectrum and scalp density projections provide converging evidence of adult-like mu-suppression features. Mu-suppression components' source locations were modeled using an age-specific 4-layer forward head model. Putative sources clustered around somatosensory cortex, near the hand/arm region. The results demonstrate that action-locked, event-related EEG dynamics can be measured, and source-resolved, from toddlers during social interactions with relatively unrestricted social behaviors. PMID:25731992

  8. Measuring cerebral hemodynamic changes during action observation with functional transcranial doppler

    PubMed Central

    Kim, Seong-Sik; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of action observation training (AOT) on cerebral hemodynamic changes including cerebral blood flow velocity (CBFV) and cerebral blood flow volume (CBFvol) in healthy subjects. [Subjects] Fifteen healthy subjects participated in this study. [Methods] All subjects were educated regarding AOT, and systolic peak velocity (Vs) as well as mean flow velocity (Vm) in the middle cerebral artery (MCA), anterior cerebral artery (ACA), and posterior cerebral artery (PCA) were evaluated using functional transcranial doppler with a 2-MHz probe, before and after performing AOT. [Results] Healthy subjects showed significant differences in Vs and Vm in the MCA, ACA, and PCA after AOT compared with those before AOT. [Conclusion] Our findings indicate that AOT has a positive effect in terms of an increase in CBFV and CBFvol in healthy subjects, since the brain requires more blood to meet the metabolic demand during AOT. PMID:26157224

  9. Primary somatosensory contribution to action observation brain activity-combining fMRI and cTBS.

    PubMed

    Valchev, Nikola; Gazzola, Valeria; Avenanti, Alessio; Keysers, Christian

    2016-08-01

    Traditionally the mirror neuron system (MNS) only includes premotor and posterior parietal cortices. However, somatosensory cortices, BA1/2 in particular, are also activated during action execution and observation. Here, we examine whether BA1/2 and the parietofrontal MNS integrate information by using functional magnetic resonance imaging (fMRI)-guided continuous theta-burst stimulation (cTBS) to perturb BA1/2. Measuring brain activity using fMRI while participants are under the influence of cTBS shows local cTBS effects in BA1/2 varied, with some participants showing decreases and others increases in the BOLD response to viewing actions vs control stimuli. We show how measuring cTBS effects using fMRI can harness this variance using a whole-brain regression. This analysis identifies brain regions exchanging action-specific information with BA1/2 by mapping voxels away from the coil with cTBS-induced, action-observation-specific BOLD contrast changes that mirror those under the coil. This reveals BA1/2 exchanges action-specific information with premotor, posterior parietal and temporal nodes of the MNS during action observation. Although anatomical connections between BA1/2 and these regions are well known, this is the first demonstration that these connections carry action-specific signals during observation and hence, that BA1/2 plays a causal role in the human MNS. PMID:26979966

  10. Primary somatosensory contribution to action observation brain activity—combining fMRI and cTBS

    PubMed Central

    Valchev, Nikola; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    Traditionally the mirror neuron system (MNS) only includes premotor and posterior parietal cortices. However, somatosensory cortices, BA1/2 in particular, are also activated during action execution and observation. Here, we examine whether BA1/2 and the parietofrontal MNS integrate information by using functional magnetic resonance imaging (fMRI)-guided continuous theta-burst stimulation (cTBS) to perturb BA1/2. Measuring brain activity using fMRI while participants are under the influence of cTBS shows local cTBS effects in BA1/2 varied, with some participants showing decreases and others increases in the BOLD response to viewing actions vs control stimuli. We show how measuring cTBS effects using fMRI can harness this variance using a whole-brain regression. This analysis identifies brain regions exchanging action-specific information with BA1/2 by mapping voxels away from the coil with cTBS-induced, action-observation-specific BOLD contrast changes that mirror those under the coil. This reveals BA1/2 exchanges action-specific information with premotor, posterior parietal and temporal nodes of the MNS during action observation. Although anatomical connections between BA1/2 and these regions are well known, this is the first demonstration that these connections carry action-specific signals during observation and hence, that BA1/2 plays a causal role in the human MNS. PMID:26979966

  11. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  12. A Network for Observing Great Basin Climate Change

    NASA Astrophysics Data System (ADS)

    Mensing, Scott; Strachan, Scotty; Arnone, Jay; Fenstermaker, Lynn; Biondi, Franco; Devitt, Dale; Johnson, Brittany; Bird, Brian; Fritzinger, Eric

    2013-03-01

    The ability to evaluate accurately the response of the environment to climate change ideally involves long-term continuous in situ measurements of climate and landscape processes. This is the goal of the Nevada Climate-Ecohydrology Assessment Network (NevCAN), a novel system of permanent monitoring stations located across elevational and latitudinal gradients within the Great Basin hydrographic region (Figure 1). NevCAN was designed, first, to quantify the daily, seasonal, and interannual variability in climate that occurs from basin valleys to mountain tops of the Great Basin in the arid southwest of the United States; second, to relate the temporal patterns of ecohydrologic response to climate occurring within each of the major ecosystems that compose the Great Basin; and, last, to monitor changes in climate that modulate water availability, sequestration of carbon, and conservation of biological diversity.

  13. Enhanced Observations with Borehole Seismographic Networks. The Parkfield, California Experiment

    SciTech Connect

    McEvilly, T.V.; Karageorgi, E.; Nadeau, R.M.

    1997-01-02

    The data acquired in the Parkfield, California experiment are unique and they are producing results that force a new look at some conventional concepts and models for earthquake occurrence and fault-zone dynamics. No fault-zone drilling project can afford to neglect installation of such a network early enough in advance of the fault-zone penetration to have a well-defined picture of the seismicity details (probably at least 1000 microearthquakes--an easy 2-3 year goal for the M<0 detection of a borehole network). Analyses of nine years of Parkfield monitoring data have revealed significant and unambiguous departures from stationarity both in the seismicity characteristics and in wave propagation details within the S-wave coda for paths within the presumed M6 nucleation zone where we also have found a high Vp/Vs anomaly at depth, and where the three recent M4.7-5.0 sequences have occurred. Synchronous changes well above noise levels have also been seen among several independent parameters, including seismicity rate, average focal depth, S-wave coda velocities, characteristic sequence recurrence intervals, fault creep and water levels in monitoring wells. The significance of these findings lies in their apparent coupling and inter-relationships, from which models for fault-zone process can be fabricated and tested with time. The more general significance of the project is its production of a truly unique continuous baseline, at very high resolution, of both the microearthquake pathology and the subtle changes in wave propagation.

  14. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    NASA Technical Reports Server (NTRS)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a

  15. Mastication dyspraxia: a neurodevelopmental disorder reflecting disruption of the cerebellocerebral network involved in planned actions.

    PubMed

    Mariën, Peter; Vidts, Annelies; Van Hecke, Wim; De Surgeloose, Didier; De Belder, Frank; Parizel, Paul M; Engelborghs, Sebastiaan; De Deyn, Peter P; Verhoeven, Jo

    2013-04-01

    cerebellocerebral network is crucially important in the planning and execution of skilled actions, but also seem to show for the first time that mastication deficits may be of true apraxic origin. As a result, it is hypothesized that "mastication dyspraxia" may have to be considered as a distinct nosological entity within the group of the developmental dyspraxias following a disruption of the cerebellocerebral network involved in planned actions. PMID:23065651

  16. A possible edge effect in enhanced network. [solar K-line observations by multichannel spectrometer

    NASA Technical Reports Server (NTRS)

    Jones, H. P.; Brown, D. R.

    1977-01-01

    K-line observations of enhanced network taken with the NASA/SPO Multichannel Spectrometer on September 28, 1975, in support of OSO-8 are discussed. The data show a correlation between core brightness and asymmetry for spatial scans which cross enhanced network boundaries. The implications of this result concerning mass flow in and near supergranule boundaries are discussed.

  17. COST Action ES1401 TIDES: a European network on TIme DEpendent Seismology

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea

    2016-04-01

    Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 TIDES (TIme DEpendent Seismology; http://tides-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of TIDES is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. TIDES is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. TIDES will strengthen Europe's role in a critical field for natural hazards and natural resource management.

  18. End or Means--The "What" and "How" of Observed Intentional Actions

    ERIC Educational Resources Information Center

    Hesse, Maike D.; Sparing, Roland; Fink, Gereon R.

    2009-01-01

    Action understanding and learning are suggested to be mediated, at least in part, by the human mirror neuron system (hMNS). Static images as well as videos of actions with the outcome occluded have been shown to activate the hMNS. However, whether the hMNS preferentially responds to "end" or "means" of an action remains to be investigated. We,…

  19. Neural Correlates of Human Action Observation in Hearing and Deaf Subjects

    PubMed Central

    Corina, David; Chiu, Yi-Shiuan; Knapp, Heather; Greenwald, Ralf; Jose-Robertson, Lucia San; Braun, Allen

    2007-01-01

    Accumulating evidence has suggested the existence of a human action recognition system involving inferior frontal, parietal, and superior temporal regions that may participate in both the perception and execution of actions. However, little is known about the specificity of this system in response to different forms of human action. Here we present data from PET neuroimaging studies from passive viewing of three distinct action types, intransitive self-oriented actions (e.g., stretching, rubbing one’s eyes, etc.), transitive object-oriented actions (e.g., opening a door, lifting a cup to the lips to drink), and the abstract, symbolic actions–signs used in American Sign Language. Our results show that these different classes of human actions engage a frontal/parietal/STS human action recognition system in a highly similar fashion. However, the results indicate that this neural consistency across motion classes is true primarily for hearing subjects. Data from deaf signers shows a non-uniform response to different classes of human actions. As expected, deaf signers engaged left-hemisphere perisylvian language areas during the perception of signed language signs. Surprisingly, these subjects did not engage the expected frontal/parietal/STS circuitry during passive viewing of non-linguistic actions, but rather reliably activated middle-occipital temporal-ventral regions which are known to participate in the detection of human bodies, faces, and movements. Comparisons with data from hearing subjects establish statistically significant contributions of middle-occipital temporal-ventral during the processing of non-linguistic actions in deaf signers. These results suggest that during human motion processing, deaf individuals may engage specialized neural systems that allow for rapid, online differentiation of meaningful linguistic actions from non-linguistic human movements. PMID:17459349

  20. From Blickets to Synapses: Inferring Temporal Causal Networks by Observation

    ERIC Educational Resources Information Center

    Fernando, Chrisantha

    2013-01-01

    How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we…

  1. Preschoolers, adolescents, and adults visually anticipate an agent's efficient action; but only after having observed it frequently.

    PubMed

    Schuwerk, Tobias; Paulus, Markus

    2016-01-01

    The present study examined the contribution of efficiency reasoning and statistical learning on visual action anticipation in preschool children, adolescents, and adults. To this end, Experiment 1 assessed proactive eye movements of 5-year-old children, 15-year-old adolescents, and adults, who observed an agent stating the intent to reach a goal as quickly as possible. Subsequently the agent could four times either take a short, hence efficient, or long, hence inefficient, path to get to the goal. The results showed that in the first trial participants in none of the age groups predicted above chance level that the agent would produce the efficient action. Instead, we observed an age-dependent increase in action predictions in the subsequent repeated presentation of the same action. Experiment 2 ruled out that participants' nonconsideration of the efficient path was due to a lack of understanding of the agent's action goal. Moreover, it demonstrated that 5-year-old children do predict that the agent will act efficiently when verbally reasoning about his future action. Overall, the study supports the view that rapid learning from frequency information guides visual action anticipations. PMID:26073156

  2. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( < 3 %) of the world's land surface directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be

  3. Observations and analysis of self-similar branching topology in glacier networks

    USGS Publications Warehouse

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  4. COCONet (Continuously Operating Caribbean GPS Observational Network): Network Status and Project Highlights

    NASA Astrophysics Data System (ADS)

    Feaux, K.; Braun, J. J.; Calais, E.; Dausz, K.; Friesen, B. T.; Mattioli, G. S.; Miller, M. M.; Normandeau, J.; Seider, E.; Wang, G.

    2012-12-01

    The beauty and diversity of the Caribbean region result from geological and atmospheric processes that also pose serious threats to the large population within reach of seismic faults, hurricanes tracks, or sea-level change. The capacity to understand, prepare for, adapt to, and in some cases predict these natural hazards requires Earth observations on both large and small scales. The COCONet project was funded by the National Science Foundation (NSF) with the aim of developing a large-scale geodetic and atmospheric infrastructure in the Caribbean that will form the backbone for a broad range of geoscience and atmospheric investigations and enable research on process-oriented science questions with direct relevance to geohazards. COCONet will consist of 50 new GPS and meteorological stations throughout the Caribbean region, 15 existing stations refurbished with new receivers, antennas, and meteorological instruments, and will also incorporate data from up to 61 existing operational GPS stations. Additional funding has recently been allocated to install 2 new collocated GPS and tide gauge sites and also add GPS instruments at two existing tide gauge sites in the Caribbean region. COCONet will provide free, high-quality, low-latency, open-format data and data products for researchers, educators, students, and the private sector. Data will be used by US and international scientists to study solid earth processes such as plate kinematics and dynamics as well as plate boundary interactions and deformation, with an emphasis on the earthquake cycle. COCNet will also serve atmospheric science objectives by providing more precise estimates of tropospheric water vapor and enabling better forecast of the dynamics of airborne moisture associated with the yearly Caribbean hurricane cycle. COCONet is being installed and will be maintained by UNAVCO on behalf of the science and other user communities in the United States and abroad, thus leveraging UNAVCO's proven record of

  5. NOAA's Global Network of N2O Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Crotwell, A. M.; Crotwell, M.; Masarie, K. A.; Lang, P. M.; Dutton, G. S.; Hall, B. D.

    2014-12-01

    Nitrous oxide has surpassed CFC-12 to become the third largest contributor to radiative forcing. When climate impacts for equal emitted masses of N2O and CO2 are integrated over 100 years, N2O impacts are about 300 times greater than those of CO2. Increasing the atmospheric burden of N2O also decreases the abundance of O3 in the stratosphere. With reductions in emissions of ODSs as a result of the Montreal Protocol, N2O now has the largest ODP-weighted emissions of all gases. Given its long lifetime of about 130 years, today's emissions will impact climate and stratospheric O3 for a long time. Because emission rates are very small and spread over enormous areas, the detailed N2O budget has large uncertainties. It also means measurement requirements on precision and accuracy are stringent, especially for the background atmosphere. The Carbon Cycle Group of NOAA ESRL's Global Monitoring Division began measuring N2O in discrete air samples collected as part of its global cooperative air sampling network in 1998. Data from about 60 air sampling sites provide important constraints on the large-scale budget of N2O and provide boundary conditions for continental and regional-scale studies. This presentation will briefly describe the procedures used to ensure the data are of sufficient quality to meet scientific demands, and describe remaining limitations. Although sampling is infrequent (weekly), the data are quite useful in N2O budget studies. Examples will be given of large scale constraints on N2O's budget, including the global burden, trends in the burden, global emissions, spatial distributions, vertical gradients, and seasonal patterns.

  6. Characterization of a Densely Placed Carbon Observation Network

    NASA Astrophysics Data System (ADS)

    Oney, B. J.; Brunner, D.; Henne, S.; Leuenberger, M.; Bamberger, I.; Gruber, N.

    2014-12-01

    We present a detailed analysis of the suitability of a network with four densely placed, continuous carbon measurement sites located on the Swiss Plateau for regional-scale (~100-500 km) carbon exchange studies. Two sites are located atop mountain ridges approximately 500 m above the valley floor, one site is a small tower in flat terrain, and one site is a 212 m tall tower atop a gentle hill. The analysis concentrates on the evaluation of a regional numerical weather prediction model's ability to represent the local meteorology, and on source sensitivities (footprints) simulated with a Lagrangian particle dispersion model. Simulated and measured meteorology compares very well for the flatland sites whereas the mountaintop site comparisons illustrate discrepancies in simulated meteorological variables due to the inability of the model to resolve the complex topography. Furthermore, the meteorological comparison suggests an accurate representation of the convective boundary layer over the Swiss Plateau on average. We find large differences between the simulated footprint extents in winter and summer and between summer's nocturnal and daily footprint, illustrating the ability of simulations to represent seasonal and diurnal variability. We find that far-field influence increases with increasing measurement height as well as being dependent on local topography-induced flow patterns. This study illustrates the fruitfulness of simulated and measured meteorology comparison and detailed analysis of footprint simulations, and we argue that similar analysis is a necessary initial step for regional carbon exchange studies. The four measurement sites with the CarboCount CH project complement one another to represent typical land cover types for Switzerland and Europe, and provide information rich data sets for forthcoming regional carbon exchange studies, of which we also present first results.

  7. An integrative neural model of social perception, action observation, and theory of mind.

    PubMed

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  8. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  9. An integrative neural model of social perception, action observation, and theory of mind

    PubMed Central

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  10. Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients.

    PubMed

    Sale, Patrizio; Ceravolo, Maria Gabriella; Franceschini, Marco

    2014-01-01

    The clinical impact of action observation (AO) on upper limb functional recovery in subacute stroke patients is recent evidence. We sought to test the hypothesis that training everyday life activities through AO coupled with task execution might activate the left hemisphere different from the right one. Sixty-seven first-ever ischemic stroke subjects were randomly assigned to receive upper limb training coupled with AO tasks or standard rehabilitation. The groups were matched by age and gender, Bamford category, and interval from stroke and lesion side. Fugl-Meyer (FM) and Box and Block Test (BBT) were used to measure hand function recovery at the end (T1) and 4-5 months after the treatment (T2). At T1, FM was increased by 31% (± 26%), of maximum achievable recovery, whereas BBT was increased by 17% (± 18%); at T2, FM had reached 43% (± 45%) of maximum recovery, while BBT had reached 25% (± 22%). Combining the effects of treatment to those of lesion side revealed significantly higher gains, in both FM and BBT scores, in left hemiparetic subjects when exposed to AO as compared to standard rehabilitation alone (P < .01). The findings lead to recommend the use of AO in addition to motor training in left hemiparetic patients. PMID:24967372

  11. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions.

    PubMed

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M

    2015-01-01

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor's BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor's FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. PMID:25462196

  12. Effect of edge pruning on structural controllability and observability of complex networks

    NASA Astrophysics Data System (ADS)

    Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind

    2015-12-01

    Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks.

  13. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  14. Controllability and observability analysis for vertex domination centrality in directed networks.

    PubMed

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  15. Effect of edge pruning on structural controllability and observability of complex networks

    PubMed Central

    Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind

    2015-01-01

    Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks. PMID:26674854

  16. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. PMID:26101180

  17. Leveraging Social Networks to Detect Anomalous Insider Actions in Collaborative Environments

    PubMed Central

    Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley

    2014-01-01

    Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks. T hey are often deployed in complex dynamic systems that provide users with broad access privileges, but also leave the system vulnerable to various attacks. Techniques to detect threats originating from beyond the system are relatively mature, but methods to detect insider threats are still evolving. A promising class of insider threat detection models for CIS focus on the communities that manifest between users based on the usage of common subjects in the system. However, current methods detect only when a user’s aggregate behavior is intruding, not when specific actions have deviated from expectation. In this paper, we introduce a method called specialized network anomaly detection (SNAD) to detect such events. SNAD assembles the community of users that access a particular subject and assesses if similarities of the community with and without a certain user are sufficiently different. We present a theoretical basis and perform an extensive empirical evaluation with the access logs of two distinct environments: those of a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,388,955 revisors, 55,200 articles and 6,482,780 revisions). We compare SNAD with several competing methods and demonstrate it is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:25621314

  18. Creating Actionable Data from an Optical Depth Measurement Network using RDF

    NASA Astrophysics Data System (ADS)

    Freemantle, J. R.; O'Neill, N. T.; Lumb, L. I.; Abboud, I.; McArthur, B.

    2010-12-01

    The AEROCAN sunphotometery network has, for more than a decade, generated optical indicators of aerosol concentration and size on a regional and national scale. We believe this optical information can be rendered more “actionable” to the health care community by developing a technical and interpretative information-sharing geospatial strategy with that community. By actionable data we mean information that is presented in manner that can be understood and then used in the decision making process. The decision may be that of a technical professional, a policy maker or a machine. The information leading up to a decision may come from many sources; this means it is particularly important that data are well defined across knowledge fields, in our case atmospheric science and respiratory health science. As part of the AEROCAN operational quality assurance (QA) methodology we have written automatic procedures to make some of the AEROCAN data more accessible or “actionable”. Tim Berners-Lee has advocated making datasets, “Linked Data”, available on the web with a proper structural description (metadata). We have been using RDF (Resource Description Framework) to enhance the utility of our sunphotometer data; the resulting self-describing representation is structured so that it is machine readable. This allows semantically based queries (e.g., via SPARQL) on our dataset that in the past were only viewable as passive Web tables of data.

  19. Arctic Observing Network (AON): Enhancing Observing, Data Archiving and Data Discovery Capabilities as Arctic Environmental System Change Continues

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.

    2008-12-01

    The National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration, under the auspices of the U.S. Inter-Agency Arctic Research Policy Committee, are leading the development of the Arctic Observing Network (AON) as part of the implementation of the Study of Environmental Arctic Change (SEARCH) and as a legacy of International Polar Year (IPY). As the Observing Change component of SEARCH, AON complements the Understanding Change and Responding to Change components. AON addresses the need to enhance observing capabilities in a data-sparse region where environmental system changes are among the most rapid on Earth. AON data will contribute to research into understanding the causes and consequences of Arctic environmental system change and its global connections, and to improving predictive skill. AON is also a contribution to the development of a multi-nation, pan-Arctic observing network that is being discussed at the IPY 'Sustaining Arctic Observing Networks' (SAON) workshops. Enhancing Arctic observing capabilities faces many challenges, including coordination and integration of disparate observing elements and data systems that operate according to diverse policies and practices. There is wide agreement that data systems that provide archiving and discovery services are essential and integral to AON. In recognition of this, NSF is supporting the development of CADIS (Cooperative Arctic Data and Information Service) as an AON portal for data discovery, a repository for data storage, and a platform for data analysis. NSF is also supporting ELOKA (Exchange for Local Observations and Knowledge in the Arctic), a pilot project for a data management and networking service for community- based observing that keeps control of data in the hands of data providers while still allowing for broad searches and sharing of information. CADIS and ELOKA represent the application of cyberinfrastructure to meet AON data system needs that might also

  20. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  1. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  2. Networking Sensor Observations, Forecast Models & Data Analysis Tools

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Roberts, G.; Sullivan, D.; Dibner, P. C.; Husar, R. B.

    2009-12-01

    This presentation explores the interaction between sensor webs and forecast models and data analysis processes within service oriented architectures (SOA). Earth observation data from surface monitors and satellite sensors and output from earth science models are increasingly available through open interfaces that adhere to web standards, such as the OGC Web Coverage Service (WCS), OGC Sensor Observation Service (SOS), OGC Web Processing Service (WPS), SOAP-Web Services Description Language (WSDL), or RESTful web services. We examine the implementation of these standards from the perspective of forecast models and analysis tools. Interoperable interfaces for model inputs, outputs, and settings are defined with the purpose of connecting them with data access services in service oriented frameworks. We review current best practices in modular modeling, such as OpenMI and ESMF/Mapl, and examine the applicability of those practices to service oriented sensor webs. In particular, we apply sensor-model-analysis interfaces within the context of wildfire smoke analysis and forecasting scenario used in the recent GEOSS Architecture Implementation Pilot. Fire locations derived from satellites and surface observations and reconciled through a US Forest Service SOAP web service are used to initialize a CALPUFF smoke forecast model. The results of the smoke forecast model are served through an OGC WCS interface that is accessed from an analysis tool that extract areas of high particulate matter concentrations and a data comparison tool that compares the forecasted smoke with Unattended Aerial System (UAS) collected imagery and satellite-derived aerosol indices. An OGC WPS that calculates population statistics based on polygon areas is used with the extract area of high particulate matter to derive information on the population expected to be impacted by smoke from the wildfires. We described the process for enabling the fire location, smoke forecast, smoke observation, and

  3. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  4. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  5. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions

    PubMed Central

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M.

    2016-01-01

    Seeing others performing an action induces the observers’ motor cortex to “resonate” with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor’s BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor’s FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. PMID:25462196

  6. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    NASA Technical Reports Server (NTRS)

    Rahmani, Amirreza; Mesbahi, Mehran; Fathpour, Nanaz; Hadaegh, Fred Y.

    2008-01-01

    In this work, we develop an approach to formation estimation by explicitly characterizing formation's system-theoretic attributes in terms of the underlying inter-spacecraft information-exchange network. In particular, we approach the formation observer/estimator design by relaxing the accessibility to the global state information by a centralized observer/estimator- and in turn- providing an analysis and synthesis framework for formation observers/estimators that rely on local measurements. The noveltyof our approach hinges upon the explicit examination of the underlying distributed spacecraft network in the realm of guidance, navigation, and control algorithmic analysis and design. The overarching goal of our general research program, some of whose results are reported in this paper, is the development of distributed spacecraft estimation algorithms that are scalable, modular, and robust to variations inthe topology and link characteristics of the formation information exchange network. In this work, we consider the observability of a spacecraft formation from a single observation node and utilize the agreement protocol as a mechanism for observing formation states from local measurements. Specifically, we show how the symmetry structure of the network, characterized in terms of its automorphism group, directly relates to the observability of the corresponding multi-agent system The ramification of this notion of observability over networks is then explored in the context of distributed formation estimation.

  7. Observation and Modelling of Micropore Formation in Active Network Regions

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Löfdahl, M. G.; Bercik, D. J.

    2002-06-01

    We present phase-diversity corrected G-band 4305 Å and 4364 Å continuum image time series showing the formation of a micropore in a small active region near disk center. The data were acquired at the Swedish Vacuum Solar Telescope on La Palma in June of 1997 and post-processed using the Phase Diverse Speckle (PDS) algorithm to produce diffraction limited images throughout the majority of both time series. The micropore dataset comprises a 29x29 Mm field of view and spans 5.1 hours with a 38 second cadence. The micropore forms in a strong sink area that can be seen to ``collect" many G-band bright points over the first 2 hours of the observation. During this time there is an occasional darkening at the sink point that may be the first unstable phase of the micropore formation. Once a stable dark pore forms in the flowfield, it grows to a maximum diameter of 1.2 Mm in approximately 1.9 hours. The pore persists for another 35 minutes before apparently being broken up by the intergranular flowfield. The total ``lifetime" of the stable pore phase is 2.5 hours. A separate nearby micropore of 1.5 Mm maximum diameter exists for the entire 5.2 hour data span. We show G-band and continuum movies of the micropore formation, correlation tracking flowfield analyses, G-band bright point tracking results, and area versus time plots for the micropore formation lifetime. The observational data are compared with fully compressible 3D MHD numerical simulations which show the development of a similar micropore structure within the computational domain. This research was supported by NASA SR&T grant NASW-98008, The Royal Swedish Academy of Sciences, NSF and NASA funding at Michigan State University, and Lockheed Martin IRAD funding.

  8. fMRI Adaptation between Action Observation and Action Execution Reveals Cortical Areas with Mirror Neuron Properties in Human BA 44/45

    PubMed Central

    de la Rosa, Stephan; Schillinger, Frieder L.; Bülthoff, Heinrich H.; Schultz, Johannes; Uludag, Kamil

    2016-01-01

    Mirror neurons (MNs) are considered to be the supporting neural mechanism for action understanding. MNs have been identified in monkey’s area F5. The identification of MNs in the human homolog of monkeys’ area F5 Broadmann Area 44/45 (BA 44/45) has been proven methodologically difficult. Cross-modal functional MRI (fMRI) adaptation studies supporting the existence of MNs restricted their analysis to a priori candidate regions, whereas studies that failed to find evidence used non-object-directed (NDA) actions. We tackled these limitations by using object-directed actions (ODAs) differing only in terms of their object directedness in combination with a cross-modal adaptation paradigm and a whole-brain analysis. Additionally, we tested voxels’ blood oxygenation level-dependent (BOLD) response patterns for several properties previously reported as typical MN response properties. Our results revealed 52 voxels in left inferior frontal gyrus (IFG; particularly BA 44/45), which respond to both motor and visual stimulation and exhibit cross-modal adaptation between the execution and observation of the same action. These results demonstrate that part of human IFG, specifically BA 44/45, has BOLD response characteristics very similar to monkey’s area F5. PMID:26973496

  9. Consensus tracking of linear multi-agent systems under networked observability conditions

    NASA Astrophysics Data System (ADS)

    Diao, Miao; Duan, Zhisheng; Wen, Guanghui

    2014-08-01

    This paper addresses the consensus tracking problem for both continuous- and discrete-time linear multi-agent systems with a dynamic leader under networked observability conditions. Among followers, the communication topology is assumed to be undirected and connected. Two networked observability conditions are introduced and discussed. The first one extends the traditional detectability condition for a single system, while the second one is a full rank condition, which is stronger than the first one. In the continuous-time case, two distributed observer-based protocols are designed under corresponding networked observability conditions, respectively. Specifically, the second protocol is an adaptive one, which has a better robustness performance than the first one. In the discrete-time case, a distributed observer-based protocol is presented under the full rank networked observability condition. It is found that under the networked observability conditions, consensus tracking can still be achieved even if there exists no follower being able to track the leader independently. Based on algebraic graph theory and Lyapunov stability theory, some sufficient conditions are derived for reaching consensus tracking. Finally, simulation examples are presented to verify the effectiveness of theoretical results.

  10. Search for periodicity in the observational data by means of artificial neuron networks

    NASA Astrophysics Data System (ADS)

    Baluev, R.

    2012-05-01

    The possibility of application of artificial neural networks is considered for two classical model problems of observational data reduction: (i) the identification of periodic oscillations in noisy time series and (ii) assessment of the frequency of this oscillation (on the existing time series). On the inputs of the neural networks the values of the time series are given, and on the output, respectively, we have either an indicatior of the presence of signal (from 0 to 1), or the assessment of its frequency. It is shown that the theoretical limit, which a neural network can achieve in the training to solve such problems, corresponds to the Bayesian theory of estimation and testing of statistical hypotheses. Training of the neural network was carried out with a help of means of open-source package FANN. The best results were achieved using the algorithm Cascade2, which allows finding the optimal number of network neurons (not just the weight of the connection between them). In comparison with traditional methods based on the periodogram, which require long calculations, the trained neural network works almost instantly. Thus, artificial neural networks are very promising for the processing of large data sets. However, the threshold of signal detection so far failed to bring to Bayesian theoretical limit. In addition, it is not yet possible to train the neural network to analyze time-series with arbitrarily-uneven distribution of observations. This indicates on a need for further investigations to improve the efficiency of the method.

  11. Modeling of Visuospatial Perspectives Processing and Modulation of the Fronto-Parietal Network Activity during Action Imitation

    PubMed Central

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    It has been suggested that the human mirror neuron system (MNS) plays a critical role in action observation and imitation. However, the transformation of perspective between the observed (allocentric) and the imitated (egocentric) actions has received little attention. We expand a previously proposed biologically plausible MNS model by incorporating general spatial transformation capabilities that are assumed to be encoded by the intraparietal sulcus (IPS) and the superior parietal lobule (SPL) as well as investigating their interactions with the inferior frontal gyrus and the inferior parietal lobule. The results reveal that the IPS/SPL could process the frame of reference and the viewpoint transformations, and provide invariant visual representations for the temporo-parieto-frontal circuit. This allows the imitator to imitate the action performed by a demonstrator under various perspectives while replicating results from the literatures. Our results confirm and extend the importance of perspective transformation processing during action observation and imitation. PMID:23366445

  12. A distributed network critical for selecting among tool-directed actions.

    PubMed

    Watson, Christine E; Buxbaum, Laurel J

    2015-04-01

    Tools pose a challenge to the need to select actions appropriate for task goals and environmental constraints. For many tools (e.g., calculator), actions for "using" and "grasping-to-move" conflict with each other and may compete during selection. To date, little is known about the mechanisms that enable selection between possible tool actions or their neural substrates. The study of patients with chronic left hemisphere stroke, many of whom are deficient in tool-use action (apraxic), provides an opportunity to elucidate these issues. Here, 31 such patients pantomimed or recognized tool use actions for "conflict" and "non-conflict" tools. Voxel-based lesion-symptom mapping (VLSM), lesion subtraction, and tractographic overlap analyses were used to determine brain regions necessary for selecting among tool-directed actions. Lesions to posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) tended to impair production of use actions similarly for both conflict and non-conflict tools. By contrast, lesions to the supramarginal gyrus (SMG), inferior frontal gyrus (IFG)/anterior insula, and superior longitudinal fasciculus (SLF) specifically impaired production of use actions for conflict tools. Patients' errors on conflict tools suggested inappropriate selection of grasping actions and difficulty selecting single actions. Use/grasp conflict had no effect on action recognition. We suggest that the SMG/SLF/IFG pathway implements biased competition between possible tool actions, while aIPS and pMTG compute the structure-based and skilled use actions, respectively, that constitute input to this competitive process. This is the first study to demonstrate a reliable link between a characteristic of single tools (i.e., their association with different use and grasp actions) and action selection difficulties. Additionally, the data allow us to posit an SMG-involved subtype of apraxia characterized by an inability to resolve action competition. PMID

  13. A Distributed Network Critical for Selecting Among Tool-Directed Actions

    PubMed Central

    Watson, Christine E.; Buxbaum, Laurel J.

    2015-01-01

    Tools pose a challenge to the need to select actions appropriate for task goals and environmental constraints. For many tools (e.g., calculator), actions for “using” and “grasping-to-move” conflict with each other and may compete during selection. To date, little is known about the mechanisms that enable selection between possible tool actions or their neural substrates. The study of patients with chronic left hemisphere stroke, many of whom are deficient in tool-use action (apraxic), provides an opportunity to elucidate these issues. Here, 31 such patients pantomimed or recognized tool use actions for “conflict” and “non-conflict” tools. Voxel-based lesion-symptom mapping, lesion subtraction, and tractographic overlap analyses were used to determine brain regions necessary for selecting among tool-directed actions. Lesions to posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) tended to impair production of use actions similarly for both conflict and non-conflict tools. By contrast, lesions to the supramarginal gyrus (SMG), inferior frontal gyrus (IFG)/anterior insula, and superior longitudinal fasciculus (SLF) specifically impaired production of use actions for conflict tools. Patients' errors on conflict tools suggested inappropriate selection of grasping actions and difficulty selecting single actions. Use/grasp conflict had no effect on action recognition. We suggest that the SMG/SLF/IFG pathway implements biased competition between possible tool actions, while aIPS and pMTG compute the structure-based and skilled use actions, respectively, that constitute input to this competitive process. This is the first study to demonstrate a reliable link between a characteristic of single tools (i.e., their association with different use and grasp actions) and action selection difficulties. Additionally, the data allow us to posit a SMG-involved subtype of apraxia characterized by an inability to resolve action competition

  14. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation.

    PubMed

    Thioux, Marc; Keysers, Christian

    2015-01-15

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modeling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject's capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others' actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy. PMID:25462688

  15. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation

    PubMed Central

    Thioux, Marc; Keysers, Christian

    2016-01-01

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modelling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject’s capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others’ actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy. PMID:25462688

  16. 2010 Strainmeter Network Observations Along the Western Coast of North America

    NASA Astrophysics Data System (ADS)

    van Boskirk, E.; Gottlieb, M. H.; Johnson, W.; Mencin, D.; Hodgkinson, K. M.; Henderson, B.; Gallaher, W.; Fox, O.; Jackson, M. E.

    2010-12-01

    The PBO borehole strainmeter (BSM) network contains 75 sites along the Western Coast of the United States of America and Southern Canada. Each site contains a Gladwin tensor strainmeter, Malin borehole geophone, and in some cases GPS, pore pressure and/or tilt meter. The strainmeters and geophones are at depths between 400 to 800 feet, which is free of most surface noise. There are four additional geophone only sites in Humboldt County, California at depths of 400 feet. All sites in Anza, California also have borehole accelerometers. Over the course of 2010 the PBO BSM network has observed several tectonic events throughout the network. Along the Juan de Fuca plate episodic tremor and slip (ETS) events have been observed in late March and late August. The January 9, 2010 magnitude 6.5 and the February 4, 2010 magnitude 5.9 earthquakes offshore on the Gorda plate, near the Mendocino Triple Junction, are clearly recorded by the Humboldt CA array. In Parkfield, California, along the San Andreas fault creep events are observed in the southern portion of the BSM network on August 20, 2010. On July 9, 2010 there was a magnitude 5.4 very near the Anza regional network, near the Coyote Creek segment of the San Jacinto fault. These regional strainmeter observations will be presented as well as the ongoing research highlights produced from these instruments. Large magnitude events, such as the February 27, 2010 Chile magnitude 8.8 earthquake, are observed across the entire BSM network. Smaller events, including the slow slip motions of ETS in the Northwest and creep events in Parkfield, are captured by focused regional arrays in these locations. Geophysical monitoring at depth over a large network of strainmeters provides a window to observe the variety of tectonic observations that accommodate plate boundary deformation.

  17. Proposed observation-well network and ground-water level program for North Carolina

    USGS Publications Warehouse

    Winner, M.D.

    1981-01-01

    An initial system of 223 observation wells is proposed for monitoring ground-water levels in North Carolina. These wells are suggested to replace and upgrade nearly 650 observation wells currently measured in separate State and Federal programs, and are arranged in four groups or networks each having specific objectives. These groups are (1) a climatic-effects network, (2) a terrane-effects network, (3) a local-effects network, and (4) an areal-effects network. Recommendations are also made regarding additional observation-well coverage in some areas of the State. Records-review and network-review procedures constituted the largest amount of effort in this study and required a considerable amount of organization to keep track of well records and water-level data. These procedures are outlined in this report as a guide for those who are contemplating an observation-well program review. The report also contains suggested organizational contents of a data file, including procedures for records processing, and various forms used to document the review and data-collection efforts.

  18. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  19. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  20. Influence of Perspective of Action Observation Training on Residual Limb Control in Naïve Prosthesis Usage.

    PubMed

    Lawson, Delisa T; Cusack, William F; Lawson, Regan; Hardy, Ashley; Kistenberg, Robert; Wheaton, Lewis A

    2016-01-01

    Prior work in amputees and partial limb immobilization have shown improved neural and behavioral outcomes in using their residual limb with prosthesis when undergoing observation-based training with a prosthesis-using actor compared to an intact limb. It was posited that these improvements are due to an alignment of user with the actor. It may be affected by visual angles that allow emphasis of critical joint actions which may promote behavioral changes. The purpose of this study was to examine how viewing perspective of observation-based training effects prosthesis adaptation in naïve device users. Twenty nonamputated prosthesis users learned how to use an upper extremity prosthetic device while viewing a training video from either a sagittal or coronal perspective. These views were chosen as they place visual emphasis on different aspects of task performance to the device. The authors found that perspective of actions has a significant role in adaptation of the residual limb while using upper limb prostheses. Perspectives that demonstrate elbow adaptations to prosthesis usage may enhance the functional motor outcomes of action observation therapy. This work has potential implications on how prosthetic device operation is conveyed to persons adapting to prostheses through action observation based therapy. PMID:27253208

  1. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus is a major human pathogen and strains resistant to existing treatments continue to emerge. Development of novel treatments is therefore important. Antimicrobial peptides represent a source of potential novel antibiotics to combat resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA). A promising antimicrobial peptide is ranalexin, which has potent activity against Gram-positive bacteria, and particularly S. aureus. Understanding mode of action is a key component of drug discovery and network biology approaches enable a global, integrated view of microbial physiology, including mechanisms of antibiotic killing. We developed a systems-wide functional association network approach to integrate proteome and transcriptome profiles, enabling study of drug resistance and mode of action. Results The functional association network was constructed by Bayesian logistic regression, providing a framework for identification of antimicrobial peptide (ranalexin) response modules from S. aureus MRSA-252 transcriptome and proteome profiling. These signatures of ranalexin treatment revealed multiple killing mechanisms, including cell wall activity. Cell wall effects were supported by gene disruption and osmotic fragility experiments. Furthermore, twenty-two novel virulence factors were inferred, while the VraRS two-component system and PhoU-mediated persister formation were implicated in MRSA tolerance to cationic antimicrobial peptides. Conclusions This work demonstrates a powerful integrative approach to study drug resistance and mode of action. Our findings are informative to the development of novel therapeutic strategies against Staphylococcus aureus and particularly MRSA. PMID:21569391

  2. Combined flatland ST radar and digital-barometer network observations of mesoscale processes

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.

    1991-01-01

    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  3. An Efficient Optical Observation Ground Network is the Fundamental basis for any Space Based Debris Observation Segment

    NASA Astrophysics Data System (ADS)

    Cibin, L.; Chiarini, M.; Annoni, G.; Milani, A.; Bernardi, F.; Dimare, L.; Valsecchi, G.; Rossi, A.; Ragazzoni, R.; Salinari, P.

    2013-08-01

    A matter which is strongly debated in the SSA Community, concerns the observation of Space Debris from Space [1]. This topic has been preliminary studied by our Team for LEO, MEO and GEO orbital belts, allowing to remark a fundamental concept, residing in the fact that to be suitable to provide a functionality unavailable from ground in a cost to performance perspective, any Space Based System must operate in tight collaboration with an efficient Optical Ground Observation Network. In this work an analysis of the different functionalities which can be implemented with this approach for every orbital belt is illustrated, remarking the different achievable targets in terms of population size as a function of the observed orbits. Further, a preliminary definition of the most interesting missions scenarios, together with considerations and assessments on the observation strategy and P/L characteristics are presented.

  4. The European Marine Observing Network and the development of an Integrated European Ocean Observing System. An EuroGOOS perspective

    NASA Astrophysics Data System (ADS)

    Fernandez, Vicente; Gorringe, Patrick; Nolan, Glenn

    2016-04-01

    The ocean benefits many sectors of society, being the biggest reservoir of heat, water, carbon and oxygen and playing a fundamental role regulating the earth's climate. We rely on the oceans for food, transport, energy and recreation. Therefore, a sustained marine observation network is crucial to further our understanding of the oceanic environment and to supply scientific data to meet society's need. Marine data and observations in Europe, collected primarily by state governmental agencies, is offered via five Regional Operational Oceanographic Systems (ROOS) within the context of EuroGOOS (http://www.eurogos.eu), an International Non-Profit Association of national governmental agencies and research organizations (40 members from 19 member states) committed to European-scale operational oceanography within the context of the Intergovernmental Global Ocean Observing System (GOOS). Strong cooperation within these regions, enabling the involvement of additional partners and countries, forms the basis of EuroGOOS work. Ocean data collected from different type of sensors (e.g. moored buoys, tide gauges, Ferrybox systems, High Frequency radars, gliders and profiling floats) is accessible to scientist and other end users through data portals and initiatives such as the European Marine Observations and Data Network (EMODnet) (www.emodnet.eu) and the Copernicus Marine Service Copernicus (www.copernicus.eu). Although a relatively mature European ocean observing capability already exists and its well-coordinated at European level, some gaps have been identified, for example the demand for ecosystem products and services, or the case that biogeochemical observations are still relatively sparse particularly in coastal and shelf seas. Assessing gaps based on the capacity of the observing system to answer key societal challenges e.g. site suitability for aquaculture and ocean energy, oil spill response and contextual oceanographic products for fisheries and ecosystems is still

  5. The effect of the action observation physical training on the upper extremity function in children with cerebral palsy.

    PubMed

    Kim, Jin-Young; Kim, Jong-Man; Ko, Eun-Young

    2014-06-01

    The purpose this study was to investigate the effect of action observation physical training (AOPT) on the functioning of the upper extremities in children with cerebral palsy (CP), using an evaluation framework based on that of the International Classification of Functioning, Disability and Health (ICF). The subjects were divided into an AOPT group and a physical training (PT) group. AOPT group practiced repeatedly the actions they observed on video clips, in which normal child performed an action with their upper extremities. PT group performed the same actions as the AOPT group did after observing landscape photographs. The subjects participated in twelve 30-min sessions, 3 days a week, for 4 weeks. Evaluation of upper extremity function using the following: the power of grasp and Modified Ashworth Scale for body functions and structures, a Box and Block test, an ABILHAND-Kids questionnaire, and the WeeFIM scale for activity and participation. Measurements were performed before and after the training, and 2 weeks after the end of training. The results of this study showed that, in comparison with the PT group, the functioning of the upper extremities in the AOPT group was significantly improved in body functions and activity and participation according to the ICF framework. This study demonstrates that AOPT has a positive influence on the functioning of the upper extremities in children with CP. It is suggested that this alternative approach for functioning of the upper extremities could be an effective method for rehabilitation in children with CP. PMID:25061598

  6. The effect of action observation training on knee joint function and gait ability in total knee replacement patients

    PubMed Central

    Park, Seong Doo; Song, Hyun Seung; Kim, Jin Young

    2014-01-01

    The purpose of this study is to investigate that effect of action observation training (AOT) on knee joint function and balance in total knee replacement (TKR) patients. The subjects consisted of eighteen post-TKR patients. All participants underwent conventional physical therapy. In addition, patients in the AOT group (n= 9) were asked to observe video clips showing daily actions and to imitate them afterward. Patients in the control group (n= 9) were asked to execute the same actions as patients in the AOT group. Outcome measures Western Ontario and Mc-Master Universities Osteoarthritis Index (WOMAC) included pain, stiffness, function and Timed Up and Go (TUG) test. After intervention, patients in the AOT group score better than patients in the control group. After TUG test, patients in the AOT group and control group were no significant difference between two groups. In addition to conventional physical therapy, AOT is effective in the rehabilitation of post-TKR patients. Action observation training is considered conducive to improving knee functions and ameliorating pain and stiffness, of patients who underwent TKR. PMID:25061596

  7. Upper limb children action-observation training (UP-CAT): a randomised controlled trial in Hemiplegic Cerebral Palsy

    PubMed Central

    2011-01-01

    Background Rehabilitation for children with hemiplegic cerebral palsy (HCP) aimed to improve function of the impaired upper limb (UL) uses a wide range of intervention programs. A new rehabilitative approach, called Action-Observation Therapy, based on the recent discovery of mirror neurons, has been used in adult stroke but not in children. The purpose of the present study is to design a randomised controlled trial (RCT) for evaluating the efficacy of Action-Observation Therapy in improving UL activity in children with HCP. Methods/Design The trial is designed according to CONSORT Statement. It is a randomised, evaluator-blinded, match-pair group trial. Children with HCP will be randomised within pairs to either experimental or control group. The experimental group will perform an Action-Observation Therapy, called UP-CAT (Upper Limb-Children Action-Observation Training) in which they will watch video sequences showing goal-directed actions, chosen according to children UL functional level, combined with motor training with their hemiplegic UL. The control group will perform the same tailored actions after watching computer games. A careful revision of psychometric properties of UL outcome measures for children with hemiplegia was performed. Assisting Hand Assessment was chosen as primary measure and, based on its calculation power, a sample size of 12 matched pairs was established. Moreover, Melbourne and ABILHAND-Kids were included as secondary measures. The time line of assessments will be T0 (in the week preceding the onset of the treatment), T1 and T2 (in the week after the end of the treatment and 8 weeks later, respectively). A further assessment will be performed at T3 (24 weeks after T1), to evaluate the retention of effects. In a subgroup of children enrolled in both groups functional Magnetic Resonance Imaging, exploring the mirror system and sensory-motor function, will be performed at T0, T1 and T2. Discussion The paper aims to describe the

  8. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  9. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGESBeta

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  10. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGESBeta

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  11. Real-Time Observations of Several Powerful Tornadoes by the USArray Transportable Array Network

    NASA Astrophysics Data System (ADS)

    Vernon, F. L.; Tytell, J. E.; Busby, R. W.; Eakins, J. A.; Hedlin, M. A.; Muschinski, A.; Walker, K. T.; Woodward, R.

    2011-12-01

    During April and May of 2011, the United States experienced substantial outbreaks of tornadoes that included 16 confirmed at enhanced Fujita (EF) strength EF4 and 6 confirmed at EF5. Several of these powerful tornadoes passed as close as 4 km from stations within Earthscope's USArray Transportable Array (TA) network. Real-time observations of the seismic, surface pressure, and infrasound channels provided a unique method for monitoring the tornadoes in real-time with data sampling of 40 samples per second. Data will be presented from TA stations throughout the network in order to compare observations between 4 and 100 km from the tornado source tracks.

  12. Update on the activities of the GGOS Bureau of Networks and Observations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo; Bergstrand, Sten; Saunier, Jerome; Tamisiea, Mark

    2016-01-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  13. Illinois ground-water observation network; a preliminary planning document for network design

    USGS Publications Warehouse

    Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.

    1984-01-01

    Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)

  14. Lognormal kriging for the assessment of reliability in groundwater quality control observation networks

    USGS Publications Warehouse

    Candela, L.; Olea, R.A.; Custodio, E.

    1988-01-01

    Groundwater quality observation networks are examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, lognormal kriging provides estimates of the variable being sampled and a standard error of the estimate. The average and the maximum standard error within the network can be used to dynamically improve the network sampling efficiency or find a design able to assure a given reliability level. The approach does not require the formulation of any physical model for the aquifer or any actual sampling of hypothetical configurations. A case study is presented using the network monitoring salty water intrusion into the Llobregat delta confined aquifer, Barcelona, Spain. The variable chloride concentration used to trace the intrusion exhibits sudden changes within short distances which make the standard error fairly invariable to changes in sampling pattern and to substantial fluctuations in the number of wells. ?? 1988.

  15. Extracting deep information from limited observations on an evolved social network

    NASA Astrophysics Data System (ADS)

    Ormerod, Paul

    2007-05-01

    We provide empirical evidence that in a social network which evolves over time, it is possible to extract deep information about the system from limited observations. In this paper, we consider a simple piece of readily available evidence on access to financial services by individuals in the UK. Detailed statistical analysis has shown that the decisions of agents on whether or not to have a basic financial account such as a bank account is heavily influenced by other individuals on their social network. We consider a small amount of straightforward and readily accessible information. We deduce from this, using an agent-based model, the type of social network across which information and influence on behaviour flows between agents in this context. Specifically, we show that information appears to flow across a small world network.

  16. The Sodankylä in-situ soil moisture observation network: an example application to Earth Observation data product evaluation

    NASA Astrophysics Data System (ADS)

    Ikonen, J.; Vehviläinen, J.; Rautiainen, K.; Smolander, T.; Lemmetyinen, J.; Bircher, S.; Pulliainen, J.

    2015-12-01

    Soil moisture is one of the main drivers in water, energy, and carbon cycles. Both latent and sensible heat fluxes, governing the air temperature and humidity boundary layer over land, are affected by variations in soil moisture. During the last decade there has been considerable development in remote sensing techniques relating to soil moisture retrievals over large areas. Within the framework of the European Space Agency's (ESA) Climate Change Initiative (CCI) a new soil moisture product has been generated, merging different satellite-based surface soil moisture based products. Such remotely sensed data needs to be validated by means of in-situ observations in different climatic regions. In that context, a comprehensive, distributed network of in-situ measurement stations gathering information on soil moisture, as well as soil temperature, has been set up in recent years at the Finnish Meteorological Institute's (FMI) Sodankylä Arctic research station. The network forms a (CAL-VAL) reference site and is used as a tool to evaluate the validity of satellite retrievals of soil properties. In this paper we present the Sodankylä CAL-VAL reference site soil moisture observation network. The procedures for choosing the representative sites for individual soil moisture network stations are discussed, as well as the development of a weighted average of top layer (5-10 cm) soil moisture over the study area. Comparisons of top layer soil moisture around the Sodankylä CAL-VAL site between the years 2012 and 2014 using ESA CCI soil moisture data against in-situ network observations were conducted. The comparisons were made against a single CCI data product pixel encapsulating the Sodankylä observation sites. Comparisons have been made against both daily CCI soil moisture estimates and against weekly running average values. Soil moisture comparisons are only conducted during snow free and thawed periods, as the presence of snow and soil frost interfere with Earth

  17. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  18. Sensor Web Standards for Interoperability between in-situ Earth Observation Networks

    NASA Astrophysics Data System (ADS)

    Rieke, Matthes; Casas, Raquel; Garcia, Oscar; Jirka, Simon; Menard, Lionel; Ranchin, Thierry; Stasch, Christoph; Wald, Lucien

    2016-04-01

    Existing earth observation networks deliver a multitude of in-situ data capturing the state of the earth. The data sets delivered by these networks are of high value for scientists and other stakeholders from different domains and backgrounds. However, the access and integration of the data sets made available by these earth observation networks are often complex as different data delivery methods and formats are used. To strengthen and broaden the use of the available data sets, it is important to offer efficient methods for accessing the data from different types of applications (e.g. for data analysis or data visualisation). The Sensor Web Enablement (SWE) standards of the Open Geospatial Consortium (OGC) are adopted by more and more stakeholders and may serve as a good baseline for increasing the interoperability of data flows. This harmonisation of standards is also one of the core objectives of the ENEON (European Network of Earth Observation Networks) initiative promoted by the European Horizon 2020 project ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations). In this contribution, we illustrate how domain-specific profiles of the OGC SWE standards may help to increase interoperability within specific domains. This includes for example the specification of SWE profiles for hydrology (e.g. resulting from the European GEOWOW project) or the e-Reporting SWE profiles for ambient air quality in Europe. Another example are SWE profiles for oceanology which are currently developed by several projects such as BRIDGES, Eurofleets 2, FixO3, IOOS, Jerico-Next, NeXOS, ODIP II, and SeaDataNet (e.g. using RelaxNG and Schematron for defining a structure of SWE encoded messages to be applied in tools, vessels and fixed stations). Finally, a Sensor Web-based scenario from the ConnectinGEO project covering energy and solar radiation will be introduced that connects data providers and users

  19. Co-design of H∞ jump observers for event-based measurements over networks

    NASA Astrophysics Data System (ADS)

    Peñarrocha, Ignacio; Dolz, Daniel; Romero, Julio Ariel; Sanchis, Roberto

    2016-01-01

    This work presents a strategy to minimise the network usage and the energy consumption of wireless battery-powered sensors in the observer problem over networks. The sensor nodes implement a periodic send-on-delta approach, sending new measurements when a measure deviates considerably from the previous sent one. The estimator node implements a jump observer whose gains are computed offline and depend on the combination of available new measurements. We bound the estimator performance as a function of the sending policies and then state the design procedure of the observer under fixed sending thresholds as a semidefinite programming problem. We address this problem first in a deterministic way and, to reduce conservativeness, in a stochastic one after obtaining bounds on the probabilities of having new measurements and applying robust optimisation problem over the possible probabilities using sum of squares decomposition. We relate the network usage with the sending thresholds and propose an iterative procedure for the design of those thresholds, minimising the network usage while guaranteeing a prescribed estimation performance. Simulation results and experimental analysis show the validity of the proposal and the reduction of network resources that can be achieved with the stochastic approach.

  20. The Role of Action Research in the Development of Learning Networks for Entrepreneurs

    ERIC Educational Resources Information Center

    Brett, Valerie; Mullally, Martina; O'Gorman, Bill; Fuller-Love, Nerys

    2012-01-01

    Developing sustainable learning networks for entrepreneurs is the core objective of the Sustainable Learning Networks in Ireland and Wales (SLNIW) project. One research team drawn from the Centre for Enterprise Development and Regional Economy at Waterford Institute of Technology and the School of Management and Business from Aberystwyth…

  1. Networks in Action: New Actors and Practices in Education Policy in Brazil

    ERIC Educational Resources Information Center

    Shiroma, Eneida Oto

    2014-01-01

    This paper focuses on the role of networks in the policy-making process in education and discusses the potential of network analysis as an analytical tool for education policy research. Drawing on publically available data from personal or institutional websites, this paper reports the findings from research carried out between 2005 and 2011.…

  2. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  3. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  4. Observer-based controller design for networked control systems with sensor quantisation and random communication delay

    NASA Astrophysics Data System (ADS)

    Liu, Ming; You, Jia

    2012-10-01

    This article addresses the study of observer-based controller design for network-based control systems in the presence of output quantisation and random communication delay simultaneously. In the communication channel, the output measurement are quantised before transmission, and two kinds of network-induced delays are taken into account simultaneously: (i) random delay from sensor to controller and (ii) random delay from controller to actuator. These two types of random delays are modelled as two independent Bernoulli distributed white sequences. The observer-based controller is synthesised to stabilise the networked closed-loop system in the sense of stochastic stability. Sufficient conditions for the existence of the controller are provided by stochastic Lyapunov method. An illustrative numerical example is employed to demonstrate the applicability and flexibility of the proposed design strategy.

  5. [Sylvian stenosis with networks of the Moya-Moya type. Anatomo-clinical observation].

    PubMed

    Perret, J; Crouzet, G; Pellat, J; Pasquier, B; Larribau, E; Chirossel, J P

    1975-04-01

    The authors report an angiographic observation, where a stenosis of the left middle cerebral artery, with Moya-Moya networks, is described. The anatomical study has shown an atresy of the middle cerebral artery, and has confirmed the hypothesis of a supplying role played by the Moya networks. Most of their anatomical findings are in agreement with a malformative aspect, which is speculated by the authors to be related to the failure, at the embryon level, of a good development of the middle cerebral artery; in this way, Moya might represent the remaining features of primitive plexiform networks. From this particular anatomical observation, the authors discuss some nosological problems and propose the hypothesis of several groups, which may be related to the moment when the stenosis is suspected to occur. PMID:1224110

  6. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  7. Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data

    PubMed Central

    Emmert-Streib, Frank; Glazko, Galina V.; Altay, Gökmen; de Matos Simoes, Ricardo

    2012-01-01

    In this paper, we present a systematic and conceptual overview of methods for inferring gene regulatory networks from observational gene expression data. Further, we discuss two classic approaches to infer causal structures and compare them with contemporary methods by providing a conceptual categorization thereof. We complement the above by surveying global and local evaluation measures for assessing the performance of inference algorithms. PMID:22408642

  8. Observer design for compensation of network-induced delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Luck, R.; Ray, A.

    1988-01-01

    A method for compensating the effects of network-induced delays in integrated communication and control systems (ICCS) is proposed, and a finite-dimensional time-invariant ICCS model is developed. The problem of analyzing systems with time-varying and stochastic delays is circumvented by the application of a deterministic observer. For the case of controller-to-actuator delays, the observed design must rely on an extended model which represents the delays as additional states.

  9. New Results from the NOAA CREST Lidar Network (CLN) Observations in the US Eastcoast

    NASA Astrophysics Data System (ADS)

    Moshary, Fred; Han, Zaw; Wu, Yonghua; Gross, Barry; Wesloh, Daniel; Hoff, Raymond M.; Delgado, Ruben; Su, Jia; Lei, Liqiao; Lee, Robert B.; McCormick, M. Pat; Diaz, Jesus; Cruz, Carlos; Parsiani, Hamed

    2016-06-01

    This paper presents coordinated ground-based observations by the NOAA-CREST Lidar Network (CLN) for profiling of aerosols, cloud, water vapor, and wind along the US east coast including Caribbean region at Puerto Rico. The instrumentation, methodology and observation capability are reviewed. The applications to continental and intercontinental-scale transport of smoke and dust plumes, and their large scale regional impact are discussed.

  10. Orbit determination and analysis of meteors recently observed by Finnish Fireball Network

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovla, V.; Gritsevich, M.; Lyytinen, E.; Mineeva, S.

    2015-10-01

    We perform orbit determination and analysis of three fireballs recently observed by Finnish Fireball Network (FFN). Precise orbit determination was performed by using integration of differential equations of motion. This technique was implemented into free distributable software "Meteor Toolkit". Accounting of several perturbing forces are discussed. Also estimation of accuracy of orbital elements was obtained by propagation of observational error with using covariance transformation. Long-term backward integration was provided as well.

  11. Direct observation of deterministic domain wall trajectory in magnetic network structures

    NASA Astrophysics Data System (ADS)

    Sethi, P.; Murapaka, C.; Goolaup, S.; Chen, Y. J.; Leong, S. H.; Lew, W. S.

    2016-01-01

    Controlling the domain wall (DW) trajectory in magnetic network structures is crucial for spin-based device related applications. The understanding of DW dynamics in network structures is also important for study of fundamental properties like observation of magnetic monopoles at room temperature in artificial spin ice lattice. The trajectory of DW in magnetic network structures has been shown to be chirality dependent. However, the DW chirality periodically oscillates as it propagates a distance longer than its fidelity length due to Walker breakdown phenomenon. This leads to a stochastic behavior in the DW propagation through the network structure. In this study, we show that the DW trajectory can be deterministically controlled in the magnetic network structures irrespective of its chirality by introducing a potential barrier. The DW propagation in the network structure is governed by the geometrically induced potential barrier and pinning strength against the propagation. This technique can be extended for controlling the trajectory of magnetic charge carriers in an artificial spin ice lattice.

  12. Direct observation of deterministic domain wall trajectory in magnetic network structures

    PubMed Central

    Sethi, P.; Murapaka, C.; Goolaup, S.; Chen, Y. J.; Leong, S. H.; Lew, W. S.

    2016-01-01

    Controlling the domain wall (DW) trajectory in magnetic network structures is crucial for spin-based device related applications. The understanding of DW dynamics in network structures is also important for study of fundamental properties like observation of magnetic monopoles at room temperature in artificial spin ice lattice. The trajectory of DW in magnetic network structures has been shown to be chirality dependent. However, the DW chirality periodically oscillates as it propagates a distance longer than its fidelity length due to Walker breakdown phenomenon. This leads to a stochastic behavior in the DW propagation through the network structure. In this study, we show that the DW trajectory can be deterministically controlled in the magnetic network structures irrespective of its chirality by introducing a potential barrier. The DW propagation in the network structure is governed by the geometrically induced potential barrier and pinning strength against the propagation. This technique can be extended for controlling the trajectory of magnetic charge carriers in an artificial spin ice lattice. PMID:26754285

  13. Pennsylvania Action Research Network (PA-ARN) Staff Development through Five Regional Staff Development Centers. Final Report. July 1997-June 1998.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., McKeesport.

    The Pennsylvania Action Research Network project was initiated in 1995-1996 to provide Pennsylvania literacy educators with the following: a better method for taking published research findings and testing and adapting them in their own classrooms; a way to study their own research ideas on a daily-action basis; and a systematic way to share and…

  14. Pennsylvania Action Research Network (PA-ARN) Staff Development through Five Regional Staff Development Centers. Final Report, July 1998-June 1999.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., McKeesport.

    With the existence of 67 monographs and approximately 60 practitioners trained in action research in the western and central parts of Pennsylvania from project years 1995-98, the 1998-99 Section 353 project expanded the action research network (ARN) to include teachers, administrators, and researchers in the northeastern and southeastern parts of…

  15. Optimization of observation plan based on the stochastic characteristics of the geodetic network

    NASA Astrophysics Data System (ADS)

    Pachelski, Wojciech; Postek, Paweł

    2016-06-01

    Optimal design of geodetic network is a basic subject of many engineering projects. An observation plan is a concluding part of the process. Any particular observation within the network has through adjustment a different contribution and impact on values and accuracy characteristics of unknowns. The problem of optimal design can be solved by means of computer simulation. This paper presents a new method of simulation based on sequential estimation of individual observations in a step-by-step manner, by means of the so-called filtering equations. The algorithm aims at satisfying different criteria of accuracy according to various interpretations of the covariance matrix. Apart of them, the optimization criterion is also amount of effort, defined as the minimum number of observations required. A numerical example of a 2-D network is illustrated to view the effectiveness of presented method. The results show decrease of the number of observations by 66% with respect to the not optimized observation plan, which still satisfy the assumed accuracy.

  16. The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities.

    PubMed

    Palaniyappan, L; White, T P; Liddle, P F

    2012-01-01

    A large body of neuroimaging literature suggests that distributed regions in the brain form coordinated largescale networks that show reliable patterns of connectivity when observed using either functional or structural magnetic resonance imaging (MRI) methods. Functional activation within these networks provides a robust and reliable representation of dynamic brain states observed during information processing. One such network comprised of anterior frontoinsular cortex (aFI) and anterior cingulate cortex (ACC) is called the Salience Network (SN). SN has been identified as a system that enables the switch between various dynamic brain states. SN dysfunction has been proposed as a mechanistic model for several core symptoms of schizophrenia. In this review, we explore how various risk factors of schizophrenia could operate through the dysfunctional SN to generate symptoms of psychosis. We also consider the putative neurochemical basis for the SN dysfunction in schizophrenia, and suggest that the SN dysfunction is a viable therapeutic target for a combined pharmacological and cognitive training treatment approach. This combination approach, termed as Brain Network Modulation, could exploit neuronal plasticity to reverse a key pathophysiological deficit in schizophrenia. PMID:23279173

  17. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  18. Actions and Names: Observing Responses and the Role of Multiple Stimulus Control in Incidental Language Acquisition

    ERIC Educational Resources Information Center

    Cahill, Claire S.

    2013-01-01

    The present research focuses on the possible relation between observing responses and language acquisition. In the first of three experiments, preschool aged participants with and without disabilities were presented with the opportunity to observe multiple aspects of a stimulus. A Naming experience was created in which the stimulus was presented…

  19. Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Hattendorf, S.; Georgi, A.; Liebmann, M.; Morgenstern, M.

    2013-04-01

    Graphene flakes are prepared on freshly cleaved mica by exfoliation and studied by scanning tunneling microscopy in ultra high vacuum. On few-layer graphene, a triangular network of partial dislocations separating ABC stacked and ABA stacked graphene was found similar to the networks occasionally visible on freshly cleaved HOPG. We found differences in the electronic structure of ABC and ABA stacked areas by scanning tunneling spectroscopy, i.e., a pronounced peak at 0.25 eV above the Fermi level exclusively in the ABA areas, which is shown to be responsible for the different apparent heights observed in STM images.

  20. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1992-01-01

    The Software Technology Laboratory at JSC is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  1. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  2. Autonomous telemetry system by using mobile networks for a long-term seismic observation

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Uchida, N.; Nakajima, J.

    2012-04-01

    When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.

  3. Outline of Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net)

    NASA Astrophysics Data System (ADS)

    Uehira, Kenji; Kanazawa, Toshihiko; Mochizuki, Masashi; Fujimoto, Hiromi; Noguchi, Shin-ichi; Shinbo, Takashi; Shiomi, Katsuhiko; Kunugi, Takashi; Aoi, Shin; Matsumoto, Takumi; Sekiguchi, Shoji; Okada, Yoshimitsu; Shinohara, Masanao; Yamada, Tomoaki

    2016-04-01

    Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) project to construct a large-scale seafloor network of cable-linked observatories is in progress around Japan Trench and Kuril Trench in Japan. The main purpose of the S-net project is disaster prevention by providing ground motion and tsunami height data in real time. Such real-time data from the seafloor observatories make it possible to forecast the next-generation early tsunami warning which could precisely predict coastal tsunami height. Also the data may make it possible to forecast an earthquake warning much earlier than the present system. The network consists of 150 ocean bottom observation stations. Ocean bottom fiber optic cables, about 5,700 km in total length, connect the stations to land. Observation stations will be placed on the seafloor off Hokkaido, off Tohoku and off Kanto, in a spacing of about 30 km almost in the direction of East-West (perpendicular to the trench axis) and in a spacing of about 50 - 60 km almost in the direction of North-South (parallel to the trench axis). Each station is equipped with seismometers of three types and two hydro-pressure gauges (tsunami meters) of the same type for redundancy. The digitized data will be transmitted to the data centers, JMA (Japan Meteorological Agency), and so on, using IP network. S-net is supported by MEXT financially.

  4. How to most effectively expand the global surface ozone observing network

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which

  5. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  6. Observer-based fault-tolerant control for a class of nonlinear networked control systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. S.; Memon, A. M.; Shi, Peng

    2014-08-01

    This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.

  7. The European Observation Network: Ground-Based Support for Gamma-Ray Satellites

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Spurný, P.; Florián, J.; Boček, J.; Tichy, M.; Tichá, J.; Vyskocil, L.; Wenzel, W.; Barthelmy, S.; Cline, T.; Gehrels, N.; Fishman, G.; Meegan, C.; Kouveliotou, C.; Mutafov, A.; Hovorka, F.

    While there is extended monitoring of the sky at gamma rays from satellites, mainly provided by the COMPTON Gamma Ray Observatory, there is still a lack of high-quality optical simultaneous and quasi-simultaneous data. On the other hand, the still puzzling nature of Gamma Ray Bursts requires a complex and multispectral approach. The situation changed significantly after the introduction of the BACODINE system which is able to notify ground-based observers immediately after the detection of bursts on the GRO satellite. We present and discuss preliminary results obtained with the European Observation Network providing such follow - up optical observations. This network consists of nine observatories in the Czech Republic, Germany and Bulgaria and has been involved into the BACODINE activities since April 1, 1994.

  8. Identification of efficient observers for locating spreading source in complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Zhang, Yubo; Lv, Tianyang; Yin, Ying

    2016-01-01

    Estimating the location of the spreading source of complex networks is a challenging task and plays an important role in many real problems. The hidden source can be localized based on the information gathered by a few nodes, which are called the observers. Identification of the efficient observers is critical to locate the source with high accuracy. Here we analyze several placement strategies of the observers based on centralities of nodes, including the high-degree, high-betweenness, high-clustering coefficient, high-eigenvector and high-closeness. Based on the random spreading experiments on both model and real networks, we find that the localization accuracy of these strategies is decreased with the increase of the connectivity of network, and there is no significant difference between them. Further experiments show that the coverage range of the observers may be the key factor that affects the localization accuracy. Our results can provide a route for the optimal design of placement strategies of the observer nodes.

  9. Concentric gravity waves over northern China observed by an airglow imager network and satellites

    NASA Astrophysics Data System (ADS)

    Xu, Jiyao; Li, Qinzeng; Yue, Jia; Hoffmann, Lars; Straka, William C.; Wang, Cuimei; Liu, Mohan; Yuan, Wei; Han, Sai; Miller, Steven D.; Sun, Longchang; Liu, Xiao; Liu, Weijun; Yang, Jing; Ning, Baiqi

    2015-11-01

    The first no-gap OH airglow all-sky imager network was established in northern China in February 2012. The network is composed of six all-sky airglow imagers that make observations of OH airglow gravity waves and cover an area of about 2000 km east and west and about 1400 km south and north. An unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the network nearly every night during the first half of August 2013. These events were coincidentally observed by satellite sensors from Fengyun-2 (FY-2), Atmospheric Infrared Sounder (AIRS)/Aqua, and Visible Infrared Imaging Radiometer Suite (VIIRS)/Suomi National Polar-orbiting Partnership (NPP). Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the stratosphere to the mesopause region. In this paper, two representative CGW events in August 2013 are studied in detail: first is the CGW on the night of 13 August 2013, likely launched by a single thunderstorm. The temporal and spatial analyses indicate that the CGW horizontal wavelengths follow freely propagating waves based on a GW dispersion relation within 300 km from the storm center. In contrast, the more distant observed gravity wave field exhibits a smaller horizontal wavelength of ~20 km, and our analysis strongly suggest this wave field represents a ducted wave. A second event, exhibiting multiple CGWs, was induced by two very strong thunderstorms on 9 August 2013. Multiscale waves with horizontal wavelengths ranging from less than 10 km to 200 km were observed.

  10. Proposal for Environmental Observation System for Large Scale Gas Pipeline Networks Using Unmanned Airship

    NASA Astrophysics Data System (ADS)

    Shiho, Makoto; Horioka, Kazuhiko; Inoue, Gen; Onda, Masahiko; Leighty, William C.; Yokoo, Kuniyoshi; Ono, Shoichi; Ohashi, Kazuhiko; Hirata, Masaru

    2004-03-01

    Construction of a large scale natural gas pipeline network system in the Northeast Asian area has been proposed by several researchers, including Prof. Masaru Hirata, which will extend over tens of thousands of kilometers. To monitor the gas leakage, and to cope with any other hazardous problems, continuous surveillance of the network will be required. For this purpose, an environmental observation system for the large scale pipeline network is proposed. In this system unmanned airships are used as platforms for various environmental diagnostics. The unmanned airship is routed along the pipeline with the aid of GPS. Propulsion power of the air ship is transmitted from the ground bases by microwave; the microwave power stations are located every 100-200km along the pipeline. This paper describes the unmanned airships, environmental diagnostic systems, microwave generation tubes, and microwave powering system.

  11. Is Ecosystem-Atmosphere Observation in Long-Term Networks actually Science?

    NASA Astrophysics Data System (ADS)

    Schmid, H. P. E.

    2015-12-01

    Science uses observations to build knowledge by testable explanations and predictions. The "scientific method" requires controlled systematic observation to examine questions, hypotheses and predictions. Thus, enquiry along the scientific method responds to questions of the type "what if …?" In contrast, long-term observation programs follow a different strategy: we commonly take great care to minimize our influence on the environment of our measurements, with the aim to maximize their external validity. We observe what we think are key variables for ecosystem-atmosphere exchange and ask questions such as "what happens next?" or "how did this happen?" This apparent deviation from the scientific method begs the question whether any explanations we come up with for the phenomena we observe are actually contributing to testable knowledge, or whether their value remains purely anecdotal. Here, we present examples to argue that, under certain conditions, data from long-term observations and observation networks can have equivalent or even higher scientific validity than controlled experiments. Internal validity is particularly enhanced if observations are combined with modeling. Long-term observations of ecosystem-atmosphere fluxes identify trends and temporal scales of variability. Observation networks reveal spatial patterns and variations, and long-term observation networks combine both aspects. A necessary condition for such observations to gain validity beyond the anecdotal is the requirement that the data are comparable: a comparison of two measured values, separated in time or space, must inform us objectively whether (e.g.) one value is larger than the other. In turn, a necessary condition for the comparability of data is the compatibility of the sensors and procedures used to generate them. Compatibility ensures that we compare "apples to apples": that measurements conducted in identical conditions give the same values (within suitable uncertainty intervals

  12. Building oceanographic and atmospheric observation networks by composition: unmanned vehicles, communication networks, and planning and execution control frameworks

    NASA Astrophysics Data System (ADS)

    Sousa, J. T.; Pinto, J.; Martins, R.; Costa, M.; Ferreira, F.; Gomes, R.

    2014-12-01

    The problem of developing mobile oceanographic and atmospheric observation networks (MOAO) with coordinated air and ocean vehicles is discussed in the framework of the communications and control software tool chain developed at Underwater Systems and Technologies Laboratory (LSTS) from Porto University. This is done with reference to field experiments to illustrate key capabilities and to assess future MOAO operations. First, the motivation for building MOAO by "composition" of air and ocean vehicles, communication networks, and planning and execution control frameworks is discussed - in networked vehicle systems information and commands are exchanged among multiple vehicles and operators, and the roles, relative positions, and dependencies of these vehicles and operators change during operations. Second, the planning and execution control framework developed at LSTS for multi-vehicle systems is discussed with reference to key concepts such as autonomy, mixed-initiative interactions, and layered organization. Third, the LSTS tool software tool chain is presented to show how to develop MOAO by composition. The tool chain comprises the Neptus command and control framework for mixed initiative interactions, the underlying IMC messaging protocol, and the DUNE on-board software. Fourth, selected LSTS operational deployments illustrate MOAO capability building. In 2012 we demonstrated the use of UAS to "ferry" data from UUVs located beyond line of sight (BLOS). In 2013 we demonstrated coordinated observations of coastal fronts with small UAS and UUVs, "bent" BLOS through the use of UAS as communication relays, and UAS tracking of juvenile hammer-head sharks. In 2014 we demonstrated UUV adaptive sampling with the closed loop controller of the UUV residing on a UAS; this was done with the help of a Wave Glider ASV with a communications gateway. The results from these experiments provide a background for assessing potential future UAS operations in a compositional MOAO.

  13. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  14. Combining solar science and asteroid science with the space weather observation network (SWON)

    NASA Astrophysics Data System (ADS)

    Maiwald, Volker; Weiß, André; Jansen, Frank

    2012-12-01

    The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.

  15. Scaling From Stream Reach Observations of Groundwater-Surfacewater Exchange to Network Scale Behavior and Effects

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; McGlynn, B. L.

    2008-12-01

    Streamwater gains from and losses to groundwater impact stream hydrology, solute transport, and biogeochemistry. We used dual instantaneous salt injections (slugs) to investigate stream gains and losses across the Bull Trout watershed stream network (1,180 ha), Sawtooth Mountains, Idaho. The dual slug injection method allows estimation of gross gains and losses in addition to net changes in discharge across each study reach. Our results indicate that gross gains and losses occurred across each study reach despite net discharge that ranged from negative 58 % to positive 130 %. The hydrologic turnover or exchange of water can impact solute transport, in-stream solute concentrations and inertia, and watershed mass export. We found persistent relationships between stream discharge, stream flow velocity, and stream losses. From these relationships we present a simple approach using reach scale observations/experiments to simulate network scale hydrologic turnover. This conceptual model can help address: 1) how far a parcel of water travels in the stream before it is likely replaced and how this varies with stream network location and structure, and 2) where the water or solutes measured at the outlet (or anywhere else along the network) may have originated in the watershed. Addressing these questions is critical for understanding the role of the stream network and its geometry in modifying watershed runoff and solute dynamics.

  16. Information theoretic approach using neural network for determining radiometer observations from radar and vice versa

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasa Ramanujam; Chandrasekar, V.

    2016-05-01

    Even though both the rain measuring instruments, radar and radiometer onboard the TRMM observe the same rain scenes, they both are fundamentally different instruments. Radar is an active instrument and measures backscatter component from vertical rain structure; whereas radiometer is a passive instrument that obtains integrated observation of full depth of the cloud and rain structure. Further, their spatial resolutions on ground are different. Nevertheless, both the instruments are observing the same rain scene and retrieve three dimensional rainfall products. Hence it is only natural to seek answer to the question, what type of information about radiometric observations can be directly retrieved from radar observations. While there are several ways to answer this question, an informational theoretic approach using neural networks has been described in the present work to find if radiometer observations can be predicted from radar observations. A database of TMI brightness temperature and collocated TRMM vertical attenuation corrected reflectivity factor from the year 2012 was considered. The entire database is further classified according to surface type. Separate neural networks were trained for land and ocean and the results are presented.

  17. Observer-based predictive controller design with network-enhanced time-delay compensation

    NASA Astrophysics Data System (ADS)

    Florin Caruntu, Constantin

    2015-02-01

    State feedback control is very attractive due to the precise computation of the gain matrix, but the implementation of a state feedback controller is possible only when all state variables are directly measurable. This condition is almost impossible to accomplish due to the excess number of required sensors or unavailability of states for measurement in most of the practical situations. Hence, the need for an estimator or observer is obvious to estimate all the state variables by observing the input and the output of the controlled system. As such, the goal of this paper is to provide a control design methodology based on a Luenberger observer design that can assure the closed-loop performances of a vehicle drivetrain with backlash, while compensating the network-enhanced time-varying delays. This goal is achieved in a sequential manner: firstly, a piecewise linear model of two inertias drivetrain, which takes into consideration the backlash nonlinearity and the network-enhanced time-varying delay effects is derived; then, a Luenberger observer which estimates the state variables is synthesized and the robust full state-feedback predictive controller based on flexible control Lyapunov functions is designed to explicitly take into account the bounds of the disturbances caused by time-varying delays and to guarantee also the input-to-state stability of the system in a non-conservative way. The full state-feedback predictive control strategy based on the Luenberger observer design was experimentally tested on a vehicle drivetrain emulator controlled through controller area network, with the aim of minimizing the backlash effects while compensating the network-enhanced delays.

  18. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.

    PubMed

    Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S

    2015-10-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology. PMID:26286804

  19. Ace: Action-Communication-Expression. IMPACT II: Houston's Teacher-to-Teacher Network.

    ERIC Educational Resources Information Center

    McIntyre, Margie

    The Action-Communication-Expression program, an extension of a speech communication class in a Houston (Texas) high school, involves visual and concrete communication, such as photography, script writing, and filmmaking. Students in two speech classes work in small groups of four or five, independently of the teacher, after receiving initial…

  20. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    ERIC Educational Resources Information Center

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  1. Elucidating compound mechanism of action by network perturbation analysis | Office of Cancer Genomics

    Cancer.gov

    Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins.

  2. Writing in Action: Observing Students and the Teaching of Writing in the General Education Curriculum.

    ERIC Educational Resources Information Center

    Zenger, Amy A.

    In Portland State University's Freshman Inquiry program, 5 teachers, each from different disciplines, meet weekly to design the syllabus and the assignments used by all of the sections which are designed around the theme of "The City: Visions and Realities." A participant observer takes field notes and studies these for ways to extract program…

  3. Seeing the World through Another Person's Eyes: Simulating Selective Attention via Action Observation

    ERIC Educational Resources Information Center

    Frischen, Alexandra; Loach, Daniel; Tipper, Steven P.

    2009-01-01

    Selective attention is usually considered an egocentric mechanism, biasing sensory information based on its behavioural relevance to oneself. This study provides evidence for an equivalent allocentric mechanism that allows passive observers to selectively attend to information from the perspective of another person. In a negative priming task,…

  4. A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network

    PubMed Central

    Lindström, Tom; Grear, Daniel A.; Buhnerkempe, Michael; Webb, Colleen T.; Miller, Ryan S.; Portacci, Katie; Wennergren, Uno

    2013-01-01

    Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on Bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full

  5. The magnetic network location of explosive events observed in the solar transition region

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Dere, K. P.

    1991-01-01

    Compact short-lived explosive events have been observed in solar transition region lines with the High-Resolution Telescope and Spectrograph (HRTS) flown by the Naval Research Laboratory on a series of rockets and on Spacelab 2. Data from Spacelab 2 are coaligned with a simultaneous magnetogram and near-simultaneous He I 10,380 -A spectroheliogram obtained at the National Solar Observatory at Kitt Peak. The comparison shows that the explosive events occur in the solar magnetic network lanes at the boundaries of supergranular convective cells. However, the events occur away from the larger concentrations of magnetic flux in the network, in contradiction to the observed tendency of the more energetic solar phenomena to be associated with the stronger magnetic fields.

  6. Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  7. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    NASA Astrophysics Data System (ADS)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  8. Complementary Schools in Action: Networking for Language Development in East London

    ERIC Educational Resources Information Center

    Sneddon, Raymonde

    2014-01-01

    In a challenging economic and political context, complementary schools in East London are mentoring each other and forming networks across communities to gain recognition and status for community languages in education and the wider community. As issues of power and status impact in different ways on differently situated communities, complementary…

  9. Getting Ideas into Action: Building Networked Improvement Communities in Education. Carnegie Perspectives

    ERIC Educational Resources Information Center

    Bryk, Anthony S.; Gomez, Louis M.; Grunow, Alicia

    2010-01-01

    In this Carnegie essay by Anthony Bryk, Louis Gomez and Alicia Grunow, the authors argue that the social organization of the research enterprise is badly broken and a very different alternative is needed. They instead support a science of improvement research and introduce the idea of a networked improvement community that creates the purposeful…

  10. The Study of Collective Actions in a University Anchored Community Wireless Network

    ERIC Educational Resources Information Center

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  11. The Multilingual Education (MLE) Network Phenomenon: Advocacy and Action for Minoritized Language Communities

    ERIC Educational Resources Information Center

    Trudell, Barbara

    2014-01-01

    This article examines a new phenomenon in language activism variously called the multilingual education working group or the multilingual education network, and abbreviated as MLEN. After an analysis of the conceptual and organizational contexts for these activist groups, the six MLENs in existence as of 2013 are described. The groups are then…

  12. Building a responsive network of support and advocacy for older African American homeless women through developmental action research.

    PubMed

    Washington, Olivia G M; Moxley, David P; Garriott, Lois; Crystal, Jennifer P

    2009-10-01

    This paper describes the Leaving Homelessness Intervention Research Project (LHIRP), a multimodal intervention that addresses the structural barriers and personal issues older African American women face in overcoming homelessness in a large mid-western city of the United States. The project incorporates a developmental action research design in partnership with homeless and formerly homeless women. Through developmental testing of interventions, LHIRP identifies promising practices at the individual, group life, intentional community, and city levels. The paper offers a rationale for the integration of both developmental research and action research, particularly community-based participatory inquiry. The authors document the nature of the helping network, identify and describe the project's aims, organizing framework, and methods that document the lived experience of homelessness. Action research strategies that support the design and intervention activities are described, as are the tools used to test promising practices that are useful in helping older women transition and remain out of homelessness. The paper identifies the knowledge products of the intervention project including lexicon, theory, and frameworks, considers the vicious cycle that serves as an advanced organizer of relevant intervention, illuminates core principles, and examines the importance of the web of affiliation that the project seeks to form among participants, staff, and technical assistants. PMID:19929159

  13. Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

    NASA Astrophysics Data System (ADS)

    Park, Maru; Jo, Jung Hyun; Cho, Sungki; Choi, Jin; Kim, Chun-Hwey; Park, Jang-Hyun; Yim, Hong-Suh; Choi, Young-Jun; Moon, Hong-Kyu; Bae, Young-Ho; Park, Sun-Youp; Kim, Ji-Hye; Roh, Dong-Goo; Jang, Hyun-Jung; Park, Young-Sik; Jeong, Min-Ji

    2015-12-01

    By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.

  14. Land Surface Temperature Forecasting using spectral observations of MODIS and Modular Neural Networks

    NASA Astrophysics Data System (ADS)

    Taghavi, Farahnaz; Zargaran, Zahrah; Ahmadi, Abbas

    Land Surface Temperature (LST) is a significant parameter for many applications including numerical weather prediction, climate and environmental studies. The goal of this study is using a combination of Modular neural networks and satellite image as input to predict the LST in Tehran ,Iran.In this study, two MLP and RBF neural networks and an algorithm for calculating of LST based spectral observations of MODerate resolution Imaging Spectra-radiometer (MODIS) are used This algorithm include Brightness Temperature of channel 31(BT31) and 32(BT32) on thermal band of MODIS. The algorithm are written using Hierarchical Data Format (HDF) calibrated data which has the spatial resolution of 1km by ENVI (Environment for Visualizing Images) software, and output products are in HDF format. Initial results show that modular neural network helps to improve networks' generalization and learning speed and the main reason for selecting these networks is their good performance in this problem.The model has a modular learning and structure. Since the task decomposition at first and the combination of results to get the final prediction at the end are key and effective points on the performance of modular neural network, in this study we propose a new approach to this issue. This method uses the Self-Organizing Map (SOM) Neural Network and Particle Swarm Optimization(PSO) algorithm for task decomposition. The proposed model combines this neural networks and optimization algorithms. Results indicate that use of PSO algorithm has caused suitable distribution of clusters obtained from SOM algorithm. In addition to the use of satellite images has improved the performance of the proposed model. Finally, the results obtained from this model will be compared with some other methods with non-modular structure and learning and it is shown that this proposed model is able to produce accurate results. The result of this comparison show that training time of model in the forecasting of land

  15. When Do We Confuse Self and Other in Action Memory? Reduced False Memories of Self-Performance after Observing Actions by an Out-Group vs. In-Group Actor.

    PubMed

    Lindner, Isabel; Schain, Cécile; Kopietz, René; Echterhoff, Gerald

    2012-01-01

    Observing another person performing an action can lead to a false memory of having performed the action oneself - the observation-inflation effect. In the experimental paradigm, participants first perform or do not perform simple actions, and then observe another person perform some of these actions. The observation-inflation effect is found when participants later remember performing actions that they have merely observed. In this case, self and other are confused in action memory. We examined social conditions of this self-other confusion when remembering actions, specifically whether the effect depends on the observed actor's group membership. In our experiment, we manipulated group membership based on physical appearance, specifically complexion of the hands. Fair-skinned participants observed either an in-group (i.e., fair-skinned) or an out-group (i.e., dark-skinned) actor. Our results revealed that the observed actor's group membership moderated the observation-inflation effect: False memories were significantly reduced when the actor was from the out-group (vs. in-group). We found no difference to a control condition in which the actor wore black gloves, suggesting that distinctiveness of perceptual or sensory features alone (due to the out-group member's dark skin) is not critical. We discuss these findings in light of social-neuroscience studies demonstrating the impact of an observed person's group membership on motor simulation. Overall, our findings suggest that action memory can be affected by a ubiquitous feature of people's social perception, that is, group-based social categorization of others. PMID:23130007

  16. Networked high-speed auroral observations combined with radar measurements for multi-scale insights

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Semeter, J. L.

    2015-12-01

    Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.

  17. The "Quasar" Network Observations in e-VLBI Mode Within the Russian Domestic VLBI Programs

    NASA Technical Reports Server (NTRS)

    Finkelstein, Andrey; Ipatov, Alexander; Kaidanovsky, Michael; Bezrukov, Ilia; Mikhailov, Andrey; Salnikov, Alexander; Surkis, Igor; Skurikhina, Elena

    2010-01-01

    The purpose of the Russian VLBI "Quasar" Network is to carry out astrometrical and geodynamical investigations. Since 2006 purely domestic observational programs with data processing at the IAA correlator have been carried out. To maintain these geodynamical programs e-VLBI technology is being developed and tested. This paper describes the IAA activity of developing a real-time VLBI system using high-speed digital communication links.

  18. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  19. Rapid learning of associations between sound and action through observed movement. A TMS study

    PubMed Central

    Dean, Roger T.; Bailes, Freya

    2016-01-01

    Research has established that there is a cognitive link between perception and production of the same movement. However, there has been relatively little research into the relevance of this for non-expert perceivers, such as music listeners who do not play instruments themselves. In two experiments we tested whether participants can quickly learn new associations between sounds and observed movement without performing those movements themselves. We measured motor evoked potentials (MEPs) in the first dorsal interosseous muscle of participants’ right hands while test tones were heard and single transcranial magnetic stimulation (TMS) pulses were used to trigger motor activity. In Experiment 1 participants in a ‘human’ condition (n=4) learnt to associate the test tone with finger movement of the experimenter, while participants in a ‘computer’ condition (n=4) learnt that the test tone was triggered by a computer. Participants in the human condition showed a larger increase in MEPs compared with those in the computer condition. In a second experiment pairing between sounds and movement occurred without participants repeatedly observing the movement and we found no such difference between the human (n=4) and computer (n=4) conditions. These results suggest that observers can quickly learn to associate sound with movement, so it should not be necessary to have played an instrument to experience some motor resonance when hearing that instrument. PMID:27182100

  20. Estimating interevent time distributions from finite observation periods in communication networks

    NASA Astrophysics Data System (ADS)

    Kivelä, Mikko; Porter, Mason A.

    2015-11-01

    A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.

  1. Integrated Meteorological Observation Network in Castile-León (Spain)

    NASA Astrophysics Data System (ADS)

    Merino, A.; Guerrero-Higueras, A. M.; Ortiz de Galisteo, J. P.; López, L.; García-Ortega, E.; Nafría, D. A.; Sánchez, J. L.

    2012-04-01

    In the region of Castile-Leon, in the northwest of Spain, the study of weather risks is extremely complex because of the topography, the large land area of the region and the variety of climatic features involved. Therefore, as far as the calibration and validation of the necessary tools for the identification and nowcasting of these risks are concerned, one of the most important difficulties is the lack of observed data. The same problem arises, for example, in the analysis of particularly relevant case studies. It was hence deemed necessary to create an INTEGRATED METEOROLOGICAL OBSERVATION NETWORK FOR CASTILE-LEON. The aim of this network is to integrate within one single platform all the ground truth data available. These data enable us to detect a number of weather risks in real time. The various data sources should include the networks from the weather stations run by different public institutions - national and regional ones (AEMET, Junta de Castilla y León, Universities, etc.) -, as well as the stations run by voluntary observers. The platform will contain real or cuasi-real time data from the ground weather stations, but it will also have applications to enable voluntary observers to indicate the presence or absence of certain meteors (snow, hail) or even provide detailed information about them (hailstone size, graupel, etc.). The data managed by this network have a high scientific potential, as they may be used for a number of different purposes: calibration and validation of remote sensing tools, assimilation of observation data from numerical models, study of extreme weather events, etc. An additional aim of the network is the drawing of maps of weather risks in real time. These maps are of great importance for the people involved in risk management in each region, as well as for the general public. Finally, one of the first applications developed has been the creation of observation maps in real time. These applications have been constructed using NCL

  2. On-Chip Multichannel Action Potential Recording System for Electrical Measurement of Single Neurites of Neuronal Network

    NASA Astrophysics Data System (ADS)

    Suzuki, Ikurou; Hattori, Akihiro; Yasuda, Kenji

    2007-11-01

    We have developed a multielectrode array recording system for single-neurite-firing measurement using an artificially constructed neuronal network on a chip, which has a 10 μm diameter array with electrodes spaced at 50 μm, for noninvasive 64-channel 100 kHz multirecording and the stimulation of a plurality of neurites extending from a single neuron. To improve the signal/noise ratio, the ground plane was set on the multi-electrode-array plane and platinum black was set on each of the 10 μm electrodes. Using this system, we performed a multisite recording of neurites of a single neuron of a rat hippocampal network in cases of both spontaneous firing and evoked responses to electrical stimulations, and estimated the velocity of action potential propagation among neurites of a single neuron from six recording sites. This demonstrated the potential use of our low-noise chip and our high-speed measurement system for the analysis of neuronal network activities at the single-neuron level.

  3. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    NASA Astrophysics Data System (ADS)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  4. The 1% Rule in Four Digital Health Social Networks: An Observational Study

    PubMed Central

    2014-01-01

    Background In recent years, cyberculture has informally reported a phenomenon named the 1% rule, or 90-9-1 principle, which seeks to explain participatory patterns and network effects within Internet communities. The rule states that 90% of actors observe and do not participate, 9% contribute sparingly, and 1% of actors create the vast majority of new content. This 90%, 9%, and 1% are also known as Lurkers, Contributors, and Superusers, respectively. To date, very little empirical research has been conducted to verify the 1% rule. Objective The 1% rule is widely accepted in digital marketing. Our goal was to determine if the 1% rule applies to moderated Digital Health Social Networks (DHSNs) designed to facilitate behavior change. Methods To help gain insight into participatory patterns, descriptive data were extracted from four long-standing DHSNs: the AlcoholHelpCenter, DepressionCenter, PanicCenter, and StopSmokingCenter sites. Results During the study period, 63,990 actors created 578,349 posts. Less than 25% of actors made one or more posts. The applicability of the 1% rule was confirmed as Lurkers, Contributors, and Superusers accounted for a weighted average of 1.3% (n=4668), 24.0% (n=88,732), and 74.7% (n=276,034) of content. Conclusions The 1% rule was consistent across the four DHSNs. As social network sustainability requires fresh content and timely interactions, these results are important for organizations actively promoting and managing Internet communities. Superusers generate the vast majority of traffic and create value, so their recruitment and retention is imperative for long-term success. Although Lurkers may benefit from observing interactions between Superusers and Contributors, they generate limited or no network value. The results of this study indicate that DHSNs may be optimized to produce network effects, positive externalities, and bandwagon effects. Further research in the development and expansion of DHSNs is required. PMID:24496109

  5. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.

    PubMed

    Gallivan, Jason P; Johnsrude, Ingrid S; Flanagan, J Randall

    2016-02-01

    Object-manipulation tasks (e.g., drinking from a cup) typically involve sequencing together a series of distinct motor acts (e.g., reaching toward, grasping, lifting, and transporting the cup) in order to accomplish some overarching goal (e.g., quenching thirst). Although several studies in humans have investigated the neural mechanisms supporting the planning of visually guided movements directed toward objects (such as reaching or pointing), only a handful have examined how manipulatory sequences of actions-those that occur after an object has been grasped-are planned and represented in the brain. Here, using event-related functional MRI and pattern decoding methods, we investigated the neural basis of real-object manipulation using a delayed-movement task in which participants first prepared and then executed different object-directed action sequences that varied either in their complexity or final spatial goals. Consistent with previous reports of preparatory brain activity in non-human primates, we found that activity patterns in several frontoparietal areas reliably predicted entire action sequences in advance of movement. Notably, we found that similar sequence-related information could also be decoded from pre-movement signals in object- and body-selective occipitotemporal cortex (OTC). These findings suggest that both frontoparietal and occipitotemporal circuits are engaged in transforming object-related information into complex, goal-directed movements. PMID:25576538

  6. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  7. Development of Real-Time Soil Carbon Ecoinformatics Infrastructure Using Observational Network Data

    NASA Astrophysics Data System (ADS)

    Owens, J.; Risk, D. A.; Nickerson, N. R.

    2010-12-01

    To understand and model the temporal variability of soil respiration, we need high frequency, long-term data sets for model development and validation. Three observational stations equipped with Continuous Timeseries-Forced Diffusion (CTFD) probes were deployed in the summer of 2010 across a 1000 km transect in Atlantic Canada. At half hourly resolution, each observational station records soil CO2 efflux from two (2) probes and from a suite of meteorological sensors and peripherals. Each station is equipped with telemetry and data is continuously downloaded, quality controlled, processed, and made available for online display via several CGI, Java, and Perl scripts (http://fluxlab.stfx.ca/fieldsites/). This small network is intended to be the beginning developments of a larger Ecoinformatics Network. This presentation will display early data from this network and summarize real-time modeling efforts. The high-frequency observations show extremely dynamic systems which demonstrate CO2 efflux dependency to temperature and other important environmental drivers; pronounced increases in CO2 efflux after rain; differences across spatial scales; and short-term lags in data owing to gas or thermal transport. Other measurement methods (i.e. chambers) may miss many of these short-term flux variations in the absence of continuous data collection. Intra-site temporal observations (at sub-meter scale) show that spatially variable fluxes have similar scales of amplitude variation. All sites seem to show similar scales of temporal variability but CO2 fluxes can lag between probes across various time scales. These results suggest that site variably may be captured by measurements at only a few representative locations with high temporal frequency. Observation efforts will continue to monitor over winter and will provide unique data measuring fluxes under the snow pack at the soil interface. A key goal of this Ecoinformatics Network system is to develop improved soil models

  8. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  9. Observations of drainage network change in a recently burned watershed using terrestrial laser scanning

    USGS Publications Warehouse

    Staley, Dennis; Wasklewicz, Thad; Kean, Jason

    2010-01-01

    Wildfire enhances the geomorphic response of a watershed to precipitation events, effectively altering the form of the hillslope and channel drainage network. Typically, drainage networks expand following rainfall on a recently burned watershed. Expansion of drainage networks following wildfire increases in erosion and sediment transport rates, and the probability of flash-flooding and debris-flows at downstream locations. Observations of the response of hillslope and channel drainage to individual precipitation events are vital to unraveling the dynamics of erosion processes in recently burned watersheds. Here, we apply terrestrial laser scanning (TLS) methods to produce digital terrain models (DTMs) of a recently burned watershed at an unprecedented spatial resolution. The DTM data aid the quantification of changes in the hillslope and channel drainage networks at several spatial scales. Two TLS surveys were conducted, one survey between 28-30 September 2008 to document pre-rainfall conditions, and one between 18-21 December 2008, three days after 52 mm of rainfall over a period of 22 hours. A Leica Geosystems ScanStation 2 TLS was used to generate 1 cm resolution DTMs, from which the hillslope and channel drainage networks were derived. The location and magnitude of erosion and deposition for each pixel within the basin was determined by calculating the topographic differences between DTMs. Changes in the drainage network morphology were identified through the analysis of bifurcation ratio, drainage density (including rills), rill length, horizontal migration of rills, width-depth ratios and upstream migration of knickpoints. Comparisons of these measures were made between morphologically distinct sub-basins within the study area, and between surveys. Analyses of bifurcation ratios, and measures of rill position and gullyhead migration indicate an expansion of the rill network and upstream migration of knickpoints. These results suggest that expansion of the

  10. Active volcanoes observed through Art: the contribution offered by the social networks

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  11. Strategy and results of East Asian GRB FOllow-up Network (EAFON) follow-up observations

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Eafon Team

    We have established Japan-Taiwan-China collaboration on GRBs study in the East-Asian region since 2004 This serves as valuable additions to the world-wide optical and infrared follow-up network because the East-Asia region is otherwise blank for the network We have been carrying out imaging and spectroscopic follow-up observations by Lulin Taiwan Kiso Japan WIDGET Japan and Xinglong China Using Xinglong and Kiso we can locate candidates and obtain early time spectra of afterglows While WIDGET provides early time observations before the burst the high-time resolution for multi-band light curves will be obtained by Lulin With the data from these sites we will obtain detailed information of light curve and redshift of GRBs which are important to understand the mechanism of afterglows Utilizing East Asian GRB Follow-up Observation Network EAFON we have observed 56 GRB optical afterglows and detected 15 early optical afterglow behavior including two short GRBs in multi-bands Based on these observations we have obtained 3 major results 1 first long term monitoring of short GRB afterglow from sim 0 1 days after the burst 2 two components in early optical afterglow 3 catch about 30 high redshift GRB candidates In this meeting we will present mainly report early a common feature of long GRB early afterglow We have found a common feature in long GRB early afterglow light curves These early light curves show re-brightening and or plateau phase around 0 1 days 2 4hours after bursts Combined with other prompt

  12. Optimal Observation Network Design for Model Discrimination using Information Theory and Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2014-12-01

    Groundwater systems are complex and subject to multiple interpretations and conceptualizations due to a lack of sufficient information. As a result, multiple conceptual models are often developed and their mean predictions are preferably used to avoid biased predictions from using a single conceptual model. Yet considering too many conceptual models may lead to high prediction uncertainty and may lose the purpose of model development. In order to reduce the number of models, an optimal observation network design is proposed based on maximizing the Kullback-Leibler (KL) information to discriminate competing models. The KL discrimination function derived by Box and Hill [1967] for one additional observation datum at a time is expanded to account for multiple independent spatiotemporal observations. The Bayesian model averaging (BMA) method is used to incorporate existing data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. To consider the future observation uncertainty, the Monte Carlo realizations of BMA predicted future observations are used to calculate the mean and variance of posterior model probabilities of the competing models. The goal of the optimal observation network design is to find the number and location of observation wells and sampling rounds such that the highest posterior model probability of a model is larger than a desired probability criterion (e.g., 95%). The optimal observation network design is implemented to a groundwater study in the Baton Rouge area, Louisiana to collect new groundwater heads from USGS wells. The considered sources of uncertainty that create multiple groundwater models are the geological architecture, the boundary condition, and the fault permeability architecture. All possible design solutions are enumerated using high performance computing systems. Results show that total model variance (the sum of within-model variance and between

  13. Wet Deposition Measurements across the Continent: Observations from The National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Goodman, K. J.; Luo, H.; Roehm, C. L.

    2013-12-01

    The National Ecological Observatory Network (NEON) is responsible for making observations of terrestrial, aquatic, and organismal ecology at 106 sites in 20 different eco-climatic domains across the North American continent. NEON will provide data on key local, meteorological, climate, and chemical variables, as well as their associated biogeochemical and biotic responses, in an effort to better understand and predict the effects of climate change, land-use change, and invasive species. The volume of data collected is expected to exceed hundreds of Terabytes per year and will be freely available via a web portal for use by researchers, educators, and policy makers. Chemical scavenging by wet deposition is a principle means of chemical inputs into an ecosystem. By the time NEON becomes fully operational in 2017; wet deposition will be collected and measured at 55 sites across the US. It is expected that these measurements will capture, among other compounds, the deposition of sulfate, ammonium, and nitrate spanning gradients and 'hot spots' across terrestrial and aquatic ecosystems. This poster will highlight the network planning for these measurements, the instrumentation and observational details, as well as opportunities to link these data products with external networks. Particular emphasis will be placed on how these measurements complement and link with other biogeochemical and climatological data products at NEON.

  14. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  15. Anti-Cancer Activity of Nitrones and Observations on Mechanism of Action

    PubMed Central

    Floyd, Robert A.; Chandru, Hema K.; He, Ting; Towner, Rheal

    2011-01-01

    The nitrone compound PBN, α-phenyl-tert-butylnitrone, and closely related nitrones have anti-cancer activity in several experimental cancer models. The three experimental models most extensively studied include A) the rat choline deficiency liver cancer model, B) the rat C6 glioma model and C) the mouse APCMin/+ colon cancer model. The two PBN-nitrones mostly studied are PBN and a PBN derivative 2,4-disulfophenyl-tert-butylnitrone, referred as OKN-007. OKN-007 is a proprietary compound that has had extensive commercial development (designated as NXY-059) for another indication, acute ischemic stroke, and after extensive clinical studies was shown to lack efficacy for this indication but was shown to be very safe for human use. This compound administered orally in the rat glioma model has potent activity in treating fully formed gliomas. In this report observations made on the PBN-nitrones in experimental cancer models will be summarized. In addition the experimental results will be discussed in the general framework of the properties of the compounds with a view to try to understand the mechanistic basis of how the PBN-nitrones act as anti-cancer agents. Possible mechanisms related to the suppression of NO production, S-nitrosylation of critical proteins and inhibition of NF-κB activation are discussed. PMID:21651461

  16. Action Research Monographs. Complete Set. Pennsylvania Action Research Network, 1998-99. A Section 353 Project of the Pennsylvania Department of Education, Bureau of Adult Basic and Literacy Education. A Learning from Practice Project.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., McKeesport.

    This publication consists of the complete set of 23 monographs developed by the Pennsylvania Action Research Network to supplement the 67 monographs produced over the past 3 years. The specific audience are literacy, General Educational Development (GED), and English-as-a Second Language (ESL) practitioners. The titles are: "Use of Metacognitive…

  17. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  18. Knowledge acquisition by networks of interacting agents in the presence of observation errors

    NASA Astrophysics Data System (ADS)

    Batista, J. B.; Costa, L. Da F.

    2010-07-01

    In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdős-Rényi or Barabási-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.

  19. The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Higurashi, Akiko; Jin, Yoshitaka

    2016-06-01

    We have operated a ground-based lidar network AD-Net using dual wavelength (532, 1064nm) depolarization Mie lidar continuously and observed movement of Asian dust and air pollution aerosols in East Asia since 2001. This lidar network observation contributed to understanding of the occurrence and transport mechanisms of Asian dust, validation of chemical transport models, data assimilation and epidemiologic studies. To better understand the optical and microphysical properties, externally and internally mixing states, and the movements of Asian dust and airpollution aerosols, we go forward with introducing a multi-wavelength Raman lidar to the AD-Net and developing a multi-wavelength technique of HSRL in order to evaluate optical concentrations of more aerosol components. We will use this evolving AD-Net for validation of Earth-CARE satellite observation and data assimilation to evaluate emissions of air pollution and dust aerosols in East Asia. We go forward with deploying an in-situ instrument polarization optical particle counter (POPC), which can measure size distributions and non-sphericity of aerosols, to several main AD-Net sites and conducting simultaneous observation of POPC and lidar to clarify internally mixed state of Asian dust and air pollution aerosols transported from the Asian continent to Japan.

  20. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  1. Remote infrasound monitoring of Mount Etna: Observed and predicted network detection capability

    NASA Astrophysics Data System (ADS)

    Tailpied, Dorianne; Le Pichon, Alexis; Marchetti, Emanuele; Ripepe, Maurizio; Kallel, Mohamed; Ceranna, Lars

    2013-04-01

    Volcanic eruptions are unique and valuable calibrating sources of infrasonic waves worldwide detected by the International Monitoring System (IMS) of the Comprehensive nuclear Test Ban Treaty Organization (CTBTO) and other experimental stations. Building a comprehensive database of volcanic signals is likely to help the scientific community to better characterize eruptive sequences and may help to prevent eruption disasters while on a longer term mitigate the impact of ash clouds on aviation. In this study, we assess the detection capability of the existing infrasound network to remotely detect the eruptive activity of Mount Etna with a high level of confidence, and predict the performance of the future ARISE infrastructure network (Atmospheric dynamics InfraStructure in Europe). This well-instrumented volcano offers a unique opportunity to validate attenuation models using multiyear near-and-far field recordings. The seasonal trend in the number of detections of Etna at the IS48 IMS station (Tunisia) is correlated to fine temporal fluctuations of the stratospheric waveguide structure. The modeling results are consistent with the observed detection capability of the existing network. In summer, during the downwind season, a minimum detectable amplitude of ~10 Pa at a reference distance of 1 km from the source is predicted. In winter, when upwind propagation occurs, detection thresholds increase up to ~100 Pa. When adding four experimental arrays to the existing IMS network, thresholds decrease down to ~20 Pa in winter. The simulation results provide here a realistic description of long-range infrasound propagation and allow predicting fine temporal fluctuations in the European infrasound network performance with potential application for civil aviation safety.

  2. Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; O'Connor, E. J.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C. R.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T.; Lonka, H.; Kurri, M.; Heinonen, J.; Moisseev, D.; Asmi, E.; Aaltonen, V.; Nordbo, A.; Rodriguez, E.; Lihavainen, H.; Laaksonen, A.; Lehtinen, K. E. J.; Laurila, T.; Petäjä, T.; Kulmala, M.; Viisanen, Y.

    2013-08-01

    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS); a Ka-band Doppler cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, POLLYXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (European Aerosol Research Lidar Network to Establish an Aerosol Climatology). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We carried out two inter-comparison campaigns to investigate the Doppler lidar performance. The aims of the campaigns were to compare the backscatter coefficient and retrieved wind profiles, and to optimise the lidar sensitivity through adjusting the telescope focus and data-integration time to ensure enough signals in low-aerosol-content environments. The wind profiles showed good agreement between different lidars. However, due to inaccurate telescope focus setting and varying receiver sensitivity, backscatter coefficient profiles showed disagreement between the lidars. Harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation: including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to formation of a water/ice layer thus attenuating the signal inconsistently

  3. Uncovering the Molecular Mechanism of Actions between Pharmaceuticals and Proteins on the AD Network.

    PubMed

    Cao, Shujuan; Yu, Liang; Mao, Jingyuan; Wang, Quan; Ruan, Jishou

    2015-01-01

    This study begins with constructing the mini metabolic networks (MMNs) of beta amyloid (Aβ) and acetylcholine (ACh) which stimulate the Alzheimer's Disease (AD). Then we generate the AD network by incorporating MMNs of Aβ and ACh, and other MMNs of stimuli of AD. The panel of proteins contains 49 enzymes/receptors on the AD network which have the 3D-structure in PDB. The panel of drugs is formed by 5 AD drugs and 5 AD nutraceutical drugs, and 20 non-AD drugs. All of these complexes formed by these 30 drugs and 49 proteins are transformed into dyadic arrays. Utilizing the prior knowledge learned from the drug panel, we propose a statistical classification (dry-lab). According to the wet-lab for the complex of amiloride and insulin degrading enzyme, and the complex of amiloride and neutral endopeptidase, we are confident that this dry-lab is reliable. As the consequences of the dry-lab, we discover many interesting implications. Especially, we show that possible causes of Tacrine, donepezil, galantamine and huperzine A cannot improve the level of ACh which is against to their original design purpose but they still prevent AD to be worse as Aβ deposition appeared. On the other hand, we recommend Miglitol and Atenolol as the safe and potent drugs to improve the level of ACh before Aβ deposition appearing. Moreover, some nutrients such as NADH and Vitamin E should be controlled because they may harm health if being used in wrong way and wrong time. Anyway, the insights shown in this study are valuable to be developed further. PMID:26650760

  4. Uncovering the Molecular Mechanism of Actions between Pharmaceuticals and Proteins on the AD Network

    PubMed Central

    Mao, Jingyuan; Wang, Quan; Ruan, Jishou

    2015-01-01

    This study begins with constructing the mini metabolic networks (MMNs) of beta amyloid (Aβ) and acetylcholine (ACh) which stimulate the Alzheimer’s Disease (AD). Then we generate the AD network by incorporating MMNs of Aβ and ACh, and other MMNs of stimuli of AD. The panel of proteins contains 49 enzymes/receptors on the AD network which have the 3D-structure in PDB. The panel of drugs is formed by 5 AD drugs and 5 AD nutraceutical drugs, and 20 non-AD drugs. All of these complexes formed by these 30 drugs and 49 proteins are transformed into dyadic arrays. Utilizing the prior knowledge learned from the drug panel, we propose a statistical classification (dry-lab). According to the wet-lab for the complex of amiloride and insulin degrading enzyme, and the complex of amiloride and neutral endopeptidase, we are confident that this dry-lab is reliable. As the consequences of the dry-lab, we discover many interesting implications. Especially, we show that possible causes of Tacrine, donepezil, galantamine and huperzine A cannot improve the level of ACh which is against to their original design purpose but they still prevent AD to be worse as Aβ deposition appeared. On the other hand, we recommend Miglitol and Atenolol as the safe and potent drugs to improve the level of ACh before Aβ deposition appearing. Moreover, some nutrients such as NADH and Vitamin E should be controlled because they may harm health if being used in wrong way and wrong time. Anyway, the insights shown in this study are valuable to be developed further. PMID:26650760

  5. Network actions of pentobarbital in the rat mesopontine tegmentum on sensory inflow through the spinothalamic tract.

    PubMed

    Namjoshi, Dhananjay R; McErlane, Shelly A; Taepavarapruk, Niwat; Soja, Peter J

    2009-08-01

    The recent discovery of a barbiturate-sensitive "general anesthesia switch" mechanism localized in the rat brain stem mesopontine tegmental anesthesia area (MPTA) has challenged the current view of the nonspecific actions of general anesthetic agents in the CNS. In this study we provide electrophysiological evidence that the antinociception, which accompanies the behavioral state resembling general anesthesia following pentobarbital (PB) microinjections into the MPTA of awake rats, could be accompanied by the attenuation of sensory transmission through the spinothalamic tract (STT). Following bilateral microinjections of PB into the MPTA spontaneous firing rate (SFR), antidromic firing index (FI), and sciatic (Sc) as well as sural (Su) nerve-evoked responses (ER) of identified lumbar STT neurons in the isoflurane-anesthetized rat were quantified using extracellular recording techniques. Microinjections of PB into the MPTA significantly suppressed the SFR (47%), magnitudes of Sc- (26%) and Su-ER (36%), and FI (41%) of STT neurons. Microinjections of PB-free vehicle control did not alter any of the above-cited electrophysiological parameters. The results from this study suggest that antinociception, which occurs during the anesthesia-like state following PB microinjections into the MPTA, may be due, in part, to (in)direct inhibition of STT neurons via switching mechanism(s) located in the MPTA. This study provides a provenance for investigating electrophysiologically the actions on STT neurons of other current agents used clinically to maintain the state of general anesthesia. PMID:19458144

  6. First results of mapping sporadic E with a passive observing network

    NASA Astrophysics Data System (ADS)

    Rice, D. D.; Sojka, J. J.; Eccles, J. V.; Raitt, J. W.; Brady, J. J.; Hunsucker, R. D.

    2011-12-01

    Sporadic E (Es) can have dramatic effects on communications in the HF and low VHF range, producing over-the-horizon propagation for signals normally restricted to line-of-sight, and sometimes blocking F region propagation of signals in the lower HF range. Measuring the E region winds believed to produce Es is difficult, and no practical means of predicting Es occurrence currently exists other than statistical models. We describe a low-cost observing network based on software-controlled receivers that continuously watches for Es in near-real time using oblique HF propagation from existing transmitters. Results from an 11-day pilot campaign in July 2008 demonstrated that even a limited number of receivers in the network can readily determine the presence and extent of Es patches. These observations indicate that Es often develops quickly over regions of several hundred kilometers rather than gradually drifting across an area. These widespread Es “blooms” have been observed near winter solstice and occasionally at other times of the year; their lifetime depends on the season but can be several hours during the summer. The current network allows the extent of Es in portions of North America to be evaluated: the geographical distribution of Es and bounds on the density of the layer are inferred from its effects on the ionospheric maximum usable frequency (MUF). This study demonstrates quantitatively that Es mapping can provide information about Es layer geographical growth and decay. The observed sudden widespread Es blooms are space weather events that can have significant impact on HF/lower VHF communications and propagation model predictions.

  7. Principles of data integration and interoperability in the GEO Biodiversity Observation Network

    NASA Astrophysics Data System (ADS)

    Saarenmaa, Hannu; Ó Tuama, Éamonn

    2010-05-01

    The goal of the Global Earth Observation System of Systems (GEOSS) is to link existing information systems into a global and flexible network to address nine areas of critical importance to society. One of these "societal benefit areas" is biodiversity and it will be supported by a GEOSS sub-system known as the GEO Biodiversity Observation Network (GEO BON). In planning the GEO BON, it was soon recognised that there are already a multitude of existing networks and initiatives in place worldwide. What has been lacking is a coordinated framework that allows for information sharing and exchange between the networks. Traversing across the various scales of biodiversity, in particular from the individual and species levels to the ecosystems level has long been a challenge. Furthermore, some of the major regions of the world have already taken steps to coordinate their efforts, but links between the regions have not been a priority until now. Linking biodiversity data to that of the other GEO societal benefit areas, in particular ecosystems, climate, and agriculture to produce useful information for the UN Conventions and other policy-making bodies is another need that calls for integration of information. Integration and interoperability are therefore a major theme of GEO BON, and a "system of systems" is very much needed. There are several approaches to integration that need to be considered. Data integration requires harmonising concepts, agreeing on vocabularies, and building ontologies. Semantic mediation of data using these building blocks is still not easy to achieve. Agreements on, or mappings between, the metadata standards that will be used across the networks is a major requirement that will need to be addressed early on. With interoperable metadata, service integration will be possible through registry of registries systems such as GBIF's forthcoming GBDRS and the GEO Clearinghouse. Chaining various services that build intermediate products using workflow

  8. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Bennartz, R.

    2015-12-01

    Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaitén, southern Chile, 2008; Puyehue-Cordón Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12-11, 11-8.6, 11-7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1) and no SO2-rich ash (0) and used as output. When neural network output was compared to the test data set, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  9. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Bennartz, R.

    2015-08-01

    Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaiteìn, southern Chile, 2008; Puyehue-Cordoìn Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12-11, 11-8.6, 11-7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1) and no SO2-rich ash (0) and used as output. When neural network output was compared to the test dataset, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  10. Novel sulfated xylogalactoarabinans from green seaweed Cladophora falklandica: Chemical structure and action on the fibrin network.

    PubMed

    Arata, Paula X; Quintana, Irene; Raffo, María Paula; Ciancia, Marina

    2016-12-10

    The water-soluble sulfated xylogalactoarabinans from green seaweed Cladophora falklandica are constituted by a backbone of 4-linked β-l-arabinopyranose units partially sulfated mainly on C3 and also on C2. Besides, partial glycosylation mostly on C2 with single stubs of β-d-xylopyranose, or single stubs of β-d-galactofuranose or short chains comprising (1→5)- and/or (1→6)-linkages, was also found. These compounds showed anticoagulant activity, although much lower than that of heparin. The effect of a purified fraction (F1) on the fibrin network was studied in detail. It modifies the kinetics of fibrin formation, suggesting an impaired polymerization process. Scanning electron microscopy showed a laxer conformation, with larger interstitial pores than the control. Accordingly, this network was lysed more easily. These fibrin properties would reduce the time of permanence of the clot in the blood vessel, inducing a lesser thrombogenic state. One of the possible mechanisms of its anticoagulant effect is direct thrombin inhibition. PMID:27577905

  11. Twitter K-H networks in action: Advancing biomedical literature for drug search.

    PubMed

    Hamed, Ahmed Abdeen; Wu, Xindong; Erickson, Robert; Fandy, Tamer

    2015-08-01

    The importance of searching biomedical literature for drug interaction and side-effects is apparent. Current digital libraries (e.g., PubMed) suffer infrequent tagging and metadata annotation updates. Such limitations cause absence of linking literature to new scientific evidence. This demonstrates a great deal of challenges that stand in the way of scientists when searching biomedical repositories. In this paper, we present a network mining approach that provides a bridge for linking and searching drug-related literature. Our contributions here are two fold: (1) an efficient algorithm called HashPairMiner to address the run-time complexity issues demonstrated in its predecessor algorithm: HashnetMiner, and (2) a database of discoveries hosted on the web to facilitate literature search using the results produced by HashPairMiner. Though the K-H network model and the HashPairMiner algorithm are fairly young, their outcome is evidence of the considerable promise they offer to the biomedical science community in general and the drug research community in particular. PMID:26065982

  12. A Sparse Representation-Based Deployment Method for Optimizing the Observation Quality of Camera Networks

    PubMed Central

    Wang, Chang; Qi, Fei; Shi, Guangming; Wang, Xiaotian

    2013-01-01

    Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel anisotropic sensing model of cameras, which provides a reliable measurement of the observation quality. The deployment is formulated as the selection of a subset of nodes from a redundant initial deployment with numerous cameras, which is an ℓ0 minimization problem. Then, we relax this non-convex optimization to a convex ℓ1 minimization employing the sparse representation. Therefore, the high quality deployment is efficiently obtained via convex optimization. Simulation results confirm the effectiveness of the proposed camera deployment algorithms. PMID:23989826

  13. Realtime Delivery of Alarms and Key Observables in a Deployed Hydrological Sensor Network

    NASA Astrophysics Data System (ADS)

    Marshall, I. W.; Price, M. C.; Li, H.; Boyd, N.; Boult, S.

    2007-12-01

    It has widely [1-3] been proposed that sensor networks are a good solution for environmental monitoring. However, this application presents a number of major challenges for current technology. In particular environmental science involves the study of coupled non-equilibrium dynamic processes that generate time series with non-stationary means and strongly dependent variables and which operate in the presence of large amounts of noise/interference (thermal, chemical and biological) and multiple quasi-periodic forcing factors (diurnal cycles, tides, etc). This typically means that any analysis must be based on large data samples obtained at multiple scales of space and time. In addition the areas of interest are large, relatively inaccessible and typically extremely hostile to electronic instrumentation. Our analysis of these factors has encouraged us to focus on this list of generic requirements; a) Node lifetime (between visits) should be 1 yr or greater b) Communication range should be ~250m c) Nodes should be portable, unobtrusive, low cost, etc. d) Networks are expected to be sparse since areas of interest are large and budgets are small However, the characteristics of each environment, the dominant processes operating in it and the measurements that are of interest are sufficiently different that the design of an appropriate sensor network solution is normally most determined by site specific constraints. Most importantly the opportunities for exploiting contextual correlation to disambiguate observations and improve the maintenance and robustness of a deployed sensor network are always site specific. We will describe the design and initial deployment of a hydrological sensor network we are developing to assess the hydro-dynamics of surface water drainage into Great Crowden Brook in the Peak District (UK). The complete network will observe soil moisture, temperature and rainfall on a number of transects across the valley, and will also investigate water quality

  14. Proto-Type Development of Optical Wide-field Patrol Network and Test Observation

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Yim, H.; Park, Y.; Hae, Y.; Park, S.; Choi, J.; Son, J.

    2014-09-01

    We present a prototype system developed for optical satellite tracking and its early test observation results. The main objective of the OWL (Optical Wide-field patroL) network is to get orbital information for Korean domestic satellites using optical means only and to maintain their orbital elements. The network is composed of 5 small wide-field telescopes deployed over the world. Each observing station is operated in fully robotic manner from receiving observation schedule to reporting the result, and controlled by the headquarter located in Daejeon, Korea, where orbit calculation and observation strategy will be determined. We developed a compact telescope system for robotic observation and easy maintenance. The telescope is 0.5m of aperture diameter with Rechey-Cretian configuration and its field of view is 1.1 deg. It is equipped with 4K CCD with 9um pixel size, and its pixel scale is 1.2 arcsec/pixel. A chopper wheel with variable speed is adopted to get more points in a single shot. The CCD camera and all the rotating parts (chopper wheel, de-rotator, and filter wheel) are integrated into one compact component called a wheel station. Each observing station is equipped with a fully automatic dome and heavy duty environment monitoring system. We could get an image every 20 seconds and up to ~100 trail points in a single exposure. Each point is time-tagged by ~1/1000 second precision. For one of best cases, we could estimate satellite position with RMS ~ 0.5km accuracy in the along-track with only 4 exposures (~100 points). The first system was installed at the Mongolian site after completing verification test at the testbed site in Daejeon, Korea. The second and third system will be installed in the end of this year.

  15. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  16. Thermodynamics based on the principle of least abbreviated action: Entropy production in a network of coupled oscillators

    SciTech Connect

    Garcia-Morales, Vladimir Pellicer, Julio; Manzanares, Jose A.

    2008-08-15

    We present some novel thermodynamic ideas based on the Maupertuis principle. By considering Hamiltonians written in terms of appropriate action-angle variables we show that thermal states can be characterized by the action variables and by their evolution in time when the system is nonintegrable. We propose dynamical definitions for the equilibrium temperature and entropy as well as an expression for the nonequilibrium entropy valid for isolated systems with many degrees of freedom. This entropy is shown to increase in the relaxation to equilibrium of macroscopic systems with short-range interactions, which constitutes a dynamical justification of the Second Law of Thermodynamics. Several examples are worked out to show that this formalism yields the right microcanonical (equilibrium) quantities. The relevance of this approach to nonequilibrium situations is illustrated with an application to a network of coupled oscillators (Kuramoto model). We provide an expression for the entropy production in this system finding that its positive value is directly related to dissipation at the steady state in attaining order through synchronization.

  17. Sensitivity of inverse estimation of 2004 elemental carbon emissions inventory in the United States to the choice of observational networks

    NASA Astrophysics Data System (ADS)

    Hu, Yongtao; Napelenok, Sergey L.; Odman, M. Talat; Russell, Armistead G.

    2009-08-01

    Choice of observational networks for inverse re-estimation of elemental carbon (EC) emissions in the United States impacts results. We convert the Thermal Optical Transmittance (TOT) EC measurements to the Thermal Optical Reflectance (TOR) equivalents to make full utilization of available networks in inverse modeling of EC using regional air quality model. Results show that using the Interagency Monitoring of Protected Visual Environments (IMPROVE) network gives significantly lower emissions estimate compared to using the Speciation Trends Network (STN) and other networks or using all available networks together. The re-estimate obtained by using IMPROVE sites alone made overall model performance worse compared to the bottom-up estimate of EC emissions, while both re-estimates, using STN (and others) sites and using all sites together, significantly improved the performance, showing higher robustness. Further analysis suggests that site density with respect to geographical location (downwind of source) impacts the robustness of a network's inverse re-estimate.

  18. Changing the culture of academic medicine: the C-Change learning action network and its impact at participating medical schools.

    PubMed

    Krupat, Edward; Pololi, Linda; Schnell, Eugene R; Kern, David E

    2013-09-01

    The culture of academic medicine has been described as hierarchical, competitive, and not highly supportive of female or minority faculty. In response to this, the authors designed the Learning Action Network (LAN), which was part of the National Initiative on Gender, Culture and Leadership in Medicine (C-Change). The LAN is a five-school consortium aimed at changing the organizational culture of its constituent institutions. The authors selected LAN schools to be geographically diverse and representative of U.S. medical schools. Institutional leaders and faculty representatives from constituent schools met twice yearly for four years (2006-2010), forming a cross-institutional learning community. Through their quarterly listing of institutional activities, schools reported a wide array of actions. Most common were increased faculty development and/or mentoring, new approaches to communication, and adoption of new policies and procedures. Other categories included data collection/management, engagement of key stakeholders, education regarding gender/diversity, and new/expanded leadership positions. Through exit interviews, most participants reported feeling optimistic about maintaining the momentum of change. However, some, especially in schools with leadership changes, expressed uncertainty. Participants reported that they felt that the LAN enabled, empowered, facilitated, and/or caused the reported actions.For others who might want to work toward changing the culture of academic medicine, the authors offer several lessons learned from their experiences with C-Change. Most notably, people, structures, policies, and reward systems must be put into place to support cultural values, and broad-based support should be created in order for changes to persist when inevitable transitions in leadership occur. PMID:23887002

  19. An fMRI study of joint action-varying levels of cooperation correlates with activity in control networks.

    PubMed

    Chaminade, Thierry; Marchant, Jennifer L; Kilner, James; Frith, Christopher D

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  20. The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Keller, John M.

    2016-03-01

    We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

  1. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action

    PubMed Central

    Cheung, Pak-yan P.; Pfeffer, Suzanne R.

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed. PMID:27014693

  2. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  3. Integrated Carbon Observation System (ICOS) ecosystem network: current state and future perspectives

    NASA Astrophysics Data System (ADS)

    Gielen, B.; Op de Beeck, M.; Ceulemans, R.; Janssens, I.; Loustau, D.; Valentini, R.; Papale, D.

    2013-12-01

    Atmospheric concentrations of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) are increasing due to emissions related to human activity, affecting the global climate. Natural sinks remove a fraction of the GHG anthropogenic excess at the global level. The characterization of greenhouse gases atmospheric burden and fluxes, both anthropogenic and natural, are needed at the global and regional scale, making use of all available information in an integrated framework. The Integrated Carbon Observation System (ICOS) research infrastructure will address this issue by providing the community with systematic measurements of a suite of atmospheric, terrestrial ecosystem and oceanic measurements. The ecosystem network comprises three station classes, for which variables are collected with different intensity. These stations are well distributed among the major European ecosystem types and cover most climatic zones in Europe. The Ecosystem Thematic Center (ETC) is coordinating the ICOS ecosystem network providing assistance with instruments and methods, testing and developing new measurement techniques and associated processing algorithms; also ensuring a high level of data standardization, uncertainty analysis and database services in coordination with the ICOS carbon portal. The ETC is also coordinating the drafting of the protocols describing in detail how measurements will be collected at all ecosystem stations, in order to guarantee inter comparability. This is done in close collaboration with experts in the field and with the other existing ecological and meteorological networks (NEON, Ameriflux, ICP -forests, MWO, TERN, ...). This presentation will focus on the current state of the ICOS ecosystem network, on the data products and the potential user community.

  4. Undiagnosed Diseases Network International (UDNI): White paper for global actions to meet patient needs.

    PubMed

    Taruscio, Domenica; Groft, Stephen C; Cederroth, Helene; Melegh, Béla; Lasko, Paul; Kosaki, Kenjiro; Baynam, Gareth; McCray, Alexa; Gahl, William A

    2015-12-01

    In 2008, the National Institutes of Health's (NIH) Undiagnosed Disease Program (UDP) was initiated to provide diagnoses for individuals who had long sought one without success. As a result of two international conferences (Rome 2014 and Budapest 2015), the Undiagnosed Diseases Network International (UDNI) was established, modeled in part after the NIH UDP. Undiagnosed diseases are a global health issue, calling for an international scientific and healthcare effort. To meet this demand, the UDNI has built a consensus framework of principles, best practices and governance; the Board of Directors reflects its international character, as it includes experts from Australia, Canada, Hungary, Italy, Japan and the USA. The UDNI involves centers with internationally recognized expertise, and its scientific resources and know-how aim to fill the knowledge gaps that impede diagnosis. Consequently, the UDNI fosters the translation of research into medical practice. Active patient involvement is critical; the Patient Advisory Group is expected to play an increasing role in UDNI activities. All information for physicians and patients will be available at the UDNI website. PMID:26596705

  5. Spin filtering and switching action in a diamond network with magnetic-nonmagnetic atomic distribution.

    PubMed

    Pal, Biplab; Dutta, Paramita

    2016-01-01

    We propose a simple model quantum network consisting of diamond-shaped plaquettes with deterministic distribution of magnetic and non-magnetic atoms in presence of a uniform external magnetic flux in each plaquette and predict that such a simple model can be a prospective candidate for spin filter as well as flux driven spintronic switch. The orientations and the amplitudes of the substrate magnetic moments play a crucial role in the energy band engineering of the two spin channels which essentially gives us a control over the spin transmission leading to a spin filtering effect. The externally tunable magnetic flux plays an important role in inducing a switch on-switch off effect for both the spin states indicating the behavior like a spintronic switch. Even a correlated disorder configuration in the on-site potentials and in the magnetic moments may lead to disorder-induced spin filtering phenomenon where one of the spin channel gets entirely blocked leaving the other one transmitting over the entire allowed energy regime. All these features are established by evaluating the density of states and the two terminal transmission probabilities using the transfer-matrix formalism within a tight-binding framework. Experimental realization of our theoretical study may be helpful in designing new spintronic devices. PMID:27600958

  6. Spin filtering and switching action in a diamond network with magnetic-nonmagnetic atomic distribution

    PubMed Central

    Pal, Biplab; Dutta, Paramita

    2016-01-01

    We propose a simple model quantum network consisting of diamond-shaped plaquettes with deterministic distribution of magnetic and non-magnetic atoms in presence of a uniform external magnetic flux in each plaquette and predict that such a simple model can be a prospective candidate for spin filter as well as flux driven spintronic switch. The orientations and the amplitudes of the substrate magnetic moments play a crucial role in the energy band engineering of the two spin channels which essentially gives us a control over the spin transmission leading to a spin filtering effect. The externally tunable magnetic flux plays an important role in inducing a switch on-switch off effect for both the spin states indicating the behavior like a spintronic switch. Even a correlated disorder configuration in the on-site potentials and in the magnetic moments may lead to disorder-induced spin filtering phenomenon where one of the spin channel gets entirely blocked leaving the other one transmitting over the entire allowed energy regime. All these features are established by evaluating the density of states and the two terminal transmission probabilities using the transfer-matrix formalism within a tight-binding framework. Experimental realization of our theoretical study may be helpful in designing new spintronic devices. PMID:27600958

  7. Molecular profiling and computational network analysis of TAZ-mediated mammary tumorigenesis identifies actionable therapeutic targets.

    PubMed

    Frangou, Costa; Li, Ying-Wei; Shen, He; Yang, Nuo; Wilson, Kayla E; Blijlevens, Maxime; Guo, Jin; Nowak, Norma J; Zhang, Jianmin

    2014-12-15

    Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer (BC) cases and contributes disproportionately to BC mortality. TAZ, a key transducer of the Hippo pathway, has recently been demonstrated to confer breast cancer stem cell (CSC) traits. However, TAZ target genes and the underlying transcriptional regulatory pathways responsible for the CSC phenomenon remain unknown. Here, we demonstrate that the oncogenic activity of TAZ is essential for propagation of the malignant phenotype. We further show that constitutively active TAZ tumor-derived cells exhibit unique tumor-initiating properties, including increased self-renewal and metastatic seeding potential, acquired chemotherapy resistance and the ability to efficiently regenerate tumor formation in vivo. Combined digital RNA expression analysis and computational network approaches identify several signaling pathways that distinguish breast cancer tumor-initiating cells (T-ICs) from bulk tumor cells. We demonstrate the utility of this approach by repositioning the small molecule tyrosine kinase inhibitor, Dasatinib, which selectively targets T-ICs and inhibits TNBC growth in vivo. PMID:25361000

  8. Geomagnetic storm's precursors observed from 2001 to 2007 with the Global Muon Detector Network (GMDN)

    NASA Astrophysics Data System (ADS)

    Rockenbach, M.; Dal Lago, A.; Gonzalez, W. D.; Munakata, K.; Kato, C.; Kuwabara, T.; Bieber, J.; Schuch, N. J.; Duldig, M. L.; Humble, J. E.; Al Jassar, H. K.; Sharma, M. M.; Sabbah, I.

    2011-08-01

    We use complementary observations from the prototype and expanded Global Muon Detector Network (GMDN) and the Advanced Composition Explorer (ACE) satellite to identify precursors of geomagnetic storm events. The GMDN was completed and started operation in March 2006 with the addition of the Kuwait detector, complementing the detectors at Nagoya, Hobart, and São Martinho da Serra. Analyzed geomagnetic storms sorted by their intensity as measured by the Disturbance storm-time (Dst) index. Between March 2001 and December 2007, 122 Moderate Storms (MS), 51 Intense Storms (IS), and 8 Super Storms (SS) were monitored by the GMDN. The major conclusions are (i) the percentage of the events accompanied by the precursors prior to the Sudden Storm Commencement (SSC) increases with increasing peak Dst, (ii) 15% of MSs, 30% of ISs, and 86% of SSs are accompanied by cosmic ray precursors observed on average 7.2 hours in advance of the SSC.

  9. Spatial boundaries of Aerosol Robotic Network observations over the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Rudich, Y.; Koren, I.

    2016-03-01

    Accurate knowledge of aerosol variability on a relatively high spatiotemporal scale is needed for better assessment of aerosol radiative effects and aerosol-climate interactions. We investigated the spatial boundaries of the Aerosol Robotic Network (AERONET) observations over the Mediterranean basin using a statistical approach. We used 13 years (2002-2014) of aerosol optical depth (AOD) measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 15 AERONET sites around the Mediterranean basin. The gridded correlation maps show moderate to high correlations (R > 0.5) around each AERONET site up to ~200-500 km radius depending on location. Such analyses provide information on the spatial domain in which the AERONET measurements can be reliably used per site. The statistical model provides a better daytime AOD product on finer temporal resolution with higher spatial coverage as compared to using AERONET/MODIS observations separately. The findings from this study can be useful for the assimilation-based model forecasting of aerosol properties.

  10. Noctilucent clouds: modern ground-based photographic observations by a digital camera network.

    PubMed

    Dubietis, Audrius; Dalin, Peter; Balčiūnas, Ričardas; Černis, Kazimieras; Pertsev, Nikolay; Sukhodoev, Vladimir; Perminov, Vladimir; Zalcik, Mark; Zadorozhny, Alexander; Connors, Martin; Schofield, Ian; McEwan, Tom; McEachran, Iain; Frandsen, Soeren; Hansen, Ole; Andersen, Holger; Grønne, Jesper; Melnikov, Dmitry; Manevich, Alexander; Romejko, Vitaly

    2011-10-01

    Noctilucent, or "night-shining," clouds (NLCs) are a spectacular optical nighttime phenomenon that is very often neglected in the context of atmospheric optics. This paper gives a brief overview of current understanding of NLCs by providing a simple physical picture of their formation, relevant observational characteristics, and scientific challenges of NLC research. Modern ground-based photographic NLC observations, carried out in the framework of automated digital camera networks around the globe, are outlined. In particular, the obtained results refer to studies of single quasi-stationary waves in the NLC field. These waves exhibit specific propagation properties--high localization, robustness, and long lifetime--that are the essential requisites of solitary waves. PMID:22016249

  11. Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description

    NASA Astrophysics Data System (ADS)

    Galle, Bo; Johansson, Mattias; Rivera, Claudia; Zhang, Yan; Kihlman, Manne; Kern, Christoph; Lehmann, Thomas; Platt, Ulrich; Arellano, Santiago; Hidalgo, Silvana

    2010-03-01

    This paper presents the global project Network for Observation of Volcanic and Atmospheric Change (NOVAC), the aim of which is automatic gas emission monitoring at active volcanoes worldwide. Data from the network will be used primarily for volcanic risk assessment but also for geophysical research, studies of atmospheric change, and ground validation of satellite instruments. A novel type of instrument, the scanning miniaturized differential optical absorption spectroscopy (Mini-DOAS) instrument, is applied in the network to measure volcanic gas emissions by UV absorption spectroscopy. The instrument is set up 5-10 km downwind of the volcano under study, and typically two to four instruments are deployed at each volcano in order to cover different wind directions and to facilitate measurements of plume height and plume direction. Two different versions of the instrument have been developed. Version I was designed to be a robust and simple instrument for measurement of volcanic SO2 emissions at high time resolution with minimal power consumption. Version II was designed to allow the best possible spectroscopy and enhanced flexibility in regard to measurement geometry at the cost of larger complexity, power consumption, and price. In this paper the project is described, as well as the developed software, the hardware of the two instrument versions, measurement strategies, data communication, and archiving routines. As of April 2009 a total of 46 instruments have been installed at 18 volcanoes worldwide. As a typical example, the installation at Tungurahua volcano in Ecuador is described, together with some results from the first 21 months of operation at this volcano.

  12. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  13. The North Alabama Severe Thunderstorm Observations, Research, and Monitoring Network (STORMnet)

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.

  14. Global muon detector network observing geomagnetoc storm's precursor since march 2001

    NASA Astrophysics Data System (ADS)

    da Silva, Marlos; Dal Lago, Alisson; Demítrio Gonzalez Alarcon, Walter; Munakata, Kazuoki; Fushishita, Akira; Kuwabara, Takao; Bieber, John W.; Schuch, Nelson Jorge; Duldig, Marcus L.; Humble, John E.; Sabbah, Ismail

    We use complementary observations from the prototype Global Muon Detector Network (GMDN) and the Advanced Composition Explorer satellite to identify precursors of geomagnetic storm events. The GMDN was completed in March 2006 with the installation of the Kuwait detector, in addition to detectors at Nagoya, Hobart and São Martinho da Serra. In this work, we ana-a lyze geomagnetic storms sorted by their intensity as measured by the Disturbance storm-time (Dst) index. Between March 2001 and December 2007, 89 Moderate Storms (MS), 38 Intense Storms (IS) and 7 Super Storms (SS) were monitored by the muon detector network. We find that the percentage of the events accompanied by the precursors prior to the Sudden Storm Commencement (SSC) increases with increasing peak Dst. We also find that 15% of MSs, 30% of ISs and 86% of SSs are accompanied by cosmic ray precursors observed on average 7.2 hours in advance of the SSC. We discuss the interplanetary structure responsible for these storms and examine the possibility of forecasting them using cosmic ray precursors.

  15. A Coalitional Game for Distributed Inference in Sensor Networks With Dependent Observations

    NASA Astrophysics Data System (ADS)

    He, Hao; Varshney, Pramod K.

    2016-04-01

    We consider the problem of collaborative inference in a sensor network with heterogeneous and statistically dependent sensor observations. Each sensor aims to maximize its inference performance by forming a coalition with other sensors and sharing information within the coalition. It is proved that the inference performance is a nondecreasing function of the coalition size. However, in an energy constrained network, the energy consumption of inter-sensor communication also increases with increasing coalition size, which discourages the formation of the grand coalition (the set of all sensors). In this paper, the formation of non-overlapping coalitions with statistically dependent sensors is investigated under a specific communication constraint. We apply a game theoretical approach to fully explore and utilize the information contained in the spatial dependence among sensors to maximize individual sensor performance. Before formulating the distributed inference problem as a coalition formation game, we first quantify the gain and loss in forming a coalition by introducing the concepts of diversity gain and redundancy loss for both estimation and detection problems. These definitions, enabled by the statistical theory of copulas, allow us to characterize the influence of statistical dependence among sensor observations on inference performance. An iterative algorithm based on merge-and-split operations is proposed for the solution and the stability of the proposed algorithm is analyzed. Numerical results are provided to demonstrate the superiority of our proposed game theoretical approach.

  16. Earth observation sensor calibration using a global instrumented and automated network of test sites (GIANTS)

    NASA Astrophysics Data System (ADS)

    Teillet, Phil M.; Thome, Kurtis J.; Fox, Nigel P.; Morisette, Jeffrey T.

    2001-12-01

    Calibration is critical for useful long-term data records, as well as independent data quality control. However, in the context of Earth observation sensors, post-launch calibration and the associated quality assurance perspective are far from operational. This paper explores the possibility of establishing a global instrumented and automated network of test sites (GIANTS) for post-launch radiometric calibration of Earth observation sensors. It is proposed that a small number of well-instrumented benchmark test sites and data sets for calibration be supported. A core set of sensors, measurements, and protocols would be standardized across all participating test sites and the measurement data sets would undergo identical processing at a central secretariat. The network would provide calibration information to supplement or substitute for on-board calibration, would reduce the effort required by individual agencies, and would provide consistency for cross-platform studies. Central to the GIANTS concept is the use of automation, communication, coordination, visibility, and education, all of which can be facilitated by greater use of advanced in-situ sensor and telecommunication technologies. The goal is to help ensure that the resources devoted to remote sensing calibration benefit the intended user community and facilitate the development of new calibration methodologies (research and development) and future specialists (education and training).

  17. Current status of the Essential Variables as an instrument to assess the Earth Observation Networks in Europe

    NASA Astrophysics Data System (ADS)

    Blonda, Palma; Maso, Joan; Bombelli, Antonio; Plag, Hans Peter; McCallum, Ian; Serral, Ivette; Nativi, Stefano Stefano

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. Essential Variables (EVs) are defined by ConnectinGEO as "a minimal set of variables that determine the system's state and developments, are crucial for predicting system developments, and allow us to define metrics that measure the trajectory of the system". . Specific application-dependent characteristics, such as spatial and temporal resolution of observations and data quality thresholds, are not generally included in the EV definition. This definition and the present status of EV developments in different societal benefit areas was elaborated at the ConnectinGEO workshop "Towards a sustainability process for GEOSS Essential Variables (EVs)," which was held in Bari on June 11-12, 2015 (http://www.gstss.org/2015_Bari/). Presentations and reports contributed by a wide range of communities provided important inputs from different sectors for assessing the status of the EV development. In most thematic areas, the development of sets of EVs is a community process leading to an agreement on what is essential for the goals of the community. While there are many differences across the communities in the details of the criteria, methodologies and processes used to develop sets of EVs, there is also a considerable common core across the communities, particularly those with a more advanced discussion. In particular, there is some level of overlap in different topics (e.g., Climate and Water), and there is a potential to develop an integrated set of EVs common to several thematic areas as well as specific ones that satisfy only one community. The thematic areas with

  18. The Quiet Sun Network at Subarcsecond Resolution: VAULT Observations and Radiative Transfer Modeling of Cool Loops

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Gouttebroze, P.; Vourlidas, A.

    2007-08-01

    One of the most enigmatic regions of the solar atmosphere is the transition region (TR), corresponding to plasmas with temperatures intermediate of the cool, few thousand K, chromosphere and the hot, few million K, corona. The traditional view is that the TR emission originates from a thin thermal interface in hot coronal structures, connecting their chromosphere with their corona. This paradigm fails badly for cool plasmas (~T<105 K), since it predicts emission orders of magnitude less than what it is observed. It was therefore proposed that the ``missing'' TR emission could originate from tiny, isolated from the hot corona, cool loops at TR temperatures. A major problem in investigating this proposal is the very small sizes of the hypothesized cool loops. Here, we report the first spatially resolved observations of subarcsecond-scale looplike structures seen in the Lyα line made by the Very High Angular Resolution Ultraviolet Telescope (VAULT). The subarcsecond (~0.3") resolution of VAULT allows us to directly view and resolve looplike structures in the quiet Sun network. We compare the observed intensities of these structures with simplified radiative transfer models of cool loops. The reasonable agreement between the models and the observations indicates that an explanation of the observed fine structure in terms of cool loops is plausible.

  19. A polar cap absorption event observed using the Southern Hemisphere SuperDARN radar network.

    NASA Astrophysics Data System (ADS)

    Breed, A.; Morris, R.; Parkinson, M.; Duldig, M.; Dyson, P.

    A large X5 class solar flare and coronal mass ejection were observed emanating from the sun on July 14, 2000. Approximately 10 minutes later a large cosmic ray ground level enhancement was observed using neutron monitors located at Mawson station (70.5°S CGM), Antarctica; Large increases in proton flux were also observed using satellites during this time. This marked the start of a large polar cap absorption event with cosmic noise absorption peaking at 30 dB, as measured by a 30 MHz riometer located at Casey station (80.4°S CGM), Antarctica. The spatial evolution of this event and its subsequent recovery were studied using the Southern Hemisphere SuperDARN radar network, including the relatively low latitude observation provided by the Tasman International Geospace Environment Radar (TIGER) located on Bruny Island (54.6°S GGM), Tasmania. When the bulk of the CME arrived at the Earth two days later it triggered an intense geomagnetic storm. This paper presents observations of the dramatic sequence of events.

  20. The French contribution to the voluntary observing ships network of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G.; Roubaud, F.

    2015-11-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  1. Building beyond the Evaluation Of Environmental Education and Sustainable Development in African Schools and Communities: The Women Global Green Action Network (WGGAN) Africa Perspective

    ERIC Educational Resources Information Center

    Enie, Rosemary Olive Mbone

    2006-01-01

    This article describes the Community Health Education and School Sanitation (CHESS) Project, an initiative by the Women Global Green Action Network International to support community-based environmental projects in Africa. The CHESS Project uses women, children and youth to develop more sustainable health and sanitation systems in urban and rural…

  2. Association Between Social Network Communities and Health Behavior: An Observational Sociocentric Network Study of Latrine Ownership in Rural India

    PubMed Central

    Shakya, Holly B.; Christakis, Nicholas A.; Fowler, James H.

    2014-01-01

    Objectives. We identified communities of interconnected people that might serve as normative reference groups for individual-level behavior related to latrine adoption. Methods. We applied an algorithmic social network method to determine the network community from respondent-reported social ties of 16 403 individuals in 75 villages in rural Karnataka, India; data were collected from 2006 to 2008. We used multilevel modeling to test the association between latrine ownership and community-level and village-level latrine ownership. We also investigated the degree to which network cohesion affected individual latrine ownership. Results. Three levels of social contacts (direct friends, social network community, and village) significantly predicted individual latrine ownership, but the strongest effect was found at the level of social network communities. In communities with high levels of network cohesion, the likelihood was decreased that any individual would own a latrine; this effect was significant only at lower levels of latrine ownership, suggesting a role for network cohesion in facilitating the nonownership norm. Conclusions. Although many international health and development interventions target village units, these results raise the possibility that the optimal target for public health interventions may not be determined through geography but through social network interactions. PMID:24625175

  3. NOAA’s Global Earth Observation - Integrated Data Environment (GEO-IDE) in Action: Integration of Gridded Datasets

    NASA Astrophysics Data System (ADS)

    McCulloch, L.; McDonald, K. R.; Hankin, S. C.; Habermann, T.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is making substantial progress in enhancing the ability of users to discover, access, and use the vast amount of environmental information that it collects, maintains, and stores. It has defined a Global Earth Observation - Integrated Data Environment (GEO-IDE) initiative to promote and enable the interoperability of its data management services and to ensure that they are compatible and aligned with interagency and international efforts that are underway (e.g. the Global Earth Observation System of Systems and the Integrated Ocean Observing System). As an example of GEO-IDE in action, NOAA is developing a prototype gridded dataset integration capability. The initial focus will be to develop a Thematic Realtime Environmental Distributed Data Services (THREDDS) catalog of NOAA’s gridded datasets (e.g. model outputs, satellite products, HF radar observations, etc.) that are currently available in netCDF-CF format and enable all services that are readily available including: Data Access Protocol, Open Geospatial Consortium’s Web Map Service and Web Coverage Service. A parallel activity will be to harvest, repair, and extend metadata for the datasets to improve the ability for users to discover and then make use of the datasets. Once the above steps have been completed the focus will be to work with other data providers to expand the holdings that are accessible via this mechanism. This effort attempts to demonstrate the effectiveness of focusing on a single structural data type (e.g. gridded data) as an approach to integration. This poster will provide an overview of this effort, the technologies and standards being utilized, and will highlight the potential benefits to both NOAA and its scientific user community.

  4. Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; O'Connor, E. J.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C. R.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T.; Lonka, H.; Kurri, M.; Heinonen, J.; Moisseev, D.; Asmi, E.; Aaltonen, V.; Nordbo, A.; Rodriguez, E.; Lihavainen, H.; Laaksonen, A.; Lehtinen, K. E. J.; Laurila, T.; Petäjä, T.; Kulmala, M.; Viisanen, Y.

    2014-05-01

    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish

  5. A Network Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Ge-Gen-Qin-Lian Decoction for Treatment of Type 2 Diabetes

    PubMed Central

    Li, Huiying; Zhao, Linhua; Zhang, Bo; Jiang, Yuyu; Wang, Xu; Guo, Yun; Liu, Hongxing; Li, Shao; Tong, Xiaolin

    2014-01-01

    Traditional Chinese medicine (TCM) herbal formulae can be valuable therapeutic strategies and drug discovery resources. However, the active ingredients and action mechanisms of most TCM formulae remain unclear. Therefore, the identification of potent ingredients and their actions is a major challenge in TCM research. In this study, we used a network pharmacology approach we previously developed to help determine the potential antidiabetic ingredients from the traditional Ge-Gen-Qin-Lian decoction (GGQLD) formula. We predicted the target profiles of all available GGQLD ingredients to infer the active ingredients by clustering the target profile of ingredients with FDA-approved antidiabetic drugs. We also applied network target analysis to evaluate the links between herbal ingredients and pharmacological actions to help explain the action mechanisms of GGQLD. According to the predicted results, we confirmed that a novel antidiabetic ingredient from Puerariae Lobatae radix (Ge-Gen), 4-Hydroxymephenytoin, increased the insulin secretion in RIN-5F cells and improved insulin resistance in 3T3-L1 adipocytes. The network pharmacology strategy used here provided a powerful means for identifying bioactive ingredients and mechanisms of action for TCM herbal formulae, including Ge-Gen-Qin-Lian decoction. PMID:24527048

  6. Gaia Science Alerts and the Observing Facilities of the Serbian-Bulgarian Mini-Network Telescopes

    NASA Astrophysics Data System (ADS)

    Damljanovic, G.; Vince, O.; Boeva, S.

    2014-06-01

    The astrometric European Space Agency (ESA) Gaia mission was launched in December 19, 2013. One of the tasks of the Gaia mission is production of an astrometric catalog of over one billion stars and more than 500000 extragalactic sources. The quasars (QSOs), as extragalactic sources and radio emitters, are active galactic nuclei objects (AGNs) whose coordinates are well determined via Very Long Baseline Interferometry (VLBI) technique and may reach sub-milliarcsecond accuracy. The QSOs are the defining sources of the quasi-inertial International Celestial Reference Frame (ICRF) because of their core radio morphology, negligible proper motions (until sub-milliarcsecond per year), and apparent point-like nature. Compact AGNs, visible in optical domain, are useful for a direct link of the future Gaia optical reference frame with the most accurate radio one. Apart from the above mentioned activities, Gaia has other goals such as follow-up of transient objects. One of the most important Gaia's requirements for photometric alerts is a fast observation and reduction response, that is, submition of observations within 24 hours. For this reason we have developed a pipeline. In line with possibilities of our new telescope (D(cm)/F(cm)=60/600) at the Astronomical Station Vidojevica (ASV, of the Astronomical Observatory in Belgrade), we joined the Gaia-Follow-Up Network for Transients Objects (Gaia-FUN-TO) for the photometric alerts. Moreover, in view of the cooperation with Bulgarian colleagues (in the first place, SV), one of us (GD) initiated a local mini-network of Serbian - Bulgarian telescopes useful for the Gaia-FUN-TO and other astronomical purposes. During the next year we expect a new 1.4 m telescope at ASV site. The speed of data processing (from observation to calibration server) could be one day. Here, we present an overview of our activities in the Gaia-FUN-TO which includes establishing Serbian - Bulgarian mini-network (of five telescopes at three sites, ASV in

  7. Evaluation of the Federal-State Cooperative observation well network in upstate New York, 1995-97

    USGS Publications Warehouse

    Reynolds, Richard J.

    2000-01-01

    The U.S. Geological Survey?s Federal-State cooperative observation well network in upstate New York was evaluated in terms of areal coverage, objectives, and short- and long-term expansion plans. This report presents a history of the observation well network in upstate New York and depicts, on maps, the distribution of observation wells with respect to climatic regions, physiographic regions, and aquifer type (bedrock, till, and stratified drift) within New York State. It also describes siting criteria for observation wells, outlines the objectives of three types of observati