Science.gov

Sample records for action observation task

  1. Facilitation effect of observed motor deviants in a cooperative motor task: Evidence for direct perception of social intention in action.

    PubMed

    Quesque, François; Delevoye-Turrell, Yvonne; Coello, Yann

    2016-08-01

    Spatiotemporal parameters of voluntary motor action may help optimize human social interactions. Yet it is unknown whether individuals performing a cooperative task spontaneously perceive subtly informative social cues emerging through voluntary actions. In the present study, an auditory cue was provided through headphones to an actor and a partner who faced each other. Depending on the pitch of the auditory cue, either the actor or the partner were required to grasp and move a wooden dowel under time constraints from a central to a lateral position. Before this main action, the actor performed a preparatory action under no time constraint, consisting in placing the wooden dowel on the central location when receiving either a neutral ("prêt"-ready) or an informative auditory cue relative to who will be asked to perform the main action (the actor: "moi"-me, or the partner: "lui"-him). Although the task focused on the main action, analysis of motor performances revealed that actors performed the preparatory action with longer reaction times and higher trajectories when informed that the partner would be performing the main action. In this same condition, partners executed the main actions with shorter reaction times and lower velocities, despite having received no previous informative cues. These results demonstrate that the mere observation of socially driven motor actions spontaneously influences the low-level kinematics of voluntary motor actions performed by the observer during a cooperative motor task. These findings indicate that social intention can be anticipated from the mere observation of action patterns. PMID:26288247

  2. I know what I will see: action-specific motor preparation activity in a passive observation task.

    PubMed

    Bozzacchi, Chiara; Spinelli, Donatella; Pitzalis, Sabrina; Giusti, Maria Assunta; Di Russo, Francesco

    2015-06-01

    Literature on mirror neurons has shown that seeing someone preparing to move generates in the motor areas of the observers a brain activity similar to that generated when the subject prepares his own actions. Thus, the 'mirroring' of action would not be limited to the execution phase but also involves the preparation process. Here we confirm and extend this notion showing that, just as different brain activities prepare different voluntary actions, also different brain activities prepare to observe different predictable actions. Videos of two different actions from egocentric point of view were presented in separate blocks: (i) grasping of a cup and (ii) impossible grasping of a cup. Subjects had to passively observe the videos showing object-directed hand movements. Through the use of the event-related potentials, we found a cortical activity before observing the actions, which was very similar to the one recorded prior to the actual execution of that same action, in terms of both topography and latency. This anticipatory activity does not represent a general preparation state but an action-specific state, because being dependent on the specific meaning of the forthcoming action. These results reinforce our knowledge about the correspondence between action, perception and cognition. PMID:25261822

  3. Stereoscopically Observing Manipulative Actions

    PubMed Central

    Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.

    2016-01-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  4. Stereoscopically Observing Manipulative Actions.

    PubMed

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  5. Tactile perception during action observation.

    PubMed

    Vastano, Roberta; Inuggi, Alberto; Vargas, Claudia D; Baud-Bovy, Gabriel; Jacono, Marco; Pozzo, Thierry

    2016-09-01

    It has been suggested that tactile perception becomes less acute during movement to optimize motor control and to prevent an overload of afferent information generated during action. This empirical phenomenon, known as "tactile gating effect," has been associated with mechanisms of sensory feedback prediction. However, less attention has been given to the tactile attenuation effect during the observation of an action. The aim of this study was to investigate whether and how the observation of a goal-directed action influences tactile perception as during overt action. In a first experiment, we recorded vocal reaction times (RTs) of participants to tactile stimulations during the observation of a reach-to-grasp action. The stimulations were delivered on different body parts that could be either congruent or incongruent with the observed effector (the right hand and the right leg, respectively). The tactile stimulation was contrasted with a no body-related stimulation (an auditory beep). We found increased RTs for tactile congruent stimuli compared to both tactile incongruent and auditory stimuli. This effect was reported only during the observation of the reaching phase, whereas RTs were not modulated during the grasping phase. A tactile two-alternative forced-choice (2AFC) discrimination task was then conducted in order to quantify the changes in tactile sensitivity during the observation of the same goal-directed actions. In agreement with the first experiment, the tactile perceived intensity was reduced only during the reaching phase. These results suggest that tactile processing during action observation relies on a process similar to that occurring during action execution. PMID:27161552

  6. Environmental Educational Youth Action Task Program

    ERIC Educational Resources Information Center

    Ab Rahman, Nik Norulaini Nik; Omar, Fatehah Mohd; Kalia, Noorliza; Hasmi, Mohammad

    2008-01-01

    An educational environmental youth camp was held comprising of fifty one 16-year old secondary students and facilitated by volunteers from the university and Friends of the Earth, a non profit organization in Penang. A weekend camp on youth action task program was held at an isolated beach packed with activities that were structured towards…

  7. Joint action changes valence-based action coding in an implicit attitude task.

    PubMed

    Stenzel, Anna; Liepelt, Roman

    2016-09-01

    Recent studies suggest that co-acting with another person induces a problem to discriminate between one's own and the other's actions which can be resolved by emphasizing action features that discriminate best between both persons' actions in a given task context. Mostly, overt action features like the spatial position of responses have been suggested as discriminating action features. In the present study, we tested whether non-externally perceivable, covert action features can be used for resolving the action discrimination problem during joint action. Therefore, we compared task performance between a joint and an individual version of the Go/Nogo Association Task, a task requiring the association of a valence to the response. We found a larger implicit attitude effect in the joint than in the individual setting for person-related (self and other, Experiment 1) as well as for non-person-related attitude objects (fruit and insect, Experiment 2) suggesting that the weight of valence information is increased in the internal coding of responses when valence discriminates between both responses. In contrast, we found a smaller implicit attitude effect in a person present setting than an individual setting (Experiment 3) indicating that the enhanced implicit attitude effect observed in the joint settings of Experiments 1 and 2 is not due to social facilitation. Our results suggest that action discrimination during joint action can rely on covert action features. The results are in line with the referential coding account, and specify the kind of action features that are represented when sharing a task with another person. PMID:26215432

  8. Task Force Report on Affirmative Action.

    ERIC Educational Resources Information Center

    1978

    Issues raised by affirmative action are explored and a legislative agenda for reform is offered. Part One of the report examines affirmative action in practice and includes discussions of the Bakke case and affirmative action in the federal government. Part Two considers the legal aspect of affirmative action and reverse discrimination, and Part…

  9. Slowing after Observed Error Transfers across Tasks

    PubMed Central

    Wang, Lijun; Pan, Weigang; Tan, Jinfeng; Liu, Congcong; Chen, Antao

    2016-01-01

    After committing an error, participants tend to perform more slowly. This phenomenon is called post-error slowing (PES). Although previous studies have explored the PES effect in the context of observed errors, the issue as to whether the slowing effect generalizes across tasksets remains unclear. Further, the generation mechanisms of PES following observed errors must be examined. To address the above issues, we employed an observation-execution task in three experiments. During each trial, participants were required to mentally observe the outcomes of their partners in the observation task and then to perform their own key-press according to the mapping rules in the execution task. In Experiment 1, the same tasksets were utilized in the observation task and the execution task, and three error rate conditions (20%, 50% and 80%) were established in the observation task. The results revealed that the PES effect after observed errors was obtained in all three error rate conditions, replicating and extending previous studies. In Experiment 2, distinct stimuli and response rules were utilized in the observation task and the execution task. The result pattern was the same as that in Experiment 1, suggesting that the PES effect after observed errors was a generic adjustment process. In Experiment 3, the response deadline was shortened in the execution task to rule out the ceiling effect, and two error rate conditions (50% and 80%) were established in the observation task. The PES effect after observed errors was still obtained in the 50% and 80% error rate conditions. However, the accuracy in the post-observed error trials was comparable to that in the post-observed correct trials, suggesting that the slowing effect and improved accuracy did not rely on the same underlying mechanism. Current findings indicate that the occurrence of PES after observed errors is not dependent on the probability of observed errors, consistent with the assumption of cognitive control account

  10. Episodic action memory for real objects: an ERP investigation with perform, watch, and imagine action encoding tasks versus a non-action encoding task.

    PubMed

    Senkfor, Ava J; Van Petten, Cyma; Kutas, Marta

    2002-04-01

    Cognitive research shows that people typically remember actions they perform better than those that they only watch or imagine doing, but also at times misremember doing actions they merely imagined or planned to do (source memory errors). Neural research suggests some overlap between brain regions engaged during action production, motor imagery, and action observation. The present study evaluates the similarities/differences in brain activity during the retrieval of various types of action and nonaction memories. Participants study real objects in one of four encoding conditions: performing an action, watching the experimenter perform an action, or imagining an action with an object, or a nonmotoric task of estimating an object's cost. At test, participants view color photos of the objects, and make source memory judgments about the initial encoding episodes. Event-related potentials (ERPs) during test reveal (1) content-specific brain activity depending on the nature of the encoding task, and (2) a hand tag, i.e., sensitivity to the hand with which an object had been manipulated at study. At fronto-central sites, ERPs are similar for the three action-retrieval conditions, which are distinct from those to the cost-encoded objects. At occipital sites ERPs distinguished objects from encoding conditions with visual motion (Perform and Watch) from those without visual motion (Imagine and Cost). Results thus suggest some degree of recapitulation of encoding brain activity during retrieval of memories with qualitatively distinct attributes. PMID:11970800

  11. Peer Observation Action Research Project

    ERIC Educational Resources Information Center

    Sandt, Fred-Ole

    2012-01-01

    This paper outlines the initial findings of an action research project that focuses on the possible contribution of peer observation to a more collaborative environment and teachers' professional growth at The University High School. The research component played a significant part as previous attempts to change the culture at the school were…

  12. Simultaneous action execution and observation optimise grasping actions.

    PubMed

    Ménoret, Mathilde; Curie, Aurore; des Portes, Vincent; Nazir, Tatjana A; Paulignan, Yves

    2013-06-01

    Action observation and execution share overlapping neural resonating mechanisms. In the present study, we sought to examine the effect of the activation of this system during concurrent movement observation and execution in a prehension task, when no a priori information about the requirements of grasping action was available. Although it is known that simultaneous activation by observation and execution influences motor performance, the importance of the delays of these two events and the specific effect of movement observation itself (and not the prediction of the to-be-observed movement) on action performance are poorly known. Fine-grained kinematic analysis of both the transport and grasp components of the movement should provide knowledge about the influence of movement observation on the precision and the performance of the executed movement. The experiment involved two real participants who were asked to grasp a different side of a single object that was composed of a large and a small part. In the first experiment, we measured how the transport component and the grasp component were affected by movement observation. We tested whether this influence was greater if the observed movement occurred just before the onset of movement (200 ms) or well before the onset of movement (1 s). In a second experiment, to reproduce the previous experiment and to verify the specificity of the grasping movements, we also included a condition consisting of pointing towards the object. Both experiments showed two main results. A general facilitation of the transport component was found when observing a simultaneous action, independent of its congruency. Moreover, a specific facilitation of the grasp component was present during the observation of a congruent action when movement execution and observation were nearly synchronised. While the general facilitation may arise from a competition between the two participants as they reached for the object, the specific facilitation

  13. The Revised Observed Tasks of Daily Living

    PubMed Central

    Diehl, Manfred; Marsiske, Michael; Horgas, Ann L.; Rosenberg, Adrienne; Saczynski, Jane S.; Willis, Sherry L.

    2007-01-01

    The Revised Observed Tasks of Daily Living (OTDL-R), a performance-based test of everyday problem solving, was administered to a sample of community-dwelling older adults. The OTDL-R included nine tasks, representing medication use, telephone use, and financial management. The OTDL-R had a desirable range of difficulty and satisfactory internal consistency and showed a relatively invariant pattern of relations between measured tasks and the underlying latent dimensions they represent across White and non-White subsamples. The OTDL-R also correlated significantly with age, education, self-rated health, a paper-and-pencil measure of everyday problem solving, and measures of basic cognitive functioning. Thus, the OTDL-R is a reliable and valid objective measure of everyday problem solving that has great practical utility for assessing performance in diverse populations. PMID:18160968

  14. Observational Learning without a Model Is Influenced by the Observer's Possibility to Act: Evidence from the Simon Task

    ERIC Educational Resources Information Center

    Iani, Cristina; Rubichi, Sandro; Ferraro, Luca; Nicoletti, Roberto; Gallese, Vittorio

    2013-01-01

    We assessed whether observational learning in perceptual-motor tasks is affected by the visibility of an action producing perceived environmental effects and by the observer's possibility to act during observation. To this end, we conducted three experiments in which participants were required to observe a spatial compatibility task in which only…

  15. Eye Movements During Action Observation

    PubMed Central

    Gredebäck, Gustaf; Falck-Ytter, Terje

    2015-01-01

    An important element in social interactions is predicting the goals of others, including the goals of others’ manual actions. Over a decade ago, Flanagan and Johansson demonstrated that, when observing other people reaching for objects, the observer’s gaze arrives at the goal before the action is completed. Moreover, those authors proposed that this behavior was mediated by an embodied process, which takes advantage of the observer’s motor knowledge. Here, we scrutinize work that has followed that seminal article. We include studies on adults that have used combined eye tracking and transcranial magnetic stimulation technologies to test causal hypotheses about underlying brain circuits. We also include developmental studies on human infants. We conclude that, although several aspects of the embodied process of predictive eye movements remain to be clarified, current evidence strongly suggests that the motor system plays a causal role in guiding predictive gaze shifts that focus on another person’s future goal. The early emergence of the predictive gaze in infant development underlines its importance for social cognition and interaction. PMID:26385998

  16. Similarity of actions depends on the functionality of previously observed actions.

    PubMed

    Naber, Marnix; Eijgermans, Wessel; Herman, Anne-Sophie; Bergman, Annemiek; Hommel, Bernhard

    2016-05-01

    People have a tendency to imitate the behavior of others, sometimes even automatically. And yet, evidence suggests that many of our actions are controlled, mediated by current goals and careful considerations. Here, we investigated whether the observation and evaluation of previous actions of another person modulates the similarity of actions between people in present trials. We manipulated the functionality of a confederate's actions and the interactive context in 2 behavioral tasks, which consisted of games that participants played against a confederate or a virtual computer opponent. To measure effects of working memory load on imitation rates, participants additionally performed an easy or difficult auditory n-back task in parallel to the tasks. We show that participants occasionally produced rather bizarre and dysfunctional behavior when the confederate had done so as well. Even more importantly, results from both tasks show that participants most likely copied dysfunctional behavior in the present trial when the confederate performed functional actions in the previous trial. Thus, the positive evaluation of action consequences in previous trials increases the probability of similarity between the participant's and confederate's actions in present trials despite a chance to copy improper actions. Furthermore, we found a trend of increased action similarities when participants were under high working memory load in Experiment 1 but not in Experiment 2. These results suggest that copying an observed action is an efficient and effortless behavioral and social strategy to achieve similar goals as others, though with an increased risk of maladaptive behavior. PMID:26618624

  17. Visual Experience Enhances Infants' Use of Task-Relevant Information in an Action Task

    ERIC Educational Resources Information Center

    Wang, Su-hua; Kohne, Lisa

    2007-01-01

    Four experiments examined whether infants' use of task-relevant information in an action task could be facilitated by visual experience in the laboratory. Twelve- but not 9-month-old infants spontaneously used height information and chose an appropriate (taller) cover in search of a hidden tall toy. After watching examples of covering events in a…

  18. Visual Working Memory for Observed Actions

    ERIC Educational Resources Information Center

    Wood, Justin N.

    2007-01-01

    Human society depends on the ability to remember the actions of other individuals, which is information that must be stored in a temporary buffer to guide behavior after actions have been observed. To date, however, the storage capacity, contents, and architecture of working memory for observed actions are unknown. In this article, the author…

  19. Determining robot actions for tasks requiring sensor interaction

    NASA Technical Reports Server (NTRS)

    Budenske, John; Gini, Maria

    1989-01-01

    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.

  20. Dissociable Neural Correlates of Intention and Action Preparation in Voluntary Task Switching

    PubMed Central

    Poljac, Edita; Yeung, Nick

    2014-01-01

    This electroencephalographic (EEG) study investigated the impact of between-task competition on intentional control in voluntary task switching. Anticipatory preparation for an upcoming task switch is a hallmark of top-down intentional control. Meanwhile, asymmetries in performance and voluntary choice when switching between tasks differing in relative strength reveal the effects of between-task competition, reflected in a surprising bias against switching to an easier task. Here, we assessed the impact of this bias on EEG markers of intentional control during preparation for an upcoming task switch. The results revealed strong and varied effects of between-task competition on EEG markers of global task preparation—a frontal contingent negative variation (CNV), a posterior slow positive wave, and oscillatory activity in the alpha band (8–12 Hz) over posterior scalp sites. In contrast, we observed no between-task differences in motor-specific task preparation, as indexed by the lateralized readiness potential and by motor-related amplitude asymmetries in the mu (9–13 Hz) and beta (18–26 Hz) frequency bands. Collectively, these findings demonstrate that between-task competition directly influences the formation of top-down intentions, not only their expression in overt behavior. Specifically, this influence occurs at the level of global task intention rather than the preparation of specific actions. PMID:23104682

  1. Goal anticipation during action observation is influenced by synonymous action capabilities, a puzzling developmental study.

    PubMed

    Gredebäck, Gustaf; Kochukhova, Olga

    2010-04-01

    Eighteen- and 25-month-old human toddlers' ability to manually solve a puzzle and their ability to anticipate the goal during observation of similar actions were investigated. Results demonstrate that goal anticipation during action observation is dependent on manual ability, both on a group level (only 25-month-olds solved the manual task and anticipated the goal during observation) and individually within the older age group (r (xy) = 0.53). These findings suggests a connection between manual ability and the ability to anticipate the goal of others' actions in toddlers, in accordance with the direct matching hypothesis. PMID:20041233

  2. Interhemispheric inhibition is dynamically regulated during action observation.

    PubMed

    Gueugneau, Nicolas; Bove, Marco; Ballay, Yves; Papaxanthis, Charalambos

    2016-05-01

    It is now well established that the motor system plays a pivotal role in action observation and that the neurophysiological processes underlying perception and action overlaps. However, while various experiments have shown a specific facilitation of the contralateral motor cortex during action observation, no information is available concerning the dynamics of interhemispheric interactions. The aim of the present study was, therefore, to assess interhemispheric inhibition during the observation of others' actions. We designed a transcranial magnetic stimulation (TMS) experiment in which we measured both corticospinal excitability and interhemispheric inhibition, this latter by means of the ipsilateral silent period (iSP), while participants observed two motor tasks (tapping or grasping). We show that the iSP is enhanced during movement observation and that this modulation is tuned to the kinematics of the observed movements. An additional experiment was performed in which the TMS intensity was adjusted to match corticospinal excitability between rest and action observation. This resulted in a relative decrease of iSP. Overall, our data strongly suggest that action observation, as action execution, involves interhemispheric inhibitory mechanisms between the two motor cortices, and that this neural activity appears to be firmly shaped by the ongoing observed movement and its intrinsic dynamics. PMID:27082878

  3. Staying Mindful in Action: The Challenge of "Double Awareness" on Task and Process in an Action Lab

    ERIC Educational Resources Information Center

    Svalgaard, Lotte

    2016-01-01

    Action Learning is a well-proven method to integrate "task" and "process", as learning about team and self (process) takes place while delivering on a task or business challenge of real importance (task). An Action Lab® is an intensive Action Learning programme lasting for 5 days, which aims at balancing and integrating…

  4. Observer efficiency in free-localization tasks with correlated noise

    PubMed Central

    Abbey, Craig K.; Eckstein, Miguel P.

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854

  5. Combined action observation and imagery facilitates corticospinal excitability

    PubMed Central

    Wright, David J.; Williams, Jacqueline; Holmes, Paul S.

    2014-01-01

    Observation and imagery of movement both activate similar brain regions to those involved in movement execution. As such, both are recommended as techniques for aiding the recovery of motor function following stroke. Traditionally, action observation and movement imagery (MI) have been considered as independent intervention techniques. Researchers have however begun to consider the possibility of combining the two techniques into a single intervention strategy. This study investigated the effect of combined action observation and MI on corticospinal excitability, in comparison to either observation or imagery alone. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the hand representation of the left motor cortex during combined action observation and MI, passive observation (PO), or MI of right index finger abduction-adduction movements or control conditions. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the right hand. The combined action observation and MI condition produced MEPs of larger amplitude than were obtained during PO and control conditions. This effect was only present in the FDI muscle, indicating the facilitation of corticospinal excitability during the combined condition was specific to the muscles involved in the observed/imagined task. These findings have implications for stroke rehabilitation, where combined action observation and MI interventions may prove to be more effective than observation or imagery alone. PMID:25505880

  6. Age-related differences in task goal processing strategies during action cascading.

    PubMed

    Stock, Ann-Kathrin; Gohil, Krutika; Beste, Christian

    2016-06-01

    We are often faced with situations requiring the execution of a coordinated cascade of different actions to achieve a goal, but we can apply different strategies to do so. Until now, these different action cascading strategies have, however, not been examined with respect to possible effects of aging. We tackled this question in a systems neurophysiological study using EEG and source localization in healthy older adults and employing mathematical constraints to determine the strategy applied. The results suggest that older adults seem to apply a less efficient strategy when cascading different actions. Compared to younger adults, older adults seem to struggle to hierarchically organize their actions, which leads to an inefficient and more parallel processing of different task goals. On a systems level, the observed deficit is most likely due to an altered processing of task goals at the response selection level (P3 ERP) and related to changes of neural processes in the temporo-parietal junction. PMID:26025200

  7. Evaluating Cognitive Action Control Using Eye-Movement Analysis: An Oculomotor Adaptation of the Simon Task.

    PubMed

    Duprez, Joan; Houvenaghel, Jean-François; Naudet, Florian; Dondaine, Thibaut; Auffret, Manon; Robert, Gabriel; Drapier, Dominique; Argaud, Soizic; Vérin, Marc; Sauleau, Paul

    2016-01-01

    Cognitive action control has been extensively studied using conflict tasks such as the Simon task. In most recent studies, this process has been investigated in the light of the dual route hypothesis and more specifically of the activation-suppression model using distributional analyses. Some authors have suggested that cognitive action control assessment is not specific to response modes. In this study we adapted the Simon task, using oculomotor responses instead of manual responses, in order to evaluate whether the resolution of conflict induced by a two-dimensional stimulus yielded similar results to what is usually reported in tasks with manual responses. Results obtained from 43 young healthy participants revealed the typical congruence effect, with longer reaction times (RT) and lesser accuracy in the incongruent condition. Conditional accuracy functions (CAF) also revealed a higher proportion of fast errors in the incongruent condition and delta plots confirmed that conflict resolution was easier, as the time taken to respond increased. These results are very similar to what has been reported in the literature. Furthermore, our observations are in line with the assumptions of the activation-suppression model, in which automatic activation in conflict situations is captured in the fastest responses and selective inhibition of cognitive action control needs time to build up. Altogether, our results suggest that conflict resolution has core mechanisms whatever the response mode, manual or oculomotor. Using oculomotor responses in such tasks could be of interest when investigating cognitive action control in patients with severe motor disorders. PMID:26973499

  8. Evaluating Cognitive Action Control Using Eye-Movement Analysis: An Oculomotor Adaptation of the Simon Task

    PubMed Central

    Duprez, Joan; Houvenaghel, Jean-François; Naudet, Florian; Dondaine, Thibaut; Auffret, Manon; Robert, Gabriel; Drapier, Dominique; Argaud, Soizic; Vérin, Marc; Sauleau, Paul

    2016-01-01

    Cognitive action control has been extensively studied using conflict tasks such as the Simon task. In most recent studies, this process has been investigated in the light of the dual route hypothesis and more specifically of the activation-suppression model using distributional analyses. Some authors have suggested that cognitive action control assessment is not specific to response modes. In this study we adapted the Simon task, using oculomotor responses instead of manual responses, in order to evaluate whether the resolution of conflict induced by a two-dimensional stimulus yielded similar results to what is usually reported in tasks with manual responses. Results obtained from 43 young healthy participants revealed the typical congruence effect, with longer reaction times (RT) and lesser accuracy in the incongruent condition. Conditional accuracy functions (CAF) also revealed a higher proportion of fast errors in the incongruent condition and delta plots confirmed that conflict resolution was easier, as the time taken to respond increased. These results are very similar to what has been reported in the literature. Furthermore, our observations are in line with the assumptions of the activation-suppression model, in which automatic activation in conflict situations is captured in the fastest responses and selective inhibition of cognitive action control needs time to build up. Altogether, our results suggest that conflict resolution has core mechanisms whatever the response mode, manual or oculomotor. Using oculomotor responses in such tasks could be of interest when investigating cognitive action control in patients with severe motor disorders. PMID:26973499

  9. Value Orientations as Determinants and Outcomes of Conflicts between On-Task and Off-Task Actions in the Classroom

    ERIC Educational Resources Information Center

    Kilian, Britta; Hofer, Manfred; Kuhnle, Claudia

    2010-01-01

    Off-task behavior in the classroom was conceptualized as a manifestation of students pursuing goals they bring into the classroom aside from achievement goals. Regulation during on-task and off-task behavior in action conflict scenarios was elaborated on using the constructs motivational interference and flow. It was argued that achievement and…

  10. Mental action simulation synchronizes action-observation circuits across individuals.

    PubMed

    Nummenmaa, Lauri; Smirnov, Dmitry; Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta

    2014-01-15

    A frontoparietal action-observation network (AON) has been proposed to support understanding others' actions and goals. We show that the AON "ticks together" in human subjects who are sharing a third person's feelings. During functional magnetic resonance imaging, 20 volunteers watched movies depicting boxing matches passively or while simulating a prespecified boxer's feelings. Instantaneous intersubject phase synchronization (ISPS) was computed to derive multisubject voxelwise similarity of hemodynamic activity and inter-area functional connectivity. During passive viewing, subjects' brain activity was synchronized in sensory projection and posterior temporal cortices. Simulation induced widespread increase of ISPS in the AON (premotor, posterior parietal, and superior temporal cortices), primary and secondary somatosensory cortices, and the dorsal attention circuits (frontal eye fields, intraparietal sulcus). Moreover, interconnectivity of these regions strengthened during simulation. We propose that sharing a third person's feelings synchronizes the observer's own brain mechanisms supporting sensations and motor planning, thereby likely promoting mutual understanding. PMID:24431433

  11. Does the anticipation of compatible partner reactions facilitate action planning in joint tasks?

    PubMed

    Müller, Romy

    2016-07-01

    Observing another human's actions influences action planning, but what about merely anticipating them? In joint action settings where a partner's subsequent actions are a consequence of one's own actions, such contingent partner reactions can be regarded as action effects. Therefore, just like automatic effects they might facilitate those of a person's actions that overlap with them in relevant features. In Experiments 1 and 2, the spatial compatibility of contingent partner reactions was manipulated and compared with the influence of automatic effects. Experiment 1 used a simplistic scenario in which lateral keypress actions by the subject were responded to by mouse movements of a partner producing spatially compatible or incompatible visual effects. Experiment 2 transferred the paradigm to a more complex task in which subjects manually relocated virtual objects on a multi-touch display, and these or other objects were subsequently manipulated by the partner. In Experiment 1, compatible partner reactions speeded up subjects' preceding actions, whereas in Experiment 2 the influence was not statistically reliable. To test whether influences of partner reaction compatibility could be found in such naturalistic settings at all, Experiment 3 also used a multi-touch setting but varied temporal instead of spatial compatibility, which has several methodological advantages. This time, a compatibility effect emerged in subjects' movement initiation times, whereas contrast effects were found for movement durations. These findings indicate that the principles of ideomotor action control can be extended to joint action settings. At the same time, they also emphasize the importance of task features in determining whether our own behaviour is influenced by anticipations of another person's reactions. PMID:25957279

  12. Directions and Indirect Action: Learner Adaptation of a Classroom Task

    ERIC Educational Resources Information Center

    Gourlay, Lesley

    2005-01-01

    The extent to which learners conform to the structure, aims and linguistic demands of a task is often seen as the responsibility of the materials writer and/or teacher. Given a logical rubric, well-designed task and clear classroom instructions, it is often assumed that the task will be approached as intended. When a task is enacted differently,…

  13. Objects tell us what action we can expect: dissociating brain areas for retrieval and exploitation of action knowledge during action observation in fMRI

    PubMed Central

    Schubotz, Ricarda I.; Wurm, Moritz F.; Wittmann, Marco K.; von Cramon, D. Yves

    2014-01-01

    Objects are reminiscent of actions often performed with them: knife and apple remind us on peeling the apple or cutting it. Mnemonic representations of object-related actions (action codes) evoked by the sight of an object may constrain and hence facilitate recognition of unrolling actions. The present fMRI study investigated if and how action codes influence brain activation during action observation. The average number of action codes (NAC) of 51 sets of objects was rated by a group of n = 24 participants. In an fMRI study, different volunteers were asked to recognize actions performed with the same objects presented in short videos. To disentangle areas reflecting the storage of action codes from those exploiting them, we showed object-compatible and object-incompatible (pantomime) actions. Areas storing action codes were considered to positively co-vary with NAC in both object-compatible and object-incompatible action; due to its role in tool-related tasks, we here hypothesized left anterior inferior parietal cortex (aIPL). In contrast, areas exploiting action codes were expected to show this correlation only in object-compatible but not incompatible action, as only object-compatible actions match one of the active action codes. For this interaction, we hypothesized ventrolateral premotor cortex (PMv) to join aIPL due to its role in biasing competition in IPL. We found left anterior intraparietal sulcus (IPS) and left posterior middle temporal gyrus (pMTG) to co-vary with NAC. In addition to these areas, action codes increased activity in object-compatible action in bilateral PMv, right IPS, and lateral occipital cortex (LO). Findings suggest that during action observation, the brain derives possible actions from perceived objects, and uses this information to shape action recognition. In particular, the number of expectable actions quantifies the activity level at PMv, IPL, and pMTG, but only PMv reflects their biased competition while observed action unfolds

  14. Action Recognition and Movement Direction Discrimination Tasks Are Associated with Different Adaptation Patterns

    PubMed Central

    de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.

    2016-01-01

    The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633

  15. Observation and Initiation of Joint Action in Infants

    ERIC Educational Resources Information Center

    Fawcett, Christine; Liszkowski, Ulf

    2012-01-01

    Infants imitate others' individual actions, but do they also replicate others' joint activities? To examine whether observing joint action influences infants' initiation of joint action, forty-eight 18-month-old infants observed object demonstrations by 2 models acting together (joint action), 2 models acting individually (individual action), or 1…

  16. Look what I am doing: does observational learning take place in evocative task-sharing situations?

    PubMed

    Ferraro, Luca; Iani, Cristina; Mariani, Michele; Nicoletti, Roberto; Gallese, Vittorio; Rubichi, Sandro

    2012-01-01

    Two experiments were conducted to investigate whether physical and observational practice in task-sharing entail comparable implicit motor learning. To this end, the social-transfer-of-learning (SToL) effect was assessed when both participants performed the joint practice task (Experiment 1--complete task-sharing), or when one participant observed the other performing half of the practice task (Experiment 2--evocative task-sharing). Since the inversion of the spatial relations between responding agent and stimulus position has been shown to prevent SToL, in the present study we assessed it in both complete and evocative task-sharing conditions either when spatial relations were kept constant or changed from the practice to the transfer session. The same pattern of results was found for both complete and evocative task-sharing, thus suggesting that implicit motor learning in evocative task-sharing is equivalent to that obtained in complete task-sharing. We conclude that this motor learning originates from the simulation of the complementary (rather than the imitative) action. PMID:22905256

  17. Modulation of the Intracortical LFP during Action Execution and Observation

    PubMed Central

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N.; Kraskov, Alexander

    2015-01-01

    The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation. The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold). Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain–machine interfaces, although information about grasp was generally low during action observation. PMID:26041914

  18. Manipulation Action Understanding for Observation and Execution

    ERIC Educational Resources Information Center

    Yang, Yezhou

    2015-01-01

    Modern intelligent agents will need to learn the actions that humans perform. They will need to recognize these actions when they see them and they will need to perform these actions themselves. We want to propose a cognitive system that interprets human manipulation actions from perceptual information (image and depth data) and consists of…

  19. Social Mimicry Enhances Mu-Suppression During Action Observation.

    PubMed

    Hogeveen, Jeremy; Chartrand, Tanya L; Obhi, Sukhvinder S

    2015-08-01

    During social interactions, there is a tendency for people to mimic the gestures and mannerisms of others, which increases liking and rapport. Psychologists have extensively studied the antecedents and consequences of mimicry at the social level, but the neural basis of this behavior remains unclear. Many researchers have speculated that mimicry is related to activity in the human mirror system (HMS), a network of parietofrontal regions that are involved in both action execution and observation. However, activity of the HMS during reciprocal social interactions involving mimicry has not been demonstrated. Here, we took an electroencephalographic (EEG) index of mirror activity-mu-suppression during action observation-in a pretest/post-test design with 1 of 3 intervening treatments: 1) social interaction in which the participant was mimicked, 2) social interaction without mimicry, or 3) an innocuous computer task, not involving another human agent. The change in mu-suppression from pre- to post-test varied as a function of the intervening treatment, with participants who had been mimicked showing an increase in mu-suppression during the post-treatment action observation session. We propose that this specific modulation of HMS activity as a function of mimicry constitutes the first direct evidence for mirror system involvement in real social mimicry. PMID:24532320

  20. A behavioral task for investigating action discovery, selection and switching: comparison between types of reinforcer

    PubMed Central

    Fisher, Simon D.; Gray, Jason P.; Black, Melony J.; Davies, Jennifer R.; Bednark, Jeffery G.; Redgrave, Peter; Franz, Elizabeth A.; Abraham, Wickliffe C.; Reynolds, John N. J.

    2014-01-01

    Action discovery and selection are critical cognitive processes that are understudied at the cellular and systems neuroscience levels. Presented here is a new rodent joystick task suitable to test these processes due to the range of action possibilities that can be learnt while performing the task. Rats learned to manipulate a joystick while progressing through task milestones that required increasing degrees of movement accuracy. In a switching phase designed to measure action discovery, rats were repeatedly required to discover new target positions to meet changing task demands. Behavior was compared using both food and electrical brain stimulation reward (BSR) of the substantia nigra as reinforcement. Rats reinforced with food and those with BSR performed similarly overall, although BSR-treated rats exhibited greater vigor in responding. In the switching phase, rats learnt new actions to adapt to changing task demands, reflecting action discovery processes. Because subjects are required to learn different goal-directed actions, this task could be employed in further investigations of the cellular mechanisms of action discovery and selection. Additionally, this task could be used to assess the behavioral flexibility impairments seen in conditions such as Parkinson's disease and obsessive-compulsive disorder. The versatility of the task will enable cross-species investigations of these impairments. PMID:25477795

  1. Vision for Action in Toddlers: The Posting Task

    ERIC Educational Resources Information Center

    Street, Sandra Y.; James, Karin H.; Jones, Susan S.; Smith, Linda B.

    2011-01-01

    Three experiments examine 18- to 24-month-old (N = 78) toddlers' ability to spatially orient objects by their major axes for insertion into a slot. This is a simplified version of the posting task that is commonly used to measure dorsal stream functioning. The experiments identify marked developmental changes in children's ability to preorient…

  2. Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task.

    PubMed

    Sargent, Barbara; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda

    2015-01-01

    Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants' leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action. PMID:26066904

  3. Report of the Build Subsidized Child Care Rate Policy Task Force: Recommendations for Action

    ERIC Educational Resources Information Center

    Stoney, Louise

    2004-01-01

    In the Fall of 2003, the Pennsylvania Build Initiative convened a Rate Policy Task Force to broadly examine the issue of child care rates and make recommendations for action. The Task Force goal was two-fold: (1) to suggest ways that the rate and payment process currently used by the Pennsylvania Department of Public Welfare (DPW) can better…

  4. Task-Based Language Learning and Teaching: An Action-Research Study

    ERIC Educational Resources Information Center

    Calvert, Megan; Sheen, Younghee

    2015-01-01

    The creation, implementation, and evaluation of language learning tasks remain a challenge for many teachers, especially those with limited experience with using tasks in their teaching. This action-research study reports on one teacher's experience of developing, implementing, critically reflecting on, and modifying a language learning task…

  5. Embodied Action Improves Cognition in Children: Evidence from a Study Based on Piagetian Conservation Tasks.

    PubMed

    Lozada, Mariana; Carro, Natalia

    2016-01-01

    Converging evidence highlights the relevance of embodied cognition in learning processes. In this study we evaluate whether embodied action (enaction) improves cognitive understanding in children. Using the Piagetian conservation tasks in 6-7 year olds, we analyzed quantity conservation conceptualization in children who were active participants in the transformation process and compared these results to those of children who were mere observers of an adult's demonstration (as traditionally conducted). The investigation was performed with 105 first-graders. Conservation tasks were demonstrated to half the children, while the other half actively carried out the transformation of matter. Our findings showed that active manipulation of the material helped children recognize quantity invariance in a higher proportion than when the demonstration was only observed. That is, their enactive experience enabled them to comprehend conservation phenomena more easily than if they were merely passive observers. The outcome of this research thus emphasizes how active participation benefits cognitive processes in learning contexts, promoting autonomy, and agency during childhood. PMID:27047420

  6. Embodied Action Improves Cognition in Children: Evidence from a Study Based on Piagetian Conservation Tasks

    PubMed Central

    Lozada, Mariana; Carro, Natalia

    2016-01-01

    Converging evidence highlights the relevance of embodied cognition in learning processes. In this study we evaluate whether embodied action (enaction) improves cognitive understanding in children. Using the Piagetian conservation tasks in 6–7 year olds, we analyzed quantity conservation conceptualization in children who were active participants in the transformation process and compared these results to those of children who were mere observers of an adult's demonstration (as traditionally conducted). The investigation was performed with 105 first-graders. Conservation tasks were demonstrated to half the children, while the other half actively carried out the transformation of matter. Our findings showed that active manipulation of the material helped children recognize quantity invariance in a higher proportion than when the demonstration was only observed. That is, their enactive experience enabled them to comprehend conservation phenomena more easily than if they were merely passive observers. The outcome of this research thus emphasizes how active participation benefits cognitive processes in learning contexts, promoting autonomy, and agency during childhood. PMID:27047420

  7. Students' Concepts- and Theorems-in-Action on a Novel Task about Similarity

    ERIC Educational Resources Information Center

    DeJarnette, Anna Fricano; Walczak, Marissa; González, Gloriana

    2014-01-01

    Similarity is a fundamental concept in the middle grades. In this study, we applied Vergnaud's theory of conceptual fields to answer the following questions: What concepts-in-action and theorems-in-action about similarity surfaced when students worked in a novel task that required them to enlarge a puzzle piece? How did students use geometric…

  8. Teachers' Ability to Identify and Explain Students' Actions in Near and Far Figural Pattern Generalization Tasks

    ERIC Educational Resources Information Center

    El Mouhayar, Rabih Raif; Jurdak, Murad Eid

    2013-01-01

    The purpose of this paper is to explore middle school in-service mathematics teachers' ability (1) to identify and explain students' actions in pattern generalization and (2) to account for the variation in teachers' explanations of students' actions in terms of task and teachers' factors. Two questionnaires were developed: (1) a questionnaire to…

  9. Implicit agency in observed actions: evidence for N1 suppression of tones caused by self-made and observed actions.

    PubMed

    Poonian, Simandeep K; McFadyen, Jessica; Ogden, Jessica; Cunnington, Ross

    2015-04-01

    Every day we make attributions about how our actions and the actions of others cause consequences in the world around us. It is unknown whether we use the same implicit process in attributing causality when observing others' actions as we do when making our own. The aim of this research was to investigate the neural processes involved in the implicit sense of agency we form between actions and effects, for both our own actions and when watching others' actions. Using an interval estimation paradigm to elicit intentional binding in self-made and observed actions, we measured the EEG responses indicative of anticipatory processes before an action and the ERPs in response to the sensory consequence. We replicated our previous findings that we form a sense of implicit agency over our own and others' actions. Crucially, EEG results showed that tones caused by either self-made or observed actions both resulted in suppression of the N1 component of the sensory ERP, with no difference in suppression between consequences caused by observed actions compared with self-made actions. Furthermore, this N1 suppression was greatest for tones caused by observed goal-directed actions rather than non-action or non-goal-related visual events. This suggests that top-down processes act upon the neural responses to sensory events caused by goal-directed actions in the same way for events caused by the self or those made by other agents. PMID:25321488

  10. Joint action modulates motor system involvement during action observation in 3-year-olds.

    PubMed

    Meyer, Marlene; Hunnius, Sabine; van Elk, Michiel; van Ede, Freek; Bekkering, Harold

    2011-06-01

    When we are engaged in a joint action, we need to integrate our partner's actions with our own actions. Previous research has shown that in adults the involvement of one's own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor. The aim of this study was to investigate whether similar motor system involvement is present at early stages of joint action development and whether it is related to joint action performance. In an EEG experiment with 3-year-old children, we assessed the children's brain activity and performance during a joint game with an adult experimenter. We used a simple button-pressing game in which the two players acted in turns. Power in the mu- and beta-frequency bands was compared when children were not actively moving but observing the experimenter's actions when (1) they were engaged in the joint action game and (2) when they were not engaged. Enhanced motor involvement during action observation as indicated by attenuated sensorimotor mu- and beta-power was found when the 3-year-olds were engaged in the joint action. This enhanced motor activation during action observation was associated with better joint action performance. The findings suggest that already in early childhood the motor system is differentially activated during action observation depending on the involvement in a joint action. This motor system involvement might play an important role for children's joint action performance. PMID:21479943

  11. Enhanced Neurobehavioral Outcomes of Action Observation Prosthesis Training.

    PubMed

    Cusack, William F; Thach, Scott; Patterson, Rebecca; Acker, Dan; Kistenberg, Robert S; Wheaton, Lewis A

    2016-07-01

    Background Previous studies have demonstrated improved neurobehavioral outcomes when prosthesis users learn task-specific behaviors by imitating movements of prosthesis users (matched limb) compared with intact limbs (mismatched limb). Objective This study is the first to use a unique combination of neurophysiological and task performance methods to investigate prosthetic device training strategies from a cognitive motor control perspective. Intact nonamputated prosthesis users (NAPUs) donned specially adapted prosthetic devices to simulate the wrist and forearm movement that persons with transradial limb loss experience. The hypothesis is that NAPUs trained with matched limb imitation would show greater engagement of parietofrontal regions and reduced movement variability compared with their counterparts trained with a mismatched limb. Methods Training elapsed over 3 days comprised alternating periods of video demonstration observation followed by action imitation. At the beginning and end of the training protocol, participants performed a cued movement paradigm while electroencephalography and electrogoniometry data were collected to track changes in cortical activity and movement variability, respectively. Results Matched limb participants showed greater engagement of motor-related areas while mismatched limb participants showed greater engagement of the parietooccipital system. Matched limb participants also showed lower movement variability. Conclusions These results indicate that the type of limb imitated influences neural and behavioral strategies for novel prosthetic device usage. This finding is important, as customary prosthetic rehabilitation with intact therapists involves mismatched limb imitation that may exacerbate challenges in adapting to new motor patterns demanded by prosthesis use. PMID:26438442

  12. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network

    PubMed Central

    Kirsch, Louise P.; Cross, Emily S.

    2015-01-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation. PMID:26209850

  13. Stimulus onset predictability modulates proactive action control in a Go/No-go task

    PubMed Central

    Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2015-01-01

    The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action. PMID:25964751

  14. Nonlinear analysis of saccade speed fluctuations during combined action and perception tasks

    PubMed Central

    Stan, C.; Astefanoaei, C.; Pretegiani, E.; Optican, L.; Creanga, D.; Rufa, A.; Cristescu, C.P.

    2014-01-01

    Background: Saccades are rapid eye movements used to gather information about a scene which requires both action and perception. These are usually studied separately, so that how perception influences action is not well understood. In a dual task, where the subject looks at a target and reports a decision, subtle changes in the saccades might be caused by action-perception interactions. Studying saccades might provide insight into how brain pathways for action and for perception interact. New method: We applied two complementary methods, multifractal detrended fluctuation analysis and Lempel-Ziv complexity index to eye peak speed recorded in two experiments, a pure action task and a combined action-perception task. Results: Multifractality strength is significantly different in the two experiments, showing smaller values for dual decision task saccades compared to simple-task saccades. The normalized Lempel-Ziv complexity index behaves similarly i.e. is significantly smaller in the decision saccade task than in the simple task. Comparison with existing methods: Compared to the usual statistical and linear approaches, these analyses emphasize the character of the dynamics involved in the fluctuations and offer a sensitive tool for quantitative evaluation of the multifractal features and of the complexity measure in the saccades peak speeds when different brain circuits are involved. Conclusion: Our results prove that the peak speed fluctuations have multifractal characteristics with lower magnitude for the multifractality strength and for the complexity index when two neural pathways are simultaneously activated, demonstrating the nonlinear interaction in the brain pathways for action and perception. PMID:24854830

  15. Astronomical observation tasks short-term scheduling using PDDS algorithm

    NASA Astrophysics Data System (ADS)

    Kornilov, M. V.

    2016-07-01

    A concept of the ground-based optical astronomical observation efficiency is considered in this paper. We believe that a telescope efficiency can be increased by properly allocating observation tasks with respect to the current environment state and probability to obtain the data with required properties under the current conditions. An online observations scheduling is assumed to be an essential part for raising the efficiency. The short-term online scheduling is treated as the discrete optimisation problems which are stated using several abstraction levels. The optimisation problems are solved using the parallel depth-bounded discrepancy search (PDDS) algorithm by Moisan et al. (2014). Some aspects of the algorithm performance are discussed. The presented algorithm is a core of open-source chelyabinsk C++ library which is planned to be used at 2.5 m telescope of Sternberg Astronomical Institute of Lomonosov Moscow State University.

  16. An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation.

    PubMed

    Mulligan, Desmond; Lohse, Keith R; Hodges, Nicola J

    2016-07-01

    We provide behavioral evidence that the human motor system is involved in the perceptual decision processes of skilled performers, directly linking prediction accuracy to the (in)ability of the motor system to activate in a response-specific way. Experienced and non-experienced dart players were asked to predict, from temporally occluded video sequences, the landing position of a dart thrown previously by themselves (self) or another (other). This prediction task was performed while additionally performing (a) an action-incongruent secondary motor task (right arm force production), (b) a congruent secondary motor task (mimicking) or (c) an attention-matched task (tone-monitoring). Non-experienced dart players were not affected by any of the secondary task manipulations, relative to control conditions, yet prediction accuracy decreased for the experienced players when additionally performing the force-production, motor task. This interference effect was present for 'self' as well as 'other' decisions, reducing the accuracy of experienced participants to a novice level. The mimicking (congruent) secondary task condition did not interfere with (or facilitate) prediction accuracy for either group. We conclude that visual-motor experience moderates the process of decision making, such that a seemingly visual-cognitive prediction task relies on activation of the motor system for experienced performers. This fits with a motor simulation account of action prediction in sports and other tasks, and alerts to the specificity of these simulative processes. PMID:26021748

  17. Modulation of Brain Activity during Action Observation: Influence of Perspective, Transitivity and Meaningfulness

    PubMed Central

    Hétu, Sébastien; Mercier, Catherine; Eugène, Fanny; Michon, Pierre-Emmanuel; Jackson, Philip L.

    2011-01-01

    The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process. PMID:21931832

  18. Good is up—spatial metaphors in action observation

    PubMed Central

    Gottwald, Janna M.; Elsner, Birgit; Pollatos, Olga

    2015-01-01

    Positive objects or actions are associated with physical highness, whereas negative objects or actions are related to physical lowness. Previous research suggests that metaphorical connection (“good is up” or “bad is down”) between spatial experience and evaluation of objects is grounded in actual experience with the body. Prior studies investigated effects of spatial metaphors with respect to verticality of either static objects or self-performed actions. By presenting videos of object placements, the current three experiments combined vertically-located stimuli with observation of vertically-directed actions. As expected, participants’ ratings of emotionally-neutral objects were systematically influenced by the observed vertical positioning, that is, ratings were more positive for objects that were observed being placed up as compared to down. Moreover, effects were slightly more pronounced for “bad is down,” because only the observed downward, but not the upward, action led to different ratings as compared to a medium-positioned action. Last, some ratings were even affected by observing only the upward/downward action, without seeing the final vertical placement of the object. Thus, both, a combination of observing a vertically-directed action and seeing a vertically-located object, and observing a vertically-directed action alone, affected participants’ evaluation of emotional valence of the involved object. The present findings expand the relevance of spatial metaphors to action observation, thereby giving new impetus to embodied-cognition research. PMID:26539147

  19. Corticospinal excitability during imagined and observed dynamic force production tasks: effortfulness matters.

    PubMed

    Helm, F; Marinovic, W; Krüger, B; Munzert, J; Riek, S

    2015-04-01

    Research on motor imagery and action observation has become increasingly important in recent years particularly because of its potential benefits for movement rehabilitation and the optimization of athletic performance (Munzert et al., 2009). Motor execution, motor imagery, and action observation have been shown to rely largely on a similar neural network in motor and motor-related cortical areas (Jeannerod, 2001). Given that motor imagery is a covert stage of an action and its characteristics, it has been assumed that modifying the motor task in terms of, for example, effort will impact neural activity. With this background, the present study examined how different force requirements influence corticospinal excitability (CSE) and intracortical facilitation during motor imagery and action observation of a repetitive movement (dynamic force production). Participants were instructed to kinesthetically imagine or observe an abduction/adduction movement of the right index finger that differed in terms of force requirements. Trials were carried out with single- or paired-pulse transcranial magnetic stimulation. Surface electromyography was recorded from the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). As expected, results showed a significant main effect on mean peak-to-peak motor-evoked potential (MEP) amplitudes in FDI but no differences in MEP amplitudes in ADM muscle. Participants' mean peak-to-peak MEPs increased when the force requirements (movement effort) of the imagined or observed action were increased. This reveals an impact of the imagined and observed force requirements of repetitive movements on CSE. It is concluded that this effect might be due to stronger motor neuron recruitment for motor imagery and action observation with an additional load. That would imply that the modification of motor parameters in movements such as force requirements modulates CSE. PMID:25639231

  20. Objects Mediate Goal Integration in Ventrolateral Prefrontal Cortex during Action Observation.

    PubMed

    Hrkać, Mari; Wurm, Moritz F; Kühn, Anne B; Schubotz, Ricarda I

    2015-01-01

    Actions performed by others are mostly not observed in isolation, but embedded in sequences of actions tied together by an overarching goal. Therefore, preceding actions can modulate the observer's expectations in relation to the currently perceived action. Ventrolateral prefrontal cortex (vlPFC), and inferior frontal gyrus (IFG) in particular, is suggested to subserve the integration of episodic as well as semantic information and memory, including action scripts. The present fMRI study investigated if activation in IFG varies with the effort to integrate expected and observed action, even when not required by the task. During an fMRI session, participants were instructed to attend to short videos of single actions and to deliver a judgment about the actor's current goal. We manipulated the strength of goal expectation induced by the preceding action, implementing the parameter "goal-relatedness" between the preceding and the currently observed action. Moreover, since objects point to the probability of certain actions, we also manipulated whether the current and the preceding action shared at least one object or not. We found an interaction between the two factors goal-relatedness and shared object: IFG activation increased the weaker the goal-relatedness between the preceding and the current action was, but only when they shared at least one object. Here, integration of successive action steps was triggered by the re-appearing (shared) object but hampered by a weak goal-relatedness between the actually observed manipulation. These findings foster the recently emerging view that IFG is enhanced by goal-related conflicts during action observation. PMID:26218102

  1. Using Walkthrough Observations to Document Dispositional Actions

    ERIC Educational Resources Information Center

    Danley, Angela; Theiss, Deb

    2015-01-01

    Faculty from a Midwestern university implemented walkthrough observations in a Professional Development Schools (PDS) field experience with elementary and early childhood majors. The instructors researchers used walkthrough observation forms to track, evaluate, and monitor teacher candidate dispositions. The data were collected electronically and…

  2. No transfer of calibration between action and perception in learning a golf putting task.

    PubMed

    Van Lier, Wim; Van der Kamp, John; van der Zanden, Anne; Savelsbergh, Geert J P

    2011-10-01

    We assessed calibration of perception and action in the context of a golf putting task. Previous research has shown that right-handed novice golfers make rightward errors both in the perception of the perfect aiming line from the ball to the hole and in the putting action. Right-handed experts, however, produce accurate putting actions but tend to make leftward errors in perception. In two experiments, we examined whether these skill-related differences in directional error reflect transfer of calibration from action to perception. In the main experiment, three groups of right-handed novice participants followed a pretest, practice, posttest, retention test design. During the tests, directional error for the putting action and the perception of the perfect aiming line were determined. During practice, participants were provided only with verbal outcome feedback about directional error; one group trained perception and the second trained action, whereas the third group did not practice. Practice led to a relatively permanent annihilation of directional error, but these improvements in accuracy were specific to the trained task. Hence, no transfer of calibration occurred between perception and action. The findings are discussed within the two-visual-system model for perception and action, and implications for perceptual learning in action are raised. PMID:21814859

  3. Action observation has a positive impact on rehabilitation of motor deficits after stroke.

    PubMed

    Ertelt, Denis; Small, Steven; Solodkin, Ana; Dettmers, Christian; McNamara, Adam; Binkofski, Ferdinand; Buccino, Giovanni

    2007-01-01

    Evidence exists that the observation of actions activates the same cortical motor areas that are involved in the performance of the observed actions. The neural substrate for this is the mirror neuron system. We harness this neuronal system and its ability to re-enact stored motor representations as a means for rehabilitating motor control. We combined observation of daily actions with concomitant physical training of the observed actions in a new neurorehabilitative program (action observation therapy). Eight stroke patients with moderate, chronic motor deficit of the upper limb as a consequence of medial artery infarction participated. A significant improvement of motor functions in the course of a 4-week treatment, as compared to the stable pre-treatment baseline, and compared with a control group have been found. The improvement lasted for at least 8 weeks after the end of the intervention. Additionally, the effects of action observation therapy on the reorganization of the motor system were investigated by functional magnetic resonance imaging (fMRI), using an independent sensorimotor task consisting of object manipulation. The direct comparison of neural activations between experimental and control groups after training with those elicited by the same task before training yielded a significant rise in activity in the bilateral ventral premotor cortex, bilateral superior temporal gyrus, the supplementary motor area (SMA) and the contralateral supramarginal gyrus. Our results provide pieces of evidence that action observation has a positive additional impact on recovery of motor functions after stroke by reactivation of motor areas, which contain the action observation/action execution matching system. PMID:17499164

  4. Self-organized complementary joint action: Behavioral dynamics of an interpersonal collision-avoidance task.

    PubMed

    Richardson, Michael J; Harrison, Steven J; Kallen, Rachel W; Walton, Ashley; Eiler, Brian A; Saltzman, Elliot; Schmidt, R C

    2015-06-01

    Understanding stable patterns of interpersonal movement coordination is essential to understanding successful social interaction and activity (i.e., joint action). Previous research investigating such coordination has primarily focused on the synchronization of simple rhythmic movements (e.g., finger/forearm oscillations or pendulum swinging). Very few studies, however, have explored the stable patterns of coordination that emerge during task-directed complementary coordination tasks. Thus, the aim of the current study was to investigate and model the behavioral dynamics of a complementary collision-avoidance task. Participant pairs performed a repetitive targeting task in which they moved computer stimuli back and forth between sets of target locations without colliding into each other. The results revealed that pairs quickly converged onto a stable, asymmetric pattern of movement coordination that reflected differential control across participants, with 1 participant adopting a more straight-line movement trajectory between targets, and the other participant adopting a more elliptical trajectory between targets. This asymmetric movement pattern was also characterized by a phase lag between participants and was essential to task success. Coupling directionality analysis and dynamical modeling revealed that this dynamic regime was due to participant-specific differences in the coupling functions that defined the task-dynamics of participant pairs. Collectively, the current findings provide evidence that the dynamical coordination processes previously identified to underlie simple motor synchronization can also support more complex, goal-directed, joint action behavior, and can participate the spontaneous emergence of complementary joint action roles. PMID:25751036

  5. Self-Organized Complementary Joint Action: Behavioral Dynamics of an Interpersonal Collision-Avoidance Task

    PubMed Central

    Richardson, Michael J.; Harrison, Steven J.; Kallen, Rachel W.; Walton, Ashley; Eiler, Brian A.; Saltzman, Elliot; Schmidt, R. C.

    2016-01-01

    Understanding stable patterns of interpersonal movement coordination is essential to understanding successful social interaction and activity (i.e., joint action). Previous research investigating such coordination has primarily focused on the synchronization of simple rhythmic movements (e.g., finger/forearm oscillations or pendulum swinging). Very few studies, however, have explored the stable patterns of coordination that emerge during task-directed complementary coordination tasks. Thus, the aim of the current study was to investigate and model the behavioral dynamics of a complementary collision-avoidance task. Participant pairs performed a repetitive targeting task in which they moved computer stimuli back and forth between sets of target locations without colliding into each other. The results revealed that pairs quickly converged onto a stable, asymmetric pattern of movement coordination that reflected differential control across participants, with 1 participant adopting a more straight-line movement trajectory between targets, and the other participant adopting a more elliptical trajectory between targets. This asymmetric movement pattern was also characterized by a phase lag between participants and was essential to task success. Coupling directionality analysis and dynamical modeling revealed that this dynamic regime was due to participant-specific differences in the coupling functions that defined the task-dynamics of participant pairs. Collectively, the current findings provide evidence that the dynamical coordination processes previously identified to underlie simple motor synchronization can also support more complex, goal-directed, joint action behavior, and can participate the spontaneous emergence of complementary joint action roles. PMID:25751036

  6. Action video games do not improve the speed of information processing in simple perceptual tasks.

    PubMed

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2014-10-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517

  7. Imitative Response Tendencies Following Observation of Intransitive Actions

    ERIC Educational Resources Information Center

    Bertenthal, Bennett I.; Longo, Matthew R.; Kosobud, Adam

    2006-01-01

    Clear and unequivocal evidence shows that observation of object affordances or transitive actions facilitates the activation of a compatible response. By contrast, the evidence showing response facilitation following observation of intransitive actions is less conclusive because automatic imitation and spatial compatibility have been confounded.…

  8. Action observation: mirroring across our spontaneous movement tempo

    PubMed Central

    Avanzino, Laura; Lagravinese, Giovanna; Bisio, Ambra; Perasso, Luisa; Ruggeri, Piero; Bove, Marco

    2015-01-01

    During action observation (AO), the activity of the “mirror system” is influenced by the viewer’s expertise in the observed action. A question that remains open is whether the temporal aspects of the subjective motor repertoire can influence the “mirror system” activation. PMID:25989029

  9. Modulation of neural activity during observational learning of actions and their sequential orders.

    PubMed

    Frey, Scott H; Gerry, Valerie E

    2006-12-20

    How does the brain transform perceptual representations of others' actions into motor representations that can be used to guide behavior? Here we used functional magnetic resonance imaging to record human brain activity while subjects watched others construct multipart objects under varied task demands. We find that relative to resting baseline, passive action observation increases activity within inferior frontal and parietal cortices implicated in action encoding (mirror system) and throughout a distributed network of areas involved in motor representation, including dorsal premotor cortex, pre-supplementary motor area, cerebellum, and basal ganglia (experiments 1 and 2). Relative to passive observation, these same areas show increased activity when subjects observe with the intention to subsequently reproduce component actions using the demonstrated sequential procedures (experiment 1). Observing the same actions with the intention of reproducing component actions, but without the requirement to use the demonstrated sequential procedure, increases activity in the same regions, although to a lesser degree (experiment 2). These findings demonstrate that when attempting to learn behaviors through observation, the observers' intentions modulate responses in a widely distributed network of cortical and subcortical regions implicated previously in action encoding and/or motor representation. Among these regions, only activity within the right intraparietal sulcus predicts the accuracy with which observed procedures are subsequently performed. Successful formation of motor representations of sequential procedures through observational learning is dependent on computations implemented within this parietal region. PMID:17182769

  10. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

    PubMed

    Taube, Wolfgang; Mouthon, Michael; Leukel, Christian; Hoogewoud, Henri-Marcel; Annoni, Jean-Marie; Keller, Martin

    2015-03-01

    After immobilization, patients show impaired postural control and increased risk of falling. Therefore, loss of balance control should already be counteracted during immobilization. Previously, studies have demonstrated that both motor imagery (MI) and action observation (AO) can improve motor performance. The current study elaborated how the brain is activated during imagination and observation of different postural tasks to provide recommendations about the conception of non-physical balance training. For this purpose, participants were tested in a within-subject design in an fMRI-scanner in three different conditions: (a) AO + MI, (b) AO, and (c) MI. In (a) participants were instructed to imagine themselves as the person pictured in the video whereas in (b) they were instructed simply to watch the video. In (c) subjects closed their eyes and kinesthetically imagined the task displayed in the video. Two tasks were evaluated in each condition: (i) static standing balance and (ii) dynamic standing balance (medio-lateral perturbation). In all conditions the start of a new trial was indicated every 2 sec by a sound. During AO + MI of the dynamic task, participants activated motor centers including the putamen, cerebellum, supplementary motor area, premotor cortices (PMv/d) and primary motor cortex (M1). MI showed a similar pattern but no activity in M1 and PMv/d. In the SMA and cerebellum, activity was generally higher in the dynamic than in the static condition. AO did not significantly activate any of these brain areas. Our results showed that (I) mainly AO + MI, but also MI, activate brain regions important for balance control; (II) participants display higher levels of brain activation in the more demanding balance task; (III) there is a significant difference between AO + MI and AO. Consequently, best training effects should be expected when participants apply MI during AO (AO + MI) of challenging postural tasks. PMID:25461711

  11. Viewing Instructions Accompanying Action Observation Modulate Corticospinal Excitability

    PubMed Central

    Wright, David J.; McCormick, Sheree A.; Williams, Jacqueline; Holmes, Paul S.

    2016-01-01

    Action observation interventions may have the potential to contribute to improved motor function in motor (re)learning settings by promoting functional activity and plasticity in the motor regions of the brain. Optimal methods for delivering such interventions, however, have yet to be established. This experiment investigated the effect on corticospinal excitability of manipulating the viewing instructions provided to participants (N = 21) prior to action observation. Specifically, motor evoked potential responses measured from the right hand muscles following single-pulse transcranial magnetic stimulation (TMS) to the left motor cortex were compared when participants were instructed to observe finger-thumb opposition movement sequences: (i) passively; (ii) with the intent to imitate the observed movement; or (iii) whilst simultaneously and actively imagining that they were performing the movement as they observed it. All three action observation viewing instructions facilitated corticospinal excitability to a greater extent than did observation of a static hand. In addition, the extent to which corticospinal excitability was facilitated was greater during combined observation and imagery, compared to passive observation. These findings have important implications for the design of action observation interventions in motor (re)learning settings, where instructions that encourage observers to simultaneously imagine themselves performing the observed movement may offer the current optimal method for improving motor function through action observation. PMID:26869901

  12. Entrainment and task co-representation effects for discrete and continuous action sequences.

    PubMed

    van der Wel, Robrecht P R D; Fu, En

    2015-12-01

    A large body of work has established an influence of other people's actions on our own actions. For example, actors entrain to the movements of others, in studies that typically employ continuous movements. Likewise, studies on co-representation have shown that people automatically co-represent a co-actor's task, in studies that typically employ discrete actions. Here we examined entrainment and co-representation within a single task paradigm. Participants sat next to a confederate while simultaneously moving their right hand back and forth between two targets. We crossed whether or not the participant and the confederate moved over an obstacle and manipulated whether participants generated discrete or continuous movement sequences, while varying the space between the actors and whether the actors could see each other's movements. Participants moved higher when the confederate cleared an obstacle than when he did not. For continuous movements, this effect depended on the availability of visual information, as would be expected on the basis of entrainment. In contrast, the co-actor's task modulated the height of discrete movements, regardless of the availability of visual information, which is consistent with co-representation. Space did not have an effect. These results provide new insights into the interplay between co-representation and entrainment for discrete- and continuous-action tasks. PMID:25911443

  13. Somatosensory Experiences with Action Modulate Alpha and Beta Power during Subsequent Action Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.; Bouquet, Cedric A.; Shipley, Thomas F.

    2013-01-01

    How does prior experience with action change how we perceive a similar action performed by someone else? Previous research has examined the role of sensorimotor and visual experiences in action mirroring during subsequent observation, but the contribution of somatosensory experiences to this effect has not been adequately examined. The current study tests whether prior somatosensory stimulation experienced during action production modulates brain activity during observation of similar actions being performed by others. Specifically, changes in alpha- and beta-range oscillations in the electroencephalogram (EEG) during observation of reaching actions were examined in relation to the observer’s own prior experience of somatosensory stimulation while carrying out similar actions. Analyses revealed that alpha power over central electrodes was significantly decreased during observation of an action expected to result in somatosensory stimulation. Conversely, beta power was increased when an observed action was expected to result in somatosensory stimulation. These results suggest that somatosensory experiences may uniquely contribute to the way in which we process others people’s actions. PMID:23994217

  14. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Swenson, Charles; Durão, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Nardin, Clezio; Fonseca, Eloi

    2016-04-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  15. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Le, Guan; Swenson, Charles; Denardini, Clezio Marcos; Bishop, Rebecca L.; Abdu, Mangalathayil A.; Cupertino Durao, Otavio S.; Heelis, Roderick; Loures, Luis; Krause, Linda; Fonseca, Eloi

    2016-07-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  16. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Swenson, C.; Durão, O.; Loures, L.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Habash Krause, L.; De Nardin, C. M.; Fonseca, E.

    2015-12-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for Scintillation Prediction Observations Research Task. This mission that will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  17. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  18. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  19. Neural Mechanisms Underlying Action Observation in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, Naznin; Moiseev, Alexander; Cheung, Teresa; Weeks, Daniel J.; Cheyne, Douglas; Ribary, Urs

    2010-01-01

    Results of a magnetoencephalography (MEG) brain imaging study conducted to examine the cortical responses during action execution and action observation in 10 healthy adults and 8 age-matched adults with Down syndrome are reported. During execution, the motor responses were strongly lateralized on the ipsilateral rather than the contralateral side…

  20. Harm avoiders suppress motor resonance to observed immoral actions

    PubMed Central

    Candidi, Matteo; Sforza, Anna Laura; Aglioti, Salvatore Maria

    2015-01-01

    Motor resonance (MR) contingent upon action observation is thought to occur largely automatically. Although recent studies suggest that this process is not completely impervious to top-down modulations, much less is known on the possible role of the moral connotation of observed action goal in modulating MR. Here, we explored whether observing actions with different moral connotations modulates MR and whether any modulation depends on the onlookers’ personality. To this aim, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation from hand muscles of participants who were watching images of a model performing hand actions with the same postures and low-level goals (i.e. grasping an object) but with different moral connotations (‘stealing a wallet’ vs ‘picking up a notepaper’). Participants’ personality traits were measured using the temperament and character inventory. Results show a selective suppression of corticospinal excitability during observation of immoral actions in individuals with high scores in harm avoidance, a personality trait characterized by excessive worrying and fearfulness. Thus, a combination of dispositional (personality traits) and situational (morality of an action) variables appears to influence MR with the observed actions. PMID:24526183

  1. Anger fosters action. Fast responses in a motor task involving approach movements toward angry faces and bodies.

    PubMed

    de Valk, Josje M; Wijnen, Jasper G; Kret, Mariska E

    2015-01-01

    Efficiently responding to others' emotions, especially threatening expressions such as anger and fear, can have great survival value. Previous research has shown that humans have a bias toward threatening stimuli. Most of these studies focused on facial expressions, yet emotions are expressed by the whole body, and not just by the face. Body language contains a direct action component, and activates action preparation areas in the brain more than facial expressions. Hence, biases toward threat may be larger following threatening bodily expressions as compared to facial expressions. The current study investigated reaction times of movements directed toward emotional bodies and faces. For this purpose, a new task was developed where participants were standing in front of a computer screen on which angry, fearful, and neutral faces and bodies were presented which they had to touch as quickly as possible. Results show that participants responded faster to angry than to neutral stimuli, regardless of the source (face or body). No significant difference was observed between fearful and neutral stimuli, demonstrating that the threat bias was not related to the negativity of the stimulus, but likely to the directness of the threat in relation to the observer. Whereas fearful stimuli might signal an environmental threat that requires further exploration before action, angry expressions signal a direct threat to the observer, asking for immediate action. This study provides a novel and implicit method to directly test the speed of actions toward emotions from the whole body. PMID:26388793

  2. Location estimation of approaching objects is modulated by the observer's inherent and momentary action capabilities.

    PubMed

    Kandula, Manasa; Hofman, Dennis; Dijkerman, H Chris

    2016-08-01

    Action capability may be one of the factors that can influence our percept of the world. A distinction can be made between momentary action capability (action capability at that particular moment) and inherent action capability (representing a stable action capability). In the current study, we investigated whether there was a biasing effect of these two forms of action capability on visual perception of location. In a virtual reality room, subjects had to stop a moving ball from hitting a pillar. On some trials, the ball disappeared automatically during its motion. Subjects had to estimate the location of the ball's disappearance in these trials. We expected that if action is necessary but action capability (inherent or momentary) is limiting performance, the location of approaching objects with respect to the observer is underestimated. By judging the objects to be nearer than they really are, the need to select and execute the appropriate action increases, thereby facilitating quick action (Cole et al. in Psychol Sci 24(1):34-40, 2013. doi: 10.1177/0956797612446953 ). As a manipulation of inherent action capability in a virtual environment, two groups of participants (video game players vs. non-video game players) were entered into the study (high and low action capability). Momentary action capability was manipulated by using two difficulty levels in the experiment (Easy vs. Difficult). Results indicated that inherent and momentary action capabilities interacted together to influence online location judgments: Non-players underestimated locations when the task was Difficult. Taken together, our data suggest that both inherent and momentary action capabilities influence location judgments. PMID:27117302

  3. Neural basis of superior performance of action videogame players in an attention-demanding task.

    PubMed

    Mishra, Jyoti; Zinni, Marla; Bavelier, Daphne; Hillyard, Steven A

    2011-01-19

    Steady-state visual evoked potentials (SSVEPs) were recorded from action videogame players (VGPs) and from non-videogame players (NVGPs) during an attention-demanding task. Participants were presented with a multi-stimulus display consisting of rapid sequences of alphanumeric stimuli presented at rates of 8.6/12 Hz in the left/right peripheral visual fields, along with a central square at fixation flashing at 5.5 Hz and a letter sequence flashing at 15 Hz at an upper central location. Subjects were cued to attend to one of the peripheral or central stimulus sequences and detect occasional targets. Consistent with previous behavioral studies, VGPs detected targets with greater speed and accuracy than NVGPs. This behavioral advantage was associated with an increased suppression of SSVEP amplitudes to unattended peripheral sequences in VGPs relative to NVGPs, whereas the magnitude of the attended SSVEPs was equivalent in the two groups. Group differences were also observed in the event-related potentials to targets in the alphanumeric sequences, with the target-elicited P300 component being of larger amplitude in VGPS than NVGPs. These electrophysiological findings suggest that the superior target detection capabilities of the VGPs are attributable, at least in part, to enhanced suppression of distracting irrelevant information and more effective perceptual decision processes. PMID:21248123

  4. Action Effects and Task Knowledge: The Influence of Anticipatory Priming on the Identification of Task-Related Stimuli in Experts.

    PubMed

    Land, William M

    2016-01-01

    The purpose of the present study was to examine the extent to which anticipation of an action's perceptual effect primes identification of task-related stimuli. Specifically, skilled (n = 16) and novice (n = 24) tennis players performed a choice-reaction time (CRT) test in which they identified whether the presented stimulus was a picture of a baseball bat or tennis racket. Following their response, auditory feedback associated with either baseball or tennis was presented. The CRT test was performed in blocks in which participants predictably received the baseball sound or tennis sound irrespective of which stimulus picture was displayed. Results indicated that skilled tennis players responded quicker to tennis stimuli when the response was predictably followed by the tennis auditory effect compared to the baseball auditory effect. These findings imply that, within an individual's area of expertise, domain-relevant knowledge is primed by anticipation of an action's perceptual effect, thus allowing the cognitive system to more quickly identify environmental information. This finding provides a more complete picture of the influence that anticipation can have on the cognitive-motor system. No differences existed for novices. PMID:27272987

  5. The effect of action experience on sensorimotor EEG rhythms during action observation.

    PubMed

    Quandt, Lorna C; Marshall, Peter J

    2014-04-01

    A recent line of inquiry has examined how an observer׳s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n=20 in each group; mean age=22.0 years, SD=2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects׳ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant׳s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions. PMID:24568874

  6. Action observation treatment: a novel tool in neurorehabilitation.

    PubMed

    Buccino, Giovanni

    2014-01-01

    This review focuses on a novel rehabilitation approach known as action observation treatment (AOT). It is now a well-accepted notion in neurophysiology that the observation of actions performed by others activates in the perceiver the same neural structures responsible for the actual execution of those same actions. Areas endowed with this action observation-action execution matching mechanism are defined as the mirror neuron system. AOT exploits this neurophysiological mechanism for the recovery of motor impairment. During one typical session, patients observe a daily action and afterwards execute it in context. So far, this approach has been successfully applied in the rehabilitation of upper limb motor functions in chronic stroke patients, in motor recovery of Parkinson's disease patients, including those presenting with freezing of gait, and in children with cerebral palsy. Interestingly, this approach also improved lower limb motor functions in post-surgical orthopaedic patients. AOT is well grounded in basic neuroscience, thus representing a valid model of translational medicine in the field of neurorehabilitation. Moreover, the results concerning its effectiveness have been collected in randomized controlled studies, thus being an example of evidence-based clinical practice. PMID:24778380

  7. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    PubMed

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. PMID:25318081

  8. Time for actions in lucid dreams: effects of task modality, length, and complexity.

    PubMed

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2013-01-01

    The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for the second condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations. PMID:24474942

  9. Time for actions in lucid dreams: effects of task modality, length, and complexity

    PubMed Central

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2014-01-01

    The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for the second condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations. PMID:24474942

  10. Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans.

    PubMed

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding--outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  11. Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans

    PubMed Central

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2014-01-01

    Our social skills are critically determined by our ability to understand and appropriately respond to actions performed by others. However despite its obvious importance, the mechanisms enabling action understanding in humans have remained largely unclear. A popular but controversial belief is that parts of the motor system contribute to our ability to understand observed actions. Here, using a novel behavioral paradigm, we investigated this belief by examining a causal relation between action production, and a component of action understanding - outcome prediction, the ability of a person to predict the outcome of observed actions. We asked dart experts to watch novice dart throwers and predict the outcome of their throws. We modulated the feedbacks provided to them, caused a specific improvement in the expert's ability to predict watched actions while controlling the other experimental factors, and exhibited that a change (improvement) in their outcome prediction ability results in a progressive and proportional deterioration in the expert's own darts performance. This causal relationship supports involvement of the motor system in outcome prediction by humans of actions observed in others. PMID:25384755

  12. The effect of action video game experience on task-switching

    PubMed Central

    Green, C.Shawn; Sugarman, Michael A.; Medford, Katherine; Klobusicky, Elizabeth; Daphne Bavelier

    2012-01-01

    There is now a substantial body of work demonstrating that action video game experience results in enhancements in a wide variety of perceptual skills. More recently, several groups have also demonstrated improvements in abilities that are more cognitive in nature, in particular, the ability to efficiently switch between tasks. In a series of four experiments, we add to this body of work, demonstrating that the action video game player advantage is not exclusively due to an ability to map manual responses onto arbitrary buttons, but rather generalizes to vocal responses, is not restricted to tasks that are perceptual in nature (e.g. respond to a physical dimension of the stimulus such as its color), but generalizes to more cognitive tasks (e.g. is a number odd or even), and is present whether the switch requires a goal-switch or only a motor switch. Finally, a training study establishes that the relationship between the reduction in switch cost and action game playing is causal. PMID:22393270

  13. The perception-action dynamics of action competency are altered by both physical and observational training.

    PubMed

    Buchanan, John J; Ramos, Jorge; Robson, Nina

    2015-04-01

    Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60° and -120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system. PMID:25618008

  14. Action observation treatment: a novel tool in neurorehabilitation

    PubMed Central

    Buccino, Giovanni

    2014-01-01

    This review focuses on a novel rehabilitation approach known as action observation treatment (AOT). It is now a well-accepted notion in neurophysiology that the observation of actions performed by others activates in the perceiver the same neural structures responsible for the actual execution of those same actions. Areas endowed with this action observation–action execution matching mechanism are defined as the mirror neuron system. AOT exploits this neurophysiological mechanism for the recovery of motor impairment. During one typical session, patients observe a daily action and afterwards execute it in context. So far, this approach has been successfully applied in the rehabilitation of upper limb motor functions in chronic stroke patients, in motor recovery of Parkinson's disease patients, including those presenting with freezing of gait, and in children with cerebral palsy. Interestingly, this approach also improved lower limb motor functions in post-surgical orthopaedic patients. AOT is well grounded in basic neuroscience, thus representing a valid model of translational medicine in the field of neurorehabilitation. Moreover, the results concerning its effectiveness have been collected in randomized controlled studies, thus being an example of evidence-based clinical practice. PMID:24778380

  15. The combined effects of action observation and passive proprioceptive training on adaptive motor learning.

    PubMed

    Lei, Yuming; Bao, Shancheng; Wang, Jinsung

    2016-09-01

    Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. PMID:27298007

  16. The Effect of Different Modes of Task Orientation on Observational Attainment in Practical Chemistry

    ERIC Educational Resources Information Center

    Kempa, R. F.; Ward, J. E.

    1975-01-01

    Examines the effect of three different modes of task orientation on observational attainment in practical chemistry. Results include the overall performance on the chemistry observation test and an analysis of the influence of the complexity of observational tasks on observational attainment. (Author/GS)

  17. Verbal social primes alter motor contagion during action observation.

    PubMed

    Sparks, S; Douglas, T; Kritikos, A

    2016-06-01

    We investigated whether prosocial and nonsocial word primes prior to action observation modify subsequent initiation and execution of the observer's own reach-to-grasp actions. Participants observed a model performing exaggeratedly curved (vertical deviation) or natural straight reaches to a vertical dowel and always performed a straight reach to a dowel themselves. Observing curved movements slowed initiation times and increased the vertical deviation of the participants' movements. Observing curved movements enhanced vertical deviation only in the prosocial word primes condition. We suggest that social context priming can modulate initiation of movement as well as the extent of motor contagion (in this case, the extent of vertical deviation) between model and observer. PMID:26879285

  18. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  19. Action recognition depends on observer's level of action control and social personality traits.

    PubMed

    Ondobaka, Sasha; Newman-Norlund, Roger D; de Lange, Floris P; Bekkering, Harold

    2013-01-01

    Humans recognize both the movement (physical) goals and action (conceptual) goals of individuals with whom they are interacting. Here, we assessed whether spontaneous recognition of others' goals depends on whether the observers control their own behavior at the movement or action level. We also examined the relationship between individual differences in empathy and ASD-like traits, and the processing of other individual's movement and action goals that are known to be encoded in the "mirroring" and "mentalizing" brain networks. In order to address these questions, we used a computer-based card paradigm that made it possible to independently manipulate movement and action congruency of observed and executed actions. In separate blocks, participants were instructed to select either the right or left card (movement-control condition) or the higher or lower card (action-control condition), while we manipulated action- and movement-congruency of both actors' goals. An action-congruency effect was present in all conditions and the size of this effect was significantly correlated with self-reported empathy and ASD-like traits. In contrast, movement-congruency effects were only present in the movement-control block and were strongly dependent on action-congruency. These results illustrate that spontaneous recognition of others' behavior depends on the control scheme that is currently adopted by the observer. The findings suggest that deficits in action recognition are related to abnormal synthesis of perceived movements and prior conceptual knowledge that are associated with activations in the "mirroring" and "mentalizing" cortical networks. PMID:24303046

  20. The Effect of Action Experience on Sensorimotor EEG Rhythms during Action Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.

    2014-01-01

    A recent line of inquiry has examined how an observer’s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n = 20 in each group; mean age = 22.0 years, SD = 2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects’ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant’s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions. PMID:24568874

  1. Brain Activity (fNIRS) in Control State Differs from the Execution and Observation of Object-Related and Object-Unrelated Actions.

    PubMed

    Balconi, Michela; Cortesi, Livia

    2016-01-01

    The authors explored cortical correlates of action execution and observation, directly comparing control condition condition and execution-observation, using functional near-infrared spectroscopy. Transitive actions (meaningful gestures produced in presence of an object) or intransitive actions (meaningful gestures produced in absence of an object) were performed. Increased oxygenated hemoglobin levels were revealed for both action execution and action observation in premotor cortex, and sensorimotor cortex compared to control condition. However, a higher activity in motor areas was observed for action execution than motor observation. In contrast the posterior parietal cortex was similarly activated in case of both execution and observation task. Finally, it was shown that action execution and observation of transitive more than intransitive gestures was supported by similar parietal posterior areas. These findings support the hypothesis of a partial common network for observation and execution of action, and significant implications related to action types (transitive vs. intransitive). PMID:26675979

  2. [Connectionist models of social learning: a case of learning by observing a simple task].

    PubMed

    Paignon, A; Desrichard, O; Bollon, T

    2004-03-01

    This article proposes a connectionist model of the social learning theory developed by Bandura (1977). The theory posits that an individual in an interactive situation is capable of learning new behaviours merely by observing them in others. Such learning is acquired through an initial phase in which the individual memorizes what he has observed (observation phase), followed by a second phase where he puts the recorded observations to use as a guide for adjusting his own behaviour (reproduction phase). We shall refer to the two above-mentioned phases to demonstrate that it is conceivable to simulate learning by observation otherwise than through the recording of perceived information using symbolic representation. To this end we shall rely on the formalism of ecological neuron networks (Parisi, Cecconi, & Nolfi, 1990) to implement an agent provided with the major processes identified as essential to learning through observation. The connectionist model so designed shall implement an agent capable of recording perceptive information and producing motor behaviours. The learning situation we selected associates an agent demonstrating goal-achievement behaviour and an observer agent learning the same behaviour by observation. Throughout the acquisition phase, the demonstrator supervises the observer's learning process based on association between spatial information (input) and behavioural information (output). Representation thus constructed then serves as an adjustment guide during the production phase, involving production by the observer of a sequence of actions which he compares to the representation stored in distributed form as constructed through observation. An initial simulation validates model architecture by confirming the requirement for both phases identified in the literature (Bandura, 1977) to simulate learning through observation. The representation constructed over the observation phase evidences acquisition of observed behaviours, although this phase

  3. Action Experience, More than Observation, Influences Mu Rhythm Desynchronization

    PubMed Central

    Cannon, Erin N.; Yoo, Kathryn H.; Vanderwert, Ross E.; Ferrari, Pier F.; Woodward, Amanda L.; Fox, Nathan A.

    2014-01-01

    Since the discovery of mirror neurons in premotor and parietal areas of the macaque monkey, the idea that action and perception may share the same neural code has been of central interest in social, developmental, and cognitive neurosciences. A fundamental question concerns how a putative human mirror neuron system may be tuned to the motor experiences of the individual. The current study tested the hypothesis that prior motor experience modulated the sensorimotor mu and beta rhythms. Specifically, we hypothesized that these sensorimotor rhythms would be more desynchronized after active motor experience compared to passive observation experience. To test our hypothesis, we collected EEG from adult participants during the observation of a relatively novel action: an experimenter used a claw-like tool to pick up a toy. Prior to EEG collection, we trained one group of adults to perform this action with the tool (performers). A second group comprised trained video coders, who only had experience observing the action (observers). Both the performers and the observers had no prior motor and visual experience with the action. A third group of novices was also tested. Performers exhibited the greatest mu rhythm desynchronization in the 8–13 Hz band, particularly in the right hemisphere compared to observers and novices. This study is the first to contrast active tool-use experience and observation experience in the mu rhythm and to show modulation with relatively shorter amounts of experience than prior mirror neuron expertise studies. These findings are discussed with respect to its broader implication as a neural signature for a mechanism of early social learning. PMID:24663967

  4. Imitation and observational learning of hand actions: prefrontal involvement and connectivity.

    PubMed

    Higuchi, S; Holle, H; Roberts, N; Eickhoff, S B; Vogt, S

    2012-01-16

    The first aim of this event-related fMRI study was to identify the neural circuits involved in imitation learning. We used a rapid imitation task where participants directly imitated pictures of guitar chords. The results provide clear evidence for the involvement of dorsolateral prefrontal cortex, as well as the fronto-parietal mirror circuit (FPMC) during action imitation when the requirements for working memory are low. Connectivity analyses further indicated a robust connectivity between left prefrontal cortex and the components of the FPMC bilaterally. We conclude that a mechanism of automatic perception-action matching alone is insufficient to account for imitation learning. Rather, the motor representation of an observed, complex action, as provided by the FPMC, only serves as the 'raw material' for higher-order supervisory and monitoring operations associated with the prefrontal cortex. The second aim of this study was to assess whether these neural circuits are also recruited during observational practice (OP, without motor execution), or only during physical practice (PP). Whereas prefrontal cortex was not consistently activated in action observation across all participants, prefrontal activation intensities did predict the behavioural practice effects, thus indicating a crucial role of prefrontal cortex also in OP. In addition, whilst OP and PP produced similar activation intensities in the FPMC when assessed during action observation, during imitative execution, the practice-related activation decreases were significantly more pronounced for PP than for OP. This dissociation indicates a lack of execution-related resources in observationally practised actions. More specifically, we found neural efficiency effects in the right motor cingulate-basal ganglia circuit and the FPMC that were only observed after PP but not after OP. Finally, we confirmed that practice generally induced activation decreases in the FPMC during both action observation and

  5. Rational adaptation under task and processing constraints: implications for testing theories of cognition and action.

    PubMed

    Howes, Andrew; Lewis, Richard L; Vera, Alonso

    2009-10-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck. PMID:19839682

  6. Action dynamics in multitasking: the impact of additional task factors on the execution of the prioritized motor movement

    PubMed Central

    Scherbaum, Stefan; Gottschalk, Caroline; Dshemuchadse, Maja; Fischer, Rico

    2015-01-01

    In multitasking, the execution of a prioritized task is in danger of crosstalk by the secondary task. Task shielding allows minimizing this crosstalk. However, the locus and temporal dynamics of crosstalk effects and further sources of influence on the execution of the prioritized task are to-date only vaguely understood. Here we combined a dual-task paradigm with an action dynamics approach and studied how and according to which temporal characteristics crosstalk, previously experienced interference and previously executed responses influenced participants' mouse movements in the prioritized task's execution. Investigating continuous mouse movements of the prioritized task, our results indicate a continuous crosstalk from secondary task processing until the endpoint of the movement was reached, although the secondary task could only be executed after finishing execution of the prioritized task. The motor movement in the prioritized task was further modulated by previously experienced interference between the prioritized and the secondary task. Furthermore, response biases from previous responses of the prioritized and the secondary task in movements indicate different sources of such biases. The bias by previous responses to the prioritized task follows a sustained temporal pattern typical for a contextual reactivation, while the bias by previous responses to the secondary task follows a decaying temporal pattern indicating residual activation of previously activated spatial codes. PMID:26217267

  7. The Impact of Experience on Affective Responses during Action Observation.

    PubMed

    Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  8. WDAC Task Team on Observations for Model Evaluation: Facilitating the use of observations for CMIP

    NASA Astrophysics Data System (ADS)

    Waliser, D. E.; Gleckler, P. J.; Ferraro, R.; Eyring, V.; Bosilovich, M. G.; Schulz, J.; Thepaut, J. N.; Taylor, K. E.; Chepfer, H.; Bony, S.; Lee, T. J.; Joseph, R.; Mathieu, P. P.; Saunders, R.

    2015-12-01

    Observations are essential for the development and evaluation of climate models. Satellite and in-situ measurements as well as reanalysis products provide crucial resources for these purposes. Over the last two decades, the climate modeling community has become adept at developing model intercomparison projects (MIPs) that provide the basis for more systematic comparisons of climate models under common experimental conditions. A prominent example among these is the coupled MIP (CMIP). Due to its growing importance in providing input to the IPCC, the framework for CMIP, now planning CMIP6, has expanded to include a very comprehensive and precise set of experimental protocols, with an advanced data archive and dissemination system. While the number, types and sophistication of observations over the same time period have kept pace, their systematic application to the evaluation of climate models has yet to be fully exploited due to a lack of coordinated protocols for identifying, archiving, documenting and applying observational resources. This presentation will discuss activities and plans of the World Climate Research Program (WCRP) Data Advisory Council's (WDAC) Task Team on Observations for Model Evaluation for facilitating the use of observations for model evaluation. The presentation will include an update on the status of the obs4MIPs and ana4MIPs projects, whose purpose is to provide a limited collection of well-established and documented observation and reanalysis datasets for comparison with Earth system models, targeting CMIP in particular. The presentation will also describe the role these activities and datasets play in the development of a set of community standard observation-based climate model performance metrics by the Working Group on Numerical Experimentation (WGNE)'s Performance Metrics Panel, as well as which CMIP6 experiments these activities are targeting, and where additional community input and contributions to these activities are needed.

  9. Observed actions affect body-specific associations between space and valence.

    PubMed

    de la Fuente, Juanma; Casasanto, Daniel; Santiago, Julio

    2015-03-01

    Right-handers tend to associate "good" with the right side of space and "bad" with the left. This implicit association appears to arise from the way people perform actions, more or less fluently, with their right and left hands. Here we tested whether observing manual actions performed with greater or lesser fluency can affect observers' space-valence associations. In two experiments, we assigned one participant (the actor) to perform a bimanual fine motor task while another participant (the observer) watched. Actors were assigned to wear a ski glove on either the right or left hand, which made performing the actions on this side of space disfluent. In Experiment 1, observers stood behind the actors, sharing their spatial perspective. After motor training, both actors and observers tended to associate "good" with the side of the actors' free hand and "bad" with the side of the gloved hand. To determine whether observers' space-valence associations were computed from their own perspectives or the actors', in Experiment 2 we asked the observer to stand face-to-face with the actor, reversing their spatial perspectives. After motor training, both actors and observers associated "good" with the side of space where disfluent actions had occurred from their own egocentric spatial perspectives; if "good" was associated with the actor's right-hand side it was likely to be associated with the observer's left-hand side. Results show that vicarious experiences of motor fluency can shape valence judgments, and that observers spontaneously encode the locations of fluent and disfluent actions in egocentric spatial coordinates. PMID:25638409

  10. The Impact of Experience on Affective Responses during Action Observation

    PubMed Central

    Kirsch, Louise P.; Snagg, Arielle; Heerey, Erin

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer’s general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation. PMID:27149106

  11. Predicting individual action switching in covert and continuous interactive tasks using the fluid events model

    DOE PAGESBeta

    Radvansky, Gabriel A.; D’Mello, Sidney K.; Abbott, Robert G.; Bixler, Robert E.

    2016-01-27

    The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covertmore » event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Hence, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.« less

  12. Predicting Individual Action Switching in Covert and Continuous Interactive Tasks Using the Fluid Events Model

    PubMed Central

    Radvansky, Gabriel A.; D’Mello, Sidney K.; Abbott, Robert G.; Bixler, Robert E.

    2016-01-01

    The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events. PMID:26858673

  13. Predicting Individual Action Switching in Covert and Continuous Interactive Tasks Using the Fluid Events Model.

    PubMed

    Radvansky, Gabriel A; D'Mello, Sidney K; Abbott, Robert G; Bixler, Robert E

    2016-01-01

    The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant's current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person's prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events. PMID:26858673

  14. The Things You Do: Internal Models of Others’ Expected Behaviour Guide Action Observation

    PubMed Central

    Schenke, Kimberley C.; Wyer, Natalie A.; Bach, Patric

    2016-01-01

    Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models–how different people behave in different situations–shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others’ behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals’ prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported. PMID:27434265

  15. TASKTEACH: A Method for Computer-Assisted Learning of Serial-Action Tasks. Technical Report Number 62.

    ERIC Educational Resources Information Center

    Rigney, Joseph W.; And Others

    Knowledge of the importance of mediating processes for sustaining performance, and of self-organizing abilities for learning to perform a given task, served as the basis for a method (called TASKTEACH) of using a time-sharing digital computer to assist learning of prescriptively-guided or problem-solving serial-action tasks. The students involved…

  16. Time to Tango: expertise and contextual anticipation during action observation.

    PubMed

    Amoruso, Lucía; Sedeño, Lucas; Huepe, David; Tomio, Ailin; Kamienkowski, Juan; Hurtado, Esteban; Cardona, Juan Felipe; Álvarez González, Miguel Ángel; Rieznik, Andrés; Sigman, Mariano; Manes, Facundo; Ibáñez, Agustín

    2014-09-01

    Predictive theories of action observation propose that we use our own motor system as a guide for anticipating and understanding other people's actions through the generation of context-based expectations. According to this view, people should be better in predicting and interpreting those actions that are present in their own motor repertoire compared to those that are not. We recorded high-density event-related potentials (ERPs: P300, N400 and Slow Wave, SW) and source estimation in 80 subjects separated by their level of expertise (experts, beginners and naïves) as they observed realistic videos of Tango steps with different degrees of execution correctness. We also performed path analysis to infer causal relationships between ongoing anticipatory brain activity, evoked semantic responses, expertise measures and behavioral performance. We found that anticipatory activity, with sources in a fronto-parieto-occipital network, early discriminated between groups according to their level of expertise. Furthermore, this early activity significantly predicted subsequent semantic integration indexed by semantic responses (N400 and SW, sourced in temporal and motor regions) which also predicted motor expertise. In addition, motor expertise was a good predictor of behavioral performance. Our results show that neural and temporal dynamics underlying contextual action anticipation and comprehension can be interpreted in terms of successive levels of contextual prediction that are significantly modulated by subject's prior experience. PMID:24830835

  17. Effects of goal- and task-oriented motivation in the guilty action test.

    PubMed

    Elaad, Eitan

    2013-04-01

    The present study examined the effectiveness of the Guilty Action Test in detecting critical information from goal-oriented and task-oriented informed innocent examinees. A mock crime procedure was employed and informed innocent participants were either motivated to prove innocence (goal-oriented motivation) or to prove innocence by being cooperative on the test (task-oriented motivation). Half of the participants in each motivation condition were promised course credit reward for successful completion of their mission to prove innocence or to be cooperative (high incentive level). The other half were promised no reward (low incentive level). A fifth group of uninformed innocent participants served for control purposes. Electrodemal, respiration, and cardiovascular measures were used to indicate the motivation effects. Results showed that the combination of goal-oriented instructions and an incentive for success contributed to enhanced responses to the crime-related information. The combination of task-oriented instructions and an incentive for success attenuated these responses. Skin conductance responses were most sensitive to these effects. Theoretical and practical aspects of the results were discussed. PMID:23458884

  18. ALE meta-analysis of action observation and imitation in the human brain

    PubMed Central

    Caspers, Svenja; Zilles, Karl; Laird, Angela R.; Eickhoff, Simon B.

    2016-01-01

    Over the last decade, many neuroimaging studies have assessed the human brain networks underlying action observation and imitation using a variety of tasks and paradigms. Nevertheless, questions concerning which areas consistently contribute to these networks irrespective of the particular experimental design and how such processing may be lateralized remain unresolved. The current study aimed at identifying cortical areas consistently involved in action observation and imitation by combining activation likelihood estimation (ALE) meta-analysis with probabilistic cytoarchitectonic maps. Meta-analysis of 139 functional magnetic resonance and positron emission tomography experiments revealed a bilateral network for both action observation and imitation. Additional subanalyses for different effectors within each network revealed highly comparable activation patterns to the overall analyses on observation and imitation, respectively, indicating an independence of these findings from potential confounds. Conjunction analysis of action observation and imitation meta-analyses revealed a bilateral network within frontal premotor, parietal, and temporo-occipital cortex. The most consistently rostral inferior parietal area was PFt, providing evidence for a possible homology of this region to macaque area PF. The observation and imitation networks differed particularly with respect to the involvement of Broca's area: whereas both networks involved a caudo-dorsal part of BA 44, activation during observation was most consistent in a more rostro-dorsal location, i.e., dorsal BA 45, while activation during imitation was most consistent in a more ventro-caudal aspect, i.e., caudal BA 44. The present meta-analysis thus summarizes and amends previous descriptions of the human brain networks related to action observation and imitation. PMID:20056149

  19. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions.

    PubMed

    Eaves, D L; Behmer, L P; Vogt, S

    2016-07-01

    Recent studies show that participants can engage in motor imagery (MI) and action observation (AO) simultaneously (AO+MI), indicating a capacity for dual action simulation. Here we studied the electrophysiological correlates and behavioural outcomes of two forms of AO+MI, along with pure MI and pure AO control conditions. In synchronised AO+MI, participants imagined performing a rhythmical action in synchrony with an observed distractor action. In contrast in static AO+MI, where the imagery served to conflict with AO, participants imagined holding a static hand posture during AO. Following synchronised AO+MI, rhythmical execution was strongly biased toward the cycle time of the previously observed rhythm ('imitation bias'), whereas a weaker bias was found following pure MI, and particularly for static AO+MI. In line with these findings, event-related desynchronisation (ERD) in primary sensorimotor and parietal regions was more pronounced in synchronised AO+MI compared to both pure AO and pure MI. These ERD amplitudes were, however, highly similar for static and synchronised AO+MI; suggesting that, regardless of co-represented content, both AO+MI states produced stronger motor activations than single action simulation. In contrast, synchronised AO+MI produced significantly stronger ERD in rostral prefrontal cortex compared to the other three conditions. This specific rostral prefrontal involvement most likely reflected additional cognitive processing for aligning dual action simulations. Together these results provide an important empirical validation of different AO+MI states, in that the imitation bias was strongly modulated by the content of the AO+MI instructions, and that synchronised AO+MI produced stronger behavioural and neurophysiological effects compared to pure AO or MI. PMID:27266395

  20. Dissociable contributions of motor-execution and action-observation to intermanual transfer.

    PubMed

    Hayes, Spencer J; Andrew, Matthew; Elliott, Digby; Roberts, James W; Bennett, Simon J

    2012-01-11

    We examined the suggestion that some of the processes subserving learning through action-observation and motor-execution are different because sensory motor reafference is not available while the limb is at rest in the former condition. We confirmed the action-observation and motor-execution groups learned equally the absolute time and relative time constraints associated with a movement sequence timing task. However, data from mirror (same motor commands as those in practice) and non-mirror (same visual spatial coordinates as those in practice) intermanual transfer tests showed a clear dissociation in performance following these forms of practice. While positive transfer was exhibited by both groups in the non-mirror condition, there was a significant decrement in relative time performance in the mirror condition only after action-observation. These findings confirm that some of the processes underpinning these forms of motor learning are not somatotopic. Indeed, while motor and visual representations are developed during motor-execution, the absence of sensorimotor reafference during action-observation enables relative time to be represented in visual spatial coordinates only. These behavioural effects for intermanual transfer are discussed with reference to activity in supplementary motor area. PMID:22155050

  1. Anticipatory Planning in Children with Autism Spectrum Disorder: An Assessment of Independent and Joint Action Tasks

    PubMed Central

    Scharoun, Sara M.; Bryden, Pamela J.

    2016-01-01

    Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental disorders. Although not a diagnostic feature, motor impairments have been recently acknowledged as prevalent and significant, such that these children have difficulties planning, organizing and coordinating movements. This study aimed to further investigate anticipatory motor planning in children with ASD by means of assessing end- and beginning-state comfort, considering inconsistent reports of end-state comfort in independent action, and the study of beginning-state comfort being limited to one study with young adults. Five- to eleven-year-old children with ASD, and chronologically age- and sex-matched typically-developing children picked-up a glass and: (1) poured a cup of water; and (2) passed it to the researcher to pour a cup of water. End-state comfort was deemed evident if participants grasped the glass thumb-down followed by a 180° rotation; therefore ending with a thumb-up posture. Beginning-state comfort was deemed evident if participants passed the glass to the researcher oriented upright. Findings revealed less end-state comfort in children with ASD, attributed to motor planning deficits. Beginning-state comfort did not differ, ascribed to the habitual nature of the task; therefore reflecting a stimulus-driven response as opposed to an action which reflects anticipatory planning. The findings support difficulties with motor planning and control for children with ASD in an independent task. However, when acting with a familiar object in joint action, behavior does not differ, likely indicative of a habitual, stimulus-driven response. PMID:27601983

  2. Anticipatory Planning in Children with Autism Spectrum Disorder: An Assessment of Independent and Joint Action Tasks.

    PubMed

    Scharoun, Sara M; Bryden, Pamela J

    2016-01-01

    Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental disorders. Although not a diagnostic feature, motor impairments have been recently acknowledged as prevalent and significant, such that these children have difficulties planning, organizing and coordinating movements. This study aimed to further investigate anticipatory motor planning in children with ASD by means of assessing end- and beginning-state comfort, considering inconsistent reports of end-state comfort in independent action, and the study of beginning-state comfort being limited to one study with young adults. Five- to eleven-year-old children with ASD, and chronologically age- and sex-matched typically-developing children picked-up a glass and: (1) poured a cup of water; and (2) passed it to the researcher to pour a cup of water. End-state comfort was deemed evident if participants grasped the glass thumb-down followed by a 180° rotation; therefore ending with a thumb-up posture. Beginning-state comfort was deemed evident if participants passed the glass to the researcher oriented upright. Findings revealed less end-state comfort in children with ASD, attributed to motor planning deficits. Beginning-state comfort did not differ, ascribed to the habitual nature of the task; therefore reflecting a stimulus-driven response as opposed to an action which reflects anticipatory planning. The findings support difficulties with motor planning and control for children with ASD in an independent task. However, when acting with a familiar object in joint action, behavior does not differ, likely indicative of a habitual, stimulus-driven response. PMID:27601983

  3. Observing Pair-Work Task in an English Speaking Class

    ERIC Educational Resources Information Center

    Achmad, Diana; Yusuf, Yunisrina Qismullah

    2014-01-01

    This paper reports on students' pair-work interactions to develop their speaking skills in an ELT classroom which consisted of international learners. A number of 16 learners of intermediate proficiency with IELTS score band 5.5 were observed. The teacher had paired those he considered among them to be the more competent ones (hereafter, stronger)…

  4. Action observers implicitly expect actors to act goal-coherently, even if they do not: an fMRI study.

    PubMed

    Hrkać, Mari; Wurm, Moritz F; Schubotz, Ricarda I

    2014-05-01

    Actions observed in everyday life normally consist of one person performing sequences of goal-directed actions. The present fMRI study tested the hypotheses that observers are influenced by the actor's identity, even when this information is task-irrelevant, and that this information shapes their expectation on subsequent actions of the same actor. Participants watched short video clips of action steps that either pertained to a common action with an overarching goal or not, and were performed by either one or by varying actors (2 × 2 design). Independent of goal coherence, actor coherence elicited activation in dorsolateral and ventromedial frontal cortex, together pointing to a spontaneous attempt to integrate all actions performed by one actor. Interestingly, watching an actor performing unrelated actions elicited additional activation in left inferior frontal gyrus, suggesting a search in semantic memory in an attempt to construct an overarching goal that can reconcile the disparate action steps with a coherent intention. Post-experimental surveys indicate that these processes occur mostly unconsciously. Findings strongly suggest a spontaneous expectation bias toward actor-related episodes in action observers, and hence to the immense impact of actor information on action observation. PMID:23983202

  5. Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: difference between novice and expert.

    PubMed

    Tsukazaki, Izumi; Uehara, Kazumasa; Morishita, Takuya; Ninomiya, Masato; Funase, Kozo

    2012-06-19

    We examined the effects of observation combined with motor imagery (MI) of a skilled hand-motor task on motor cortex excitability, which was assessed by transcranial magnetic stimulation (TMS). Novices and experts at 3-ball cascade juggling (3BCJ) participated in this study. In one trial, the subjects observed a video clip of 3BCJ while imagining performing it. In addition, the subjects also imagined performing 3BCJ without video clip observation. Motor evoked potentials (MEPs) were recorded from the hand muscles that were activated by the task during each trial. In the novices, the MEP amplitude was significantly increased by video clip observation combined with MI. In contrast, MI without video clip observation significantly increased the MEP amplitude of the experts. These results suggest that action observation of 3BCJ increases the ability of novices to make their MI performing the task. Meanwhile, experts use their own motor program to recall their MI of the task. PMID:22580208

  6. Emulating real-life situations with a play task to observe parenting skills and child behaviors.

    PubMed

    Rusby, Julie C; Metzler, Carol W; Sanders, Matthew R; Crowley, Ryann

    2015-04-01

    Play tasks that use standardized procedures and materials are a practical way to assess parenting skills, child behaviors, and the ways in which parents and children interact. We describe a systematic process for developing the parent-child play task (PCPT) to assess mother-child interactions for a randomized controlled trial of a video-based parenting program. Participants were 307 mothers and their 3- to 6-year-old children who presented oppositional and disruptive behavior challenges. The validity of the PCPT was investigated by testing (a) the extent to which the tasks elicited the specific parent and child behaviors of interest, (b) the consistency of individuals' behavior across the play tasks, and (c) the concurrent associations of the PCPT-observed child behaviors and mother reports of child behavior. The different tasks elicited the mother and child behaviors that they were designed to elicit. Behavior consistency across tasks for individual mothers and children was fair to good, with the exception of 2 task-specific behaviors. Mother's guidance (provision of instructions to foster a skill) during the teaching task and children's interruptions while mother was busy during the questionnaire task were highly task specific. Modest associations were found between observed children's noncompliance and inappropriate behaviors and mother-reported conduct problems and oppositional behaviors. Implications for clinical and research assessments are discussed. PMID:25689090

  7. Emulating Real-Life Situations with a Play Task to Observe Parenting Skills and Child Behaviors

    PubMed Central

    Rusby, Julie C.; Metzler, Carol W.; Sanders, Matthew R.; Crowley, Ryann

    2015-01-01

    Play tasks that use standardized procedures and materials are a practical way to assess parenting skills, child behaviors, and the ways in which parents and children interact. We describe a systematic process for developing the Parent–Child Play Task (PCPT) to assess mother–child interactions for a randomized controlled trial on a video-based parenting program. Participants are 307 mothers and their 3-through 6-year-old children who present oppositional and disruptive behavior challenges. The validity of the PCPT was investigated by testing (a) the extent to which the tasks elicit the specific parent and child behaviors of interest, (b) the consistency of individuals’ behavior across the play tasks, and (c) the concurrent associations of the PCPT observed child behaviors and mother reports of child behavior. The different tasks elicited the mother and child behaviors that they were designed to elicit. Behavior consistency across tasks for individual mothers and children was fair to good, with the exception of two task-specific behaviors. Mothers’ guidance (provision of instructions to foster a skill) during the teaching task and children’s interruptions while mother was busy during the questionnaire task were highly task specific. Modest associations were found between observed children’s noncompliance and inappropriate behaviors, and mother-reported conduct problems and oppositional behaviors. Implications for clinical and research assessments are discussed. PMID:25689090

  8. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  9. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements

    PubMed Central

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S.; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  10. Evaluation of Music Instruction by Musicians and Nonmusicians Assigned Differential Observation Tasks.

    ERIC Educational Resources Information Center

    Prickett, Carol A.; Duke, Robert A.

    1992-01-01

    Discusses a study in which music education majors and non-music-education majors observed a violin lesson. Reports that observers received varying instructions regarding how to observe the lesson. Reports that majors' evaluations were generally lower or equal to nonmusic majors' ratings. Concludes that the focus of the observation task and…

  11. Exercise Performance and Corticospinal Excitability during Action Observation

    PubMed Central

    Wrightson, James G.; Twomey, Rosie; Smeeton, Nicholas J.

    2016-01-01

    Purpose: Observation of a model performing fast exercise improves simultaneous exercise performance; however, the precise mechanism underpinning this effect is unknown. The aim of the present study was to investigate whether the speed of the observed exercise influenced both upper body exercise performance and the activation of a cortical action observation network (AON). Method: In Experiment 1, 10 participants completed a 5 km time trial on an arm-crank ergometer whilst observing a blank screen (no-video) and a model performing exercise at both a typical (i.e., individual mean cadence during baseline time trial) and 15% faster than typical speed. In Experiment 2, 11 participants performed arm crank exercise whilst observing exercise at typical speed, 15% slower and 15% faster than typical speed. In Experiment 3, 11 participants observed the typical, slow and fast exercise, and a no-video, whilst corticospinal excitability was assessed using transcranial magnetic stimulation. Results: In Experiment 1, performance time decreased and mean power increased, during observation of the fast exercise compared to the no-video condition. In Experiment 2, cadence and power increased during observation of the fast exercise compared to the typical speed exercise but there was no effect of observation of slow exercise on exercise behavior. In Experiment 3, observation of exercise increased corticospinal excitability; however, there was no difference between the exercise speeds. Conclusion: Observation of fast exercise improves simultaneous upper-body exercise performance. However, because there was no effect of exercise speed on corticospinal excitability, these results suggest that these improvements are not solely due to changes in the activity of the AON. PMID:27014037

  12. Social class affects Mu-suppression during action observation.

    PubMed

    Varnum, Michael E W; Blais, Chris; Brewer, Gene A

    2016-08-01

    Socioeconomic status (SES) has been linked to differences in the degree to which people are attuned to others. Those who are lower in SES also tend to be more interpersonally attuned. However, to date, this work has not been demonstrated using neural measures. In the present electroencephalogram study, we found evidence that lower SES was linked to stronger Mu-suppression during action observation. This finding adds to the growing literature on factors that affect Mu-suppression and suggests that the mirror neuron system may be influenced by one's social class. PMID:26458132

  13. Conceptual response distance and intervening keys distinguish action goals in the Stroop color-identification task.

    PubMed

    Chen, Jing; Proctor, Robert W

    2014-10-01

    In previous studies, a physical response-distance effect was found in the two-choice Stroop color-identification task, with the Stroop effect being larger when the two response keys were physically close together than when they were far apart. In the present study, we found a conceptual response-distance effect, with the Stroop effect being larger when the response keys were conceptually close (labeled as "5" and "6") than when they were conceptually far (labeled as "1" and "9"). Moreover, a response-distance effect due to pure physical distance was not evident; rather, the effect was found only when additional keys were placed between the two far response keys. These results are in agreement with a view that response keys are coded as action goals, with farther conceptual distance and additional keys helping distinguish the action goals. The results are difficult to reconcile with accounts that place emphasis on the physical separation of the effectors or their inanimate extensions. PMID:24578092

  14. Model observers for complex discrimination tasks: assessments of multiple coronary stent placements

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Abbey, Craig K.; Teymoorian, Arian; Da, Xiaolin; Whiting, James S.; Eckstein, Miguel P.

    2010-02-01

    As an important clinical task, evaluating the placement of multiple coronary stents requires fine judgments of distance between stents. However, making these judgments is limited by low system resolution, noise, low contrast of the deployed stent, and stent motion during the cardiac cycle. We use task performance as a figure of merit for optimizing image display parameters. In previous work, we described our simulation procedure in detail, and also reported results of human observers for a visual task involving discrimination of 4 gap sizes under various frame rates and number of frames. Here, we report the results of three spatial model observers (i.e. NPW, NPWE, and PWMF) and two temporal sensitivity functions (i.e. transient and sustained) for the same task. Under signal known exactly conditions, we find that model observers can be used to predict human observers in terms of discrimination accuracy by adding internal noise.

  15. Sensitivity of the Action Observation Network to Physical and Observational Learning

    PubMed Central

    Cross, Emily S.; Kraemer, David J.M.; de C. Hamilton, Antonia F.; Kelley, William M.

    2009-01-01

    Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation of similar actions. Participants trained for 5 days on dance sequences set to music videos. Each day they physically rehearsed one set of dance sequences (“danced”), and passively watched a different set of sequences (“watched”). Functional magnetic resonance imaging was obtained prior to and immediately following the 5 days of training. After training, a subset of the AON showed a degree of common activity for observational and physical learning. Activity in these premotor and parietal regions was sustained during observation of sequences that were danced or watched, but declined for unfamiliar sequences relative to the pretraining scan session. These imaging data demonstrate the emergence of action resonance processes in the human brain based on observational learning without physical practice and identify commonalities in the neural substrates for physical and observational learning. PMID:18515297

  16. What are you doing? How active and observational experience shape infants' action understanding

    PubMed Central

    Hunnius, Sabine; Bekkering, Harold

    2014-01-01

    From early in life, infants watch other people's actions. How do young infants come to make sense of actions they observe? Here, we review empirical findings on the development of action understanding in infancy. Based on this review, we argue that active action experience is crucial for infants' developing action understanding. When infants execute actions, they form associations between motor acts and the sensory consequences of these acts. When infants subsequently observe these actions in others, they can use their motor system to predict the outcome of the ongoing actions. Also, infants come to an understanding of others’ actions through the repeated observation of actions and the effects associated with them. In their daily lives, infants have plenty of opportunities to form associations between observed events and learn about statistical regularities of others’ behaviours. We argue that based on these two forms of experience—active action experience and observational experience—infants gradually develop more complex action understanding capabilities. PMID:24778386

  17. Overview and history of the Beach Vitex Task Force: an interagency partnership in action

    USGS Publications Warehouse

    Westbrooks, Randy G.; Brabson, Elizabeth N.

    2011-01-01

    Beach vitex (Vitex rotundifolia L. f.), a woody vine from Korea, was introduced into the United States as a dune stabilization plant in the mid-1980s. By the mid- to late-1990s, Beach vitex was observed spreading from landscape plantings along the South Carolina coast, crowding out native dune species. In 2003, in response to concerns about possible impacts of the plant on native dune species, as well as loggerhead sea turtle nesting habitat, the South Carolina Beach Vitex Task Force was organized to address the problem. Since that time, the effort to control Beach vitex has expanded to include North Carolina, and more recently, Virginia.

  18. Enactment versus Observation: Item-Specific and Relational Processing in Goal-Directed Action Sequences (and Lists of Single Actions)

    PubMed Central

    Schult, Janette; von Stülpnagel, Rul; Steffens, Melanie C.

    2014-01-01

    What are the memory-related consequences of learning actions (such as “apply the patch”) by enactment during study, as compared to action observation? Theories converge in postulating that enactment encoding increases item-specific processing, but not the processing of relational information. Typically, in the laboratory enactment encoding is studied for lists of unrelated single actions in which one action execution has no overarching purpose or relation with other actions. In contrast, real-life actions are usually carried out with the intention to achieve such a purpose. When actions are embedded in action sequences, relational information provides efficient retrieval cues. We contrasted memory for single actions with memory for action sequences in three experiments. We found more reliance on relational processing for action-sequences than single actions. To what degree can this relational information be used after enactment versus after the observation of an actor? We found indicators of superior relational processing after observation than enactment in ordered pair recall (Experiment 1A) and in emerging subjective organization of repeated recall protocols (recall runs 2–3, Experiment 2). An indicator of superior item-specific processing after enactment compared to observation was recognition (Experiment 1B, Experiment 2). Similar net recall suggests that observation can be as good a learning strategy as enactment. We discuss possible reasons why these findings only partly converge with previous research and theorizing. PMID:24927279

  19. The role of cue-response mapping in motorvisual impairment and facilitation: Evidence for different roles of action planning and action control in motorvisual dual-task priming

    PubMed Central

    Thomaschke, Roland; Hopkins, Brian; Christopher Miall, R.

    2016-01-01

    Previous research has shown that actions impair the visual perception of categorically action-consistent stimuli. On the other hand, actions can also facilitate the perception of spatially action-consistent stimuli. We suggest that motorvisual impairment is due to action planning processes, while motorvisual facilitation is due to action control mechanisms. This implies that because action planning is sensitive to modulations by cue-response mapping so should motorvisual impairment, while motorvisual facilitation should be insensitive to manipulations of cue-response mapping as is action control. We tested this prediction in three dual-task experiments. The impact of performing left and right key presses on the perception of unrelated, categorically or spatially consistent, stimuli was studied. As expected, we found motorvisual impairment for categorically consistent stimuli and motorvisual facilitation for spatially consistent stimuli. In all experiments, we compared congruent with incongruent cue-key mappings. Mapping manipulations affected motorvisual impairment, but not motorvisual facilitation. The results support our suggestion that motorvisual impairment is due to action planning, and motorvisual facilitation to action control. PMID:21806310

  20. Nonparametric EROC analysis for observer performance evaluation on joint detection and estimation tasks

    NASA Astrophysics Data System (ADS)

    Wunderlich, Adam; Goossens, Bart

    2014-03-01

    The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.

  1. Observational training improves adult womens' performance on Piaget's water-level task.

    PubMed

    Krekling, S; Nordvik, H

    1992-01-01

    Among women university students who lacked conceptual understanding of the principle that the surface of still water is always horizontal, a specific task procedure designed to optimize self-discovery of the principle proved effective. Successful learning was reflected in more accurate responses on an adjustment task and by a significant increase (p less than .01) in the number of subjects able to verbalize a correct strategy. In contrast to previous research the results show that adult womens' performance on the water-level task can be improved by observational training, suggesting that the female lag in spatial skills may depend on experiential factors. PMID:1641606

  2. 77 FR 58143 - Interagency Task Force on Antimicrobial Resistance (ITFAR): An Update of A Public Health Action...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... resistance. Action items were organized into four focus areas: Surveillance, Prevention and Control, Research.... Other HHS Task Force members include the Agency for Healthcare Research and Quality (AHRQ), the Centers..., Prevention and Control, Research, and Product Development. Written comments should be submitted following...

  3. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training

    PubMed Central

    Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin

    2014-01-01

    For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598

  4. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    NASA Astrophysics Data System (ADS)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  5. Task-dependent calibration of auditory spatial perception through environmental visual observation.

    PubMed

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio task and whether this influence is task-specific or environment-specific or both. To test these issues we investigate possible improvements of acoustic precision with sighted blindfolded participants in two audio tasks [minimum audible angle (MAA) and space bisection] and two acoustically different environments (normal room and anechoic room). With respect to a baseline of auditory precision, we found an improvement of precision in the space bisection task but not in the MAA after the observation of a normal room. No improvement was found when performing the same task in an anechoic chamber. In addition, no difference was found between a condition of short environment observation and a condition of full vision during the whole experimental session. Our results suggest that even short-term environmental observation can calibrate auditory spatial performance. They also suggest that echoes can be the cue that underpins visual calibration. Echoes may mediate the transfer of information from the visual to the auditory system. PMID:26082692

  6. Action Effects and Task Knowledge: The Influence of Anticipatory Priming on the Identification of Task-Related Stimuli in Experts

    PubMed Central

    Land, William M.

    2016-01-01

    The purpose of the present study was to examine the extent to which anticipation of an action’s perceptual effect primes identification of task-related stimuli. Specifically, skilled (n = 16) and novice (n = 24) tennis players performed a choice-reaction time (CRT) test in which they identified whether the presented stimulus was a picture of a baseball bat or tennis racket. Following their response, auditory feedback associated with either baseball or tennis was presented. The CRT test was performed in blocks in which participants predictably received the baseball sound or tennis sound irrespective of which stimulus picture was displayed. Results indicated that skilled tennis players responded quicker to tennis stimuli when the response was predictably followed by the tennis auditory effect compared to the baseball auditory effect. These findings imply that, within an individual’s area of expertise, domain-relevant knowledge is primed by anticipation of an action’s perceptual effect, thus allowing the cognitive system to more quickly identify environmental information. This finding provides a more complete picture of the influence that anticipation can have on the cognitive-motor system. No differences existed for novices. PMID:27272987

  7. Working memory modulates neural efficiency over motor components during a novel action planning task: an EEG study.

    PubMed

    Behmer, Lawrence P; Fournier, Lisa R

    2014-03-01

    Research shows neural efficiency of motor-related activity based on learning and expertise in a specific domain (e.g., guitar playing, sharp-shooting or a sport). However, it is unknown whether neural efficiency of motor-related activity, underlying action planning and maintenance, can be modulated by general cognitive ability alone. This study examined whether working memory span can influence motor-related neural activity during a novel motor task. Participants were divided into low- and high-span working memory groups based on their scores in an operation span task. Afterwards, participants learned different sequences of button responses corresponding to different abstract stimuli. The task required participants to briefly maintain an action plan in working memory to a stimulus that they would execute after responding to a subsequent stimulus. We used EEG to record changes in event related power in the mu- and beta-bands in left and right motor components during the interval where participants planned and maintained an action in working memory. Results showed decreases in mu- and beta-event related power for low-span participants and increases in mu- and beta-event related power for high-span participants over the left motor cluster while maintaining an action plan in working memory. Also, high-span participants were faster and more accurate in the task than low-span participants. This suggests that neural efficiency during a novel motor task can be influenced by working memory span, and that such differences are localized to the motor system. PMID:24291024

  8. Observing accidental and intentional unusual actions is associated with different subregions of the medial frontal cortex.

    PubMed

    Desmet, Charlotte; Brass, Marcel

    2015-11-15

    The literature on action observation revealed contradictory results regarding the activation of different subregions of the medial prefrontal cortex when observing unusual behaviour. Error observation research has shown that the posterior part of the medial prefrontal cortex is more active when observing unusual behaviour compared to usual behaviour while action understanding research has revealed some mixed results concerning the role of the anterior part of the medial prefrontal cortex during the observation of unusual actions. Here, we resolve this discrepancy in the literature by showing that different parts of the medial prefrontal cortex are active depending on whether an observed unusual behaviour is intentional or not. While the posterior medial prefrontal cortex is more active when we observe unusual accidental actions compared to unusual intentional actions, a more anterior part of the medial prefrontal cortex is more active when we observe unusual intentional actions compared to unusual accidental actions. PMID:26279209

  9. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    PubMed

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  10. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    PubMed Central

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  11. Difficult action decisions reduce the sense of agency: A study using the Eriksen flanker task.

    PubMed

    Sidarus, Nura; Haggard, Patrick

    2016-05-01

    The sense of agency refers to the feeling that we are in control of our actions and, through them, of events in the outside world. Much research has focused on the importance of retrospectively matching predicted and actual action outcomes for a strong sense of agency. Yet, recent studies have revealed that a metacognitive signal about the fluency of action selection can prospectively inform our sense of agency. Fluent, or easy, action selection leads to a stronger sense of agency over action outcomes than dysfluent, or difficult, selection. Since these studies used subliminal priming to manipulate action selection, it remained unclear whether supraliminal stimuli affecting action selection would have similar effects. We used supraliminal flankers to manipulate action selection in response to a central target. Experiment 1 revealed that conflict in action selection, induced by incongruent flankers and targets, led to reduced agency ratings over an outcome that followed the participant's response, relative to neutral and congruent flanking conditions. Experiment 2 replicated this result, and extended it to free choice between alternative actions. Finally, Experiment 3 varied the stimulus onset asynchrony (SOA) between flankers and target. Action selection performance varied with SOA. Agency ratings were always lower in incongruent than congruent trials, and this effect did not vary across SOAs. Sense of agency is influenced by a signal that tracks conflict in action selection, regardless of the visibility of stimuli inducing conflict, and even when the timing of the stimuli means that the conflict may not affect performance. PMID:27017411

  12. A News Game Called TRIO: A Task for Reporting, Interviewing and Observing.

    ERIC Educational Resources Information Center

    Talbott, Albert D.; And Others

    The reason for creating the Task for Reporting, Interviewing, and Observing (TRIO) was to make selective perception and metaphoric transformation come alive for students. This paper includes the experiences in designing, implementing, and trying out the exercise, a description of the exercise, a summary of the participants' play, and suggestions…

  13. How Equivalent Are the Action Execution, Imagery, and Observation of Intransitive Movements? Revisiting the Concept of Somatotopy during Action Simulation

    ERIC Educational Resources Information Center

    Lorey, Britta; Naumann, Tim; Pilgramm, Sebastian; Petermann, Carmen; Bischoff, Matthias; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter; Munzert, Jorn

    2013-01-01

    Jeannerod (2001) hypothesized that action execution, imagery, and observation are functionally equivalent. This led to the major prediction that these motor states are based on the same action-specific and even effector-specific motor representations. The present study examined whether hand and foot movements are represented in a somatotopic…

  14. Assessment in Higher Education in the Professions: Action Research as an Authentic Assessment Task

    ERIC Educational Resources Information Center

    Maxwell, T. W.

    2012-01-01

    The argument of this article is that assessment in higher education in the professions can benefit from quality assessment tasks linked to professional practice. Such an assessment task would need to be authentic requiring considerable intellectual skill as well as attending to the realities of professional demands. The idea of authentic…

  15. Classroom Use of Multimedia-Supported Predict Observe Explain Tasks in a Social Constructivist Learning Environment

    NASA Astrophysics Data System (ADS)

    Kearney, Matthew

    2004-08-01

    This paper focuses on the use of multimedia-based predict-observe-explain (POE) tasks to facilitate small group learning conversations. Although the tasks were given to pairs of students as a diagnostic tool to elicit their pre-instructional physics conceptions, they also provided a peer learning opportunity for students. The study adopted a social constructivist perspective to analyse and interpret the students conversations, focussing on students articulation and justification of their own science conceptions, clarification of and critical reflection on their partners views, and negotiation of new, shared meanings. Two senior science classes participated in this interpretive study. Data sources were mainly qualitative and included audio and video recordings of students small group discussions at the computer, interviews with selected students and their teachers, classroom observations, and student surveys. Findings indicate that the computer-based POE tasks supported students peer learning conversations, particularly during the prediction, reasoning and observation stages of the POE strategy. The increased level of student control of the POE tasks, combined with the multimedia nature of the program, initiated quality peer discussions. The findings have implications for authentic, technology-mediated learning in science.

  16. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.

    PubMed

    Copley-Mills, Freya; Connolly, Jason D; Cavina-Pratesi, Cristiana

    2016-09-01

    Comparison between real and pantomimed actions is used in neuroscience to dissociate stimulus-driven (real) as compared to internally driven (pantomimed) visuomotor transformations, with the goal of testing models of vision (Milner & Goodale, 1995) and diagnosing neuropsychological deficits (apraxia syndrome). Real actions refer to an overt movement directed toward a visible target whereas pantomimed actions refer to an overt movement directed either toward an object that is no longer available. Although similar, real and pantomimed actions differ in their kinematic parameters and in their neural substrates. Pantomimed-reach-to-grasp-actions show reduced reaching velocities, higher wrist movements, and reduced grip apertures. In addition, seminal neuropsychological studies and recent neuroimaging findings confirmed that real and pantomimed actions are underpinned by separate brain networks. Although previous literature suggests differences in the praxis system between males and females, no research to date has investigated whether or not gender differences exist in the context of real versus pantomimed reach-to-grasp actions. We asked ten male and ten female participants to perform real and pantomimed reach-to-grasp actions toward objects of different sizes, either with or without visual feedback. During pantomimed actions participants were required to pick up an imaginary object slightly offset relative to the location of the real one (which was in turn the target of the real reach-to-grasp actions). Results demonstrate a significant difference between the kinematic parameters recorded in male and female participants performing pantomimed, but not real reach-to-grasp tasks, depending on the availability of visual feedback. With no feedback both males and females showed smaller grip aperture, slower movement velocity and lower reach height. Crucially, these same differences were abolished when visual feedback was available in male, but not in female participants

  17. On the Relations between Action Planning, Object Identification, and Motor Representations of Observed Actions and Objects

    ERIC Educational Resources Information Center

    Vainio, Lari; Symes, Ed; Ellis, Rob; Tucker, Mike; Ottoboni, Giovanni

    2008-01-01

    Recent evidence suggests that viewing a static prime object (a hand grasp), can activate action representations that affect the subsequent identification of graspable target objects. The present study explored whether stronger effects on target object identification would occur when the prime object (a hand grasp) was made more action-rich and…

  18. Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients.

    PubMed

    Sale, Patrizio; Ceravolo, Maria Gabriella; Franceschini, Marco

    2014-01-01

    The clinical impact of action observation (AO) on upper limb functional recovery in subacute stroke patients is recent evidence. We sought to test the hypothesis that training everyday life activities through AO coupled with task execution might activate the left hemisphere different from the right one. Sixty-seven first-ever ischemic stroke subjects were randomly assigned to receive upper limb training coupled with AO tasks or standard rehabilitation. The groups were matched by age and gender, Bamford category, and interval from stroke and lesion side. Fugl-Meyer (FM) and Box and Block Test (BBT) were used to measure hand function recovery at the end (T1) and 4-5 months after the treatment (T2). At T1, FM was increased by 31% (± 26%), of maximum achievable recovery, whereas BBT was increased by 17% (± 18%); at T2, FM had reached 43% (± 45%) of maximum recovery, while BBT had reached 25% (± 22%). Combining the effects of treatment to those of lesion side revealed significantly higher gains, in both FM and BBT scores, in left hemiparetic subjects when exposed to AO as compared to standard rehabilitation alone (P < .01). The findings lead to recommend the use of AO in addition to motor training in left hemiparetic patients. PMID:24967372

  19. Efficiency of human and model observers for signal-detection tasks in non-Gaussian distributed lumpy backgrounds

    NASA Astrophysics Data System (ADS)

    Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.

    2005-04-01

    Efficiencies of the human observer and channelized-Hotelling observers (CHOs) relative to the ideal observer for signal-detection tasks are discussed. A CHO using Laguerre-Gauss channels, which we call an efficient CHO (eCHO), and a CHO adding a scanning scheme to the eCHO to include signal-location uncertainty, which we call a scanning eCHO (seCHO), are considered. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both the tasks. Markov-chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. A maximum-likelihood estimation method is employed to fit smooth psychometric curves with observer performance measurements. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to a standard observer. Depending on image statistics, the ideal observer or the Hotelling observer is used as the standard observer. The results show that the eCHO performs poorly in detecting signals with location uncertainty and the seCHO performs only slightly better while the ideal observer outperforms the human observer and CHOs for both the tasks. Human efficiencies are approximately less than 2.5% and 41%, respectively, for the SKE and SKS tasks, where the gray levels of the lumpy background are non-Gaussian distributed. These results also imply that human observers are not affected by signal-location uncertainty as much as the ideal observer. However, for the SKE tasks using Gaussian-distributed lumpy backgrounds, the human efficiency ranges between 28% and 42%. Three different simplified pinhole imaging systems are simulated and the humans and the model observers rank the systems in the same order for both the tasks.

  20. The Role of Expertise in Tool Use: Skill Differences in Functional Action Adaptations to Task Constraints

    ERIC Educational Resources Information Center

    Bril, Blandine; Rein, Robert; Nonaka, Tetsushi; Wenban-Smith, Francis; Dietrich, Gilles

    2010-01-01

    Tool use can be considered a particularly useful model to understand the nature of functional actions. In 3 experiments, tool-use actions typified by stone knapping were investigated. Participants had to detach stone flakes from a flint core through a conchoidal fracture. Successful flake detachment requires controlling various functional…

  1. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves

    PubMed Central

    Balser, Nils; Lorey, Britta; Pilgramm, Sebastian; Naumann, Tim; Kindermann, Stefan; Stark, Rudolf; Zentgraf, Karen; Williams, A. Mark; Munzert, Jörn

    2014-01-01

    In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action–observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation

  2. Broca's area processes the hierarchical organization of observed action

    PubMed Central

    Wakita, Masumi

    2014-01-01

    Broca's area has been suggested as the area responsible for the domain-general hierarchical processing of language and music. Although meaningful action shares a common hierarchical structure with language and music, the role of Broca's area in this domain remains controversial. To address the involvement of Broca's area in the processing action hierarchy, the activation of Broca's area was measured using near-infrared spectroscopy. Measurements were taken while participants watched silent movies that featured hand movements playing familiar and unfamiliar melodies. The unfamiliar melodies were reversed versions of the familiar melodies. Additionally, to investigate the effect of a motor experience on the activation of Broca's area, the participants were divided into well-trained and less-trained groups. The results showed that Broca's area in the well-trained participants demonstrated a significantly larger activation in response to the hand motion when an unfamiliar melody was played than when a familiar melody was played. However, Broca's area in the less-trained participants did not show a contrast between conditions despite identical abilities of the two participant groups to identify the melodies by watching key pressing actions. These results are consistent with previous findings that Broca's area exhibits increased activation in response to grammatically violated sentences and musically deviated chord progressions as well as the finding that this region does not represent the processing of grammatical structure in less-proficient foreign language speakers. Thus, the current study suggests that Broca's area represents action hierarchy and that sufficiently long motor training is necessary for it to become sensitive to motor syntax. Therefore, the notion that hierarchical processing in Broca's area is a common function shared between language and music may help to explain the role of Broca's area in action perception. PMID:24478668

  3. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation.

    PubMed

    Thioux, Marc; Keysers, Christian

    2015-01-15

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modeling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject's capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others' actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy. PMID:25462688

  4. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation

    PubMed Central

    Thioux, Marc; Keysers, Christian

    2016-01-01

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modelling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject’s capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others’ actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy. PMID:25462688

  5. Task-based optimization of dedicated breast CT via Hotelling observer metrics

    PubMed Central

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-01-01

    Purpose: The purpose of this work is to develop and demonstrate a set of practical metrics for CT systems optimization. These metrics, based on the Hotelling observer (HO) figure of merit, are task-based. The authors therefore take the specific example of optimizing a dedicated breast CT system, including the reconstruction algorithm, for two relevant tasks, signal detection and Rayleigh discrimination. Methods: A dedicated breast CT system is simulated using specifications in the literature from an existing prototype. The authors optimize configuration and image reconstruction algorithm parameters for two tasks: the detection of simulated microcalcifications and the discrimination of two adjacent, high-contrast signals, known as the Rayleigh discrimination task. The effects on task performance of breast diameter, signal location, image grid size, projection view number, and reconstruction filter were all investigated. Two HO metrics were evaluated: the percentage of correct decisions in a two-alternative forced choice experiment (equivalent to area under the ROC curve or AUC), and the HO efficiency, defined as the squared ratio of HO signal-to-noise ratio (SNR) in the reconstructed image to HO SNR in the projection data. Results: The ease and efficiency of the HO metric computation allows a rapid high-resolution survey of many system parameters. Optimization of a range of system parameters using the HO results in images that subjectively appear optimal for the tasks investigated. Further, the results of assessment through the HO reproduce closely many existing results in the literature regarding the impact of parameter selection on image quality. Conclusions: This study demonstrates the utility of a task-based approach to system design, evaluation, and optimization. The methodology presented is equally applicable to determining the impact of a wide range of factors, including patient parameters, system and acquisition design, and the reconstruction algorithm. The

  6. Deactivation in the Sensorimotor Area during Observation of a Human Agent Performing Robotic Actions

    ERIC Educational Resources Information Center

    Shimada, Sotaro

    2010-01-01

    It is well established that several motor areas, called the mirror-neuron system (MNS), are activated when an individual observes other's actions. However, whether the MNS responds similarly to robotic actions compared with human actions is still controversial. The present study investigated whether and how the motor area activity is influenced by…

  7. Rational Adaptation under Task and Processing Constraints: Implications for Testing Theories of Cognition and Action

    ERIC Educational Resources Information Center

    Howes, Andrew; Lewis, Richard L.; Vera, Alonso

    2009-01-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition--cognitively bounded rational analysis--that sharpens the predictive acuity of general, integrated…

  8. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. PMID:26152577

  9. Influence of Perspective of Action Observation Training on Residual Limb Control in Naïve Prosthesis Usage.

    PubMed

    Lawson, Delisa T; Cusack, William F; Lawson, Regan; Hardy, Ashley; Kistenberg, Robert; Wheaton, Lewis A

    2016-01-01

    Prior work in amputees and partial limb immobilization have shown improved neural and behavioral outcomes in using their residual limb with prosthesis when undergoing observation-based training with a prosthesis-using actor compared to an intact limb. It was posited that these improvements are due to an alignment of user with the actor. It may be affected by visual angles that allow emphasis of critical joint actions which may promote behavioral changes. The purpose of this study was to examine how viewing perspective of observation-based training effects prosthesis adaptation in naïve device users. Twenty nonamputated prosthesis users learned how to use an upper extremity prosthetic device while viewing a training video from either a sagittal or coronal perspective. These views were chosen as they place visual emphasis on different aspects of task performance to the device. The authors found that perspective of actions has a significant role in adaptation of the residual limb while using upper limb prostheses. Perspectives that demonstrate elbow adaptations to prosthesis usage may enhance the functional motor outcomes of action observation therapy. This work has potential implications on how prosthetic device operation is conveyed to persons adapting to prostheses through action observation based therapy. PMID:27253208

  10. Values in Action: Observations of Effective Principals at Work

    ERIC Educational Resources Information Center

    Parkes, Sharon E.; Thomas, A. Ross

    2007-01-01

    Purpose: The purpose of this research is to report on the values practised by five effective secondary principals and to seek to identify common values that underpin their work practices. Design/methodology/approach: Principals were observed, each for two days, at work in their schools. From the observations of each principal activities were…

  11. The effects of anatomical information and observer expertise on abnormality detection task

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cavaro-Ménard, C.; Le Callet, P.; Cooper, L. H. K.; Hunault, G.; Tanguy, J.-Y.

    2011-03-01

    This paper presents a novel study investigating the influences of Magnetic Resonance (MR) image anatomical information and observer expertise on an abnormality detection task. MRI is exquisitely sensitive for detecting brain abnormalities, particularly in the evaluation of white matter diseases, e.g. multiple sclerosis (MS). For this reason, MS lesions are simulated as the target stimuli for detection in the present study. Two different image backgrounds are used in the following experiments: a) homogeneous region of white matter tissue, and b) one slice of a healthy brain MR image. One expert radiologist (more than 10 years' experience), three radiologists (less than 5 years' experience) and eight naïve observers (without any prior medical knowledge) have performed these experiments, during which they have been asked different questions dependent upon level of experience; the three radiologists and eight naïve observers were asked if they were aware of any hyper-signal, likely to represent an MS lesion, while the most experienced consultant was asked if a clinically significant sign was present. With the percentages of response "yes" displayed on the y-axis and the lesion intensity contrasts on the x-axis, psychometric function is generated from the observer' responses. Results of psychometric functions and calculated thresholds indicate that radiologists have better hyper-signal detection ability than naïve observers, which is intuitively shown by the lower simple visibility thresholds of radiologists. However, when radiologists perform a task with clinical implications, e.g. to detect a clinically significant sign, their detection thresholds are elevated. Moreover, the study indicates that for the radiologists, the simple visibility thresholds remain the same with and without the anatomical information, which reduces the threshold for the clinically significant sign detection task. Findings provide further insight into human visual system processing for this

  12. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  13. Gender equality observations and actions by the European Research Council

    NASA Astrophysics Data System (ADS)

    Rydin, Claudia Alves de Jesus; Farina Busto, Luis; Penny, Martin

    2016-04-01

    Women have historically been underrepresented in science. Much positive progress in attracting women to research careers has been achieved in recent years; however, the most influential and high profile positions in most countries are still predominantly occupied by men. The European Research Council (ERC), Europe's premiere funding agency for frontier research, views gender equality as an important challenge. The ERC monitors closely gender figures on every call and has taken actions to tackle gender imbalances and potential unconscious biases. The ERC talk is focused on efforts made to understand and ensure equal treatment of all candidates, with particular focus on gender balance and with specific attention to geosciences. Data and statistics collected from ERC's internationally recognised funding schemes are presented.

  14. Stimulation over primary motor cortex during action observation impairs effector recognition.

    PubMed

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  15. Observations of Children’s Interactions with Teachers, Peers, and Tasks across Preschool Classroom Activity Settings

    PubMed Central

    Booren, Leslie M.; Downer, Jason T.; Vitiello, Virginia E.

    2014-01-01

    This descriptive study examined classroom activity settings in relation to children’s observed behavior during classroom interactions, child gender, and basic teacher behavior within the preschool classroom. 145 children were observed for an average of 80 minutes during 8 occasions across 2 days using the inCLASS, an observational measure that conceptualizes behavior into teacher, peer, task, and conflict interactions. Findings indicated that on average children’s interactions with teachers were higher in teacher-structured settings, such as large group. On average, children’s interactions with peers and tasks were more positive in child-directed settings, such as free choice. Children experienced more conflict during recess and routines/transitions. Finally, gender differences were observed within small group and meals. The implications of these findings might encourage teachers to be thoughtful and intentional about what types of support and resources are provided so children can successfully navigate the demands of particular settings. These findings are not meant to discourage certain teacher behaviors or imply value of certain classroom settings; instead, by providing an evidenced-based picture of the conditions under which children display the most positive interactions, teachers can be more aware of choices within these settings and have a powerful way to assist in professional development and interventions. PMID:25717282

  16. Reputation in an economic game modulates premotor cortex activity during action observation.

    PubMed

    Farmer, Harry; Apps, Matthew; Tsakiris, Manos

    2016-09-01

    Our interactions with other people - and our processing of their actions - are shaped by their reputation. Research has identified an Action Observation Network (AON) which is engaged when observing other people's actions. Yet, little is known about how the processing of others' actions is influenced by another's reputation. Is the response of the AON modulated by the reputation of the actor? We developed a variant of the ultimatum game in which participants watched either the visible or occluded actions of two 'proposers'. These actions were tied to decisions of how to split a pot of money although the proposers' decisions on each trial were not known to participants when observing the actions. One proposer made fair offers on the majority of trials, establishing a positive reputation, whereas the other made predominantly, unfair offers resulting in a negative reputation. We found significant activations in two regions of the left dorsal premotor cortex (dPMC). The first of these showed a main effect of reputation with greater activation for the negative reputation proposer than the positive reputation proposer. Furthermore individual differences in trust ratings of the two proposers covaried with activation in the right primary motor cortex (M1). The second showed an interaction between visibility and reputation driven by a greater effect of reputation when participants were observing an occluded action. Our findings show that the processing of others' actions in the AON is modulated by an actor's reputation, and suggest a predictive role for the PMC during action observation. PMID:27364606

  17. Neural representation of observed actions in the parietal and premotor cortex.

    PubMed

    Ogawa, Kenji; Inui, Toshio

    2011-05-15

    We investigated the neural representation of observed actions in the human parietal and premotor cortex, which comprise the action observation network or the mirror neuron system for action recognition. Participants observed object-directed hand actions, in which action as well as other properties were independently manipulated: action (grasp or touch), object (cup or bottle), perspective (1st or 3rd person), hand (right or left), and image size (large or small). We then used multi-voxel pattern analysis to determine whether each feature could be correctly decoded from regional activities. The early visual area showed significant above-chance classification accuracy, particularly high in perspective, hand, and size, consistent with pixel-wise dissimilarity of stimuli. In contrast, the highest decoding accuracy for action was observed in the anterior intraparietal sulcus (aIPS) and the ventral premotor cortex (PMv). Moreover, the decoder for action could be correctly generalized for images with high dissimilarity in the parietal and premotor region, but not in the visual area. Our study indicates that the parietal and premotor regions encode observed actions independent of retinal variations, which may subserve our capacity for invariant action recognition of others. PMID:20974271

  18. Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks.

    PubMed

    Chu, Richard; Shumsky, Jed; Waterhouse, Barry D

    2016-06-15

    Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26688113

  19. Decoding Actions and Emotions in Deaf Children: Evidence from a Biological Motion Task

    ERIC Educational Resources Information Center

    Ludlow, Amanda Katherine; Heaton, Pamela; Deruelle, Christine

    2013-01-01

    This study aimed to explore the recognition of emotional and non-emotional biological movements in children with severe and profound deafness. Twenty-four deaf children, together with 24 control children matched on mental age and 24 control children matched on chronological age, were asked to identify a person's actions, subjective states,…

  20. Self-Directed Action Affects Planning In Tool-Use Tasks with Toddlers

    PubMed Central

    Claxton, Laura J.; McCarty, Michael E.; Keen, Rachel

    2009-01-01

    Toddlers grasp a tool more effectively when it is self-directed (e.g., spoon) than other-directed (e.g., hammer), possibly because the consequences of self-directed actions are more obvious. When the negative consequences of an inefficient grip were made equally salient, the self- versus other-directed differences remained. PMID:19185350

  1. Conscious and unconscious representations of observed actions in the human motor system.

    PubMed

    Mattiassi, Alan D A; Mele, Sonia; Ticini, Luca F; Urgesi, Cosimo

    2014-09-01

    Action observation activates the observer's motor system. These motor resonance responses are automatic and triggered even when the action is only implied in static snapshots. However, it is largely unknown whether an action needs to be consciously perceived to trigger motor resonance. In this study, we used single-pulse TMS to study the facilitation of corticospinal excitability (a measure of motor resonance) during supraliminal and subliminal presentations of implied action images. We used a forward and backward dynamic masking procedure that successfully prevented the conscious perception of prime stimuli depicting a still hand or an implied abduction movement of the index or little finger. The prime was followed by the supraliminal presentation of a still or implied action probe hand. Our results revealed a muscle-specific increase of motor facilitation following observation of the probe hand actions that were consciously perceived as compared with observation of a still hand. Crucially, unconscious perception of prime hand actions presented before probe still hands did not increase motor facilitation as compared with observation of a still hand, suggesting that motor resonance requires perceptual awareness. However, the presentation of a masked prime depicting an action that was incongruent with the probe hand action suppressed motor resonance to the probe action such that comparable motor facilitation was recorded during observation of implied action and still hand probes. This suppression of motor resonance may reflect the processing of action conflicts in areas upstream of the motor cortex and may subserve a basic mechanism for dealing with the multiple and possibly incongruent actions of other individuals. PMID:24666166

  2. Effects of Brief Imitative Experience on EEG Desynchronization during Action Observation

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Bouquet, Cedric A.; Shipley, Thomas F.; Young, Thomas

    2009-01-01

    There is a good deal of evidence that observing the actions of other people is associated with activation of the observer's motor system, which may reflect involvement of the mirror neuron system (MNS) in certain aspects of action processing in humans. Furthermore, variation in the extent of this activation appears to be partly dependent on…

  3. Common Coding of Observation and Execution of Action in 9-Month-Old Infants

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Bertenthal, Bennett I.

    2006-01-01

    Do 9-month-old infants motorically simulate actions they perceive others perform? Two experiments tested whether action observation, like overt reaching, is sufficient to elicit the Piagetian A-not-B error. Infants recovered a toy hidden at location A or observed an experimenter recover the toy. After the toy was hidden at location B, infants in…

  4. Ventral Premotor to Primary Motor Cortical Interactions during Noxious and Naturalistic Action Observation

    ERIC Educational Resources Information Center

    Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel

    2010-01-01

    Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…

  5. Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke

    PubMed Central

    Ertelt, Denis; Binkofski, Ferdinand

    2012-01-01

    The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observation alone. This unique capacity of the mirror neuron system to match action perception and action execution stimulated the idea that mirror neuron system plays a crucial role in the understanding of the content of observed actions and may participate in procedural learning. These features bear a high potential for neurorehabilitation of motor deficits and of aphasia following stroke. Since the first articles exploring this principle were published, a growing number of follow-up studies have been conducted in the last decade. Though, the combination of action observation with practice of the observed actions seems to constitute the most powerful approach. In the present review, we present the existing studies analyzing the effects of this neurorehabilitative approach in clinical settings especially in the rehabilitation of stroke associated motor deficits and give a perspective on the ongoing trials by our research group. The data obtained up to date showed significant positive effect of action observation on recovery of motor functions of the upper limbs even in the chronic state after stroke, indicating that our approach might become a new standardized add-on feature of modern neurorehabilitative treatment schemes. PMID:25624838

  6. Combination of detection and estimation tasks using channelized scanning linear observer for CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.

    2015-03-01

    Maintaining or even improving image quality while lowering patient dose is always the desire in clinical CT imaging. Iterative reconstruction (IR) algorithms have been designed to help reduce dose and/or provide better image quality. In this work, the channelized scanning linear observer (CSLO) is applied to study the combination of detection and estimation task performance using CT image data. The purpose of this work is to design a task-­-based approach to quantitatively evaluate image-­-quality for different reconstruction algorithms. Low-­-contrast objects embedded in head-­-size and body-­-size phantoms are imaged multiple times and reconstructed by FBP and an IR algorithm for this study. Independent signal present and absent ROIs cropped from images are channelized by Difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the area under EROC curve (EAUC) are calculated by CSLO as the figure of merit. The One-­- Shot method is used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose approximately 54% to achieve an image quality comparable to conventional FBP reconstruction for the combined detection and estimation tasks.

  7. Walking but Not Barking Improves Verb Recovery: Implications for Action Observation Treatment in Aphasia Rehabilitation

    PubMed Central

    Marangolo, Paola; Cipollari, Susanna; Fiori, Valentina; Razzano, Carmela; Caltagirone, Carlo

    2012-01-01

    Recent studies have shown that action observation treatment without concomitant verbal cue has a positive impact on the recovery of verb retrieval deficits in aphasic patients. In agreement with an embodied cognition viewpoint, a hypothesis has been advanced that gestures and language form a single communication system and words whose retrieval is facilitated by gestures are semantically represented through sensory-motor features. However, it is still an open question as to what extent this treatment approach works. Results from the recovery of motor deficits have suggested that action observation promotes motor recovery only for actions that are part of the motor repertoire of the observer. The aim of the present experiment was to further investigate the role of action observation treatment in verb recovery. In particular, we contrasted the effects induced by observing human actions (e.g. dancing, kicking, pointing, eating) versus non human actions (e.g. barking, printing). Seven chronic aphasic patients with a selective deficit in verb retrieval underwent an intensive rehabilitation training that included five daily sessions over two consecutive weeks. Each subject was asked to carefully observe 115 video-clips of actions, one at a time and, after observing them, they had to produce the corresponding verb. Two groups of actions were randomly presented: humans versus nonhuman actions. In all patients, significant improvement in verb retrieval was found only by observing video-clips of human actions. Moreover, follow-up testing revealed long-term verb recovery that was still present two months after the two treatments had ended. In support of the multimodal concept representation's proposal, we suggest that just the observation of actions pertaining to the human motor repertoire is an effective rehabilitation approach for verb recovery. PMID:22719906

  8. Humans but Not Chimpanzees Vary Face-Scanning Patterns Depending on Contexts during Action Observation

    PubMed Central

    Myowa-Yamakoshi, Masako; Yoshida, Chisato; Hirata, Satoshi

    2015-01-01

    Human and nonhuman primates comprehend the actions of other individuals by detecting social cues, including others’ goal-directed motor actions and faces. However, little is known about how this information is integrated with action understanding. Here, we present the ontogenetic and evolutionary foundations of this capacity by comparing face-scanning patterns of chimpanzees and humans as they viewed goal-directed human actions within contexts that differ in whether or not the predicted goal is achieved. Human adults and children attend to the actor’s face during action sequences, and this tendency is particularly pronounced in adults when observing that the predicted goal is not achieved. Chimpanzees rarely attend to the actor’s face during the goal-directed action, regardless of whether the predicted action goal is achieved or not. These results suggest that in humans, but not chimpanzees, attention to actor’s faces conveying referential information toward the target object indicates the process of observers making inferences about the intentionality of an action. Furthermore, this remarkable predisposition to observe others’ actions by integrating the prediction of action goals and the actor’s intention is developmentally acquired. PMID:26535901

  9. Action dynamics reveal two types of cognitive flexibility in a homonym relatedness judgment task

    PubMed Central

    Dshemuchadse, Maja; Grage, Tobias; Scherbaum, Stefan

    2015-01-01

    Cognitive flexibility is a central component of executive functions that allow us to behave meaningful in an ever changing environment. Here, we support a distinction between two different types of cognitive flexibility, shifting flexibility and spreading flexibility, based on independent underlying mechanisms commonly subsumed under the ability to shift cognitive sets. We use a homonym relatedness judgment task and combine it with mouse tracking to show that these two types of cognitive flexibility follow independent temporal patterns in their influence on participants' mouse movements during relatedness judgments. Our results are in concordance with the predictions of a neural field based framework that assumes the independence of the two types of flexibility. We propose that future studies about cognitive flexibility in the area of executive functions should take independent types into account, especially when studying moderators of cognitive flexibility. PMID:26379580

  10. Spiderwebs and Flies: Observing Massive Galaxy Formation in Action

    NASA Astrophysics Data System (ADS)

    Miley, George

    2009-07-01

    Distant luminous radio galaxies are among the brightest known galaxies in the early Universe, pinpoint likely progenitors of dominant cluster galaxies and are unique laboratories for studying massive galaxy formation. Spectacular images with the ACS and NICMOS of one such object, the "Spiderweb Galaxy" at z = 2.2, show in exquisite detail, hierarchical merging occurring 11 Gyr ago. By imaging 3 additional Spiderweb-like galaxies we wish to study this potentially crucial phase of massive galaxy evolution, when hierarchical merging, galaxy downsizing and AGN feedback are all likely to be occurring. Properties of the complete sample of Spiderweb galaxies will be used to {i} constrain models for the formation and evolution of the most massive galaxies that dominate rich clusters and {ii} investigate the nature of chain and tadpole galaxies, a fundamental but poorly understood constituent of the early Universe. We shall image rest-frame UV and optical continuum emission from 3 radio galaxies with 2.4 < z < 3.8 that appear clumpy and large in shallow WFPC/PC observations. The new observations will typically reach 2 magnitudes fainter over 20-40 times larger area than previously. Photometric and morphological parameters will be measured for satellite galaxies {"flies"} in the clumpy massive hosts and for galaxies in 1.5 Mpc x 1.5 Mpc regions of surrounding protoclusters. Locations, sizes, elongations, clumpiness, masses, and star formation rates of the merging satellite and protocluster galaxies will be compared with new state of the art simulations. Combination of ACS and WFC3 images will help disentangle the properties of the young and old populations.Specific goals include: {i} investigating star formation histories of the satellite galaxies and the extended emission, {ii} studying "downsizing" and merging scenarios and {iii} measuring the statistics of linear galaxies and relating them to models for the formation of massive galaxies and to the properties of the

  11. Altered Brain Activation During Action Imitation and Observation in Schizophrenia: A Translational Approach to Investigating Social Dysfunction in Schizophrenia

    PubMed Central

    Thakkar, Katharine N.; Peterman, Joel S.; Park, Sohee

    2015-01-01

    Objective Social impairments are a key feature of schizophrenia, but their underlying mechanisms are poorly understood. Imitation, a process through which we understand the minds of others, involves the so-called mirror neuron system, a network comprising the inferior parietal lobe, inferior frontal gyrus, and posterior superior temporal sulcus. The authors examined mirror neuron system function in schizophrenia. Method Sixteen medicated schizophrenia patients and 16 healthy comparison subjects performed an action imitation/ observation task during functional MRI. Participants saw a video of a moving hand or spatial cue and were instructed to either execute finger movements associated with the stimulus or simply observe. Activation in the mirror neuron system was measured during imitative versus nonimitative actions and observation of a moving hand versus a moving spatial cue. These contrasts were compared across groups. Results Activation in the mirror neuron system was less specific for imitation in schizophrenia. Relative to healthy subjects, patients had reduced activity in the posterior superior temporal sulcus during imitation and greater activity in the posterior superior temporal sulcus and inferior parietal lobe during nonimitative action. Patients also showed reduced activity in these regions during action observation. Mirror neuron system activation was related to symptom severity and social functioning in patients and to schizotypal syndrome in comparison subjects. Conclusions Given the role of the inferior parietal lobe and posterior superior temporal sulcus in imitation and social cognition, impaired imitative ability in schizophrenia may stem from faulty perception of biological motion and transformations from perception to action. These findings extend our understanding of social dysfunction in schizophrenia. PMID:24626638

  12. Contextual modulation of motor resonance during the observation of everyday actions.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-07-01

    Neuroimaging studies on action observation suggest that context plays a key role in coding high-level components of motor behavior, including the short-term and the end-goal of an action. However, little is known about the possible role of context in shaping lower-levels of action processing such as reading action kinematics and simulating muscular activity. Here, we combined single-pulse TMS and motor-evoked potentials (MEPs) recording to explore whether top-down contextual information is capable of modulating low-level motor representations. We recorded MEPs from FDI and FCR muscles while participants watched videos about everyday actions embedded in congruent, incongruent or ambiguous contexts. Videos were interrupted before action ending, and participants were requested to predict the course of the observed action. A contextual modulation of corticospinal excitability was observed only for the FDI muscle, which is specifically involved in the execution of reaching-to-grasping movements, and whose corticospinal pathway is influenced by the observation of the very same movements. This modulation was reflected in a selective decrease of corticospinal excitability during the observation of actions embedded in incongruent as compared to congruent and ambiguous contexts. These findings indicate that motor resonance is not an entirely automatic process, but it can be modulated by high-level contextual representations. PMID:27039139

  13. Classroom Use of Multimedia-Supported Predict--Observe--Explain Tasks in a Social Constructivist Learning Environment

    ERIC Educational Resources Information Center

    Kearney, Matthew

    2004-01-01

    This paper focuses on the use of multimedia-based predict--observe--explain (POE) tasks to facilitate small group learning conversations. Although the tasks were given to pairs of students as a diagnostic tool to elicit their pre-instructional physics conceptions, they also provided a peer learning opportunity for students. The study adopted a…

  14. Student and Teacher Perceptions of the Use of Multimedia Supported Predict-Observe-Explain Tasks To Probe Understanding.

    ERIC Educational Resources Information Center

    Kearney, Matthew; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan G.

    2001-01-01

    Discusses student and teacher perceptions of a new development in the use of the predict-observe-explain (POE) strategy. This development involves the incorporation of POE tasks into a multimedia computer program that uses real-life, digital video clips of difficult, expensive, time consuming, or dangerous scenarios as stimuli for these tasks.…

  15. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  16. Distinct brain signatures of content and structure violation during action observation.

    PubMed

    Maffongelli, L; Bartoli, E; Sammler, D; Kölsch, S; Campus, C; Olivier, E; Fadiga, L; D'Ausilio, A

    2015-08-01

    Sentences, musical phrases and goal-directed actions are composed of elements that are linked by specific rules to form meaningful outcomes. In goal-directed actions including a non-canonical element or scrambling the order of the elements alters the action's content and structure, respectively. In the present study we investigated event-related potentials of the electroencephalographic (EEG) activity recorded during observation of both alterations of the action content (obtained by violating the semantic components of an action, e.g. making coffee with cola) and alterations of the action structure (obtained by inverting the order of two temporally adjacent pictures of sequences depicting daily life actions) interfering with the normal flow of the motor acts that compose an action. Action content alterations elicited a bilateral posterior distributed EEG negativity, peaking at around 400 ms after stimulus onset similar to the ERPs evoked by semantic violations in language studies. Alteration of the action structure elicited an early left anterior negativity followed by a late left anterior positivity, which closely resembles the ERP pattern found in language syntax violation studies. Our results suggest a functional dissociation between the processing of action content and structure, reminiscent of a similar dissociation found in the language or music domains. Importantly, this study provides further support to the hypothesis that some basic mechanisms, such as the rule-based structuring of sequential events, are shared between different cognitive domains. PMID:26004058

  17. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  18. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed Central

    Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people’s actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner’s Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  19. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    PubMed

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed. PMID:26033185

  20. Infants' Grip Strength Predicts Mu Rhythm Attenuation during Observation of Lifting Actions with Weighted Blocks

    ERIC Educational Resources Information Center

    Upshaw, Michaela B.; Bernier, Raphael A.; Sommerville, Jessica A.

    2016-01-01

    Research has established that the body is fundamentally involved in perception: bodily experience influences activation of the shared neural system underlying action perception and production during action observation, and bodily characteristics influence perception of the spatial environment. However, whether bodily characteristics influence…

  1. The Early Development of Object Knowledge: A Study of Infants' Visual Anticipations during Action Observation

    ERIC Educational Resources Information Center

    Hunnius, Sabine; Bekkering, Harold

    2010-01-01

    This study examined the developing object knowledge of infants through their visual anticipation of action targets during action observation. Infants (6, 8, 12, 14, and 16 months) and adults watched short movies of a person using 3 different everyday objects. Participants were presented with objects being brought either to a correct or to an…

  2. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    ERIC Educational Resources Information Center

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  3. Predictive Gaze during Observation of Irrational Actions in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Marsh, L. E.; Pearson, A.; Ropar, D.; Hamilton, A. F. de C.

    2015-01-01

    Understanding irrational actions may require the observer to make mental state inferences about why an action was performed. Individuals with autism spectrum conditions (ASC) have well documented difficulties with mentalizing; however, the degree to which rationality understanding is impaired in autism is not yet clear. The present study uses…

  4. The Role of Cue-Response Mapping in Motorvisual Impairment and Facilitation: Evidence for Different Roles of Action Planning and Action Control in Motorvisual Dual-Task Priming

    ERIC Educational Resources Information Center

    Thomaschke, Roland; Hopkins, Brian; Miall, R. Christopher

    2012-01-01

    Previous research has shown that actions impair the visual perception of categorically action-consistent stimuli. On the other hand, actions can also facilitate the perception of spatially action-consistent stimuli. We suggest that motorvisual impairment is due to action planning processes, while motorvisual facilitation is due to action control…

  5. Surprisingly correct: unexpectedness of observed actions activates the medial prefrontal cortex.

    PubMed

    Schiffer, Anne-Marike; Krause, Kim H; Schubotz, Ricarda I

    2014-04-01

    Not only committing errors, but also observing errors has been shown to activate the dorsal medial prefrontal cortex, particularly BA 8 and adjacent rostral cingulate zone (RCZ). Currently, there is a debate on whether this activity reflects a response to the incorrectness of the committed action or to its unexpectedness. This article reports two studies investigating whether activity in BA 8/RCZ is due to the unexpectedness of observed errors or the incorrectness of the specific observed action. Both studies employed an action observation paradigm reliant on the observation of an actor tying sailing knots. The reported behavioral experiment delivered evidence that the paradigm successfully induced the expectation of incorrect actions as well as the expectation of correct actions. The functional magnetic resonance imaging study revealed that unexpectedly correct as well as unexpectedly incorrect actions activate the BA 8/RCZ. The same result was confirmed for a coordinate in the vicinity that has been previously reported to be activated in separate studies either by the error observation or by the unexpectedness of committed errors, and has been associated with the error-related negativity. The present results suggest that unexpectedness has an impact on the medial prefrontal correlate of observed errors. PMID:23670963

  6. Sensitivity of Alpha and Beta Oscillations to Sensorimotor Characteristics of Action: An EEG Study of Action Production and Gesture Observation

    PubMed Central

    Quandt, Lorna C.; Marshall, Peter J.; Shipley, Thomas F.; Beilock, Sian L.; Goldin-Meadow, Susan

    2012-01-01

    The sensorimotor experiences we gain when performing an action have been found to influence how our own motor systems are activated when we observe others performing that same action. Here we asked whether this phenomenon applies to the observation of gesture. Would the sensorimotor experiences we gain when performing an action on an object influence activation in our own motor systems when we observe others performing a gesture for that object? Participants were given sensorimotor experience with objects that varied in weight, and then observed video clips of an actor producing gestures for those objects. Electroencephalography (EEG) was recorded while participants first observed either an iconic gesture (pantomiming lifting an object) or a deictic gesture (pointing to an object) for an object, and then grasped and lifted the object indicated by the gesture. We analyzed EEG during gesture observation to determine whether oscillatory activity was affected by the observer’s sensorimotor experiences with the object represented in the gesture. Seeing a gesture for an object previously experienced as light was associated with a suppression of power in alpha and beta frequency bands, particularly at posterior electrodes. A similar pattern was found when participants lifted the light object, but over more diffuse electrodes. Moreover, alpha and beta bands at right parieto-occipital electrodes were sensitive to the type of gesture observed (iconic vs. deictic). These results demonstrate that sensorimotor experience with an object affects how a gesture for that object is processed, as measured by the gesture-observer’s EEG, and suggest that different types of gestures recruit the observer’s own motor system in different ways. PMID:22910276

  7. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  8. Upper limb performance and the structuring of joint movement in teenagers with cerebral palsy: the reciprocal role of task demands and action capabilities.

    PubMed

    Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Sérgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta

    2015-04-01

    Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities. PMID:25579662

  9. Analysis of action tremor and impaired control of movement velocity in multiple sclerosis during visually guided wrist-tracking tasks.

    PubMed

    Liu, X; Miall, C; Aziz, T Z; Palace, J A; Haggard, P N; Stein, J F

    1997-11-01

    We investigated the relationship between action tremor (AT) and impaired control of movement velocity (MV) in visually guided tracking tasks, in normal subjects and in patients with multiple sclerosis (MS) with or without motor deficits. The effects of withdrawing visual feedback of either the target or the cursor were then investigated. Visually cued simple reaction times (SRTs) were also measured. The effects of thalamotomy on motor performance in these tasks were evaluated in seven patients. In the MS patients with tremor, there was no correlation between AT and impairment in control of MV, but the latter was highly correlated with an increased delay in SRT. Withdrawal of visually guiding cues increased the error significantly in MV, but reduced AT by approximately 30% in magnitude. Frequency analysis indicated that the AT had two components: (a) non-visual-dependent, oscillatory movements, mainly at 4 Hz; and (2) visual-dependent, repetitive movements, with significant power at 1-2 Hz. Thalamotomy significantly reduced AT but hardly improved accuracy in MV. These results suggest that visual feedback of a spatial mismatch signal may provoke a visually dependent repetitive movement contributing to AT. Conduction delays along either the cortico-cerebello-cortical or the proprioceptive pathways and impaired working memory caused by MS may be responsible for the movement disorders in these patients. PMID:9399226

  10. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.

    PubMed

    Filimon, Flavia; Rieth, Cory A; Sereno, Martin I; Cottrell, Garrison W

    2015-09-01

    Previous functional magnetic resonance imaging (fMRI) research on action observation has emphasized the role of putative mirror neuron areas such as Broca's area, ventral premotor cortex, and the inferior parietal lobule. However, recent evidence suggests action observation involves many distributed cortical regions, including dorsal premotor and superior parietal cortex. How these different regions relate to traditional mirror neuron areas, and whether traditional mirror neuron areas play a special role in action representation, is unclear. Here we use multi-voxel pattern analysis (MVPA) to show that action representations, including observation, imagery, and execution of reaching movements: (1) are distributed across both dorsal (superior) and ventral (inferior) premotor and parietal areas; (2) can be decoded from areas that are jointly activated by observation, execution, and imagery of reaching movements, even in cases of equal-amplitude blood oxygen level-dependent (BOLD) responses; and (3) can be equally accurately classified from either posterior parietal or frontal (premotor and inferior frontal) regions. These results challenge the presumed dominance of traditional mirror neuron areas such as Broca's area in action observation and action representation more generally. Unlike traditional univariate fMRI analyses, MVPA was able to discriminate between imagined and observed movements from previously indistinguishable BOLD activations in commonly activated regions, suggesting finer-grained distributed patterns of activation. PMID:24862848

  11. Verbal Self-Instructions in Task Switching: A Compensatory Tool for Action-Control Deficits in Childhood and Old Age?

    ERIC Educational Resources Information Center

    Kray, Jutta; Eber, Jutta; Karbach, Julia

    2008-01-01

    This study examined the influence of verbal self-instructions on age differences in task switching. Task-switching ability, measured as the difference between performance in single-task blocks and in mixed-task blocks in which participants switch between two tasks (mixing costs), increases during childhood and decreases in old age. To measure the…

  12. Infants' grip strength predicts mu rhythm attenuation during observation of lifting actions with weighted blocks.

    PubMed

    Upshaw, Michaela B; Bernier, Raphael A; Sommerville, Jessica A

    2016-03-01

    Research has established that the body is fundamentally involved in perception: bodily experience influences activation of the shared neural system underlying action perception and production during action observation, and bodily characteristics influence perception of the spatial environment. However, whether bodily characteristics influence action perception and its underlying neural system is unknown, particularly in early ontogeny. We measured grip strength in 12-month-old infants and investigated relations with mu rhythm attenuation, an electroencephalographic correlate of the neural system underlying action perception, during observation of lifting actions performed with differently weighted blocks. We found that infants with higher grip strength exhibited significant mu attenuation during observation of lifting actions, whereas infants with lower grip strength did not. Moreover, a progressively strong relation between grip strength and mu attenuation during observation of lifts was found with increased block weight. We propose that this relation is attributable to differences in infants' ability to recognize the effort associated with lifting objects of different weights, as a consequence of their developing strength. Together, our results extend the body's role in perception by demonstrating that bodily characteristics influence action perception by shaping the activation of its underlying neural system. PMID:25939632

  13. Social constraints from an observer's perspective: Coordinated actions make an agent's position more predictable.

    PubMed

    Yin, Jun; Xu, Haokui; Ding, Xiaowei; Liang, Junying; Shui, Rende; Shen, Mowei

    2016-06-01

    Action prediction, a crucial ability to support social activities, is sensitive to the individual goals of expected actions. This article reports a novel finding that the predictions of observed actions for a temporarily invisible agent are influenced, and even enhanced, when this agent has a joint/collective goal to implement coordinated actions with others (i.e., with coordination information). Specifically, we manipulated the coordination information by presenting two chasers and one common target to perform coordinated or individual chases, and subjects were required to predict the expected action (i.e., position) for one chaser after it became momentarily invisible. To control for possible low-level physical properties, we also established some intense paired controls for each type of chase, such as backward replay (Experiment 1), making the chasing target invisible (Experiment 2) and a direct manipulation of the goal-directedness of one chaser's movements to disrupt coordination information (Experiment 3). The results show that the prediction error for invisible chasers depends on whether the second chaser is coordinated with the first, and this effect vanishes when the chasers behaves with exactly the same motions, but without coordination information between them; furthermore, this influence results in enhancing the performance of action prediction. These findings extend the influential factors of action prediction to the level of observed coordination information, implying that the functional characteristic of mutual constraints of coordinated actions can be utilized by vision. PMID:26922896

  14. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1975-01-01

    Cortical-evoked potentials were recorded from human subjects performing an auditory detection task with confidence rating responses. Unlike earlier studies that used similar procedures, the observation interval during which the auditory signal could occur was clearly marked by a visual cue light. By precisely defining the observation interval and, hence, synchronizing all perceptual decisions to the evoked potential averaging epoch, it was possible to demonstrate that high-confidence false alarms are accompanied by late-positive P3 components equivalent to those for equally confident hits. Moreover the hit and false alarm evoked potentials were found to covary similarly with variations in confidence rating and to have similar amplitude distributions over the scalp. In a second experiment, it was demonstrated that correct rejections can be associated with a P3 component larger than that for hits. Thus it was possible to show, within the signal detection paradigm, how the two major factors of decision confidence and expectancy are reflected in the P3 component of the cortical-evoked potential.

  15. When Your Decisions Are Not (Quite) Your Own: Action Observation Influences Free Choices

    PubMed Central

    Cole, Geoff G.; Wright, Damien; Doneva, Silviya P.; Skarratt, Paul A.

    2015-01-01

    A growing number of studies have begun to assess how the actions of one individual are represented in an observer. Using a variant of an action observation paradigm, four experiments examined whether one person’s behaviour can influence the subjective decisions and judgements of another. In Experiment 1, two observers sat adjacent to each other and took turns to freely select and reach to one of two locations. Results showed that participants were less likely to make a response to the same location as their partner. In three further experiments observers were asked to decide which of two familiar products they preferred or which of two faces were most attractive. Results showed that participants were less likely to choose the product or face occupying the location of their partner’s previous reaching response. These findings suggest that action observation can influence a range of free choice preferences and decisions. Possible mechanisms through which this influence occurs are discussed. PMID:26024480

  16. Observing expertise-related actions leads to perfect time flow estimations.

    PubMed

    Chen, Yin-Hua; Pizzolato, Fabio; Cesari, Paola

    2013-01-01

    The estimation of the time of exposure of a picture portraying an action increases as a function of the amount of movement implied in the action represented. This effect suggests that the perceiver creates an internal embodiment of the action observed as if internally simulating the entire movement sequence. Little is known however about the timing accuracy of these internal action simulations, specifically whether they are affected by the level of familiarity and experience that the observer has of the action. In this study we asked professional pianists to reproduce different durations of exposure (shorter or longer than one second) of visual displays both specific (a hand in piano-playing action) and non-specific to their domain of expertise (a hand in finger-thumb opposition and scrambled-pixels) and compared their performance with non-pianists. Pianists outperformed non-pianists independently of the time of exposure of the stimuli; remarkably the group difference was particularly magnified by the pianists' enhanced accuracy and stability only when observing the hand in the act of playing the piano. These results for the first time provide evidence that through musical training, pianists create a selective and self-determined dynamic internal representation of an observed movement that allows them to estimate precisely its temporal duration. PMID:23405131

  17. Dissociable contributions of motor-execution and action-observation to intramanual transfer.

    PubMed

    Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J

    2012-09-01

    We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA). PMID:22821082

  18. Astroinformation resource of the Ukrainian virtual observatory: Joint observational data archive, scientific tasks, and software

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Pakulyak, L. K.; Shlyapnikov, A. A.; Protsyuk, Yu. I.; Savanevich, V. E.; Andronov, I. L.; Andruk, V. N.; Kondrashova, N. N.; Baklanov, A. V.; Golovin, A. V.; Fedorov, P. N.; Akhmetov, V. S.; Isak, I. I.; Mazhaev, A. E.; Golovnya, V. V.; Virun, N. V.; Zolotukhina, A. V.; Kazantseva, L. V.; Virnina, N. A.; Breus, V. V.; Kashuba, S. G.; Chinarova, L. L.; Kudashkina, L. S.; Epishev, V. P.

    2012-04-01

    The overview of the most important components of the national project - Ukrainian Virtual Observatory (UkrVO) - is presented.Among these components, there is the establishment of a Joint Digital Archive (JDA) of observational data obtained at Ukrainian observatories since 1890, including astronegative's JDA (more than 200 thousand plates). Because of this task requires a VO-oriented software, such issues as software verification of content integrity and JDA administration; compliance of image for mats to IVOA standards; photometric and astrometry calibration of images. Among other developments of local UkrVO software the means of automatic registration of moving celestial objects at the starry sky followed by visual inspection of the results as well as stellar fields image processing software are considered. Research projects that use local UkrVO data archives, namely, an analysis of long observational series of active galactic nuclei, the study of solar flares and solar active regions based on spectral observational archives, research and discovery of variable stars, the study of stellar fields in vicinity gamma-ray bursts are discussed. Particular attention is paid to the CoLiTec program, which allows to increase significantly the number of registered small solar system bodies, and to dis cover new ones, in particular, with the help of this program the comets C/2010 X1 (Elenin) and P/2011 N 01 were discovered in ISON-NM observatory. Development of the UkrVO JDA pro to type is noted which provides access to data bases of MAO NAS of Ukraine, Nikolaev Astronomical Observatory and L'viv Astronomical Observatory.

  19. Observing Children's Learning: Informing Effective Intervention. A Personal Story of Investigative Research in Action.

    ERIC Educational Resources Information Center

    Lockett, Andrew

    This paper outlines the underlying principles that have guided the development of an observational orientation to assessing children's learning. The development of an observation orientation was achieved through a process of a number of action-type research projects within a range of early years settings in the United Kingdom. The paper outlines a…

  20. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    PubMed

    Désy, Marie-Christine; Théoret, Hugo

    2007-01-01

    The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS). Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects. PMID:17912350

  1. Eye Gaze Metrics Reflect a Shared Motor Representation for Action Observation and Movement Imagery

    ERIC Educational Resources Information Center

    McCormick, Sheree A.; Causer, Joe; Holmes, Paul S.

    2012-01-01

    Action observation (AO) and movement imagery (MI) have been reported to share similar neural networks. This study investigated the congruency between AO and MI using the eye gaze metrics, dwell time and fixation number. A simple reach-grasp-place arm movement was observed and, in a second condition, imagined where the movement was presented from…

  2. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  3. Effect of purposeful action observation on upper extremity function in stroke patients

    PubMed Central

    Kim, Eunjoo; Kim, KyeongMi

    2015-01-01

    [Purpose] The purpose of this study was to identify the effect of purposeful action observation on upper extremity function in patients with stroke. [Subjects and Methods] Twelve subjects were randomly to either the experimental group or control group. The experimental group underwent occupational therapy and a purposeful action observation program. The control group underwent occupational therapy and placebo treatment in which the subjects performed a purposeful action observation program without actually observing the purposeful actions. The Wolf Motor Function Test was used to measure upper extremity function before and after the intervention in both groups. [Results] Both the experimental and control groups demonstrated improved upper extremity function after the intervention, but there was no significant difference between groups. Compared with before the intervention, the experimental group showed significantly improved upper extremity function after the intervention. [Conclusion] Based on these results, a purposeful action observation program can improve upper extremity function in patients with stroke. In future research, more subjects should be included for evaluation of different treatments. PMID:26504313

  4. Seeing the World through Another Person's Eyes: Simulating Selective Attention via Action Observation

    ERIC Educational Resources Information Center

    Frischen, Alexandra; Loach, Daniel; Tipper, Steven P.

    2009-01-01

    Selective attention is usually considered an egocentric mechanism, biasing sensory information based on its behavioural relevance to oneself. This study provides evidence for an equivalent allocentric mechanism that allows passive observers to selectively attend to information from the perspective of another person. In a negative priming task,…

  5. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  6. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis

    PubMed Central

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern “vitality forms”. Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  7. Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis.

    PubMed

    Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo

    2016-01-01

    Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern "vitality forms". Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461

  8. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images.

    PubMed

    Richard, Samuel; Siewerdsen, Jeffrey H

    2008-11-01

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d') and area under the receiver operating characteristic (Az). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of Az as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance. PMID:19070238

  9. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images

    SciTech Connect

    Richard, Samuel; Siewerdsen, Jeffrey H.

    2008-11-15

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d{sup '}) and area under the receiver operating characteristic (A{sub Z}). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A{sub Z} as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.

  10. Perception of race-related features modulates neural activity associated with action observation and imitation.

    PubMed

    Earls, Holly A; Englander, Zoë A; Morris, James P

    2013-05-29

    The present study examines whether race-specific features affect biological motion perception. Activation of the neural action observation and imitation network was measured using functional MRI. During scanning, individuals were asked to imitate and observe basic hand movements of own-race and other-race actors. Results indicate that three key areas often associated with action observation and imitation, the inferior parietal lobule, superior parietal lobule, and superior temporal sulcus, were more active when participants imitated and observed hand movements of own-race relative to other-race actors. These findings indicate that several regions associated with the neural imitation/observation network are sensitive to race-related features. PMID:23571693

  11. Groups' Actions Trump Injunctive Reaction in an Incidental Observation by Young Children

    PubMed Central

    Turner, Cameron R.; Nielsen, Mark; Collier-Baker, Emma

    2014-01-01

    Children's ability to use social information to direct their behavior is key to their survival and development. However, in observing adult behavior, children are confronted with multiple forms of social information that may vary in reliability and adaptiveness. Two of the most well established biases influencing human behavior are: (1) following the majority (majority influence or conformity); and (2) the use of emotional signals. The current experiment aimed to evaluate how children respond when both information about the majority behavior of a group (descriptive norm) and attitudes of the group towards a behavior (injunctive norm, expressed through an emotional reaction) are present and what happens when they are in conflict. We used a method designed to mimic the manner in which children might observe group members' behavior during development. Novel apparatuses were constructed for which there were two discrete actions that could be performed to retrieve a reward. Three-year-olds observed four adults demonstrating one set of actions, followed by a fifth adult who presented an alternative set of actions. The first four adults' injunctive responses to this fifth adult's actions were manipulated between-groups: positive, negative, or neutral. It was found that children preferred to copy the majority action, regardless of the injunctive reaction of the group. We argue that this affirms the adaptive utility of copying the majority. PMID:25198163

  12. Action observation in the infant brain: The role of body form and motion

    PubMed Central

    Grossmann, Tobias; Cross, Emily S.; Ticini, Luca F.; Daum, Moritz M.

    2012-01-01

    Much research has been carried out to understand how human brains make sense of another agent in motion. Current views based on human adult and monkey studies assume a matching process in the motor system biased toward actions performed by conspecifics and present in the observer's motor repertoire. However, little is known about the neural correlates of action cognition in early ontogeny. In this study, we examined the processes involved in the observation of full body movements in 4-month-old infants using functional near-infrared spectroscopy to measure localized brain activation. In a 2 × 2 design, infants watched human or robotic figures moving in a smooth, familiar human-like manner, or in a rigid, unfamiliar robot-like manner. We found that infant premotor cortex responded more strongly to observe robot-like motion compared with human-like motion. Contrary to current views, this suggests that the infant motor system is flexibly engaged by novel movement patterns. Moreover, temporal cortex responses indicate that infants integrate information about form and motion during action observation. The response patterns obtained in premotor and temporal cortices during action observation in these young infants are very similar to those reported for adults. These findings thus suggest that the brain processes involved in the analysis of an agent in motion in adults become functionally specialized very early in human development. PMID:22694145

  13. Observation of Back-Action Noise Cancellation in Interferometric and Weak Force Measurements

    SciTech Connect

    Caniard, T.; Verlot, P.; Briant, T.; Cohadon, P.-F.; Heidmann, A.

    2007-09-14

    We experimentally demonstrate a cancellation of back-action noise in optical measurements. Back-action cancellation was first proposed within the framework of gravitational-wave detection by dual resonators as a way to drastically improve their sensitivity. We have developed an experiment based on a high-finesse Fabry-Perot cavity to study radiation-pressure effects in ultrasensitive displacement measurements. Using an intensity-modulated intracavity field to mimic the quantum radiation-pressure noise, we report the first observation of back-action cancellation due to a coherent mechanical response of the mirrors in the cavity to the radiation-pressure noise. We have observed a sensitivity improvement by a factor larger than 20 both in displacement and weak-force measurements.

  14. Development of Functional Connectivity during Adolescence: A Longitudinal Study Using an Action-Observation Paradigm

    ERIC Educational Resources Information Center

    Shaw, Daniel J.; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G. Bruce; Paus, Tomas

    2011-01-01

    Successful interpersonal interactions rely on an ability to read the emotional states of others and to modulate one's own behavior in response. The actions of others serve as valuable social stimuli in this respect, offering the observer an insight into the actor's emotional state. Social cognition continues to mature throughout adolescence. Here…

  15. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials

    PubMed Central

    Kim, KyeongMi

    2015-01-01

    [Purpose] The purpose of this study was to suggest evidenced information about action observation to improve upper limb function after stroke. [Methods] A systematic review of randomized controlled trials involving adults aged 18 years or over and including descriptions of action observation for improving upper limb function was undertaken. Electronic databases were searched, including MEDLINE, CINAHL, and PEDro (the Physiotherapy Evidence Database), for articles published between 2000 to 2014. Following completion of the searches, two reviewers independently assessed the trials and extracted data using a data extraction form. The same two reviewers independently documented the methodological quality of the trials by using the PEDro scale. [Results] Five randomized controlled trials were ultimately included in this review, and four of them (80%) reported statistically significant effects for motor recovery of upper limb using action observation intervention in between groups. [Conclusion] This review of the literature presents evidence attesting to the benefits conferred on stroke patints resulting from participation in an action observation intervention. The body of literature in this field is growing steadily. Further work needs to be done to evaluate the evidence for different conditions after stroke and different duration of intervention. PMID:26644700

  16. Becoming Team Players: Team Members' Mastery of Teamwork Knowledge as a Predictor of Team Task Proficiency and Observed Teamwork Effectiveness

    ERIC Educational Resources Information Center

    Hirschfeld, Robert R.; Jordan, Mark H.; Feild, Hubert S.; Giles, William F.; Armenakis, Achilles A.

    2006-01-01

    The authors explored the idea that teams consisting of members who, on average, demonstrate greater mastery of relevant teamwork knowledge will demonstrate greater task proficiency and observed teamwork effectiveness. In particular, the authors posited that team members' mastery of designated teamwork knowledge predicts better team task…

  17. The right temporoparietal junction encodes efforts of others during action observation.

    PubMed

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    Smooth social interactions require a deep understanding of others' intentions and feelings. In the present study, to investigate brain regions that respond to inference of others' effort level, we recorded brain activity during action observation of different effort levels using functional magnetic resonance imaging (fMRI). We used a dumbbell curl movement to depict a movement requiring effort. To dissociate the factors of effort level of the actor and weight of the dumbbell, we used four combinations of dumbbell weight and actor physique: a thin actor or a built actor lifting a heavy or light dumbbell. During observation of dumbbell curls, the bilateral front-parietal action observation network (AON) was activated. This included the premotor cortices, parietal cortices, visual areas 5/superior temporal cortices (STS), amygdalae, hippocampi, right dorsolateral and ventrolateral frontal cortices. When we evaluated brain regions associated with the actor's effort level, activity in the right temporoparietal junction (TPJ) and STS was observed. However, activity in the front-parietal AON was independent of the actor's effort during action observation. This finding suggests that the right TPJ and STS play an important role in the inference of others' effort levels during the observation of others' movements. PMID:27458025

  18. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability

    PubMed Central

    Nogueira-Campos, Anaelli A.; Saunier, Ghislain; Della-Maggiore, Valeria; De Oliveira, Laura A. S.; Rodrigues, Erika C.; Vargas, Claudia D.

    2016-01-01

    The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system. PMID:27625602

  19. The right temporoparietal junction encodes efforts of others during action observation

    PubMed Central

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2016-01-01

    Smooth social interactions require a deep understanding of others’ intentions and feelings. In the present study, to investigate brain regions that respond to inference of others’ effort level, we recorded brain activity during action observation of different effort levels using functional magnetic resonance imaging (fMRI). We used a dumbbell curl movement to depict a movement requiring effort. To dissociate the factors of effort level of the actor and weight of the dumbbell, we used four combinations of dumbbell weight and actor physique: a thin actor or a built actor lifting a heavy or light dumbbell. During observation of dumbbell curls, the bilateral front-parietal action observation network (AON) was activated. This included the premotor cortices, parietal cortices, visual areas 5/superior temporal cortices (STS), amygdalae, hippocampi, right dorsolateral and ventrolateral frontal cortices. When we evaluated brain regions associated with the actor’s effort level, activity in the right temporoparietal junction (TPJ) and STS was observed. However, activity in the front-parietal AON was independent of the actor’s effort during action observation. This finding suggests that the right TPJ and STS play an important role in the inference of others’ effort levels during the observation of others’ movements. PMID:27458025

  20. Motor facilitation during action observation: The role of M1 and PMv in grasp predictions.

    PubMed

    de Beukelaar, Toon T; Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2016-02-01

    Recent theories propose that movement observation is not a "passive mirror" of ongoing actions but might induce anticipatory activity when predictable movements are observed, e.g., because the action goal is known. Here we investigate this mechanism in a series of 3 experiments, by applying transcranial magnetic stimulation (TMS) to primary motor cortex (M1) while subjects observed either whole hand or precision grasping performed by an actor. We show that corticomotor excitability changes in a grip-specific manner but only once the grip can be decoded based on the observed kinematic cues (Exp. 1). By contrast, presenting informative contextual precues evokes anticipatory modulations in M1 already during the reach phase, i.e., well before the grip type could be observed, a finding in line with a predictive coding account (Exp. 2). Finally, we used paired-pulse (PP) TMS to show that ventral premotor cortex (PMv) facilitates grip-specific representations in M1 but only while grip formation is observed. These findings suggest that PMv and M1 interact temporarily and mainly when motor aspects of hand-object interactions are extracted from visual information. By contrast, no sustained input from PMv to M1 seems to be required to maintain action representations that are anticipated based on contextual information or once the grip is formed (Exp. 3). PMID:26800203

  1. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability.

    PubMed

    Nogueira-Campos, Anaelli A; Saunier, Ghislain; Della-Maggiore, Valeria; De Oliveira, Laura A S; Rodrigues, Erika C; Vargas, Claudia D

    2016-01-01

    The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system. PMID:27625602

  2. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    PubMed Central

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  3. Observation and imitation of actions performed by humans, androids, and robots: an EMG study.

    PubMed

    Hofree, Galit; Urgen, Burcu A; Winkielman, Piotr; Saygin, Ayse P

    2015-01-01

    Understanding others' actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others' behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants' arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  4. Postural and Balance Disorders in Patients with Parkinson's Disease: A Prospective Open-Label Feasibility Study with Two Months of Action Observation Treatment

    PubMed Central

    Santamato, Andrea; Ranieri, Maurizio; Cinone, Nicoletta; Stuppiello, Lucia Anna; Valeno, Giovanni; De Sanctis, Jula Laura; Fortunato, Francesca; Solfrizzi, Vincenzo; Greco, Antonio; Seripa, Davide; Panza, Francesco

    2015-01-01

    Action observation treatment has been proposed as therapeutic option in rehabilitation of patients affected by Parkinson's disease (PD) to improve freezing of gait episodes. The purpose of this prospective open-label feasibility study was to evaluate the impact of 8-week action observation training (video-therapy) for the treatment of postural instability and balance impairment in PD patients. Fifteen PD patients aged under 80 years with scores of 1 to 3 on the Hoehn and Yahr staging and without evidence of freezing of gait were recruited. They underwent 24 sessions of video-therapy training based on carefully watching video clips on motor tasks linked to balance, subsequently performing the same observed movements. No statistically significant differences were observed in the identified outcome measures with the Berg Balance Scale and the Activities-Specific Balance Confidence Scale after two months of follow-up. In the present study, a short course of action observation treatment seems to be not effective in reducing balance impairments and postural instability in patients affected by mild to moderate PD. Further studies with larger samples, longer follow-up period, and standardized protocols of action observation treatment are needed to investigate the effects of this rehabilitation technique in the management of postural and balance disorders of PD patients. PMID:26798551

  5. Mars Observer Propulsion and Pyrotechnics Corrective Actions Test Program Blanket Release

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.; Fries, Joseph (Technical Monitor)

    1999-01-01

    The Mars Observer Propulsion and Pyrotechnic Corrective Actions Test Program has been in progress at the NASA White Sands Test Facility since 1995. This program has developed capabilities to accurately characterize pyrovalve hazards and has established corrective actions that arc helping to preclude loss of spacecraft due to pyrovalve and propellant interaction. Rather than wait for conclusion of the test program, significant rest results, findings, and safety recommendations have been and will continue to be released soon after they became available to meet needs of near-term NASA and commercial space programs. This release will cover approximately three to five papers per year until program end.

  6. Observations on the Invalid Scoring Algorithm of "NASA" and Similar Consensus Tasks.

    ERIC Educational Resources Information Center

    Slevin, Dennis P.

    1978-01-01

    The NASA ranking task and similar ranking activities used to demonstrate the superiority of group thinking are examined. It is argued that the current scores cannot be used to prove the superiority of group-consensus decision making in either training or research settings. (Author)

  7. Aspects of Teamwork Observed in a Technological Task in Junior High Schools.

    ERIC Educational Resources Information Center

    Barak, Moshe; Maymon, Tsipora

    1998-01-01

    Teams of ninth-graders (n=172) in Israel designed and constructed models of hot-air balloons with tissue paper. The short, open-ended technological task promoted teamwork and high motivation. Most teams functioned without a leader. Teachers were challenged by the need to transfer autonomy and responsibility to students. (SK)

  8. Integrating Education and Patient Care. Observations from the GME Task Force.

    ERIC Educational Resources Information Center

    Association of American Medical Colleges, Washington, DC.

    The American Association of Medical Colleges (AAMC) appointed a task force in November 1999 to examine how AAMC member institutions and others were developing, and could develop, new ways to integrate education and patient care. Mechanisms were identified that would aid in reorienting residency programs to education, rather than services. These…

  9. IMITATE: An intensive computer-based treatment for aphasia based on action observation and imitation

    PubMed Central

    Lee, Jaime; Fowler, Robert; Rodney, Daniel; Cherney, Leora; Small, Steven L.

    2009-01-01

    Background Neurophysiological evidence from primates has demonstrated the presence of mirror neurons, with visual and motor properties, that discharge both when an action is performed and during observation of the same action. A similar system for observation-execution matching may also exist in humans. We postulate that behavioral stimulation of this parietal-frontal system may play an important role in motor learning for speech and thereby aid language recovery after stroke. Aims The purpose of this article is to describe the development of IMITATE, a computer-assisted system for aphasia therapy based on action observation and imitation. We also describe briefly the randomized controlled clinical trial that is currently underway to evaluate its efficacy and mechanism of action. Methods and Procedures IMITATE therapy consists of silent observation of audio-visually presented words and phrases spoken aloud by six different speakers, followed by a period during which the participant orally repeats the stimuli. We describe the rationale for the therapeutic features, stimulus selection, and delineation of treatment levels. The clinical trial is a randomized single blind controlled trial in which participants receive two pre-treatment baseline assessments, six weeks apart, followed by either IMITATE or a control therapy. Both treatments are provided intensively (90 minutes per day). Treatment is followed by a post-treatment assessment, and a six-week follow-up assessment. Outcomes & Results Thus far, five participants have completed IMITATE. We expect the results of the randomized controlled trial to be available by late 2010. Conclusions IMITATE is a novel computer-assisted treatment for aphasia that is supported by theoretical rationales and previous human and primate data from neurobiology. The treatment is feasible, and preliminary behavioral data are emerging. However, the results will not be known until the clinical trial data are available to evaluate fully the

  10. Effects of action observation on corticospinal excitability: Muscle specificity, direction, and timing of the mirror response.

    PubMed

    Naish, Katherine R; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2014-11-01

    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour. PMID:25281883

  11. Ideal and visual-search observers: accounting for anatomical noise in search tasks with planar nuclear imaging

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Gifford, Howard C.

    2015-03-01

    Model observers have frequently been used for hardware optimization of imaging systems. For model observers to reliably mimic human performance it is important to account for the sources of variations in the images. Detection-localization tasks are complicated by anatomical noise present in the images. Several scanning observers have been proposed for such tasks. The most popular of these, the channelized Hotelling observer (CHO) incorporates anatomical variations through covariance matrices. We propose the visual-search (VS) observer as an alternative to the CHO to account for anatomical noise. The VS observer is a two-step process which first identifies suspicious tumor candidates and then performs a detailed analysis on them. The identification of suspicious candidates (search) implicitly accounts for anatomical noise. In this study we present a comparison of these two observers with human observers. The application considered is collimator optimization for planar nuclear imaging. Both observers show similar trends in performance with the VS observer slightly closer to human performance.

  12. Task-based performance analysis of SART for digital breast tomosynthesis using signal CNR and channelised Hotelling observers

    NASA Astrophysics Data System (ADS)

    Van de Sompel, Dominique; Brady, Michael; Ho, Candy P. S.; McLennan, Andrew

    2010-04-01

    In this study, we examine the performance of the simultaneous algebraic reconstruction technique (SART) for digital breast tomosynthesis under variations in key imaging parameters, such as the number of iterations, number of projections, angular range, initial guess, radiation dose, etc. We use a real breast CT volume as a ground truth digital phantom from which to simulate x-ray projections under the various selected conditions. The reconstructed image quality is measured using task-based metrics, namely signal CNR and the AUC of a Channelised Hotelling Observer with Laguerre-Gauss basis functions. The task at hand is a signal-known-exactly (SKE) task, where the objective is to detect a simulated mass inserted into the breast CT volume.

  13. On the Inclusion of Externally Controlled Actions in Action Planning

    ERIC Educational Resources Information Center

    Tsai, Jessica Chia-Chin; Knoblich, Gunther; Sebanz, Natalie

    2011-01-01

    According to ideomotor theories, perceiving action effects produced by others triggers corresponding action representations in the observer. We tested whether this principle extends to actions performed by externally controlled limbs and tools. Participants performed a go-no-go version of a spatial compatibility task in which their own actions…

  14. Affirmative Action: A Course for the Future. Affirmative Action Task Force for the Study "New Directions: African Americans in a Diversifying Nation."

    ERIC Educational Resources Information Center

    Joint Center for Political and Economic Studies, Washington, DC.

    A primary social dilemma today is that current strategies have led to the perception that affirmative action favors some population groups at the expense of others, that in a sense it uses one form of discrimination to combat another. It is essential to reconsider affirmative action strategies to implement those that are most appropriate for today…

  15. Metrics of medical image quality: task-based model observers vs. image discrimination/perceptual difference models

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Zhang, Yani; Pham, Binh T.

    2004-05-01

    There have been two distinct approaches to develop human vision models that can be used to perform automated evaluation and optimization of medical image quality: linear task based model observers vs. perceptual difference/image discrimination models. Although these two approaches are very different there has been little work directly comparing them in their ability to optimize human performance in clinically relevant tasks. We compared the effectiveness of these two types of metrics of image quality to perform automated computer optimization of JPEG 2000 image compression encoder settings using test images that combined real x-ray coronary angiogram backgrounds with simulated filling defects of 184 different size/shapes. A genetic algorithm was used to optimize the JPEG 2000 encoder settings with respect to: a) a particular task based model observer performance (non-prewhitening matched filter with an eye filter, NPWE; b) a particular perceptual difference/image discrimination model error metric (DCTune2.0; NASA Ames Research Center). A subsequent human psychophysical study was conducted to evaluate the effect of the two different optimized compression encoder settings on visual detection of the simulated filling defect in one of four locations (four alternative forced choice; 4 AFC). Results show that optimizing JPEG 2000 encoder settings with respect to both the NPWE performance and DCTune 2.0 perceptual error lead to improved human task performance relative to human performance with the default encoder settings. However, the NPWE-optimization led to much greater human performance improvement than the perceptual difference model optimization.

  16. Observation of radiation-pressure effects and back-action cancellation in interferometric measurements

    NASA Astrophysics Data System (ADS)

    Heidmann, A.; Caniard, T.; Verlot, P.; Briant, T.; Cohadon, P.-F.

    2008-02-01

    Radiation pressure exerted by light in interferometric measurements is responsible for displacements of mirrors which appear as an additional back-action noise and limit the sensitivity of the measurement. We experimentally study these effects by monitoring in a very highfinesse optical cavity the displacements of a mirror with a sensitivity at the 10 -20 m/√Hz level. This unique sensitivity is a step towards the first observation of the fundamental quantum effects of radiation pressure and the resulting standard quantum limit in interferometric measurements. Our experiment may become a powerful facility to test quantum noise reduction schemes, and we already report the first experimental demonstration of a back-action noise cancellation. Using a classical radiation-pressure noise to mimic the quantum noise of light, we have observed a drastic improvement of sensitivity both in position and force measurements.

  17. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy

    PubMed Central

    de Klerk, Carina C.J.M.; Johnson, Mark H.; Southgate, Victoria

    2015-01-01

    Previous studies have shown that sensorimotor cortex activation is somatotopically-organised during action execution and observation in adulthood. Here we aimed to investigate the development of this phenomenon in infancy. We elicited arm and leg actions from 12-month-old infants and presented them, and a control group of adults, with videos of arm and leg actions while we measured their sensorimotor alpha suppression using EEG. Sensorimotor alpha suppression during action execution was somatotopically organised in 12-month-old infants: there was more suppression over the arm areas when infants performed reaching actions, and more suppression over the leg area when they performed kicking actions. Adults also showed somatotopically-organised activation during the observation of reaching and kicking actions. In contrast, infants did not show somatotopically-organised activation during action observation, but instead activated the arm areas when observing both reaching and kicking actions. We suggest that the somatotopic organisation of sensorimotor cortex activation during action observation may depend on infants’ understanding of the action goal and their expectations about how this goal will be achieved. PMID:26318840

  18. A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task.

    PubMed

    Bailey, Matthew R; Jensen, Greg; Taylor, Kathleen; Mezias, Chris; Williamson, Cait; Silver, Rae; Simpson, Eleanor H; Balsam, Peter D

    2015-06-01

    Motivation serves 2 important functions: It guides actions to be goal-directed, and it provides the energy and vigor required to perform the work necessary to meet those goals. Dissociating these 2 processes with existing behavioral assays has been a challenge. In this article, we report a novel experimental strategy to distinguish the 2 processes in mice. First, we characterize a novel motivation assay in which animals must hold down a lever for progressively longer intervals to earn each subsequent reward; we call this the progressive hold-down (PHD) task. We find that performance on the PHD task is sensitive to both food deprivation level and reward value. Next, we use a dose of methamphetamine (METH) 1.0 mg/kg, to evaluate behavior in both the progressive ratio (PR) and PHD tasks. Treatment with METH leads to more persistent lever pressing for food rewards in the PR. In the PHD task, we found that METH increased arousal, which leads to numerous bouts of hyperactive responding but neither increases nor impairs goal-directed action. The results demonstrate that these tools enable a more precise understanding of the underlying processes being altered in manipulations that alter motivated behavior. PMID:26030428

  19. On the Regulation of Cognitive Control: Action Orientation Moderates the Impact of High Demands in Stroop Interference Tasks

    ERIC Educational Resources Information Center

    Jostmann, Nils B.; Koole, Sander L.

    2007-01-01

    Previous research has established that people vary in action orientation, a tendency toward decisiveness and initiative, versus state orientation, a tendency toward indecisiveness and hesitation (J. Kuhl & J. Beckmann, 1994b). In the present 3 studies, the authors examined whether action orientation versus state orientation regulates cognitive…

  20. Modulation of Corticospinal Excitability during Acquisition of Action Sequences by Observation

    PubMed Central

    Sakamoto, Masanori; Moriyama, Noriyoshi; Mizuguchi, Nobuaki; Muraoka, Tetsuro; Kanosue, Kazuyuki

    2012-01-01

    Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses. PMID:22615889

  1. Student and Teacher Perceptions of the Use of Multimedia Supported Predict Observe Explain Tasks to Probe Understanding

    NASA Astrophysics Data System (ADS)

    Kearney, Matthew; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan G.

    2001-08-01

    This paper discusses student and teacher perceptions of a new development in the use of the predict-observe-explain (POE) strategy. This development involves the incorporation of POE tasks into a multimedia computer program that uses real-life, digital video clips of difficult, expensive, time consuming or dangerous scenarios as stimuli for these tasks. The program was created by the first author to be used by pairs of secondary physics students to elicit their conceptions of force and motion and encourage discussion about these views. In this computer learning environment, students were required to type full sentence responses that were recorded by the computer for later analysis by the researcher. Other data sources for this study included audio and video recordings of student discussions, interviews with selected students and their teachers, classroom observations, and student questionnaires. This paper will report on some findings from the study, focussing on student and teacher perceptions of the computer-mediated POE tasks. The findings have implications for the effective use of multimedia to enhance meaningful learning in science classrooms.

  2. Observations of Children's Interactions with Teachers, Peers, and Tasks across Preschool Classroom Activity Settings

    ERIC Educational Resources Information Center

    Booren, Leslie M.; Downer, Jason T.; Vitiello, Virginia E.

    2012-01-01

    Research Findings: This descriptive study examined classroom activity settings in relation to children's observed behavior during classroom interactions, child gender, and basic teacher behavior within the preschool classroom. A total of 145 children were observed for an average of 80 min during 8 occasions across 2 days using the Individualized…

  3. A gunner model for an AAA tracking task with interrupted observations

    NASA Technical Reports Server (NTRS)

    Yu, C. F.; Wei, K. C.; Vikmanis, M.

    1982-01-01

    The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.

  4. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    PubMed Central

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  5. Action video game players and deaf observers have larger Goldmann visual fields.

    PubMed

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-01

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field. PMID:19962395

  6. 76 FR 63927 - Interagency Task Force on Antimicrobial Resistance (ITFAR): An Update on A Public Health Action...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... of the Action Plan: Surveillance, Prevention and Control, Research, and Product Development. Written... four focus areas: Surveillance, Prevention and Control, Research, and Product Development. The agenda... Healthcare Research and Quality (AHRQ), the Centers for Medicare and Medicaid Services (CMS), the...

  7. Prediction of human observer performance in a 2-alternative forced choice low-contrast detection task using channelized Hotelling observer: Impact of radiation dose and reconstruction algorithms

    SciTech Connect

    Yu Lifeng; Leng Shuai; Chen Lingyun; Kofler, James M.; McCollough, Cynthia H.; Carter, Rickey E.

    2013-04-15

    Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting human observer performance on specific tasks at various scan and reconstruction settings. The goal of this work was to investigate how well a channelized Hotelling observer (CHO) can predict human observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative reconstruction (IR) method. Methods: A 35 Multiplication-Sign 26 cm{sup 2} torso-shaped phantom filled with water was used to simulate an average-sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm) were placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast relative to background was -15 HU at 120 kV. The phantom was scanned 100 times using automatic exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner. After removing the three rods, the water phantom was again scanned 100 times to provide signal-absent background images at the exact same locations. By extracting regions of interest around the three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-side in randomized order. In total, 2100 trials were presented to both the model and human observers. Four medical physicists acted as human observers. For the model observer, the authors used a CHO with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading to a total of 60 channels. The performance predicted by the CHO was compared with that obtained by four medical physicists at each 2AFC study. Results: The human and model observers were highly correlated at each dose level for each lesion size for both FBP and IR. The

  8. Prefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task

    PubMed Central

    Wormwood, Benjamin A.; Miller, Rikki L. A.; Gibson, Brett M.; Mair, Robert G.

    2016-01-01

    To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found neurons with responses related to preparation, movement, lever press responses, reinforcement, and memory delays. Combined event-related and video tracking analyses revealed variability in spatial tuning of neurons with similar event-related activity. While all correlated neurons exhibited spatial tuning broadly consistent with relevant task events, for instance reinforcement-related activity concentrated in locations where reinforcement was delivered, some had elevated activity in more specific locations, for instance reinforcement-related activity in one of several locations where reinforcement was delivered. Timing analyses revealed a limited set of distinct response types with activity time-locked to critical behavioral events that represent the temporal organization of dDNMTP trials. Our results suggest that reinforcement-guided decision-making emerges from discrete populations of medial prefrontal neurons that encode information related to planned or ongoing movements and actions and anticipated or actual action-outcomes in conjunction with information about spatial context. PMID:26848579

  9. Prefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task.

    PubMed

    Onos, Kristen D; Francoeur, Miranda J; Wormwood, Benjamin A; Miller, Rikki L A; Gibson, Brett M; Mair, Robert G

    2016-01-01

    To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found neurons with responses related to preparation, movement, lever press responses, reinforcement, and memory delays. Combined event-related and video tracking analyses revealed variability in spatial tuning of neurons with similar event-related activity. While all correlated neurons exhibited spatial tuning broadly consistent with relevant task events, for instance reinforcement-related activity concentrated in locations where reinforcement was delivered, some had elevated activity in more specific locations, for instance reinforcement-related activity in one of several locations where reinforcement was delivered. Timing analyses revealed a limited set of distinct response types with activity time-locked to critical behavioral events that represent the temporal organization of dDNMTP trials. Our results suggest that reinforcement-guided decision-making emerges from discrete populations of medial prefrontal neurons that encode information related to planned or ongoing movements and actions and anticipated or actual action-outcomes in conjunction with information about spatial context. PMID:26848579

  10. Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2016-03-01

    In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i

  11. Humour production may enhance observational learning of a new tool-use action in 18-month-old infants.

    PubMed

    Esseily, Rana; Rat-Fischer, Lauriane; Somogyi, Eszter; O'Regan, Kevin John; Fagard, Jacqueline

    2016-06-01

    Many studies have shown that making children laugh enhances certain cognitive capacities such as attention, motivation, perception and/or memory, which in turn enhance learning. However, no study thus far has investigated whether laughing has an effect on learning earlier in infancy. The goal of this study was to see whether using humour with young infants in a demonstration of a complex tool-use task can enhance their learning. Fifty-three 18-month-old infants participated in this study and were included either in a humorous or a control demonstration group. In both groups infants observed an adult using a tool to retrieve an out-of-reach toy. What differed between groups was that in the humorous demonstration group, instead of playing with the toy, the adult threw it on the floor immediately after retrieval. The results show that infants who laughed at the demonstration in the humorous demonstration group reproduced significantly more frequent target actions than infants who did not laugh and those in the control group. This effect is discussed with regard to individual differences in terms of temperament and social capacities as well as positive emotion and dopamine release. PMID:25965997

  12. The Impact of Help Seeking on Individual Task Performance: The Moderating Effect of Help Seekers' Logics of Action

    ERIC Educational Resources Information Center

    Geller, Dvora; Bamberger, Peter A.

    2012-01-01

    Drawing from achievement-goal theory and the social psychological literature on help seeking, we propose that it is the variance in the logic underpinning employees' help seeking that explains divergent findings regarding the relationship between help seeking and task performance. Using a sample of 110 newly hired customer contact employees, a…

  13. The Costs of Changing the Representation of Action: Response Repetition and Response-Response Compatibility in Dual Tasks

    ERIC Educational Resources Information Center

    Schuch, Stefanie; Koch, Iring

    2004-01-01

    In 5 experiments, the authors investigated the costs associated with repeating the same or a similar response in a dual-task setting. Using a psychological refractory period paradigm, they obtained response-repetition costs when the cognitive representation of a specific response (i.e., the category-response mapping) changed (Experiment 1) but…

  14. Imagined actions aren't just weak actions: task variability promotes skill learning in physical practice but not in mental practice.

    PubMed

    Coelho, Chase J; Nusbaum, Howard C; Rosenbaum, David A; Fenn, Kimberly M

    2012-11-01

    Early research on visual imagery led investigators to suggest that mental visual images are just weak versions of visual percepts. Later research helped investigators understand that mental visual images differ in deeper and more subtle ways from visual percepts. Research on motor imagery has yet to reach this mature state, however. Many authors have implicitly subscribed to the view that motor images are just weak versions of physical actions. We tested this view by comparing motor learning in variable practice conditions with motor learning in constant practice conditions when participants either physically or mentally practiced golf-putting. We found that physical and mental practice both resulted in significant learning but that variable practice was only better than constant practice when participants practiced physically. This outcome was not predicted by the hypothesis that motor imagery is just a weaker form of real-action experience. PMID:22545613

  15. Same task, same observers, different values: the problem with visual assessment of breast density

    NASA Astrophysics Data System (ADS)

    Sergeant, Jamie C.; Walshaw, Lani; Wilson, Mary; Seed, Sita; Barr, Nicky; Beetles, Ursula; Boggis, Caroline; Bundred, Sara; Gadde, Soujanya; Lim, Yit; Whiteside, Sigrid; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.

    2013-03-01

    The proportion of radio-opaque fibroglandular tissue in a mammographic image of the breast is a strong and modifiable risk factor for breast cancer. Subjective, area-based estimates made by expert observers provide a simple and efficient way of measuring breast density within a screening programme, but the degree of variability may render the reliable identification of women at increased risk impossible. This study examines the repeatability of visual assessment of percent breast density by expert observers. Five consultant radiologists and two breast physicians, all with at least two years' experience in mammographic density assessment, were presented with 100 digital mammogram cases for which they had estimated density at least 12 months previously. Estimates of percent density were made for each mammographic view and recorded on a printed visual analogue scale. The level of agreement between the two sets of estimates was assessed graphically using Bland-Altman plots. All but one observer had a mean difference of less than 6 percentage points, while the largest mean difference was 14.66 percentage points. The narrowest 95% limits of agreement for the differences were -11.15 to 17.35 and the widest were -13.95 to 40.43. Coefficients of repeatability ranged from 14.40 to 38.60. Although visual assessment of breast density has been shown to be strongly associated with cancer risk, the lack of agreement shown here between repeat assessments of the same images by the same observers questions the reliability of using visual assessment to identify women at high risk or to detect moderate changes in breast density over time.

  16. Choosing Actions

    PubMed Central

    Rosenbaum, David A.; Chapman, Kate M.; Coelho, Chase J.; Gong, Lanyun; Studenka, Breanna E.

    2013-01-01

    Actions that are chosen have properties that distinguish them from actions that are not. Of the nearly infinite possible actions that can achieve any given task, many of the unchosen actions are irrelevant, incorrect, or inappropriate. Others are relevant, correct, or appropriate but are disfavored for other reasons. Our research focuses on the question of what distinguishes actions that are chosen from actions that are possible but are not. We review studies that use simple preference methods to identify factors that contribute to action choices, especially for object-manipulation tasks. We can determine which factors are especially important through simple behavioral experiments. PMID:23761769

  17. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  18. Behaviors observed during S− in a simple discrimination learning task1

    PubMed Central

    Rand, Judith F.

    1977-01-01

    Key pecking of pigeons was reinforced with food in the presence of a horizontal line and never reinforced in the presence of a vertical line. Highly stereotyped behaviors, as well as key pecking, were observed and recorded in the presence of both stimuli. Results showed that a high proportion of time spent in the presence of the horizontal line was occupied by key pecking, a high proportion of time in the presence of the vertical line was occupied by stereotyped nonkey-pecking behaviors, and intermediate proportions of time spent in the presence of intermediate stimuli were occupied by each class of behavior during generalization tests. Similar running rates (number of key pecks divided by observed key-pecking time) were obtained in the presence of all stimuli, indicating that changes in time rather than tempo accounted for the changes in overall rates of key pecking. An exception occurred in responding to the horizontal line as differential performance was developing. In addition to an increase in time spent key pecking, increased running rates occurred in seven of eight birds, suggesting that both time allocation and tempo play a role in behavioral contrast of overall rates of key pecking. ImagesFig. 2a.Fig. 2b. PMID:16811968

  19. Neural Correlates of Action Observation and Execution in 14-Month-Old Infants: An Event-Related EEG Desynchronization Study

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Young, Thomas; Meltzoff, Andrew N.

    2011-01-01

    There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants.…

  20. Moving mirrors: a high-density EEG study investigating the effect of camera movements on motor cortex activation during action observation.

    PubMed

    Heimann, Katrin; Umiltà, Maria Alessandra; Guerra, Michele; Gallese, Vittorio

    2014-09-01

    Action execution-perception links (mirror mechanism) have been repeatedly suggested to play crucial roles in social cognition. Remarkably, the designs of most studies exploring this topic so far excluded even the simplest traces of social interaction, such as a movement of the observer toward another individual. This study introduces a new design by investigating the effects of camera movements, possibly simulating the observer's own approaching movement toward the scene. We conducted a combined high-density EEG and behavioral study investigating motor cortex activation during action observation measured by event-related desynchronization and resynchronization (ERD/ERS) of the mu rhythm. Stimuli were videos showing a goal-related hand action filmed while using the camera in four different ways: filming from a fixed position, zooming in on the scene, approaching the scene by means of a dolly, and approaching the scene by means of a steadycam. Results demonstrated a consistently stronger ERD of the mu rhythm for videos that were filmed while approaching the scene with a steadycam. Furthermore, videos in which the zoom was applied reliably demonstrated a stronger rebound. A rating task showed that videos in which the camera approached the scene were felt as more involving and the steadycam was most able to produce a visual experience close to the one of a human approaching the scene. These results suggest that filming technique predicts time course specifics of ERD/ERS during action observation with only videos simulating the natural vision of a walking human observer eliciting a stronger ERD than videos filmed from a fixed position. This demonstrates the utility of ecologically designed studies for exploring social cognition. PMID:24666130

  1. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach

    PubMed Central

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P.; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    Background The ability to recognize, understand and interpret other’s actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Method Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Results Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. Conclusion While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON. PMID:26317222

  2. EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions.

    PubMed

    Liao, Yu; Acar, Zeynep Akalin; Makeig, Scott; Deak, Gedeon

    2015-05-15

    Contemporary active-EEG and EEG-imaging methods show particular promise for studying the development of action planning and social-action representation in infancy and early childhood. Action-related mu suppression was measured in eleven 3-year-old children and their mothers during a 'live,' largely unscripted social interaction. High-density EEG was recorded from children and synchronized with motion-captured records of children's and mothers' hand actions, and with video recordings. Independent Component Analysis (ICA) was used to separate brain and non-brain source signals in toddlers' EEG records. EEG source dynamics were compared across three kinds of epochs: toddlers' own actions (execution), mothers' actions (observation), and between-turn intervals (no action). Mu (6-9Hz) power was suppressed in left and right somatomotor cortex during both action execution and observation, as reflected by independent components of individual children's EEG data. These mu rhythm components were accompanied by beta-harmonic (~16Hz) suppression, similar to findings from adults. The toddlers' power spectrum and scalp density projections provide converging evidence of adult-like mu-suppression features. Mu-suppression components' source locations were modeled using an age-specific 4-layer forward head model. Putative sources clustered around somatosensory cortex, near the hand/arm region. The results demonstrate that action-locked, event-related EEG dynamics can be measured, and source-resolved, from toddlers during social interactions with relatively unrestricted social behaviors. PMID:25731992

  3. Development and evaluation of an observational method for assessing repetition in hand tasks.

    PubMed

    Latko, W A; Armstrong, T J; Foulke, J A; Herrin, G D; Rabourn, R A; Ulin, S S

    1997-04-01

    Several physical stressors, including repetitive, sustained, and forceful exertions, awkward postures, localized mechanical stress, highly dynamic movements, exposures to low temperatures, and vibration have been linked to increased risk of work-related musculoskeletal disorders. Repetitive exertions have been among the most widely studied of these stressors, but there is no single metric for assessing exposure to repetitive work. A new methodology enables repetitive hand activity to be rated based on observable characteristics of manual work. This method uses a series of 10-cm visual-analog scales with verbal anchors and benchmark examples. Ratings for repetition reflect both the dynamic aspect of hand movements and the amount of recovery or idle hand time. Trained job analysis experts rate the jobs individually and then agree on ratings. For a group of 33 jobs, repetition ratings using this system were compared to measurements of recovery time within the cycle, exertion counts, and cycle time. Amount of recovery time within the job cycle was found to be significantly correlated with the analysis ratings (r2 = 0.58), as were the number of exertions per second (r2 = 0.53). Cycle time was not related to the analyst ratings. Repeated analyses using the new method were performed 1 1/2 to 2 years apart on the same jobs with the same group of raters. Ratings for repetition differed less than 1 point (on the 10-cm scale), on average, among the different sessions. These results indicate that the method is sensitive to exertion level and recovery time, and that the decision criteria and benchmark examples allow for a consistent application of these methods over a period of time. This method of rating repetition can be combined with similar scales for other physical stressors. PMID:9115085

  4. Measuring cerebral hemodynamic changes during action observation with functional transcranial doppler

    PubMed Central

    Kim, Seong-Sik; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of action observation training (AOT) on cerebral hemodynamic changes including cerebral blood flow velocity (CBFV) and cerebral blood flow volume (CBFvol) in healthy subjects. [Subjects] Fifteen healthy subjects participated in this study. [Methods] All subjects were educated regarding AOT, and systolic peak velocity (Vs) as well as mean flow velocity (Vm) in the middle cerebral artery (MCA), anterior cerebral artery (ACA), and posterior cerebral artery (PCA) were evaluated using functional transcranial doppler with a 2-MHz probe, before and after performing AOT. [Results] Healthy subjects showed significant differences in Vs and Vm in the MCA, ACA, and PCA after AOT compared with those before AOT. [Conclusion] Our findings indicate that AOT has a positive effect in terms of an increase in CBFV and CBFvol in healthy subjects, since the brain requires more blood to meet the metabolic demand during AOT. PMID:26157224

  5. High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia

    PubMed Central

    Plis, Sergey M; Sui, Jing; Lane, Terran; Roy, Sushmita; Clark, Vincent P; Potluru, Vamsi K; Huster, Rene J; Michael, Andrew; Sponheim, Scott R; Weisend, Michael P; Calhoun, Vince D

    2013-01-01

    Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data sets may reveal additional structure, but raises further statistical challenges. We present a novel analysis method for extracting complex activity networks from such multifaceted imaging data sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing detailed generative probability models and explicit latent variable inference in order to achieve robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our method to identify relationships of task-specific intrinsic networks in schizophrenia patients and control subjects from a large fMRI study. After identifying network-clusters characterized by within- and between-task interactions, we find significant differences between patient and control groups in interaction strength among networks. Our results are consistent with known findings of brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise methods. We additionally identify high-order relationships that provide new insights into schizophrenia but that have not been found by traditional univariate or second-order methods. Overall, our approach can identify key relationships that are missed by existing analysis methods, without losing the ability to find relationships that are known to be important. PMID:23876245

  6. Primary somatosensory contribution to action observation brain activity-combining fMRI and cTBS.

    PubMed

    Valchev, Nikola; Gazzola, Valeria; Avenanti, Alessio; Keysers, Christian

    2016-08-01

    Traditionally the mirror neuron system (MNS) only includes premotor and posterior parietal cortices. However, somatosensory cortices, BA1/2 in particular, are also activated during action execution and observation. Here, we examine whether BA1/2 and the parietofrontal MNS integrate information by using functional magnetic resonance imaging (fMRI)-guided continuous theta-burst stimulation (cTBS) to perturb BA1/2. Measuring brain activity using fMRI while participants are under the influence of cTBS shows local cTBS effects in BA1/2 varied, with some participants showing decreases and others increases in the BOLD response to viewing actions vs control stimuli. We show how measuring cTBS effects using fMRI can harness this variance using a whole-brain regression. This analysis identifies brain regions exchanging action-specific information with BA1/2 by mapping voxels away from the coil with cTBS-induced, action-observation-specific BOLD contrast changes that mirror those under the coil. This reveals BA1/2 exchanges action-specific information with premotor, posterior parietal and temporal nodes of the MNS during action observation. Although anatomical connections between BA1/2 and these regions are well known, this is the first demonstration that these connections carry action-specific signals during observation and hence, that BA1/2 plays a causal role in the human MNS. PMID:26979966

  7. Primary somatosensory contribution to action observation brain activity—combining fMRI and cTBS

    PubMed Central

    Valchev, Nikola; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    Traditionally the mirror neuron system (MNS) only includes premotor and posterior parietal cortices. However, somatosensory cortices, BA1/2 in particular, are also activated during action execution and observation. Here, we examine whether BA1/2 and the parietofrontal MNS integrate information by using functional magnetic resonance imaging (fMRI)-guided continuous theta-burst stimulation (cTBS) to perturb BA1/2. Measuring brain activity using fMRI while participants are under the influence of cTBS shows local cTBS effects in BA1/2 varied, with some participants showing decreases and others increases in the BOLD response to viewing actions vs control stimuli. We show how measuring cTBS effects using fMRI can harness this variance using a whole-brain regression. This analysis identifies brain regions exchanging action-specific information with BA1/2 by mapping voxels away from the coil with cTBS-induced, action-observation-specific BOLD contrast changes that mirror those under the coil. This reveals BA1/2 exchanges action-specific information with premotor, posterior parietal and temporal nodes of the MNS during action observation. Although anatomical connections between BA1/2 and these regions are well known, this is the first demonstration that these connections carry action-specific signals during observation and hence, that BA1/2 plays a causal role in the human MNS. PMID:26979966

  8. Do task-irrelevant direction-associated motion verbs affect action planning? Evidence from a Stroop paradigm.

    PubMed

    Dudschig, Carolin; Lachmair, Martin; de la Vega, Irmgard; De Filippis, Monica; Kaup, Barbara

    2012-10-01

    Does simply seeing a word such as rise activate upward responses? The present study is concerned with bottom-up activation of motion-related experiential traces. Verbs referring to an upward or downward motion (e.g., rise/fall) were presented in one of four colors. Participants had to perform an upward or downward hand movement (experiments 1 and 2a/2b) or a stationary up or down located keypress response (experiment 3) according to font color. In all experiments, responding was faster if the word's immanent motion direction matched the response (e.g., upward/up response in case of rise); however, this effect was strongest in the experiments requiring an actual upward or downward response movement (experiments 1 and 2a/2b). These findings suggest bottom-up activation of motion-related experiential traces, even if the task does not demand lexical access or focusing on a word's meaning. PMID:22427242

  9. The impact of help seeking on individual task performance: the moderating effect of help seekers' logics of action.

    PubMed

    Geller, Dvora; Bamberger, Peter A

    2012-03-01

    Drawing from achievement-goal theory and the social psychological literature on help seeking, we propose that it is the variance in the logic underpinning employees' help seeking that explains divergent findings regarding the relationship between help seeking and task performance. Using a sample of 110 newly hired customer contact employees, a prospective study design, and archival performance data, we found no evidence of a hypothesized main effect of help seeking on performance. However, we did find that the help seeking-performance relationship was conditioned by the degree to which help seekers endorse 2 alternative help-seeking logics (autonomous vs. dependent logic) such that the level of help seeking is more strongly related to performance among those either more strongly endorsing an autonomous help-seeking logic or more weakly endorsing a dependent help-seeking logic. PMID:22082458

  10. Neural network development in late adolescents during observation of risk-taking action.

    PubMed

    Tamura, Miyuki; Moriguchi, Yoshiya; Higuchi, Shigekazu; Hida, Akiko; Enomoto, Minori; Umezawa, Jun; Mishima, Kazuo

    2012-01-01

    Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression) and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months). The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions) during functional magnetic resonance imaging (fMRI). The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas), and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus). We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed. PMID:22768085

  11. Neural Network Development in Late Adolescents during Observation of Risk-Taking Action

    PubMed Central

    Higuchi, Shigekazu; Hida, Akiko; Enomoto, Minori; Umezawa, Jun; Mishima, Kazuo

    2012-01-01

    Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression) and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months). The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions) during functional magnetic resonance imaging (fMRI). The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas), and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus). We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed. PMID:22768085

  12. End or Means--The "What" and "How" of Observed Intentional Actions

    ERIC Educational Resources Information Center

    Hesse, Maike D.; Sparing, Roland; Fink, Gereon R.

    2009-01-01

    Action understanding and learning are suggested to be mediated, at least in part, by the human mirror neuron system (hMNS). Static images as well as videos of actions with the outcome occluded have been shown to activate the hMNS. However, whether the hMNS preferentially responds to "end" or "means" of an action remains to be investigated. We,…

  13. Neural Correlates of Human Action Observation in Hearing and Deaf Subjects

    PubMed Central

    Corina, David; Chiu, Yi-Shiuan; Knapp, Heather; Greenwald, Ralf; Jose-Robertson, Lucia San; Braun, Allen

    2007-01-01

    Accumulating evidence has suggested the existence of a human action recognition system involving inferior frontal, parietal, and superior temporal regions that may participate in both the perception and execution of actions. However, little is known about the specificity of this system in response to different forms of human action. Here we present data from PET neuroimaging studies from passive viewing of three distinct action types, intransitive self-oriented actions (e.g., stretching, rubbing one’s eyes, etc.), transitive object-oriented actions (e.g., opening a door, lifting a cup to the lips to drink), and the abstract, symbolic actions–signs used in American Sign Language. Our results show that these different classes of human actions engage a frontal/parietal/STS human action recognition system in a highly similar fashion. However, the results indicate that this neural consistency across motion classes is true primarily for hearing subjects. Data from deaf signers shows a non-uniform response to different classes of human actions. As expected, deaf signers engaged left-hemisphere perisylvian language areas during the perception of signed language signs. Surprisingly, these subjects did not engage the expected frontal/parietal/STS circuitry during passive viewing of non-linguistic actions, but rather reliably activated middle-occipital temporal-ventral regions which are known to participate in the detection of human bodies, faces, and movements. Comparisons with data from hearing subjects establish statistically significant contributions of middle-occipital temporal-ventral during the processing of non-linguistic actions in deaf signers. These results suggest that during human motion processing, deaf individuals may engage specialized neural systems that allow for rapid, online differentiation of meaningful linguistic actions from non-linguistic human movements. PMID:17459349

  14. Preschoolers, adolescents, and adults visually anticipate an agent's efficient action; but only after having observed it frequently.

    PubMed

    Schuwerk, Tobias; Paulus, Markus

    2016-01-01

    The present study examined the contribution of efficiency reasoning and statistical learning on visual action anticipation in preschool children, adolescents, and adults. To this end, Experiment 1 assessed proactive eye movements of 5-year-old children, 15-year-old adolescents, and adults, who observed an agent stating the intent to reach a goal as quickly as possible. Subsequently the agent could four times either take a short, hence efficient, or long, hence inefficient, path to get to the goal. The results showed that in the first trial participants in none of the age groups predicted above chance level that the agent would produce the efficient action. Instead, we observed an age-dependent increase in action predictions in the subsequent repeated presentation of the same action. Experiment 2 ruled out that participants' nonconsideration of the efficient path was due to a lack of understanding of the agent's action goal. Moreover, it demonstrated that 5-year-old children do predict that the agent will act efficiently when verbally reasoning about his future action. Overall, the study supports the view that rapid learning from frequency information guides visual action anticipations. PMID:26073156

  15. NF-kappaB activity affects learning in aversive tasks: possible actions via modulation of the stress axis.

    PubMed

    Lehmann, Michael L; Brachman, Rebecca A; Listwak, Samuel J; Herkenham, Miles

    2010-08-01

    The role of altered activity of nuclear factor kappaB (NF-kappaB) in specific aspects of motivated behavior and learning and memory was examined in mice lacking the p50 subunit of the NF-kappaB/rel transcription factor family. Nfkb1-deficient mice are unable to produce p50 and show specific susceptibilities to infections and inflammatory challenges, but the behavioral phenotype of such mice has been largely unexamined, owing in large part to the lack of understanding of the role of NF-kappaB in nervous system function. Here we show that Nfkb1 (p50) knockout mice more rapidly learned to find the hidden platform in the Morris water maze than did wildtype mice. The rise in plasma corticosterone levels after the maze test was greater in p50 knockout than in wildtype mice. In the less stressful Barnes maze, which tests similar kinds of spatial learning, the p50 knockout mice performed similarly to control mice. Adrenalectomy with corticosterone replacement eliminated the differences between p50 knockout and wildtype mice in the water maze. Knockout mice showed increased levels of basal anxiety in the open-field and light/dark box tests, suggesting that their enhanced escape latency in the water maze was due to activation of the stress (hypothalamic-pituitary-adrenal) axis leading to elevated corticosterone production by strongly but not mildly anxiogenic stimuli. The results suggest that, as in the immune system, p50 in the nervous system normally serves to dampen NF-kappaB-mediated intracellular activities, which are manifested physiologically through elevated stress responses to aversive stimuli and behaviorally in the facilitated escape performance in learning tasks. PMID:20399847

  16. An integrative neural model of social perception, action observation, and theory of mind.

    PubMed

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  17. Action Observation and Motor Imagery: Innovative Cognitive Tools in the Rehabilitation of Parkinson's Disease

    PubMed Central

    Abbruzzese, Giovanni; Avanzino, Laura; Marchese, Roberta; Pelosin, Elisa

    2015-01-01

    Parkinson's disease (PD) is characterized by a progressive impairment of motor skills with deterioration of autonomy in daily living activities. Physiotherapy is regarded as an adjuvant to pharmacological and neurosurgical treatment and may provide small and short-lasting clinical benefits in PD patients. However, the development of innovative rehabilitation approaches with greater long-term efficacy is a major unmet need. Motor imagery (MI) and action observation (AO) have been recently proposed as a promising rehabilitation tool. MI is the ability to imagine a movement without actual performance (or muscle activation). The same cortical-subcortical network active during motor execution is engaged in MI. The physiological basis of AO is represented by the activation of the “mirror neuron system.” Both MI and AO are involved in motor learning and can induce improvements of motor performance, possibly mediated by the development of plastic changes in the motor cortex. The review of available evidences indicated that MI ability and AO feasibility are substantially preserved in PD subjects. A few preliminary studies suggested the possibility of using MI and AO as parts of rehabilitation protocols for PD patients. PMID:26495150

  18. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  19. An integrative neural model of social perception, action observation, and theory of mind

    PubMed Central

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  20. Chronic atomoxetine treatment during adolescence does not influence decision-making on a rodent gambling task, but does modulate amphetamine's effect on impulsive action in adulthood.

    PubMed

    Silveira, Mason M; Murch, W Spencer; Clark, Luke; Winstanley, Catharine A

    2016-06-01

    In addition to the symptoms of inattention, hyperactivity, and impulsivity, individuals with attention deficit hyperactivity disorder exhibit impaired performance on tests of real-world cost/benefit decision-making. Atomoxetine, a nonstimulant drug approved for the treatment of attention deficit hyperactivity disorder, is a selective norepinephrine reuptake inhibitor administered chronically during adolescence, a time during which the frontal brain regions necessary for executive function undergo extensive maturation. This treatment protocol can affect behavior well into adulthood, but whether it produces long-term changes in complex decision-making has not been investigated. Twenty-four Long-Evans rats were administered saline or 1.0 mg/kg atomoxetine daily from postnatal day 40 to 54. Two weeks after treatment, the adult rats were trained and assessed on the rodent gambling task, in which the animals chose from four options varying in reward, punishment, and uncertainty. Impulsive action was also measured by recording the number of premature responses made. Regardless of the treatment administered during adolescence, rats learned to favor the advantageous options characterized by small, low-penalty rewards in lieu of the larger, higher-penalty reward options. Rodent gambling task performance was then assessed following acute treatment with atomoxetine (0.1-1.0 mg/kg) and amphetamine (0.3-1.5 mg/kg). Across groups, the highest dose of atomoxetine impaired decision-making and decreased premature responding at all doses tested. Amphetamine also impaired choice performance, but selectively increased impulsive action in rats that had previously received atomoxetine treatment during adolescence. These findings contribute to our understanding of the long-term effects associated with chronic adolescent atomoxetine exposure and suggest that this treatment does not alter decision-making under conditions of risk and uncertainty in adulthood. PMID:26650252

  1. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions.

    PubMed

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M

    2015-01-01

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor's BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor's FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. PMID:25462196

  2. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions

    PubMed Central

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M.

    2016-01-01

    Seeing others performing an action induces the observers’ motor cortex to “resonate” with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor’s BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor’s FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. PMID:25462196

  3. fMRI Adaptation between Action Observation and Action Execution Reveals Cortical Areas with Mirror Neuron Properties in Human BA 44/45

    PubMed Central

    de la Rosa, Stephan; Schillinger, Frieder L.; Bülthoff, Heinrich H.; Schultz, Johannes; Uludag, Kamil

    2016-01-01

    Mirror neurons (MNs) are considered to be the supporting neural mechanism for action understanding. MNs have been identified in monkey’s area F5. The identification of MNs in the human homolog of monkeys’ area F5 Broadmann Area 44/45 (BA 44/45) has been proven methodologically difficult. Cross-modal functional MRI (fMRI) adaptation studies supporting the existence of MNs restricted their analysis to a priori candidate regions, whereas studies that failed to find evidence used non-object-directed (NDA) actions. We tackled these limitations by using object-directed actions (ODAs) differing only in terms of their object directedness in combination with a cross-modal adaptation paradigm and a whole-brain analysis. Additionally, we tested voxels’ blood oxygenation level-dependent (BOLD) response patterns for several properties previously reported as typical MN response properties. Our results revealed 52 voxels in left inferior frontal gyrus (IFG; particularly BA 44/45), which respond to both motor and visual stimulation and exhibit cross-modal adaptation between the execution and observation of the same action. These results demonstrate that part of human IFG, specifically BA 44/45, has BOLD response characteristics very similar to monkey’s area F5. PMID:26973496

  4. Action Production Influences 12-Month-Old Infants' Attention to Others' Actions

    ERIC Educational Resources Information Center

    Cannon, Erin N.; Woodward, Amanda L.; Gredeback, Gustaf; von Hofsten, Claes; Turek, Colleen

    2012-01-01

    Recent work implicates a link between action control systems and action understanding. In this study, we investigated the role of the motor system in the development of visual anticipation of others' actions. Twelve-month-olds engaged in behavioral and observation tasks. "Containment activity", infants' spontaneous engagement in producing…

  5. Action-centered display design: Observations and conclusions to HMI by applying digital I and C in main control rooms

    SciTech Connect

    Treier, C.; Zeck, K.; Weich, A.; Schildheuer, R.

    2006-07-01

    With the increasing use of digital I and C systems, the shift personnel in a Nuclear Power Plant (NPP) has the chance to dispose of new supporting methods that influence their actions directly or indirectly. Besides the automation of monitoring and control functions, the task- and problem-oriented increased number of (current state) information in screen based displays is to be mentioned. A few released screen based displays of a German NPP illustrate the influence on the course of action. Therefore the design of displays won't only be determined by the operating mode in future but displays themselves are influencing the operating mode offering both very compact and dynamic information that can directly be used in the operating mode. In order to be able to take these future key functions adequately and early into consideration when designing screen based displays, the development of design instruments like Style Guides with Good Practice methods and construction catalogues both on a company and on an company spanning level is essential: a challenging task for economy and science and also for standardization committees that shall be illustrated in the following report. (authors)

  6. Comparing observer models and feature selection methods for a task-based statistical assessment of digital breast tomsynthesis in reconstruction space

    NASA Astrophysics Data System (ADS)

    Park, Subok; Zhang, George Z.; Zeng, Rongping; Myers, Kyle J.

    2014-03-01

    A task-based assessment of image quality1 for digital breast tomosynthesis (DBT) can be done in either the projected or reconstructed data space. As the choice of observer models and feature selection methods can vary depending on the type of task and data statistics, we previously investigated the performance of two channelized- Hotelling observer models in conjunction with 2D Laguerre-Gauss (LG) and two implementations of partial least squares (PLS) channels along with that of the Hotelling observer in binary detection tasks involving DBT projections.2, 3 The difference in these observers lies in how the spatial correlation in DBT angular projections is incorporated in the observer's strategy to perform the given task. In the current work, we extend our method to the reconstructed data space of DBT. We investigate how various model observers including the aforementioned compare for performing the binary detection of a spherical signal embedded in structured breast phantoms with the use of DBT slices reconstructed via filtered back projection. We explore how well the model observers incorporate the spatial correlation between different numbers of reconstructed DBT slices while varying the number of projections. For this, relatively small and large scan angles (24° and 96°) are used for comparison. Our results indicate that 1) given a particular scan angle, the number of projections needed to achieve the best performance for each observer is similar across all observer/channel combinations, i.e., Np = 25 for scan angle 96° and Np = 13 for scan angle 24°, and 2) given these sufficient numbers of projections, the number of slices for each observer to achieve the best performance differs depending on the channel/observer types, which is more pronounced in the narrow scan angle case.

  7. The effect of the action observation physical training on the upper extremity function in children with cerebral palsy.

    PubMed

    Kim, Jin-Young; Kim, Jong-Man; Ko, Eun-Young

    2014-06-01

    The purpose this study was to investigate the effect of action observation physical training (AOPT) on the functioning of the upper extremities in children with cerebral palsy (CP), using an evaluation framework based on that of the International Classification of Functioning, Disability and Health (ICF). The subjects were divided into an AOPT group and a physical training (PT) group. AOPT group practiced repeatedly the actions they observed on video clips, in which normal child performed an action with their upper extremities. PT group performed the same actions as the AOPT group did after observing landscape photographs. The subjects participated in twelve 30-min sessions, 3 days a week, for 4 weeks. Evaluation of upper extremity function using the following: the power of grasp and Modified Ashworth Scale for body functions and structures, a Box and Block test, an ABILHAND-Kids questionnaire, and the WeeFIM scale for activity and participation. Measurements were performed before and after the training, and 2 weeks after the end of training. The results of this study showed that, in comparison with the PT group, the functioning of the upper extremities in the AOPT group was significantly improved in body functions and activity and participation according to the ICF framework. This study demonstrates that AOPT has a positive influence on the functioning of the upper extremities in children with CP. It is suggested that this alternative approach for functioning of the upper extremities could be an effective method for rehabilitation in children with CP. PMID:25061598

  8. The effect of action observation training on knee joint function and gait ability in total knee replacement patients

    PubMed Central

    Park, Seong Doo; Song, Hyun Seung; Kim, Jin Young

    2014-01-01

    The purpose of this study is to investigate that effect of action observation training (AOT) on knee joint function and balance in total knee replacement (TKR) patients. The subjects consisted of eighteen post-TKR patients. All participants underwent conventional physical therapy. In addition, patients in the AOT group (n= 9) were asked to observe video clips showing daily actions and to imitate them afterward. Patients in the control group (n= 9) were asked to execute the same actions as patients in the AOT group. Outcome measures Western Ontario and Mc-Master Universities Osteoarthritis Index (WOMAC) included pain, stiffness, function and Timed Up and Go (TUG) test. After intervention, patients in the AOT group score better than patients in the control group. After TUG test, patients in the AOT group and control group were no significant difference between two groups. In addition to conventional physical therapy, AOT is effective in the rehabilitation of post-TKR patients. Action observation training is considered conducive to improving knee functions and ameliorating pain and stiffness, of patients who underwent TKR. PMID:25061596

  9. A preliminary fMRI study of a novel self-paced written fluency task: observation of left-hemispheric activation, and increased frontal activation in late vs. early task phases

    PubMed Central

    Golestanirad, Laleh; Das, Sunit; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI) is of significant interest—but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s). As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consistent with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s) of written phonemic fluency was significantly less (p < 0.05) than the number produced in the early phase (first 30 s). Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among these areas, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9) and cingulate gyrus (BA 24, 32) likely as part of the initiation, maintenance, and shifting of attentional resources. Consistent with previous pertinent fMRI literature involving overt and covert verbal responses, these findings highlight

  10. Upper limb children action-observation training (UP-CAT): a randomised controlled trial in Hemiplegic Cerebral Palsy

    PubMed Central

    2011-01-01

    Background Rehabilitation for children with hemiplegic cerebral palsy (HCP) aimed to improve function of the impaired upper limb (UL) uses a wide range of intervention programs. A new rehabilitative approach, called Action-Observation Therapy, based on the recent discovery of mirror neurons, has been used in adult stroke but not in children. The purpose of the present study is to design a randomised controlled trial (RCT) for evaluating the efficacy of Action-Observation Therapy in improving UL activity in children with HCP. Methods/Design The trial is designed according to CONSORT Statement. It is a randomised, evaluator-blinded, match-pair group trial. Children with HCP will be randomised within pairs to either experimental or control group. The experimental group will perform an Action-Observation Therapy, called UP-CAT (Upper Limb-Children Action-Observation Training) in which they will watch video sequences showing goal-directed actions, chosen according to children UL functional level, combined with motor training with their hemiplegic UL. The control group will perform the same tailored actions after watching computer games. A careful revision of psychometric properties of UL outcome measures for children with hemiplegia was performed. Assisting Hand Assessment was chosen as primary measure and, based on its calculation power, a sample size of 12 matched pairs was established. Moreover, Melbourne and ABILHAND-Kids were included as secondary measures. The time line of assessments will be T0 (in the week preceding the onset of the treatment), T1 and T2 (in the week after the end of the treatment and 8 weeks later, respectively). A further assessment will be performed at T3 (24 weeks after T1), to evaluate the retention of effects. In a subgroup of children enrolled in both groups functional Magnetic Resonance Imaging, exploring the mirror system and sensory-motor function, will be performed at T0, T1 and T2. Discussion The paper aims to describe the

  11. Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation

    NASA Astrophysics Data System (ADS)

    Tangwiriyasakul, Chayanin; Verhagen, Rens; van Putten, Michel J. A. M.; Rutten, Wim L. C.

    2013-04-01

    Objective. Event-related desynchronization (ERD) or synchronization (ERS) refers to the modulation of any EEG rhythm in response to a particular event. It is typically quantified as the ratio between a baseline and a task condition (the event). Here, we focused on the sensorimotor mu-rhythm. We explored the effects of different baselines on mu-power and ERD of the mu-rhythm during a motor imagery task. Methods. Eighteen healthy subjects performed motor imagery tasks while EEGs were recorded. Five different baseline movies were shown. For the imagery task a right-hand opening/closing movie was shown. Power and ERD of the mu-rhythm recorded over C3 and C4 for the different baselines were estimated. Main Results. 50% of the subjects showed relatively high mu-power for specific baselines only, and ERDs of these subjects were strongly dependent on the baseline used. In 17% of the subjects no preference was found. Contralateral ERD of the mu-rhythm was found in about 67% of the healthy volunteers, with a significant baseline preference in about 75% of that subgroup. Significance. The sensorimotor ERD quantifies activity of the brain during motor imagery tasks. Selection of the optimal baseline increases ERD.

  12. Effects of paired-object affordance in search tasks across the adult lifespan.

    PubMed

    Wulff, Melanie; Stainton, Alexandra; Rotshtein, Pia

    2016-06-01

    The study investigated the processes underlying the retrieval of action information about functional object pairs, focusing on the contribution of procedural and semantic knowledge. We further assessed whether the retrieval of action knowledge is affected by task demands and age. The contribution of procedural knowledge was examined by the way objects were selected, specifically whether active objects were selected before passive objects. The contribution of semantic knowledge was examined by manipulating the relation between targets and distracters. A touchscreen-based search task was used testing young, middle-aged, and elderly participants. Participants had to select by touching two targets among distracters using two search tasks. In an explicit action search task, participants had to select two objects which afforded a mutual action (e.g., functional pair: hammer-nail). Implicit affordance perception was tested using a visual color-matching search task; participants had to select two objects with the same colored frame. In both tasks, half of the colored targets also afforded an action. Overall, middle-aged participants performed better than young and elderly participants, specifically in the action task. Across participants in the action task, accuracy was increased when the distracters were semantically unrelated to the functional pair, while the opposite pattern was observed in the color task. This effect was enhanced with increased age. In the action task all participants utilized procedural knowledge, i.e., selected the active object before the passive object. This result supports the dual-route account from vision to action. Semantic knowledge contributed to both the action and the color task, but procedural knowledge associated with the direct route was primarily retrieved when the task was action-relevant. Across the adulthood lifespan, the data show inverted U-shaped effects of age on the retrieval of action knowledge. Age also linearly increased the

  13. Behavior of the Linea Alba During a Curl-up Task in Diastasis Rectus Abdominis: An Observational Study.

    PubMed

    Lee, Diane; Hodges, Paul W

    2016-07-01

    Study Design Cross-sectional repeated measures. Background Rehabilitation of diastasis rectus abdominis (DRA) generally aims to reduce the inter-rectus distance (IRD). We tested the hypothesis that activation of the transversus abdominis (TrA) before a curl-up would reduce IRD narrowing, with less linea alba (LA) distortion/deformation, which may allow better force transfer between sides of the abdominal wall. Objectives This study investigated behavior of the LA and IRD during curl-ups performed naturally and with preactivation of the TrA. Methods Curl-ups were performed by 26 women with DRA and 17 healthy control participants using a natural strategy (automatic curl-up) and with TrA preactivation (TrA curl-up). Ultrasound images were recorded at 2 points above the umbilicus (U point and UX point). Ultrasound measures of IRD and a novel measure of LA distortion (distortion index: average deviation of the LA from the shortest path between the recti) were compared between 3 tasks (rest, automatic curl-up, TrA curl-up), between groups, and between measurement points (analysis of variance). Results Automatic curl-up by women with DRA narrowed the IRD from resting values (mean U-point between-task difference, -1.19 cm; 95% confidence interval [CI]: -1.45, -0.93; P<.001 and mean UX-point between-task difference, -0.51 cm; 95% CI: -0.69, -0.34; P<.001), but LA distortion increased (mean U-point between-task difference, 0.018; 95% CI: 0.0003, 0.041; P = .046 and mean UX-point between-task difference, 0.025; 95% CI: 0.004, 0.045; P = .02). Although TrA curl-up induced no narrowing or less IRD narrowing than automatic curl-up (mean U-point difference between TrA curl-up versus rest, -0.56 cm; 95% CI: -0.82, -0.31; P<.001 and mean UX-point between-task difference, 0.02 cm; 95% CI: -0.22, 0.19; P = .86), LA distortion was less (mean U-point between-task difference, -0.025; 95% CI: -0.037, -0.012; P<.001 and mean UX-point between-task difference, -0.021; 95% CI: -0.038, -0

  14. Actions and Names: Observing Responses and the Role of Multiple Stimulus Control in Incidental Language Acquisition

    ERIC Educational Resources Information Center

    Cahill, Claire S.

    2013-01-01

    The present research focuses on the possible relation between observing responses and language acquisition. In the first of three experiments, preschool aged participants with and without disabilities were presented with the opportunity to observe multiple aspects of a stimulus. A Naming experience was created in which the stimulus was presented…

  15. The Effectiveness of Predict-Observe-Explain Tasks in Diagnosing Students' Understanding of Science and in Identifying Their Levels of Achievement.

    ERIC Educational Resources Information Center

    Liew, Chong-Wah; Treagust, David F.

    This study involves action research to explore the effectiveness of the Predict-Observe-Explain (POE) technique in diagnosing students' understanding of science and identifying their levels of achievement. A multidimensional interpretive framework is used to interpret students' understanding of science. The research methodology incorporated…

  16. Doing Gesture Promotes Learning a Mental Transformation Task Better than Seeing Gesture

    ERIC Educational Resources Information Center

    Goldin-Meadow, Susan; Levine, Susan C.; Zinchenko, Elena; Yip, Terina KuangYi; Hemani, Naureen; Factor, Laiah

    2012-01-01

    Performing action has been found to have a greater impact on learning than observing action. Here we ask whether a particular type of action--the gestures that accompany talk--affect learning in a comparable way. We gave 158 6-year-old children instruction in a mental transformation task. Half the children were asked to produce a "Move" gesture…

  17. Writing in Action: Observing Students and the Teaching of Writing in the General Education Curriculum.

    ERIC Educational Resources Information Center

    Zenger, Amy A.

    In Portland State University's Freshman Inquiry program, 5 teachers, each from different disciplines, meet weekly to design the syllabus and the assignments used by all of the sections which are designed around the theme of "The City: Visions and Realities." A participant observer takes field notes and studies these for ways to extract program…

  18. The role of observational reference data for climate downscaling: Insights from the VALUE COST Action

    NASA Astrophysics Data System (ADS)

    Kotlarski, Sven; Gutiérrez, José M.; Boberg, Fredrik; Bosshard, Thomas; Cardoso, Rita M.; Herrera, Sixto; Maraun, Douglas; Mezghani, Abdelkader; Pagé, Christian; Räty, Olle; Stepanek, Petr; Soares, Pedro M. M.; Szabo, Peter

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of downscaling methods. Such assessments can be expected to crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling, observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. We here present a comprehensive assessment of the influence of uncertainties in observational reference data and of scale-related issues on several of the above-mentioned aspects. First, temperature and precipitation characteristics as simulated by a set of reanalysis-driven EURO-CORDEX RCM experiments are validated against three different gridded reference data products, namely (1) the EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. The analysis reveals a considerable influence of the choice of the reference data on the evaluation results, especially for precipitation. It is also illustrated how differences between the reference data sets influence the ranking of RCMs according to a comprehensive set of performance measures.

  19. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    NASA Astrophysics Data System (ADS)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  20. Understanding the Mind or Predicting Signal-Dependent Action? Performance of Children with and without Autism on Analogues of the False-Belief Task

    ERIC Educational Resources Information Center

    Bowler, Dermot M.; Briskman, Jackie; Gurvidi, Nicole; Fornells-Ambrojo, Miriam

    2005-01-01

    To evaluate the claim that correct performance on unexpected transfer false-belief tasks specifically involves mental-state understanding, two experiments were carried out with children with autism, intellectual disabilities, and typical development. In both experiments, children were given a standard unexpected transfer false-belief task and a…

  1. When Do We Confuse Self and Other in Action Memory? Reduced False Memories of Self-Performance after Observing Actions by an Out-Group vs. In-Group Actor.

    PubMed

    Lindner, Isabel; Schain, Cécile; Kopietz, René; Echterhoff, Gerald

    2012-01-01

    Observing another person performing an action can lead to a false memory of having performed the action oneself - the observation-inflation effect. In the experimental paradigm, participants first perform or do not perform simple actions, and then observe another person perform some of these actions. The observation-inflation effect is found when participants later remember performing actions that they have merely observed. In this case, self and other are confused in action memory. We examined social conditions of this self-other confusion when remembering actions, specifically whether the effect depends on the observed actor's group membership. In our experiment, we manipulated group membership based on physical appearance, specifically complexion of the hands. Fair-skinned participants observed either an in-group (i.e., fair-skinned) or an out-group (i.e., dark-skinned) actor. Our results revealed that the observed actor's group membership moderated the observation-inflation effect: False memories were significantly reduced when the actor was from the out-group (vs. in-group). We found no difference to a control condition in which the actor wore black gloves, suggesting that distinctiveness of perceptual or sensory features alone (due to the out-group member's dark skin) is not critical. We discuss these findings in light of social-neuroscience studies demonstrating the impact of an observed person's group membership on motor simulation. Overall, our findings suggest that action memory can be affected by a ubiquitous feature of people's social perception, that is, group-based social categorization of others. PMID:23130007

  2. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  3. Rapid learning of associations between sound and action through observed movement. A TMS study

    PubMed Central

    Dean, Roger T.; Bailes, Freya

    2016-01-01

    Research has established that there is a cognitive link between perception and production of the same movement. However, there has been relatively little research into the relevance of this for non-expert perceivers, such as music listeners who do not play instruments themselves. In two experiments we tested whether participants can quickly learn new associations between sounds and observed movement without performing those movements themselves. We measured motor evoked potentials (MEPs) in the first dorsal interosseous muscle of participants’ right hands while test tones were heard and single transcranial magnetic stimulation (TMS) pulses were used to trigger motor activity. In Experiment 1 participants in a ‘human’ condition (n=4) learnt to associate the test tone with finger movement of the experimenter, while participants in a ‘computer’ condition (n=4) learnt that the test tone was triggered by a computer. Participants in the human condition showed a larger increase in MEPs compared with those in the computer condition. In a second experiment pairing between sounds and movement occurred without participants repeatedly observing the movement and we found no such difference between the human (n=4) and computer (n=4) conditions. These results suggest that observers can quickly learn to associate sound with movement, so it should not be necessary to have played an instrument to experience some motor resonance when hearing that instrument. PMID:27182100

  4. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  5. Exploring the Neural Basis of Real-Life Joint Action: Measuring Brain Activation during Joint Table Setting with Functional Near-Infrared Spectroscopy

    PubMed Central

    Egetemeir, Johanna; Stenneken, Prisca; Koehler, Saskia; Fallgatter, Andreas J.; Herrmann, Martin J.

    2011-01-01

    Many every-day life situations require two or more individuals to execute actions together. Assessing brain activation during naturalistic tasks to uncover relevant processes underlying such real-life joint action situations has remained a methodological challenge. In the present study, we introduce a novel joint action paradigm that enables the assessment of brain activation during real-life joint action tasks using functional near-infrared spectroscopy (fNIRS). We monitored brain activation of participants who coordinated complex actions with a partner sitting opposite them. Participants performed table setting tasks, either alone (solo action) or in cooperation with a partner (joint action), or they observed the partner performing the task (action observation). Comparing joint action and solo action revealed stronger activation (higher [oxy-Hb]-concentration) during joint action in a number of areas. Among these were areas in the inferior parietal lobule (IPL) that additionally showed an overlap of activation during action observation and solo action. Areas with such a close link between action observation and action execution have been associated with action simulation processes. The magnitude of activation in these IPL areas also varied according to joint action type and its respective demand on action simulation. The results validate fNIRS as an imaging technique for exploring the functional correlates of interindividual action coordination in real-life settings and suggest that coordinating actions in real-life situations requires simulating the actions of the partner. PMID:21927603

  6. Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    2010-01-01

    Background Several neurorehabilitation strategies have been introduced over the last decade based on the so-called simulation hypothesis. This hypothesis states that a neural network located in primary and secondary motor areas is activated not only during overt motor execution, but also during observation or imagery of the same motor action. Based on this hypothesis, we investigated the combination of a virtual reality (VR) based neurorehabilitation system together with a wireless functional near infrared spectroscopy (fNIRS) instrument. This combination is particularly appealing from a rehabilitation perspective as it may allow minimally constrained monitoring during neurorehabilitative training. Methods fNIRS was applied over F3 of healthy subjects during task performance in a virtual reality (VR) environment: 1) 'unilateral' group (N = 15), contralateral recording during observation, motor imagery, observation & motor imagery, and imitation of a grasping task performed by a virtual limb (first-person perspective view) using the right hand; 2) 'bilateral' group (N = 8), bilateral recording during observation and imitation of the same task using the right and left hand alternately. Results In the unilateral group, significant within-condition oxy-hemoglobin concentration Δ[O2Hb] changes (mean ± SD μmol/l) were found for motor imagery (0.0868 ± 0.5201 μmol/l) and imitation (0.1715 ± 0.4567 μmol/l). In addition, the bilateral group showed a significant within-condition Δ[O2Hb] change for observation (0.0924 ± 0.3369 μmol/l) as well as between-conditions with lower Δ[O2Hb] amplitudes during observation compared to imitation, especially in the ipsilateral hemisphere (p < 0.001). Further, in the bilateral group, imitation using the non-dominant (left) hand resulted in larger Δ[O2Hb] changes in both the ipsi- and contralateral hemispheres as compared to using the dominant (right) hand. Conclusions This study shows that our combined VR-fNIRS based

  7. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables

    PubMed Central

    Rácz, Kornelius; Valero-Cuevas, Francisco J.

    2013-01-01

    The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant (i.e., in the null space of those goals) variables is evidence of a separation of task variables for efficient neural control, ranked by their respective variabilities (sometimes referred to as hierarchy of control). Support for this comes from spatial domain analyses (i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the possibility of preferential as opposed to strictly uncontrolled variables, such distinctions have only begun to be quantified or considered in the temporal domain when inferring control action. Here we extend the study of task variability during tripod static grasp to the temporal domain by applying diffusion analysis. We show that both task-relevant and task-irrelevant parameters show corrective action at some time scales; and conversely, that task-relevant parameters do not show corrective action at other time scales. That is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of variability in task-irrelevant variables (>98% associated with changes in total grasp force; vs. only <2% in task-relevant changes associated with acceleration of the object). But at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit negative correlations clearly indicative of corrective action (scaling exponents <0.5); and temporal fluctuations of task-relevant variables exhibit neutral and positive correlations clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement with recent work in other behavioral contexts, these results propose we revise our understanding of variability vis-á-vis task relevance by considering both spatial and temporal features of all task variables when inferring control action and understanding how the CNS confronts task

  8. Preliminary observations on the presence of sustained tendon strain and eccentric contractions of the wrist extensors during a common manual task: implications for lateral epicondylitis.

    PubMed

    Murgia, Alessio; Harwin, William; Prakoonwit, Simant; Brownlow, Harry

    2011-07-01

    Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors' musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons' origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE. PMID:21414830

  9. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks.

    PubMed

    Ghaly, Michael; Du, Yong; Links, Jonathan M; Frey, Eric C

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect's fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed

  10. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  11. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  12. Anti-Cancer Activity of Nitrones and Observations on Mechanism of Action

    PubMed Central

    Floyd, Robert A.; Chandru, Hema K.; He, Ting; Towner, Rheal

    2011-01-01

    The nitrone compound PBN, α-phenyl-tert-butylnitrone, and closely related nitrones have anti-cancer activity in several experimental cancer models. The three experimental models most extensively studied include A) the rat choline deficiency liver cancer model, B) the rat C6 glioma model and C) the mouse APCMin/+ colon cancer model. The two PBN-nitrones mostly studied are PBN and a PBN derivative 2,4-disulfophenyl-tert-butylnitrone, referred as OKN-007. OKN-007 is a proprietary compound that has had extensive commercial development (designated as NXY-059) for another indication, acute ischemic stroke, and after extensive clinical studies was shown to lack efficacy for this indication but was shown to be very safe for human use. This compound administered orally in the rat glioma model has potent activity in treating fully formed gliomas. In this report observations made on the PBN-nitrones in experimental cancer models will be summarized. In addition the experimental results will be discussed in the general framework of the properties of the compounds with a view to try to understand the mechanistic basis of how the PBN-nitrones act as anti-cancer agents. Possible mechanisms related to the suppression of NO production, S-nitrosylation of critical proteins and inhibition of NF-κB activation are discussed. PMID:21651461

  13. Hand and Grasp Selection in a Preferential Reaching Task: The Effects of Object Location, Orientation, and Task Intention

    PubMed Central

    Scharoun, Sara M.; Scanlan, Kelly A.; Bryden, Pamela J.

    2016-01-01

    As numerous movement options are available in reaching and grasping, of particular interest are what factors influence an individual’s choice of action. In the current study a preferential reaching task was used to assess the propensity for right handers to select their preferred hand and grasp a coffee mug by the handle in both independent and joint action object manipulation contexts. Mug location (right-space, midline, and left-space) and handle orientation (toward, away, to left, and to right of the participant) varied in four tasks that differed as a function of intention: (1) pick-up (unimanual, independent); (2) pick-up and pour (bimanual, independent); (3) pick-up and pass (unimanual, joint action); and (4) pick-up, pour and pass (bimanual, joint action). In line with previous reports, a right-hand preference for unimanual tasks was observed. Furthermore, extending existing literature to a preferential reaching task, role differentiation between the hands in bimanual tasks (i.e., preferred hand mobilizing, non-preferred hand stabilizing) was displayed. Finally, right-hand selection was greatest in right space, albeit lower in bimanual tasks compared to what is typically reported in unimanual tasks. Findings are attributed to the desire to maximize biomechanical efficiency in reaching. Grasp postures were also observed to reflect consideration of efficiency. More specifically, within independent object manipulation (pick-up; pick-up and pour) participants only grasped the mug by the handle when it afforded a comfortable posture. Furthermore, in joint action (pick-up and pass; pick-up, pour and pass), the confederate was only offered the handle if the intended action of the confederate was similar or required less effort than that of the participant. Together, findings from the current study add to our knowledge of hand and grasp selection in unimanual and bimanual object manipulation, within the context of both independent and joint action tasks. PMID

  14. Is Learning by Observation Impaired in Children with Dyslexia?

    ERIC Educational Resources Information Center

    Menghini, Deny; Vicari, Stefano; Mandolesi, Laura; Petrosini, Laura

    2011-01-01

    Numerous studies have shown that imitating observed actions belongs to the same category of processes involved in planning and executing actions. New competencies may be acquired by actually executing a task or by executing a task after having seen how to do it. The performance of thirty dyslexic children was compared with that of an age- and…

  15. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  16. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.

    PubMed

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  17. Comparison of Channel Methods and Observer Models for the Task-Based Assessment of Multi-Projection Imaging in the Presence of Structured Anatomical Noise.

    PubMed

    Park, Subok; Zhang, George; Myers, Kyle J

    2016-06-01

    Although Laguerre-Gauss (LG) channels are often used for the task-based assessment of multi-projection imaging, LG channels may not be the most reliable in providing performance trends as a function of system or object parameters for all situations. Partial least squares (PLS) channels are more flexible in adapting to background and signal data statistics and were shown to be more efficient for detection tasks involving 2D non-Gaussian random backgrounds (Witten , 2010). In this work, we investigate ways of incorporating spatial correlations in the multi-projection data space using 2D LG channels and two implementations of PLS in the channelized version of the 3D projection Hotelling observer (Park , 2010) (3Dp CHO). Our task is to detect spherical and elliptical 3D signals in the angular projections of a structured breast phantom ensemble. The single PLS (sPLS) incorporates the spatial correlation within each projection, whereas the combined PLS (cPLS) incorporates the spatial correlations both within each of and across the projections. The 3Dp CHO-R indirectly incorporates the spatial correlation from the response space (R), whereas the 3Dp CHO-C from the channel space (C). The 3Dp CHO-R-sPLS has potential to be a good surrogate observer when either sample size is small or one training set is used for training both PLS channels and observer. So does the 3Dp CHO-C-cPLS when the sample size is large enough to have a good sized independent set for training PLS channels. Lastly a stack of 2D LG channels used as 3D channels in the CHO-C model showed the capability of incorporating the spatial correlation between the multiple angular projections. PMID:26742128

  18. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  19. Task Analysis: A Proactive Paradigm.

    ERIC Educational Resources Information Center

    Cipriano, Robert E.

    A sequential and developmental curriculum design is conceptualized, based on task analysis. Task analysis is a detailed inquiry into actions undertaken in performing specific tasks or jobs. Baseline data form a database on which education and training programs are designed, produced, and evaluated. The following are sources of information for task…

  20. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    SciTech Connect

    Rong Xing; Ghaly, Michael; Frey, Eric C.

    2013-06-15

    Purpose: In yttrium-90 ({sup 90}Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy {sup 90}Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of {sup 90}Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for {sup 90}Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for {sup 90}Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. Methods: An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a

  1. Comparison between human and model observer performance in low-contrast detection tasks in CT images: application to images reconstructed with filtered back projection and iterative algorithms

    PubMed Central

    Calzado, A; Geleijns, J; Joemai, R M S; Veldkamp, W J H

    2014-01-01

    Objective: To compare low-contrast detectability (LCDet) performance between a model [non–pre-whitening matched filter with an eye filter (NPWE)] and human observers in CT images reconstructed with filtered back projection (FBP) and iterative [adaptive iterative dose reduction three-dimensional (AIDR 3D; Toshiba Medical Systems, Zoetermeer, Netherlands)] algorithms. Methods: Images of the Catphan® phantom (Phantom Laboratories, New York, NY) were acquired with Aquilion ONE™ 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan) at five tube current levels (20–500 mA range) and reconstructed with FBP and AIDR 3D. Samples containing either low-contrast objects (diameters, 2–15 mm) or background were extracted and analysed by the NPWE model and four human observers in a two-alternative forced choice detection task study. Proportion correct (PC) values were obtained for each analysed object and used to compare human and model observer performances. An efficiency factor (η) was calculated to normalize NPWE to human results. Results: Human and NPWE model PC values (normalized by the efficiency, η = 0.44) were highly correlated for the whole dose range. The Pearson's product-moment correlation coefficients (95% confidence interval) between human and NPWE were 0.984 (0.972–0.991) for AIDR 3D and 0.984 (0.971–0.991) for FBP, respectively. Bland–Altman plots based on PC results showed excellent agreement between human and NPWE [mean absolute difference 0.5 ± 0.4%; range of differences (−4.7%, 5.6%)]. Conclusion: The NPWE model observer can predict human performance in LCDet tasks in phantom CT images reconstructed with FBP and AIDR 3D algorithms at different dose levels. Advances in knowledge: Quantitative assessment of LCDet in CT can accurately be performed using software based on a model observer. PMID:24837275

  2. The Effect of Hierarchical Task Representations on Task Selection in Voluntary Task Switching

    ERIC Educational Resources Information Center

    Weaver, Starla M.; Arrington, Catherine M.

    2013-01-01

    The current study explored the potential for hierarchical representations to influence action selection during voluntary task switching. Participants switched between 4 individual task elements. In Experiment 1, participants were encouraged to represent the task elements as grouped within a hierarchy based on experimental manipulations of varying…

  3. Learning one task by interleaving practice with another task

    PubMed Central

    Szpiro, Sarit; Wright, Beverly A.; Carrasco, Marisa

    2014-01-01

    Perceptual learning is a sustainable improvement in performance on a perceptual task following training. A hallmark of perceptual learning is task specificity – after participants have trained on and learned a particular task, learning rarely transfers to another task, even with identical stimuli. Accordingly, it is assumed that performing a task throughout training is a requirement for learning to occur on that specific task. Thus, interleaving training trials of a target task, with those of another task, should not improve performance on the target task. However, recent findings in audition show that interleaving two tasks during training can facilitate perceptual learning, even when the training on neither task yields learning on its own. Here we examined the role of cross-task training in the visual domain by training 4 groups of human observers for 3 consecutive days on an orientation comparison task (target task) and/or spatial-frequency comparison task (interleaving task). Interleaving small amounts of training on each task, which were ineffective alone, not only enabled learning on the target orientation task, as in audition, but also surpassed the learning attained by training on that task alone for the same total number of trials. This study illustrates that cross-task training in visual perceptual learning can be more effective than single-task training. The results reveal a comparable learning principle across modalities and demonstrate how to optimize training regimens to maximize perceptual learning. PMID:24959653

  4. NOAA’s Global Earth Observation - Integrated Data Environment (GEO-IDE) in Action: Integration of Gridded Datasets

    NASA Astrophysics Data System (ADS)

    McCulloch, L.; McDonald, K. R.; Hankin, S. C.; Habermann, T.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is making substantial progress in enhancing the ability of users to discover, access, and use the vast amount of environmental information that it collects, maintains, and stores. It has defined a Global Earth Observation - Integrated Data Environment (GEO-IDE) initiative to promote and enable the interoperability of its data management services and to ensure that they are compatible and aligned with interagency and international efforts that are underway (e.g. the Global Earth Observation System of Systems and the Integrated Ocean Observing System). As an example of GEO-IDE in action, NOAA is developing a prototype gridded dataset integration capability. The initial focus will be to develop a Thematic Realtime Environmental Distributed Data Services (THREDDS) catalog of NOAA’s gridded datasets (e.g. model outputs, satellite products, HF radar observations, etc.) that are currently available in netCDF-CF format and enable all services that are readily available including: Data Access Protocol, Open Geospatial Consortium’s Web Map Service and Web Coverage Service. A parallel activity will be to harvest, repair, and extend metadata for the datasets to improve the ability for users to discover and then make use of the datasets. Once the above steps have been completed the focus will be to work with other data providers to expand the holdings that are accessible via this mechanism. This effort attempts to demonstrate the effectiveness of focusing on a single structural data type (e.g. gridded data) as an approach to integration. This poster will provide an overview of this effort, the technologies and standards being utilized, and will highlight the potential benefits to both NOAA and its scientific user community.

  5. Bottom-Up Influences on Voluntary Task Switching: The Elusive Homunculus Escapes

    ERIC Educational Resources Information Center

    Yeung, Nick

    2010-01-01

    Voluntary action can be studied by giving participants free choice over which task to perform in response to each presented stimulus. In such experiments, performance costs are observed when participants choose to switch tasks from the previous trial. It has been proposed that these costs primarily index the time-consuming operation of top-down…

  6. Hierarchical Encoding of Behavior: Translating Perception into Action

    ERIC Educational Resources Information Center

    Hard, Bridgette Martin; Lozano, Sandra C.; Tversky, Barbara

    2006-01-01

    People encode goal-directed behaviors, such as assembling an object, by segmenting them into discrete actions, organized as goal-subgoal hierarchies. Does hierarchical encoding contribute to observational learning? Participants in 3 experiments segmented an object assembly task into coarse and fine units of action and later performed it…

  7. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    NASA Astrophysics Data System (ADS)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  8. Task-Based Evaluation of a 4D MAP-RBI-EM Image Reconstruction Method for Gated Myocardial Perfusion SPECT using a Human Observer Study

    PubMed Central

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-01-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  9. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study.

    PubMed

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M; Tsui, Benjamin M W

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  10. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.

    PubMed

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2015-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for

  11. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

    PubMed Central

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2016-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture

  12. Action Representation in Patients with Bilateral Vestibular Impairments

    PubMed Central

    Demougeot, Laurent; Toupet, Michel; Van Nechel, Christian; Papaxanthis, Charalambos

    2011-01-01

    During mental actions subjects feel themselves performing a movement without any corresponding motor output. Although broad information is available regarding the influence of central lesions on action representation, little is known about how peripheral damages affect mental events. In the current study, we investigated whether lack of vestibular information influences action representation. Twelve healthy adults and twelve patients with bilateral vestibular damage actually performed and mentally simulated walking and drawing. The locomotor paths implied one (first walking task) and four (second walking task) changes in the walking direction. In the drawing task, participants drew on a sheet of paper a path that was similar to that of the second walking task. We recorded and compared between the two groups the timing of actual and mental movements. We found significant temporal discrepancies between actual and mental walking movements in the group of patients. Conversely, drawing actual and drawing mental durations were similar. For the control group, an isochrony between mental and actual movements was observed for the three tasks. This result denotes an inconsistency between action representation and action execution following vestibular damage, which is specific to walking movements, and emphasizes the role of the vestibular system upon mental states of actions. This observation may have important clinical implications. During action planning vestibular patients may overestimate the capacity of their motor system (imaging faster, executing slower) with harmful consequences for their health. PMID:22039548

  13. Distraction during learning with hypermedia: difficult tasks help to keep task goals on track

    PubMed Central

    Scheiter, Katharina; Gerjets, Peter; Heise, Elke

    2014-01-01

    In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID

  14. Distraction during learning with hypermedia: difficult tasks help to keep task goals on track.

    PubMed

    Scheiter, Katharina; Gerjets, Peter; Heise, Elke

    2014-01-01

    In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID

  15. Task-based detectability comparison of exponential transformation of free-response operating characteristic (EFROC) curve and channelized Hotelling observer (CHO)

    NASA Astrophysics Data System (ADS)

    Khobragade, P.; Fan, Jiahua; Rupcich, Franco; Crotty, Dominic J.; Gilat Schmidt, Taly

    2016-03-01

    This study quantitatively evaluated the performance of the exponential transformation of the free-response operating characteristic curve (EFROC) metric, with the Channelized Hotelling Observer (CHO) as a reference. The CHO has been used for image quality assessment of reconstruction algorithms and imaging systems and often it is applied to study the signal-location-known cases. The CHO also requires a large set of images to estimate the covariance matrix. In terms of clinical applications, this assumption and requirement may be unrealistic. The newly developed location-unknown EFROC detectability metric is estimated from the confidence scores reported by a model observer. Unlike the CHO, EFROC does not require a channelization step and is a non-parametric detectability metric. There are few quantitative studies available on application of the EFROC metric, most of which are based on simulation data. This study investigated the EFROC metric using experimental CT data. A phantom with four low contrast objects: 3mm (14 HU), 5mm (7HU), 7mm (5 HU) and 10 mm (3 HU) was scanned at dose levels ranging from 25 mAs to 270 mAs and reconstructed using filtered backprojection. The area under the curve values for CHO (AUC) and EFROC (AFE) were plotted with respect to different dose levels. The number of images required to estimate the non-parametric AFE metric was calculated for varying tasks and found to be less than the number of images required for parametric CHO estimation. The AFE metric was found to be more sensitive to changes in dose than the CHO metric. This increased sensitivity and the assumption of unknown signal location may be useful for investigating and optimizing CT imaging methods. Future work is required to validate the AFE metric against human observers.

  16. Observations on the mode of action of some central depressant drugs on transmission through the cat superior cervical ganglion

    PubMed Central

    Brown, D. A.; Quilliam, J. P.

    1964-01-01

    Methylpentynol, paraldehyde, amylobarbitone and procainamide blocked transmission through the cat superior cervical ganglion, and antagonized the ganglion-stimulating actions of acetylcholine and carbachol injected intra-arterially to the ganglion. Comparison with the effects of tetraethylammonium indicated that the impaired response to acetylcholine could not wholly account for the failure of transmission, which suggested that an impaired release of transmitter substance was a contributory factor. Methylpentynol, paraldehyde and procainamide also blocked the ganglion-stimulating action of potassium chloride. In contrast, amylobarbitone and pentobarbitone did not block the stimulating action of potassium chloride, but antagonized specifically the actions of acetylcholine and carbachol. The anti-acetylcholine activities of the two barbiturate drugs at this site accord with their relative ganglion-blocking activities. It is concluded that the ganglion-blocking action of methylpentynol, paraldehyde and procainamide arises from a nonspecific depression of both presynaptic and postsynaptic elements in the ganglion, but that barbiturate compounds act more specifically on the acetylcholine receptor. PMID:14228128

  17. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    SciTech Connect

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of the strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.

  18. "I Have No English Friends": Some Observations on the Practice of Action Learning with International Business Students

    ERIC Educational Resources Information Center

    Brook, Cheryl; Milner, Christopher

    2014-01-01

    This account reports on some experiences of facilitating action learning with international business students. Interest in international student learning and the international student experience is significant and increasing with a considerable range of literature on the subject. Some of this literature is concerned with the perceived…

  19. Building Warmth Sculpture in the Student-Teacher Relationship: Goethean Observation and Contemplative Practice in an Action Research Inquiry

    ERIC Educational Resources Information Center

    Kresin-Price, Nancy

    2013-01-01

    Through an action research approach, this dissertation focuses on the central role of interpersonal warmth in the teacher and student relationship. The heart of its inquiry is based on data gathered by a set of teachers working collaboratively as co-researchers in their own classrooms. These individuals inquired into the potential of the teacher…

  20. Action, human.

    PubMed

    Russo, M T

    2010-01-01

    The term "human action" designates the intentional and deliberate movement that is proper and exclusive to mankind. Human action is a unified structure: knowledge, intention or volition, deliberation, decision or choice of means and execution. The integration between these dimensions appears as a task that demands strength of will to achieve the synthesis of self-possession and self-control that enables full personal realisation. Recently, the debate about the dynamism of human action has been enriched by the contribution of neurosciences. Thanks to techniques of neuroimaging, neurosciences have expanded the field of investigation to the nature of volition, to the role of the brain in decision-making processes and to the notion of freedom and responsibility. PMID:20393686

  1. Action verbal fluency in Parkinson's patients.

    PubMed

    Rodrigues, Inês Tello; Ferreira, Joaquim J; Coelho, Miguel; Rosa, Mario M; Castro-Caldas, Alexandre

    2015-06-01

    We compared the performance of 31 non-demented Parkinson's disease (PD) patients to 61 healthy controls in an action verbal fluency task. Semantic and phonemic fluencies, cognitive impairment and behavioural dysfunction were also assessed. The mean disease duration of PD was 9.8 years (standard deviation (SD) = 6.13). There were no age (U = 899.5, p = 0.616), gender(chi-square = 0.00, p = 1.00) or literacy (U = 956, p = 0.96) differences between the two groups. A significant difference was observed between the two groups in the action verbal fluency task (U = 406.5, p < 0.01) that was not found in the other fluency tasks. The education level was the only biographical variable that influenced the action (verb) fluency outcomes, irrespective of disease duration. Our findings suggest a correlation between the disease mechanisms in PD and a specific verb deficit, support the validity of the action (verb) fluency as an executive function measure and suggest that this task provides unique information not captured with traditional executive function tasks. PMID:26083889

  2. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.

    PubMed

    Van de Sompel, Dominique; Brady, Sir Michael; Boone, John

    2011-02-01

    We assess the performance of filtered backprojection (FBP), the simultaneous algebraic reconstruction technique (SART) and the maximum likelihood (ML) algorithm for digital breast tomosynthesis (DBT) under variations in key imaging parameters, including the number of iterations, number of projections, angular range, initial guess, and radiation dose. This is the first study to compare these algorithms for the application of DBT. We present a methodology for the evaluation of DBT reconstructions, and use it to conduct preliminary experiments investigating trade-offs between the selected imaging parameters. This investigation includes trade-offs not previously considered in the DBT literature, such as the use of a stationary detector versus a C-arm imaging geometry. A real breast CT volume serves as a ground truth digital phantom from which to simulate X-ray projections under the various acquisition parameters. The reconstructed image quality is measured using task-based metrics, namely signal CNR and the AUC of a Channelised Hotelling Observer with Laguerre-Gauss basis functions. The task at hand is the detection of a simulated mass inserted into the breast CT volume. We find that the image quality in limited view tomography is highly dependent on the particular acquisition and reconstruction parameters used. In particular, we draw the following conclusions. First, we find that optimising the FBP filter design and SART relaxation parameter yields significant improvements in reconstruction quality from the same projection data. Second, we show that the convergence rate of the maximum likelihood algorithm, optimised with paraboloidal surrogates and conjugate gradient ascent (ML-PSCG), can be greatly accelerated using view-by-view updates. Third, we find that the optimal initial guess is algorithm dependent. In particular, we obtained best results with a zero initial guess for SART, and an FBP initial guess for ML-PSCG. Fourth, when the exposure per view is constant

  3. Manipulator Performance Evaluation Using Fitts' Taping Task

    SciTech Connect

    Draper, J.V.; Jared, B.C.; Noakes, M.W.

    1999-04-25

    Metaphorically, a teleoperator with master controllers projects the user's arms and hands into a re- mote area, Therefore, human users interact with teleoperators at a more fundamental level than they do with most human-machine systems. Instead of inputting decisions about how the system should func- tion, teleoperator users input the movements they might make if they were truly in the remote area and the remote machine must recreate their trajectories and impedance. This intense human-machine inter- action requires displays and controls more carefully attuned to human motor capabilities than is neces- sary with most systems. It is important for teleoperated manipulators to be able to recreate human trajectories and impedance in real time. One method for assessing manipulator performance is to observe how well a system be- haves while a human user completes human dexterity tasks with it. Fitts' tapping task has been, used many times in the past for this purpose. This report describes such a performance assessment. The International Submarine Engineering (ISE) Autonomous/Teleoperated Operations Manipulator (ATOM) servomanipulator system was evalu- ated using a generic positioning accuracy task. The task is a simple one but has the merits of (1) pro- ducing a performance function estimate rather than a point estimate and (2) being widely used in the past for human and servomanipulator dexterity tests. Results of testing using this task may, therefore, allow comparison with other manipulators, and is generically representative of a broad class of tasks. Results of the testing indicate that the ATOM manipulator is capable of performing the task. Force reflection had a negative impact on task efficiency in these data. This was most likely caused by the high resistance to movement the master controller exhibited with the force reflection engaged. Measurements of exerted forces were not made, so it is not possible to say whether the force reflection helped partici- pants

  4. Decoding Concrete and Abstract Action Representations During Explicit and Implicit Conceptual Processing.

    PubMed

    Wurm, Moritz F; Ariani, Giacomo; Greenlee, Mark W; Lingnau, Angelika

    2016-08-01

    Action understanding requires a many-to-one mapping of perceived input onto abstract representations that generalize across concrete features. It is debated whether such abstract action concepts are encoded in ventral premotor cortex (PMv; motor hypothesis) or, alternatively, are represented in lateral occipitotemporal cortex (LOTC; cognitive hypothesis). We used fMRI-based multivoxel pattern analysis to decode observed actions at concrete and abstract, object-independent levels of representation. Participants observed videos of 2 actions involving 2 different objects, using either an explicit or implicit task with respect to conceptual action processing. We decoded concrete action representations by training and testing a classifier to discriminate between actions within each object category. To identify abstract action representations, we trained the classifier to discriminate actions in one object and tested the classifier on actions performed on the other object, and vice versa. Region-of-interest and searchlight analyses revealed decoding in LOTC at both concrete and abstract levels during both tasks, whereas decoding in PMv was restricted to the concrete level during the explicit task. In right inferior parietal cortex, decoding was significant for the abstract level during the explicit task. Our findings are incompatible with the motor hypothesis, but support the cognitive hypothesis of action understanding. PMID:26223260

  5. Structure Learning in a Sensorimotor Association Task

    PubMed Central

    Braun, Daniel A.; Waldert, Stephan; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2010-01-01

    Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments. PMID:20126409

  6. The action of humidified gas on the pulmonary lining layer. Ultrastructural observations after administration of pure oxygen and of various mixtures of oxygen and carbon dioxide.

    PubMed

    Baratta, L; Baratta, B; Castellani, P; Strazzer, F

    1979-10-15

    The study concerns the action of dehumidified or humidified gas on the pulmonary lining layer. The results of our research suggest that water vapor used in artificial ventilation may be an important determining factor of the respiratory problems reported by clinicians in man. Important modifications of the lining layer of the alveolar epithelium occur, accompanied by more important alterations, including those of the content of the alveolus, all of which contribute to the pulmonary edema observed. PMID:122059

  7. Assessing Changes in High School Students' Conceptual Understanding through Concept Maps before and after the Computer-Based Predict-Observe-Explain (CB-POE) Tasks on Acid-Base Chemistry at the Secondary Level

    ERIC Educational Resources Information Center

    Yaman, Fatma; Ayas, Alipasa

    2015-01-01

    Although concept maps have been used as alternative assessment methods in education, there has been an ongoing debate on how to evaluate students' concept maps. This study discusses how to evaluate students' concept maps as an assessment tool before and after 15 computer-based Predict-Observe-Explain (CB-POE) tasks related to acid-base chemistry.…

  8. Action Prediction in Younger versus Older Adults: Neural Correlates of Motor Familiarity

    PubMed Central

    Diersch, Nadine; Mueller, Karsten; Cross, Emily S.; Stadler, Waltraud; Rieger, Martina; Schütz-Bosbach, Simone

    2013-01-01

    Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed actions into a common code. Much less is known about age-related changes in the neural representation of observed actions. Using fMRI, the present study measured brain activity in younger and older adults during the prediction of temporarily occluded actions (figure skating elements and simple movement exercises). All participants were highly familiar with the movement exercises whereas only some participants were experienced figure skaters. With respect to the AON, the results confirm that this network was preferentially engaged for the more familiar movement exercises. Compared to younger adults, older adults recruited visual regions to perform the task and, additionally, the hippocampus and caudate when the observed actions were familiar to them. Thus, instead of effectively exploiting the sensorimotor matching properties of the AON, older adults seemed to rely predominantly on the visual dynamics of the observed actions to perform the task. Our data further suggest that the caudate played an important role during the prediction of the less familiar figure skating elements in better-performing groups. Together, these findings show that action prediction engages a distributed network in the brain, which is modulated by the content of the observed actions and the age and experience of the observer. PMID:23704980

  9. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  10. Task-dependent color discrimination

    NASA Technical Reports Server (NTRS)

    Poirson, Allen B.; Wandell, Brian A.

    1990-01-01

    When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

  11. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action.

    PubMed

    Bell, Lynne; Lamport, Daniel J; Butler, Laurie T; Williams, Claire M

    2015-12-01

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0-6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base. PMID:26690214

  12. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action

    PubMed Central

    Bell, Lynne; Lamport, Daniel J.; Butler, Laurie T.; Williams, Claire M.

    2015-01-01

    Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0–6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base. PMID:26690214

  13. The Observation of Manual Grasp Actions Affects the Control of Speech: A Combined Behavioral and Transcranial Magnetic Stimulation Study

    ERIC Educational Resources Information Center

    Gentilucci, Maurizio; Campione, Giovanna Cristina; Volta, Riccardo Dalla; Bernardis, Paolo

    2009-01-01

    Does the mirror system affect the control of speech? This issue was addressed in behavioral and Transcranial Magnetic Stimulation (TMS) experiments. In behavioral experiment 1, participants pronounced the syllable /da/ while observing (1) a hand grasping large and small objects with power and precision grasps, respectively, (2) a foot interacting…

  14. Effects of being imitated on motor responses evoked by pain observation: exerting control determines action tendencies when perceiving pain in others.

    PubMed

    De Coster, Lize; Andres, Michael; Brass, Marcel

    2014-05-14

    Brain-imaging research has shown that experiencing pain oneself and perceiving pain in others lead to a similar pattern of activation, suggesting that the latter is based on internal simulation of the observed pain. Further evidence for this idea stems from transcranial magnetic stimulation measuring corticospinal excitability (CSE). It has been demonstrated that our motor cortex is involved whenever we observe another person receiving painful stimulation to the hand (Avenanti et al., 2005). However, both decreases and increases of CSE have been described during pain observation, so the exact nature of these CSE changes has remained unclear so far. In the present study, we hypothesized that CSE changes are determined by the control that the observer has over the hand that receives painful stimulation. To test this hypothesis, we manipulated the control over the observed hand using a paradigm in which participants' movements are being imitated by a hand on screen-giving them full control over the hand-or not. Consistent with previous results, we evidenced a decrease in CSE when participants experienced no control over the hand that received painful stimulation. In contrast, inducing control resulted in an increase in CSE. We conclude that exerting control over the observed hand leads to a completely altered action tendency. Whereas an anesthetic response is typically observed in the absence of control, increasing control induces motor facilitation reminiscent of preparation of an avoidance response. PMID:24828648

  15. Field observations, experiments, and modeling of sediment production from freeze and thaw action on a bare, weathered granite slope in a temperate region of Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Daizo; Fujita, Masaharu

    2016-08-01

    In the present study, field observations and model simulations were conducted to examine the process of sediment production due to freeze and thaw action in a temperate climate region. Two small areas were designated and observations were conducted to determine the mechanisms of sediment production due to freeze and thaw action on a bare, weathered granite slope in the Tanakami Mountains in the southern part of Shiga Prefecture, Japan. During the cold season from 2004 to 2005, air, surface, and subsurface temperatures were measured at 10-min intervals. The sediment produced on plot 1 was collected and weighed once per week, whereas the sediment produced on plot 2 was left untouched until the end of the cold season. The freeze and thaw cycle occurred repeatedly, with the frozen zone (i.e., temperature < 0 °C) extending to a depth of 10 cm. Sediment was produced as a result of active freeze and thaw processes and, accordingly, there was no longer sediment production at the end of the cold season. Plots 1 and 2 produced 108 and 44 kg m- 2 year- 1 of sediment, respectively. This difference indicates that sediment cover of the saprolite surface mitigated the destructive effects of freezing. During the cold season from 2005 to 2006, a half of plot 1 was covered by broadleaves (Quercus serrata) and the other half was covered by coniferous leaves (Pinus densiflora); plot 2 was covered by no leaves to understand the effects of surface cover on the reduction in sediment production. The results showed that surface leaf cover dramatically decreased sediment production due to freeze and thaw action versus the no-surface cover. A simulation model combining a thermal conductivity analysis and a simple and empirical sediment production model was developed to estimate the amount of sediment produced by the freeze and thaw action. The observation results of temperature change and amount of sediment during the first season, from 2004 to 2005, were simulated with the model. The model

  16. Action perception predicts action performance

    PubMed Central

    Bailey, Heather R.; Kurby, Christopher A.; Giovannetti, Tania; Zacks, Jeffrey M.

    2013-01-01

    Everyday action impairments often are observed in demented older adults, and they are common potential barriers to functional independence. We evaluated whether the ability to segment and efficiently encode activities is related to the ability to execute activities. Further, we evaluated whether brain regions important for segmentation also were important for action performance. Cognitively healthy older adults and those with very mild or mild dementia of the Alzheimer's type watched and segmented movies of everyday activities and then completed the Naturalistic Action Test. Structural MRI was used to measure volume in the dorsolateral prefrontal cortex (DLPFC), medial temporal lobes (MTL), posterior cortex, and anterior cingulate cortex (ACC). Dementia status and the ability to segment everyday activities strongly predicted naturalistic action performance, and MTL volume largely accounted for this relationship. In addition, the current results supported the Omission-Commission Model: Different cognitive and neurological mechanisms predicted different types of action error. Segmentation, dementia severity, and MTL volume predicted everyday omission errors, DLPFC volume predicted commission errors, and ACC volume predicted action additions. These findings suggest that event segmentation may be critical for effective action production, and that the segmentation and production of activities may recruit the same event representation system. PMID:23851113

  17. Crystal structures of bis­(phen­oxy)silicon phthalocyanines: increasing π–π inter­actions, solubility and disorder and no halogen bonding observed

    PubMed Central

    Lessard, Benoît H.; Lough, Alan J.; Bender, Timothy P.

    2016-01-01

    We report the syntheses and characterization of three solution-processable phen­oxy silicon phthalocyanines (SiPcs), namely bis­(3-methyl­phen­oxy)(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis­(2-sec-butyl­phen­oxy)(phthalocyanine)silicon [(2secBP)2-SiPc], C44H24I2N8O2Si, and bis­(3-iodo­phen­oxy)(phthalocyanine)silicon [(3IP)2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π–π inter­actions between the aromatic SiPc cores were studied. It was determined that (3MP)2-SiPc has similar inter­actions to previously reported bis­(3,4,5-tri­fluoro­phen­oxy)silicon phthalocyanines [(345 F)2-SiPc] with significant π–π inter­actions between the SiPc groups. (3IP)2-SiPc and (2secBP)2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these mol­ecules was increased by the addition of phen­oxy groups while maintaining π–π inter­actions between the aromatic SiPc groups. The solubility of (2secBP)2-SiPc was significantly higher than other bis-phen­oxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure. PMID:27555947

  18. Crystal structures of bis-(phen-oxy)silicon phthalocyanines: increasing π-π inter-actions, solubility and disorder and no halogen bonding observed.

    PubMed

    Lessard, Benoît H; Lough, Alan J; Bender, Timothy P

    2016-07-01

    We report the syntheses and characterization of three solution-processable phen-oxy silicon phthalocyanines (SiPcs), namely bis-(3-methyl-phen-oxy)(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis-(2-sec-butyl-phen-oxy)(phthalocyanine)silicon [(2secBP)2-SiPc], C44H24I2N8O2Si, and bis-(3-iodo-phen-oxy)(phthalocyanine)silicon [(3IP)2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π-π inter-actions between the aromatic SiPc cores were studied. It was determined that (3MP)2-SiPc has similar inter-actions to previously reported bis-(3,4,5-tri-fluoro-phen-oxy)silicon phthalocyanines [(345 F)2-SiPc] with significant π-π inter-actions between the SiPc groups. (3IP)2-SiPc and (2secBP)2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these mol-ecules was increased by the addition of phen-oxy groups while maintaining π-π inter-actions between the aromatic SiPc groups. The solubility of (2secBP)2-SiPc was significantly higher than other bis-phen-oxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure. PMID:27555947

  19. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    NASA Astrophysics Data System (ADS)

    Horley, Paul P.; Kushnir, Mykola Ya.; Morales-Meza, Mishel; Sukhov, Alexander; Rusyn, Volodymyr

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension - the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order-chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  20. On task and theory specificity.

    PubMed

    Newell, K M

    1989-03-01

    One of the significant limitations of the motor control and skill acquisition domain is that the theories, models, and hypotheses are, in most cases, task specific. Many lines of theorizing fail to hold up under even small changes in task constraints, although clearly the field does have some robust phenomena. It is proposed that a broader consideration of the role of task constraints, which is grounded in the methodology of nonlinear dynamics, may help to formulate a more general action theory of coordination and control. PMID:15117675

  1. Binding actions and scenes in visual long-term memory.

    PubMed

    Urgolites, Zhisen Jiang; Wood, Justin N

    2013-12-01

    How does visual long-term memory store representations of different entities (e.g., objects, actions, and scenes) that are present in the same visual event? Are the different entities stored as an integrated representation in memory, or are they stored separately? To address this question, we asked observers to view a large number of events; in each event, an action was performed within a scene. Afterward, the participants were shown pairs of action-scene sets and indicated which of the two they had seen. When the task required recognizing the individual actions and scenes, performance was high (80%). Conversely, when the task required remembering which actions had occurred within which scenes, performance was significantly lower (59%). We observed this dissociation between memory for individual entities and memory for entity bindings across multiple testing conditions and presentation durations. These experiments indicate that visual long-term memory stores information about actions and information about scenes separately from one another, even when an action and scene were observed together in the same visual event. These findings also highlight an important limitation of human memory: Situations that require remembering actions and scenes as integrated events (e.g., eyewitness testimony) may be particularly vulnerable to memory errors. PMID:23653419

  2. Embodied Task Dynamics

    ERIC Educational Resources Information Center

    Simko, Juraj; Cummins, Fred

    2010-01-01

    Movement science faces the challenge of reconciling parallel sequences of discrete behavioral goals with observed fluid, context-sensitive motion. This challenge arises with a vengeance in the speech domain, in which gestural primitives play the role of discrete goals. The task dynamic framework has proved effective in modeling the manner in which…

  3. Epistemic Thinking in Action: Evaluating and Integrating Online Sources

    ERIC Educational Resources Information Center

    Barzilai, Sarit; Zohar, Anat

    2012-01-01

    This study examines epistemic thinking in action in order to shed light on the relation between students' personal epistemologies and their online learning practices. The study is based on observations of the learning behaviors of 6th-grade students (n = 38) during two online inquiry tasks. Data were collected through think-aloud protocols and…

  4. Task analysis for the single-shell Tank Waste Retrieval Manipulator System

    SciTech Connect

    Draper, J.V.

    1993-03-01

    This document describes a task analysis for the Tank Waste Retrieval Manipulator System. A task analysis is a formal method of examining work that must be done by the operators of human-machine systems. The starting point for a task analysis is the mission that a human-machine system must perform, and the ending point is a list of requirements for human actions and the displays and controls that must be provided to support them. The task analysis approach started with a top-down definition of the steps in a tank retrieval campaign. It started by dividing a waste retrieval campaign for one single-shell tank into the largest logical components (mission phases), then subdivided these into secondary components (sub functions), and then further subdivided the secondary components into tertiary units (tasks). Finally, the tertiary units were divided into potentially observable operator behaviors (task elements). In the next stage of the task analysis, the task elements were evaluated by completing an electronic task analysis form patterned after one developed by the Nuclear Regulatory Commission for task analysis of nuclear power plant control rooms. In the final stage, the task analysis data base was used in a bottom-up approach to develop clusters of controls and displays called panel groups and to prioritize these groups for each subfunction. Panel groups are clusters of functionally related controls and displays. Actual control panels will be designed from panel groups, and panel groups will be organized within workstations to promote efficient operations during retrieval campaigns.

  5. 75 FR 44214 - Notice of Meeting of the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Quality Task Force AGENCY: Natural Resources Conservation Service, United States Department of Agriculture. ACTION: Notice of meeting. SUMMARY: The Agricultural Air Quality Task Force (AAQTF) will meet to...

  6. Action, Verbal Response and Spatial Reasoning

    ERIC Educational Resources Information Center

    Wang, Ranxiao Frances

    2004-01-01

    Studies have shown that perception of distance, orientation and size can be dissociated from action tasks. The action system seems to possess more veridical, unbiased information than the perceptual/verbal system. The current study examines the nature of the distinction between action and verbal responses in a spatial reasoning task. Participants…

  7. The timing and precision of action prediction in the aging brain.

    PubMed

    Diersch, Nadine; Jones, Alex L; Cross, Emily S

    2016-01-01

    Successful social interactions depend on the ability to anticipate other people's actions. Current conceptualizations of brain function propose that causes of sensory input are inferred through their integration with internal predictions generated in the observer's motor system during action observation. Less is known concerning how action prediction changes with age. Previously we showed that internal action representations are less specific in older compared with younger adults at behavioral and neural levels. Here, we characterize how neural activity varies while healthy older adults aged 56-71 years predict the time-course of an unfolding action as well as the relation to task performance. By using fMRI, brain activity was measured while participants observed partly occluded actions and judged the temporal coherence of the action continuation that was manipulated. We found that neural activity in frontoparietal and occipitotemporal regions increased the more an action continuation was shifted backwards in time. Action continuations that were shifted towards the future preferentially engaged early visual cortices. Increasing age was associated with neural activity that extended from posterior to anterior regions in frontal and superior temporal cortices. Lower sensitivity in action prediction resulted in activity increases in the caudate. These results imply that the neural implementation of predicting actions undergoes similar changes as the neural process of executing actions in older adults. The comparison between internal predictions and sensory input seems to become less precise with age leading to difficulties in anticipating observed actions accurately, possibly due to less specific internal action models. PMID:26503586

  8. Infant's action skill dynamically modulates parental action demonstration in the dyadic interaction.

    PubMed

    Fukuyama, Hiroshi; Qin, Shibo; Kanakogi, Yasuhiro; Nagai, Yukie; Asada, Minoru; Myowa-Yamakoshi, Masako

    2015-11-01

    When interacting with infants, human adults modify their behaviours in an exaggerated manner. Previous studies have demonstrated that infant-directed modification affects the infant's behaviour. However, little is known about how infant-directed modification is elicited during infant-parent interaction. We investigated whether and how the infant's behaviour affects the mother's action during an interaction. We recorded three-dimensional information of cup movements while mothers demonstrated a cup-nesting task during interaction with their infants aged 11 to 13 months. Analyses revealed that spatial characteristics of the mother's task demonstration clearly changed depending on the infant's object manipulation. In particular, the variance in the distance that the cup was moved decreased after the infant's cup nesting and increased after the infant's task-irrelevant manipulation (e.g. cup banging). This pattern was not observed for mothers with 6- to 8-month-olds, who do not have the fine motor skill to perform the action. These results indicate that the infant's action skill dynamically affects the infant-directed action and suggest that the mother is sensitive to the infant's potential to learn a novel action. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=VNS2IHwLIhg&feature=youtu.be. PMID:25483121

  9. Areas Recruited during Action Understanding Are Not Modulated by Auditory or Sign Language Experience.

    PubMed

    Fang, Yuxing; Chen, Quanjing; Lingnau, Angelika; Han, Zaizhu; Bi, Yanchao

    2016-01-01

    The observation of other people's actions recruits a network of areas including the inferior frontal gyrus (IFG), the inferior parietal lobule (IPL), and posterior middle temporal gyrus (pMTG). These regions have been shown to be activated through both visual and auditory inputs. Intriguingly, previous studies found no engagement of IFG and IPL for deaf participants during non-linguistic action observation, leading to the proposal that auditory experience or sign language usage might shape the functionality of these areas. To understand which variables induce plastic changes in areas recruited during the processing of other people's actions, we examined the effects of tasks (action understanding and passive viewing) and effectors (arm actions vs. leg actions), as well as sign language experience in a group of 12 congenitally deaf signers and 13 hearing participants. In Experiment 1, we found a stronger activation during an action recognition task in comparison to a low-level visual control task in IFG, IPL and pMTG in both deaf signers and hearing individuals, but no effect of auditory or sign language experience. In Experiment 2, we replicated the results of the first experiment using a passive viewing task. Together, our results provide robust evidence demonstrating that the response obtained in IFG, IPL, and pMTG during action recognition and passive viewing is not affected by auditory or sign language experience, adding further support for the supra-modal nature of these regions. PMID:27014025

  10. Areas Recruited during Action Understanding Are Not Modulated by Auditory or Sign Language Experience

    PubMed Central

    Fang, Yuxing; Chen, Quanjing; Lingnau, Angelika; Han, Zaizhu; Bi, Yanchao

    2016-01-01

    The observation of other people’s actions recruits a network of areas including the inferior frontal gyrus (IFG), the inferior parietal lobule (IPL), and posterior middle temporal gyrus (pMTG). These regions have been shown to be activated through both visual and auditory inputs. Intriguingly, previous studies found no engagement of IFG and IPL for deaf participants during non-linguistic action observation, leading to the proposal that auditory experience or sign language usage might shape the functionality of these areas. To understand which variables induce plastic changes in areas recruited during the processing of other people’s actions, we examined the effects of tasks (action understanding and passive viewing) and effectors (arm actions vs. leg actions), as well as sign language experience in a group of 12 congenitally deaf signers and 13 hearing participants. In Experiment 1, we found a stronger activation during an action recognition task in comparison to a low-level visual control task in IFG, IPL and pMTG in both deaf signers and hearing individuals, but no effect of auditory or sign language experience. In Experiment 2, we replicated the results of the first experiment using a passive viewing task. Together, our results provide robust evidence demonstrating that the response obtained in IFG, IPL, and pMTG during action recognition and passive viewing is not affected by auditory or sign language experience, adding further support for the supra-modal nature of these regions. PMID:27014025

  11. Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans.

    PubMed

    Hecht, Erin E; Gutman, David A; Preuss, Todd M; Sanchez, Mar M; Parr, Lisa A; Rilling, James K

    2013-05-01

    Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal-temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal-parietal and frontal-parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611

  12. Students' Engagement in Literacy Tasks

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Malloy, Jacquelynn A.; Parsons, Allison Ward; Burrowbridge, Sarah Cohen

    2015-01-01

    This article offers insight into what makes literacy tasks engaging or disengaging based on observations of and interviews with students. In a yearlong study of a sixth-grade classroom in a Title I school, students engaged in integrated literacy-social studies instruction. Researchers studied the degree of task openness and the degree to which…

  13. Reafferent copies of imitated actions in the right superior temporal cortex

    PubMed Central

    Iacoboni, Marco; Koski, Lisa M.; Brass, Marcel; Bekkering, Harold; Woods, Roger P.; Dubeau, Marie-Charlotte; Mazziotta, John C.; Rizzolatti, Giacomo

    2001-01-01

    Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. PMID:11717457

  14. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD?

    PubMed Central

    Eagle, Dawn M.; Noschang, Cristie; d’Angelo, Laure-Sophie Camilla; Noble, Christie A.; Day, Jacob O.; Dongelmans, Marie Louise; Theobald, David E.; Mar, Adam C.; Urcelay, Gonzalo P.; Morein-Zamir, Sharon; Robbins, Trevor W.

    2014-01-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an ‘observing’ lever for information about the location of an ‘active’ lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5 mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be

  15. Video game practice optimizes executive control skills in dual-task and task switching situations.

    PubMed

    Strobach, Tilo; Frensch, Peter A; Schubert, Torsten

    2012-05-01

    We examined the relation of action video game practice and the optimization of executive control skills that are needed to coordinate two different tasks. As action video games are similar to real life situations and complex in nature, and include numerous concurrent actions, they may generate an ideal environment for practicing these skills (Green & Bavelier, 2008). For two types of experimental paradigms, dual-task and task switching respectively; we obtained performance advantages for experienced video gamers compared to non-gamers in situations in which two different tasks were processed simultaneously or sequentially. This advantage was absent in single-task situations. These findings indicate optimized executive control skills in video gamers. Similar findings in non-gamers after 15 h of action video game practice when compared to non-gamers with practice on a puzzle game clarified the causal relation between video game practice and the optimization of executive control skills. PMID:22426427

  16. Social modulation of spatial judgment: The case of line bisection task.

    PubMed

    D'Ascenzo, Stefania; Rubichi, Sandro; Di Gregorio, Gianluca; Tommasi, Luca

    2016-06-01

    Our actions are influenced by the social context in which they are performed, specifically it has been shown that observing others' actions influences the execution of the same action. In the present study, we examined whether and to what extent observers are influenced by the presence and performance of another person in a visual spatial task, using a line bisection paradigm in which two participants performed the task in turns while sitting in front of each other. Thirty pairs of participants took part in the experiment, which was divided into a non-social and a social session. In the latter, each participant was alternately an agent (performing the task) and an observer (evaluating covertly the other's performance). Results show that the leftward bias (pseudoneglect) in the line bisection task was significantly reduced when the task was performed in the social session, although the bias (both in the non-social and in the social session) was observed only when the left hand was used. Moreover, a dissociation between performance and perception was observed: the judgment given to the other's performance (which visually deviated in the direction opposite to one's own bias due to the spatial arrangement of participants and their facing vantage points) was significantly in disagreement with one's own performance. Overall, our results demonstrate that the other's presence influences our own action during a line bisection task and that spatial judgments on other's performance can modulate our own performance, even when coordination between participants is not required. Results are discussed in relation to social influence and perspective taking in the general framework of interpersonal resonance. PMID:27089035

  17. Probing attention prioritization during dual-task step initiation: a novel method.

    PubMed

    Sun, Ruopeng; Shea, John B

    2016-04-01

    The present study investigated the attention allocation during reactive stepping using a continuous finger-tapping task. Ten healthy young subjects were recruited to participate in this study. Subjects were required to perform a rapid voluntary step with either left or right leg after hearing an auditory tone while tapping their right index finger on a handhold numeric keypad. Step initiation conditions included simple and choice reaction forward stepping with three variants of continuous tapping task that were: (1) single task-no concurrent finger-tapping task; (2) dual task easy-one-button tapping task; (3) dual task hard-four-button tapping task. Types of anticipatory postural adjustment (APA) were determined by the center of pressure trajectory. Reaction time, APA duration, and stepping latency were compared between APA types and various dual-task conditions. Wavelet analysis was performed on the stimulus-locked finger-tapping data to determine the frequency change of tapping speed related to reactive stepping. Results showed that postural performance was negatively affected only by the high-attention-demanding cognitive task. Significant reduction of finger-tapping speed post-stimulus presentation was observed across all test conditions, indicating attention shift during the execution of a step. In addition, the DTH condition induced early postural prioritization in choice reaction stepping when different motor programs needed to be planned and executed. Error APA also triggered larger deterioration of tapping performance compared to correct APA, indicating the perceived error and the remedial action require additional attentional resources. PMID:26708519

  18. Language bootstrapping: learning word meanings from perception-action association.

    PubMed

    Salvi, Giampiero; Montesano, Luis; Bernardino, Alexandre; Santos-Victor, José

    2012-06-01

    We address the problem of bootstrapping language acquisition for an artificial system similarly to what is observed in experiments with human infants. Our method works by associating meanings to words in manipulation tasks, as a robot interacts with objects and listens to verbal descriptions of the interactions. The model is based on an affordance network, i.e., a mapping between robot actions, robot perceptions, and the perceived effects of these actions upon objects. We extend the affordance model to incorporate spoken words, which allows us to ground the verbal symbols to the execution of actions and the perception of the environment. The model takes verbal descriptions of a task as the input and uses temporal co-occurrence to create links between speech utterances and the involved objects, actions, and effects. We show that the robot is able form useful word-to-meaning associations, even without considering grammatical structure in the learning process and in the presence of recognition errors. These word-to-meaning associations are embedded in the robot's own understanding of its actions. Thus, they can be directly used to instruct the robot to perform tasks and also allow to incorporate context in the speech recognition task. We believe that the encouraging results with our approach may afford robots with a capacity to acquire language descriptors in their operation's environment as well as to shed some light as to how this challenging process develops with human infants. PMID:22106152

  19. Science education and everyday action

    NASA Astrophysics Data System (ADS)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  20. Bimanual coordination as task-dependent linear control policies.

    PubMed

    Diedrichsen, Jörn; Dowling, Noreen

    2009-06-01

    When we perform actions with two hands in everyday life, coordination has to change very quickly depending on task goals. Here, we study these task-dependent changes using a bimanual reaching task in which participants move two separate cursors to two visual targets, or move a single cursor, displayed at the average position of the two hands, to a single target. During the movement, one of the hands is perturbed in a random direction using a viscous curl field. We have previously shown that feedback control, the structure of noise, and adaptation change between these two tasks as predicted by optimal control theory: feedback control is independent when the hands control two cursors, but becomes dependent when they move one cursor together. The same changes are observed even on trials in which no visual feedback about the cursor position is given. One assumption in this model is that coordinative motor commands can be described as a linear function of the state of the left and right hands. Here we test the assumption by studying the feedback corrections for 25 combinations of force fields applied to the two hands. Our study shows that feedback gains are constant across all levels of force fields strength, providing strong evidence that intermanual coordination for this task can accurately be explained by optimal task-dependent linear feedback gains. PMID:19131136

  1. The specificity of action knowledge in sensory and motor systems

    PubMed Central

    Watson, Christine E.; Cardillo, Eileen R.; Bromberger, Bianca; Chatterjee, Anjan

    2014-01-01

    Neuroimaging studies have found that sensorimotor systems are engaged when participants observe actions or comprehend action language. However, most of these studies have asked the binary question of whether action concepts are embodied or not, rather than whether sensory and motor areas of the brain contain graded amounts of information during putative action simulations. To address this question, we used repetition suppression (RS) functional magnetic resonance imaging to determine if functionally-localized motor movement and visual motion regions-of-interest (ROI) and two anatomical ROIs (inferior frontal gyrus, IFG; left posterior middle temporal gyrus, pMTG) were sensitive to changes in the exemplar (e.g., two different people “kicking”) or representational format (e.g., photograph or schematic drawing of someone “kicking”) within pairs of action images. We also investigated whether concrete versus more symbolic depictions of actions (i.e., photographs or schematic drawings) yielded different patterns of activation throughout the brain. We found that during a conceptual task, sensory and motor systems represent actions at different levels of specificity. While the visual motion ROI did not exhibit RS to different exemplars of the same action or to the same action depicted by different formats, the motor movement ROI did. These effects are consistent with “person-specific” action simulations: if the motor system is recruited for action understanding, it does so by activating one's own motor program for an action. We also observed significant repetition enhancement within the IFG ROI to different exemplars or formats of the same action, a result that may indicate additional cognitive processing on these trials. Finally, we found that the recruitment of posterior brain regions by action concepts depends on the format of the input: left lateral occipital cortex and right supramarginal gyrus responded more strongly to symbolic depictions of actions than

  2. The specificity of action knowledge in sensory and motor systems.

    PubMed

    Watson, Christine E; Cardillo, Eileen R; Bromberger, Bianca; Chatterjee, Anjan

    2014-01-01

    Neuroimaging studies have found that sensorimotor systems are engaged when participants observe actions or comprehend action language. However, most of these studies have asked the binary question of whether action concepts are embodied or not, rather than whether sensory and motor areas of the brain contain graded amounts of information during putative action simulations. To address this question, we used repetition suppression (RS) functional magnetic resonance imaging to determine if functionally-localized motor movement and visual motion regions-of-interest (ROI) and two anatomical ROIs (inferior frontal gyrus, IFG; left posterior middle temporal gyrus, pMTG) were sensitive to changes in the exemplar (e.g., two different people "kicking") or representational format (e.g., photograph or schematic drawing of someone "kicking") within pairs of action images. We also investigated whether concrete versus more symbolic depictions of actions (i.e., photographs or schematic drawings) yielded different patterns of activation throughout the brain. We found that during a conceptual task, sensory and motor systems represent actions at different levels of specificity. While the visual motion ROI did not exhibit RS to different exemplars of the same action or to the same action depicted by different formats, the motor movement ROI did. These effects are consistent with "person-specific" action simulations: if the motor system is recruited for action understanding, it does so by activating one's own motor program for an action. We also observed significant repetition enhancement within the IFG ROI to different exemplars or formats of the same action, a result that may indicate additional cognitive processing on these trials. Finally, we found that the recruitment of posterior brain regions by action concepts depends on the format of the input: left lateral occipital cortex and right supramarginal gyrus responded more strongly to symbolic depictions of actions than concrete

  3. Influence of Action-Effect Associations Acquired by Ideomotor Learning on Imitation

    PubMed Central

    Bunlon, Frédérique; Marshall, Peter J.; Quandt, Lorna C.; Bouquet, Cedric A.

    2015-01-01

    According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired through action-effect learning. Accordingly, performing an action leads to the integration of the perceptual codes of the action effects with the motor commands that brought them about. While ideomotor theory is invoked to account for imitation, the influence of action-effect learning on imitative behavior remains unexplored. In two experiments, imitative performance was measured in a reaction time task following a phase of action-effect acquisition. During action-effect acquisition, participants freely executed a finger movement (index or little finger lifting), and then observed a similar (compatible learning) or a different (incompatible learning) movement. In Experiment 1, finger movements of left and right hands were presented as action-effects during acquisition. In Experiment 2, only right-hand finger movements were presented during action-effect acquisition and in the imitation task the observed hands were oriented orthogonally to participants’ hands in order to avoid spatial congruency effects. Experiments 1 and 2 showed that imitative performance was improved after compatible learning, compared to incompatible learning. In Experiment 2, although action-effect learning involved perception of finger movements of right hand only, imitative capabilities of right- and left-hand finger movements were equally affected. These results indicate that an observed movement stimulus processed as the effect of an action can later prime execution of that action, confirming the ideomotor approach to imitation. We further discuss these findings in relation to previous studies of action-effect learning and in the framework of current ideomotor approaches to imitation. PMID:25793755

  4. A task description model for robotic rehabilitation.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2012-01-01

    The desire to produce robots to aid in physical neurorehabilitation has led to the control paradigm Assistance-As-Needed. This paradigm aims to assist patients in performing physical rehabilitation tasks whilst providing the least amount of assistance required, maximizing the patient's effort which is essential for recovery. Ideally the provided assistance equals the gap between the capability required to perform the task and the patient's available capability. Current implementations derive a measure of this gap by critiquing task performance based on some criteria. This paper presents a task description model for tasks performed by a patient's limb, allowing physical requirements to be calculated. Applied to two upper limb tasks typical of rehabilitation and daily activities, the effect of task variations on the task's physical requirements are observed. It is proposed that using the task description model to compensate for changing task requirements will allow better support by providing assistance closer to the true needs of the patient. PMID:23366577

  5. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    ERIC Educational Resources Information Center

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  6. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  7. COGNITION, ACTION, AND OBJECT MANIPULATION

    PubMed Central

    Rosenbaum, David A.; Chapman, Kate M.; Weigelt, Matthias; Weiss, Daniel J.; van der Wel, Robrecht

    2012-01-01

    Although psychology is the science of mental life and behavior, it has paid little attention to the means by which mental life is translated into behavior. One domain where links between cognition and action have been explored is the manipulation of objects. This article reviews psychological research on this topic, with special emphasis on the tendency to grasp objects differently depending on what one plans to do with the objects. Such differential grasping has been demonstrated in a wide range of object manipulation tasks, including grasping an object in a way that reveals anticipation of the object's future orientation, height, and required placement precision. Differential grasping has also been demonstrated in a wide range of behaviors, including one-hand grasps, two-hand grasps, walking, and transferring objects from place to place as well as from person to person. The populations in whom the tendency has been shown are also diverse, including nonhuman primates as well as human adults, children, and babies. Meanwhile, the tendency is compromised in a variety of clinical populations and in children of a surprisingly advanced age. Verbal working memory is compromised as well if words are memorized while object manipulation tasks are performed; the recency portion of the serial position curve is reduced in this circumstance. In general, the research reviewed here points to rich connections between cognition and action as revealed through the study of object manipulation. Other implications concern affordances, Donders' Law, and naturalistic observation and the teaching of psychology. PMID:22448912

  8. To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences.

    PubMed

    Naish, Katherine R; Reader, Arran T; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2013-03-01

    Recent evidence suggests that the mirror neuron system responds to the goals of actions, even when the end of the movement is hidden from view. To investigate whether this predictive ability might be based on the detection of early differences between actions with different outcomes, we used electromyography (EMG) and motion tracking to assess whether two actions with different goals (grasp to eat and grasp to place) differed from each other in their initial reaching phases. In a second experiment, we then tested whether observers could detect early differences and predict the outcome of these movements, based on seeing only part of the actions. Experiment 1 revealed early kinematic differences between the two movements, with grasp-to-eat movements characterised by an earlier peak acceleration, and different grasp position, compared to grasp-to-place movements. There were also significant differences in forearm muscle activity in the reaching phase of the two actions. The behavioural data arising from Experiments 2a and 2b indicated that observers are not able to predict whether an object is going to be brought to the mouth or placed until after the grasp has been completed. This suggests that the early kinematic differences are either not visible to observers, or that they are not used to predict the end-goals of actions. These data are discussed in the context of the mirror neuron system. PMID:23247469

  9. Bottom-up influences on voluntary task switching: the elusive homunculus escapes.

    PubMed

    Yeung, Nick

    2010-03-01

    Voluntary action can be studied by giving participants free choice over which task to perform in response to each presented stimulus. In such experiments, performance costs are observed when participants choose to switch tasks from the previous trial. It has been proposed that these costs primarily index the time-consuming operation of top-down control processes that support voluntary action. The present experiments showed, contrary to this view, that greater costs were associated with voluntary switching to the easier task of a pair. These increased switch costs for the easier task were accompanied by a reliable preference of the participants for performing the other, more difficult task. Interference between tasks during response selection was identified as the critical factor driving these effects of task difficulty. Together, the findings suggest that participants' voluntary choices, and the time taken to execute those choices, may not directly index the operation of cognitive control but instead may reflect complex interactions between top-down and bottom-up influences on behavior. PMID:20192535

  10. 77 FR 42334 - Meeting of the Attorney General's National Task Force on Children Exposed to Violence (Correction)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... Violence (Correction) AGENCY: Office of Justice Programs, Justice. ACTION: Notice; correction. SUMMARY: The... meeting of the Attorney General's National Task Force on Children Exposed to Violence (the ``task...

  11. A Toolkit for Action Research

    ERIC Educational Resources Information Center

    Alber, Sandra M.

    2010-01-01

    This book facilitates the completion of action research studies by providing a series of tasks that guide action researchers from the beginning of a project and selecting a topic for study, to completion of the project and editing final reports. All too often, students and practicing professionals in professional development schools are…

  12. Modulation of Rolandic Beta-Band Oscillations during Motor Simulation of Joint Actions

    PubMed Central

    Ménoret, Mathilde; Bourguignon, Mathieu; Hari, Riitta

    2015-01-01

    Successful joint actions require precise temporal and spatial coordination between individuals who aim to achieve a common goal. A growing number of behavioral data suggest that to efficiently couple and coordinate a joint task, the actors have to represent both own and the partner’s actions. However it is unclear how the motor system is specifically recruited for joint actions. To find out how the goal and the presence of the partner’s hand can impact the motor activity during joint action, we assessed the functional state of 16 participants’ motor cortex during observation and associated motor imagery of joint actions, individual actions, and non-goal-directed actions performed with either 1 or 2 hands. As an indicator of the functional state of the motor cortex, we used the reactivity of the rolandic magnetoencephalographic (MEG) beta rhythm following median-nerve stimulation. Motor imagery combined with action observation was associated with activation of the observer’s motor cortex, mainly in the hemisphere contralateral to the viewed (and at the same time imagined) hand actions. The motor-cortex involvement was enhanced when the goal of the actions was visible but also, in the ipsilateral hemisphere, when the partner’s hand was visible in the display. During joint action, the partner’s action, in addition to the participant’s own action, thus seems to be represented in the motor cortex so that it can be triggered by the mere presence of an acting hand in the peripersonal space. PMID:26151634

  13. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. PMID:26061279

  14. Modeling the Scheduling of Eye Movements and Manual Responses in Performing a Sequence of Discrete Tasks

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Remington, Roger W.; Lewis, Richard

    2006-01-01

    Common tasks in daily life are often accomplished by a sequence of actions that interleave information acquisition through the eyes and action execution by the hands. How are eye movements coordinated with the release of manual responses and how may their coordination be represented at the level of component mental operations? We have previously presented data from a typing-like task requiring separate choice responses to a series of five stimuli. We found a consistent pattern of results in both motor and ocular timing, and hypothesized possible relationships among underlying components. Here we report a model of that task, which demonstrates how the observed timing of eye movements to successive stimuli could be accounted for by assuming systems: an open-loop system generating saccades at a periodic rate, and a closed-loop system commanding a saccade based on stimulus processing. We relate this model to models of reading and discuss the motivation for dual control.

  15. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.

    PubMed

    Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee

    2016-03-01

    The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. PMID:26301519

  16. Establishing viable task domains for telerobot demonstrations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne

    1989-01-01

    A suite of telerobotic tasks has been compiled and assessed for the purpose of selecting viable tasks for near and far term laboratory demonstrations. The primary intent of developing the task is to provide some technical guidelines, with supporting data, for focusing laboratory demonstrations toward application domains that address a wide array of potential telerobot tasks and required technologies. This wide application would then result in a rich technology development environment to meet the broad task requirements of a system such as the Flight Telerobot Servicer. The methodology and results of the telerobot task assessment are described, including a ranking of the final select suite of major tasks. The presented along with guidelines for both interpreting the task ranking results and setting programmatic objectives based on these results. Detailed data about the task candidates and their respective levels of complexity, task primitive actions, and the actual relative measures of task worth as associated with key tradeoff variables such as cost, available research resources, technology availability, and importance to the user community are also presented.

  17. Component processes in voluntary task switching.

    PubMed

    Demanet, Jelle; Liefooghe, Baptist

    2014-05-01

    The present study investigated the involvement of bottom-up and top-down control in task-switching situations in which tasks are selected on a voluntary basis. We tested for indices of both types of control in the reduction in switch cost that is observed when more time is available before executing a task. Participants had to indicate their task choice overtly prior to the actual task execution, and two time intervals were manipulated: the interval between the task-execution response of the previous trial and task-indication response of the current trial and the interval between task-indication response and task-execution response of a particular trial. In Experiment 1, the length of these intervals was manipulated orthogonally, and indices for top-down and bottom-up control were observed. Concerned with the validity of these results, Experiments 2-3 additionally discouraged participants from preparing the upcoming task before their task-indication response. Indices for bottom-up control remained, but not for top-down control. The characteristics of top-down and bottom-up control in voluntary task switching and task switching in general are discussed. PMID:24070330

  18. Inferring learners' knowledge from their actions.

    PubMed

    Rafferty, Anna N; LaMar, Michelle M; Griffiths, Thomas L

    2015-04-01

    Watching another person take actions to complete a goal and making inferences about that person's knowledge is a relatively natural task for people. This ability can be especially important in educational settings, where the inferences can be used for assessment, diagnosing misconceptions, and providing informative feedback. In this paper, we develop a general framework for automatically making such inferences based on observed actions; this framework is particularly relevant for inferring student knowledge in educational games and other interactive virtual environments. Our approach relies on modeling action planning: We formalize the problem as a Markov decision process in which one must choose what actions to take to complete a goal, where choices will be dependent on one's beliefs about how actions affect the environment. We use a variation of inverse reinforcement learning to infer these beliefs. Through two lab experiments, we show that this model can recover people's beliefs in a simple environment, with accuracy comparable to that of human observers. We then demonstrate that the model can be used to provide real-time feedback and to model data from an existing educational game. PMID:25155381

  19. Temporal dynamics of action perception: differences on ERP evoked by object-related and non-object-related actions.

    PubMed

    Wamain, Yannick; Pluciennicka, Ewa; Kalénine, Solène

    2014-10-01

    While neuropsychological dissociations suggest that distinct processes are involved in execution or perception of transitive (object-related) and intransitive (non-object-related) actions, the few neuroimaging studies that directly contrasted the brain activations underlying transitive and intransitive gesture perception failed to find substantial differences between the two action types. However, the distinction could be visible on brain activity timing within the fronto-parietal network. In this study, we used Event-Related Potential (ERP) method to assess the temporal dynamics of object-related and non-object-related action processing. Although both meaningful, only object-related actions involve object motor features. Accordingly, perception of the two action types would show distinct neural correlates. Participants were presented with four movie types (ORA, Object-Related Action, NORA: Non-Object-Related Action and 2 control movies) and were instructed to perform tasks that required explicit or implicit action recognition (specific action recognition or color change detection). Movies were presented as Point-Light Display (PLD) and thus provided only information about gesture kinematics regardless of action type. ERP were computed during movie visual perception and analyzed as a function of movie type and task. The main result revealed a difference between ORA and NORA on the amplitude of the P3a component in the fronto-parietal region. The difference observed around 250 ms after movie onset do not likely origin from variation in low-level visual features or attention resource allocation. Instead, we suggest that it reflects incidental recruitment of object attributes during object-related action perception. The exact nature of these attributes is discussed. PMID:25204513

  20. 76 FR 21936 - Aviation Rulemaking Advisory Committee-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee--New Task AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of new task assignment for the Aviation Rulemaking Advisory Committee (ARAC). SUMMARY: The FAA assigned the Aviation Rulemaking Advisory Committee (ARAC) a new task...

  1. 76 FR 81009 - Aviation Rulemaking Advisory Committee-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... recommendations related to aviation issues. On July 15, 2009, the FAA tasked ARAC (74 FR 34390) to provide advice... Federal Aviation Administration Aviation Rulemaking Advisory Committee--New Task AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of new task assignment for the Aviation Rulemaking Advisory...

  2. 75 FR 77934 - Small Business Information Security Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small Business Administration. ACTION... Small Business Information Security Task Force Meeting. DATES: 1 p.m., Wednesday, November 10, 2010... meeting minutes for the second meeting of the Small Business Information Security Task Force....

  3. 75 FR 76744 - National Disaster Housing Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... SECURITY Federal Emergency Management Agency National Disaster Housing Task Force AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of Meeting. SUMMARY: The National Disaster Housing Task Force (NDHTF... INFORMATION CONTACT: Mitchell Wyllins, National Disaster Housing Task Force, 500 C Street, SW., (Room...

  4. 76 FR 11307 - Small Business Information Security Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small Business Administration. ACTION... Small Business Information Security Task Force Meeting. DATES: 1 p.m., Wednesday, January 12, 2011... meeting minutes for the third meeting of the Small Business Information Security Task Force. Chairman,...

  5. 78 FR 9891 - South Dakota Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Department of the Army; Corps of Engineers South Dakota Task Force Meeting AGENCY: Department of the Army, U.S. Army Corps of Engineers, DoD. ACTION: Notice of meeting. SUMMARY: The duties of the Task Force... erosion. DATES: The Task Force will hold a meeting on February 26, 2013 from 9:30 a.m. to 12:30...

  6. 78 FR 28292 - Gulf War Veterans' Illnesses Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION... the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to conduct a comprehensive review... War Veterans' Illnesses Task Force Draft Written Report is now complete. VA is inviting...

  7. 76 FR 5232 - Small Business Information Security Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small Business Administration. ACTION... Small Business Information Security Task Force Meeting. DATES: 1 p.m., Wednesday, December 8, 2010... meeting minutes for the third meeting of the Small Business Information Security Task Force....

  8. 76 FR 65321 - Gulf War Veterans' Illnesses Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION... the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to conduct a comprehensive review... War Veterans' Illnesses Task Force Draft Written Report is now complete. VA is inviting...

  9. 77 FR 61019 - Aquatic Nuisance Species Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...: 134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior. ACTION... Force. The ANS Task Force's purpose is to develop and implement a program for U.S. waters to prevent... disseminate related information. The meeting is open to the public. DATES: The ANS Task Force will meet from...

  10. 75 FR 16577 - Gulf War Veterans' Illnesses Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... AFFAIRS Gulf War Veterans' Illnesses Task Force AGENCY: Department of Veterans Affairs (VA). ACTION... the Gulf War Veterans' Illnesses Task Force (GWVI-TF) in August 2009 to conduct a comprehensive review... Veterans' Illnesses Task Force Draft Written Report is now complete. The VA is inviting public comments...

  11. 75 FR 70764 - Small Business Information Security Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small Business Administration. ACTION... Small Business Information Security Task Force Meeting. DATES: 1 p.m., Wednesday, October 13, 2010... meeting minutes for the first meeting of the Small Business Information Security Task Force....

  12. Speech-Action Coordination in Young Children.

    ERIC Educational Resources Information Center

    Balamore, Usha; Wozniak, Robert H.

    1984-01-01

    Speech-action coordination in 100 three and four year olds was measured according to a modified version of Wozniak's hammering-board task. Four instructional conditions (instructional, demonstration, vocalization, no vocalization) were presented in a numerical task ("Hit four times") and in two spatial tasks: three-color ("Hit red, green, yellow")…

  13. 75 FR 45606 - Interagency Ocean Policy Task Force-Final Recommendations of the Interagency Ocean Policy Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... QUALITY Interagency Ocean Policy Task Force--Final Recommendations of the Interagency Ocean Policy Task Force AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Interagency Ocean Policy... Council on Environmental Quality. The Task Force was charged with developing, with appropriate...

  14. Increasing Speed of Processing With Action Video Games.

    PubMed

    Dye, Matthew W G; Green, C Shawn; Bavelier, Daphne

    2009-01-01

    In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance. PMID:20485453

  15. Action planning in a virtual context after prefrontal cortex damage.

    PubMed

    Zalla, T; Plassiart, C; Pillon, B; Grafman, J; Sirigu, A

    2001-01-01

    Patients with frontal lobe lesions are known to encounter severe problems in the organisation of their behaviour in everyday life. Script generation tasks assess the subject's conceptual ability to formulate and evaluate a coherent and structured plan of action. In the present study, we investigated to what extent neuropsychological deficits observed at the conceptual level of action knowledge lead to impairments in action execution. We examined seven patients with prefrontal cortex damage and sixteen normal subjects. Subjects were first asked to verbally formulate a plan of action and then to use this knowledge for 'executing' the actions in a virtual 3-dimensional interactive apartment presented on a computer screen. The results indicated that the presence of the realistic context improved patients' performance. However, specific impairments were observed in patients in the execution condition, namely actions slips, omissions, failure in initiating actions and purposeless displacements. Moreover, an analysis of planning time showed that, differently of the patients group, normal subjects spent more time during plan execution as compared to plan generation. These results suggest that after a frontal lobe lesion a defective formulation of a routine plan might affect the execution of the corresponding course of actions. PMID:11369400

  16. The controlled imitation task: a new paradigm for studying self-other control

    PubMed Central

    Hogeveen, Jeremy

    2013-01-01

    In the automatic imitation task (AIT) participants make a cued response during simultaneous exposure to a congruent or incongruent action made by another agent. Participants are slower to make the cued response on incongruent trials, which is thought to reflect conflict between the motor representation activated by the cue and the motor representation activated by the observed action. On incongruent trials, good performance requires the capacity to suppress the imitative action, in favor of producing the cued response. Here, we introduce a new experimental paradigm that complements the AIT, and is therefore a useful task for studying the control of self and other activated representations. In what we term the “Controlled Imitation Task (CIT)”, participants are cued to make an action, but on 50% of trials, within 100 ms of this cue, an on-screen hand makes a congruent or incongruent action. If the onscreen hand moves, the participant must suppress the cued response, and instead imitate the observed action as quickly and accurately as possible. In direct contrast to the AIT, the CIT requires suppression of a self-activated motor representation, and prioritization of an imitative response. In experiment 1, we report a robust pattern of interference effects in the CIT, such that participants are slower to make the imitative response on incongruent compared to congruent trials. In experiment 2, we replicate this effect while including a non-imitative spatial-cue control condition to show that the effect is particularly robust for imitative response tendencies per se. Owing to the essentially opposite control requirements of the CIT versus the AIT (i.e., suppression of self-activated motor representations instead of suppression of other-activated motor representations), we propose that this new task is a potentially informative complementary paradigm to the AIT that can be used in studies of self-other control processes. PMID:24109546

  17. EEG sensorimotor correlates of translating sounds into actions

    PubMed Central

    Pineda, Jaime A.; Grichanik, Mark; Williams, Vanessa; Trieu, Michelle; Chang, Hailey; Keysers, Christian

    2013-01-01

    Understanding the actions of others is a necessary foundational cornerstone for effective and affective social interactions. Such understanding may result from a mapping of observed actions as well as heard sounds onto one's own motor representations of those events. To examine the electrophysiological basis of action-related sounds, EEG data were collected in two studies from adults who were exposed to auditory events in one of three categories: action (either hand- or mouth-based sounds), non-action (environmental sounds), and control sounds (scrambled versions of action sounds). In both studies, triplets of sounds of the same category were typically presented, although occasionally, to ensure an attentive state, trials containing a sound from a different category were presented within the triplet and participants were asked to respond to this oddball event either covertly in one study or overtly in another. Additionally, participants in both studies were asked to mimic hand- and mouth-based motor actions associated with the sounds (motor task). Action sounds elicited larger EEG mu rhythm (8–13 Hz) suppression, relative to control sounds, primarily over left hemisphere, while non-action sounds showed larger mu suppression primarily over right hemisphere. Furthermore, hand-based sounds elicited greater mu suppression over the hand area in sensorimotor cortex compared to mouth-based sounds. These patterns of mu suppression across cortical regions to different categories of sounds and to effector-specific sounds suggest differential engagement of a mirroring system in the human brain when processing sounds. PMID:24376395

  18. A Teacher Observation Instrument for PBL Classroom Instruction

    ERIC Educational Resources Information Center

    Stearns, Linda M.; Morgan, Jim; Capraro, Mary Margaret; Capraro, Robert M.

    2012-01-01

    Teaching is a complex activity that requires making ongoing multiple decisions and sporadic, responsive actions all while performing preplanned prescribed tasks. Evidence of certain aspects of teaching can be best assessed with a well-designed observation instrument. This instrument was designed to assess the enactment of the essential elements of…

  19. Analysis of self-reported problematic tasks for pregnant women.

    PubMed

    Cheng, P L; Dumas, G A; Smith, J T; Leger, A B; Plamondon, A; McGrath, M J; Tranmer, J E

    2006-02-22

    The objective of this study was to identify major components of, and influential factors in, problematic tasks performed by pregnant women employed in education, health care and service areas. Seventy-two pregnant women were surveyed using specially designed questionnaires consisting of an Initial Survey, a Job Analysis Questionnaire and a Task Description Questionnaire. Forty-four subjects (60%) had difficulty performing at least one work task and reported 105 tasks that were problematic at work. Reaching above the head, bending forward, bending and twisting, pushing, repeating actions and working at a fast pace were identified as the task components requiring the greatest level of effort. Excessive effort, excessive time, getting tired, repetitive actions, stress and fear of injury were identified as factors that had strong associations with the six major task components. Findings of this study suggest that these task components and factors should be considered when designing, assigning or analysing tasks for working pregnant women. PMID:16540440

  20. Action-outcome relationships are represented differently by medial prefrontal and orbitofrontal cortex neurons during action execution.

    PubMed

    Simon, Nicholas W; Wood, Jesse; Moghaddam, Bita

    2015-12-01

    Internal representations of action-outcome relationships are necessary for flexible adaptation of motivated behavior in dynamic environments. Prefrontal cortex (PFC) is implicated in flexible planning and execution of goal-directed actions, but little is known about how information about action-outcome relationships is represented across functionally distinct regions of PFC. Here, we observe distinct patterns of action-evoked single unit activity in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) during a task in which the relationship between outcomes and actions was independently manipulated. The mPFC encoded changes in the number of actions required to earn a reward, but not fluctuations in outcome magnitude. In contrast, OFC neurons decreased firing rates as outcome magnitude was increased, but were insensitive to changes in action requirement. A subset of OFC neurons also tracked outcome availability. Pre-outcome anticipatory activity in both mPFC and OFC was altered when reward expectation was reduced, but did not differ with outcome magnitude. These data provide novel evidence that PFC regions encode distinct information about the relationship between actions and impending outcomes during action execution. PMID:26467523

  1. Control of Integrated Task Sequences Shapes Components of Reaching.

    PubMed

    Viswanathan, Priya; Whitall, Jill; Kagerer, Florian A

    2016-01-01

    Reaching toward an object usually consists of a sequence of elemental actions. Using a reaching task sequence, the authors investigated how task elements of that sequence affected feedforward and feedback components of the reaching phase of the movement. Nine right-handed adults performed, with their dominant and nondominant hands, 4 tasks of different complexities: a simple reaching task; a reach-to-grasp task; a reach-to-grasp and lift object task; and a reach-to-grasp, lift, and place object task. Results showed that in the reach-to-grasp and lift object task more time was allocated to the feedforward component of the reach phase, while latency between the task elements decreased. We also found between-hand differences, supporting previous findings of increased efficiency of processing planning-related information in the preferred hand. The presence of task-related modifications supports the concept of contextual effects when planning a movement. PMID:27254601

  2. Embodied communication:Speakers' gestures affect listeners' actions

    PubMed Central

    Cook, Susan Wagner; Tanenhaus, Michael K.

    2009-01-01

    We explored how speakers and listeners use hand gestures as a source of perceptual-motor information during naturalistic communication. After solving the Tower of Hanoi task either with real objects or on a computer, speakers explained the task to listeners. Speakers' hand gestures, but not their speech, reflected properties of the particular objects and the actions that they had previously used to solve the task. Speakers who solved the problem with real objects used more grasping handshapes and produced more curved trajectories during the explanation. Listeners who observed explanations from speakers who had previously solved the problem with real objects subsequently treated computer objects more like real objects; their mouse trajectories revealed that they lifted the objects in conjunction with moving them sideways, and this behavior was related to the particular gestures that were observed. These findings demonstrate that hand gestures are a reliable source of perceptual-motor information during human communication. PMID:19682672

  3. Intentional Action and Action Slips.

    ERIC Educational Resources Information Center

    Heckhausen, Heinz; Beckmann, Jurgen

    1990-01-01

    An explanation of action slips is offered that examines controlled actions in the context of an intentional behavior theory. Actions are considered guided by mentally represented intentions, subdivided into goal intentions and contingent instrumental intentions. Action slips are categorized according to problem areas in the enactment of goal…

  4. Task Definition: A Motivating Task = Eager Learners!

    ERIC Educational Resources Information Center

    Jansen, Barbara A.

    2005-01-01

    Teachers who design meaningful and developmentally appropriate tasks will motivate their students to engage in the content and as students work through the Big6 process, interacting with the content, they learn and practice information and technology skills. A valuable task definition technique is to develop questions that students in each group…

  5. The role of action prediction and inhibitory control for joint action coordination in toddlers.

    PubMed

    Meyer, M; Bekkering, H; Haartsen, R; Stapel, J C; Hunnius, S

    2015-11-01

    From early in life, young children eagerly engage in social interactions. Yet, they still have difficulties in performing well-coordinated joint actions with others. Adult literature suggests that two processes are important for smooth joint action coordination: action prediction and inhibitory control. The aim of the current study was to disentangle the potential role of these processes in the early development of joint action coordination. Using a simple turn-taking game, we assessed 2½-year-old toddlers' joint action coordination, focusing on timing variability and turn-taking accuracy. In two additional tasks, we examined their action prediction capabilities with an eye-tracking paradigm and examined their inhibitory control capabilities with a classic executive functioning task (gift delay task). We found that individual differences in action prediction and inhibitory action control were distinctly related to the two aspects of joint action coordination. Toddlers who showed more precision in their action predictions were less variable in their action timing during the joint play. Furthermore, toddlers who showed more inhibitory control in an individual context were more accurate in their turn-taking performance during the joint action. On the other hand, no relation between timing variability and inhibitory control or between turn-taking accuracy and action prediction was found. The current results highlight the distinct role of action prediction and inhibitory action control for the quality of joint action coordination in toddlers. Underlying neurocognitive mechanisms and implications for processes involved in joint action coordination in general are discussed. PMID:26150055

  6. Incongruent Imagery Interferes with Action Initiation

    ERIC Educational Resources Information Center

    Ramsey, Richard; Cumming, Jennifer; Eastough, Daniel; Edwards, Martin G.

    2010-01-01

    It has been suggested that representing an action through observation and imagery share neural processes with action execution. In support of this view, motor-priming research has shown that observing an action can influence action initiation. However, there is little motor-priming research showing that imagining an action can modulate action…

  7. Prospective memory in young and older adults: the effects of task importance and ongoing task load.

    PubMed

    Smith, Rebekah E; Hunt, R Reed

    2014-01-01

    Remembering to perform an action in the future, called prospective memory, often shows age-related differences in favor of young adults when tested in the laboratory. Recently Smith, Horn, and Bayen (2012; Aging, Neuropsychology, and Cognition, 19, 495) embedded a PM task in an ongoing color-matching task and manipulated the difficulty of the ongoing task by varying the number of colors on each trial of the task. Smith et al. found that age-related differences in PM performance (lower PM performance for older adults relative to young adults) persisted even when older adults could perform the ongoing task as well or better than the young adults. The current study investigates a possible explanation for the pattern of results reported by Smith et al. by including a manipulation of task emphasis: for half of the participants the prospective memory task was emphasize, while for the other half the ongoing color-matching task was emphasized. Older adults performed a 4-color version of the ongoing color-matching task, while young adults completed either the 4-color or a more difficult 6-color version of the ongoing task. Older adults failed to perform as well as the young adults on the prospective memory task regardless of task emphasis, even when older adults were performing as well or better than the young adults on the ongoing color-matching task. The current results indicate that the lack of an effect of ongoing task load on prospective memory task performance is not due to a perception that one or the other task is more important than the other. PMID:24628461

  8. Syntax, action verbs, action semantics, and object semantics in Parkinson's disease: Dissociability, progression, and executive influences.

    PubMed

    Bocanegra, Yamile; García, Adolfo M; Pineda, David; Buriticá, Omar; Villegas, Andrés; Lopera, Francisco; Gómez, Diana; Gómez-Arias, Catalina; Cardona, Juan F; Trujillo, Natalia; Ibáñez, Agustín

    2015-08-01

    Several studies have recently shown that basal ganglia (BG) deterioration leads to distinctive impairments in the domains of syntax, action verbs, and action semantics. In particular, such disruptions have been repeatedly observed in Parkinson's disease (PD) patients. However, it remains unclear whether these deficits are language-specific and whether they are equally dissociable from other reported disturbances -viz., processing of object semantics. To address these issues, we administered linguistic, semantic, and executive function (EFs) tasks to two groups of non-demented PD patients, with and without mild cognitive impairment (PD-MCI and PD-nMCI, respectively). We compared these two groups with each other and with matched samples of healthy controls. Our results showed that PD patients exhibited linguistic and semantic deficits even in the absence of MCI. However, not all domains were equally related to EFs and MCI across samples. Whereas EFs predicted disturbances of syntax and object semantics in both PD-nMCI and PD-MCI, they had no impact on action-verb and action-semantic impairments in either group. Critically, patients showed disruptions of action-verb production and action semantics in the absence of MCI and without any executive influence, suggesting a sui generis deficit present since early stages of the disease. These findings indicate that varied language domains are differentially related to the BG, contradicting popular approaches to neurolinguistics. PMID:26103601

  9. Selective corticostriatal plasticity during acquisition of an auditory discrimination task

    PubMed Central

    Xiong, Qiaojie; Znamenskiy, Petr; Zador, Anthony M

    2015-01-01

    Perceptual decisions are based on the activity of sensory cortical neurons, but how organisms learn to transform this activity into appropriate actions remains unknown. Projections from the auditory cortex to the auditory striatum carry information that drives decisions in an auditory frequency discrimination task1. To assess the role of these projections in learning, we developed a Channelrhodopsin-2-based assay to selectively probe for synaptic plasticity associated with corticostriatal neurons representing different frequencies. Here we report that learning this auditory discrimination preferentially potentiates corticostriatal synapses from neurons representing either high or low frequencies, depending on reward contingencies. We observed frequency-dependent corticostriatal potentiation in vivo over the course of training, and in vitro in striatal brain slices. Our findings suggest a model in which the corticostriatal synapses made by neurons tuned to different features of the sound are selectively potentiated to enable the learned transformation of sound into action. PMID:25731173

  10. Selective corticostriatal plasticity during acquisition of an auditory discrimination task.

    PubMed

    Xiong, Qiaojie; Znamenskiy, Petr; Zador, Anthony M

    2015-05-21

    Perceptual decisions are based on the activity of sensory cortical neurons, but how organisms learn to transform this activity into appropriate actions remains unknown. Projections from the auditory cortex to the auditory striatum carry information that drives decisions in an auditory frequency discrimination task. To assess the role of these projections in learning, we developed a channelrhodopsin-2-based assay to probe selectively for synaptic plasticity associated with corticostriatal neurons representing different frequencies. Here we report that learning this auditory discrimination preferentially potentiates corticostriatal synapses from neurons representing either high or low frequencies, depending on reward contingencies. We observe frequency-dependent corticostriatal potentiation in vivo over the course of training, and in vitro in striatal brain slices. Our findings suggest a model in which the corticostriatal synapses made by neurons tuned to different features of the sound are selectively potentiated to enable the learned transformation of sound into action. PMID:25731173

  11. Environmental Action.

    ERIC Educational Resources Information Center

    Lott, Jesse; Allen, Rodney F.

    This booklet, a general guide to citizen eco-action, discusses a plan of action on community environmental problems. It offers factors to be considered in any community eco-action situation, but it is not a rigid set of rules. An overview identifies seven key ideas of environmental issues, including the universal participation of all humans in the…

  12. Not Quite There: Skill Consolidation in Training by Doing or Observing

    ERIC Educational Resources Information Center

    Hesseg, Rinatia Maaravi; Gal, Carmit; Karni, Avi

    2016-01-01

    We tested the notion that action observation engages learning processes and mnemonic representations overlapping with those engaged in actual performance. An identical number of training instances, actual performance, or observation, was afforded on a finger opposition sequence task. Both training modes resulted in immediate gains in performance,…

  13. Finding minimal action sequences with a simple evaluation of actions

    PubMed Central

    Shah, Ashvin; Gurney, Kevin N.

    2014-01-01

    Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of “was the outcome achieved?”; they focus on “how well was the outcome achieved?” However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of “was the outcome achieved?” and not “how well was the outcome achieved?” Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on “was the outcome achieved?” and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context. PMID:25506326

  14. A third-person perspective on co-speech action gestures in Parkinson's disease

    PubMed Central

    Humphries, Stacey; Holler, Judith; Crawford, Trevor J.; Herrera, Elena; Poliakoff, Ellen

    2016-01-01

    A combination of impaired motor and cognitive function in Parkinson's disease (PD) can impact on language and communication, with patients exhibiting a particular difficulty processing action verbs. Co-speech gestures embody a link between action and language and contribute significantly to communication in healthy people. Here, we investigated how co-speech gestures depicting actions are affected in PD, in particular with respect to the visual perspective—or the viewpoint – they depict. Gestures are closely related to mental imagery and motor simulations, but people with PD may be impaired in the way they simulate actions from a first-person perspective and may compensate for this by relying more on third-person visual features. We analysed the action-depicting gestures produced by mild-moderate PD patients and age-matched controls on an action description task and examined the relationship between gesture viewpoint, action naming, and performance on an action observation task (weight judgement). Healthy controls produced the majority of their action gestures from a first-person perspective, whereas PD patients produced a greater proportion of gestures produced from a third-person perspective. We propose that this reflects a compensatory reliance on third-person visual features in the simulation of actions in PD. Performance was also impaired in action naming and weight judgement, although this was unrelated to gesture viewpoint. Our findings provide a more comprehensive understanding of how action-language impairments in PD impact on action communication, on the cognitive underpinnings of this impairment, as well as elucidating the role of action simulation in gesture production. PMID:26995225

  15. A third-person perspective on co-speech action gestures in Parkinson's disease.

    PubMed

    Humphries, Stacey; Holler, Judith; Crawford, Trevor J; Herrera, Elena; Poliakoff, Ellen

    2016-05-01

    A combination of impaired motor and cognitive function in Parkinson's disease (PD) can impact on language and communication, with patients exhibiting a particular difficulty processing action verbs. Co-speech gestures embody a link between action and language and contribute significantly to communication in healthy people. Here, we investigated how co-speech gestures depicting actions are affected in PD, in particular with respect to the visual perspective-or the viewpoint - they depict. Gestures are closely related to mental imagery and motor simulations, but people with PD may be impaired in the way they simulate actions from a first-person perspective and may compensate for this by relying more on third-person visual features. We analysed the action-depicting gestures produced by mild-moderate PD patients and age-matched controls on an action description task and examined the relationship between gesture viewpoint, action naming, and performance on an action observation task (weight judgement). Healthy controls produced the majority of their action gestures from a first-person perspective, whereas PD patients produced a greater proportion of gestures produced from a third-person perspective. We propose that this reflects a compensatory reliance on third-person visual features in the simulation of actions in PD. Performance was also impaired in action naming and weight judgement, although this was unrelated to gesture viewpoint. Our findings provide a more comprehensive understanding of how action-language impairments in PD impact on action communication, on the cognitive underpinnings of this impairment, as well as elucidating the role of action simulation in gesture production. PMID:26995225

  16. Functional Task Test (FTT)

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.; Platts, Steven H.; Stenger, Michael B.; Lee, Stuart M.C.; Arzeno, Natalia; Feiveson, Alan H.; Ryder, Jeffrey; Garcia, Yamil; Guilliams, Mark E.

    2009-01-01

    This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.

  17. Launching Complex Tasks

    ERIC Educational Resources Information Center

    Jackson, Kara J.; Shahan, Emily C.; Gibbons, Lynsey K.; Cobb, Paul A.

    2012-01-01

    Mathematics lessons can take a variety of formats. In this article, the authors discuss lessons organized around complex mathematical tasks. These lessons usually unfold in three phases. First, the task is introduced to students. Second, students work on solving the task. Third, the teacher "orchestrates" a concluding whole-class discussion in…

  18. Selecting Proportional Reasoning Tasks

    ERIC Educational Resources Information Center

    de la Cruz, Jessica A.

    2013-01-01

    With careful consideration given to task selection, students can construct their own solution strategies to solve complex proportional reasoning tasks while the teacher's instructional goals are still met. Several aspects of the tasks should be considered including their numerical structure, context, difficulty level, and the strategies they are…

  19. Task Time Tracker

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  20. Theory of Choice in Bandit, Information Sampling and Foraging Tasks

    PubMed Central

    Averbeck, Bruno B.

    2015-01-01

    Decision making has been studied with a wide array of tasks. Here we examine the theoretical structure of bandit, information sampling and foraging tasks. These tasks move beyond tasks where the choice in the current trial does not affect future expected rewards. We have modeled these tasks using Markov decision processes (MDPs). MDPs provide a general framework for modeling tasks in which decisions affect the information on which future choices will be made. Under the assumption that agents are maximizing expected rewards, MDPs provide normative solutions. We find that all three classes of tasks pose choices among actions which trade-off immediate and future expected rewards. The tasks drive these trade-offs in unique ways, however. For bandit and information sampling tasks, increasing uncertainty or the time horizon shifts value to actions that pay-off in the future. Correspondingly, decreasing uncertainty increases the relative value of actions that pay-off immediately. For foraging tasks the time-horizon plays the dominant role, as choices do not affect future uncertainty in these tasks. PMID:25815510

  1. Dementia alters standing postural adaptation during a visual search task in older adult men

    PubMed Central

    Joŕdan, Azizah J.; McCarten, J. Riley; Rottunda, Susan; Stoffregen, Thomas A.; Manor, Brad; Wade, Michael G.

    2015-01-01

    This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance—in the non-dementia group only—suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus appears to disrupt this perception-action synergy. PMID:25770830

  2. [Anti-impulsivity drugs and their mechanisms of action].

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2014-04-01

    Higher impulsivity could be a risk factor for drug addiction, criminal involvement, and suicide. Moreover, poor inhibitory control is observed in several psychiatric disorders such as attention-deficit/hyperactivity disorder, schizophrenia, and bipolar disorder. Thus it is preferred that clinical drugs have anti-impulsive effects in addition to the therapeutic effects on the primary disease. At least it is better to use clinical drugs that do not increase impulsivity. We have developed a 3-choice serial reaction time task and examined the effects of clinical drugs on impulsivity in rats using the task. We have found several anti-impulsive drugs (lithium, tandospirone, and milnacipran) and elucidated the mechanism of action in some of these drugs. For example, we demonstrated that milnacipran enhanced the control of impulsive action by activating D1-like receptors in the infralimbic cortex. In this review, we introduce recent advances in this field and suggest future directions to develop anti-impulsive drugs. PMID:25080806

  3. Action languages: Dimensions, effects

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel G.; Streeter, Gordon

    1989-01-01

    Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations.

  4. Inattention, impulsive action, and subjective response to d-amphetamine

    PubMed Central

    Weafer, Jessica; de Wit, Harriet

    2013-01-01

    Background Both impulsivity and sensitivity to the rewarding effects of drugs have long been considered risk factors for drug abuse. There is some preclinical evidence to suggest that the two are related; however, there is little information about how specific behavioral components of impulsivity are related to the acute euphorigenic effects of drugs in humans. The aim of the current study was to examine the degree to which both inattention and impulsive action predicted subjective response to amphetamine. Methods Healthy adults (n=165) performed the behavioral tasks and rated their subjective response to amphetamine (0, 5, 10, and 20 mg). Inattention was assessed as attention lapses on a simple reaction time task, and impulsive action was measured by stop RT on the stop task. Subjective response to amphetamine was assessed with the Drug Effects Questionnaire (DEQ) and the Profile of Mood States (POMS). Results Hierarchical linear regression analyses showed significant negative associations between attention lapses and subjective response to amphetamine on DEQ measures. By contrast, stop RT was positively associated with responses on both DEQ and POMS measures. Additionally, a dose-response relationship was observed, such that the strength of these associations increased with higher doses of amphetamine. Conclusions These findings suggest that inattention is associated with less subjective response to amphetamine. By contrast, the heightened sensitivity to stimulant drug reward observed in individuals high in impulsive action suggests that this might be one mechanism contributing to increased risk for stimulant drug abuse in these individuals. PMID:23790566

  5. Relative contributions of task-relevant and task-irrelevant dimensions in priming of pop-out.

    PubMed

    Michal, Audrey L; Lleras, Alejandro; Beck, Diane M

    2014-01-01

    Intertrial effects such as priming of pop-out (PoP) often occur for task-irrelevant dimensions as well as task-relevant dimensions, though to a weaker extent. Here we test the hypothesis that increased priming for task-relevant dimensions is due to greater passive build-up of priming for the task-relevant dimension rather than to an active filtering of task-irrelevant dimensions; if this is the case, then we should observe a positive correlation between the magnitude of task-relevant and task-irrelevant priming. We tested this hypothesis using a pop-out search task in which the task-relevant dimension was orientation and the task-irrelevant dimension was color. We found a strong, positive association between task-relevant and task-irrelevant priming across a large group of participants (N = 100); additionally, we observed increased priming over consecutive repetitions for the task-relevant dimension, whereas task-irrelevant priming was constant across multiple repetitions. As further evidence against an active filtering account, task-irrelevant priming showed no systematic relationship with visual short-term memory capacity, which has been shown to correlate with filtering ability. Together, our results suggest that task-irrelevant dimensions are co-selected rather than filtered out during target search. Further, increased task-relevant priming may reflect an enhanced representation of the task-relevant dimension that is reinforced over consecutive repetitions. PMID:25311302

  6. Levels-of-processing effects in subject-performed tasks.

    PubMed

    Zimmer, H D; Engelkamp, J

    1999-09-01

    In memory for subject-performed tasks (SPTs), subjects encode a list of simple action phrases (e.g., thumb through a book, knock at the door) by performing these actions during learning. In three experiments, we investigated the size of the levels-of-processing effects in SPTs as compared with those in standard verbal learning tasks (VTs). Subjects under SPT and VT conditions learned lists of action phrases in a surface or a conceptual orienting task. Under both encoding conditions, the subjects recalled fewer items with surface orienting tasks than with conceptual orienting tasks, but the levels-of-processing effects were strongly reduced in the SPT condition. In the SPT condition, items that were encoded in a surface orienting task were still substantially recalled. The items were recalled almost as well as the conceptually encoded items in the VT condition. The distinct reduction of the levels-of-processing effect is caused by the fact that, in SPT encoding even with a verbal surface orienting task, subjects process conceptual information in order to perform the denoted action. We attribute the small conceptual advantage, which remains with SPT despite the conceptual processing for performing, to the fact that items are not as well integrated into memory as they are when conceptual processing is focused on the action component, rather than on the semantic contexts. This lower integration reduces the accessibility of items in the verbal surface task, even with SPT encoding. PMID:10540819

  7. Social Policy Teaching Project: Task Force Report.

    ERIC Educational Resources Information Center

    Canadian Association of Schools of Social Work, Ottawa (Ontario).

    This report describes the pattern of policy content in the curriculum of Canadian schools of social work and assesses career opportunities for graduates. Seven sections comprise the document. Section I describes the study. Section II defines social policy as a process and as a framework for action and cites tasks of social work education including…

  8. Dynamical Models of Task Organization in Social Insect Colonies.

    PubMed

    Kang, Yun; Theraulaz, Guy

    2016-05-01

    The organizations of insect societies, such as division of labor, task allocation, collective regulation, mass action responses, have been considered as main reasons for the ecological success. In this article, we propose and study a general modeling framework that includes the following three features: (a) the average internal response threshold for each task (the internal factor); (b) social network communications that could lead to task switching (the environmental factor); and (c) dynamical changes of task demands (the external factor). Since workers in many social insect species exhibit age polyethism, we also extend our model to incorporate age polyethism in which worker task preferences change with age. We apply our general modeling framework to the cases of two task groups: the inside colony task versus the outside colony task. Our analytical study of the models provides important insights and predictions on the effects of colony size, social communication, and age-related task preferences on task allocation and division of labor in the adaptive dynamical environment. Our study implies that the smaller size colony invests its resource for the colony growth and allocates more workers in the risky tasks such as foraging while the larger colony shifts more workers to perform the safer tasks inside the colony. Social interactions among different task groups play an important role in shaping task allocation depending on the relative cost and demands of the tasks. PMID:27125656

  9. The left inferior parietal lobe represents stored hand-postures for object use and action prediction

    PubMed Central

    van Elk, Michiel

    2014-01-01

    Action semantics enables us to plan actions with objects and to predict others' object-directed actions as well. Previous studies have suggested that action semantics are represented in a fronto-parietal action network that has also been implicated to play a role in action observation. In the present fMRI study it was investigated how activity within this network changes as a function of the predictability of an action involving multiple objects and requiring the use of action semantics. Participants performed an action prediction task in which they were required to anticipate the use of a centrally presented object that could be moved to an associated target object (e.g., hammer—nail). The availability of actor information (i.e., presenting a hand grasping the central object) and the number of possible target objects (i.e., 0, 1, or 2 target objects) were independently manipulated, resulting in different levels of predictability. It was found that making an action prediction based on actor information resulted in an increased activation in the extrastriate body area (EBA) and the fronto-parietal action observation network (AON). Predicting actions involving a target object resulted in increased activation in the bilateral IPL and frontal motor areas. Within the AON, activity in the left inferior parietal lobe (IPL) and the left premotor cortex (PMC) increased as a function of the level of action predictability. Together these findings suggest that the left IPL represents stored hand-postures that can be used for planning object-directed actions and for predicting other's actions as well. PMID:24795681

  10. Repetitive TMS Suggests a Role of the Human Dorsal Premotor Cortex in Action Prediction

    PubMed Central

    Stadler, Waltraud; Ott, Derek V. M.; Springer, Anne; Schubotz, Ricarda I.; Schütz-Bosbach, Simone; Prinz, Wolfgang

    2012-01-01

    Predicting the actions of other individuals is crucial for our daily interactions. Recent evidence suggests that the prediction of object-directed arm and full-body actions employs the dorsal premotor cortex (PMd). Thus, the neural substrate involved in action control may also be essential for action prediction. Here, we aimed to address this issue and hypothesized that disrupting the PMd impairs action prediction. Using fMRI-guided coil navigation, rTMS (five pulses, 10 Hz) was applied over the left PMd and over the vertex (control region) while participants observed everyday actions in video clips that were transiently occluded for 1 s. The participants detected manipulations in the time course of occluded actions, which required them to internally predict the actions during occlusion. To differentiate between functional roles that the PMd could play in prediction, rTMS was either delivered at occluder-onset (TMS-early), affecting the initiation of action prediction, or 300 ms later during occlusion (TMS-late), affecting the maintenance of an ongoing prediction. TMS-early over the left PMd produced more prediction errors than TMS-early over the vertex. TMS-late had no effect on prediction performance, suggesting that the left PMd might be involved particularly during the initiation of internally guided action prediction but may play a subordinate role in maintaining ongoing prediction. These findings open a new perspective on the role of the left PMd in action prediction which is in line with its functions in action control and in cognitive tasks. In the discussion, the relevance of the left PMd for integrating external action parameters with the observer’s motor repertoire is emphasized. Overall, the results are in line with the notion that premotor functions are employed in both action control and action observation. PMID:22363279

  11. An investigation of semantic similarity judgments about action and non-action verbs in Parkinson's disease: implications for the Embodied Cognition Framework

    PubMed Central

    Kemmerer, David; Miller, Luke; MacPherson, Megan K.; Huber, Jessica; Tranel, Daniel

    2013-01-01

    The Embodied Cognition Framework maintains that understanding actions requires motor simulations subserved in part by premotor and primary motor regions. This hypothesis predicts that disturbances to these regions should impair comprehension of action verbs but not non-action verbs. We evaluated the performances of 10 patients with Parkinson's disease (PD) and 10 normal comparison (NC) participants on a semantic similarity judgment task (SSJT) that included four classes of action verbs and two classes of non-action verbs. The patients were tested both ON and OFF medication. The most salient results involved the accuracies and reaction times (RTs) for the action verbs taken as a whole and the non-action verbs taken as a whole. With respect to accuracies, the patients did not perform significantly worse than the NC participants for either the action verbs or the non-action verbs, regardless of whether they were ON or OFF their medication. And with respect to RTs, although the patients' responses were significantly slower than those of the NC participants for the action verbs, comparable processing delays were also observed for the non-action verbs; moreover, there was again no notable influence of medication. The major dissociation was therefore not between action and non-action verbs, but rather between accuracies (relatively intact) and RTs (relatively delayed). Overall, the data suggest that semantic similarity judgments for both action and non-action verbs are correct but slow in individuals with PD. These results provide new insights about language processing in PD, and they raise important questions about the explanatory scope of the Embodied Cognition Framework. PMID:23616759

  12. Dissociating the Components of Switch Cost Using Two-to-Two Cue-Task Mapping

    ERIC Educational Resources Information Center

    Hydock, Chris; Sohn, Myeong-Ho

    2011-01-01

    In the task switch paradigm, a switch of task is typically accompanied by a change in task cue. It has been proposed that the performance deficit usually observed when switching tasks is actually the result of changing cues. To test this possibility, we used a 2:2 cue-task mapping in which each cue indicated 2 different tasks. With advance…

  13. The development of action planning in a joint action context.

    PubMed

    Paulus, Markus

    2016-07-01

    The ability to act jointly with another person is a fundamental requirement for participation in social life. The current study examines the development of action planning in a joint action context. In 4 experiments, 3-, 5-, and 7-year-old children as well as a group of adults (n = 196) interacted with another person to operate a novel apparatus. Their task was to hand the experimenter a tool with which she could activate 1 of 2 different effects on the apparatus. The elicitation of each effect required participants to grasp and insert the tool in a particular orientation. We assessed whether participants planned their grasping and reaching action in such a way that it enabled the partner to efficiently handle the tool, that is, anticipating the final end state of the joint activity. We found that 3-year-old children did not adjust their behavior to accommodate the other's action and that they did not increase their performance over multiple trials. Five- and 7-year-old children initially showed a tendency to plan their action in an egocentric manner (i.e., showed a form of egocentrism), but improved their joint action performance over time. Adult participants demonstrated joint action planning from the beginning. Interestingly, 3- and 5-year-old children were able to plan their grasp efficiently when acting alone on the apparatus. Yet, having first-hand experience with the task before acting with a partner did not facilitate performance in the joint action task for younger children. Overall, the study informs current approaches on the psychological basis and ontogenetic origins of joint action in childhood. (PsycINFO Database Record PMID:27337512

  14. Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.

    PubMed

    Ondobaka, Sasha; de Lange, Floris P; Wittmann, Marco; Frith, Chris D; Bekkering, Harold

    2015-09-01

    Recent accounts of understanding goal-directed action underline the importance of a hierarchical predictive architecture. However, the neural implementation of such an architecture remains elusive. In the present study, we used functional neuroimaging to quantify brain activity associated with predicting physical movements, as they were modulated by conceptual-expectations regarding the purpose of the object involved in the action. Participants observed object-related actions preceded by a cue that generated both conceptual goal expectations and movement goal predictions. In 2 tasks, observers judged whether conceptual or movement goals matched or mismatched the cue. At the conceptual level, expected goals specifically recruited the posterior cingulate cortex, irrespectively of the task and the perceived movement goal. At the movement level, neural activation of the parieto-frontal circuit, including inferior frontal gyrus and the inferior parietal lobe, reflected unpredicted movement goals. Crucially, this movement prediction error was only present when the purpose of the involved object was expected. These findings provide neural evidence that prior conceptual expectations influence processing of physical movement goals and thereby support the hierarchical predictive account of action processing. PMID:24663382

  15. Online Action Monitoring and Memory for Self-Performed Actions in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Grainger, Catherine; Williams, David M.; Lind, Sophie E.

    2014-01-01

    This study explored whether individuals with autism spectrum disorder (ASD) experience difficulties with action monitoring. Two experimental tasks examined whether adults with ASD are able to monitor their own actions online, and whether they also show a typical enactment effects in memory (enhanced memory for actions they have performed compared…

  16. Are judgments for action verbs and point-light human actions equivalent?

    PubMed

    Bidet-Ildei, Christel; Toussaint, Lucette

    2015-02-01

    The aim of the present study was to examine whether the ability to judge action words and the ability to judge human actions share common mechanisms. With this purpose in mind, we proposed both a lexical and an action decision task to twenty-four healthy participants. For both tasks, the participants had to judge whether the stimulus that was presented (a letter string or a point-light sequence) was valid or not (i.e. a word vs. a pseudo-word, an action vs. a pseudo-action). The data analysis showed that the action decision task has common characteristics with the lexical decision task. As for verbal material, judgements of pseudo-actions were slower than judgements for actions. Moreover, we demonstrated that the ability to judge an action verb was positively correlated with the ability to judge a point-light human action, whereas no significant correlation appeared between nouns and point-light judgements abilities. This dissociation supports the argument that the judgement of action words and the judgement of human actions share a common but specific basis through the involvement of motor representations. PMID:25238900

  17. Means-End Behavior in Young Infants: The Interplay of Action Perception and Action Production

    ERIC Educational Resources Information Center

    Daum, Moritz M.; Prinz, Wolfgang; Aschersleben, Gisa

    2009-01-01

    In 2 experiments, the interplay of action perception and action production was investigated in 6-month-old infants. In Experiment 1, infants received 2 versions of a means-end task in counterbalanced order. In the action perception version, a preferential looking paradigm in which infants were shown an actor performing means-end behavior with an…

  18. Effective Task Design for the TBL Classroom

    ERIC Educational Resources Information Center

    Roberson, Bill; Franchini, Billie

    2014-01-01

    Group and team tasks are the culminating outputs of student learning in team and collaborative learning environments. How they are conceived and designed, therefore, can directly determine the success of the pedagogical strategy. A key design issue for creating effective tasks is how best to focus student knowledge, observation, and analysis…

  19. 77 FR 71471 - Interagency Task Force on Veterans Small Business Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development; Notice of Meeting AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting....

  20. Mechanisms underlying selecting objects for action

    PubMed Central

    Wulff, Melanie; Laverick, Rosanna; Humphreys, Glyn W.; Wing, Alan M.; Rotshtein, Pia

    2015-01-01

    We assessed the factors which affect the selection of objects for action, focusing on the role of action knowledge and its modulation by distracters. Fourteen neuropsychological patients and 10 healthy aged-matched controls selected pairs of objects commonly used together among distracters in two contexts: with real objects and with pictures of the same objects presented sequentially on a computer screen. Across both tasks, semantically related distracters led to slower responses and more errors than unrelated distracters and the object actively used for action was selected prior to the object that would be passively held during the action. We identified a sub-group of patients (N = 6) whose accuracy was 2SDs below the controls performances in the real object task. Interestingly, these impaired patients were more affected by the presence of unrelated distracters during both tasks than intact patients and healthy controls. Note that the impaired patients had lesions to left parietal, right anterior temporal and bilateral pre-motor regions. We conclude that: (1) motor procedures guide object selection for action, (2) semantic knowledge affects action-based selection, (3) impaired action decision making is associated with the inability to ignore distracting information and (4) lesions to either the dorsal or ventral visual stream can lead to deficits in making action decisions. Overall, the data indicate that impairments in everyday tasks can be evaluated using a simulated computer task. The implications for rehabilitation are discussed. PMID:25954177

  1. Interpersonal predictive coding, not action perception, is impaired in autism

    PubMed Central

    von der Lühe, T.; Manera, V.; Barisic, I.; Becchio, C.; Vogeley, K.

    2016-01-01

    This study was conducted to examine interpersonal predictive coding in individuals with high-functioning autism (HFA). Healthy and HFA participants observed point-light displays of two agents (A and B) performing separate actions. In the ‘communicative’ condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the ‘individual’ condition, agent A's communicative action was substituted by a non-communicative action. Using a simultaneous masking-detection task, we demonstrate that observing agent A's communicative gesture enhanced visual discrimination of agent B for healthy controls, but not for participants with HFA. These results were not explained by differences in attentional factors as measured via eye-tracking, or by differences in the recognition of the point-light actions employed. Our findings, therefore, suggest that individuals with HFA are impaired in the use of social information to predict others' actions and provide behavioural evidence that such deficits could be closely related to impairments of predictive coding. PMID:27069050

  2. Action Learning.

    ERIC Educational Resources Information Center

    1996

    These four papers were presented at a symposium on action learning moderated by Lex Dilworth at the 1996 conference of the Academy of Human Resource Development. "Developing an Infrastructure for Individual and Organizational Change: Transfer of Learning from an Action Reflection Learning (ARL) Program" (ARL Inquiry) reports findings from a study…

  3. Over-Imitating Preschoolers Believe Unnecessary Actions Are Normative and Enforce Their Performance by a Third Party

    ERIC Educational Resources Information Center

    Kenward, Ben

    2012-01-01

    Over-imitation, which is common in children, is the imitation of elements of an action sequence that are clearly unnecessary for reaching the final goal. A variety of cognitive mechanisms have been proposed to explain this phenomenon. Here, 48 3- and 5-year-olds together with a puppet observed an adult demonstrate instrumental tasks that included…

  4. ES H action plan

    SciTech Connect

    Not Available

    1991-01-01

    This document contains planned actions to correct the deficiencies identified in the Pre-Tiger Team Self-Assessment (PTTSA), January 1991, of Sandia National Laboratories (SNL -- Albuquerque, New Mexico; Tonopah, Nevada; and Kauai, Hawaii). The Self-Assessment was conducted by a Self-Assessment Working Group consisting of 19 department managers, with support from Environment, Safety, and Health (ES H) professionals, from October through December 1990. Findings from other past audits, dating back to 1985, were reviewed and compared with the PTTSA findings to determine if additional findings, key findings, or root causes were warranted. The resulting ES H Action Plan and individual planned actions were prepared by the ES H Action Plan Project Group with assistance from the Program owners/authors during February and March 1991. The plan was reviewed by SNL Management in April 1991. This document serves as a planning instrument for the Laboratories to aid in the scoping and sizing of activities related to ES H compliance for the coming five years. It will be modified as required to ensure a workload/funding balance and to address the findings resulting from the Tiger Team assessment at SNL, Albuquerque. The process of producing this document has served well to prepare SNL, Albuquerque, for the coming task of producing the required post-Tiger Team action plan document. 8 tabs.

  5. Neuromuscular recruitment related to stimulus presentation and task instruction during the anti-saccade task.

    PubMed

    Chapman, Brendan B; Corneil, Brian D

    2011-01-01

    The contextual control of movement requires the transformation of sensory information into appropriate actions, guided by task-appropriate rules. Previous conceptualizations of the sensorimotor transformations underlying anti-saccades (look away from a stimulus) have suggested that stimulus location is first registered and subsequently transformed into its mirror location before being relayed to the motor periphery. Here, by recording neck muscle activity in monkeys performing anti-saccades, we demonstrate that stimulus presentation induces a transient recruitment of the neck muscle synergy used to turn the head in the wrong direction, even though subjects subsequently looked away from the stimulus correctly. Such stimulus-driven aspects of recruitment developed essentially at reflexive latencies (∼60-70 ms after stimulus p