Science.gov

Sample records for action potential discharge

  1. Short interspike intervals and double discharges of anconeus motor unit action potentials for the production of dynamic elbow extensions.

    PubMed

    Harwood, B; Rice, C L

    2014-05-01

    Incidence of double discharges (DDs; >100 Hz) and short interspike intervals (ISIs; >50 to <100 Hz) is reported to vary widely among different muscles and tasks, with a higher incidence in motor unit (MU) trains of fast muscles and for the production of fast contractions in humans. However, it is unclear whether human muscles with a large composition of slower motor units exhibit DDs or short ISIs when activated with maximal synaptic drive, such as those required for maximal velocity dynamic contractions. Thus the purpose of this study was to determine the effect of increasing peak contraction velocity on the incidence of DDs and short ISIs in the anconeus muscle. Seventeen anconeus MUs in 10 young males were recorded across dynamic elbow extensions ranging from low submaximal velocities (16% of maximal velocity) up to maximal velocities. A low incidence of DDs (4%) and short ISIs (29%) was observed among the 583 MU trains recorded. Despite the low incidence in individual MU trains, a majority (71% and 94%, respectively) of MUs exhibited at least one DD or short ISI. The number of short ISIs shared no variance with MU recruitment threshold (R(2) = 0.02), but their distribution was skewed toward higher peak velocities (G = -1.26) and a main effect of peak elbow extension velocity was observed (P < 0.05). Although a greater number of short ISIs was observed with increasing velocity, the low incidence of DDs and short ISIs in the anconeus muscle is likely related to the function of the anconeus as a stabilizer rather than voluntary elbow extensor torque and velocity production. PMID:24554783

  2. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  3. Documented and potential extreme peak discharges and relation between potential extreme peak discharges and probable maximum flood peak discharges in Texas

    USGS Publications Warehouse

    Asquith, W.H.; Slade, R.M., Jr.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, conducted a study of extreme flood potential for Texas. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and their contributing drainage areas, can provide valuable information concerning the maximum expected peak discharge that could occur at a stream site. Documented extreme peak discharges and associated data were aggregated for 832 sites with and without streamflow-gaging stations in natural basins in Texas. A potential extreme peak discharge curve was developed for each of 11 hydrologic regions in Texas and for the State as a whole, based on documented extreme peak discharges and associated contributing drainage areas. The curve envelops, for a large range of drainage areas, the largest documented extreme peak discharges. Potential extreme peak discharges estimated from the curves were compared to probable maximum flood peak discharges estimated from various simulation models.

  4. 40 CFR 230.72 - Actions controlling the material after discharge.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discharge to minimize impact, for instance during periods of unusual high water flows, wind, wave, and tidal... discharge. 230.72 Section 230.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.72 Actions controlling the material after discharge. The...

  5. 40 CFR 230.72 - Actions controlling the material after discharge.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions controlling the material after discharge. 230.72 Section 230.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.72 Actions controlling the material after discharge. The...

  6. 40 CFR 230.72 - Actions controlling the material after discharge.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions controlling the material after discharge. 230.72 Section 230.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.72 Actions controlling the material after discharge. The...

  7. 40 CFR 230.72 - Actions controlling the material after discharge.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions controlling the material after discharge. 230.72 Section 230.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.72 Actions controlling the material after discharge. The...

  8. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada: Revision 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-28

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 516: Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 3, 6, and 22 on the NTS, CAU 516 includes six Corrective Action Sites (CASs) consisting of two septic systems, a sump and piping, a clean-out box and piping, dry wells, and a vehicle decontamination area. Corrective action investigation activities were performed from July 22 through August 14, 2003, with supplemental sampling conducted in late 2003 and early 2004. The potential exposure pathways for any contaminants of concern (COCs) identified during the development of the DQOs at CAU 516 gave rise to the following objectives: (1) prevent or mitigate exposure to media containing COCs at concentrations exceeding PALs as defined in the corrective action investigation plan; and (2) prevent the spread of COCs beyond each CAS. The following alternatives have been developed for consideration at CAU 516: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; and Alternative 3 - Closure in Place with Administrative Controls. Alternative 1, No Further Action, is the preferred corrective action for two CASs (06-51-02 and 22-19-04). Alternative 2, Clean Closure, is the preferred corrective action for four CASs (03-59-01, 03-59-02, 06-51-01, and 06-51-03). The selected alternatives were judged to meet all requirements for the technical components evaluated, as well as meeting all applicable state and federal regulations for closure of the site and will further eliminate the contaminated media at CAU 516.

  9. 28 CFR 50.7 - Consent judgments in actions to enjoin discharges of pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharges of pollutants. 50.7 Section 50.7 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) STATEMENTS OF POLICY § 50.7 Consent judgments in actions to enjoin discharges of pollutants. (a) It is hereby... enjoin discharges of pollutants into the environment only after or on condition that an opportunity...

  10. Correlation of action potentials in adjacent neurons

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2015-12-01

    A possible mechanism for the synchronization of action potential propagation along a bundle of neurons (ephaptic coupling) is considered. It is shown that this mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons. The proposed model allows us to estimate the scale of the correlation, i.e., the distance between neurons in the nervous tissue, wherein their synchronization becomes possible. The possibility for experimental verification of the proposed model of synchronization is discussed.

  11. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2007-03-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada.

  12. Screening Action Potentials: The Power of Light

    PubMed Central

    Kaestner, Lars; Lipp, Peter

    2011-01-01

    Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated read out and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for, e.g., pharmacological screens the following preparatory work has to be provided: (i) model cells under investigation need to represent target cells in the best possible manner; (ii) optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable read out with minimal interaction with the naive behavior of the cells and (iii) devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials. PMID:21847381

  13. Antimicrobial action of a discharge with a liquid cathode on the electrode liquid

    NASA Astrophysics Data System (ADS)

    Barinov, Yu. A.; Kuzikova, I. L.; Zinov'eva, S. V.; Shkol'nik, S. M.; Medvedeva, N. G.

    2015-09-01

    The antimicrobial influence of a discharge with a liquid cathode on an electrode liquid at atmospheric pressure was studied. The degree of the antimicrobial action of the discharge was shown to depend on the treatment regime and on the species of investigated microorganism test cultures. Gram-negative bacteria Pseudomonas fluorescens show the most prominent sensitivity to the treatment. Yeastlike fungi Candida albicans and gram-positive bacteria Bacillus subtilis are more resistant toward the action of the discharge. Increasing the duration of the treatment and raising the current from 60 to 150 mA leads to an increase in the inhibiting action on cells of P. fluorescens and C. albicans.

  14. Introducing the Action Potential to Psychology Students

    ERIC Educational Resources Information Center

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  15. Transferrin: structure, function and potential therapeutic actions.

    PubMed

    Gomme, Peter T; McCann, Karl B; Bertolini, Joseph

    2005-02-15

    There are many proteins that can multi-task. Transferrin, widely known as an iron-binding protein, is one such example of a multi-tasking protein. In this review, the multiple biological actions of transferrin, including its growth and cytoprotective activities, are discussed with the view of highlighting the potential therapeutic applications of this protein. PMID:15708745

  16. 40 CFR 230.72 - Actions controlling the material after discharge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions controlling the material after discharge. 230.72 Section 230.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... containing discharged material properly to prevent point and nonpoint sources of pollution; (d) Timing...

  17. 32 CFR 724.504 - NDRB actions preliminary to discharge review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false NDRB actions preliminary to discharge review. 724.504 Section 724.504 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Procedural Rights of the Applicant and Administrative...

  18. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  19. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  20. Laser action in runaway electron pre-ionized diffuse discharges

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Viktor F.; Suslov, Alexei I.

    2015-12-01

    Formation features of run-away electron preionized diffuse discharge (REP DD) and REP DD properties in different experimental conditions are studied. It was shown that sufficient uniformity of REP DD allows its application as an excitation source of lasers on different gas mixtures at elevated pressure. Promising results of REP DD application for development of gas lasers are shown. Stimulated radiation in the IR, visible and UV spectral ranges was obtained in the diffuse discharge. Ultimate efficiency of non-chain HF(DF) chemical and nitrogen lasers on mixtures of SF6 with H2(D2) and N2 was achieved. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at λ = 337,1 nm. Long-pulse operation of rare gas halide lasers was achieved.

  1. Potential Fluctuations and Energetic Ion Production in Hollow Cathode Discharges

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Katz, Ira; Mikellides, Ioannis G.

    2007-01-01

    Ions with energies significantly in excess of the applied discharge voltage have been reported for many years in hollow cathode discharges. Models of dc potential hills downstream of the cathode and instabilities in postulated double layers in the cathode orifice have been proposed to explain this, but have not been substantiated. Measurements of the dc and rf plasma density and potential profiles near the exit of hollow cathodes by miniature fast-scanning probes suggests that turbulent ion acoustic fluctuations and ionization instabilities in the cathode plume significantly increase the energy of the ions that flow from this region. Increases in the discharge current and/or decreases in the cathode gas flow enhance the amplitude of the fluctuations and increase the number and energy of the energetic ions, which increases the erosion rate of the cathode electrodes. The transition from the quiescent 'spot mode' to the noisy 'plume mode' characteristic of these discharges is found to be a gradual transition of increasing fluctuation amplitudes.

  2. Potential fluctuations and energetic ion production in hollow cathode discharges

    SciTech Connect

    Goebel, Dan M.; Jameson, Kristina K.; Katz, Ira; Mikellides, Ioannis G.

    2007-10-15

    Ions with energies significantly in excess of the applied discharge voltage have been reported for many years in hollow cathode discharges. Models of dc potential hills downstream of the cathode and instabilities in postulated double layers in the cathode orifice have been proposed to explain this, but have not been substantiated. Measurements of the dc and rf plasma density and potential profiles near the exit of hollow cathodes by miniature fast-scanning probes suggests that turbulent ion acoustic fluctuations and ionization instabilities in the cathode plume significantly increase the energy of the ions that flow from this region. Increases in the discharge current and/or decreases in the cathode gas flow enhance the amplitude of the fluctuations and increase the number and energy of the energetic ions, which increases the erosion rate of the cathode electrodes. The transition from the quiescent 'spot mode' to the noisy 'plume mode' characteristic of these discharges is found to be a gradual transition of increasing fluctuation amplitudes.

  3. 40 CFR 230.70 - Actions concerning the location of the discharge.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions concerning the location of the discharge. 230.70 Section 230.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Actions To Minimize Adverse Effects...

  4. 40 CFR 230.70 - Actions concerning the location of the discharge.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions concerning the location of the discharge. 230.70 Section 230.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Actions To Minimize Adverse Effects...

  5. 40 CFR 230.70 - Actions concerning the location of the discharge.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions concerning the location of the discharge. 230.70 Section 230.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Actions To Minimize Adverse Effects...

  6. Ca channel gating during cardiac action potentials.

    PubMed

    Mazzanti, M; DeFelice, L J

    1990-10-01

    How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the

  7. Dielectric-barrier discharges in two-dimensional lattice potentials.

    PubMed

    Sinclair, J; Walhout, M

    2012-01-20

    We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. The patterns that appear when filaments either overfill or underfill the lattice are reminiscent of those observed in other physical systems involving 2D lattices. We suggest that the connection between lattice-driven DBDs and other areas of physics may benefit from the further development of models that treat plasma filaments as interacting particles. PMID:22400753

  8. Corrective Action Investigation Plan for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    SciTech Connect

    2003-04-28

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office's (NNSA/NSO's) approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 516 consists of six Corrective Action Sites: 03-59-01, Building 3C-36 Septic System; 03-59-02, Building 3C-45 Septic System; 06-51-01, Sump Piping, 06-51-02, Clay Pipe and Debris; 06-51-03, Clean Out Box and Piping; and 22-19-04, Vehicle Decontamination Area. Located in Areas 3, 6, and 22 of the NTS, CAU 516 is being investigated because disposed waste may be present without appropriate controls, and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. Existing information and process knowledge on the expected nature and extent of contamination of CAU 516 are insufficient to select preferred corrective action alternatives; therefore, additional information will be obtained by conducting a corrective action investigation. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3/2004.

  9. Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    SciTech Connect

    DOE /NV

    1997-10-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

  10. Mechanical Surface Waves Accompany Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; El Hady, Ahmed

    2015-03-01

    The action potential (AP) is the basic mechanism by which information is transmitted along neuronal axons. Although the excitable nature of axons is understood to be primarily electrical, many experimental studies have shown that a mechanical displacement of the axonal membrane co-propagates with the electrical signal. While the experimental evidence for co-propagating mechanical waves is diverse and compelling, there is no consensus for their physical underpinnings. We present a model in which these mechanical displacements arise from the driving of mechanical surface waves, in which potential energy is stored in elastic deformations of the neuronal membrane and cytoskeleton while kinetic energy is stored in the movement of the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the electrostatic forces across the membrane as it passes. Our model allows us to predict the shape of the displacement that should accompany any traveling wave of voltage, including the well-characterized AP. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology. See Arxiv/1407.7600

  11. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2012-04-15

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 {mu}s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons'ExB drift velocity, which is about 10{sup 5} m/s and shows structures in space and time.

  12. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  13. Low pressure glow discharge in a system with hollow electrode at floating potential

    NASA Astrophysics Data System (ADS)

    Babinov, N. A.

    2016-01-01

    This article describes the research of the low pressure gas discharge in a system with hollow electrode at the floating potential. The main characteristic features of the discharge distinguishing it from the glow discharge with hollow cathode are described. The studied type of discharge has good perspective to use in the plasma emission systems allowing to reach high current efficiency of the ion sources.

  14. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  15. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  16. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  17. Corrective Action Decision Document (CADD), Area 12 fleet operations steam cleaning discharge area, Nevada Test Site Corrective Action Unit 339

    SciTech Connect

    Bonn, J.F.

    1996-12-01

    This Corrective Action Decision Document (CADD) incorporates the methodology used for evaluating the remedial alternatives completed for a former steam cleaning discharge area at the Nevada Test Site (NTS). The former steam cleaning site is located in Area 12, east of the Fleet Operations Building 12-16. The discharge area has been impacted by Resource Conservation and Recovery Act (RCRA) F Listed volatile organic compounds (VOCs) and petroleum hydrocarbons waste. Based upon these findings, resulting from Phase 1 and Phase 2 site investigations, corrective action is required at the site. To determine the appropriate corrective action to be proposed, an evaluation of remedial alternatives was completed. The evaluation was completed using a Corrective Measures Study (CMS). Based on the results of the CMS, the favored closure alternative for the site is plugging the effluent discharge line, removing the sandbagged barrier, completing excavation of VOC impacted soils, and fencing the soil area impacted by total petroleum hydrocarbons (TPH), east of the discharge line and west of the soil berm. Management of the F Listed VOCs are dictated by RCRA. Due to the small volume of impacted soil, excavation and transportation to a Treatment Storage and Disposal Facility (TSDF) is the most practical method of management. It is anticipated that the TPH (as oil) impacted soils will remain in place based upon; the A through K Analysis, concentrations detected (maximum 8,600 milligrams per kilogram), expected natural degradation of the hydrocarbons over time, and the findings of the Phase 2 Investigation that vertical migration has been minimal.

  18. Teachers in Action Research: Assumptions and Potentials

    ERIC Educational Resources Information Center

    Li, Yuen-Ling

    2008-01-01

    Research literature has long indicated that action research may stimulate practitioners themselves to actively evaluate the quality of their practice. This study is designed to report the use of action research for the development of early years professional practice by analyzing the pre-project and the post-project video-filmed teaching events.…

  19. Microcomputer program for automated action potential waveform analysis.

    PubMed

    Soto, E; Salceda, E; Cruz, R; Ortega, A; Vega, R

    2000-06-01

    A program for action potential waveform analysis based on a PC compatible computer is described. Single or averaged action potentials are analyzed by obtaining its first derivative and using criteria which allow automatic measurement of several action potential components, including: depolarization rate, repolarization rate, amplitude, duration, resting membrane potential and afterhyperpolarization amplitude and slope. Data can be imported from pClamp (Axon Instruments) and exported to other software such as Excel, Sigmaplot and MatLab for example. PMID:10764940

  20. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2002-06-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  1. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 516: SEPTIC SYSTEMS AND DISCHARGE POINTS, NEVADA TEST SITE, NEVADA

    SciTech Connect

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-08-01

    Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, is listed in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 (FFACO, 1996). CAU 516 consists of six Corrective Action Sites (CASs) located in Areas 3, 6, and 22 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada (Figure 1). CAU 516 is comprised of the following six CASs: (1) 03-59-01 Building 3C-36 Septic System; (2) 03-59-02 Building 3C-45 Septic System; (3) 06-51-01 Sump and Piping; (4) 06-51-02 Clay Pipe and Debris; (5) 06-51-03 Clean-Out Box and Piping; and (6) 22-19-04 Vehicle Decontamination Area. Details on site history and site characterization results for CAU 516 are provided in the approved Corrective Action Investigation Plan (CAIP), (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003), and the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2004).

  2. [Individualised medicine - potentials and need for action].

    PubMed

    Hüsing, Bärbel

    2010-01-01

    Individualised medicine aims to classify seemingly homogenous patient groups into smaller clinically relevant subgroups (stratification) in order to be able to treat them differently, thus contributing to the improvement of health care services, to the prevention of inappropriate treatments and to the reduction of adverse effects. This article summarises a report to the Office of Technology Assessment at the German Bundestag and points out the need for action for transferring individualised medicine from research to clinical application: significant incentives are required in order to prove the clinical validity of newly identified biomarkers of complex diseases. Sustainable business models for the joint development of new applications by research institutions, biotechnology companies, pharmaceuticals and medical devices companies are required. Instruments for transferring knowledge from bench to bedside (translational research) and the existing regulatory framework should be further developed in order to strike an appropriate balance between incentives for accelerating the transfer of innovative technology to the health care sector while, at the same time, ensuring patient safety, high quality and clinical utility. PMID:21147435

  3. Selective effects of an octopus toxin on action potentials

    PubMed Central

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  4. The effects of temperature on human compound action potentials.

    PubMed Central

    Bolton, C F; Sawa, G M; Carter, K

    1981-01-01

    The upper limbs of 10 healthy subjects were cooled and then warmed over physiological temperature ranges. The compound action potentials of median digital nerves, median sensory nerve at the wrist, radial sensory nerve at the wrist, and median thenar muscle, all showed progressive reduction in latency, amplitude, duration and area during rising temperature. Our studies suggest that the sensory compound action potential changes occur predominantly because of the summated effects of reduction in the duration of the action potentials of single myelinated fibres, although disproportionate increase in the conduction velocity of larger myelinated fibres also plays a role. Images PMID:7264687

  5. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points

    SciTech Connect

    NSTec Environmental Restoration

    2007-02-01

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.

  6. Assessing the potential global extent of SWOT river discharge observations

    NASA Astrophysics Data System (ADS)

    Pavelsky, Tamlin M.; Durand, Michael T.; Andreadis, Konstantinos M.; Beighley, R. Edward; Paiva, Rodrigo C. D.; Allen, George H.; Miller, Zachary F.

    2014-11-01

    Despite its importance as a major element of the global hydrologic cycle, runoff remains poorly constrained except at the largest spatial scales due to limitations of the global stream gauge network and inadequate data sharing. Efforts using remote sensing to infer runoff from discharge estimates are limited by characteristics of present-day sensors. The proposed Surface Water and Ocean Topography (SWOT) mission, a joint project between the United States and France, aims to substantially improve space-based estimates of river discharge. However, the extent of rivers observable by SWOT, likely limited to those wider than 50-100 m, remains unknown. Here, we estimate the extent of SWOT river observability globally using a downstream hydraulic geometry (DHG) approach combining basin areas from the Hydro1k and Hydrosheds elevation products, discharge from the Global Runoff Data Centre (GRDC), and width estimates from a global width-discharge relationship. We do not explicitly consider SWOT-specific errors associated with layover and other phenomena in this analysis, although they have been considered in formulation of the 50-100 m width thresholds. We compare the extent of SWOT-observable rivers with GRDC and USGS gauge datasets, the most complete datasets freely available to the global scientific community. In the continental US, SWOT would match USGS river basin coverage only at large scales (>25,000 km2). Globally, SWOT would substantially improve on GRDC observation extent: SWOT observation of 100 m (50 m) rivers will allow discharge estimation in >60% of 50,000 km2 (10,000 km2) river basins. In contrast, the GRDC observes fewer than 30% (15%) of these basins. SWOT could improve characterization of global runoff processes, especially with a 50 m observability threshold, but in situ gauge data remains essential and must be shared more freely with the international scientific community.

  7. Record of Technical Change {number_sign}1 for ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0

    SciTech Connect

    US DOE Nevada Operations Office

    1999-06-30

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0

  8. Spatial distribution and accumulation of radicals arising in organic solids under the action of glow discharge

    NASA Astrophysics Data System (ADS)

    Raitsimring, A. M.; Kurshev, V. V.

    1994-12-01

    The method, based on analyzing the dipolar broadening of EPR spectra was applied for investigation of the spatial distribution of radicals generated by high-frequency glow discharge in organic molecular crystals (powders of malonic and dimethylmalonic acids) and glassy isopropanol contained electron scavenger. It was shown that in the first case the radical distribution does not depend on time of discharge. The radicals are generated in layer of size ˜.05-0.1 μm at a concentration of ˜2 10 20 cm -3. For the second case the distribution function was changed in the course of plasma treatment and the depth of radical generation was varied from 0.25 to 1.5 μm during the discharge action. Contribution of the various mechanisms of radical formation were evaluated and it was shown that ionic mechanism predominated. A kinetic model is proposed to describe both the radical accumulation and evolution of spatial distribution function in plasmolysis. The use of the model, method and obtained data for general and practical applications is discussed.

  9. Synchronization of action potentials during low-magnesium-induced bursting

    PubMed Central

    Johnson, Sarah E.; Hudson, John L.

    2015-01-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103

  10. Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential.

    PubMed

    Bocian, Renata; Kłos-Wojtczak, Paulina; Konopacki, Jan

    2016-09-01

    The theta rhythm discovered in the posterior hypothalamus area (PHa) differs from theta observed in the hippocampal formation. In comparison to hippocampal spontaneous theta, the theta recorded in the PHa is rarely registered, has lower amplitude, often disappears, and sometimes returns after a few minutes. These features indicate that spontaneous theta recorded in the PHa is not an appropriate experimental model to search for the correlation between PHa cell discharges and local field potential. In this paper we present standard experimental conditions necessary to record theta-related cells in the PHa in anesthetized rats. Three pharmacological agents were used in the experiments to induce PHa theta rhythm in urethanized rats: carbachol (CCH), carbenoxolone and kainic acid, which are potent enough to induce well-synchronized PHa theta. However, CCH was found to be the best pharmacological tool to induce PHa theta oscillations, due to its longest duration of action and lack of preliminary epileptogenic effects. It seems that CCH-induced theta can be the most suitable pharmacological model for experiments with the use of protocol of long-lasting recordings of PHa theta-related cell discharges. PMID:27353451

  11. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  12. Intracellular recording of action potentials by nanopillar electroporation

    NASA Astrophysics Data System (ADS)

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  13. A physical action potential generator: design, implementation and evaluation.

    PubMed

    Latorre, Malcolm A; Chan, Adrian D C; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1-40 in incremental steps of 1) and the node drive potential (0-2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems. PMID:26539072

  14. A physical action potential generator: design, implementation and evaluation

    PubMed Central

    Latorre, Malcolm A.; Chan, Adrian D. C.; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1–40 in incremental steps of 1) and the node drive potential (0–2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems. PMID:26539072

  15. Phosphorus in groundwater discharge - A potential source for lake eutrophication

    NASA Astrophysics Data System (ADS)

    Meinikmann, Karin; Hupfer, Michael; Lewandowski, Jörg

    2015-05-01

    Lake eutrophication has long been mainly associated with phosphorus (P) inputs from overland flow. The present study gives evidence that also groundwater can carry significant loads of dissolved P. We quantified P loads from groundwater to Lake Arendsee using near-shore measurements of P concentrations at a high spatial resolution and volume fluxes of lacustrine groundwater discharge (LGD) derived from a previous study. Results show that LGD accounts for more than 50% of the overall external P load, thus fuelling the eutrophication of the lake. Several different approaches of groundwater sampling (groundwater observation wells, temporary piezometers, and domestic wells) reveal a broad spatial heterogeneity of P concentrations in the subsurface catchment of the lake. The highest P concentrations (above 4 mg l-1) were found below a settled area along the southern lake shore. Contrary to expectations, other parameters (dissolved iron, ammonium, etc.) were not correlated with P, indicating that natural processes are superimposed by heavy contaminations. Both the intensity of the contamination and its proximity to the lake inhibit nutrient retention within vadose zone and aquifer and allow significant P loads to be discharged into the lake. Although the groundwater quality was investigated intensely, the results eventually give no clear evidence of the location and sources of the pollution. As a consequence, measures to decrease LGD-derived P loads cannot target the contamination at its source in the catchment. They need to be implemented in the riparian area to eliminate groundwater P directly before it enters the lake.

  16. Corrective Action Decision Document for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Grant Evenson

    2006-05-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, at the Nevada Test Site, Nevada, according to the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 151 is comprised of eight corrective action sites (CASs): (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of corrective action alternatives (CAAs) for each of the eight CASs within CAU 151. Corrective action investigation (CAI) activities were performed from September 12 through November 18, 2005, as set forth in the CAU 151 Corrective Action Investigation Plan and Record of Technical Change No. 1. Additional confirmation sampling was performed on December 9, 2005; January 10, 2006; and February 13, 2006. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at two of the eight CASs in CAU 151 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 151 revealed the following: (1) Soils at CASs 02-05-01, 12-04-01, 12-04-02, 12-04-03, 12-47-01, 18-03-01, 18-99-09, and Lagoons B through G of CAS 12-03-01 do not contain contamination at concentrations exceeding the FALs. (2) Lagoon A of CAS 12-03-01 has arsenic above FALs in shallow subsurface soils. (3) One of the two tanks of CAS 12-04-01, System No.1, has polychlorinated biphenyls (aroclor-1254), trichloroethane, and cesium-137 above FALs in the sludge. Both CAS 12-04-01, System No.1 tanks contain

  17. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.

    PubMed

    Sendin, Gaston; Bourien, Jérôme; Rassendren, François; Puel, Jean-Luc; Nouvian, Régis

    2014-02-01

    Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development. PMID:24429348

  18. Membrane, action, and oscillatory potentials in simulated protocells.

    PubMed

    Przybylski, A T; Stratten, W P; Syren, R M; Fox, S W

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KC1) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells. PMID:7162535

  19. Membrane, action, and oscillatory potentials in simulated protocells

    NASA Astrophysics Data System (ADS)

    Przybylski, Aleksander T.; Stratten, Wilford P.; Syren, Robert M.; Fox, Sidney W.

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  20. Membrane, action, and oscillatory potentials in simulated protocells

    NASA Technical Reports Server (NTRS)

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  1. Flood Frequency Estimates and Documented and Potential Extreme Peak Discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the

  2. Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada

    SciTech Connect

    DOE /NV

    1999-05-20

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

  3. Far-field potentials recorded from action potentials and from a tripole in a hemicylindrical volume.

    PubMed

    Jewett, D L; Deupree, D L

    1989-05-01

    There is growing evidence in support of the hypothesis that far-field potentials are recorded when action potentials encounter discontinuities in the surrounding volume. The present study found further support for this hypothesis using two methods of experimentation. The first method recorded potentials when the action potential from an isolated bullfrog sciatic nerve in a hemicylindrical volume (i) encountered a change in the shape of the surrounding volume, (ii) crossed a boundary between 2 volumes of differing resistivities, (iii) reached a bend in the nerve, or (iv) reached the functional end of the nerve. In the second method, potentials were recorded when an electrical tripole, constructed in a way to produce the electrical equivalent of an action potential, encountered the same discontinuities as well as when it was configured to simulate a curved nerve. These results are consistent with the hypothesis that dipole components of an action potential predominant in far-field recordings. PMID:2469568

  4. Potential errors associated with stage-discharge relations for selected streamflow-gaging stations, Maricopa County, Arizona

    USGS Publications Warehouse

    Tillery, Anne C.; Phillips, Jeff V.; Capesius, Joseph P.

    2001-01-01

    Potential errors were derived for individual discharge measurements and stage-discharge relations for 17 streamflow-gaging stations in Maricopa County. Information presented primarily consists of stage and discharge data that were used to develop the stage-discharge relations that were in effect for water year 1998. Accuracy of the discharge measurements directly relate to accuracy of the stage-discharge relation developed for each site. Stage-discharge relations generally are developed using direct measurements of stage and discharge, indirect measurements of peak discharge, and theoretical weir and culvert computations. Accuracy of current-meter measurements of discharge (direct measurements) depends on factors such as the number of subsections in the measurement, stability of the channel, changes in flow conditions, and accuracy of the equipment. Accuracy of indirect measurements of peak discharge is determined by the accuracy of discharge coefficients and flow type selected for the computations. The accuracy of indirect peak-discharge computations generally is less than the accuracy associated with current-meter measurements. Current-meter measurements, indirect measurements of discharge, weir and culvert computations, and step-backwater computations are graphically represented on plots of the stage-discharge relations. Potential errors associated with the discharge measurements at selected sites are depicted as error bars on the plots. Potential errors derived for discharge measurements at 17 sites range from 5 to 25 percent. Errors generally are greater for measurements of large flows in channels having unstable controls using indirect methods.

  5. Action prediction based on anticipatory brain potentials during simulated driving

    NASA Astrophysics Data System (ADS)

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  6. Propagation of Action Potentials: An Active Participation Exercise.

    ERIC Educational Resources Information Center

    Felsten, Gary

    1998-01-01

    Describes an active participation exercise that demonstrates the propagation of action potentials (the ability to transmit information through the neural network, dependent upon chemical interactions in the brain). Students assume the structure and function of the network by lining up around the room and communicating through hand signals and…

  7. Passive Responses Resembling Action Potentials: A Device for the Classroom

    ERIC Educational Resources Information Center

    Newman, Ian A.; Pickard, Barbara G.

    1975-01-01

    Describes the construction and operation of a network of entirely passive electrical components that gives a response to an electrical shock similar to an action potential. The network of resistors, capacitors, and diodes was developed to produce responses that would mimic those observed, for example, when a dark-grown pea epicotyl is shocked…

  8. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    SciTech Connect

    1997-10-27

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

  9. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  10. Optical Emission Spectroscopic Evaluation of Different Microwave Plasma Discharges and Its Potential Application for Sterilization Processes

    NASA Astrophysics Data System (ADS)

    Hueso, José L.; Rico, Víctor J.; Yanguas-Gil, Ángel; Cotrino, José; González-Elipe, Agustín R.

    The present work aims at studying different microwave flowing discharges containing Ar and/or NO as alternative candidates to more extended N2 containing plasma mixtures like N2-O2. Optical Emission Spectroscopy (OES) is used to demonstrate the potential possibilities of these plasma mixtures to provide O* and UV intermediate species demanded for sterilization purposes at low temperatures and extended discharge gaps. Additionally, some plasma sterilization experiments with Escherichia coli cultures are presented.

  11. 32 CFR 724.502 - Actions to be taken by the applicant preliminary to discharge review.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the United States, DD Form 293 must be used in requesting a discharge review. DD Form 293 is available...) A copy of the Armed Forces of the United States Report of Transfer or Discharge (DD-214),...

  12. 32 CFR 724.502 - Actions to be taken by the applicant preliminary to discharge review.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the United States, DD Form 293 must be used in requesting a discharge review. DD Form 293 is available...) A copy of the Armed Forces of the United States Report of Transfer or Discharge (DD-214),...

  13. 32 CFR 724.502 - Actions to be taken by the applicant preliminary to discharge review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the United States, DD Form 293 must be used in requesting a discharge review. DD Form 293 is available...) A copy of the Armed Forces of the United States Report of Transfer or Discharge (DD-214),...

  14. 40 CFR 230.70 - Actions concerning the location of the discharge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the discharge can be minimized by the choice of the disposal site. Some of the ways to accomplish... disposal site that has been used previously for dredged ma-terial discharge; (d) Selecting a disposal site... sand on sand or mud -on mud; (e) Selecting the disposal site, the discharge point, and the method...

  15. [Ion channels and action potentials in olfactory receptor cells].

    PubMed

    Kawai, Fusao; Miyachi, Ei-ichi

    2007-11-01

    The first step in olfactory sensation involves the binding of odorant molecules to specific receptor proteins on the ciliary surface of olfactory receptor cells (ORCs). Odorant receptors coupled to G-proteins activate adenylyl cyclase leading to the generation of cAMP, which directly gates a cyclic nucleotide-gated cationic channel in the ciliary membrane. This initial excitation causes a slow and graded depolarizing voltage change, which is encoded into a train of action potentials. Action potentials of ORCs are generated by voltage-gated Na- currents and T-type Ca2- currents in the somatic membrane. Isolated ORCs that have lost their cilia during the dissociation procedure are known to exhibit spike frequency accommodation by injecting the steady current. This raises the possibility that somatic ionic channels in ORCs may serve for odor adaptation at the level of spike encoding, although odor adaptation is mainly accomplished by the ciliary transduction machinery. This review discusses current knowledge concerning the mechanisms of spike generation in ORCs. It also reviews how neurotransmitters and hormones modulate ionic currents and action potentials in ORCs. PMID:18154041

  16. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  17. Corrective Action Investigation Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental corrective action alternatives. Corrective Action Unit 151 is located in Areas 2, 12, 18, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 151 is comprised of the nine Corrective Action Sites (CAS) listed below: (1) 02-05-01, UE-2ce Pond; (2) 12-03-01, Sewage Lagoons (6); (3) 12-04-01, Septic Tanks; (4) 12-04-02, Septic Tanks; (5) 12-04-03, Septic Tank; (6) 12-47-01, Wastewater Pond; (7) 18-03-01, Sewage Lagoon; (8) 18-99-09, Sewer Line (Exposed); and (9) 20-19-02, Photochemical Drain. The CASs within CAU 151 are discharge and collection systems. Corrective Action Site 02-05-01 is located in Area 2 and is a well-water collection pond used as a part of the Nash test. Corrective Action Sites 12-03-01, 12-04-01, 12-04-02, 12-04-03, and 12-47-01 are located in Area 12 and are comprised of sewage lagoons, septic tanks, associated piping, and two sumps. The features are a part of the Area 12 Camp housing and administrative septic systems. Corrective Action Sites 18-03-01 and 18-99-09 are located in the Area 17 Camp in Area 18. These sites are sewage lagoons and associated piping. The origin and terminus of CAS 18-99-09 are unknown; however, the type and configuration of the pipe indicates that it may be a part of the septic systems in Area 18. Corrective Action Site 20-19-02 is located in the Area 20 Camp. This site is comprised of a surface discharge of photoprocessing chemicals.

  18. Action potentials of curved nerves in finite limbs.

    PubMed

    Xiao, S; McGill, K C; Hentz, V R

    1995-06-01

    Previous simulations of volume-conducted nerve-fiber action-potentials have modeled the limb as semi-infinite or circularly cylindrical, and the fibers as straight lines parallel to the limb surface. The geometry of actual nerves and limbs, however, can be considerably more complicated. This paper presents a general method for computing the potentials of fibers with arbitrary paths in arbitrary finite limbs. It involves computing the propagating point-source response (PPSR), which is the potential arising from a single point source (dipole or tripole) travelling along the fiber. The PPSR can be applied to fibers of different conduction velocities by simple dilation or compression. The method is illustrated for oblique and spiralling nerve fibers. Potentials from oblique fibers are shown to be different for orthodromic and antidromic propagation. Such results show that the straight-line models are not always adequate for nerves with anatomical amounts of curvature. PMID:7790016

  19. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons

  20. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1

    SciTech Connect

    Alfred N. Wickline

    2004-04-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 516 is comprised of the following Corrective Action Sites (CASs): (1) 03-59-01 - Bldg 3C-36 Septic System; (2) 03-59-02 - Bldg 3C-45 Septic System; (3) 06-51-01 - Sump and Piping; (4) 06-51-02 - Clay Pipe and Debris; (5) 06-51-03 - Clean Out Box and Piping; and (7) 22-19-04 - Vehicle Decontamination Area. The purpose of this CADD is to identify and provide the rationale for the recommendation of an acceptable corrective action alternative for each CAS within CAU 516. Corrective action investigation activities were performed between July 22 and August 14, 2003, as set forth in the Corrective Action Investigation Plan. Supplemental sampling was conducted in late 2003 and early 2004.

  1. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. PMID:23422156

  2. Emergency assessment of potential debris-flow peak discharges, Missionary Ridge fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Rea, Alan H.; Gleason, J. Andrew; Garcia, Stephen P.

    2002-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Missionary Ridge fire of June 9 through July 14, 2002, near Durango, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and 6,446 ft3/s (183 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). Potential peak discharges between 1 ft3/s (0.03 m3/s) and >8,000 ft3/s (227 m3/s) are calculated for the 25-year, 1-hour storm of 1.3 inches (33 mm) and for the 100-year, 1-hour storm of 1.8 inches (46 mm). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and for the planning of evacuation timing and routes.

  3. Emergency assessment of potential debris-flow peak discharges, Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.; Rea, Alan H.; Garcia, Steven P.

    2002-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  4. Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.

    PubMed

    Torres Valderrama, Aldemar; Witteveen, Jeroen; Navarro, Maria; Blom, Joke

    2015-12-01

    We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model, we unravel two main uncertainty sources, which account for more than 90 % of the fluctuations in neuronal responses, and have a direct biophysical interpretation. We discuss how this interesting feature of the H-H model allows one to reduce greatly the probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU time in numerical simulations and opening possibilities for probabilistic generalisation of other deterministic models of great importance in physiology and mathematical neuroscience. PMID:26458902

  5. Inverted xerographic depletion discharge mechanism for the dark decay of electrostatic surface potential on amorphous semiconductors

    SciTech Connect

    Kasap, S.O.

    1988-07-01

    Recently, the xerographic depletion discharge (XDD) model has been applied extensively to chemically modified a-Se, a-Se/sub 1/..sqrt../sub x/Te/sub x/ alloys, and a-As/sub 2/Se/sub 3/ as well as to a-Si:H films to study the nature of charge carrier generation from deep mobility gap states which control the dark decay of the electrostatic surface potential on a corona charged amorphous semiconductor. In the normal XDD model, the dark discharge involves bulk thermal generation of a mobile carrier of the same sign as the surface charge and its subsequent sweep out from the sample leaving behind an ionized center of opposite charge. It is shown that an ''inverted depletion discharge'' mechanism, which involves the thermal generation of a mobile charge carrier of the opposite sign to the surface charge and its subsequent drift to the surface and the resulting surface charge neutralization there, results in a dark discharge rate which has identical features as the normal XDD mechanism. In the normal XDD mechanism, the neutral region develops after the depletion time from the grounded electrode, whereas in the inverted XDD mechanism the neutral region grows from the surface. Furthermore, during inverted depletion discharge the surface charge is actually dissipated by neutralization, whereas in the normal depletion discharge model there is no such requirement over the time scale of the experiment. It is concluded that xerographic dark decay experiments alone cannot determine the sign of the thermally generated mobile carrier and that of the bulk space charge. Chemically modified amorphous selenium case is discussed as an example of surface potential decay resulting from bulk space-charge buildup.

  6. The bioelectrical source in computing single muscle fiber action potentials.

    PubMed Central

    van Veen, B K; Wolters, H; Wallinga, W; Rutten, W L; Boom, H B

    1993-01-01

    Generally, single muscle fiber action potentials (SFAPs) are modeled as a convolution of the bioelectrical source (being the transmembrane current) with a weighting or transfer function, representing the electrical volume conduction. In practice, the intracellular action potential (IAP) rather than the transmembrane current is often used as the source, because the IAP is relatively easy to obtain under experimental conditions. Using a core conductor assumption, the transmembrane current equals the second derivative of the IAP. In previous articles, discrepancies were found between experimental and simulated SFAPs. Adaptations in the volume conductor slightly altered the simulation results. Another origin of discrepancy might be an erroneous description of the source. Therefore, in the present article, different sources were studied. First, an analytical description of the IAP was used. Furthermore, an experimental IAP, a special experimental SFAP, and a measured transmembrane current scaled to our experimental situation were applied. The results for the experimental IAP were comparable to those with the analytical IAP. The best agreement between experimental and simulated data was found for a measured transmembrane current as source, but differences are still apparent. PMID:8324186

  7. A web portal for in-silico action potential predictions

    PubMed Central

    Williams, Geoff; Mirams, Gary R.

    2015-01-01

    Introduction Multiple cardiac ion channels are prone to block by pharmaceutical compounds, and this can have large implications for cardiac safety. The effect of a compound on individual ion currents can now be measured in automated patch clamp screening assays. In-silico action potential models are proposed as one way of predicting the integrated compound effects on whole-cell electrophysiology, to provide an improved indication of pro-arrhythmic risk. Methods We have developed open source software to run cardiac electrophysiology simulations to predict the overall effect of compounds that block IKr, ICaL, INa, IKs, IK1 and Ito to varying degrees, using a choice of mathematical electrophysiology models. To enable safety pharmacology teams to run and evaluate these simulations easily, we have also developed an open source web portal interface to this simulator. Results The web portal can be found at https://chaste.cs.ox.ac.uk/ActionPotential. Users can enter details of compound affinities for ion channels in the form of IC50 or pIC50 values, run simulations, store the results for later retrieval, view summary graphs of the results, and export data to a spreadsheet format. Discussion This web portal provides a simple interface to reference versions of mathematical models, and well-tested state-of-the-art equation solvers. It provides safety teams easy access to the emerging technology of cardiac electrophysiology simulations for use in the drug-discovery process. PMID:25963830

  8. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  9. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus. PMID:21117748

  10. Metabolic syndrome potentiates the cardiac action potential-prolonging action of drugs: a possible 'anti-proarrhythmic' role for amlodipine.

    PubMed

    Caillier, Bertrand; Pilote, Sylvie; Patoine, Dany; Levac, Xavier; Couture, Christian; Daleau, Pascal; Simard, Chantale; Drolet, Benoit

    2012-03-01

    Type II diabetes was shown to prolong the QT interval on the ECG and to promote cardiac arrhythmias. This is not so clear for metabolic syndrome, a precursor state of type II diabetes. The objectives of the present study were to generate a guinea pig model of metabolic syndrome by long-term exposure to diabetogenic diets, and to evaluate the monophasic action potential duration (MAPD)-modulating effects of drugs in these animals. Male Hartley guinea pigs were fed with either the control, the High Fat High Sucrose (HFHS) or the High Fat High Fructose (HFHF) diet for 150 days. Evolution of weight, blood cholesterol, triglycerides, urea and glucose tolerance were regularly monitored. Histopathological evolution was also evaluated in target organs such as pancreas, heart, liver and kidneys. Ex vivo experiments using the Langendorff retroperfusion technique, isolated hearts from guinea pigs either fed with the control, the HFHS or the HFHF diet were exposed to dofetilide 20 nM (D), chromanol 293B 10 μM (C) and amlodipine 100 nM (A) in different drug combinations and monophasic action potential duration was measured at 90% repolarization (MAPD₉₀). Our data show that it is possible to generate a guinea pig model of metabolic syndrome by chronic exposure to diabetogenic diets. Minor histopathological abnormalities were observed, mainly in the pancreas and the liver. Metabolic syndrome potentiates the MAPD-prolonging actions of I(Kr)-blocking (dofetilide) and I(Ks)-blocking (chromanol 293B) drugs, an effect that is reversible upon administration of the calcium channel blocker amlodipine. PMID:22154802

  11. Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential

    NASA Astrophysics Data System (ADS)

    Liao, Xiaolin; Huang, Qiming; Mai, Shaowei; Wang, Xianshu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Li, Weishan

    2015-07-01

    The self-discharge mechanism of LiNi1/3Co1/3Mn1/3O2 cathode for lithium ion battery at high potential (4.5 V) has been understood through physical and electrochemical characterizations including charge/discharge test, electrochemical impedance spectroscopy (EIS), inductively coupled plasma atomic emission spectrometer (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It is found that the charged LiNi1/3Co1/3Mn1/3O2 cathode to 4.5 V suffers seriously self-discharge. After storage for 8 days, the potential of the cathode charged to 4.2 V remains stable, while that of the charged cathode to 4.5 V decreases from 4.5 to 1.0 V, The characterizations, from SEM, TEM, ICP-AES, and XRD, demonstrate that this self-discharge results from the interaction between charged LiNi1/3Co1/3Mn1/3O2 and electrolyte, which causes the dissolution of transition metals from LiNi1/3Co1/3Mn1/3O2 and the successive decomposition of the electrolyte.

  12. The Potential of Deweyan-Inspired Action Research

    ERIC Educational Resources Information Center

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  13. Cardiac dynamics: a simplified model for action potential propagation

    PubMed Central

    2012-01-01

    This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation. PMID:23194429

  14. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  15. Dipole characterization of single neurons from their extracellular action potentials

    PubMed Central

    Victor, Jonathan D.

    2011-01-01

    The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to

  16. Exploring the Potential of Table-Top X-Ray Lasers and Capillary Discharge for Applications

    SciTech Connect

    Shlyaptev, V N; Dunn, J; Smith, R F; Moon, S J; Fournier, K B; Nilsen, J; Osterheld, A L; Kuba, J; Wootton, A J; Lee, R W; Rocca, J J; Rahman, A; Hammarsten, E; Filevich, J; Jankovska, E; Marconi, M C; Fornaciari, N; Buchenauer, D; Hender, H A; Kari,M S; Kanouff, M; Dimkoff, J; Kubiak, G; Shimkaveg, G; Silfvast, W T

    2003-05-08

    The advantages of using of table top x-ray lasers (XRLs) for different applications have been described. Examples of the first successful use of XRLs, the current efforts in applying them and the potential applications where an XRL can be used in future have been discussed. Modeling results showing the possibility of 3-4 times shorter wavelength capillary discharge x-ray lasers and calculated spectrum of Xe capillary EUV source are presented.

  17. A synchronized emissive probe for time-resolved plasma potential measurements of pulsed discharges

    SciTech Connect

    Sanders, Jason M.; Rauch, Albert; Mendelsberg, Rueben J.; Anders, Andre

    2011-09-15

    A pulsed emissive probe technique is presented for measuring the plasma potential of pulsed plasma discharges. The technique provides time-resolved data and features minimal disturbance of the plasma achieved by alternating probe heating with the generation of plasma. Time resolution of about 20 ns is demonstrated for high power impulse magnetron sputtering (HIPIMS) plasma of niobium in argon. Spatial resolution of about 1 mm is achieved by using a miniature tungsten filament mounted on a precision translational stage. Repeated measurements for the same discharge conditions show that the standard deviation of the measurements is about 1-2 V, corresponding to 4%-8% of the maximum plasma potential relative to ground. The principle is demonstrated for measurements at a distance of 30 mm from the target, for different radial positions, at an argon pressure of 0.3 Pa, a cathode voltage of -420 V, and a discharge current of about 60 A in the steady-state phase of the HIPIMS pulse.

  18. Tactile Stimulation Evokes Long-Lasting Potentiation of Purkinje Cell Discharge In Vivo

    PubMed Central

    Ramakrishnan, K. B.; Voges, Kai; De Propris, Licia; De Zeeuw, Chris I.; D’Angelo, Egidio

    2016-01-01

    In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in Purkinje cell (PC) spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here, we show that facial tactile stimuli organized in theta-patterns can induce stereotyped N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA-A) receptor-dependent changes in PCs and molecular layer interneurons (MLIs) firing: invariably, all PCs showed a long-lasting increase (Spike-Related Potentiation or SR-P) and MLIs a long-lasting decrease (Spike-Related Suppression or SR-S) in baseline activity and spike response probability. These observations suggests that tactile sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber-parallel fiber (MF-PF) pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation (ES) of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that tactile sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that PC activity is potentiated when the MF-PF system is activated in the absence of conjunctive climbing fiber (CF) activity. PMID:26924961

  19. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  20. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  1. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  2. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment.

    PubMed

    Feron, V J; Til, H P; de Vrijer, F; Woutersen, R A; Cassee, F R; van Bladeren, P J

    1991-01-01

    Aldehydes constitute a group of relatively reactive organic compounds. They occur as natural (flavoring) constituents in a wide variety of foods and food components, often in relatively small, but occasionally in very large concentrations, and are also widely used as food additives. Evidence of carcinogenic potential in experimental animals is convincing for formaldehyde and acetaldehyde, limited for crotonaldehyde, furfural and glycidaldehyde, doubtful for malondialdehyde, very weak for acrolein and absent for vanillin. Formaldehyde carcinogenesis is a high-dose phenomenon in which the cytotoxicity plays a crucial role. Cytotoxicity may also be of major importance in acetaldehyde carcinogenesis but further studies are needed to prove or disprove this assumption. For a large number of aldehydes (relevant) data on neither carcinogenicity nor genotoxicity are available. From epidemiological studies there is no convincing evidence of aldehyde exposure being related to cancer in humans. Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural. Malondialdehyde, glycidaldehyde, benzaldehyde, cinnamaldehyde and anisaldehyde cannot be evaluated on the basis of the available data. A series of aldehydes should be subjected to at least mutagenicity, cytogenicity and cytotoxicity tests. Priority setting for testing should be based on expected mechanism of action and degree of human exposure. PMID:2017217

  3. Pharmacological actions of statins: potential utility in COPD.

    PubMed

    Young, R P; Hopkins, R; Eaton, T E

    2009-12-01

    Chronic obstructive pulmonary disease (COPD) is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-κB mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition of cytokine production (tumour necrosis factor-α, interleukin (IL)-6 and IL-8) and neutrophil infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated) effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5) inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD. PMID:20956147

  4. Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria.

    PubMed

    Watanabe, A; Obara, S; Akiyama, T

    1967-03-01

    From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes. PMID:6034506

  5. Pacemaker Potentials for the Periodic Burst Discharge in the Heart Ganglion of a Stomatopod, Squilla oratoria

    PubMed Central

    Watanabe, Akira; Obara, Shosaku; Akiyama, Toyohiro

    1967-01-01

    From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes. PMID:6034506

  6. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons

    PubMed Central

    Russo, Giovanni; Nieus, Thierry R.; Maggi, Silvia; Taverna, Stefano

    2013-01-01

    Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior. PMID:24294191

  7. Physical and chemical properties of tungsten oxide nanoparticles obtained in plasma discharge under ultrasonic action

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.

    2015-12-01

    In this study, plasma discharge in a liquid at intensive ultrasonic field above the cavitation threshold has been proven to be of great interest for initiation of various physical and chemical processes. In such surcharge, nanoparticles of tungsten oxide with controlled size and shape and narrow particle size distribution have been synthesized. Further exploration of synthesized nanoparticles has demonstrated that the factor of ultrasonic cavitation during the synthesis substantially affects physical and chemical characteristics of nanoparticles. Similar procedure might be effective for compounds of tungsten and rare-earth elements.

  8. Mode of action of a surgical electronic lithoclast--high speed pressure, cinematographic and schlieren recordings following an ultrashort underwater electronic discharge.

    PubMed

    Tidd, M J; Webster, J; Wright, H C; Harrison, I R

    1976-01-01

    In order to investigate the mode of action of the electrical discharges from a surgical electronic lithoclast in shattering bladder stones high speed pressure-time recordings were made. The results indicated effects similar to those following an underwater detonation of high explosive. Subsequent high speed photographic analysis confirmed this. Calculations based on the results suggested that the shock waves and pressure pulses generated were of a potentially hazardous magnitude and that gas-containing bowel close to the bladder might be at particular risk as well as solid tissue as the bladder wall. Photographic data also suggested that danger might be incurred by the use of similar devices in a small enclosed space such as the ureter or renal pelvis. PMID:1244885

  9. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    PubMed

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak. PMID:27441863

  10. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.

    1997-04-01

    In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitude discharges. Each is discussed in the context of these measurements.

  11. The self-discharge of the NiOOH/Ni(OH)2 electrode constant potential study

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    Hydrogen oxidation currents at a NiOOH/Ni(OH)2 electrode were measured directly at constant potentials for various hydrogen pressures and states of charge. It was found that the hydrogen oxidation current is linearly proportional to the hydrogen pressure at all electrode potentials and that the logarithm of the anodic current is a linear function of electrode potential. It was also found that hydrogen oxidation on the nickel substrate material was strongly inhibited by the presence of nickel hydroxide on the substrate surface. By comparing the currents for hydrogen oxidation and oxygen evolution on the NiOOH/Ni(OH)2 electrode and a nickel substrate, it is suggested that the self-discharge of the NiOOH/Ni(OH)2 electrode is mainly due to electrochemical oxidation of hydrogen on the active electrode material.

  12. Potential structure of discharge plasma inside liquid directly measured by an electrostatic probe

    SciTech Connect

    Chen, Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro

    2013-06-17

    Potential structures of a discharge plasma inside a liquid are investigated by an electrostatic probe measurement. The time evolution of radial profiles of the floating potential for the plasma inside liquid reveals that the dominant negative charges in the plasma are the negative ion species such as OH{sup -} and O{sub 2}{sup -} rather than electrons. In addition, a positive potential gradient exists at the plasma-liquid interface due to the presence of an electrical double layer which is caused by the separation of low-mass positive ion of H{sup +} and high-mass negative ions of OH{sup -} and O{sub 2}{sup -} near the plasma-liquid interface.

  13. The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.

    PubMed

    Johnston, Jamie; Postlethwaite, Michael; Forsythe, Ian D

    2009-10-15

    Most current clamp studies trigger action potentials (APs) by step current injection through the recording electrode and assume that the resulting APs are essentially identical to those triggered by orthodromic synaptic inputs. However this assumption is not always valid, particularly when the synaptic conductance is of large magnitude and of close proximity to the axon initial segment. We addressed this question of similarity using the Calyx of Held/MNTB synapse; we compared APs evoked by long duration step current injections, short step current injections and orthodromic synaptic stimuli. Neither injected current protocol evoked APs that matched the evoked orthodromic AP waveform, showing differences in AP height, half-width and after-hyperpolarization. We postulated that this 'error' could arise from changes in the instantaneous conductance during the combined synaptic and AP waveforms, since the driving forces for the respective ionic currents are integrating and continually evolving over this time-course. We demonstrate that a simple Ohm's law manipulation of the EPSC waveform, which accounts for the evolving driving force on the synaptic conductance during the AP, produces waveforms that closely mimic those generated by physiological synaptic stimulation. This stimulation paradigm allows supra-threshold physiological stimulation (single stimuli or trains) without the variability caused by quantal fluctuation in transmitter release, and can be implemented without a specialised dynamic clamp system. Combined with pharmacological tools this method provides a reliable means to assess the physiological roles of postsynaptic ion channels without confounding affects from the presynaptic input. PMID:19560491

  14. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect

    D. S. Tobiason

    2003-07-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well.

  15. Onset conditions for positive direct current corona discharges in air under the action of photoionization

    NASA Astrophysics Data System (ADS)

    Zheng, Yuesheng; Zhang, Bo; He, Jinliang

    2011-12-01

    This paper presents a numerical model for the inception of positive dc corona discharges in air near cylindrical anodes, which plays a bridge role between the classic positive corona onset criterion and the photoionization model considering the effective radiation wavelength. The predicted onset voltages agree well with Peek's experimental data in a wide range of conductor radii and relative air densities. The influence of the collisional quenching of emitting excited states on the surface onset field is significant with low air density or small conductor radius. Within the effective radiation wavelength, numerical expressions for the photon absorption coefficient in air and Townsend's second coefficient due to photoionization are deduced on the basis of the new model. A different perspective on the classic coefficients is given.

  16. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  17. Evaluating potential changes in salmonid rearing capacity from alternative sets of rehabilitation actions in the Trinity River, California

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Imaki, H.; Martin, A.; Alvarez, J.; Goodman, D.

    2013-12-01

    River restoration plans often propose numerous rehabilitation actions to address key habitat impairments for salmonids. However, restoration plans rarely propose alternative sets of actions or attempt to quantify the potential benefits to targeted biota. In this paper we use geomorphic and biological analyses to estimate restoration potential for each of 37 reaches in a 64-km section of Trinity River, California from the North Fork Trinity River to Lewiston Dam (the focus of habitat rehabilitation efforts under the Trinity River Restoration Program). We first predicted the channel pattern that might develop based in each reach on slope-discharge criteria, and then used these potential patterns along with floodplain width to estimate the maximum sinuosity that restoration actions could likely achieve, as well as a maximum side-channel length that might be created in each reach. For each scenario, we then used existing stream habitat and juvenile salmonid data from previous studies in the Trinity River and other watersheds to determine current and restored carrying capacity. Potential increases in Chinook and steelhead carrying capacity range from 39% for a relatively realistic estimate of increasing habitat quality (more low velocity areas with cover) to 67% for a more optimistic scenario that increases both sinuosity and habitat quality. Only the most optimistic scenario that increases habitat quality, increases sinuosity, and constructs tens of kilometers of side channels more than doubles potential juvenile salmonid production (140% increase). These quantitative predictions provide a frame of reference for evaluating alternative restoration options, and for setting measurable restoration goals.

  18. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    NASA Technical Reports Server (NTRS)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  19. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  20. Ontogeny of vestibular compound action potentials in the domestic chicken

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  1. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  2. Modeling flow in wetlands and underlying aquifers using a discharge potential formulation

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Haitjema, H. M.

    2011-09-01

    SummaryAn accurate assessment of water and nutrient balances in large scale wetland systems such as the Florida Everglades requires conjunctive modeling of surface water flow in wetlands and groundwater flow in underlying aquifers. Earlier work was based on the finite difference code MODFLOW with a special "wetlands package." This model treats the wetland flow as laminar with a very high transmissivity that is proportional to the wetland water depth cubed. However, these MODFLOW solutions appear sensitive to this highly non-linear wetland transmissivity, particularly under conditions of low vegetation density when the model may fail to converge. We propose to formulate the governing differential equation in terms of a discharge potential instead of potentiometric heads as done in MODFLOW, but otherwise using the same assumptions as in its wetlands package. We tested our approach on a few cases of one- and two-dimensional flow, both with a constant and a varying wetland bottom elevation. For the latter the discharge potential represents an irrotational part of the flow field which is combined with a component of the flow field that contains the curl. We found that both the robustness and the accuracy of the solution in terms of potentials was superior to the solution in terms of heads. In some cases the latter solution failed altogether, even for simple one-dimensional flow. We applied our method to model the effects of wetland hydrology on the nutrient redistribution in and near tree islands. We found that the subtle velocity distributions near these tree islands, as resulted from our conjunctive wetlands and groundwater flow solution, could help explain the increased nutrient depositions at these islands, particularly at the head of the islands, where, consequently, most of the vegetation occurs.

  3. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. PMID:26403720

  4. Gifted Potential and Poverty: A Call for Extraordinary Action

    ERIC Educational Resources Information Center

    Kitano, Margie K.

    2003-01-01

    Dr. Robinson's proposed action plan will serve the needs of highly achieving gifted students. However, defining giftedness as high academic performance based on traditional assessment procedures could reverse the field's fledgling success in supporting culturally diverse gifted children and youth. Changing the focus of equity in gifted education…

  5. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats

    PubMed Central

    Widdicombe, J. G.

    1966-01-01

    1. Action potentials were recorded from seventy-four single and twenty-nine small multifibre nerve strands efferent to the trachea and lungs of cats and dogs. From the pathway (vagal or sympathetic), spontaneous activity, conduction velocity and responses to various interventions the efferent fibres were classified in the following way. 2. Group I, vagal. These had a mean conduction velocity of 9·7 m/sec, and had a respiratory but seldom a cardiac rhythm. Their discharge was inhibited during hypertension caused by injections of adrenaline and during inflation of the lungs, but was increased during tracheal occlusion, stimulation of peripheral chemoreceptors and irritation of the larynx. The fibres are thought to be constrictor to the airways. 3. Group II, sympathetic. These had a mean conduction velocity of 0·85 m/sec and usually had inspiratory and cardiac rhythms. Their discharge usually responded qualitatively as that of group I fibres to the various interventions, but with clear quantitative differences. They are divided into three subgroups on the basis of their responses to injections of adrenaline and to asphyxial stimuli. 4. Group III, vagal and sympathetic. These had a mean conduction velocity of 9·0 m/sec, very slow discharge rates and often an expiratory and cardiac modulation. They were activated during hypertension due to adrenaline and often by tracheal occlusion, chemoreceptor stimulation, laryngeal irritation and lung inflation. Their motor action is unknown. 5. Group IV, vagal and sympathetic. These had conspicuous cardiac rhythms resembling those of vascular baroreceptors, but their discharge could not be correlated with arterial blood pressure. Their mean conduction velocity was 6·6 m/sec. Some were active after combined vagotomy and sympathectomy. Together with some unclassified fibres, those of group IV are thought to be aberrant afferent nerves or collateral afferent branches, and possibly to subserve local reflexes. 6. The results are

  6. Estimation of Potential Gradient from Discharge Current through Hand-Held Metal Piece from Charged Human Body

    NASA Astrophysics Data System (ADS)

    Taka, Yoshinori; Fujiwara, Osamu

    Electrostatic discharge (ESD) events due to metal objects electrified with low voltages give a fatal electromagnetic interference to high-tech information equipment. In order to elucidate the mechanism, with a 6-GHz digital oscilloscope, we previously measured the discharge current due to collision of a hand-held metal piece from a charged human body, and gave a current calculation model. In this study, based on the calculation model, a method was presented for deriving a gap potential gradient from the measured discharge current. Measurements of the discharge currents were made for charge voltages from 200V to 1000V. The corresponding potential gradients were estimated, which were validated in comparison with an empirical formula based on the Paschen's law together with other researcher's experimental results.

  7. Action Potentials Initiate in the Axon Initial Segment and Propagate Through Axon Collaterals Reliably in Cerebellar Purkinje Neurons

    PubMed Central

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A.

    2010-01-01

    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By utilizing a recent improvement in voltage sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission. PMID:20484631

  8. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials.

    PubMed

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-10-15

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. PMID:25128573

  9. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity. PMID:25727465

  10. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    SciTech Connect

    NNSA /NV

    2000-07-20

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  11. Changes in the IR internal reflection and absorption spectra of AK 60/40 polyamide films after the action of a glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Lunin, V. V.; Rode, S. V.; Samoilovich, V. G.

    2008-12-01

    The modification of surface layers of AK 60/40 polyamide under the action of a gas discharge plasma was studied. Measurements were performed by infrared internal reflection spectroscopy. The results were analyzed to establish possible mechanisms of the interaction of a plasma with the polymer and structural changes in the polymer.

  12. Epidermal laser stimulation of action potentials in the frog sciatic nerve

    NASA Astrophysics Data System (ADS)

    Jindra, Nichole M.; Goddard, Douglas; Imholte, Michelle; Thomas, Robert J.

    2010-01-01

    Measurements of laser-stimulated action potentials in the sciatic nerve of leopard frogs (Rana pipiens) are made using two infrared lasers. The dorsal sides of the frog's hind limbs are exposed to short-pulsed 1540- and 1064-nm wavelengths at three separate spot sizes: 2, 3, and 4 mm. Energy density thresholds are determined for eliciting an action potential at each experimental condition. Results from these exposures show similar evoked potential thresholds for both wavelengths. The 2-mm-diam spot sizes yield action potentials at radiant exposure levels almost double that seen with larger beam sizes.

  13. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  14. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    SciTech Connect

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  15. Discharge forecasting using MODIS and radar altimetry: potential application for transboundary flood risk management in Niger-Benue River basin

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Amarnath, Giriraj; Brocca, Luca; Moramarco, Tommaso

    2016-04-01

    Flooding is one of most widespread natural disasters in the world. Its impact is particularly severe and destructive in Asia and Africa, because the living conditions of some settlements are inadequate to cope with this type of natural hazard. In this context, the estimation of discharge is extremely important to address water management and flood risk assessment. However, the inadequate monitoring network hampers any control and prediction activity that could improve these disastrous situations. In the last few years, remote sensing sensors have demonstrated their effectiveness in retrieving river discharge, especially in supporting discharge nowcasting and forecasting activities. Recently, the potential of radar altimetry was apparent when used for estimating water levels in an ungauged river site with good accuracy. It has also become a very useful tool for estimation and prediction of river discharge. However, the low temporal resolution of radar altimeter observations (10 or 35 days, depending on the satellite mission) may be not suitable for day-by-day hydrological forecasting. Differently, MODerate resolution Imaging Spectroradiometer (MODIS), considering its proven potential for quantifying the variations in discharge of the rivers at daily time resolution may be more suited to this end. For these reasons, MODIS and radar altimetry data were used in this study to predicting and forecasting the river discharge along the Niger-Benue River, where severe flooding with extensive damage to property and loss of lives occurred. Therefore, an effective method to forecast flooding can support efforts towards creating an early warning system. In order to estimate river discharge, four MODIS products (daily, 8-day, and from AQUA and TERRA satellites) connected at three sites (two gauged and one ungauged) were used. The capability of remote sensing sensors to forecast discharge a few days in advance at a downstream section using MODIS and ENVISAT radar altimetry data

  16. Reconstruction of action potential of repolarization in patients with congenital long-QT syndrome

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Shimizu, Wataru; Yokokawa, Miki; Kamakura, Shiro; Miyatake, Kunio; Murakami, Masahiro; Miyashita, Tsuyoshi; Ogata, Kuniomi; Tsukada, Keiji

    2004-05-01

    A method for reconstructing an action potential during the repolarization period was developed. This method uses a current distribution—plotted as a current-arrow map (CAM)—calculated using magnetocardiogram (MCG) signals. The current arrows are summarized during the QRS complex period and subtracted during the ST-T wave period in order to reconstruct the action-potential waveform. To ensure the similarity between a real action potential and the reconstructed action potential using CAM, a monophasic action potential (MAP) and an MCG of the same patient with type-I long-QT syndrome were measured. Although the MAP had one notch that was associated with early afterdepolarization (EAD), the reconstructed action potential had two large and small notches. The small notch timing agreed with the occurrence of the EAD in the MAP. On the other hand, the initiation time of an abnormal current distribution coincides with the appearance timing of the first large notch, and its end time coincides with that of the second small notch. These results suggest that a simple reconstruction method using a CAM based on MCG data can provide a similar action-potential waveform to a MAP waveform without having to introduce a catheter.

  17. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential

    NASA Astrophysics Data System (ADS)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    Objective. The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Approach. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Main results. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. Significance. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  18. Noncontact subnanometer measurement of transient surface displacement during action potential propagation

    NASA Astrophysics Data System (ADS)

    Akkin, Taner; Dave, Digant P.; Rylander, H. Grady, III; Milner, Thomas E.

    2005-04-01

    We have demonstrated non-contact, sub-nanometer optical measurement of neural surface displacement associated with action potential propagation without applying exogenous chemicals or reflection coatings. Signals recorded from crayfish leg nerve using a phase-sensitive optical low coherence reflectometer show that transient neural surface displacement due to action potential propagation is approximately 1 nm in amplitude and 1 ms in duration. Measured optical signals are coincident with electrical action potential arrival to the optical measurement site. Recent experiments indicate signals with similar amplitude and duration are observed in response to repetitive fast stimulation (200 stimuli/s).

  19. Developmental changes in the inward current of the action potential of Rohon-Beard neurones

    PubMed Central

    Baccaglini, Paola I.; Spitzer, Nicholas C.

    1977-01-01

    1. Rohon-Beard cells in the spinal cord of Xenopus tadpoles have been studied in animals from early neural tube to free-swimming larval stages. The onset and further development of electrical excitability of these neurones has been investigated in different ionic environments, to determine the ionic species carrying the inward current of the action potential. 2. The cells appear inexcitable at early stages (Nieuwkoop & Faber stages 18-20) and do not give action potentials to depolarizing current pulses. 3. The action potential is first recorded at stage 20. (A) The inward current is carried by Ca2+ at stages 20-25, since it is blocked by mm quantitites of La3+, Co2+ or Mn2+ and is unaffected by removal of Na+ or the addition of tetrodotoxin (TTX). (B) The action potential is an elevated plateau of long duration (mean 190 msec at stages 20-22). The duration decreases exponentially with repetitive stimulation. (C) The specific Ca2+ conductance (gCa) at the onset of the plateau of the action potential is 2·6 × 10-4 mho/cm2. Calculations show that a single action potential raises [Ca2+]1 by more than 100-fold. 4. At later times (stages 25-40), the inward current of the action potential is carried by both Na+ and Ca2+: the action potential has two components, an initial spike which is blocked by removal of Na+ or addition of TTX, followed by a plateau which is blocked by La3+, Co2+ or Mn2+. 5. Finally (stages 40-51), the inward current is primarily carried by Na+, since the action potential is blocked only by removal of Na+ or addition of TTX, and the overshoot agrees with the prediction of the Nernst equation for a Na-selective membrane. When the outward current channel is blocked and cells exposed to Na-free solutions, 67% of cells at the latest stages studied were incapable of producing action potentials in which the inward current is carried by divalent cations. 6. The duration of the action potential decreases from a maximum of about 1000 msec to about 1 msec

  20. Ultrasound effects on miniature end plate potential discharge frequency are contingent upon acoustic environment.

    PubMed

    Revell, W J; Roberts, M G

    1990-05-01

    The effects of low level ultrasonic stimulation (250 mW cm-2; 1.5 MHz; continuous wave) on the frequency of miniature end-plate potential (MEPP) production, at the frog neuromuscular junction, have been examined in two situations. In a simple exposure environment, where the muscle was immersed in Ringer solution and stretched over a polyurethane resin base at room temperature, the ultrasound stimulus produced a marked increase in the MEPP discharge rate, with only a small concomitant rise (1.0-1.6 degrees C) in local temperature. Control temperature increases of a similar magnitude produced only small changes in the rate of MEPP production. The experiment was repeated in an environment with better defined field conditions. The muscle was suspended in a chamber sealed at the base with an acoustically transparent polycarbonate material, 0.05 mm thick, and contained in a thermostatically controlled bath lined with an acoustically absorbent material. In this situation, no increase in MEPP frequency was observed in response to ultrasonication, although the local measured temperature increase was similar in both magnitude and time course. It is suggested that these results may depend upon differences between standing wave conditions and free field progression of the beam through the sample. PMID:2339472

  1. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  2. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  3. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    NASA Astrophysics Data System (ADS)

    Smith, A. W.; Cappelli, M. A.

    2009-07-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called "breathing mode" ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  4. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    PubMed Central

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930

  5. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. PMID:21728204

  6. Action potential detection by non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, Leonardo; Lotti, Jacopo; O'Connor, Rodney P.; Mapelli, Jonathan; Gandolfi, Daniela; D'Angelo, Egidio; Pavone, Francesco S.

    2009-02-01

    In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RA-SHG) capable of optically recording fast membrane potential events occurring in a wide-field configuration. The RA-SHG microscope in combination with a bulk staining method with FM4-64 was used to simultaneously record electrical activity from clusters of Purkinje cells (PCs) in acute cerebellar slices. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where APs were recorded in a single trial without averaging. These results show the strength of this technique to describe the temporal dynamics of neuronal assemblies.

  7. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid...

  8. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid...

  9. Uniform Action Potential Repolarization within the Sarcolemma of In Situ Ventricular Cardiomyocytes

    PubMed Central

    Bu, Guixue; Adams, Heather; Berbari, Edward J.; Rubart, Michael

    2009-01-01

    Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes in fractional dye fluorescence (ΔF/F) at the t-tubule and surface membranes of in situ mouse ventricular cardiomyocytes. Peak ΔF/F during action potential phase 0 depolarization averaged −21% for both dyes. The shape and time course of optical action potentials measured with the water-soluble ANNINE-6plus were indistinguishable from those of action potentials recorded with intracellular microelectrodes in the absence of the dye. In contrast, optical action potentials measured with the water-insoluble ANNINE-6 were significantly prolonged compared to the electrical recordings obtained from dye-free hearts, suggesting electrophysiological effects of ANNINE-6 and/or its solvents. With either dye, the kinetics of action potential-dependent changes in ΔF/F during repolarization were found to be similar at the t-tubular and surface membranes. This study provides what to our knowledge are the first direct measurements of t-tubule electrical activity in ventricular cardiomyocytes, which support the concept that action potential duration is uniform throughout the sarcolemma of individual cells. PMID:19289075

  10. Pharmacological actions and potential uses of Momordica charantia: a review.

    PubMed

    Grover, J K; Yadav, S P

    2004-07-01

    Since ancient times, plants and herbal preparations have been used as medicine. Research carried out in last few decades has certified several such claims of use of several plants of traditional medicine. Popularity of Momordica charantia (MC) in various systems of traditional medicine for several ailments (antidiabetic, abortifacient, anthelmintic, contraceptive, dysmenorrhea, eczema, emmenagogue, antimalarial, galactagogue, gout, jaundice, abdominal pain, kidney (stone), laxative, leprosy, leucorrhea, piles, pneumonia, psoriasis, purgative, rheumatism, fever and scabies) focused the investigator's attention on this plant. Over 100 studies using modern techniques have authenticated its use in diabetes and its complications (nephropathy, cataract, insulin resistance), as antibacterial as well as antiviral agent (including HIV infection), as anthelmintic and abortifacient. Traditionally it has also been used in treating peptic ulcers, interestingly in a recent experimental studies have exhibited its potential against Helicobacter pylori. Most importantly, the studies have shown its efficacy in various cancers (lymphoid leukemia, lymphoma, choriocarcinoma, melanoma, breast cancer, skin tumor, prostatic cancer, squamous carcinoma of tongue and larynx, human bladder carcinomas and Hodgkin's disease). There are few reports available on clinical use of MC in diabetes and cancer patients that have shown promising results. PMID:15182917

  11. Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury

    PubMed Central

    Lee, Kun-Ze; Sandhu, Milapjit S.; Dougherty, Brendan J.; Reier, Paul J.; Fuller, David D.

    2014-01-01

    Repeated exposure to hypoxia can induce spinal neuroplasticity as well as respiratory and somatic motor recovery after spinal cord injury (SCI). The purpose of the present study was to define the capacity for a single bout of hypoxia to trigger short-term plasticity in phrenic output after cervical SCI, and to determine the phrenic motoneuron (PhrMN) bursting and recruitment patterns underlying the response. Hypoxia-induced short term potentiation (STP) of phrenic motor output was quantified in anesthetized rats 11 wks following lateral spinal hemisection at C2 (C2Hx). A 3-min hypoxic episode (12–14% O2) always triggered STP of inspiratory burst amplitude, the magnitude of which was greater in phrenic bursting ipsilateral vs. contralateral to C2Hx. We next determined if STP could be evoked in recruited (silent) PhrMNs ipsilateral to C2Hx. Individual PhrMN action potentials were recorded during and following hypoxia using a “single fiber” approach. STP of bursting activity did not occur in cells initiating bursting at inspiratory onset, but was robust in recruited PhrMNs as well as previously active cells initiating bursting later in the inspiratory effort. We conclude that following chronic C2Hx, a single bout of hypoxia triggers recruitment of PhrMNs in the ipsilateral spinal cord with bursting that persists beyond the hypoxic exposure. The results provide further support for the use of short bouts of hypoxia as a neurorehabilitative training modality following SCI. PMID:25448009

  12. Action potentials of embryonic dorsal root ganglion neurones in Xenopus tadpoles.

    PubMed Central

    Baccaglini, P I

    1978-01-01

    1. Several classes of action potentials can be distinguished in dorsal root ganglion cells, studied by intracellular recording techniques in Xenopus laevis tadpoles 4.5--51 days old. The ionic basis of the action potential was investigated by changing the ionic environment of the cells and applying various blocking agents. 2. The Ca2+-dependent action potential is a plateau of relatively long duration (mean 8.7 msec). It is unaffected by removal of Na+ but blocked by mM quantities of Co2+. It is present only in small cells. 3. Ca2+/Na+-dependent action potentials. Type I is a spike followed by a plateau or hump of different durations (mean 8.1 msec). The spike is selectively blocked by removal of Na+, leaving the plateau which is in turn blocked by Co2+. It is present in cells of small and intermediate size. Type II is a spike of short duration (mean 2.0 msec) with only an inflection on the falling phase. The spike is blocked by removal of Na+ and no other components can be elicited. The inflection is blocked by Co2+. It is present in cells of all sizes. Type III is similar to type I but is seen only in solutions in which the outward current is blocked. It was observed only very infrequently. 4. Na+-dependent action potentials. Type I a is a short duration spike (mean 1.1 msec). It is abolished by removal of Na+ or addition of tetrodotoxin (TTX), but largely unaffected by Co2+ or La3+. It is present in cells of all sizes. When the outward current channels are blocked and cells exposed to Na+-free solutions, all cells are capable of producing an action potential in which the inward current is carried by divalent cations. Type I b is a spike with a smooth, more slowly falling phase. It has the same pharmacological properties as type I a action potential and is present in cells of small size. 5. Na+-dependent action potentials. Type II is a spike with an inflection on the falling phase (mean duration 3.4 msec). It is prolonged by Co2+ and La3+. Removal of Na

  13. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. PMID:26624519

  14. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Missionary Ridge fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.; Gleason, J. Andrew

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Missionary Ridge fire of June 9 through July 14, 2002, near Durango, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and 6,446 ft3/s (183 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). Potential peak discharges between 1 ft3/s (0.03 m3/s) and >8,000 ft3/s (227 m3/s) are calculated for the 25-year, 1-hour storm of 1.3 inches (33 mm) and for the 100-year, 1-hour storm of 1.8 inches (46 mm). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and for the planning of evacuation timing and routes.

  15. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  16. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    PubMed

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used. PMID:23619801

  17. Terrestrial Sediment and Nutrient Discharge, and Their Potential Influence on Coral Reefs, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Webb, R. M.; Warne, A. G.

    2004-12-01

    Sediment and nutrient discharge to the insular shelf of Puerto Rico (18 degrees latitude), augmented by anthropogenic activity, is believed to have contributed to widespread degradation of coral reefs of Puerto Rico during the 20th century. Sediment deposition degrades coral reefs because it reduces the area of sea floor suitable for growth of new coral, diminishes the amount of light available for photosynthesis by symbiotic algae that live within individual coral animals, and in extreme cases, buries coral colonies. Land-use history and data from 30 water-discharge, 9 daily and 15 intermittent sediment-concentration, and 24 water-quality gaging stations were analyzed to investigate the timing and intensity of terrestrial sediment and nutrient discharge into coastal waters. Watersheds in Puerto Rico generally are small (10's to 100's of square km), channel gradients are steep, and stream valleys are deeply incised and narrow. Major storms are usually brief (<24 h) but intense such that the majority of the annual sediment discharge occurs in a few days. From 1960 through 2000 the highest mean daily discharge for a water year (October - September) accounted for 20 to 60 percent of the total annual sediment discharge. Major storms, with a return frequency of approximately a decade, were capable of discharging up to 30 times the median annual sediment-discharge volume. Prior to agricultural and industrial development, coastal waters are believed to have been relatively transparent, with strong currents and seasonal high-energy swells assisting corals in the removal of minor amounts of sediment deposited after storms. Land clearing and modification, first for agriculture and later for urban development, have increased sediment and nutrient influx to the coast during the 19th and 20th centuries. Although forest cover has increased to approximately 30 percent of the surface of Puerto Rico during the past 60 years, sediment eroded from hillslopes during the agricultural

  18. Effects of corollary discharge on event-related potentials during selective attention task in healthy men and women.

    PubMed

    Kudo, Noriko; Nakagome, Kazuyuki; Kasai, Kiyoto; Araki, Tsuyoshi; Fukuda, Masato; Kato, Nobumasa; Iwanami, Akira

    2004-01-01

    Corollary discharge is a brain electrical activity associated with self-monitoring, which distinguishes self from others in thoughts or behaviors. Corollary discharge can be non-invasively assessed using event-related potential (ERP) recordings in humans. Previous studies have revealed that the amplitude of the N100 component elicited during an "odd-ball" task is reduced while a healthy subject is vocalizing, which may index the effect of corollary discharge on auditory ERPs. In this study, we attempted to assess the effect of vocalization on ERP components including N100, mismatch negativity (MMN), negative difference wave (Nd), and P300 during a selective attention task in 22 healthy adults. We also evaluated the possible contribution of gender to these effects. N100 amplitudes elicited by unattended standard stimuli were reduced under the vocalization condition compared with those under the baseline condition. However, there were no significant effects of vocalization on MMN, Nd or P300. Moreover, there was no significant effect of gender to the corollary discharge. These results suggest that the effect of corollary discharge on auditory ERPs is limited to the perceptual stage of information processing in healthy men and women. PMID:14687881

  19. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed. PMID:25884360

  20. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials

    PubMed Central

    Myoga, Michael H.; Beierlein, Michael; Regehr, Wade G.

    2010-01-01

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from P17-19 rats, which had dendrites that averaged 60 µm in length and in short SC dendrites from P30-33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons where dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity. PMID:19535592

  1. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions

    PubMed Central

    Karch, Susanne; Loy, Fabian; Krause, Daniela; Schwarz, Sandra; Kiesewetter, Jan; Segmiller, Felix; Chrobok, Agnieszka I.; Keeser, Daniel; Pogarell, Oliver

    2016-01-01

    Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we compared neurobiological findings of the decision which action to perform with those referring to the decision whether or not to perform an action. Methods: Twenty-eight subjects participated in adapted go/nogo paradigms, including a voluntary selection condition allowing participants to (1) freely decide whether to press the response button or (2) to decide whether they wanted to press the response button with the right index finger or the left index finger. Results: The reaction times were increased when participants freely decided whether and how they wanted to respond compared to the go condition. Intentional processes were associated with a fronto-centrally located N2 and P3 potential. N2 and P3 amplitudes were increased during intentional actions compared to instructed responses (go). In addition, increased activity in the alpha-, beta- and gamma-frequency range was shown during voluntary behavior rather than during externally guided responses. Conclusion: These results may indicate that an additional cognitive process is needed for intentional actions compared to instructed behavior. However, the neural responses were comparatively independent of the kind of decision that was made (1) decision which action to perform; (2) decision whether or not to perform an action). Significance: The study demonstrates the importance of fronto-central alpha-, beta-, and gamma oscillations for voluntary behavior. PMID:26834680

  2. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    PubMed Central

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  3. 76 FR 21938 - Potential Environmental Impacts of the Proposed Runway 13 Extension and Associated Actions for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Federal Aviation Administration Potential Environmental Impacts of the Proposed Runway 13 Extension and... Administration (FAA), Department of Transportation (DOT). ACTION: Notice of availability of a final EA and FONSI/ROD for the evaluation of the potential environmental impacts associated with the proposed Runway...

  4. The cytosolic calcium transient modulates the action potential of rat ventricular myocytes.

    PubMed Central

    duBell, W H; Boyett, M R; Spurgeon, H A; Talo, A; Stern, M D; Lakatta, E G

    1991-01-01

    1. The modulation of the action potential by the cytosolic Ca2+ (Cai2+) transient was studied in single isolated rat ventricular myocytes loaded with the acetoxymethyl ester form of the Ca(2+)-sensitive fluorescent dye Indo-1. Stimulation following rest and exposure to ryanodine were used to change the amount of Ca2+ released from the sarcoplasmic reticulum and thus the size of the Cai2+ transient. The Cai2+ transient was measured as the change, upon stimulation, in the ratio of Indo-1 fluorescence at 410 nm to that at 490 nm (410/490) and action potentials or membrane currents were recorded using patch-type microelectrodes. 2. When stimulation was initiated following rest, the magnitude of the Cai2+ transient decreased in a beat-dependent manner until a steady state was reached. The negative staircase in the Cai2+ transient was accompanied by a similar beat-dependent decrease in the duration of the action potential, manifested primarily as a gradual loss of the action potential plateau (approximately -45 mV). A slow terminal phase of repolarization of a few millivolts in amplitude was found to parallel the terminal decay of the Cai2+ transient. 3. The terminal portion of phase-plane loops of membrane potential (Vm) vs. Indo-1 ratio from all of the beats of a stimulus train followed a common linear trajectory even though the individual beats differed markedly in the duration and amplitude of the action potential and Cai2+ transient. 4. When the stimulation dependence of the Cai2+ transient was titrated away with submaximal exposure to ryanodine, the stimulation-dependent changes in the action potential plateau and terminal phase of repolarization were also eliminated. The same effect was noted in cells which, fortuitously, did not show a staircase in the Cai2+ transient following a period of rest. 5. When action potentials were triggered immediately following spontaneous release of Ca2+ from the sarcoplasmic reticulum, which results in a small depolarization at the

  5. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.

    PubMed

    Rieger, Robert; Schuettler, Martin; Chuang, Sheng-Chih

    2014-09-01

    This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems. PMID:24760928

  6. Studies of current and potential distributions on lead-acid batteries. I. Discharge of automotive flooded positive plates

    NASA Astrophysics Data System (ADS)

    Guo, Yonglang; Li, Yi; Zhang, Guodong; Zhang, Huiming; Garche, J.

    The distributions of current and potential on the automotive positive plate have been studied. In the early stage of the discharge, the distributions of the current density, potential, and polarization resistance are uniform. In the later stage, however, the polarization resistance of the active mass increases very rapidly at the bottom and on the top of the plate. It causes the polarization to become very high and makes the current drop rapidly in these regions. It is also found that at the beginning of the 3 C discharge, the higher current density appears in the lower part rather than in the upper part of the plate, which is different from the conventional viewpoint. This may be due to the improper formation and overcharge of the plate.

  7. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis. PMID:26131127

  8. Effect of nanomaterials on the compound action potential of the shore crab, Carcinus maenas.

    PubMed

    Windeatt, Kirsten M; Handy, Richard D

    2013-06-01

    Little is known about the effects of manufactured nanomaterials on the function of nerves. The experiment aimed to test the effects of three different nanomaterials (1 mg l⁻¹ of TiO₂ NPs, Ag NPs or SWCNT) on the compound action potential of the shore crab (Carcinus maenas) compared with an appropriate bulk powder or metal salt control (bulk TiO₂ powder, AgNO₃ and carbon black respectively). In single action potential recordings, there were no effects of any of the nanomaterials on the peak amplitude, duration, rate of rise (depolarisation), or rate of decrease (repolarisation) of the compound action potential in crab saline, despite settling of each nanomaterial directly onto the nerve preparation. The ability of the crab nerve to be stimulated to tetanus was also unaffected by exposure to the nanomaterials compared with the appropriate bulk powder or metal salt control. Solvent controls with sodium dodecyl sulfate (SDS) also had no effect on action potentials. Overall, the study concludes that there were no effects of the materials at the concentrations tested on the compound action potential of the shore crab in physiological saline. PMID:22394242

  9. The role of inward Na(+)-Ca2+ exchange current in the ferret ventricular action potential.

    PubMed Central

    Janvier, N C; Harrison, S M; Boyett, M R

    1997-01-01

    1. Inward Na(+)-Ca2+ exchange current (iNaCa) was either blocked in ferret ventricular cells by replacing extracellular Na+ with Li+ or substantially reduced by the almost complete elimination of the Ca2+ transient by buffering intracellular Ca2+ with the acetoxymethyl ester form of BAPTA (BAPTA AM). 2. During square wave voltage clamp pulses to 0 mV, replacing extracellular Na+ with Li+ or buffering intracellular Ca2+ with BAPTA AM resulted in the loss of a transient inward current. This current was increased by the application of isoprenaline (expected to increase the underlying Ca2+ transient) and displayed the voltage-dependent characteristics of inward iNaCa. 3. Replacing extracellular Na+ with Li+ or buffering intracellular Ca2+ caused a significant shortening of the action potential (at -65 mV, 44 +/- 2% with Li+ and 20 +/- 2% with BAPTA AM). The shortening can be explained by changes in iNaCa. 4. The action potential clamp technique was used to measure the BAPTA-sensitive current (putative iNaCa) and the Ca2+ current (ica; measured using nifedipine) during the action potential. Under control conditions, the inward BAPTA-sensitive current makes approximately the same contribution as iCa during much of the action potential plateau. These results suggest an important role for inward iNaCa in the ferret ventricular action potential. PMID:9051574

  10. WASTEWATER RECYCLE AND REUSE POTENTIAL FOR INDIRECT DISCHARGE TEXTILE FINISHING MILLS. VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives detailed information on a variety of wastewater recycle/reuse technologies that allow textile finishing mills to reduce the volume of waste-water and the amount of pollutants discharged to publicly owned treatment works. (NOTE: Dyebath reconstitution is described...

  11. Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites.

    PubMed

    Poznanski, Roman R

    2004-09-01

    density distribution of transient Na(+) channels along a long dendrite contributes significantly to their discharge patterns. A major significance of the analytical modeling, in contrast to the computational modeling of backpropagating action potentials, is the provision of a continuous description of the voltage as a function of position, allowing for greater feasibility in developing large-scale biophysical neural networks, without the need for ad hoc computational modeling. PMID:15366097

  12. Potential value of crowd-based stream level observations for discharge simulation

    NASA Astrophysics Data System (ADS)

    Seibert, Jan; Vis, Marc; van Meerveld, Ilja H. J.

    2016-04-01

    Simple hydrological models with a low number of model parameters are often able to simulate discharge reasonably well, but these models rely on model calibration, which makes their use in ungauged basins challenging. We recently demonstrated that for humid catchments good model performances can be achieved when only stream level data, instead of stream flow data, are available. For these catchments, the level-based modeling approach can be used to generate simulated discharge time series from the stream level time series. The latter are obviously easier to observe, and in practice several approaches could be used for stream level observations. One of these is a crowd-based approach (e.g., crowdhydrology.org), where citizen scientists engage in stream level observations. However, the challenge of these data are that observations are taken at irregular time intervals and with a limited vertical resolution. The latter is especially the case at sites where no staff gauge is available but relative stream levels are observed based on (not) visible features in the stream, such as rocks. Here, we extend our previous study and pretend that stream level observations are available at limited temporal and vertical resolutions. Using these hypothetical data sets, the model was calibrated and subsequently evaluated on the full observed stream flow record. Preliminary results indicate that stream level data can provide good model simulation results for discharge in humid catchments, even with a reduced temporal resolution of the level observations. On the other hand, with decreasing vertical resolution, level data became less informative. This study also allowed quantification of the value of additional observations and/or increased resolution for reducing the uncertainties in discharge simulations. These results provide a basis for designing crowd-based observation systems for the real world that obtain as informative as possible data for deriving model-based discharge time

  13. In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites

    NASA Astrophysics Data System (ADS)

    Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.

    2014-12-01

    Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.

  14. Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve

    NASA Astrophysics Data System (ADS)

    Troiani, Francesca; Nikolic, Konstantin; Constandinou, Timothy G.

    2016-03-01

    Due to optical coherence tomography (OCT) high spatial and temporal resolution, this technique could be used to observe the quick changes in the refractive index that accompany action potential. In this study we explore the use of time domain Optical Coherence Tomography (TD-OCT) for real time action potential detection in ex vivo Xenopus Laevis sciatic nerve. TD-OCT is the easiest and less expensive OCT technique and, if successful in detecting real time action potential, it could be used for low cost monitoring devices. A theoretical investigation into the order of magnitude of the signals detected by a TD-OCT setup is provided by this work. A linear dependence between the refractive index and the intensity changes is observed and the minimum SNR for which the setup could work is found to be SNR = 2 x 104.

  15. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  16. DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence

    SciTech Connect

    Zhang, Qing; Huang, Yong-Chang

    2011-11-01

    We derive a Dirac-Born-Infeld (DBI) potential and DBI inflation action by rescaling the metric. The determinant of the induced metric naturally includes the kinetic energy and the potential energy. In particular, the potential energy and kinetic energy can convert into each other in any order, which is in agreement with the limit of classical physics. This is quite different from the usual DBI action. We show that the Taylor expansion of the DBI action can be reduced into the form in the non-linear classical physics. These investigations are the support for the statement that the results of string theory are consistent with quantum mechanics and classical physics. We deduce the Phantom, K-essence, Quintessence and Generalized Klein-Gordon Equation from the DBI model.

  17. Optical magnetic detection of single-neuron action potentials using NV-diamond

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  18. Action potentials induce uniform calcium influx in mammalian myelinated optic nerves.

    PubMed

    Zhang, Chuan-Li; Wilson, J Adam; Williams, Justin; Chiu, Shing Yan

    2006-08-01

    The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve. PMID:16835363

  19. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  20. A Fast Na+/Ca2+-Based Action Potential in a Marine Diatom

    PubMed Central

    Taylor, Alison R.

    2009-01-01

    Background Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. Methodology/Principal Findings The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. Conclusions/Significance This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and successful marine protists

  1. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.A.; Blanc, E.

    1997-03-01

    The presence of ionization associated with high-altitude discharges has been detected using an HF radar operating at 2.2, 2.5, and 2.8 MHz. On several occasions, oblique echoes lasting several hundred ms at night and 1{r_arrow}10s during the day were observed. The echoes turned on in several interpulse times of 70 ms and were generally correlated with strong lightning activity prior to onset. The angles of arrival of sferics detected at three goniometer stations were used to determine the distance to thunderstorms. The data are consistent with specular reflections from columns of ionization produced at 55{endash}65 km altitude and having minimum electron densities of 6{times}10{sup 4}{endash}10{sup 5}cm{sup {minus}3}. The source of the ionization is believed to be high-altitude discharges.{copyright} 1997 American Geophysical Union

  2. The neuroendocrine action potential. Winner of the 2008 Frank Beach Award in Behavioral Neuroendocrinology.

    PubMed

    Hofmann, Hans A

    2010-09-01

    Animals are remarkably well equipped to respond to changes in their environment across different time scales and levels of biological organization. Here, I introduce a novel perspective that incorporates the three main processes the nervous system uses to integrate and process information: electrophysiological, genomic, and neuroendocrine action potentials. After discussing several examples of neuroendocrine action potentials, I lay out the commonalities of these temporally organized responses and how they might be interrelated with electrophysiological activity and genomic responses. This framework provides a novel outlook on longstanding questions in behavioral neuroendocrinology and suggests exciting new avenues for further research that will integrate across disciplines and levels of biological organization. PMID:20600047

  3. Effects of some heavy metals on the action potentials of an identified Helix pomatia photosensitive neuron.

    PubMed

    Kartelija, Gordana; Radenović, Lidija; Todorović, Natasa; Nedeljković, Miodrag

    2005-06-01

    In the photosensitive MB neuron in the left parietal ganglion of Helix pomatia, the onset of light prolongs significantly (by about 40%) the duration of the action potential. The broadening of the action potential after the onset of light was found to be due to its calcium component and could not be induced after blocking Ca(2+) channels by Cd(2+) and Pb(2+) and in absence of Ca(2+) in medium. The blocking effect of both compounds was reversible. It was found that CdCl(2) exhibited a more intense blocking effect than PbCl(2). PMID:16154952

  4. Potential impacts of discharging tertiary-treated wastewater into Port Royal Sound, South Carolina

    USGS Publications Warehouse

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    An assessment of physical characteristics of Port Royal Sound was combined with the results of a dye tracer study and with data collected from a previous environmental study to describe the impact on the water quality from discharging tertiary treated wastewater into the sound. Calculated velocities for the time of maximum velocity in the tidal cycle ranged from 2.32 ft/sec near the bottom to 4.65 ft/sec near the surface of the sound in a cross section in the vicinity of a proposed wastewater outfall. Vertical velocity distributions calculated for the time of maximum velocity were similar at all stations at which velocities were measured except the station in shallow water near the shore. A recent bathymetric chart of the vicinity of the proposed outfall indicates that a bar extends farther along the northern shore of Hilton Head Island than indicated on earlier nautical charts of Port Royal Sound. Continued extension of this bar could alter the impact on water quality from discharge of treated wastewater into the sound. Further study may be needed to monitor changes in the bar if the outfall is located between the bar and Hilton Head Island. Conservative calculations based on the results of the dye tracer study indicate that the discharge of 10.9 million gallons/day of wastewater having concentrations of biochemical oxygen demand and suspended solids of 15 mg/L will result in a maximum cumulative increase in concentrations of biochemical oxygen demand of < 0.01 mg/L and no increase in concentrations of suspended solids at high slack tide in the part of Port Royal Sound most affected by the proposed wastewater discharge. (Author 's abstract)

  5. CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx

    PubMed Central

    Shtonda, Boris; Avery, Leon

    2005-01-01

    The pharynx of Caenorhabditis elegans is a tubular muscle controlled by its own set of neurons. We developed a technique to voltage clamp the pharyngeal muscle and demonstrate by analyzing mutants that the pharyngeal action potential is regulated by three major voltage-gated currents, conducted by a T-type calcium channel CCA-1, an L-type calcium channel EGL-19 and a potassium channel EXP-2. We show that CCA-1 exhibits T-type calcium channel properties: activation at −40 mV and rapid inactivation. Our results suggest that CCA-1’s role is to accelerate the action potential upstroke in the pharyngeal muscle in response to excitatory inputs. Similarly to other L-type channels, EGL-19 activates at high voltages and inactivates slowly; thus it may maintain the plateau phase of the action potential. EXP-2 is a potassium channel of the kV family that shows inward rectifier properties when expressed in Xenopus laevis oocytes. We show that endogenous EXP-2 is not a true inward rectifier – it conducts large outward currents at potentials up to +20 mV and is therefore well suited to trigger rapid repolarization at the end of the action potential plateau phase. Our results suggest that EXP-2 is a potassium channel with unusual properties that uses a hyperpolarization threshold to activate a regenerative hyperpolarizing current. PMID:15914661

  6. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  7. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  8. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects.

    PubMed

    Enomoto, Riyo; Koshiba, Chika; Suzuki, Chie; Lee, Eibai

    2011-05-01

    Wogonin, a flavone in the roots of Scutellaria baicalensis, reduced etoposide-induced apoptotic cell death in normal cells, such as bone marrow cells and thymocytes. On the other hand, wogonin potentiated the proapoptotic or cytotoxic action of etoposide in tumor cells, such as Jurkat, HL-60, A549, and NCI-H226. These contradictory actions of wogonin on apoptosis are distinguished by normal or cancer cell types. Wogonin had no effect on apoptosis induced by other anticancer agents in the tumor cells. Thus, the potentiation effect of wogonin was observed only in etoposide-induced apoptosis in tumor cells. In a functional assay for P-glycoprotein (P-gp), wogonin suppressed excretion of calcein, a substrate for P-gp, in these tumor cells. Moreover, wogonin decreased the excretion of radiolabeled etoposide and accordingly increased intracellular content of this agent in the cells. P-gp inhibitors showed a similar potentiation effect on etoposide-induced apoptosis in these tumor cells. Thus, wogonin is likely to potentiate the anticancer action of etoposide due to P-gp inhibition and accumulation of this agent. These findings suggest that wogonin may be a useful chemotherapeutic adjuvant to potentiate the pharmacological action of etoposide and ameliorate its adverse effects. PMID:20658136

  9. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  10. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. PMID:26686984

  11. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  12. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial actions. 1945.19 Section 1945.19 Agriculture Regulations of the Department of Agriculture (Continued... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY...

  13. Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects

    ERIC Educational Resources Information Center

    Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan

    2011-01-01

    How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…

  14. Primary cortical representation of sounds by the coordination of action-potential timing

    NASA Astrophysics Data System (ADS)

    Decharms, R. Christopher; Merzenich, Michael M.

    1996-06-01

    CORTICAL population coding could in principle rely on either the mean rate of neuronal action potentials, or the relative timing of action potentials, or both. When a single sensory stimulus drives many neurons to fire at elevated rates, the spikes of these neurons become tightly synchronized1,2, which could be involved in 'binding' together individual firing-rate feature representations into a unified object percept3. Here we demonstrate that the relative timing of cortical action potentials can signal stimulus features themselves, a function even more basic than feature grouping. Populations of neurons in the primary auditory cortex can coordinate the relative timing of their action potentials such that spikes occur closer together in time during continuous stimuli. In this way cortical neurons can signal stimuli even when their firing rates do not change. Population coding based on relative spike timing can systematically signal stimulus features, it is topographically mapped, and it follows the stimulus time course even where mean firing rate does not.

  15. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    ERIC Educational Resources Information Center

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  16. Addendum to the Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the July 2003, Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.

  17. Optical recording of action potentials with second-harmonic generation microscopy.

    PubMed

    Dombeck, Daniel A; Blanchard-Desce, Mireille; Webb, Watt W

    2004-01-28

    Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (approximately 1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexylamino)phenyl][ethynyl]-1-(4-sulfobutyl)pyridinium (inner salt), we optically recorded action potentials with 0.833 msec temporal and 0.6 microm spatial resolution on soma and neurite membranes. Second-harmonic generation response as a function of change in membrane potential was found to be linear with a signal change of approximately 6%/100 mV. The signal-to-noise ratio was approximately 1 for single-trace action potential recordings but was readily increased to approximately 6-7 with temporal averaging of approximately 50 scans. Photodamage was determined to be negligible by observing action potential characteristics, cellular resting potential, and gross cellular morphology during and after laser illumination. High-resolution (micrometer scale) optical recording of membrane potential activity by previous techniques has been limited to imaging depths an order of magnitude less than nonlinear methods. Because second-harmonic generation is capable of imaging up to approximately 400 microm deep into intact tissue with submicron resolution and little out-of-focus photodamage or bleaching, its ability to record fast electrical activity should prove valuable to future electrophysiology studies. PMID:14749445

  18. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef.

    PubMed

    Blanco, Ariel C; Watanabe, Atsushi; Nadaoka, Kazuo; Motooka, Shunsuke; Herrera, Eugene C; Yamamoto, Takahiro

    2011-04-01

    Radon (²²²Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGD(nearshore)) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGD(nearshore) was 0.39-0.58 m³/s, less than 30% of Todoroki River's baseflow discharge. SGD(nearshore) was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGD(nearshore) elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River's baseflow NO₃⁻-N (2-4 mg/L). This increased nearshore Chl-α from 0.5-2 μg/l compared to the typically low Chl-α (< 0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas. PMID:21295316

  19. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties

    PubMed Central

    Ehrlich, Joachim R; Cha, Tae-Joon; Zhang, Liming; Chartier, Denis; Melnyk, Peter; Hohnloser, Stefan H; Nattel, Stanley

    2003-01-01

    Pulmonary vein (PV) cardiomyocytes play an important role in atrial fibrillation; however, little is known about their specific cellular electrophysiological properties. We applied standard microelectrode recording and whole-cell patch-clamp to evaluate action potentials and ionic currents in canine PVs and left atrium (LA) free wall. Resting membrane potential (RMP) averaged −66 ± 1 mV in PVs and −74 ± 1 mV in LA (P < 0.0001) and action potential amplitude averaged 76 ± 2 mV in PVs vs. 95 ± 2 mV in LA (P < 0.0001). PVs had smaller maximum phase 0 upstroke velocity (Vmax: 98 ± 9 vs. 259 ± 16 V s−1, P < 0.0001) and action potential duration (APD): e.g. at 2 Hz, APD to 90 % repolarization in PVs was 84 % of LA (P < 0.05). Na+ current density under voltage-clamp conditions was similar in PV and LA, suggesting that smaller Vmax in PVs was due to reduced RMP. Inward rectifier current density in the PV cardiomyocytes was ˜58 % that in the LA, potentially accounting for the less negative RMP in PVs. Slow and rapid delayed rectifier currents were greater in the PV (by ˜60 and ˜50 %, respectively), whereas transient outward K+ current and L-type Ca2+ current were significantly smaller (by ˜25 and ˜30 %, respectively). Na+-Ca2+-exchange (NCX) current and T-type Ca2+ current were not significantly different. In conclusion, PV cardiomyocytes have a discrete distribution of transmembrane ion currents associated with specific action potential properties, with potential implications for understanding PV electrical activity in cardiac arrhythmias. PMID:12847206

  20. Sodium-calcium exchange during the action potential in guinea-pig ventricular cells.

    PubMed Central

    Egan, T M; Noble, D; Noble, S J; Powell, T; Spindler, A J; Twist, V W

    1989-01-01

    1. Slow inward tail currents attributable to electrogenic sodium-calcium exchange can be recorded by imposing hyperpolarizing voltage clamp pulses during the normal action potential of isolated guinea-pig ventricular cells. The hyperpolarizations return the membrane to the resting potential (between -65 and -88 m V) allowing an inward current to be recorded. This current usually has peak amplitude when repolarization is imposed during the first 50 ms after the action potential upstroke, but becomes negligible once the final phase of repolarization is reached. The envelope of peak current tail amplitudes strongly resembles that of the intracellular calcium transient recorded in other studies. 2. Repetitive stimulation producing normal action potentials at a frequency of 2 Hz progressively augments the tail current recorded immediately after the stimulus train. Conversely, if each action potential is prematurely terminated at 0.1 Hz, repetitive stimulation produces a tail current much smaller than the control value. The control amplitude of inward current is only maintained if interrupted action potentials are separated by at least one full 'repriming' action potential. These effects mimic those on cell contraction (Arlock & Wohlfart, 1986) and suggest that progressive changes in tail current are controlled by variations in the amplitude and time course of the intracellular calcium transient. 3. When intracellular calcium is buffered sufficiently to abolish contraction, the tail current is abolished. Substitution of calcium with strontium greatly reduces the tail current. 4. The inward tail current can also be recorded at more positive membrane potentials using standard voltage clamp pulse protocols. In this way it was found that temperature has a large effect on the tail current, which can change from net inward at 22 degrees C to net outward at 37 degrees C. The largest inward currents are usually recorded at about 30 degrees C. It is shown that this effect is

  1. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-05-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D p-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α' corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an {N}=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  2. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    SciTech Connect

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastiao, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 {mu}V amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  3. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex.

    PubMed

    Molina, Leonardo A; Skelin, Ivan; Gruber, Aaron J

    2014-01-01

    Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists. PMID:24465743

  4. Influence of the temperature of electrode material on its disintegration under the action of an arc discharge in hydrogen

    NASA Technical Reports Server (NTRS)

    Bolotov, A. V.; Yukhimchuk, S. A.

    1985-01-01

    An analysis is made of the electrophysical processes occurring at the end surface of rod electrodes during constant and alternating arc discharge in hydrogen. Experiments are reported on the effect of surface temperature of tungsten electrodes on their erosion. The influence of activating additions of thorium oxide, the structure of the tungsten, and the gas surrounding the electrode on the specific thermal loading and the erosion of the electrodes is discussed.

  5. Understanding the cardiovascular actions of soy isoflavones: potential novel targets for antihypertensive drug development.

    PubMed

    Martin, Doug; Song, Jin; Mark, Connie; Eyster, Kathleen

    2008-12-01

    Interest in and use of "natural" remedies has grown exponentially in recent years. Compounds that have attracted considerable attention are the isoflavones, particular those found in soy. This review will provide a critical evaluation of our current understanding of the effects, mechanisms of action, and potential clinical applications of soy isoflavones in hypertension. Current data indicate that soy isoflavones, such as genistein and daidzein and equol, relax vascular smooth muscle both in vitro and in vivo via a combination of mechanisms including potentiation of endothelial-dependent and endothelial-independent vasodilator systems and inhibition of constrictor mechanisms. These effects involve both classical genomic as well non genomic actions. Isoflavone actions are mediated in part via interactions with estrogen receptors where soy isoflavones induce unique receptor conformations and exert tissue dependent effects similar to the selective estrogen receptor modulators. Signaling pathways such as ERK1/2, PI3-Kinase/Akt and cAMP contribute to isoflavone isoflavone activation of eNOS in the vasculature as well. Isoflavones also target the kidney to increase renal blood flow and sodium excretion. Finally, soy isoflavones interact with humoral systems such as the renin angiotensin. Data from animal studies show consistently that the aggregate effect of these actions is attenuation of hypertension. In contrast, studies in humans remain controversial. Recent data also suggest that analogues of isoflavones may possess unique vascular actions. Thus significant opportunity remains for study of the effects and mechanisms of action of soy isoflavones on hypertension in both animals and humans. PMID:19202595

  6. Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors

    PubMed Central

    Takahashi, Masazumi; Kubo, Tai; Mizoguchi, Akira; Carlson, C. George; Endo, Katsuaki; Ohnishi, Katsunori

    2002-01-01

    In mammals, two combinations of muscle nicotinic acetylcholine receptors (AChRs) are used: α2βγδ (γ-AChR) or α2βɛδ (ɛ-AChR). After birth, γ-AChRs are replaced by ɛ-AChRs (γ/ɛ-switch). The two receptors have different conductances and open times. During perinatal period, the long open time γ-AChRs generate random myofiber action potentials from uniquantal miniature end-plate potentials (mEPPs). ɛ-AChRs are suitable for strong adult muscle activities. Since the effect of the γ/ɛ-switch on neuromuscular development was unclear, despite the many differences in channel characteristics, we carried out this study to generate γ-subunit-deficient mice. Homozygotes born alive survived for 2 days in a stable condition, and were able to move their forelimbs. Endplate AChRs included ɛ-subunits, and muscle fibers had multiple neuromuscular junctions. Both pre- and postsynapses were abnormal and spontaneous action potentials generated from mEPPs were totally absent. Results suggest a requirement for γ-AChRs in mediating synaptically-induced action potential activity critical for neuromuscular development. PMID:12101101

  7. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  8. Addendum to the Closure Report for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the July 1999, Closure Report for Corrective Action Unit 423: Area 3 Building 0360 Underground Discharge Point, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-002-0308, Underground Discharge Point. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the

  9. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    PubMed

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  10. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    PubMed Central

    Ford, Marc C.; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  11. A reconstruction of charge movement during the action potential in frog skeletal muscle.

    PubMed Central

    Huang, C. L.; Peachey, L. D.

    1992-01-01

    The transfer of intramembrane charge during an action potential at 4 degrees C was reconstructed for a model representing the electrical properties of frog skeletal muscle by a cylindrical surface membrane and 16 concentric annuli ("shells") of transverse tubular membrane of equal radial thickness. The lumina of the transverse tubules were separated from extracellular fluid by a fixed series resistance. The quantity, geometrical distribution and steady-state and kinetic properties of charge movement components were described by equations incorporating earlier experimental results. Introducing such nonlinear charge into the distributed model for muscle membrane diminished the maximum amplitude of the action potential within the transverse tubules by 2 mV but increased the maximum size of the after-depolarization by 3-5 mV and also its duration. However, these changes were small in comparison to the 135-mV deflection represented by the action potential. They therefore did not justify altering the values of the electrical parameters adopted by Adrian R.H., and L.D. Peachey (1973. J. Physiol. [Lond.]. 235:103-131.) and used in the present calculations. Cable properties significantly affected the time course and extent of charge movement in each shell during action potential propagation into the tubular system. Q beta charge moved relatively rapidly in all annuli, and did so without significant latency (approximately 0.3 ms) after the surface action potential upstroke. Its peak displacement varied between 53 and 58% (the range representing the difference fiber edge/fiber axis) of the total Q beta charge. This was attained at 5.4-7.3 ms after the stimulus, depending on depth within the tubules. In contrast, q gamma moved after a 1.7-2.9 ms latency and achieved a peak displacement of up to 22-34% of available charge. Both charge movement species could be driven by repetitive (47.7 Hz) action potentials without buildup of charge transfer. Such stimulus frequencies would

  12. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  13. Real-time imaging of action potentials in nerves using changes in birefringence

    PubMed Central

    Badreddine, Ali H.; Jordan, Tomas; Bigio, Irving J.

    2016-01-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time “movies”. This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  14. Real-time imaging of action potentials in nerves using changes in birefringence.

    PubMed

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  15. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing.

    PubMed

    Ford, Marc C; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  16. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.

    PubMed

    Rieger, R; Taylor, J; Comi, E; Donaldson, N; Russold, M; Mahony, C M O; McLaughlin, J A; McAdams, E; Demosthenous, A; Jarvis, J C

    2004-07-01

    Information extracted from whole-nerve electroneurograms, recorded using electrode cuffs, can provide signals to neuroprostheses. However, the amount of information that can be extracted from a single tripole is limited. This communication demonstrates how previously unavailable information about the direction of action potential propagation and velocity can be obtained using a multi-electrode cuff and that the arrangement acts as a velocity-selective filter. Results from in vitro experiments on frog nerves are presented. PMID:15234689

  17. An indirect component in the evoked compound action potential of the vagal nerve.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system. PMID:20966537

  18. Concept of relative variability of cardiac action potential duration and its test under various experimental conditions.

    PubMed

    Magyar, János; Kistamás, Kornél; Váczi, Krisztina; Hegyi, Bence; Horváth, Balázs; Bányász, Tamás; Nánási, Péter P; Szentandrássy, Norbert

    2016-01-01

    Beat-to-beat variability of action potential duration (short-term variability, SV) is an intrinsic property of mammalian myocardium. Since the majority of agents and interventions affecting SV may modify also action potential duration (APD), we propose here the concept of relative SV (RSV), where changes in SV are normalized to changes in APD and these data are compared to the control SV-APD relationship obtained by lengthening or shortening of action potentials by inward and outward current injections. Based on this concept the influence of the several experimental conditions like stimulation frequency, temperature, pH, redox-state and osmolarity were examined on RSV in canine ventricular myocytes using sharp microelectrodes. RSV was increased by high stimulation frequency (cycle lengths <0.7 s), high temperature (above 37ºC), oxidative agents (H2O2), while it was decreased by reductive environment. RSV was not affected by changes in pH (within the range of 6.4-8.4) and osmolarity of the solution (between 250-350 mOsm). The results indicate that changes in beat-to-beat variability of APD must be evaluated exclusively in terms of RSV; furthermore, some experimental conditions, including the stimulation frequency, redox-state and temperature have to be controlled strictly when analyzing alterations in the short-term variability of APD. PMID:26492070

  19. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish.

    PubMed Central

    Smith, D O

    1980-01-01

    1. The phenomena leading to action potential conduction block during repetitive stimulation of the excitor axon of the opener muscle in the crayfish walking leg were studied. 2. Action potentials, recorded extracellularly with micro-electrodes, failed to propagate past sites of axonal bifurcation following at least 3000 impulses; reduction of the rate or brief cessation of stimulation resulted in restored conduction. 3. Failure occurred initially at branch points located most peripherally and then more centrally as stimulation continued; this centripetal progression of the site of block resulted in a stepwise reduction of the number of synaptic terminals from which transmitter was released. 4. Prior to conduction failure, the conduction velocity and the sodium inward current of the action potentials decreased. 5. Local application of hyperpolarizing current or of physiological saline with low [K+] in the vicinity of a block can restore propagation; thus depolarization of the membrane most probably causes failure. 6. Soaking the preparation for as long as 2 hr in the metabolic inhibitor 2,4-dinitrophenol had no effect on the number of stimulus impulses before initial conduction block; however, the time required for recovery from the failure was prolonged. 7. The number of impulses prior to block was related directly to the temperature of the preparation; this had a Q10 calculated to be about 1 . 3. 8. It is suggested that during repetitive activity, the K+ gradient across the membrane is reduced, resulting in depolarization and eventually in conduction failure. PMID:7411430

  20. Shensong Yangxin capsules prevent ischemic arrhythmias by prolonging action potentials and alleviating Ca2+ overload.

    PubMed

    Zhao, Yixiu; Gao, Feng; Zhang, Yong; Wang, Hongtao; Zhu, Jiuxin; Chang, Liping; Du, Zhimin; Zhang, Yan

    2016-06-01

    Shensong Yangxin capsules (SSYX) are an effective traditional Chinese medicine that has been used to treat coronary heart disease clinically. The present study aimed to establish whether SSYX prevent ischemic arrhythmias in rats, and to explore the underlying mechanisms. Male rats were pretreated with distilled water, SSYX and amiodarone for one week. Acute myocardial ischemia (AMI) was performed to induce ischemic arrhythmias. The incidence and severity of ischemic arrhythmias were evaluated. The action potential, transient outward K+ current (Ito) and inward rectifier K+ current (IK1) of rat cardiomyocytes were measured using the patch‑clamp technique. The intracellular Ca2+ concentration of the cardiomyocytes was measured using a laser scanning confocal microscope. The results revealed that SSYX lowered the incidence of arrhythmia markedly during AMI. Furthermore, SSYX delayed the appearance, and reduced the severity, of ischemic arrhythmias compared with the control. In addition, SSYX markedly decreased the ratio of the myocardial infarction region to the whole heart. In an in vitro study, SSYX prolonged the action potential duration of rat cardiomyocytes, and inhibited Ito and IK1 markedly. Additionally, SSYX inhibited Ca2+ elevation induced by KCl in cardiomyocytes. These results suggested that SSYX prevents ischemic arrhythmia, and the underlying mechanism responsible for this process may include prolonging the action potential and alleviating Ca2+ overload. PMID:27122298

  1. Heart rate variability effect on the myocyte action potential duration restitution: insights from switched systems theory.

    PubMed

    Dvir, Hila; Zlochiver, Sharon

    2011-01-01

    The physiological heart rate presents a stochastic behavior known as heart rate variability (HRV). In this framework the influence of HRV on the action potential duration (APD) of the atrial myocyte is analyzed in a computer model. We have found that introducing HRV into the myocyte action potential model decreases the APD of the extra beat S2 in an S1-S2 protocol compared to constant heart rate. A possible theoretical explanation for this is also presented and is derived from switched systems theory. It is suggested to consider the myocyte action potential phase 4 and phase 2 as two operation modes of a switching system and analyze the stability of switching between them. Since random switching is known to have a stabilization effect on a switching system, this might explain why HRV has a stabilization effect on the myocyte APD restitution. Implications of this finding include reduced system stability for conditions with low HRV. A possible application for this phenomenon regards artificial pacemakers, where a preset added HRV is predicted to reduce susceptibility to arrhythmias. PMID:22254402

  2. Axon initial segment Ca2+ channels influence action potential generation and timing

    PubMed Central

    Bender, Kevin J.; Trussell, Laurence O.

    2009-01-01

    Summary Although action potentials are typically generated in the axon initial segment (AIS), the timing and pattern of action potentials is thought to depend on inward current originating in somatodendritic compartments. Using 2-photon imaging, we show that T- and R-type voltage-gated Ca2+ channels are co-localized with Na+ channels in the AIS of dorsal cochlear nucleus interneurons, and that activation of these Ca2+ channels is essential to the generation and timing of action potential bursts known as complex spikes. During complex spikes, where Na+-mediated spikelets fire atop slower depolarizing conductances, selective block of AIS Ca2+ channels delays spike timing and raises spike threshold. Furthermore, AIS Ca2+ channel block can decrease the number of spikelets within a complex spike, and even block single, simple spikes. Similar results were found in cortex and cerebellum. Thus, voltage-gated Ca2+ channels at the site of spike initiation play a key role in generating and shaping spike bursts. PMID:19186168

  3. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin

    PubMed Central

    Kralj, Joel M.; Douglass, Adam D.; Hochbaum, Daniel R.; Maclaurin, Dougal; Cohen, Adam E.

    2011-01-01

    Reliable optical detection of single action potentials in mammalian neurons has been one of the longest-standing challenges in neuroscience. Here we achieve this goal by using the endogenous fluorescence of a microbial rhodopsin protein, Archaerhodopsin 3 (Arch) from Halorubrum sodomense, expressed in cultured rat hippocampal neurons. This genetically encoded voltage indicator exhibited an approximately 10-fold improvement in sensitivity and speed over existing protein-based voltage indicators, with a roughly linear two-fold increase in brightness between −150 mV and +150 mV and a sub-millisecond response time. Arch detected single electrically triggered action potentials with an optical signal-to-noise ratio > 10. The mutant Arch(D95N) lacked endogenous proton pumping and showed 50% greater sensitivity than wild-type, but had a slower response (41 ms). Nonetheless, Arch(D95N) also resolved individual action potentials. Microbial rhodopsin-based voltage indicators promise to enable optical interrogation of complex neural circuits, and electrophysiology in systems for which electrode-based techniques are challenging. PMID:22120467

  4. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. PMID:23774164

  5. Assessing potential toxicity of chloride-affected groundwater discharging to an urban stream using juvenile freshwater mussels (Lampsilis siliquoidea).

    PubMed

    Roy, James W; McInnis, Rodney; Bickerton, Greg; Gillis, Patricia L

    2015-11-01

    Groundwater contaminants, such as chloride from road salt, pose a threat to aquatic ecosystems when and where they discharge to surface waters. Here we study the application of a laboratory toxicity bioassay to field-collected samples from contaminated groundwater discharging to an urban stream. The objectives were to assess the potential toxicity of the discharging groundwater, while also exploring the suitability of such standard tests to site groundwater. Juvenile freshwater mussels were chosen as a groundwater-appropriate (endobenthic) test organism. Groundwater was sampled from 6 sites at approximate depths of 0, 10, and 50 cm below the sediment. Concentrations of chloride and several metals were above aquatic life guidelines in some samples. Exposure (96-h) to site groundwater resulted in survival of 90-100% and 80-100% for the 0-cm and deeper samples, respectively, indicating that groundwater may pose a toxicological threat to freshwater mussels. Several samples with high chloride had a survival rate of 80%, but generally there was poor correlation between survival and individual contaminants. Parallel juvenile mussel exposures using reconstituted water and NaCl predicted survival in the natural groundwater below 50% based on chloride concentrations. This indicates some protective ability of groundwater, possibly associated with water hardness. Finally, some technical issues with performing bioassays with groundwater were noted. First, aeration of previously anoxic groundwater samples caused marked changes in water quality (especially metal concentrations). Second, calcite crystals formed on the mussel shells in samples with elevated chloride and water hardness, though with no apparent negative effects. PMID:26081733

  6. Action-space Clustering of Tidal Streams to Infer the Galactic Potential

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W.

    2015-03-01

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ~10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  7. Nurses' Assessment of Rehabilitation Potential and Prediction of Functional Status at Discharge from Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Myers, Jamie S.; Grigsby, Jim; Teel, Cynthia S.; Kramer, Andrew M.

    2009-01-01

    The goals of this study were to evaluate the accuracy of nurses' predictions of rehabilitation potential in older adults admitted to inpatient rehabilitation facilities and to ascertain whether the addition of a measure of executive cognitive function would enhance predictive accuracy. Secondary analysis was performed on prospective data collected…

  8. Environmental Asthma Reduction Potential Estimates for Selected Mitigation Actions in Finland Using a Life Table Approach

    PubMed Central

    Rumrich, Isabell Katharina; Hänninen, Otto

    2015-01-01

    Aims: To quantify the reduction potential of asthma in Finland achievable by adjusting exposures to selected environmental factors. Methods: A life table model for the Finnish population for 1986–2040 was developed and Years Lived with Disability caused by asthma and attributable to the following selected exposures were estimated: tobacco smoke (smoking and second hand tobacco smoke), ambient fine particles, indoor dampness and mould, and pets. Results: At baseline (2011) about 25% of the total asthma burden was attributable to the selected exposures. Banning tobacco was the most efficient mitigation action, leading to 6% reduction of the asthma burden. A 50% reduction in exposure to dampness and mould as well as a doubling in exposure to pets lead each to a 2% reduction. Ban of urban small scale wood combustion, chosen as a mitigation action to reduce exposure to fine particles, leads to a reduction of less than 1% of the total asthma burden. Combination of the most efficient mitigation actions reduces the total asthma burden by 10%. A more feasible combination of mitigation actions leads to 6% reduction of the asthma burden. Conclusions: The adjustment of environmental exposures can reduce the asthma burden in Finland by up to 10%. PMID:26067987

  9. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre.

    PubMed Central

    Taggart, P; Sutton, P; John, R; Lab, M; Swanton, H

    1992-01-01

    OBJECTIVE--The strong association between ventricular arrhythmia and ventricular dysfunction is unexplained. This study was designed to investigate a mechanism by which a change in ventricular loading could alter the time course of repolarisation and hence refractoriness. A possible mechanism may be a direct effect of an altered pattern of contraction on ventricular repolarisation and hence refractoriness. This relation has been termed contraction-excitation feedback or mechano-electric feedback. METHODS--Monophasic action potentials were recorded from the left ventricular endocardium as a measure of the time course of local repolarisation. The Valsalva manoeuvre was used to change ventricular loading by increasing the intrathoracic pressure and impeding venous return, and hence reducing ventricular pressure and volume (ventricular unloading). PATIENTS--23 patients undergoing routine cardiac catheterisation procedures: seven with no angiographic evidence of abnormal wall motion or history of myocardial infarction (normal), five with a history of myocardial infarction but with normal wall motion, and 10 with angiographic evidence of abnormal wall motion--with or without previous infarction. One patient was a transplant recipient and was analysed separately. SETTING--Tertiary referral centre for cardiology. RESULTS--In patients with normal ventricles during the unloading phase of the Valsalva manoeuvre (mean (SD)) monophasic action potential duration shortened from 311 (47) ms to 295 (47) ms (p less than 0.001). After release of the forced expiration as venous return was restored the monophasic action potential duration lengthened from 285 (44) ms to 304 (44) ms (p less than 0.0001). In the group with evidence of abnormal wall motion the direction of change of action potential duration during the strain phase was normal in 7/21 observations, abnormal in 6/21, and showed no clear change in 8/21. During the release phase 11/20 observations were normal, five abnormal

  10. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.

    PubMed Central

    Wu, J; Wikswo, J P

    1997-01-01

    This study presents a simplified version of the quasi-one-dimensional theory (Wu, J., E. A. Johnson, and J. M. Kootsey. 1996. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys. J. 71:2427-2439) with two components of the extracellular current, along and perpendicular to the axis, and a simulation and its experimental confirmation for the giant axon of the squid. By extending the one-dimensional core conductor cable equations, this theory predicts, as confirmed by the experiment, that the shapes of the intracellular and the extracellular action potentials are related to the resistance of the bath. Such a result was previously only expected by the field theories. The correlation between the shapes of the intracellular and the extracellular potentials of the giant axon of the squid resembles that observed during the anisotropic propagation of excitation in cardiac muscle. Therefore, this study not only develops a quasi-one-dimensional theory for a squid axon, but also provides one possible factor contributing to the anisotropic propagation of action potentials in cardiac muscle. PMID:9370430

  11. An Excel‐based implementation of the spectral method of action potential alternans analysis

    PubMed Central

    Pearman, Charles M.

    2014-01-01

    Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439

  12. Phase Relationship between Alternans of Early and Late Phases of Ventricular Action Potentials

    PubMed Central

    Jing, Linyuan; Agarwal, Anuj; Chourasia, Sonam; Patwardhan, Abhijit

    2012-01-01

    Background: Alternans of early phase and of duration of action potential (AP) critically affect dispersion of refractoriness through their influence on conduction and repolarization. We investigated the phase relationship between the two alternans and its effect on conduction. Methods and Results: Transmembrane potentials recorded from ventricles of eight swine and three canines during paced activation intervals of ≤300 ms were used to quantify alternans of maximum rate of depolarization (|dv/dt|max) and of action potential duration (APD). Incidence of APD alternans was 62 and 76% in swine and canines. Alternans of APD was frequently accompanied with alternans of |dv/dt|max. Of these, 4 and 26% were out of phase in swine and canines, i.e., low |dv/dt|max preceded long APD. Computer simulations show that out of phase alternans attenuate variation of wavelength and thus minimize formation of spatially discordant alternans. Conclusion: The spontaneous switching of phase relationship between alternans of depolarization and repolarization suggests that mechanisms underlying these alternans may operate independent of each other. The phase between these alternans can critically impact spatial dispersion of refractoriness and thus stability of conduction, with the in phase relation promoting transition from concord to discord while out of phase preventing formation of discord. PMID:22701104

  13. NeuroGrid: recording action potentials from the surface of the brain

    PubMed Central

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding one week. We also recorded LFP-modulated spiking activity intra-operatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders. PMID:25531570

  14. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

    PubMed Central

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-01-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz–10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology. PMID:24785307

  15. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

    NASA Astrophysics Data System (ADS)

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-05-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology.

  16. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays.

    PubMed

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-01-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology. PMID:24785307

  17. Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations

    PubMed Central

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne R.

    2013-01-01

    Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity. PMID:24146650

  18. Monophasic action potentials and Ca2+ transients in ischaemically preconditioned rabbit ventricular muscle

    PubMed Central

    Dekker, L.R.C.; van Bavel, E.; Opthof, T.; Coronel, R.; Janse, M.J.

    2003-01-01

    Background ATP-sensitive K+ (KATP) channels play an important role in the protective mechanism underlying ischaemic preconditioning. Ample evidence indicates, however, that action potential shortening is not a prerequisite for the cardioprotective effect of preconditioning. Methods Monophasic action potential duration (MAPD), tissue resistance, intracellular Ca2+ (Indo-1) and mechanical activity were simultaneously assessed in arterially perfused rabbit papillary muscles. We studied four experimental protocols preceding sustained ischaemia: 1. control perfusion (n=6), 2. ischaemic preconditioning (PC; n=4), 3. pretreatment with a KATP channel blocker, glibenclamide (15 μmol/1), prior to ischaemic preconditioning (PC+glib; n=3), 4. glibenclamide pretreatment only (Glib; n=2). Results In the PC group an increase in the diastolic Ca2+ level and a prolongation of the Ca2+ transient just prior to the induction of sustained ischaemia correlate to the postponement of the onset of irreversible ischaemic damage, as established by a rise in [Ca2+]i, electrical uncoupling and contracture. Glibenclamide antagonised these changes in the Ca2+ transient and the cardioprotection induced by preconditioning. MAPD was equal in all experimental groups. Conclusions Prolongation of the Ca2+ transient and increase of diastolic [Ca2+]i just prior to the induction of sustained ischaemia and not action potential shortening are involved in the cardioprotective effect of ischaemic preconditioning. Therefore, a glibenclamide-sensitive mechanism, other than the sarcolemmal KATP channels, is involved in the protective effect of ischaemic preconditioning. Changes in Ca2+ metabolism may play a crucial role in ischaemic preconditioning. ImagesFigure 1 PMID:25696182

  19. Electrophysiological properties of rat spinal dorsal horn neurones in vitro: calcium-dependent action potentials.

    PubMed Central

    Murase, K; Randić, M

    1983-01-01

    1. The electrophysiological properties of dorsal horn neurones have been investigated in the immature rat in vitro spinal cord slice preparation. 2. Intracellular recordings from dorsal horn neurones show that direct or orthodromic stimulation generates action potentials followed by a brief after-hyperpolarization. Synaptic potentials were elicited by the activation of primary afferent fibres in the dorsal root. 3. Input resistance for dorsal horn neurones ranged from 48 to 267 M omega, and the membrane time constant was in the range of 4-19 ms. 4. In response to strong depolarizing currents dorsal horn neurones perfused with TTX and TEA frequently exhibit a slow regenerative depolarizing potential followed by a slow after-hyperpolarization. The depolarizing potential probably results from an influx of Ca. It is blocked by low concentration Ca, Co or Mn, and enhanced by high levels of extracellular Ca. 5. There is, in addition, a low-threshold Ca-dependent response which is activated at membrane potentials more negative than -65 mV and has a maximum rate of rise at the polarization level of about -80 mV. 6. The addition of Ba or TEA to the perfusing medium provided support for the Ca-dependence of the low- and high-threshold responses, and the lack of fast inactivation of the high-threshold Ca potential. Images Plate 1 PMID:6306228

  20. Dynamical speckles patterns of action potential transmission effects in squid giant axon membrane

    NASA Astrophysics Data System (ADS)

    Llovera-González, Juan J.; Moreno-Yeras, Alfredo B.; Muramatsu, Mikiya; Soga, Diogo; Serra-Toledo, Rolando L.; Magalhães, Daniel S. F.

    2013-11-01

    Undoubtedly the most important result of the investigations in physiology and biophysics was the discovery of the electrochemical mechanism of propagation of the action potential in nerves that was made by Hodgkin and Huxley during the first half of the past century. Since some decades ago diverse experiments about the electro optical properties of the axon membrane there was published using the most diverse optical experimental procedures6-10. In this paper some results of a dynamical speckle technique applied for obtaining microscopic images of a section of a squid giant axon membrane during the activation by electrical impulses and his digital process are presented.

  1. Simulation of ECG Repolarization Phase with Improved Model of Cell Action Potentials

    NASA Astrophysics Data System (ADS)

    Trobec, Roman; Depolli, Matjaž; Avbelj, Viktor

    An improved model of action potentials (AP) is proposed to increase the accuracy of simulated electrocardiograms (ECGs). ECG simulator is based on a spatial model of a left ventricle, composed of cubic cells. Three distinct APs, modeled with functions proposed by Wohlfard, have been assigned to the cells, forming epicardial, mid, and endocardial layers. Identification of exact parameter values for AP models has been done through optimization of the simulated ECGs. Results have shown that only through an introduction of a minor extension to the AP model, simulator is able to produce more realistic ECGs. The same extension also proves essential for achieving a better fit between the measured and modeled APs.

  2. A Quantitative Description of the Relationship between the Area of Rabbit Ventricular Action Potentials and the Pattern of Stimulation

    PubMed Central

    Gibbs, C. L.; Johnson, E. A.; Tille, J.

    1963-01-01

    Intracellular microelectrodes were used to record action potentials from fibres of the isolated rabbit right ventricle and the areas of the action potentials were measured. The action potential area was found to depend in a reproducible way on the preceding pattern of stimulation. A mathematical model reproducing all the observed changes in the action potential area was developed. In the model the action potential area is taken as a linear function of the product of two time and stimulation dependent variables, M and N. The behaviour of each variable between action potentials is described by the solution of a second order differential equation. During each action potential the variables are assumed to change discontinuously, the magnitudes of the discontinuous changes being given by a set of subsidiary equations. It was found that the behaviour of all the fibres tested was described by the same set of equations, each single fibre being characterized by a set of ten independent constants. ImagesFigure 5 PMID:14070359

  3. Lung surgery - discharge

    MedlinePlus

    Thoracotomy - discharge; Lung tissue removal - discharge; Pneumonectomy - discharge; Lobectomy - discharge; Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge; Thoracoscopy - discharge

  4. Flavonoids: a review of probable mechanisms of action and potential applications.

    PubMed

    Nijveldt, R J; van Nood, E; van Hoorn, D E; Boelens, P G; van Norren, K; van Leeuwen, P A

    2001-10-01

    The aim of this review, a summary of the putative biological actions of flavonoids, was to obtain a further understanding of the reported beneficial health effects of these substances. Flavonoids occur naturally in fruit, vegetables, and beverages such as tea and wine. Research in the field of flavonoids has increased since the discovery of the French paradox,ie, the low cardiovascular mortality rate observed in Mediterranean populations in association with red wine consumption and a high saturated fat intake. Several other potential beneficial properties of flavonoids have since been ascertained. We review the different groups of known flavonoids, the probable mechanisms by which they act, and the potential clinical applications of these fascinating natural substances. PMID:11566638

  5. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates.

    PubMed

    Schlaepfer, Charles H; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell's motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium's large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students' laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around -30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20-30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature's conclusion in a V-Gated Ca(++) influx and depolarization resulting in feedback from intracellular Ca(++) that inactivates V-Gated Ca(++) channels and activates Ca-Dependent K(+) channels through a secondary messenger cascade that results in the K(+) efflux and repolarization. PMID:26557800

  6. Action of hallucinogens on raphe-evoked dorsal root potentials (DRPs) in the cat.

    PubMed

    Larson, A A; Anderson, E G

    1986-02-01

    The dorsal root potential (DRP) evoked by stimulation of the inferior central nucleus (ICN) of the cat is affected by administration of a variety of hallucinogenic agents. It has been previously shown that a single low dose of LSD is unique in that it potentiates this DRP, while injections of 5-methoxy-N,N- dimethyltryptamine (5-MeODMT), ketamine or phencyclidine (PCP) inhibit its production. Tolerance develops to the facilitatory effect of low doses of LSD on the DRP, but not to the inhibitory action of 5-MeODMT. Repeated injections of ketamine every 30 minutes also fail to produce tachyphylaxis to the inhibitory effect of this dissociative anesthetic. The raphe-evoked DRP is a long latency potential that is inhibited by a wide variety of putative serotonin antagonists and has therefore been traditionally thought to be mediated by serotonin. However, in light of the inability of either tryptophan or fluoxetine to potentiate this DRP, and the resistance of this DRP to blockade by parachlorophenylalanine, reserpine or intrathecally administered 5,7-dihydroxytryptamine, it appears that this potential may in fact be mediated, at least in part, by a non-serotonergic transmitter. PMID:3952125

  7. Ocean Thermal Energy Conversion: the potential impact on microphytoplankton of bottom water discharge at subsurface in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Giraud, Mélanie; Boye, Marie; Garçon, Véronique; L'Helguen, Stéphane; Donval, Anne; De la Broise, Denis

    2015-04-01

    Part of the solar energy can be harvested and used in different processes. Taking advantage of the natural temperature gradient between the surface and deep ocean, the Ocean Thermal Energy Conversion (OTEC) process fulfills this goal. The IMPALA project (Impacts of artificial upwelling on microplankton) aims to study the potential environmental impacts of releasing, below the surface, deep seawater flowing out of a scheduled OTEC pilot plant offshore the Martinique Island in the Caribbean Sea. Biogeochemical processes involved in the artificial upwelling generated by the use of an Ocean Thermal Energy Conversion (OTEC) plant were studied in this poor nutrient environment. The biogeochemical and physical ecosystem structure and functioning on the OTEC site were described and deep seawater discharge using in situ microcosm experiments was carried out off Martinique. Surface seawater was collected in ultra-clean conditions at two depths (corresponding to the maximum of chlorophyll a concentration and bottom of nutricline) and mixed in different proportions with deep seawater (2% and 10%). Pigments determination, picophytoplankton abundance, macro-nutrients (silicates, nitrates, and phosphates), particular organic carbon and nitrogen concentrations and primary production were documented to assess the variability between the natural environment and within the microcosms. The latter were immersed for 6 days on a 250 meters mooring. Variations observed in microcosms experiments and in the surrounding waters were compared in order to evaluate the natural variability of the phytoplankton assemblage and the potential shifts induced by deep water supply. Results obtained during two fields campaigns conducted off Martinique at the onset of the dry (November-December 2013) and wet seasons (June 2014), respectively, will be presented and discussed. Incubating mixtures of subsurface and deep waters at two ratios and at two depths, allows evaluating the potential impact of a deep

  8. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites.

    PubMed

    Acker, Corey D; Antic, Srdjan D

    2009-03-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or I(h) conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which I(A) down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  9. Interactions of ethanol and quinidine on contractility and myocyte action potential in the rat ventricle.

    PubMed

    Guthrie, S K; Wilde, D W; Brown, R A; Savage, A O; Bleske, B

    1995-01-01

    The combined effects of ethanol and quinidine on cardiac electromechanical coupling are unknown, but both drugs affect cardiac conduction and can cause myocardial depression. Isolated left ventricular papillary and ventricular myocytes were used to assess the combined effects of quinidine and ethanol on the electrophysiologic and mechanical properties of rat myocardium. The combination of quinidine (1-300 microM) and ethanol (120-240 mg/dL) depressed active papillary muscle tension within the clinically useful concentration range. In electrophysiologic studies of isolated ventricular myocytes, quinidine prolonged the action potential duration at 50% (APD50) and 90% (APD90) repolarization, the absolute refractory period, and the relative refractory period, but decreased the maximum rate of change of depolarization in phase 0 (Vmax). When cells were exposed to ethanol (240 mg/dL) and quinidine (1.5 microM) together, a significant decrease in the quinidine-induced prolongation of the absolute refractory and relative refractory periods was seen. Additional changes in action potential parameters from the quinidine values included slight reductions in Vmax and in APD50 and APD90, but these reductions were not consistently displayed, nor were they statistically significant. PMID:7897336

  10. Applications of Control Theory to the Dynamics and Propagation of Cardiac Action Potentials

    PubMed Central

    Muñoz, Laura M.; Stockton, Jonathan F.; Otani, Niels F.

    2011-01-01

    Sudden cardiac arrest is a widespread cause of death in the industrialized world. Most cases of sudden cardiac arrest are due to ventricular fibrillation (VF), a lethal cardiac arrhythmia. Electrophysiological abnormalities such as alternans (a beat-to-beat alternation in action potential duration) and conduction block have been suspected to contribute to the onset of VF. This study focuses on the use of control-systems techniques to analyze and design methods for suppressing these precursor factors. Control-systems tools, specifically controllability analysis and Lyapunov stability methods, were applied to a two-variable Karma model of the action-potential (AP) dynamics of a single cell, to analyze the effectiveness of strategies for suppressing AP abnormalities. State-feedback-integral (SFI) control was then applied to a Purkinje fiber simulated with the Karma model, where only one stimulating electrode was used to affect the system. SFI control converted both discordant alternans and 2:1 conduction block back toward more normal patterns, over a wider range of fiber lengths and pacing intervals compared with a Pyragas-type chaos controller. The advantages conferred by using feedback from multiple locations in the fiber, and using integral (i.e., memory) terms in the controller, are discussed. PMID:20407833

  11. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials

    PubMed Central

    Trantidou, Tatiana; Terracciano, Cesare M.; Kontziampasis, Dimitrios; Humphrey, Eleanor J.; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 – 2.22) are comparable with values for healthy adult rat ventricles (1.98 – 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies. PMID:26053434

  12. Supernormal Conduction and Suppression of Spatially Discordant Alternans of Cardiac Action Potentials

    PubMed Central

    Jing, Linyuan; Agarwal, Anuj; Patwardhan, Abhijit

    2016-01-01

    Spatially discordant alternans (DA) of action potential durations (APD) is thought to be more pro-arrhythmic than concordant alternans. Super normal conduction (SNC) has been reported to suppress formation of DA. An increase in conduction velocity (CV) as activation rate increases, i.e., a negative CV restitution, is widely considered as hallmark of SNC. Our aim in this study is to show that it is not an increase in CV for faster rates that prevents formation of DA, rather, it is the ratio of the CV for the short relative to the long activation that is critical in DA suppression. To illustrate this subtlety, we simulated this phenomenon using two approaches; (1) by using the standard, i.e., S1S2 protocol to quantify restitution and disabling the slow inactivation gate j of the sodium current (INa), and (2) by using the dynamic, i.e., S1S1 protocol for quantification of restitution and increasing INa at different cycle lengths (CL). Even though both approaches produced similar CV restitution curves, DA was suppressed only during the first approach, where the CV of the short of the long-short action potential (AP) pattern was selectively increased. These results show that negative CV restitution, which is considered characteristic of SNC, per se, is not causal in suppressing DA, rather, the critical factor is a change in the ratio of the velocities of the short and the long APs. PMID:26779035

  13. The effect of recording site on extracted features of motor unit action potential.

    PubMed

    Artuğ, N Tuğrul; Goker, Imran; Bolat, Bülent; Osman, Onur; Kocasoy Orhan, Elif; Baslo, M Baris

    2016-06-01

    Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant. PMID:26817404

  14. Computational and Electronic Analog Implementation of the Hodgkin-Huxley Model of Action Potentials in Neurons

    NASA Astrophysics Data System (ADS)

    Smith, Peter; Link, Justin

    2012-02-01

    Alan Loyd Hodgkin and Andrew Huxley's mathematical model of action potential initiation and propagation in neurons is one of the greatest hallmarks of biophysics. Two techniques for implementing the Hodgkin-Huxley model were explored: computational and electronic analog. Computational modeling was done using NEURON 7.1. NEURON is a free, robust, and relatively user friendly simulation environment that enables quantitatively accurate computational modeling of neurons and neural networks. An analog electronic circuit was built using field-effect transistors (FETs) to simulate the non-linear, voltage-dependent (sodium and potassium) conductances that are responsible for membrane excitability. While the electronic analog qualitatively reproduces many of the key features of the action potential including overall shape, inactivation period, and propagation, it was difficult to quantitatively reproduce the Hodgkin-Huxley model. In addition, while the relative cost to build circuits equivalent to small membrane patches is minimal (˜50), implementation of larger cells or networks would prove uneconomical. Still, both techniques are viable avenues toward introducing interdisciplinary research into either a computational or electronics lab setting at the undergraduate level.

  15. Peripheral Hot Spots for Local Ca2+ Release after Single Action Potentials in Sympathetic Ganglion Neurons

    PubMed Central

    Cseresnyés, Zoltán; Schneider, Martin F.

    2004-01-01

    Ca2+ release from the endoplasmic reticulum (ER) contributes to Ca2+ transients in frog sympathetic ganglion neurons. Here we use video-rate confocal fluo-4 fluorescence imaging to show that single action potentials reproducibly trigger rapidly rising Ca2+ transients at 1–3 local hot spots within the peripheral ER-rich layer in intact neurons in fresh ganglia and in the majority (74%) of cultured neurons. Hot spots were located near the nucleus or the axon hillock region. Other regions exhibited either slower and smaller signals or no response. Ca2+ signals spread into the cell at constant velocity across the ER in nonnuclear regions, indicating active propagation, but spread with a (time)1/2 dependence within the nucleus, consistent with diffusion. 26% of cultured cells exhibited uniform Ca2+ signals around the periphery, but hot spots were produced by loading the cytosol with EGTA or by bathing such cells in low-Ca2+ Ringer's solution. Peripheral hot spots for Ca2+ release within the perinuclear and axon hillock regions provide a mechanism for preferential initiation of nuclear and axonal Ca2+ signals by single action potentials in sympathetic ganglion neurons. PMID:14695260

  16. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  17. Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0

    SciTech Connect

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the

  18. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    PubMed Central

    Frey, Scott H.; Povinelli, Daniel J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of intended future actions. Recently, the question of whether similar mechanisms exist in other primates has received growing, but still limited, attention. Here, we present data that bear on this issue from a species that is a natural user of tools, our nearest living relative, the chimpanzee. In experiment 1, a subset of chimpanzees showed a non-significant tendency for their grip preferences to be affected by anticipation of the demands associated with bringing a tool's baited end to their mouths. In experiment 2, chimpanzees' initial grip preferences were consistently affected by anticipation of the forthcoming movements in a task that involves using a tool to extract a food reward. The partial discrepancy between the results of these two studies is attributed to the ability to accurately represent differences between the motor costs associated with executing the two response alternatives available within each task. These findings suggest that chimpanzees are capable of accurately representing the costs of intended future actions, and using those predictions to select movements in the present even in the context of externally directed tool use. PMID:22106426

  19. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed

  20. Action Potential Energetics at the Organismal Level Reveal a Trade-Off in Efficiency at High Firing Rates

    PubMed Central

    Gilmour, Kathleen M.; Moorhead, Mayron J.; Perry, Steve F.; Markham, Michael R.

    2014-01-01

    The energetic costs of action potential (AP) production constrain the evolution of neural codes and brain networks. Cellular-level estimates of AP-related costs are typically based on voltage-dependent Na+ currents that drive active transport by the Na+/K+ ATPase to maintain the Na+ and K+ ion concentration gradients necessary for AP production. However, these estimates of AP cost have not been verified at the organismal level. Electric signaling in the weakly electric fish Eigenmannia virescens requires that specialized cells in an electric organ generate APs with large Na+ currents at high rates (200–600 Hz). We measured these currents using a voltage-clamp protocol and then estimated the energetic cost at the cellular level using standard methods. We then used this energy-intensive signaling behavior to measure changes in whole-animal energetics for small changes in electric discharge rate. At low rates, the whole-animal measure of AP cost was similar to our cellular-level estimates. However, AP cost increased nonlinearly with increasing firing rates. We show, with a biophysical model, that this nonlinearity can arise from the increasing cost of maintaining AP amplitude at high rates. Our results confirm that estimates of energetic costs based on Na+ influx are appropriate for low baseline firing rates, but that extrapolating to high firing rates may underestimate true costs in cases in which AP amplitude does not decrease. Moreover, the trade-off between energetic cost and firing rate suggests an additional constraint on the evolution of high-frequency signaling in neuronal systems. PMID:24381281

  1. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    USGS Publications Warehouse

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  2. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    ERIC Educational Resources Information Center

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  3. Regulation of Action Potential Waveforms by Axonal GABAA Receptors in Cortical Pyramidal Neurons

    PubMed Central

    Xia, Yang; Zhao, Yuan; Yang, Mingpo; Zeng, Shaoqun; Shu, Yousheng

    2014-01-01

    GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb) of the main axon trunk of layer –5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs) and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors. PMID:24971996

  4. External potassium and action potential propagation in rat fast and slow twitch muscles.

    PubMed

    Kössler, F; Lange, F; Caffier, G; Küchler, G

    1991-10-01

    The role of extracellular K+ concentration in the propagation velocity of action potential was tested in isolated rat skeletal muscles. Different K+ concentrations were produced by KCl additions to extracellular solution. Action potentials were measured extracellularly by means of two annular platinum electrodes. Fibre bundles of m. soleus (SOL), m. extensor digitorum longus (EDL), red (SMR) and white (SMW) part of m. sternomastoideus were maximum stimulated. The conduction velocity (c.v.) was calculated from the distance between the electrodes and the time delay of the potentials measured at 22 degrees C. In Tyrode solution containing 5 mmol/l K+, the c.v. was close to 1 m.s-1. Bundles of the fast muscle type seemed to have a somewhat higher c.v. The differences observed in these studies were not significant. At higher temperatures, the c.v. increased (Q10 of approx. 2) and a dissociation between SMR and SMW muscles appeared. An elevation of K+ concentration to 10 mmol/l induced a drop of the c.v. by approx. 25% and 15% in EDL and SOL muscles, respectively. After return to normal solution, the recovery was not complete within 30 min. In K+ free solution the c.v. of EDL and SM muscles rose by a factor of 1.5, but less in SOL muscles. The weaker response of SOL to K+ modification was related to the higher resistance of this muscle to fatigue. This suggestion was supported by experiments on fatigued fibre bundles. Immediately after a tetanic stimulation producing fatigue, the c.v. of EDL and SOL muscles dropped similarly as in 10 mmol/l K+; again, the drop was less for SOL muscles. Adrenaline (0.5-10.0 mumol/l) enhanced both the c.v. and the twitch amplitude. The results support the suggestion that extracellular K+ accumulation during activity is an essential factor of muscle fatigue. PMID:1816028

  5. Kidney stones - lithotripsy - discharge

    MedlinePlus

    Extracorporeal shock wave lithotripsy - discharge; Shock wave lithotripsy - discharge; Laser lithotripsy - discharge; Percutaneous lithotripsy - discharge; Endoscopic lithotripsy - discharge; ESWL - discharge

  6. Pancreatitis - discharge

    MedlinePlus

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  7. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.

    PubMed

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  8. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    NASA Astrophysics Data System (ADS)

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  9. Potential Mechanisms of Action in the Treatment of Social Impairment and Disorganization in Adolescents with ADHD

    PubMed Central

    Evans, Steven W.; Schultz, Brandon K.; Zoromski, Allison K.

    2014-01-01

    Two important domains that can be impaired in adolescents with ADHD are organization and social functioning; however, the development of interventions to target these areas in adolescents is in the early stages. Currently, small efficacy trials are beginning to be used to conduct preliminary tests on the proposed mechanisms of action for these interventions. These two studies examined the efficacy of organization and social functioning interventions for adolescents with ADHD, as well as the potential mechanisms of action for each intervention. Results from the organization intervention provide support for a significant relationship between performance on the organization checklist and overall GPA; however, there was no meaningful pattern of relationships between achieving mastery of the organization tasks and grades within quarter. Further, results from the social functioning intervention support a moderate relationship between performance on process measures of response to the intervention and outcome measures of social functioning. Results of this study provide implications for modifications to the measures and intervention procedures in future research. PMID:24748901

  10. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty

    PubMed Central

    Dixon, David; Coates, Jonathon; del Carpio Pons, Alicia; Horabin, Joanna; Walker, Andrew; Abdul, Nicole; Kalson, Nicholas S.; Brewster, Nigel T.; Weir, David J.; Deehan, David J.; Mann, Derek A.; Borthwick, Lee A.

    2015-01-01

    Arthrofibrosis is a fibroproliferative disease characterised by excessive deposition of extracellular matrix components intra-articularly leading to pain and restricted range of movement. Although frequently observed following total knee arthroplasty (TKA) no therapeutic options exist. A pilot study demonstrated that intra-articular injection of Anakinra, an IL-1R antagonist, improved range of movement and pain in patients with arthrofibrosis however the mechanism of action is unknown. We hypothesise that IL-1α/β will drive an inflammatory phenotype in fibroblasts isolated from the knee, therefore identifying a potential mechanism of action for Anakinra in arthrofibrosis following TKA. Fibroblasts isolated from synovial membranes and infra-patellar fat pad of patients undergoing TKA express high levels of IL-1R1. Stimulation with IL-1α/β induced a pro-inflammatory phenotype characterised by increased secretion of GMCSF, IL-6 and IL-8. No significant difference in the inflammatory response was observed between fibroblasts isolated from synovial membrane or infra-patellar fat pad. IL-1α/β treatments induced a pro-inflammatory phenotype in fibroblasts from both synovial membrane and infra-patellar fat pad and therefore Anakinra can likely have an inhibitory effect on fibroblasts present in both tissues in vivo. It is also likely that fibroblast responses in the tissues are controlled by IL-1α/β availability and not their ability to respond to it. PMID:26553966

  11. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    NASA Astrophysics Data System (ADS)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2011-05-01

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile Φ(x) near the sheath edge xs in the limit ɛ ≡λD/ℓ =0 (where λD is the Debye length and ℓ is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation (ɛ =0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys. D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since "the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity" [Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and "water-bag" ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to "practical infinity." While within limits of "very low" and "relatively high" ion source temperatures

  12. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations.

    PubMed

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2015-09-01

    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations. PMID:26320871

  13. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  14. Neuronal adaptation involves rapid expansion of the action potential initiation site.

    PubMed

    Scott, Ricardo S; Henneberger, Christian; Padmashri, Ragunathan; Anders, Stefanie; Jensen, Thomas P; Rusakov, Dmitri A

    2014-01-01

    Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma-axon recordings combined with axonal Na(+) and Ca(2+) imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na(+) channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. PMID:24851940

  15. Time course of Ca and Ca-dependent K currents during molluscan nerve cell action potentials.

    PubMed

    Gola, M; Hussy, N; Crest, M; Ducreux, C

    1986-10-20

    The time courses of Ca and Ca-dependent K currents during Ca-dependent action potentials were obtained by recording the membrane currents produced in response to spike-like voltage clamp pulses before and after selective blockade of channels. The Ca current had a biphasic waveform with a first surge and a late, large entry. The Ca-dependent K(Ca) current onset was relatively fast with a peak occurring at half spike repolarization. The fast activation of the K(Ca) current was consecutive to the first Ca entry. It is concluded that K(Ca) currents constitute a powerful spike repolarization mechanism in addition to the voltage-dependent K currents. PMID:2430243

  16. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    PubMed Central

    Li, Wentao; Xu, Haoliang; Testai, Fernando D.

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood–brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke. PMID:27617002

  17. Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.

    PubMed

    Rowan, Matthew J M; DelCanto, Gina; Yu, Jianqing J; Kamasawa, Naomi; Christie, Jason M

    2016-07-20

    In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. PMID:27346528

  18. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  19. Neuronal adaptation involves rapid expansion of the action potential initiation site

    PubMed Central

    Scott, Ricardo S.; Henneberger, Christian; Padmashri, Ragunathan; Anders, Stefanie; Jensen, Thomas P.; Rusakov, Dmitri A.

    2014-01-01

    Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma–axon recordings combined with axonal Na+ and Ca2+ imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na+ channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. PMID:24851940

  20. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke.

    PubMed

    Li, Wentao; Xu, Haoliang; Testai, Fernando D

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood-brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720's mechanisms of action in stroke. PMID:27617002

  1. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    PubMed Central

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  2. Experimental and theoretical description of higher order periods in cardiac tissue action potential duration

    NASA Astrophysics Data System (ADS)

    Herndon, Conner; Fenton, Flavio; Uzelac, Ilija

    Much theoretical, experimental, and clinical research has been devoted to investigating the initiation of cardiac arrhythmias by alternans, the first period doubling bifurcation in the duration of cardiac action potentials. Although period doubling above alternans has been shown to exist in many mammalian hearts, little is understood about their emergence or behavior. There currently exists no physiologically correct theory or model that adequately describes and predicts their emergence in stimulated tissue. In this talk we present experimental data of period 2, 4, and 8 dynamics and a mathematical model that describes these bifurcations. This model extends current cell models through the addition of memory and includes spatiotemporal nonlinearities arising from cellular coupling by tissue heterogeneity.

  3. Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.

    PubMed

    Lin, Jen-Wei

    2016-01-01

    Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. PMID:26561611

  4. Trichloroethanol alters action potentials in a subgroup of primary sensory neurones.

    PubMed

    Gruss, Marco; Hempelmann, Gunter; Scholz, Andreas

    2002-05-01

    We investigated the effects of 2,2,2-trichloroethanol (TCE), the active metabolite of chloral hydrate, on large-conductance calcium-activated K+ channels (BKCa channels) of dorsal root ganglion (DRG) neurones. In outside-out patches, 2 and 5 mM TCE increased the open probability of BKCa channels to 1.7-fold and 2.8-fold of control, respectively. In 50% of the cells investigated (group A) the action potential (AP) was shortened reversibly by TCE by 20% and the whole-cell outward-current was increased by 44%. Both effects could be antagonized by iberiotoxin. In a second group of neurone (group B), TCE prolonged the AP duration. The effects of TCE in group A, which was 20-fold more potent than ethanol on BKCa channels and AP might contribute to the described analgesic effect of chloral hydrate. PMID:11997700

  5. Control of action potential propagation by intracellular Ca2+ in cultured rat dorsal root ganglion cells.

    PubMed Central

    Lüscher, C; Lipp, P; Lüscher, H R; Niggli, E

    1996-01-01

    1. To assess the role of intracellular Ca2+ in action potential (AP) propagation, whole-cell recordings of cultured dorsal root ganglion (DRG) cells were carried out while Ca2+ was simultaneously measured with a laser-scanning confocal microscope. 2. Flash photolytic liberation of a Ca2+ buffer during trains of APs which partly failed to invade the DRG cell body immediately lowered intracellular Ca2+ and restored safe AP propagation. Furthermore, the speed of the propagated AP was reduced considerably when intracellular Ca2+ was increased by flash photolysis of caged Ca2+. 3. Both results suggest that intracellular Ca2+ regulates the safety factor for AP propagation and may thus provide a control mechanism for synaptic integration, which acts pre- as well as postsynaptically. Images Figure 1 Figure 3 PMID:8821131

  6. Effect of Cardiac Tissue Anisotropy on Three-Dimensional Electrical Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    He, Zhi Zhu; Liu, Jing

    A three-dimensional (3D) electrical action potential propagation model is developed to characterize the integrated effect of cardiac tissue structure using a homogenous function with a spatial inhomogeneity. This method may be more effective for bridging the gap between computational models and experimental data for cardiac tissue anisotropy. A generalized 3D eikonal relation considering anisotropy and a self-similar evolution solution of such a relation are derived to identify the effect of anisotropy and predict the anisotropy-induced electrical wave propagation instabilities. Furthermore, the phase field equation is introduced to obtain the complex three-dimensional numerical solution of the new correlation. The present results are expected to be valuable for better understanding the physiological behavior of cardiac tissues.

  7. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates

    PubMed Central

    Schlaepfer, Charles H.; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell’s motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium’s large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students’ laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around −30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20–30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature’s conclusion in a V-Gated Ca++ influx and depolarization resulting in feedback from intracellular Ca++ that inactivates V-Gated Ca++ channels and activates Ca-Dependent K+ channels through a secondary messenger cascade that results in the K+ efflux and repolarization. PMID:26557800

  8. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    PubMed Central

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  9. Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips

    PubMed Central

    Golovko, Vladimir; Gonotkov, Mikhail; Lebedeva, Elena

    2015-01-01

    The physiological role of Ito has yet to be clarified. The goal of this study is to investigate the possible contribution of the transient outward current (Ito) on the generation of transmembrane action potentials (APs) and the sensitivity of mouse sinoauricular node (SAN) cells to a 4-aminopyridine (4AP) as Ito blocker. The electrophysiological identification of cells was performed in the sinoauricular node artery area (nstrips = 38) of the subendocardial surface using microelectrode technique. In this study, for the first time, it was observed that dependence duration of action potential at the level of 20% repolarization (APD20) level under a 4AP concentration in the pacemaker SAN and auricular cells corresponds to a curve predicted by Hill’s equation. APD20 raised by 70% and spike duration of AP increased by 15–25%, when 4AP concentration was increased from 0.1 to 5.0 mmol/L. Auricular cells were found to be more sensitive to 4AP than true pacemaker cells. This was accompanied by a decrease in the upstroke velocity as compared to the control. Our data and previous findings in the literature lead us to hypothesize that the 4AP-sensitive current participates in the repolarization formation of pacemaker and auricular type cells. Thus, study concerning the inhibitory effects of lidocaine and TTX on APD20 can explain the phenomenon of the decrease in upstroke velocity, which, for the first time, was observed after exposure to 4AP. Duration of AP at the level of 20% repolarization (APD20) under a 4-AP concentration 0.5 mmol/L in the true pacemaker cells lengthen by 60–70% with a control. PMID:26156968

  10. Effects of 4-aminopyridine on action potentials generation in mouse sinoauricular node strips.

    PubMed

    Golovko, Vladimir; Gonotkov, Mikhail; Lebedeva, Elena

    2015-07-01

    The physiological role of Ito has yet to be clarified. The goal of this study is to investigate the possible contribution of the transient outward current (Ito) on the generation of transmembrane action potentials (APs) and the sensitivity of mouse sinoauricular node (SAN) cells to a 4-aminopyridine (4AP) as Ito blocker. The electrophysiological identification of cells was performed in the sinoauricular node artery area (nstrips = 38) of the subendocardial surface using microelectrode technique. In this study, for the first time, it was observed that dependence duration of action potential at the level of 20% repolarization (APD20) level under a 4AP concentration in the pacemaker SAN and auricular cells corresponds to a curve predicted by Hill's equation. APD20 raised by 70% and spike duration of AP increased by 15-25%, when 4AP concentration was increased from 0.1 to 5.0 mmol/L. Auricular cells were found to be more sensitive to 4AP than true pacemaker cells. This was accompanied by a decrease in the upstroke velocity as compared to the control. Our data and previous findings in the literature lead us to hypothesize that the 4AP-sensitive current participates in the repolarization formation of pacemaker and auricular type cells. Thus, study concerning the inhibitory effects of lidocaine and TTX on APD20 can explain the phenomenon of the decrease in upstroke velocity, which, for the first time, was observed after exposure to 4AP. Duration of AP at the level of 20% repolarization (APD20) under a 4-AP concentration 0.5 mmol/L in the true pacemaker cells lengthen by 60-70% with a control. PMID:26156968

  11. Mannan Oligosaccharides in Nursery Pig Nutrition and Their Potential Mode of Action

    PubMed Central

    Halas, Veronika; Nochta, Imre

    2012-01-01

    Simple Summary The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action. Mannan oligosaccharide products maintain intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period in pigs and enhance disease resistance by promoting antigen presentation. We find that dietary supplementation has growth promoting effects in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards. Abstract Mannan oligosaccharides (MOSs) are often referred to as one of the potential alternatives for antimicrobial growth promoters. The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action based on the latest publications. We discuss the dietary impact of MOSs on (1) microbial changes, (2) morphological changes of gut tissue and digestibility of nutrients, and (3) immune response of pigs after weaning. Dietary MOSs maintain the intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period. Recent results suggest that MOS enhances the disease resistance in swine by promoting antigen presentation facilitating thereby the shift from an innate to an adaptive immune response. Accordingly, dietary MOS supplementation has a potential growth promoting effect in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards that are able to maintain a high growth rate after weaning. PMID:26486920

  12. Glutamine and glutamate limit the shortening of action potential duration in anoxia-challenged rabbit hearts

    PubMed Central

    Drake, Kenneth J; Shotwell, Matthew S; Wikswo, John P; Sidorov, Veniamin Y

    2015-01-01

    In clinical conditions, amino acid supplementation is applied to improve contractile function, minimize ischemia/reperfusion injury, and facilitate postoperative recovery. It has been shown that glutamine enhances myocardial ATP/APD (action potential duration) and glutathione/oxidized glutathione ratios, and can increase hexosamine biosynthesis pathway flux, which is believed to play a role in cardioprotection. Here, we studied the effect of glutamine and glutamate on electrical activity in Langendorff-perfused rabbit hearts. The hearts were supplied by Tyrode's media with or without 2.5 mmol/L glutamine and 150 μmol/L glutamate, and exposed to two 6-min anoxias with 20-min recovery in between. Change in APD was detected using a monophasic action potential probe. A nonlinear mixed-effects regression technique was used to evaluate the effect of amino acids on APD over the experiment. Typically, the dynamic of APD change encompasses three phases: short transient increase (more prominent in the first episode), slow decrease, and fast increase (starting with the beginning of recovery). The effect of both anoxic challenge and glutamine/glutamate was cumulative, being more pronounced in the second anoxia. The amino acids' protective effect became largest by the end of anoxia – 20.0% (18.9, 95% CI: [2.6 ms, 35.1 ms]), during the first anoxia and 36.6% (27.1, 95% CI: [7.7 ms, 46.6 ms]), during the second. Following the second anoxia, APD difference between control and supplemented hearts progressively increased, attaining 10.8% (13.6, 95% CI: [4.1 ms, 23.1 ms]) at the experiments' end. Our data reveal APD stabilizing and suggest an antiarrhythmic capacity of amino acid supplementation in anoxic/ischemic conditions. PMID:26333831

  13. DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS BY PHYSOSTIGMINE, CARBARYL AND PROPOXUR AND THE RELATIONSHIP TO INHIBITION OF BRAIN CHOLINESTERASE

    EPA Science Inventory

    The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...

  14. Quantification of Transmembrane Currents during Action Potential Propagation in the Heart

    PubMed Central

    Gray, Richard A.; Mashburn, David N.; Sidorov, Veniamin Y.; Wikswo, John P.

    2013-01-01

    The measurement, quantitative analysis, theory, and mathematical modeling of transmembrane potential and currents have been an integral part of the field of electrophysiology since its inception. Biophysical modeling of action potential propagation begins with detailed ionic current models for a patch of membrane within a distributed cable model. Voltage-clamp techniques have revolutionized clinical electrophysiology via the characterization of the transmembrane current gating variables; however, this kinetic information alone is insufficient to accurately represent propagation. Other factors, including channel density, membrane area, surface/volume ratio, axial conductivities, etc., are also crucial determinants of transmembrane currents in multicellular tissue but are extremely difficult to measure. Here, we provide, to our knowledge, a novel analytical approach to compute transmembrane currents directly from experimental data, which involves high-temporal (200 kHz) recordings of intra- and extracellular potential with glass microelectrodes from the epicardial surface of isolated rabbit hearts during propagation. We show for the first time, to our knowledge, that during stable planar propagation the biphasic total transmembrane current (Im) dipole density during depolarization was ∼0.25 ms in duration and asymmetric in amplitude (peak outward current was ∼95 μA/cm2 and peak inward current was ∼140 μA/cm2), and the peak inward ionic current (Iion) during depolarization was ∼260 μA/cm2 with duration of ∼1.0 ms. Simulations of stable propagation using the ionic current versus transmembrane potential relationship fit from the experimental data reproduced these values better than traditional ionic models. During ventricular fibrillation, peak Im was decreased by 50% and peak Iion was decreased by 70%. Our results provide, to our knowledge, novel quantitative information that complements voltage- and patch-clamp data. PMID:23332079

  15. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  16. Simultaneous Optical Mapping of Intracellular Free Calcium and Action Potentials from Langendorff Perfused Hearts

    PubMed Central

    Salama, Guy; Hwang, Seong-min

    2015-01-01

    The cardiac action potential (AP) controls the rise and fall of intracellular free Ca2+ (Cai), and thus the amplitude and kinetics of force generation. Besides excitation-contraction coupling, the reverse process where Cai influences the AP through Cai-dependent ionic currents has been implicated as the mechanism underlying QT alternans and cardiac arrhythmias in heart failure, ischemia/reperfusion, cardiac myopathy, myocardial infarction, congenital and drug-induced long QT syndrome, and ventricular fibrillation. The development of dual optical mapping at high spatial and temporal resolution provides a powerful tool to investigate the role of Cai anomalies in eliciting cardiac arrhythmias. This unit describes experimental protocols to map APs and Cai transients from perfused hearts by labeling the heart with two fluorescent dyes, one to measure transmembrane potential (Vm), the other Cai transients. High spatial and temporal resolution is achieved by selecting Vm and Cai probes with the same excitation but different emission wavelengths, to avoid cross-talk and mechanical components. PMID:19575468

  17. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    NASA Astrophysics Data System (ADS)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  18. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  19. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells.

    PubMed

    Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to reduce variability due to cell culture conditions and rate-dependency of APs, we still observed significant variability in APs among and within the clusters. However, similar APs were found in spatial locations with close proximity, and in some clusters formed distinct regions having different AP characteristics that were reflected as separate peaks in the AP parameter distributions, suggesting multiple electrophysiological phenotypes. Using a recently developed automated method to group cells based on their entire AP shape, we identified distinct regions of different phenotypes within single clusters and common phenotypes across different clusters when separating APs into 2 or 3 subpopulations. The systematic analysis of the heterogeneity and potential phenotypes of large populations of hESC-CMs can be used to evaluate strategies to improve the quality of pluripotent stem cell-derived cardiomyocytes for use in diagnostic and therapeutic applications and in drug screening. PMID:26729331

  20. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  1. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    PubMed Central

    Spencer, C. Ian; Baba, Shiro; Nakamura, Kenta; Hua, Ethan A.; Sears, Marie A.F.; Fu, Chi-cheng; Zhang, Jianhua; Balijepalli, Sadguna; Tomoda, Kiichiro; Hayashi, Yohei; Lizarraga, Paweena; Wojciak, Julianne; Scheinman, Melvin M.; Aalto-Setälä, Katriina; Makielski, Jonathan C.; January, Craig T.; Healy, Kevin E.; Kamp, Timothy J.; Yamanaka, Shinya; Conklin, Bruce R.

    2014-01-01

    Summary Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM). In myocytes carrying an LQT2 mutation (HERG-A422T), APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site. PMID:25254341

  2. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons.

    PubMed

    Ogawa, Hiroto; Mitani, Ruriko

    2015-11-13

    The spatial dynamics of action potentials, including their propagation and the location of spike initiation zone (SIZ), are crucial for the computation of a single neuron. Compared with mammalian central neurons, the spike dynamics of invertebrate neurons remain relatively unknown. Thus, we examined the spike dynamics based on single spike-induced Ca(2+) signals in the dendrites of cricket mechanosensory projection neurons, known as giant interneurons (GIs). The Ca(2+) transients induced by a synaptically evoked single spike were larger than those induced by an antidromic spike, whereas subthreshold synaptic potentials caused no elevation of Ca(2+). These results indicate that synaptic activity enhances the dendritic Ca(2+) influx through voltage-gated Ca(2+) channels. Stimulation of the presynaptic sensory afferents ipsilateral to the recording site evoked a dendritic spike with higher amplitude than contralateral stimulation, thereby suggesting that alteration of the spike waveform resulted in synaptic enhancement of the dendritic Ca(2+) transients. The SIZ estimated from the spatial distribution of the difference in the Ca(2+) amplitude was distributed throughout the right and left dendritic branches across the primary neurite connecting them in GIs. PMID:26456645

  3. Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review.

    PubMed

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina; Dale, Elena; Wegener, Gregers; Sanchez, Connie

    2016-11-01

    A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not

  4. Recent evolution of river discharges in the Gulf of Trieste and their potential response to climate changes and anthropogenic pressure

    NASA Astrophysics Data System (ADS)

    Cozzi, Stefano; Falconi, Claus; Comici, Cinzia; Čermelj, Branko; Kovac, Nives; Turk, Valentina; Giani, Michele

    2012-12-01

    Freshwater and nutrient discharges by rivers were analysed in the northeastern Adriatic continental shelf from 1998 to 2008, in order to assess their role in the biogeochemistry of this coastal zone, as well as their potential future changes due to the effects of climate variability and anthropogenic pressure. River water loads (up to 6.05 km3 yr-1) and transport of nutrients (up to 13,200 t N yr-1 for TN, 86 t P yr-1 for TP and 12,400 t Si yr-1 for Si(OH)4) were high from 1998 to 2002, but they decreased by over 70% during the driest years 2003, 2005, 2006 and 2007. The precipitation in the surrounding continental region (average of 1371 mm yr-1) is the major forcing that regulates the runoff in this area, with peaks in early spring and autumn that are associated respectively to negative phases of Mediterranean Oscillation index and positive phases of West Mediterranean Oscillation index. This finding, together with the minor contribution of snowmelt in early spring (up to 3.2·10-5 kg m-2 s-1), indicates that the dynamics of the natural water cycle still overtake in this coastal zone the effects of anthropogenic usage of continental waters. During the last four decades, the northeastern Adriatic continental shelf has been subjected to an increasing pressure due to a high river transport of nitrogen and, currently, only a deep phosphorus deficiency in total (TN/TP = 49-405) and inorganic (DIN/PO4 = 37-418) river nutrient pools prevents its severe eutrophication. By contrast, the decrease of river loads of nutrients from 2003 to 2007 indicates that recurrent water crisis might significantly lower the trophic level in this coastal zone in the future. In this perspective, other allochthonous sources of nutrients, like sewage loads, atmospheric deposition and benthic fluxes might become more important for their balance, with possible implications on the structure of this ecosystem.

  5. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination

    USGS Publications Warehouse

    Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.

    2005-01-01

    The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze for these bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 μg/L at the reference location to 97.7 μg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01−1.0 μg/L, in some samples, individual concentrations were in the range of 5−38 μg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend:  they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.

  6. Averaging methods for extracting representative waveforms from motor unit action potential trains.

    PubMed

    Malanda, Armando; Navallas, Javier; Rodriguez-Falces, Javier; Rodriguez-Carreño, Ignacio; Gila, Luis

    2015-08-01

    In the context of quantitative electromyography (EMG), it is of major interest to obtain a waveform that faithfully represents the set of potentials that constitute a motor unit action potential (MUAP) train. From this waveform, various parameters can be determined in order to characterize the MUAP for diagnostic analysis. The aim of this work was to conduct a thorough, in-depth review, evaluation and comparison of state-of-the-art methods for composing waveforms representative of MUAP trains. We evaluated nine averaging methods: Ensemble (EA), Median (MA), Weighted (WA), Five-closest (FCA), MultiMUP (MMA), Split-sweep median (SSMA), Sorted (SA), Trimmed (TA) and Robust (RA) in terms of three general-purpose signal processing figures of merit (SPMF) and seven clinically-used MUAP waveform parameters (MWP). The convergence rate of the methods was assessed as the number of potentials per MUAP train (NPM) required to reach a level of performance that was not significantly improved by increasing this number. Test material comprised 78 MUAP trains obtained from the tibialis anterioris of seven healthy subjects. Error measurements related to all SPMF and MWP parameters except MUAP amplitude descended asymptotically with increasing NPM for all methods. MUAP amplitude showed a consistent bias (around 4% for EA and SA and 1-2% for the rest). MA, TA and SSMA had the lowest SPMF and MWP error figures. Therefore, these methods most accurately preserve and represent MUAP physiological information of utility in clinical medical practice. The other methods, particularly WA, performed noticeably worse. Convergence rate was similar for all methods, with NPM values averaged among the nine methods, which ranged from 10 to 40, depending on the waveform parameter evaluated. PMID:25962870

  7. Novel Transabdominal Motor Action Potential (TaMAP) Neuromonitoring System for Spinal Surgery

    PubMed Central

    Feldman, Erica; Gabel, Brandon C; Taylor, Natalie; Gharib, James; Lee, Yu-Po; Taylor, William

    2016-01-01

    Introduction Minimally invasive lateral lumbar interbody fusion (LLIF) approaches to the lumbar spine reduce patient morbidity compared to anterior or posterior alternatives. This approach, however, decreases direct anatomical visualization, creating the need for highly sensitive and specific neurophysiological monitoring. We seek to determine feasibility in 'transabdominal motor action potential (TaMAP)' monitoring as an assessment for the integrity of the neural elements during lateral-approach surgeries to the lumbar spine.  Methods Cathode and anode leads were placed on the posterior and anterior surfaces of two porcine subjects. Currents of varying degrees were transmitted across, from front to back. Motor responses were monitored and recorded by needle electrodes in specific distal muscle groups of the lower extremity. Lastly, the cathode and anode were placed anterior and posterior to the chest wall and stimulated to the maximum of 1500 mA to determine any effect on cardiac rhythm. Results Responses were seen by measuring vertical height differences between peaks of corresponding evoked potentials. Recruitment began at 200 mA in the lower extremities. Stimulation at 450 mA recruited a reliable and distinguishable electrographic response from most muscle groups. Responses were recorded and reliably measured and increased in proportion to the graduation of transabdominal stimulation current; no responses were seen in the arms or face. 1500 mA across the chest wall failed to stimulate or induce cardiac arrhythmia on repeated stimulation, indicating safety of stimulation. Conclusion TaMAPs seen in the animal model provide a potential alternative to standard transcranial motor evoked potentials done in the lateral approach of LLIFs. TaMAP recordings in most muscle groups were recordable and reliable, though some muscle groups failed to stimulate. Safety of transabdominal motor evoked potentials was confirmed in this porcine study. Future studies

  8. [Evaluation of potentiality of combined SHF- and glow discharge in intensification of carbon dioxide and hydrogen processing within life support system].

    PubMed

    Klimarev, S I

    2011-01-01

    The article reports an experimental carbon dioxide hydration process in combined SHF- and glow discharge, and describes a design of SHF plasmatrones for CO2 processing at air pressure and in an integrated unit. Maximal transformation of 80% CO2 per a run was reached with the total input power of no more than 0.9 kW. Thermal zero lag of plasma forming, essentially instant and timely engagement and disengagement of thermal action on CO2-H2 mixture renders SHF-energy applicable to intensification of next generation life support technologies, processing of these gases within atmosphere regeneration system specifically. PMID:21970045

  9. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. PMID:24295768

  10. Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference

    PubMed Central

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-01-01

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics. PMID:18398478

  11. Current and potential distributions on positive plates with conductive Pb 3O 4 and BaPbO 3 in their formation and discharge

    NASA Astrophysics Data System (ADS)

    Guo, Yonglang; Liu, Huan

    The positive plates with conductive materials, Pb 3O 4 and BaPbO 3, in automotive lead-acid batteries were investigated by measuring their current and potential distributions in the course of formation and discharge. It is found that these two conductive materials, especially Pb 3O 4, enhance the formation in the initial stage greatly and that they make the current and potential distributions more uniform. In the discharge, the addition of Pb 3O 4 increases the capacity of the positive plate, but it is unfavorable to the paste curing and causes poor contact between active mass (AM) particles so that the polarization increases greatly at 3 C discharge rate. The BaPbO 3 additive improves not only the formation but also the discharge performance because of its stability in acidic media and at high polarization. The violent charge at high polarization around the plates in the initial formation can lead to poor AM contact and high polarization resistance.

  12. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada

    SciTech Connect

    A. T. Urbon

    2001-08-01

    The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay

  13. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans.

    PubMed

    Pereira, Jozinete Vieira; Freires, Irlan Almeida; Castilho, Aline Rogéria; da Cunha, Marcos Guilherme; Alves, Harley da Silva; Rosalen, Pedro Luiz

    2016-10-01

    Context The emergence of resistant pathogens and toxicity of antifungals have encouraged an active search for novel candidates to manage Candida biofilms. Objective In this study, the little known species Sideroxylon obtusifolium T.D. Penn (Sapotacea) and Syzygium cumini (L.) Skeels (Myrtaceae), from the Caatinga biome in Brazil were chemically characterized and explored for their antifungal potential against C. albicans. Materials and methods We determined the effects of hydroalcoholic extracts/fractions upon fungal growth (minimum inhibitory and fungicidal concentrations, MIC/MFC), biofilm morphology (scanning electron microscopy) and viability (confocal laser scanning microscopy), proposed their mode of action (sorbitol and ergosterol assays), and finally investigated their effects against macrophage and keratinocyte cells in a cell-based assay. Data were analysed using one-way analysis of variance with Tukey-Kramer post-test (α = 0.05). Results The n-butanol (Nb) fraction from S. obtusifolium and S. cumini extract (Sc) showed flavonoids (39.11 ± 6.62 mg/g) and saponins (820.35 ± 225.38 mg/g), respectively, in their chemical composition and demonstrated antifungal activity, with MICs of 62.5 and 125 μg/mL, respectively. Nb and Sc may complex with ergosterol as there was a 4-16-fold increase in MICs in the presence of exogenous ergosterol, leading to disrupted permeability of cell membrane. Deleterious effects were observed on morphology and viability of treated biofilms from concentrations as low as their MICs and higher. Sc was not toxic to macrophages and keratinocytes at these concentrations (p > 0.05), unlike Nb. Conclusions Nb and Sc demonstrated considerable antifungal activity and should be further investigated as potential alternative candidates to treat Candida biofilms. PMID:26987037

  14. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    PubMed

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. PMID:26804557

  15. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

    PubMed Central

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-01-01

    Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557

  16. Action potential amplitude as a noninvasive indicator of motor unit-specific hypertrophy.

    PubMed

    Pope, Zachary K; Hester, Garrett M; Benik, Franklin M; DeFreitas, Jason M

    2016-05-01

    Skeletal muscle fibers hypertrophy in response to strength training, with type II fibers generally demonstrating the greatest plasticity in regards to cross-sectional area (CSA). However, assessing fiber type-specific CSA in humans requires invasive muscle biopsies. With advancements in the decomposition of surface electromyographic (sEMG) signals recorded using multichannel electrode arrays, the firing properties of individual motor units (MUs) can now be detected noninvasively. Since action potential amplitude (APSIZE) has a documented relationship with muscle fiber size, as well as with its parent MU's recruitment threshold (RT) force, our purpose was to examine if MU APSIZE, as a function of its RT (i.e., the size principle), could potentially be used as a longitudinal indicator of MU-specific hypertrophy. By decomposing the sEMG signals from the vastus lateralis muscle of 10 subjects during maximal voluntary knee extensions, we noninvasively assessed the relationship between MU APSIZE and RT before and immediately after an 8-wk strength training intervention. In addition to significant increases in muscle size and strength (P < 0.02), our data show that training elicited an increase in MU APSIZE of high-threshold MUs. Additionally, a large portion of the variance (83.6%) in the change in each individual's relationship between MU APSIZE and RT was explained by training-induced changes in whole muscle CSA (obtained via ultrasonography). Our findings suggest that the noninvasive, electrophysiological assessment of longitudinal changes to MU APSIZE appears to reflect hypertrophy specific to MUs across the RT continuum. PMID:26936975

  17. Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals

    PubMed Central

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455

  18. Dopaminergic modulation of axonal potassium channels and action potential waveform in pyramidal neurons of prefrontal cortex.

    PubMed

    Yang, Jing; Ye, Mingyu; Tian, Cuiping; Yang, Mingpo; Wang, Yonghong; Shu, Yousheng

    2013-07-01

    Voltage-gated K(+) (KV) channels play critical roles in shaping neuronal signals. KV channels distributed in the perisomatic regions and thick dendrites of cortical pyramidal neurons have been extensively studied. However, the properties and regulation of KV channels distributed in the thin axons remain unknown. In this study, by performing somatic and axonal patch-clamp recordings from layer 5 pyramidal neurons of prefrontal cortical slices, we showed that the rapidly inactivating A-currents mediated the transient K(+) currents evoked by action potential (AP) waveform command (KAP) at the soma, whereas the rapidly activating but slowly inactivating KV1-mediated D-currents dominated the KAP at the axon. In addition, activation of D1-like receptors for dopamine decreased the axonal K(+) currents, as a result of an increase in the activity of cAMP-PKA pathway. In contrast, activation of D2-like receptors showed an opposite effect on the axonal K(+) currents. Further experiments demonstrated that functional D1-like receptors were expressed at the main axon trunk and their activation could broaden the waveforms of axonal APs. Together, these results show that axonal KV channels were subjected to dopamine modulation, and this modulation could regulate the waveforms of propagating APs at the axon, suggesting an important role of dopaminergic modulation of axonal KV channels in regulating neuronal signalling. PMID:23568892

  19. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.

    PubMed

    Dutt, Vikas; Gupta, Sanjeev; Dabur, Rajesh; Injeti, Elisha; Mittal, Ashwani

    2015-09-01

    Over the last two decades, new insights into the etiology of skeletal muscle wasting/atrophy under diverse clinical settings including denervation, AIDS, cancer, diabetes, and chronic heart failure have been reported in the literature. However, the treatment of skeletal muscle wasting remains an unresolved challenge to this day. About nineteen potential drugs that can regulate loss of muscle mass have been reported in the literature. This paper reviews the mechanisms of action of all these drugs by broadly classifying them into six different categories. Mechanistic data of these drugs illustrate that they regulate skeletal muscle loss either by down-regulating myostatin, cyclooxygenase2, pro-inflammatory cytokines mediated catabolic wasting or by up-regulating cyclic AMP, peroxisome proliferator-activated receptor gamma coactivator-1α, growth hormone/insulin-like growth factor1, phosphatidylinositide 3-kinases/protein kinase B(Akt) mediated anabolic pathways. So far, five major proteolytic systems that regulate loss of muscle mass have been identified, but the majority of these drugs control only two or three proteolytic systems. In addition to their beneficial effect on restoring the muscle loss, many of these drugs show some level of toxicity and unwanted side effects such as dizziness, hypertension, and constipation. Therefore, further research is needed to understand and develop treatment strategies for muscle wasting. For successful management of skeletal muscle wasting either therapeutic agent which regulates all five known proteolytic systems or new molecular targets/proteolytic systems must be identified. PMID:26048279

  20. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  1. Kv3.1 uses a timely resurgent K+ current to secure action potential repolarization

    PubMed Central

    Labro, Alain J.; Priest, Michael F.; Lacroix, Jérôme J.; Snyders, Dirk J.; Bezanilla, Francisco

    2015-01-01

    High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K+ currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na+ and K+ currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3–S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission. PMID:26673941

  2. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma.

    PubMed Central

    van der Velden, V H

    1998-01-01

    GLUCOCORTICOIDS are potent inhibitors of inflammatory processes and are widely used in the treatment of asthma. The anti-inflammatory effects are mediated either by direct binding of the glucocorticoid/glucocorticoid receptor complex to glucocorticoid responsive elements in the promoter region of genes, or by an interaction of this complex with other transcription factors, in particular activating protein-1 or nuclear factor-kappaB. Glucocorticoids inhibit many inflammation-associated molecules such as cytokines, chemokines, arachidonic acid metabolites, and adhesion molecules. In contrast, anti-inflammatory mediators often are up-regulated by glucocorticoids. In vivo studies have shown that treatment of asthmatic patients with inhaled glucocorticoids inhibits the bronchial inflammation and simultaneously improves their lung function. In this review, our current knowledge of the mechanism of action of glucocorticoids and their anti-inflammatory potential in asthma is described. Since bronchial epithelial cells may be important targets for glucocorticoid therapy in asthma, the effects of glucocorticoids on epithelial expressed inflammatory genes will be emphasized. PMID:9792333

  3. Do Resin Cements Alter Action Potentials of Isolated Rat Sciatic Nerve?

    PubMed Central

    Ertan, Ahmet Atila; Beriat, Nilufer Celebi; Onur, Mehmet Ali; Tan, Gamze; Cehreli, Murat Cavit

    2011-01-01

    Objectives: The purpose of this study was to explore the effects dual-cure resin cements on nerve conduction. Methods: Panavia F, RelyX ARC, and Variolink II polymerized either by light-emitting diode (LED) or quartz tungsten halogen (QTH) were used in the study (n=10). The conductance of sciatic nerves of 50 rats were measured before and after contact with the specimens for 1 h. Results: The time-dependent change in nerve conductance and the comparison of LED versus QTH showed that differences between groups are significant (P<.05). For both polymerization techniques, pair-wise comparisons of resin cements showed that the nerve conductance between groups is different (P<.05). RelyX ARC elicited irreversible inhibition of compound action potentials (more than 50% change) and Panavia F and Variolink II polymerized by LED and QTH did not alter nerve conduction beyond physiologic limits. Conclusions: Resin cements may alter nerve conductance and even lead to neurotoxic effects. PMID:21494389

  4. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    SciTech Connect

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  5. A novel analysis of excitatory currents during an action potential from suprachiasmatic nucleus neurons

    PubMed Central

    2013-01-01

    A new application of the action potential (AP) voltage-clamp technique is described based on computational analysis. An experimentally recorded AP is digitized. The resulting Vi vs. ti data set is applied to mathematical models of the ionic conductances underlying excitability for the cell from which the AP was recorded to test model validity. The method is illustrated for APs from suprachiasmatic nucleus (SCN) neurons and the underlying tetrodotoxin-sensitive Na+ current, INa, and the Ca2+ current, ICa. Voltage-step recordings have been made for both components from SCN neurons (Jackson et al. 2004). The combination of voltage-step and AP clamp results provides richer constraints for mathematical models of voltage-gated ionic conductances than either set of results alone, in particular the voltage-step results. For SCN neurons the long-term goal of this work is a realistic mathematical model of the SCN AP in which the equations for INa and ICa obtained from this analysis will be a part. Moreover, the method described in this report is general. It can be applied to any excitable cell. PMID:24047903

  6. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    PubMed

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B; Niven, Jeremy E

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+) and K(+) currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+) and K(+) channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  7. Motor Unit Number Estimation and Motor Unit Action Potential Analysis in Carpal Tunnel Syndrome

    PubMed Central

    Sohn, Min Kyun; Jee, Sung Ju; Kim, Young-Jae; Shin, Hyun-Dae

    2011-01-01

    Objective To evaluate the clinical significance of motor unit number estimation (MUNE) and quantitative analysis of motor unit action potential (MUAP) in carpal tunnel syndrome (CTS) according to electrophysiologic severity, ultrasonographic measurement and clinical symptoms. Method We evaluated 78 wrists of 45 patients, who had been diagnosed with CTS and 42 wrists of 21 healthy controls. Median nerve conduction studies, amplitude and duration of MUAP, and the MUNE of the abductor pollicis brevis were measured. The cross sectional area (CSA) of the median nerve at the pisiform and distal radioulnar joint level was determined by high resolution ultrasonography. Clinical symptom of CTS was assessed using the Boston Carpal Tunnel Questionnaire (BCTQ). Results The MUNE, the amplitude and the duration of MUAP of the CTS group were significantly different from those found in the control group. The area under the ROC curve was 0.944 for MUNE, 0.923 for MUAP amplitude and 0.953 for MUAP duration. MUNE had a negative correlation with electrophysiologic stage of CTS, amplitude and duration of MUAP, CSA at pisiform level, and the score of BCTQ. The amplitude and duration of MUAP had a positive correlation with the score of BCTQ. The electrophysiologic stage was correlated with amplitude but not with the duration of MUAP. Conclusion MUNE, amplitude and duration of MUAP are useful tests for diagnosis of CTS. In addition, the MUNE serves as a good indicator of CTS severity. PMID:22506210

  8. Efficacy of action potential simulation and interferential therapy in the rehabilitation of patients with knee osteoarthritis

    PubMed Central

    Eftekharsadat, Bina; Habibzadeh, Afshin; Kolahi, Babak

    2015-01-01

    Objective: Knee osteoarthritis (OA) is the main cause of pain, physical impairment and chronic disability in older people. Electrotherapeutic modalities such as interferential therapy (IFT) and action potential simulation (APS) are used for the treatment of knee OA. In this study, we aim to evaluate the therapeutic effects of APS and IFT on knee OA. Methods: In this randomized clinical trial, 67 patients (94% female and 6% male with mean age of 52.80 ± 8.16 years) with mild and moderate knee OA were randomly assigned to be treated with APS (n = 34) or IFT (n = 33) for 10 sessions in 4 weeks. Baseline and post-treatment Western Ontario and McMaster Universities Osteoarthritis (WOMAC) subscales, visual analogue scale (VAS) and timed up and go (TUG) test were measured in all patients. Results: VAS and WOMAC subscales were significantly improved after treatment in APS and IFT groups (p < 0.001 for all). TUG was also significantly improved after treatment in APS group (p < 0.001), but TUG changes in IFT was not significant (p = 0.09). There was no significant difference in VAS, TUG and WOMAC subscales values before and after treatment as well as the mean improvement in VAS, TUG and WOMAC subscales during study between groups. Conclusion: Short-term treatment with both APS and IFT could significantly reduce pain and improve physical function in patients with knee OA. PMID:26029268

  9. Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model

    PubMed Central

    Ito, Zenya; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki

    2015-01-01

    Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morphology change of the CMAP wave and locomotor scale were evaluated for one month. Results Four different types of wave morphology changes were observed: no change, amplitude decrease only, morphology change only, and amplitude and morphology change. Amplitude and morphology changed simultaneously and significantly as the injury force increased (p<0.05) Locomotor scale in the amplitude and morphology group worsened more than the other groups. Conclusions Amplitude and morphology change of the CMAP wave exists and could be the key of the alarm point in CMAP. PMID:26713129

  10. Action potential generation in an anatomically constrained model of medial superior olive axons.

    PubMed

    Lehnert, Simon; Ford, Marc C; Alexandrova, Olga; Hellmundt, Franziska; Felmy, Felix; Grothe, Benedikt; Leibold, Christian

    2014-04-01

    Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of >100 Hz. They are able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megaohms and high synaptic conductances in vivo. The biophysical mechanisms by which these leaky neurons maintain their excitability are not understood. Since action potentials (APs) are usually assumed to be generated in the axon initial segment (AIS), we analyzed anatomical data of proximal MSO axons in Mongolian gerbils and found that the axon diameter is <1 μm and the internode length is ∼100 μm. Using a morphologically constrained computational model of the MSO axon, we show that these thin axons facilitate the excitability of the AIS. However, for ongoing high rates of synaptic inputs the model generates a substantial fraction of APs in its nodes of Ranvier. These distally initiated APs are mediated by a spatial gradient of sodium channel inactivation and a strong somatic current sink. The model also predicts that distal AP initiation increases the dynamic range of the rate code for ITDs. PMID:24719114

  11. Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy

    PubMed Central

    Gao, Jianbao; Zhao, Lintao; Wan, Yisong Y.; Zhu, Bo

    2015-01-01

    Interleukin-7 (IL-7) is a non-hematopoietic cell-derived cytokine with a central role in the adaptive immune system. It promotes lymphocyte development in the thymus and maintains survival of naive and memory T cell homeostasis in the periphery. Moreover, it is important for the organogenesis of lymph nodes (LN) and for the maintenance of activated T cells recruited into the secondary lymphoid organs (SLOs). The immune capacity of cancer patients is suppressed that is characterized by lower T cell counts, less effector immune cells infiltration, higher levels of exhausted effector cells and higher levels of immunosuppressive cytokines, such as transforming growth factor β (TGF-β). Recombinant human IL-7 (rhIL-7) is an ideal solution for the immune reconstitution of lymphopenia patients by promoting peripheral T cell expansion. Furthermore, it can antagonize the immunosuppressive network. In animal models, IL-7 has been proven to prolong the survival of tumor-bearing hosts. In this review, we will focus on the mechanism of action and applications of IL-7 in cancer immunotherapy and the potential restrictions for its usage. PMID:25955647

  12. Correlates of a single cortical action potential in the epidural EEG

    PubMed Central

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  13. 'Action potential-like' ST elevation following pseudo-Wellens' electrocardiogram.

    PubMed

    Oksuz, Fatih; Sensoy, Baris; Sen, Fatih; Celik, Ethem; Ozeke, Ozcan; Maden, Orhan

    2015-01-01

    Coronary artery vasospasm is an important cause of chest pain syndromes that can lead to myocardial infarction, ventricular arrhythmias, and sudden death. In 1959, Prinzmetal et al described a syndrome of nonexertional chest pain with ST-segment elevation on electrocardiography. Persistent angina is challenging, and repeated coronary angioplasty may be required in this syndrome. Calcium antagonists are extremely effective in treating and preventing coronary spasm, and may provide long-lasting relief for the patient. Whereas the Wellens' syndrome is characterized by symmetrically inverted T-waves with preserved R waves in the precordial leads suggestive of impending myocardial infarction due to a critical proximal left anterior descending stenosis, the pseudo-Wellens' syndrome caused by coronary artery spasm has also rarely been reported in literature. We present a pseudo-Wellens syndrome as a cause of vasospastic angina, and a diffuse ST segment elavation on electrocardiogram resembling the Greek letter lambda, called also 'action potential-like' ECG in a patient with vasospastic-type Printzmetal angina. PMID:26432739

  14. A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

    PubMed Central

    Kamali, T; Boostani, R; Parsaei, H

    2013-01-01

    Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet. Objective: The main goal in designing a MUAP characterization system is obtaining high classification accuracy to be used in clinical decision system. For this aim, in this study, a robust classifier is proposed to improve MUAP classification performance in estimating the class label (myopathic, neuropathic and normal) of a given MUAP. Method: The proposed scheme employs both time and time–frequency features of a MUAP along with an ensemble of support vector machines (SVMs) classifiers in hybrid serial/parallel architecture. Time domain features includes phase, turn, peak to peak amplitude, area, and duration of the MUAP. Time–frequency features are discrete wavelet transform coefficients of the MUAP. Results: Evaluation results of the developed system using EMG signals of 23 subjects (7 with myopathic, 8 with neuropathic and 8 with no diseases)  showed that the system estimated the class label of MUAPs extracted from these signals with average of accuracy of 91% which is at least 5% higher than the accuracy of two previously presented methods. Conclusion: Using different optimized subsets of features along with the presented hybrid classifier results in a classification accuracy that is encouraging to be used in clinical applications for MUAP characterization.  PMID:25505761

  15. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-01-01

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies. PMID:26384112

  16. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons

    PubMed Central

    Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies. PMID:23951361

  17. Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.

    PubMed

    Labro, Alain J; Priest, Michael F; Lacroix, Jérôme J; Snyders, Dirk J; Bezanilla, Francisco

    2015-01-01

    High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K(+) currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na(+) and K(+) currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3-S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission. PMID:26673941

  18. Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials

    PubMed Central

    Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.

    2015-01-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  19. Lung surgery - discharge

    MedlinePlus

    Thoracotomy - discharge; Lung tissue removal - discharge; Pneumonectomy - discharge; Lobectomy - discharge; Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - ...

  20. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  1. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  2. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  3. Hysterectomy - laparoscopic - discharge

    MedlinePlus

    Supracervical hysterectomy - discharge; Removal of the uterus - discharge; Laparoscopic hysterectomy - discharge; Total laparoscopic hysterectomy - discharge; TLH - discharge; Laparoscopic supracervical ...

  4. Shoulder replacement - discharge

    MedlinePlus

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; ...

  5. Radical prostatectomy - discharge

    MedlinePlus

    ... prostatectomy - discharge; Laparoscopic radical prostatectomy - discharge; LRP - discharge; Robotic-assisted laparoscopic prostatectomy - discharge ; RALP - discharge; Pelvic lymphadenectomy - ...

  6. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  7. Facilitating Youth to Take Sustainability Actions: The Potential of Peer Education

    ERIC Educational Resources Information Center

    de Vreede, Catherine; Warner, Alan; Pitter, Robert

    2014-01-01

    Peer education is an understudied yet valuable strategy for sustainability educators in shifting youth to take action for sustainability. This case study conceptualizes the change process in facilitating youth to take sustainability actions, and explores the benefits, dynamics, and challenges of peer education as a strategy in facilitating change.…

  8. WASTEWATER RECYCLE AND REUSE POTENTIAL FOR INDIRECT DISCHARGE TEXTILE FINISHING MILLS. VOLUME 2. SIX MILL ENGINEERING REPORTS

    EPA Science Inventory

    The report gives detailed information on a variety of wastewater recycle/reuse technologies that allow textile finishing mills to reduce the volume of wastewater and the amount of pollutants discharged to publicly owned treatment works. (NOTE: Dyebath reconstitution is described ...

  9. Catastrophic meltwater discharge down the Hudson Valley: A potential trigger for the Intra-Allerød cold period

    NASA Astrophysics Data System (ADS)

    Donnelly, Jeffrey P.; Driscoll, Neal W.; Uchupi, Elazar; Keigwin, Lloyd D.; Schwab, William C.; Thieler, E. Robert; Swift, Stephen A.

    2005-02-01

    Glacial freshwater discharge to the Atlantic Ocean during deglaciation may have inhibited oceanic thermohaline circulation, and is often postulated to have driven climatic fluctuations. Yet attributing meltwater-discharge events to particular climate oscillations is problematic, because the location, timing, and amount of meltwater discharge are often poorly constrained. We present evidence from the Hudson Valley and the northeastern U.S. continental margin that establishes the timing of the catastrophic draining of Glacial Lake Iroquois, which breached the moraine dam at the Narrows in New York City, eroded glacial lake sediments in the Hudson Valley, and deposited large sediment lobes on the New York and New Jersey continental shelf ca. 13,350 yr B.P. Excess 14C in Cariaco Basin sediments indicates a slowing in thermohaline circulation and heat transport to the North Atlantic at that time, and both marine and terrestrial paleoclimate proxy records around the North Atlantic show a short-lived (<400 yr) cold event (Intra-Allerød cold period) that began ca. 13,350 yr B.P. The meltwater discharge out the Hudson Valley may have played an important role in triggering the Intra-Allerød cold period by diminishing thermohaline circulation.

  10. Catastrophic meltwater discharge down the Hudson Valley: a potential trigger for the Intra-Allerød cold period

    USGS Publications Warehouse

    Donnelly, Jeffrey P.; Driscoll, Neal W.; Uchupi, Elazar; Keigwin, Loyd D.; Schwab, William C.; Thieler, E. Robert; Swift, Stephen A.

    2005-01-01

    Glacial freshwater discharge to the Atlantic Ocean during deglaciation may have inhibited oceanic thermohaline circulation, and is often postulated to have driven climatic fluctuations. Yet attributing meltwater-discharge events to particular climate oscillations is problematic, because the location, timing, and amount of meltwater discharge are often poorly constrained. We present evidence from the Hudson Valley and the northeastern U.S. continental margin that establishes the timing of the catastrophic draining of Glacial Lake Iroquois, which breached the moraine dam at the Narrows in New York City, eroded glacial lake sediments in the Hudson Valley, and deposited large sediment lobes on the New York and New Jersey continental shelf ca. 13,350 yr B.P. Excess 14C in Cariaco Basin sediments indicates a slowing in thermohaline circulation and heat transport to the North Atlantic at that time, and both marine and terrestrial paleoclimate proxy records around the North Atlantic show a short-lived (<400 yr) cold event (Intra-Aller??d cold period) that began ca. 13,350 yr B.P. The meltwater discharge out the Hudson Valley may have played an important role in triggering the Intra-Aller??d cold period by diminishing thermohaline circulation. ?? 2005 Geological Society of America.

  11. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning.

    PubMed

    Abee, T; Krockel, L; Hill, C

    1995-12-01

    Lactic acid bacteria (LAB) play an essential role in the majority of food fermentations, and a wide variety of strains are routinely employed as starter cultures in the manufacture of dairy, meat, vegetable and bakery products. One of the most important contributions of these microorganisms is the extended shelf life of the fermented product by comparison to that of the raw substrate. Growth of spoilage and pathogenic bacteria in these foods is inhibited due to competition for nutrients and the presence of starter-derived inhibitors such as lactic acid, hydrogen peroxide and bacteriocins (Ray and Daeschel, 1992). Bacteriocins, are a heterogenous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. Currently, artificial chemical preservatives are employed to limit the number of microorganisms capable of growing within foods, but increasing consumer awareness of potential health risks associated with some of these substances has led researchers to examine the possibility of using bacteriocins produced by LAB as biopreservatives. The major classes of bacteriocins produced by LAB include: (I) lantibiotics, (II) small heat stable peptides, (III) large heat labile proteins, and (IV) complex proteins whose activity requires the association of carbohydrate or lipid moieties (Klaenhammer, 1993). Significantly however, the inhibitory activity of these substances is confined to Gram-positive bacteria and inhibition of Gram-negatives by these bacteriocins has not been demonstrated, an observation which can be explained by a detailed analysis and comparison of the composition of Gram-positive and Gram-negative bacterial cell walls (Fig. 1). In both types the cytoplasmic membrane which forms the border between the cytoplasm and the external environment, is surrounded by a layer of peptidoglycan which is significantly thinner in Gram-negative bacteria than in Gram-positive bacteria. Gram

  12. Effect of temperature on isoprenaline- and barium-induced slow action potentials in guinea-pig ventricular strips.

    PubMed

    Manzini, S; Parlani, M; Martucci, E; Maggi, C A; Meli, A

    1986-01-01

    The effect of variation in temperature (37-32 and 27 degrees C) on electrical and mechanical activity of depolarized and isoprenaline- or barium-reactivated guinea pig ventricular strips was studied. Lowering the temperature brings a marked prolongation of isoprenaline-induced slow action potentials. In addition the maximal rate of depolarization was strongly reduced at lower temperatures. These effects were observed at an extracellular Ca2+ concentration of either 0.9 or 2.5 mM. The accompanying mechanical activities was significantly increased by reduction in temperature. Barium-induced slow action potentials were similarly affected by temperature variations. These observations suggest that hypothermia exert a sort of calcium antagonistic action probably coupled to a reduction of repolarizing outward potassium currents. PMID:2430855

  13. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    PubMed

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  14. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons

    PubMed Central

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C.

    2016-01-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377724

  15. Halothane diminishes changes in cardiac fiber action potential duration induced by hypocarbia and hypercarbia.

    PubMed

    Stowe, D F; Bosnjak, Z J; Kampine, J P

    1984-09-01

    Both halothane (HAL) and acid-base changes produce cardiac arrhythmias in humans. The authors' aim was to determine if HAL alters the effects of hypercapnic acidosis and hypocapnic alkalosis on action potential (AP) properties of ventricular muscle fibers. They superfused the paced right ventricle of 15 guinea pig hearts with non-HCO3- buffered salt solution and recorded transmembrane APs with 3 M KCl microelectrodes in 35 subendocardial cells. Random changes in the fractions of HAL were made during low (12% CO2 in O2), normal (5% CO2 in O2), and high (0% CO2 in O2) pH. Compared with controls at pH 7.44, AP duration (APD) and effective refractory period (ERP) significantly decreased by 7 and 4% at pH 8.08 and increased by 7 and 9% at pH 7.09. At pH 7.44, 0.7-2.1% HAL produced no change in APD; but 2.1% increased ERP, while 3.5% HAL decreased ERP. At pH 8.08, the decrease in ERP induced with alkalosis alone was converted to an increase with 1.4 and 2.1% HAL. At pH 7.09, 0.7-1.4% HAL had no additional effect on the acidosis-induced increases in APD and ERP, but 2.1 and 2.8% HAL greatly reduced these responses. At HAL fractions greater than 1.4% the marked inverse changes in APD and ERP, induced alone by acidosis and alkalosis, were no longer significantly different from control. This study shows that the opposing effects of alkalosis to shorten and of acidosis to lengthen APD and ERP were attenuated at low levels and abolished at high levels of HAL.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6433748

  16. Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential.

    PubMed

    Chang, C L T; Chen, Yi-Ching; Chen, Hui-Ming; Yang, Ning-Sun; Yang, Wen-Chin

    2013-01-01

    Autoimmune diseases are the third largest category of illness in the industrialized world, following cardiovascular diseases and cancers. Among them, type 1 diabetes, also named autoimmune diabetes, afflicts 10 million people worldwide. This disease is caused by autoimmunity-mediated destruction of pancreatic β-cells, leading to insulin deficiency, hyperglycemia and complications. Currently, there is no cure for type 1 diabetes. Insulin injection is the only medication; however, it accompanies serious medical complications. Current strategies to cure type 1 diabetes include immunotherapy, replacement therapy, and combination therapy. Despite recent advances in anti-diabetic strategies, no strategy is clinically successful. How to cure type 1 diabetes without undesirable side effects still remains a formidable challenge in drug research and development. Plants provide an extraordinary source of natural medicines for different diseases. Moreover, secondary metabolites of plant origin serve as an invaluable chemical library for drug discovery and current medicinal chemistry in the pharmaceutical industry. Over the past 25 years, 50% of prescription drugs have been developed from natural products and their derivatives. In this article, we review more than 20 plant compounds and extracts reported in the literature to prevent and treat type-1 diabetes. Emphasis is placed on their chemistry and biology in terms of regulation of immune cells and pancreatic β-cells. We summarize recent progress in understanding the biological actions, mechanisms and therapeutic potential of the compounds and extracts of plant origin in type 1 diabetes. New views on phytocompound-based strategies for prevention and treatment of type 1 diabetes are also discussed. PMID:23210779

  17. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate.

    PubMed

    Priestley, Richard S; Nickolls, Sarah A; Alexander, Stephen P H; Kendall, David A

    2015-04-01

    Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target. PMID:25550466

  18. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    PubMed

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461

  19. Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl

    PubMed Central

    Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth

    2006-01-01

    Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471

  20. Recording Single Neurons' Action Potentials from Freely Moving Pigeons Across Three Stages of Learning

    PubMed Central

    Güntürkün, Onur

    2014-01-01

    While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.1 for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning. PMID:24961391

  1. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  2. Inter-Subject Variability in Human Atrial Action Potential in Sinus Rhythm versus Chronic Atrial Fibrillation

    PubMed Central

    Sánchez, Carlos; Bueno-Orovio, Alfonso; Wettwer, Erich; Loose, Simone; Simon, Jana; Ravens, Ursula; Pueyo, Esther; Rodriguez, Blanca

    2014-01-01

    Aims Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions. Methods and Results Human AP recordings in atrial trabeculae (n = 469) from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in GK1, GKur and Gto, consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in IK1 and INaK underlies variability in APD90, variability in IKur, ICaL and INaK modulates variability in APD50 and combined variability in Ito and IKur determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by IK1 and either INaK or INaCa depending on the model. Conclusion Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in

  3. Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium

    PubMed Central

    Maleckar, Mary M.; Greenstein, Joseph L.; Trayanova, Natalia A.; Giles, Wayne R.

    2010-01-01

    In the mammalian heart, myocytes and fibroblasts can communicate via gap junction, or connexin-mediated current flow. Some of the effects of this electrotonic coupling on the action potential waveform of the human ventricular myocyte have been analyzed in detail. The present study employs a recently developed mathematical model of the human atrial myocyte to investigate the consequences of this heterogeneous cell–cell interaction on the action potential of the human atrium. Two independent physiological processes which alter the physiology of the human atrium have been studied. i) The effects of the autonomic transmitter acetylcholine on the atrial action potential have been investigated by inclusion of a time-independent, acetylcholine-activated K+ current in this mathematical model of the atrial myocyte. ii) A non-selective cation current which is activated by natriuretic peptides has been incorporated into a previously published mathematical model of the cardiac fibroblast. These results identify subtle effects of acetylcholine, which arise from the nonlinear interactions between ionic currents in the human atrial myocyte. They also illustrate marked alterations in the action potential waveform arising from fibroblast–myocyte source–sink principles when the natriuretic peptide-mediated cation conductance is activated. Additional calculations also illustrate the effects of simultaneous activation of both of these cell-type specific conductances within the atrial myocardium. This study provides a basis for beginning to assess the utility of mathematical modeling in understanding detailed cell–cell interactions within the complex paracrine environment of the human atrial myocardium. PMID:19186188

  4. The effect of stimulation frequency on the transmural ventricular monophasic action potential in yellowfin tuna Thunnus albacares.

    PubMed

    Patrick, S M; White, E; Brill, R W; Shiels, H A

    2011-02-01

    Monophasic action potentials (MAPs) were recorded from the spongy and compact layers of the yellowfin tuna Thunnus albacares ventricle as stimulation frequency was increased. MAP duration decreased with increase in stimulation frequency in both the spongy and compact myocardial layers, but no significant difference in MAP duration was observed between the layers. PMID:21284642

  5. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.

    PubMed

    Widmer, H; Amerdeil, H; Fontanaud, P; Desarménien, M G

    1997-01-01

    Action potentials and voltage-gated currents were studied in acutely dissociated neurosecretory cells from the rat supraoptic nucleus during the first three postnatal weeks (PW1-PW3), a period corresponding to the final establishment of neuroendocrine relationships. Action potential duration (at half maximum) decreased from 2.7 to 1.8 ms; this was attributable to a decrease in decay time. Application of cadmium (250 microM) reduced the decay time by 43% at PW1 and 21% at PW3, indicating that the contribution of calcium currents to action potentials decreased during postnatal development. The density of high-voltage-activated calcium currents increased from 4.4 to 10.1 pA/pF at postnatal days 1-5 and 11-14, respectively. The conductance density of sustained potassium current, measured at +20 mV, increased from 0.35 (PW1) to 0.53 (PW3) nS/pF. The time to half-maximal amplitude did not change. Conductance density and time- and voltage-dependent inactivation of the transient potassium current were stable from birth. At PW1, the density and time constant of decay (measured at 0 mV) were 0.29 nS/pF (n = 12) and 17.9 ms (n = 10), respectively. Voltage-dependent properties and density (1.1 nS/pF) of the sodium current did not change postnatally. During PW1, fitting the mean activation data with a Boltzmann function gave a half-activation potential of -25 mV. A double Boltzman equation was necessary to adequately fit the inactivation data, suggesting the presence of two populations of sodium channels. One population accounted for approximately 14% of the channels, with a half-inactivation potential of -86 mV; the remaining population showed a half-inactivation potential of -51 mV. A mathematical model, based on Hodgkin-Huxley equations, was used to assess the respective contributions of individual currents to the action potential. When the densities of calcium and sustained potassium currents were changed from immature to mature values, the decay time of the action

  6. A thermal profile method to identify potential ground-water discharge areas and preferred salmonid habitats for long river reaches

    USGS Publications Warehouse

    Vaccaro, J.J.; Maloy, K.J.

    2006-01-01

    The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.

  7. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential.

    PubMed

    Hoult, J R; Payá, M

    1996-06-01

    1. More than 300 coumarins have been identified from natural sources, especially green plants. The pharmacological and biochemical properties and therapeutic applications of simple coumarins depend upon the pattern of substitution. More complex related compounds based on the coumarin nucleus include the dicoumarol/warfarin anticoagulants, aflatoxins and the psoralens (photosensitizing agents). 2. Coumarin itself (1,2-benzopyrone) has long-established efficacy in slow-onset long-term reduction of lymphoedema in man, as confirmed in recent double-blind trials against elephantiasis and postmastectomy swelling of the arm. The mechanism of action is uncertain, but may involve macrophage-induced proteolysis of oedema protein. However, coumarin has low absolute bioavailability in man (< 5%), due to extensive first-pass hepatic conversion to 7-hydroxycoumarin followed by glucuronidation. It may, therefore, be a prodrug. 3. Scoparone (6,7-dimethoxycoumarin) has been purified from the hypolipidaemic Chinese herb Artemisia scoparia and shown to reduce the proliferative responses of human peripheral mononuclear cells, to relax smooth muscle, to reduce total cholesterol and triglycerides and to retard the characteristic pathomorphological changes in hypercholesterolaemic diabetic rabbits. Various properties of scoparone were suggested to account for these findings, including ability to scavenge reactive oxygen species, inhibition of tyrosine kinases and potentiation of prostaglandin generation. 4. Osthole (7-methoxy-8-[3-methylpent-2-enyl]coumarin) from Angelica pubescens, used also in Chinese medicine, causes hypotension in vivo, and inhibits platelet aggregation and smooth muscle contraction in vitro. It may interfere with calcium influx and with cyclic nucleotide phosphodiesterases. 5. Cloricromene, a synthetic coumarin derivative, also possesses antithrombotic antiplatelet actions, inhibits PMN neutrophil function and causes vasodilatation. Some of these properties of

  8. PDE type-4 inhibition increases L-type Ca(2+) currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells.

    PubMed

    Marcantoni, A; Carabelli, V; Vandael, D H; Comunanza, V; Carbone, E

    2009-03-01

    We studied the effects of the cAMP-hydrolyzing enzyme phosphodiesterase type-4 (PDE4) on the L-type Ca(2+) channels (LTCCs) and Ca(2+)-dependent secretion in mouse chromaffin cells (MCCs). The selective PDE4 inhibitor rolipram (3 microM) had a specific potentiating action on Ca(2+) currents of MCCs (40% increase within 3 min). A similar effect was produced by the selective beta(1)-AR agonist denopamine (1 microM) and by the unselective PDEs inhibitor IBMX (100 microM). Rolipram and denopamine actions were selective for LTCCs, and the Ca(2+) current increase remained unchanged if the two compounds were applied simultaneously. This suggests that at rest, LTCCs in MCCs are down-regulated by the low levels of cAMP determined by PDE4 activity and that LTCCs can be up-regulated by either inhibiting PDE4 or activating beta(1)-AR. No other PDEs are likely involved in this specific action. PDE4 inhibition had also a marked effect on the spontaneous firing of resting MCCs and catecholamine secretion. Rolipram up-regulated the LTCCs contributing to the "pace-maker" current underlying action potential (AP) discharges and accelerated the firing rate, with no significant effects on AP waveform. Acceleration of AP firing was also induced by the LTCC-agonist Bay K (1 microM), while nifedipine (3 microM) reduced the firing frequency, suggesting that LTCCs and intracellular cAMP play a key role in setting the pace-maker current regulating MCCs excitability. Rolipram increased also the size of the ready-releasable pool and the quantal content of secretory vesicles without affecting their probability of release. Thus, rolipram acts on MCCs by up-regulating both exocytosis and AP firings. These two processes are effectively down-regulated by PDE4 at rest and can dramatically increase the quantity of released catecholamines when PDE4 is inhibited and/or cAMP is raised. PMID:18779976

  9. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.

    PubMed

    O'Hara, Thomas; Virág, László; Varró, András; Rudy, Yoram

    2011-05-01

    Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was

  10. Assessing the potential impact of water-based drill cuttings on deep-water calcareous red algae using species specific impact categories and measured oceanographic and discharge data.

    PubMed

    Nilssen, Ingunn; dos Santos, Francisco; Coutinho, Ricardo; Gomes, Natalia; Cabral, Marcelo Montenegro; Eide, Ingvar; Figueiredo, Marcia A O; Johnsen, Geir; Johnsen, Ståle

    2015-12-01

    The potential impact of drill cuttings on the two deep water calcareous red algae Mesophyllum engelhartii and Lithothamnion sp. from the Peregrino oil field was assessed. Dispersion modelling of drill cuttings was performed for a two year period using measured oceanographic and discharge data with 24 h resolution. The model was also used to assess the impact on the two algae species using four species specific impact categories: No, minor, medium and severe impact. The corresponding intervals for photosynthetic efficiency (ΦPSIImax) and sediment coverage were obtained from exposure-response relationship for photosynthetic efficiency as function of sediment coverage for the two algae species. The temporal resolution enabled more accurate model predictions as short-term changes in discharges and environmental conditions could be detected. The assessment shows that there is a patchy risk for severe impact on the calcareous algae stretching across the transitional zone and into the calcareous algae bed at Peregrino. PMID:26412110

  11. Impact of the nanosecond volume discharge in atmospheric pressure air on the distribution of the surface potential of epitaxial HgCdTe

    NASA Astrophysics Data System (ADS)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Tarasenko, V. F.; Shulepov, M. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-03-01

    In this paper we present the results of our research of the impact of nanosecond volume discharge on the electronic properties of the near-surface region of epitaxial Hg1-x Cd x Te films. We show that the distribution of the surface potential and, as a consequence, the material composition of the individual crystal grains that form V-defects possess a complex structure and contain regions with elevated content of both mercury and cadmium. The volume discharge treatment of the film surface leads to a decrease of the mercury content in individual crystal grains compared to the bulk of Hg1-x Cd x Te epitaxial film. This indicates a higher mercury desorption rate from the V-defect region.

  12. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    PubMed

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  13. Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    PubMed Central

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  14. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    PubMed

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720

  15. Preparing Social Justice Oriented Teachers: The Potential Role of Action Research in the PDS

    ERIC Educational Resources Information Center

    Dodman, Stephanie L.; Lai, Kerri; Campet, Melissa; Cavallero-Lotocki, Renee; Hopkins, Aaron; Onidi, Christine

    2014-01-01

    Deliberate investigation into practice is an essential of the National Association for Professional Development Schools' defining elements of a Professional Development School (PDS). This article reports on the pilot efforts of one PDS as it initiated deliberate investigation through action research with a small group of teacher candidates.…

  16. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  17. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.

    PubMed Central

    Janczewski, A M; Lakatta, E G

    1993-01-01

    1. Intracellular [Ca2+] ([Ca2+]i) transients, monitored by the fluorescent Ca2+ indicator, indo-1, and twitch contractions elicited by action potentials, by voltage clamp pulses or by rapid, brief pulses of caffeine, were measured in guinea-pig single ventricular myocytes. Experiments were designed to determine whether and to what extent the trans-sarcolemmal Ca2+ influx is immediately sequestered by the sarcoplasmic reticulum (SR). 2. Rapid, brief (100-200 ms) pulses of caffeine onto a rested myocyte elicited a [Ca2+]i transient and a contraction. Following exposure to specific SR inhibitors, ryanodine (100 nM) or thapsigargin (200 nM), the rapid application of caffeine onto a rested myocyte failed to elicit changes in [Ca2+]i or in cell length, indicating that caffeine increases [Ca2+]i by specifically discharging Ca2+ from the SR. In the absence of these inhibitors, a second pulse of caffeine, within 3 min following a prior pulse, failed to elicit a [Ca2+]i transient or contraction, indicating that a caffeine pulse depletes the SR releasable Ca2+ pool. 3. Following Ca2+ depletion of the SR by double caffeine pulses at rest, an electrical stimulation elicited a slow increase in [Ca2+]i, and, after a delay, a small, slow twitch contraction. The simultaneous application of caffeine and electrical stimulation of cells in which the SR was Ca2+ depleted elicited [Ca2+]i transients with an increased rate of rise and a larger amplitude (53 +/- 8 and 63 +/- 9% respectively; mean +/- S.E.M., n = 21) than those elicited by electrical stimulation alone. 4. Whether caffeine affected the L-type calcium current (ICa) elicited by electrical stimulation was determined under whole-cell voltage clamp. A caffeine pulse delivered at the onset of a depolarizing voltage clamp step also increased the rates of rise and the amplitudes of the [Ca2+]i transients and twitch contractions in cells in which the SR was depleted of Ca2+. However, Ca2+ influx via ICa decreased when caffeine was

  18. Assessment of the potential environmental fate and effects of oil-field discharge waters containing {sup 226}radium

    SciTech Connect

    Herrera, A.W.; Hill, S.L.; Bergman, H.L.

    1994-12-31

    The naturally occurring radionuclide, radium-226, has been detected in oil production waters in all regions of the country. A produced water discharge into the Loch Katrina wetland in Park County, WY was investigated with respect to the transport and fate of radium in surface waters. The 866-acre Loch Katrina wetland complex is sustained primarily by oil-field produced waters and provides habitat for many species of aquatic birds. While the short-term benefits of this discharge are indisputable, the long-term hazards posed by the transport of radium from deep aquifers to surface waters are not well understood. Guidelines regulating the management of radium-contaminated sediments in receiving waters or settling ponds in Wyoming have yet to be established. The purpose of this study was to provide information to regional regulatory agencies and the oil and gas industry in the development of guidelines and procedures for managing radium and other naturally occurring radioactive materials. The authors will report the results of the sampling survey of produced waters, sediment and biota performed in the Loch Katrina wetland complex in Wyoming.

  19. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network. PMID:27079105

  20. Vaginal Discharge

    MedlinePlus

    ... also be on the lookout for symptoms of yeast infections, bacterial vaginosis and trichomoniasis, 3 infections that ... cause changes in your vaginal discharge. Signs of yeast infections White, cottage cheese-like discharge Swelling and ...

  1. Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells.

    PubMed

    Scott, Ricardo S; Bustillo, Diego; Olivos-Oré, Luis Alcides; Cuchillo-Ibañez, Inmaculada; Barahona, Maria Victoria; Carbone, Emilio; Artalejo, Antonio R

    2011-10-01

    BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca(2+) during action potentials. Indeed, Ca(2+)-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K(+) currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca(2+)) Ca(2+) concentrations. Despite their low open probability under these conditions (V(50) of +146.8 mV), BK channels were responsible for more than 25% of the total K(+) efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K(+) channels. The other main source of fast voltage-dependent K(+) efflux at such a low Ca(2+) was a transient K(+) (I(A)-type) current activating with V (50) = -14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca(2+). Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca(2+) concentration, and suggest that they could do so also in the presence of extracellular Ca(2+), before Ca(2+) entering the cell facilitates their activity. PMID:21755285

  2. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    NASA Technical Reports Server (NTRS)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  3. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  4. Temporal Change in Discharge Response in Unregulated Swedish Catchments - Quantifying Potential Effects of Anthropogenic Modifications in Stream Network Properties on Flow Time Distributions

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Åkesson, A. M.; Riml, J.; Seibert, J.

    2015-12-01

    Fourier spectral analysis of daily discharge time-series with a duration of 55-110 years in 79 unregulated catchments revealed that the discharge power spectrum slope has gradually increased (statistically significant at the 99% confidence level) over time. For the locations for which historical meteorological observations is available (the 41 southernmost catchments), the evaluation theoretically accounted for fluctuation in the precipitation power spectrum. The results indicate that (local) land-use changes within the catchments may have a relatively more important role (than climate change) for the temporal changes shown in the discharge power spectra. With a basis in stream network maps from present day in two different resolutions as well as a historical map from the 1880's, anthropogenic modifications, in terms of the flow paths within the stream networks, were identified for an agricultural catchment in southern Sweden. Through scenario modelling using a 1-D distributed routing model, the influence of common anthropogenic activities such as e.g. straightening of flowpaths, widening of stream channels to avoid damming and excavation to eliminate thresholds in the stream bottom topography, on the travel time distributions within a stream network were quantified. The map studies showed that the average flow path length had decreased over the last century. The study also shows that all of the studied anthropogenic factors can potentially have a substantial impact on the travel times through the stream networks - by decreasing the average travel time as well as by decreasing the variance. These types of temporal changes in stream network properties leads to a diminished possibility to attenuate peakflows, and are expected to have a substantial influence on discharge hydrographs. This study verifies the hypothesis that anthropogenic impacts of stream networks can influence the hydrological response in catchments, and that land-use changes on a local scale may be

  5. Theoretical study of thermal conductivities of various gas mixtures through the generalized Lennard-Jones interaction potential for application in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.

    2016-03-01

    Thermal conductivities of helium, neon, bromine, and hydrogen are calculated on the basis of the (12-6) Lennard-Jones interaction approximation. Where necessary for a more precise approximation, a generalized (n-m) Lennard-Jones interaction potential is used. Thermal conductivities of binary gas systems are calculated and compared through two different empirical methods for the case of gas discharges in He, Ne, and Ne-He mixtures with small admixtures of bromine and hydrogen. A new simple method is proposed for the thermal conductivity determination for the 3- and 4-component gas mixtures of our interest.

  6. Effect of depth of general anesthesia on the threshold of electrically evoked compound action potential in cochlear implantation.

    PubMed

    Eftekharian, Ali; Amizadeh, Maryam; Mottaghi, Kamran; Safari, Farhad; Mahani, Mozhgan Hosseinerezai; Ranjbar, Leila Azadeh; Abdi, Ali; Mokari, Nooshin

    2015-10-01

    The purpose of the present study was to evaluate effect of depth of general anesthesia on the threshold of electrically evoked compound action potential in cochlear implantation. A prospective clinical study in a single-subject design was conducted in the cochlear implant center of a tertiary care University-based hospital. Sixty-one cochlear-implanted children with bilateral, severe to profound sensory neural hearing loss were enrolled in the study. During the operation electrically evoked compound action potentials (e-ECAP) were measured in two phase of general anesthesia; in deep and in light anesthesia. Thresholds of e-ECAP in these two phases of anesthesia were compared. Thirty-one children received HiRes90k1j prosthesis and 30 children received CI24RE prosthesis. Thresholds difference of electrically evoked compound action potential between light and deep anesthesia in all tested electrodes in either group were statistically significant (P < 0.001). Non-measurable e-ECAP in some electrodes at deep anesthesia was measurable in light phase of anesthesia. Depth of anesthesia can have significant influence on e-ECAP threshold and it is important to reduce the depth of anesthesia to achieve better results. PMID:25145642

  7. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome.

    PubMed

    Fuller, Scott; Stephens, Jacqueline M

    2015-03-01

    Metabolic syndrome and its complications continue to rise in prevalence and show no signs of abating in the immediate future. Therefore, the search for effective treatments is a high priority in biomedical research. Products derived from botanicals have a time-honored history of use in the treatment of metabolic diseases including type 2 diabetes. Trigonella foenum-graecum, commonly known as fenugreek, is an annual herbaceous plant that has been a staple of traditional herbal medicine in many cultures. Although fenugreek has been studied in both clinical and basic research settings, questions remain about its efficacy and biologic mechanisms of action. Diosgenin, 4-hydroxyisoleucine, and the fiber component of the plant are the most intensively studied bioactive constituents present in fenugreek. These compounds have been demonstrated to exert beneficial effects on several physiologic markers including glucose tolerance, inflammation, insulin action, liver function, blood lipids, and cardiovascular health. Although insights into the molecular mechanisms underlying the favorable effects of fenugreek have been gained, we still do not have definitive evidence establishing its role as a therapeutic agent in metabolic disease. This review aims to summarize the currently available evidence on the physiologic effects of the 3 best-characterized bioactive compounds of fenugreek, with particular emphasis on biologic mechanisms of action relevant in the context of metabolic syndrome. PMID:25770257

  8. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

    NASA Astrophysics Data System (ADS)

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-05-01

    This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh-Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the "folds" in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

  9. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

    NASA Astrophysics Data System (ADS)

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-06-01

    This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh-Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the "folds" in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

  10. Gliding Arc Discharge in the Potato Pathogen Erwinia carotovora subsp. atroseptica: Mechanism of Lethal Action and Effect on Membrane-Associated Molecules▿

    PubMed Central

    Moreau, M.; Feuilloley, M. G. J.; Veron, W.; Meylheuc, T.; Chevalier, S.; Brisset, J.-L.; Orange, N.

    2007-01-01

    Gliding arc (glidarc) discharge is a physicochemical technique for decontamination at atmospheric pressure and ambient temperature. It leads to the destruction of bacterial phytopathogens responsible for important losses in industrial agriculture, namely, Erwinia spp., without the formation of resistant forms. We investigated the effect of a novel optimized prototype allowing bacterial killing without lag time. This prototype also decreases the required duration of treatment by 50%. The study of the time course effect of the process on bacterial morphology suggests that glidarc induces major alterations of the bacterial membrane. We showed that glidarc causes the release of bacterial genomic DNA. By contrast, an apparent decrease in the level of extractible lipopolysaccharide was observed; however, no changes in the electrophoretic pattern and cytotoxic activity of the macromolecule were noted. Analysis of extractible proteins from the outer membrane of the bacteria revealed that glidarc discharge induces the release of these proteins from the lipid environment, but may also be responsible for protein dimerization and/or aggregation. This effect was not observed in secreted enzymatic proteins, such as pectate lyase. Analysis of the data supports the hypothesis that the plasma generated by glidarc discharge is acting essentially through oxidative mechanisms. Furthermore, these results indicate that, in addition to effectively destroying bacteria, glidarc discharge should be used to improve the extraction of bacterial molecules. PMID:17644644

  11. Potential of rapid adjustment of brief interceptive action using predicted information.

    PubMed

    Ikudome, Sachi; Nakamoto, Hiroki; Yotani, Kengo; Unenaka, Satoshi; Mori, Shiro

    2015-07-01

    Interceptive actions, such as hitting a ball in baseball or tennis, feature a moving target whose parameters (i.e., velocity or trajectory) differ across trials. This means that players are required to make rapid trial-by-trial adjustments. The purpose of this study was to determine whether a brief interceptive action could be adjusted using predicted sensory consequence of movement (pSCM) information, even under severe time constraints where the participants could not adjust their movement using only visual feedback. Participants performed an interceptive action for targets with two different velocities with different occurrence probabilities (20%, 50%, and 80%). Prior to movement onset, we applied transcranial magnetic stimulation (TMS) to the supplementary motor area (SMA), as TMS of the SMA is known to disrupt pSCM activity. We hypothesized that if pSCM information were used to adjust the motor parameters of a brief interception, then TMS would significantly increase the constant temporal error (i.e., the difference between the sum of reaction time and movement time and the total target visible time) for a target velocity with a low probability (20%). This hypothesis is based on the previous findings that the pSCM plays an important role in the adjustment of relatively brief interception. We found that while interceptions that lasted about 250 ms after movement onset were unaffected, interceptions that lasted about 350 ms after movement onset could be influenced by TMS. However, TMS interfered with performance provided that the delivery of the pulse occurred 100 ms before movement onset. This finding suggests that pSCM information that is used for a rapid adjustment is generated only in that specific time interval. PMID:26010202

  12. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.

  13. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.

  14. Investigation on the Cyclability of Lithium-Oxygen Cells in a Confined Potential Window using Cathodes with Pre-filled Discharge Products.

    PubMed

    Geng, Dongsheng; Ding, Ning; Hor, T S Andy; Chien, Sheau Wei; Liu, Zhaolin; Zong, Yun

    2015-10-01

    With new chemistry and advantageous configuration, the lithium-oxygen (Li-O2) battery promises a much higher specific energy than traditional lithium-ion batteries. The limited understanding on the complicated battery reactions therein, however, has become a major bottleneck of its development for applications requiring a high energy efficiency and long cycle-life. Herein, in a confined potential window with negligible electrolyte degradation, we studied the rechargeability of Li-O2 cathodes with pre-filled well-defined discharge products of Li2O2, Li2CO3, LiOH, or their combinations. Our results suggest Li2CO3 as the most difficult species to be electrochemically decomposed among the three lithium compounds, whereas the presence of LiOH notably increases the initial charge potential. The clearly visible difference in the charge behavior and cycling stability of these artificially "discharged" electrodes provides a guideline for the development of future high-performance Li-O2 batteries. PMID:26011604

  15. Evaluation of the potential of pentachlorophenol degradation in soil by pulsed corona discharge plasma from soil characteristics.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-04-15

    Chlorinated organics are frequently found as harmful soil contaminants and persisted for extended periods of time. A novel approach, named pulsed corona discharge plasma (PCDP), was employed for the degradation of pentachlorophenol (PCP) in soil. Experimental results showed that 87% of PCP could be smoothly removed in 60 min. Increasing pulse voltage, enhancing soil pH, lowering humic acid (HA) in soil and reducing granular size of the soil were found to be favorable for PCP degradation efficiency. Oxidation and physical processes simultaneously contributed to PCP removal in soil and ozone was the main factor in PCDP treatment. C-Cl bonds in PCP were cleaved during PCDP treatment by Fourier transform infrared spectroscopy (FTIR) analysis. The mineralization of PCP was confirmed by total organic carbon (TOC) and dechlorination analyses. The main intermediate products such as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid, and oxalic acid were identified by HPLC/MS and ion chromatography. A possible pathway of PCP degradation in soil in such a system was proposed. PMID:20218544

  16. Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Davies, Trevor D.

    1998-01-01

    Episodic variations in dissolved solutes are frequently complicated by a cyclical relationship between concentration and stream discharge. Established three-component models of runoff generation are used to explain this hysteresis effect and to illustrate how different component concentrations produce different hysteresis forms. It is demonstrated that a two-component model cannot reproduce all the hysteresis forms commonly observed. A method, based on the three-component system, is derived by which C/Q hysteresis can be used to predict relative component concentrations. This may provide a qualitative chemical description of sources supplying runoff for locations where these have not yet been directly established or a validation test where possible components have been sampled. The method has been tested using data collected at streams in the Adirondacks, New York, and the Northern Appalachian Plateau, Pennsylvania, during the Episodic Response Project of the U.S. Environmental Protection Agency. Predicted component compositions were in good agreement with measurements made during other studies and with those subsequently obtained from one of the Pennsylvania watersheds.

  17. Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy

    PubMed Central

    Podor, Borbala; Hu, Yi-ling; Ohkura, Masamichi; Nakai, Junichi; Croll, Roger; Fine, Alan

    2015-01-01

    Abstract. Imaging calcium transients associated with neuronal activity has yielded important insights into neural physiology. Genetically encoded calcium indicators (GECIs) offer conspicuous potential advantages for this purpose, including exquisite targeting. While the catalogue of available GECIs is steadily growing, many newly developed sensors that appear promising in vitro or in model cells appear to be less useful when expressed in mammalian neurons. We have, therefore, evaluated the performance of GECIs from two of the most promising families of sensors, G-CaMPs [Nat. Biotechnol. 19(2), 137–141 (2001)11175727] and GECOs [Science 333(6051), 1888–1891 (2011)21903779], for monitoring action potentials in rat brain. Specifically, we used two-photon excitation fluorescence microscopy to compare calcium transients detected by G-CaMP3; GCaMP6f; G-CaMP7; Green-GECO1.0, 1.1 and 1.2; Blue-GECO; Red-GECO; Rex-GECO0.9; Rex-GECO1; Carmine-GECO; Orange-GECO; and Yellow-GECO1s. After optimizing excitation wavelengths, we monitored fluorescence signals associated with increasing numbers of action potentials evoked by current injection in CA1 pyramidal neurons in rat organotypic hippocampal slices. Some GECIs, particularly Green-GECO1.2, GCaMP6f, and G-CaMP7, were able to detect single action potentials with high reliability. By virtue of greatest sensitivity and fast kinetics, G-CaMP7 may be the best currently available GECI for monitoring calcium transients in mammalian neurons. PMID:26158004

  18. A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle.

    PubMed

    Parker, K K; Wikswo, J P

    1997-10-01

    We have developed a computationally simple model for calculating the magnetic-field strength at a point due to a single motor unit compound action potential (SMUCAP). The motor unit is defined only in terms of its anatomical features, and the SMUCAP is approximated using the tripole model. The distributed current density J is calculated within the volume defined by the motor unit. The law of Biot and Savart can then be cast in a form necessitating that J be integrated only over the region containing current sources or conductivity boundaries. The magnetic-field strength is defined as the summation of the contributions to the field made by every muscle fiber in the motor unit. Applying this model to SMUCAP measurements obtained using a high-resolution SUper Conducting Quantum Interference Device (SQUID) magnetometer may yield information regarding the distribution of action currents (AC's) and the anatomical properties of single motor units within a muscle bundle. PMID:9311164

  19. The potential for multi-disciplinary primary health care services to take action on the social determinants of health: actions and constraints

    PubMed Central

    2013-01-01

    Background The Commission on the Social Determinants of Health and the World Health Organization have called for action to address the social determinants of health. This paper considers the extent to which primary health care services in Australia are able to respond to this call. We report on interview data from an empirical study of primary health care centres in Adelaide and Alice Springs, Australia. Methods Sixty-eight interviews were held with staff and managers at six case study primary health care services, regional health executives, and departmental funders to explore how their work responded to the social determinants of health and the dilemmas in doing so. The six case study sites included an Aboriginal Community Controlled Organisation, a sexual health non-government organisation, and four services funded and managed by the South Australian government. Results While respondents varied in the extent to which they exhibited an understanding of social determinants most were reflexive about the constraints on their ability to take action. Services’ responses to social determinants included delivering services in a way that takes account of the limitations individuals face from their life circumstances, and physical spaces in the primary health care services being designed to do more than simply deliver services to individuals. The services also undertake advocacy for policies that create healthier communities but note barriers to them doing this work. Our findings suggest that primary health care workers are required to transverse “dilemmatic space” in their work. Conclusions The absence of systematic supportive policy, frameworks and structure means that it is hard for PHC services to act on the Commission on the Social Determinants of Health’s recommendations. Our study does, however, provide evidence of the potential for PHC services to be more responsive to social determinants given more support and by building alliances with communities and

  20. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  1. Hip fracture - discharge

    MedlinePlus

    Inter-trochanteric fracture repair - discharge; Subtrochanteric fracture repair - discharge; Femoral neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge

  2. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action

  3. Potential mechanisms of action of lithium in bipolar disorder. Current understanding.

    PubMed

    Malhi, Gin S; Tanious, Michelle; Das, Pritha; Coulston, Carissa M; Berk, Michael

    2013-02-01

    Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For

  4. Cardiovascular Actions and Therapeutic Potential of Tetramethylpyrazine (Active Component Isolated from Rhizoma Chuanxiong): Roles and Mechanisms

    PubMed Central

    Guo, Ming; Liu, Yue; Shi, Dazhuo

    2016-01-01

    Tetramethylpyrazine (TMP), a pharmacologically active component isolated from the rhizome of the Chinese herb Rhizoma Chuanxiong (Chuanxiong), has been clinically used in China and Southeast Asian countries for the prevention and treatment of cardiovascular diseases (CVDs) for about fifty years. The pharmacological effects of TMP on the cardiovascular system have attracted great interest. Emerging experimental studies and clinical trials have demonstrated that TMP prevents atherosclerosis as well as ischemia-reperfusion injury. The cardioprotective effects of TMP are mainly related to its antioxidant, anti-inflammatory, or calcium-homeostasis effects. This review focuses on the roles and mechanisms of action of TMP in the cardiovascular system and provides a novel perspective on TMP's clinical use. PMID:27314011

  5. Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential

    PubMed Central

    Whitaker, Iain S; Twine, Christopher; Whitaker, Michael J; Welck, Mathew; Brown, Charles S; Shandall, Ahmed

    2007-01-01

    When modern medicine fails, it is often useful to draw ideas from ancient treatments. The therapeutic use of fly larvae to debride necrotic tissue, also known as larval therapy, maggot debridement therapy or biosurgery, dates back to the beginnings of civilisation. Despite repeatedly falling out of favour largely because of patient intolerance to the treatment, the practice of larval therapy is increasing around the world because of its efficacy, safety and simplicity. Clinical indications for larval treatment are varied, but, in particular, are wounds infected with multidrug‐resistant bacteria and the presence of significant co‐morbidities precluding surgical intervention. The flies most often used in larval therapy are the facultative calliphorids, with the greenbottle blowfly (Lucilia sericata) being the most widely used species. This review summarises the fascinating and turbulent history of larval therapy from its origin to the present day, including mechanisms of action and evidence for its clinical applications. It also explores future research directions. PMID:17551073

  6. Assessing potential targets of calcium action in light-modulated gravitropism

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  7. Metal-organic frameworks: mechanisms of antibacterial action and potential applications.

    PubMed

    Wyszogrodzka, Gabriela; Marszałek, Bartosz; Gil, Barbara; Dorożyński, Przemysław

    2016-06-01

    The growing resistance of pathogens to conventional antibiotics has become a public health problem and raises the need to seek new effective solutions. Metal-organic frameworks (MOFs) are porous, hybrid materials comprising metal ions linked by organic binding ligands. The possibility of using a variety of chemical building components in MOFs enables the formation of structures with desired properties. They can act as a reservoir of metal ions, providing their gradual release and resulting in a sustained antibacterial action analogous to that proposed for metal/metal oxide nanoparticles (NPs) but different to that of antibiotics. These features make MOFs promising candidates for pharmaceutical and biomedical applications, as illustrated by examples discussed in this review. PMID:27091434

  8. Nuclear Targeting with an Auger Electron Emitter Potentiates the Action of a Widely Used Antineoplastic Drug.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Raposinho, Paula; Bauwens, Matthias; Felber, Michael; Fox, Thomas; Shapiro, Adam B; Freudenberg, Robert; Fernandes, Célia; Gama, Sofia; Gasser, Gilles; Motthagy, Felix; Santos, Isabel R; Alberto, Roger

    2015-12-16

    We present the combination of the clinically well-proven chemotherapeutic agent, Doxorubicin, and (99m)Tc, an Auger and internal conversion electron emitter, into a dual-action agent for therapy. Chemical conjugation of Doxorubicin to (99m)Tc afforded a construct which autonomously ferries a radioactive payload into the cell nucleus. At this site, damage is exerted by dose deposition from Auger radiation. The (99m)Tc-conjugate exhibited a dose-dependent inhibition of survival in a selected panel of cancer cells and an in vivo study in healthy mice evidenced a biodistribution which is comparable to that of the parent drug. The homologous Rhenium conjugate was found to effectively bind to DNA, inhibited human Topoisomerase II, and exhibited cytotoxicity in vitro. The collective in vitro and in vivo data demonstrate that the presented metallo-conjugates closely mimic native Doxorubicin. PMID:26473388

  9. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action.

    PubMed

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Narkhede, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2015-09-01

    Mosquitoes spread lethal diseases like malaria and dengue fever to humans. Considering mosquito vector control as one of the best alternatives to reduce new infections, here we have analyzed the effect of purified pigment prodigiosin extracted from Serratia marcescens (NMCC 75) against larval and pupal stages of Aedes aegypti and Anopheles stephensi mosquitoes. Mosquito larvicidal activities of purified prodigiosin revealed LC50 values of 14 ± 1.2, 15.6 ± 1.48, 18 ± 1.3, 21 ± 0.87 µg/ml against early IInd, IIIrd, IVth instar and pupal stages of Ae. aegypti, respectively. LC50 values for An. stephensi were found to be 19.7 ± 1.12, 24.7 ± 1.47, 26.6 ± 1.67, 32.2 ± 1.79 µg/ml against early IInd, IIIrd, IVth instar and pupae of An. stephensi, respectively. Further investigations toward understanding modes of action revealed variations in the activities of esterases, acetylcholine esterases, phosphatases, proteases and total proteins in the fourth instar larvae of Ae. aegypti indicating intrinsic difference in biochemical features due to prodigiosin treatment. Although there was no inhibition of enzymes like catalase and oxidase but may have profound inhibitory effect on carbonic anhydrase or H(+)-V-ATPase which is indicated by change in the pH of midgut and caeca of mosquito larvae. This reduced pH may be possibly due to the proton pump inhibitory activity of prodigiosin. Pure prodigiosin can prove to be an important molecule for mosquito control at larval and pupal stages of Ae. aegypti and An. stephensi. This is the first report on the mosquito pupaecidal activity of prodigiosin and its possible mechanism of action. PMID:26267052

  10. HMGB1 Inhibition During Zymosan-Induced Inflammation: The Potential Therapeutic Action of Riboflavin.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2016-04-01

    Sepsis, also known as systemic inflammatory response syndrome, is a life-threatening condition caused by a pathogenic agent and leading to multiple organ dysfunction syndrome. One of the factors responsible for the excessive intensification of the inflammatory response in the course of inflammation is high-mobility group protein B1 (HMGB1). HMG-1 is a nuclear protein which, after being released to the intercellular space, has a highly pro-inflammatory effect and acts as a late mediator of lethal damage. The purpose of this study was to examine whether the anti-inflammatory action of riboflavin is accompanied by inhibition of HMGB1 release during peritoneal inflammation and zymosan stimulation of macrophages. Peritonitis was induced in male BALB/c and C57BL/6J mice via intraperitoneal injection of zymosan (40 mg/kg). RAW 264.7 macrophages were activated with zymosan (250 µg/ml). Riboflavin (mice, 50 mg/kg; RAW 264.7, 25 µg/ml) was administered 30 min before zymosan, simultaneously with, or 2, 4, 6 h after zymosan. Additionally, mRNA expression of HMGB1 and its intracellular and serum levels were evaluated. The research showed that riboflavin significantly reduces both the expression and the release of HMGB1; however, the effect of riboflavin was time-dependent. The greatest efficacy was found when riboflavin was given 30 min prior to zymosan, and also 2 and 4 h (C57BL/6J; RAW 264.7) or 4 and 6 h (BALB/c) after zymosan. Research showed that riboflavin influences the level of HMGB1 released in the course of inflammation; however, further study is necessary to determine its mechanisms of action. PMID:26445809

  11. Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel.

    PubMed

    Malysz, J; Richardson, D; Farraway, L; Christen, M O; Huizinga, J D

    1995-10-01

    Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13 - 18% and its amplitude by 50 - 70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 mu M), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5 - 10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel

  12. Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium.

    PubMed

    Meier, Stephen R; Lancaster, Jarrett L; Starobin, Joseph M

    2015-01-01

    The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018

  13. Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium

    PubMed Central

    Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.

    2015-01-01

    The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018

  14. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study.

    PubMed

    Popovic, Marko A; Foust, Amanda J; McCormick, David A; Zecevic, Dejan

    2011-09-01

    The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination. PMID:21669974

  15. Potentiation of bradykinin action on smooth muscle by a scorpion venom extract.

    PubMed

    Araujo, R L; Gomez, M V

    1976-08-01

    Gel filtration of the water extract of the venom of the scorpion T. serrulatus showed four peaks; the first peak (P1) is devoid of toxic activity but increases the bradykinin-induced contraction of isolated rat uterus and guinea-pig ileum. The stepwise fractionation of the pooled P1 peak was performed in a DEAE-cellulose column and the bradykinin potentiating activity was found in the second protein peak. Finger-printing of this material showed that the bradykinin potentiating material migrates to the anode, giving two spots when submitted to chromatography, the activity being found in the spot that presents the greatest Rf. The potentiator is destroyed by heating at 97 degrees C, is not dialysable and is destroyed by incubation with pronase. Some of these properties differentiate it from the BPF's from snake venoms. PMID:976731

  16. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.

    PubMed

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum. PMID:26414356

  17. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons

    PubMed Central

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum. PMID:26414356

  18. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro

    PubMed Central

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C.

    2015-01-01

    Neuron–astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (−astrocyte) within the same culture dish. −Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. SIGNIFICANCE STATEMENT Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform

  19. 4-bromopropofol decreases action potential generation in spinal neurons by inducing a glycine receptor‐mediated tonic conductance

    PubMed Central

    Eckle, V S; Grasshoff, C; Mirakaj, V; O'Neill, P M; Berry, N G; Leuwer, M; Antkowiak, B

    2014-01-01

    Background and Purpose Impaired function of spinal strychnine-sensitive glycine receptors gives rise to chronic pain states and movement disorders. Therefore, increased activity of glycine receptors should help to treat such disorders. Although compounds targeting glycine receptors with a high selectivity are lacking, halogenated analogues of propofol have recently been considered as potential candidates. Therefore we asked whether 4-bromopropofol attenuated the excitability of spinal neurons by promoting glycine receptor-dependent inhibition. Experimental Approach The actions of sub-anaesthetic concentrations of propofol and 4-bromopropofol were investigated in spinal tissue cultures prepared from mice. Drug-induced alterations in action potential firing were monitored by extracellular multi-unit recordings. The effects on GABAA and glycine receptor-mediated inhibition were quantified by whole-cell voltage-clamp recordings. Key Results Low concentrations of 4-bromopropofol (50 nM) reduced action potential activity of ventral horn neurons by about 30%, compared with sham-treated slices. This effect was completely abolished by strychnine (1 μM). In voltage-clamped neurons, 4-bromopropofol activated glycine receptors, generating a tonic current of 65 ± 10 pA, while GABAA- and glycine receptor-mediated synaptic transmission remained unaffected. Conclusions and Implications The highest glycine levels in the CNS are found in the ventral horn of the spinal cord, a region mediating pain-induced motor reflexes and participating in the control of muscle tone. 4-Bromopropofol may serve as a starting point for the development of non-sedative, non-addictive, muscle relaxants and analgesics to be used to treat low back pain. PMID:25131750

  20. Angina - discharge

    MedlinePlus

    ... bypass surgery - minimally invasive - discharge Heart disease - risk factors High ... of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  1. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes

    PubMed Central

    Stimers, Joseph R.; Song, Li; Rusch, Nancy J.; Rhee, Sung W.

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome. PMID:26091273

  2. CO-AXIAL DISCHARGES

    DOEpatents

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  3. Co-axial discharges

    DOEpatents

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  4. INHIBITION OF BRAIN CHOLINESTERASE AND THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS PRODUCED BY CARBARYL IN LONG EVANS RATS.

    EPA Science Inventory

    Carbaryl is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response often used to detect central nervous system (CNS) changes following expos...

  5. Ameliorating treatment-refractory depression with intranasal ketamine: potential NMDA receptor actions in the pain circuitry representing mental anguish.

    PubMed

    Opler, Lewis A; Opler, Mark G A; Arnsten, Amy F T

    2016-02-01

    This article reviews the antidepressant actions of ketamine, an N-methyl-D-aspartame glutamate receptor (NMDAR) antagonist, and offers a potential neural mechanism for intranasal ketamine's ultra-rapid actions based on the key role of NMDAR in the nonhuman primate prefrontal cortex (PFC). Although intravenous ketamine infusions can lift mood within hours, the current review describes how intranasal ketamine administration can have ultra-rapid antidepressant effects, beginning within minutes (5-40 minutes) and lasting hours, but with repeated treatments needed for sustained antidepressant actions. Research in rodents suggests that increased synaptogenesis in PFC may contribute to the prolonged benefit of ketamine administration, beginning hours after administration. However, these data cannot explain the relief that occurs within minutes of intranasal ketamine delivery. We hypothesize that the ultra-rapid effects of intranasal administration in humans may be due to ketamine blocking the NMDAR circuits that generate the emotional representations of pain (eg, Brodmann Areas 24 and 25, insular cortex), cortical areas that can be overactive in depression and which sit above the nasal epithelium. In contrast, NMDAR blockade in the dorsolateral PFC following systemic administration of ketamine may contribute to cognitive deficits. This novel view may help to explain how intravenous ketamine can treat the symptoms of depression yet worsen the symptoms of schizophrenia. PMID:25619798

  6. Lactate Transport and Receptor Actions in Retina: Potential Roles in Retinal Function and Disease.

    PubMed

    Kolko, Miriam; Vosborg, Fia; Henriksen, Ulrik L; Hasan-Olive, Md Mahdi; Diget, Elisabeth Holm; Vohra, Rupali; Gurubaran, Iswariya Raja Sridevi; Gjedde, Albert; Mariga, Shelton Tendai; Skytt, Dorte M; Utheim, Tor Paaske; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-06-01

    In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect neurons and prevent or counteract glaucoma as well as other retinal diseases. PMID:26677077

  7. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug?

    PubMed

    Di Rosso, María Emilia; Palumbo, María Laura; Genaro, Ana María

    2016-07-01

    Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive-compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been associated with immune dysfunction. However, there is contradictory evidence about the effect of fluoxetine on the immune system. Experimental findings indicate that lymphocytes express the serotonin transporter. Moreover it has been shown that fluoxetine is able to modulate the immune function through a serotonin-dependent pathway and through a novel independent mechanism. In addition, several studies have shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor T-cell activity. Here we briefly review some of the literature referring to how fluoxetine is able to modify, for better or worse, the functionality of the immune system. These results of our analysis point to the relevance of the novel pharmacological action of this drug as an immunomodulator helping to treat several pathologies in which immune deficiency and/or deregulation is present. PMID:26644208

  8. Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions.

    PubMed

    Hemmati, Mina; Zohoori, Elham; Mehrpour, Omid; Karamian, Mehdi; Asghari, Somaye; Zarban, Asghar; Nasouti, Roya

    2015-01-01

    Atherogenic dyslipidemia, characterized by an increased level of lipoprotein (a) and a decreased level of adiponectin, is a major risk factor for cardiovascular diseases in diabetic patients. To reduce cardiovascular risk in diabetic patients, use of agents with antidiabetic and anti-atherogenic potential is required. Using an animal model of diabetes, we investigated the antiatherogenic potential of extracts of three medicinal plants: jujube, barberry, and saffron. For this, serum level of fasting blood glucose, lipid profile, malondialdehyde, total antioxidant capacity, adiponectin and lipoprotein (a) in diabetic control and extract treated groups were measured. Statistical analysis of measurements showed that serum levels of fasting blood glucose, triglyceride, and VLDL decreased significantly (P < 0.05) in all treated groups. Treatment with all extracts reduced lipid peroxidation and increased antioxidant capacity of the experimental diabetic groups. Serum adiponectin levels increased in all treated groups, whereas lipoprotein (a) levels decreased, most markedly when treated with jujube extract. Jujube, saffron, and barberry extracts are beneficial in ameliorating oxidative stress and atherogenic risk of diabetic rats. This highlights the benefits of further investigating the cardio-protective potential of medicinal plant extracts and evaluating their usefulness as cardio protective agents in clinical practice. PMID:26600752

  9. Direct inhibition of arcuate proopiomelanocortin neurons: a potential mechanism for the orexigenic actions of dynorphin

    PubMed Central

    Zhang, Xiaobing; van den Pol, Anthony N

    2013-01-01

    Dynorphin, an endogenous ligand of kappa (κ) opioid receptors, has multiple roles in the brain, and plays a positive role in energy balance and food intake. However, the mechanism for this is unclear. With immunocytochemistry, we find that axonal dynorphin immunoreactivity in the arcuate nucleus is strong, and that a large number of dynorphin-immunoreactive boutons terminate on or near anorexigenic proopiomelanocortin (POMC) cells. Here we provide evidence from whole-cell patch-clamp recording that dynorphin-A (Dyn-A) directly and dose-dependently inhibits arcuate nucleus POMC neurons. Dyn-A inhibition was eliminated by the κ opioid receptor antagonist nor-BNI, but not by the μ receptor antagonist CTAP. The inhibitory effect was mimicked by the κ2 receptor agonist GR89696, but not by the κ1 receptor agonist U69593. No presynaptic effect of κ2 agonists was found. These results suggest that Dyn-A inhibits POMC neurons through activation of the κ2 opioid receptor. In whole-cell voltage clamp, Dyn-A opened G-protein-coupled inwardly rectifying potassium (GIRK)-like channels on POMC neurons. Dynorphin attenuated glutamate and GABA neurotransmission to POMC neurons. In contrast to the strong inhibition of POMC neurons by Dyn-A, we found a weaker direct inhibitory effect of Dyn-A on arcuate nucleus neuropeptide Y (NPY) neurons mediated by both κ1 and κ2 receptors. Taken together, these results indicate a direct inhibitory effect of Dyn-A on POMC neurons through activation of the κ2 opioid receptor and GIRK channels. A number of orexigenic hypothalamic neurons release dynorphin along with other neuropeptides. The inhibition of anorexigenic POMC neurons may be one mechanism underlying the orexigenic actions of dynorphin. PMID:23318874

  10. In vitro antimalarial activity and chloroquine potentiating action of two bisbenzylisoquinoline enantiomer alkaloids isolated from Strychnopsis thouarsii and Spirospermum penduliflorum.

    PubMed

    Ratsimamanga-Urverg, S; Rasoanaivo, P; Ramiaramanana, L; Milijaona, R; Rafatro, H; Verdier, F; Rakoto-Ratsimamanga, A; Le Bras, J

    1992-12-01

    The bisbenzylisoquinolines 7-O-demethyltetrandrine and limacine, respectively, isolated from Strychnopsis thouarsii Baill. and Spirospermum penduliflorum Thou. were evaluated for their intrinsic antimalarial activity in vitro and chloroquine potentiating action against the chloroquine-resistant Plasmodium falciparum FCM 29 originating from Cameroon. They both showed significant antiplasmodial potency in vitro with very similar IC50 values of respectively, 740 nM and 789 nM (IC50 = 214 nM for chloroquine used as standard drug), which demonstrated that the stereochemistry of the C-1 and C-1' configuration likely plays a role in the chloroquine potentiating effect of these drugs. If confirmed in vivo, these results may account for the traditional use of the two plants as antimalarials and adjuvant to chloroquine in Madagascan folklore remedies. PMID:1484894

  11. Discharging patients.

    PubMed

    Causey, Amy

    2016-06-22

    What was the nature of the CPD activity and/or practice-related feedback and/or event or experience in your practice? The CPD article discussed the importance of effective planning when discharging patients from acute care hospitals. It emphasised the benefit of early assessment and planning, and outlined the essential principles that should be followed when discharging a patient. PMID:27332612

  12. Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Horváth, Balázs; Ruzsnavszky, Ferenc; Váczi, Krisztina; Magyar, János; Bányász, Tamás; Varró, András; Nánási, Péter P

    2015-07-01

    Although beat-to-beat variability (short-term variability, SV) of action potential duration (APD) is considered as a predictor of imminent cardiac arrhythmias, the underlying mechanisms are still not clear. In the present study, therefore, we aimed to determine the role of the major cardiac ion currents, APD, stimulation frequency, and changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) on the magnitude of SV. Action potentials were recorded from isolated canine ventricular cardiomyocytes using conventional microelectrode techniques. SV was an exponential function of APD, when APD was modified by current injections. Drug effects were characterized as relative SV changes by comparing the drug-induced changes in SV to those in APD according to the exponential function obtained with current pulses. Relative SV was increased by dofetilide, HMR 1556, nisoldipine, and veratridine, while it was reduced by BAY K8644, tetrodotoxin, lidocaine, and isoproterenol. Relative SV was also increased by increasing the stimulation frequency and [Ca(2+)]i. In summary, relative SV is decreased by ion currents involved in the negative feedback regulation of APD (I Ca, I Ks, and I Kr), while it is increased by I Na and I to. We conclude that drug-induced effects on SV should be evaluated in relation with the concomitant changes in APD. Since relative SV was decreased by ion currents playing critical role in the negative feedback regulation of APD, blockade of these currents, or the beta-adrenergic pathway, may carry also some additional proarrhythmic risk in addition to their well-known antiarrhythmic action. PMID:25081243

  13. Assessing potential risks of wastewater discharges to benthic biota: an integrated approach to biomarker responses in clams (Ruditapes philippinarum) exposed under controlled conditions.

    PubMed

    Maranho, L A; DelValls, T A; Martín-Díaz, M L

    2015-03-15

    Marine clams Ruditapes philippinarum were exposed under laboratory conditions to sediments sampled at five sites affected by wastewater effluents at the Bay of Cádiz (SW, Spain). Contamination and early biological stress were determined. Metabolism and antioxidant system differed according to seasons. Health status diminished in summer. Metabolism of detoxification, and oxidative effect were related to concentration of metals, PAH, secondary alkane sulfonates (SAS) and antibiotics in winter. Antioxidant system and DNA damage were linked to metals and pharmaceutical products. Phase I and antioxidant system were associated to PAH and SAS in summer. Oxidative stress and effects were related to pharmaceuticals. Phase II was linked to metals and pharmaceuticals. Seasonality of sediment contamination by organic compounds and biological responses was determined. Clams were useful bioindicators, since the set of biomarkers applied was validated as potential tools for sediment quality assessment of wastewater discharges areas. PMID:25641574

  14. Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Kistamas, K; Szentandrassy, N; Hegyi, B; Vaczi, K; Ruzsnavszky, F; Horvath, B; Banyasz, T; Nanasi, P P; Magyar, J

    2015-02-01

    The aim of the present work was to study the influence of changes in intracellular calcium concentration ([Ca(2+)]i) on beat-to-beat variability (short term variability, SV) of action potential duration (APD) in isolated canine ventricular cardiomyocytes. Series of action potentials were recorded from enzymatically isolated canine ventricular cells using conventional microelectrode technique. Drug effects on SV were evaluated as relative SV changes determined by plotting the drug-induced changes in SV against corresponding changes in APD and comparing these data to the exponential SV-APD function obtained with inward and outward current injections. Exposure of myocytes to the Ca(2+) chelator BAPTA-AM (5 μM) decreased, while Ca(2+) ionophore A23187 (1 μM) increased the magnitude of relative SV. Both effects were primarily due to the concomitant changes in APD. Relative SV was reduced by BAPTA-AM under various experimental conditions including pretreatment with veratridine, BAY K8644, dofetilide or E-4031. Contribution of transient changes of [Ca(2+)]i due to Ca(2+) released from the sarcoplasmic reticulum (SR) was studied using 10 μM ryanodine and 1 μM cyclopiazonic acid: relative SV was reduced by both agents. Inhibition of the Na(+)-Ca(2+) exchanger by 1 μM SEA0400 increased relative SV. It is concluded that elevation of [Ca(2+)]i increases relative SV significantly. More importantly, Ca(2+) released from the SR is an important component of this effect. PMID:25716967

  15. Combined electric field and gap junctions on propagation of action potentials in cardiac muscle and smooth muscle in PSpice simulation.

    PubMed

    Sperelakis, Nicholas

    2003-10-01

    Propagation of action potentials in cardiac muscle and smooth muscle were simulated using the PSpice program. Excitation was transmitted from cell to cell along a strand of 6 cells (cardiac muscle) or 10 cells (smooth muscle) either not connected (control) or connected by low-resistance tunnels (gap-junction connexons). A significant negative cleft potential (V(jv) ) develops in the narrow junctional cleft when the pre-JM fires. V(jc) depolarizes the postjunctional membrane (post-JM) to threshold by a patch-clamp action. With few connecting tunnels, cell-to-cell transmission by the EF mechanism was facilitated. With many tunnels, propagation was dominated by the low-resistance mechanism, and propagation velocity (theta) became very fast and nonphysiological. In conclusion, when the 2 mechanisms for cell-to-cell transfer of excitation were combined, the two mechanisms facilitated each other in a synergistic manner. When there were many connecting tunnels, the tunnel mechanism was dominant. PMID:14661164

  16. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease

    PubMed Central

    Pissadaki, Eleftheria K.; Bolam, J. Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD. PMID:23515615

  17. A wavelet-like filter based on neuron action potentials for analysis of human scalp electroencephalographs.

    PubMed

    Glassman, Elena L

    2005-11-01

    This paper describes the development and testing of a wavelet-like filter, named the SNAP, created from a neural activity simulation and used, in place of a wavelet, in a wavelet transform for improving EEG wavelet analysis, intended for brain-computer interfaces. The hypothesis is that an optimal wavelet can be approximated by deriving it from underlying components of the EEG. The SNAP was compared to standard wavelets by measuring Support Vector Machine-based EEG classification accuracy when using different wavelets/filters for EEG analysis. When classifying P300 evoked potentials, the error, as a function of the wavelet/filter used, ranged from 6.92% to 11.99%, almost twofold. Classification using the SNAP was more accurate than that with any of the six standard wavelets tested. Similarly, when differentiating between preparation for left- or right-hand movements, classification using the SNAP was more accurate (10.03% error) than for four out of five of the standard wavelets (9.54% to 12.00% error) and internationally competitive (7% error) on the 2001 NIPS competition test set. Phenomena shown only in maps of discriminatory EEG activity may explain why the SNAP appears to have promise for improving EEG wavelet analysis. It represents the initial exploration of a potential family of EEG-specific wavelets. PMID:16285389

  18. Adjuvant potential of resiquimod with inactivated Newcastle disease vaccine and its mechanism of action in chicken.

    PubMed

    Sachan, Swati; Ramakrishnan, Saravanan; Annamalai, Arunsaravanakumar; Sharma, Bal Krishan; Malik, Hina; Saravanan, B C; Jain, Lata; Saxena, Meeta; Kumar, Ajay; Krishnaswamy, Narayanan

    2015-08-26

    Resiquimod (R-848), an imidazoquinoline compound, is a potent synthetic Toll-like receptor (TLR) 7 agonist. Although the solitary adjuvant potential of R-848 is well established in mammals, such reports are not available in avian species hitherto. Hence, the adjuvant potential of R-848 was tested in SPF chicken in this study. Two week old chicks were divided into four groups (10 birds/group) viz., control (A), inactivated Newcastle disease virus (NDV) vaccine prepared from velogenic strain (B), commercial oil adjuvanted inactivated NDV vaccine prepared from lentogenic strain (C) and inactivated NDV vaccine prepared from velogenic strain with R-848 (D). Booster was given two weeks post primary vaccination. Humoral immune response was assessed by haemagglutination inhibition (HI) test and ELISA while the cellular immune response was quantified by lymphocyte transformation test (LTT) and flow cytometry post-vaccination. Entire experiment was repeated twice to check the reproducibility. Highest HI titre was observed in group D at post booster weeks 1 and 2 that corresponds to mean log2 HI titre of 6.4 ± 0.16 and 6.8 ± 0.13, respectively. The response was significantly higher than that of group B or C (P<0.01). LTT stimulation index (P ≤ 0.01) as well as CD4(+) and CD8(+) cells in flow cytometry (P<0.05) were significantly high and maximum in group D. Group D conferred complete protection against virulent NDV challenge, while it was only 80% in group B and C. To understand the effects of R-848, the kinetics of immune response genes in spleen were analyzed using quantitative real-time PCR after R-848 administration (50 μg/bird, i.m. route). Resiquimod significantly up-regulated the expression of IFN-α, IFN-β, IFN-γ, IL-1β, IL-4, iNOS and MHC-II genes (P<0.01). In conclusion, the study demonstrated the adjuvant potential of R-848 when co-administered with inactivated NDV vaccine in SPF chicken which is likely due to the up-regulation of immune response genes

  19. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude

    PubMed Central

    Kaczmarek, Leonard K.; Zakon, Harold H.

    2013-01-01

    We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na+ current (INa) with extremely rapid recovery from inactivation (τrecov = 0.3 ms) allowing complete recovery of Na+ current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K+ current and a Na+-activated K+ current (IKNa), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased IKNa is a function of enhanced Na+ influx. Numerical simulations suggest that changing INa magnitude produces corresponding changes in AP amplitude and that KNa channels increase AP energy efficiency (10–30% less Na+ influx/AP) over model cells with only voltage-gated K+ channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na+ channels and the novel use of KNa channels to maximize AP amplitude at a given Na+ conductance. PMID:23324315

  20. Stochasticity intrinsic to coupled-clock mechanisms underlies beat-to-beat variability of spontaneous action potential firing in sinoatrial node pacemaker cells

    PubMed Central

    Yaniv, Yael; Lyashkov, Alexey E.; Sirenko, Syevda; Okamoto, Yosuke; Guiriba, Toni-Rose; Ziman, Bruce D.; Morrell, Christopher H.; Lakatta, Edward G.

    2014-01-01

    Recent evidence indicates that the spontaneous action potential (AP) of isolated sinoatrial node cells (SANC) is regulated by a system of stochastic mechanisms embodied within two clocks: ryanodine receptors of the “Ca2+ clock” within the sarcoplasmic reticulum, spontaneously activate during diastole and discharge local Ca2+ releases (LCRs) beneath the cell surface membrane; clock crosstalk occurs as LCRs activate an inward Na+/Ca2+ exchanger current (INCX), which together with If and decay of K+ channels prompts the “M clock,” the ensemble of sarcolemmal-electrogenic molecules, to generate APs. Prolongation of the average LCR period accompanies prolongation of the average AP beating interval (BI). Moreover, prolongation of the average AP BI accompanies increased AP BI variability. We hypothesized that both the average AP BI and AP BI variability are dependent upon stochasticity of clock mechanisms reported by the variability of LCR period. We perturbed the coupled-clock system by directly inhibiting the M clock by ivabradine (IVA) or the Ca2+ clock by cyclopiazonic acid (CPA). When either clock is perturbed by IVA (3, 10 and 30μM), which has no direct effect on Ca2+ cycling, or CPA ( 0.5 and 5μM), which has no direct effect on the M clock ion channels, the clock system failed to achieve the basal AP BI and both AP BI and AP BI variability increased. The changes in average LCR period and its variability in response to perturbations of the coupled-clock system were correlated with changes in AP beating interval and AP beating interval variability. We conclude that the stochasticity within the coupled-clock system affects and is affected by the AP BI firing rate and rhythm via modulation of the effectiveness of clock coupling. PMID:25257916

  1. Dipeptidyl Peptidase IV as a Potential Target for Selective Prodrug Activation and Chemotherapeutic Action in Cancers

    PubMed Central

    2015-01-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r2 = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r2 = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI50 = 261 μM) compared to that in SK-MEL-5 cells (GI50 = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting. PMID:25365774

  2. The influence of Savannah River discharge and changing SRS cooling water requirements on the potential entrainment of ichthyoplankton at the SRS Savannah River intakes

    SciTech Connect

    Paller, M.H.

    1992-08-01

    Entrainment (i.e., withdrawal of fish larvae and eggs in cooling water) at the SRS Savannah River intakes is greatest when periods of high river water usage coincide with low river dischargeduring the spawning season. American shad and striped bass are the two species of greatest concern because of their recreational and/or commercial importance and because they produce drifting eggs and larvae vulnerable to entrainment. In the mid-reaches of the Savannah River, American shad and striped bass spawn primarily during April and May. An analysis of Savannah River discharge during April and May 1973--1989 indicated the potential for entrainment of 4--18% of the American shad and striped bass larvae and eggs that drifted past the SRS. This analysis assumed the concurrent operation of L-, K-, and P-Reactors. Additional scenarios investigated were: (1) shutting down L- and P-Reactors, and operating K-Reactor with a recycle cooling tower; and (2) shutting down L- and P-Reactors, eliminating minimum flows to Steel Creek, and operating K-Reactor with a recycle cooling tower. The former scenario reduced potential entrainment to 0.7--3.3%, and the latter scenario reduced potential entrainment to 0.20.8%. Thus, the currently favored scenario of operating K-Reactor with a cooling tower and not operating L- and P-Reactors represents a significant lessening of the impact of SRS operations.

  3. K+ accumulation and K+ conductance inactivation during action potential trains in giant axons of the squid Sepioteuthis.

    PubMed Central

    Inoue, I; Tsutsui, I; Brown, E R

    1997-01-01

    1. During action potential trains in giant axons from the squid Sepioteuthis, decline of the peak level of the undershoot potential was observed. The time course of the decline of the undershoot could be fitted with a three-exponential function with time constants of approximately 25, approximately 400 and approximately 7,000 ms, respectively. 2. When the osmolarity of the external solution was doubled by adding glucose (1.2 M), the fast component of undershoot decline, but not the medium and slow components, was significantly reduced. 3. Under voltage clamp in high osmolarity solutions where K+ accumulation was completely removed, repeated depolarizing pulses at 40 Hz (designed to mimic a train of action potentials) elicited K+ currents whose peak value declined. The decline is consistent with inactivation of the K+ conductance (gK). The decline of gK was fitted by a two-exponential function with time constants of approximately 400 and approximately 7,000 ms, respectively. 4. Interventions designed to modify Schwann cell physiology, such as high frequency stimulation (100 Hz, 2 min), externally applied ouabain (100-500 microM), L-glutamate (100 microM), ACh (100 microM), Co2+ (5mM), Ba2+ (2mM), or removal of external Ca2+ by EGTA, had no significant effects on the fast, medium or slow components of undershoot decline. 5. The results suggest that the fast component of undershoot decline represents K+ accumulation in the space between Schwann cell and axolemma. The medium and slow components are the result of axonal gK inactivation. Schwann cells appear to be involved in K+ clearance only to the extent that they provide an efficient physical pathway for the clearance of K+ by extracellular diffusion. PMID:9147323

  4. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    SciTech Connect

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  5. Control of Postharvest Bacterial Soft Rot by Gamma Irradiation and its Potential Modes of Action

    PubMed Central

    Jeong, Rae-Dong; Chu, Eun-Hee; Park, Duck Hwan; Park, Hae-Jun

    2016-01-01

    Gamma irradiation was evaluated for its in vitro and in vivo antibacterial activity against a postharvest bacterial pathogen, Erwinia carotovora subsp. carotovora (Ecc). Gamma irradiation in a bacteria cell suspension resulted in a dramatic reduction of the viable counts as well as an increase in the amounts of DNA and protein released from the cells. Gamma irradiation showed complete inactivation of Ecc, especially at a dose of 0.6 kGy. In addition, scanning electron microscopy of irradiated cells revealed severe damage on the surface of most bacterial cells. Along with the morphological changes of cells by gamma irradiation, it also affected the membrane integrity in a dose-dependent manner. The mechanisms by which the gamma irradiation decreased the bacterial soft rot can be directly associated with the disruption of the cell membrane of the bacterial pathogen, along with DNA fragmentation, results in dose-dependent cell inactivation. These findings suggest that gamma irradiation has potential as an antibacterial approach to reduce the severity of the soft rot of paprika. PMID:27147935

  6. Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma

    PubMed Central

    Gheeya, Jinesh S.; Chen, Qing-Rong; Benjamin, Christopher D.; Cheuk, Adam T.; Tsang, Patricia; Chung, Joon-Yong; Metaferia, Belhu B.; Badgett, Thomas C.; Johansson, Peter; Wei, Jun S.; Hewitt, Stephen M.

    2009-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite current aggressive therapy, the survival rate for high risk NB remains less than 40%. To identify novel effective chemo-agents against NB, we screened a panel of 96 drugs against two NB cell lines, SK-N-AS and SH-SY5Y. We found 30 compounds that were active against NB cell lines at ≤ 10 µM concentration. More interestingly, 17 compounds are active at ≤ 1 µM concentration, and they act through a wide spectrum of diverse mechanisms such as mitotic inhibition, topoisomerase inhibition, targeting various biological pathways, and unknown mechanisms. The majority of these active compounds also induced caspase 3/7 by more than 2-fold. Of these 17 active compounds against NB cell lines at sub-micromolar concentration, 11 compounds are not currently used to treat NB. Among them, 9 are FDA approved compounds, and 3 agents are undergoing clinical trials for various malignancies. Furthermore, we identified 4 agents active against these NB cell lines that have not yet been tested in the clinical setting. Finally we demonstrated that Cucurbitacin I inhibits neuroblastoma cell growth through inhibition of STAT3 pathway. These drugs thus represent potential novel therapeutic agents for patients with NB, and further validation studies are needed to translate them to the clinic. PMID:19946221

  7. Anthocyanins in obesity-associated thrombogenesis: a review of the potential mechanism of action.

    PubMed

    Thompson, Kiara; Pederick, Wayne; Santhakumar, Abishek Bommannan

    2016-05-18

    Platelet dysfunction, oxidative stress and dyslipidemia are important contributors to pro-thrombotic progression particularly in obese and hyper-cholesterolemic populations. Becoming an increasingly widespread endemic, obesity causes a dysfunction in the metabolic system by initiating endothelial dysfunction; increasing free radical production; lipid peroxidation; platelet hyperactivity and aggregation; thereby accelerating thrombogenesis. In the event of increased free radical generation under pro-thrombotic conditions, antioxidants act as scavengers in reducing physiological oxidative stress; free radical-mediated thrombosis and hemostatic function. Anthocyanin, a subclass of the polyphenol family flavonoids has been shown to exhibit anti-dyslipidemic and anti-thrombotic properties by virtue of its antioxidant activity. Current anti-platelet/coagulant therapeutics target specific receptor pathways to relieve the extent of dysfunction and plaque acceleration in pro-thrombotic individuals. Though effective, they have been associated with high bleeding risk and increased response variability. The following review focuses on the potential role of natural dietary anthocyanins in targeting simultaneous mechanistic pathways in alleviating platelet activation, dyslipidemia, and oxidative stress-associated thrombus acceleration in obese pro-thrombotic populations. PMID:27043127

  8. Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro.

    PubMed

    Boden, S D; McCuaig, K; Hair, G; Racine, M; Titus, L; Wozney, J M; Nanes, M S

    1996-08-01

    Bone morphogenetic proteins (BMPs) induce cartilage and bone differentiation in vivo and promote osteoblast differentiation from calvarial and marrow stromal cell preparations. Functional differences between BMP-2, -4, and -6 are not well understood. Recent investigations find that these three closely related osteoinductive proteins may exert different effects in primary rat calvarial cell cultures, suggesting the possibility of unique functions in vivo. In this study, we use a fetal rat secondary calvarial cell culture system to examine the differential effects of BMP-2, -4, and -6 on early osteoblast differentiation. These cells do not spontaneously differentiate into osteoblasts, as do cells in primary calvarial cultures, but rather require exposure to a differentiation initiator such as glucocorticoid or BMP. We determined that BMP-6 is a 2- to 2.5-fold more potent inducer of osteoblast differentiation than BMP-2 or -4. BMP-6 induced the formation of more and larger bone nodules as well as increased osteocalcin secretion. The effects of all three of these BMPs were potentiated up to 10-fold by cotreatment or pretreatment with the glucocorticoid triamcinolone (Trm). The Trm effects were synergistic with those of BMP-2 or -4, suggesting that this glucocorticoid may increase the cell responsiveness to these BMPs. Finally, BMP-6 did not require either cotreatment or pretreatment with Trm to achieve greater amounts of osteoblast differentiation than seen with BMP-2 or BMP-4 treatment, suggesting that BMP-6 may act at an earlier stage of cell differentiation. PMID:8754767

  9. Control of Postharvest Bacterial Soft Rot by Gamma Irradiation and its Potential Modes of Action.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Park, Duck Hwan; Park, Hae-Jun

    2016-04-01

    Gamma irradiation was evaluated for its in vitro and in vivo antibacterial activity against a postharvest bacterial pathogen, Erwinia carotovora subsp. carotovora (Ecc). Gamma irradiation in a bacteria cell suspension resulted in a dramatic reduction of the viable counts as well as an increase in the amounts of DNA and protein released from the cells. Gamma irradiation showed complete inactivation of Ecc, especially at a dose of 0.6 kGy. In addition, scanning electron microscopy of irradiated cells revealed severe damage on the surface of most bacterial cells. Along with the morphological changes of cells by gamma irradiation, it also affected the membrane integrity in a dose-dependent manner. The mechanisms by which the gamma irradiation decreased the bacterial soft rot can be directly associated with the disruption of the cell membrane of the bacterial pathogen, along with DNA fragmentation, results in dose-dependent cell inactivation. These findings suggest that gamma irradiation has potential as an antibacterial approach to reduce the severity of the soft rot of paprika. PMID:27147935

  10. Next-generation sequencing identifies high frequency of mutations in potentially clinically actionable genes in sebaceous carcinoma.

    PubMed

    Tetzlaff, Michael T; Singh, Rajesh R; Seviour, Elena G; Curry, Jonathan L; Hudgens, Courtney W; Bell, Diana; Wimmer, Daniel A; Ning, Jing; Czerniak, Bogdan A; Zhang, Li; Davies, Michael A; Prieto, Victor G; Broaddus, Russell R; Ram, Prahlad; Luthra, Rajyalakshmi; Esmaeli, Bita

    2016-09-01

    Sebaceous carcinoma (SC) is a rare but aggressive malignancy with frequent recurrence and metastases. Surgery is the mainstay of therapy, but effective systemic therapies are lacking because the molecular alterations driving SC remain poorly understood. To identify these, we performed whole-exome next-generation sequencing of 409 cancer-associated genes on 27 SCs (18 primary/locally recurrent ocular, 5 paired metastatic ocular, and 4 primary extraocular) from 20 patients. In ocular SC, we identified 139 non-synonymous somatic mutations (median/lesion 3; range 0-23). Twenty-five of 139 mutations (18%) occurred in potentially clinically actionable genes in 6 of 16 patients. The most common mutations were mutations in TP53 (n = 9), RB1 (n = 6), PIK3CA (n = 2), PTEN (n = 2), ERBB2 (n = 2), and NF1 (n = 2). TP53 and RB1 mutations were restricted to ocular SC and correlated with aberrant TP53 and RB protein expression. Systematic pathway analyses demonstrated convergence of these mutations to activation of the PI3K signalling cascade, and PI3K pathway activation was confirmed in tumours with PTEN and/or PIK3CA mutations. Considerable inter-tumoural heterogeneity was observed between paired primary and metastatic ocular SCs. In primary extraocular SC, we identified 77 non-synonymous somatic mutations (median/lesion 22.5; range 3-29). This overall higher mutational load was attributed to a microsatellite instability phenotype in three of four patients and somatically acquired mutations in mismatch repair genes in two of four patients. Eighteen of 77 mutations (23%) were in potentially clinically actionable genes in three of four patients, including BTK, FGFR2, PDGFRB, HRAS, and NF1 mutations. Identification of potentially clinically actionable mutations in 9 of 20 SC patients (45%) underscores the importance of next-generation sequencing to expand the spectrum of genotype-matched targeted therapies. Frequent activation of PI3K signalling pathways provides a strong

  11. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis.

    PubMed

    Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah; Villar, Luisa Maria; Reynolds, Richard; Mikol, Daniel

    2016-01-01

    Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial. PMID:26788129

  12. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    PubMed

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods. PMID:16198528

  13. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis

    PubMed Central

    Sellebjerg, Finn; Cadavid, Diego; Steiner, Deborah; Villar, Luisa Maria; Reynolds, Richard; Mikol, Daniel

    2016-01-01

    Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing–remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood–brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial. PMID:26788129

  14. Ribavirin Potentiates Interferon Action by Augmenting Interferon-Stimulated Gene Induction in Hepatitis C Virus Cell Culture Models

    PubMed Central

    Thomas, Emmanuel; Feld, Jordan J.; Li, Qisheng; Hu, Zongyi; Fried, Michael W.; Liang, T. Jake

    2012-01-01

    The combination of pegylated interferon (PEG-IFN) and ribavirin is the standard treatment for chronic hepatitis C. Our recent clinical study suggests that ribavirin augments the induction of interferon-stimulated genes (ISGs) in patients treated for hepatitis C virus (HCV) infection. In order to further characterize the mechanisms of action of ribavirin, we examined the effect of ribavirin treatment on ISG induction in cell culture. In addition, the effect of ribavirin on infectious HCV cell culture systems was studied. Similar to interferon (IFN)-α, ribavirin potently inhibits JFH-1 infection of Huh7.5.1 cells in a dose-dependent manner, which spans the physiological concentration of ribavirin in vivo. Microarray analysis and subsequent quantitative polymerase chain reaction assays demonstrated that ribavirin treatment resulted in the induction of a distinct set of ISGs. These ISGs, including IFN regulatory factors 7 and 9, are known to play an important role in anti-HCV responses. When ribavirin is used in conjunction with IFN-α, induction of specific ISGs is synergistic when compared with either drug applied separately. Direct up-regulation of these antiviral genes by ribavirin is mediated by a novel mechanism different from those associated with IFN signaling and intracellular double-stranded RNA sensing pathways such as RIG-I and MDA5. RNA interference studies excluded the activation of the Toll-like receptor and nuclear factor κB pathways in the action of ribavirin. Conclusion Our study suggests that ribavirin, acting by way of a novel innate mechanism, potentiates the anti-HCV effect of IFN. Understanding the mechanism of action of ribavirin would be valuable in identifying novel antivirals PMID:21254160

  15. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0

  16. Charge transferred in brush discharges

    NASA Astrophysics Data System (ADS)

    Talarek, M.; Kacprzyk, R.

    2015-10-01

    Electrostatic discharges from surfaces of plastic materials can be a source of ignition, when appear in explosive atmospheres. Incendivity of electrostatic discharges can be estimated using the transferred charge test. In the case of brush discharges not all the energy stored at the tested sample is released and the effective surface charge density (or surface potential) crater is observed after the discharge. Simplified model, enabling calculation of a charge transferred during electrostatic brush discharge, was presented. Comparison of the results obtained from the simplified model and from direct measurements of transferred charge are presented in the paper.

  17. HGF-independent Potentiation of EGFR Action by c-Met

    PubMed Central

    Dulak, Austin M.; Gubish, Christopher T.; Stabile, Laura P.; Henry, Cassandra; Siegfried, Jill M.

    2011-01-01

    The c-Met receptor is a potential therapeutic target for non-small cell lung cancer (NSCLC). Signaling interactions between c-Met and the mutant Epidermal Growth Factor Receptor (EGFR) have been studied extensively, but signaling intermediates and biological consequences of lateral signaling to c-Met in EGFR wild-type tumors is minimally understood. Our observations indicate that delayed c-Met activation in NSCLC cell lines is initiated by wild-type EGFR, the receptor most often found in NSCLC tumors. EGFR ligands induce accumulation of activated c-Met which begins at 8 h continues for 48 h. This effect is accompanied by an increase in c-Met expression and phosphorylation of critical c-Met tyrosine residues without activation of MAPK or Akt. Gene transcription is required for delayed c-Met activation; however, phosphorylation of c-Met by EGFR occurs without production of HGF or another secreted factor, supporting a ligand-independent mechanism. Lateral signaling is blocked by two selective c-Met tyrosine kinase inhibitors (TKIs), PF2341066 and SU11274, or with gefitinib, an EGFR TKI, suggesting kinase activity of both receptors is required for this effect. Prolonged c-Src phosphorylation is observed, and c-Src pathway is essential for EGFR to c-Met communication. Pre-treatment with pan-SFK inhibitors, PP2 and dasatinib, abolishes delayed c-Met phosphorylation. A c-Src dominant-negative construct reduces EGF-induced c-Met phosphorylation compared to control, further, confirming a c-Src requirement. Inhibition of c-Met with PF2341066 and siRNA decreases EGF-induced phenotypes of invasion by ~86% and motility by ~81%, suggesting that a novel form of c-Met activation is utilized by EGFR to maximize these biological effects. Combined targeting of c-Met and EGFR leads to increased xenograft anti-tumor activity, demonstrating that inhibition of downstream and lateral signaling from the EGFR-c-Src-c-Met axis might be effective in treatment of NSCLC. PMID:21423210

  18. Single unit action potentials in humans and the effect of seizure activity

    PubMed Central

    Merricks, Edward M.; Smith, Elliot H.; McKhann, Guy M.; Goodman, Robert R.; Bateman, Lisa M.; Emerson, Ronald G.

    2015-01-01

    Spike-sorting algorithms have been used to identify the firing patterns of isolated neurons (‘single units’) from implanted electrode recordings in patients undergoing assessment for epilepsy surgery, but we do not know their potential for providing helpful clinical information. It is important therefore to characterize both the stability of these recordings and also their context. A critical consideration is where the units are located with respect to the focus of the pathology. Recent analyses of neuronal spiking activity, recorded over extended spatial areas using microelectrode arrays, have demonstrated the importance of considering seizure activity in terms of two distinct spatial territories: the ictal core and penumbral territories. The pathological information in these two areas, however, is likely to be very different. We investigated, therefore, whether units could be followed reliably over prolonged periods of times in these two areas, including during seizure epochs. We isolated unit recordings from several hundred neurons from four patients undergoing video-telemetry monitoring for surgical evaluation of focal neocortical epilepsies. Unit stability could last in excess of 40 h, and across multiple seizures. A key finding was that in the penumbra, spike stereotypy was maintained even during the seizure. There was a net tendency towards increased penumbral firing during the seizure, although only a minority of units (10–20%) showed significant changes over the baseline period, and notably, these also included neurons showing significant reductions in firing. In contrast, within the ictal core territories, regions characterized by intense hypersynchronous multi-unit firing, our spike sorting algorithms failed as the units were incorporated into the seizure activity. No spike sorting was possible from that moment until the end of the seizure, but recovery of the spike shape was rapid following seizure termination: some units reappeared within tens of

  19. Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca (2+) -Dependent Mechanisms.

    PubMed

    Yao, Li-Hua; Yu, Hui-Min; Xiong, Qiu-Ping; Sun, Wei; Xu, Yan-Liang; Meng, Wei; Li, Yu-Ping; Liu, Xin-Ping; Yuan, Chun-Hua

    2015-01-01

    Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism. PMID:26078886

  20. [Nipple discharge].

    PubMed

    Deodato, G; Consoli, A; Riggi, M; Longo, G; Finocchiaro, G B

    1981-02-01

    The Authors examine the various types of breast discharge concentrating in particular on the secretions due to inherent pathology. After having studied origin, they concentrate on the diagnostic significance and the limits of exfoliative cytology and contrast mammography. The Authors conclude by presenting an original protocol of treatment of the afflicted breast illustrating in addition, the various surgical techniques proposed for the cure of the sicknesses of intramammary origin that cause abnormal discharge. PMID:7261200

  1. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    PubMed

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-01

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. PMID:27021025

  2. LINEAR RELATIONS BETWEEN STIMULUS AMPLITUDES AND AMPLITUDES OF RETINAL ACTION POTENTIALS FROM THE EYE OF THE WOLF SPIDER.

    PubMed

    DEVOE, R D

    1963-09-01

    Incremental photic stimuli have been used to elicit small amplitude retinal action potentials from light-adapted ocelli of the wolf spider, Lycosa baltimoriana (Keyserling) in order to see whether or not the amplitudes of these potentials are linearly related to the stimulus amplitudes. Sine wave variations of light intensity around a mean elicit sine wave variations in potential which contain inappreciable harmonics of the stimulus frequency and whose amplitudes are linearly related to the stimulus amplitudes. Likewise, the responses to the first two periodic Fourier components of incremental rectangular wave stimuli of variable duty cycle are directly proportional to the amplitudes of these components and have phases dependent only on the frequencies and phases of these components. Thirdly, a linear transfer function can be found which describes the amplitudes and phases of responses recorded at different frequencies of sine wave stimulation and this transfer function is sufficient to predict the responses to incremental step stimuli. Finally, it is shown that flash response amplitudes are linearly related to incremental flash intensities at all levels of adaptation. The relations of these linear responses to non-linear responses and to physiological mechanisms of the eye are discussed. PMID:14060442

  3. Frequency Analysis of Atrial Action Potential Alternans: A Sensitive Clinical Index of Individual Propensity to Atrial Fibrillation

    PubMed Central

    Lalani, Gautam G.; Schricker, Amir A.; Clopton, Paul; Krummen, David E.; Narayan, Sanjiv M.

    2013-01-01

    Background Few clinical indices identify the propensity of patients to atrial fibrillation (AF) when not in AF. Repolarization alternans has been shown to indicate AF vulnerability, but is limited in its sensitivity to detect changes in action potential duration (APD), that may be subtle. We hypothesized that spectral analysis would be a more sensitive and robust marker of action potential (AP) alternans and thus a better clinical index of individual propensity to AF than APD alternans. Methods and Results In 31 patients (12 persistent AF, 15 paroxysmal AF, 4 controls with no AF), we recorded left (n=27) and right (n=6) atrial monophasic APs during incremental pacing from cycle length (CL) 500 ms (120 bpm) to AF onset. Alternans was measured by APD and spectral analysis. At baseline pacing [median CL 500 (IQR 500,500) ms], APD alternans was detected in only 7/27 AF patients (no controls), while spectral AP alternans was detected in 18/27 AF patients (no controls; p=0.003); AP alternans was more prevalent in persistent than paroxysmal AF, and absent in controls (p=0.018 APD, p=0.042 spectral). Spectral AP alternans magnitude at baseline was highest in persistent AF, with modest rate-dependent amplification, then in paroxysmal AF, with marked rate-dependence, and was undetectable in controls until just before induced AF. Conclusions Spectral AP alternans near baseline rates can identify patients with, versus those without, clinical histories and pathophysiological substrates for AF. Future studies should examine whether the presence of spectral AP alternans during sinus rhythm may obviate the need to actually demonstrate AF, such as on ambulatory ECG monitoring. PMID:23995250

  4. Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of IP3-mediated calcium release.

    PubMed

    Nausch, Bernhard; Heppner, Thomas J; Nelson, Mark T

    2010-09-01

    Nerve-released ACh is the main stimulus for contraction of urinary bladder smooth muscle (UBSM). Here, the mechanisms by which ACh contracts UBSM are explored by determining Ca(2+) and electrical signals induced by nerve-released ACh. Photolysis of caged inositol 1,4,5-trisphosphate (IP(3)) evoked Ca(2+) release from the sarcoplasmic reticulum. Electrical field stimulation (20 Hz) induced Ca(2+) waves within the smooth muscle that were present only during stimulus application. Ca(2+) waves were blocked by inhibition of muscarinic ACh receptors (mAChRs) with atropine and depletion of sarcoplasmic reticulum Ca(2+) stores with cyclopiazonic acid (CPA), and therefore likely reflect activation of IP(3) receptors (IP(3)Rs). Electrical field stimulation also increased excitability to induce action potentials (APs) that were accompanied by Ca(2+) flashes, reflecting Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCCs) during the action potential. The evoked Ca(2+) flashes and APs occurred as a burst with a lag time of approximately 1.5 s after onset of stimulation. They were not inhibited by blocking IP(3)-mediated Ca(2+) waves, but by blockers of mAChRs (atropine) and VDCCs (diltiazem). Nerve-evoked contractions of UBSM strips were greatly reduced by blocking VDCCs, but not by preventing IP(3)-mediated Ca(2+) signaling with cyclopiazonic acid or inhibition of PLC with U73122. These results indicate that ACh released from nerve varicosities induces IP(3)-mediated Ca(2+) waves during stimulation; but contrary to expectations, these signals do not appear to participate in contraction. In addition, our data provide compelling evidence that UBSM contractions evoked by nerve-released ACh depend on increased excitability and the resultant Ca(2+) entry through VDCCs during APs. PMID:20573989

  5. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate

    PubMed Central

    Child, Nicholas; Hanson, Ben; Bishop, Martin; Rinaldi, Christopher A; Bostock, Julian; Western, David; Cooklin, Michael; O’Neil, Mark; Wright, Matthew; Razavi, Reza; Gill, Jaswinder; Taggart, Peter

    2014-01-01

    Background Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. Methods and Results Activation recovery intervals (ARI) measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady state pacing while subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Haemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (p=0.001). APD decreased during the stressful parts of the film clip, eg for global RV ARI at end of film clip 193.8ms (SD 14) vs 198.0ms (SD13) during the matched breathing control (end film LV 199.8ms (SD16) vs control 201.6ms (SD15), p=0.004. Respiration rate increased during the stressful part of the film clip (by 2 breaths/minute), and was well matched in the respective control period without any haemodynamic or ARI changes. Conclusions Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular action potential duration in conscious humans. The effect of mental challenge on APD was not secondary to emotionally-induced altered respiration or heart rate. PMID:24833641

  6. The Effects of Propofol on Local Field Potential Spectra, Action Potential Firing Rate, and Their Temporal Relationship in Humans and Felines

    PubMed Central

    Hanrahan, Sara J.; Greger, Bradley; Parker, Rebecca A.; Ogura, Takahiro; Obara, Shinju; Egan, Talmage D.; House, Paul A.

    2013-01-01

    Propofol is an intravenous sedative hypnotic, which, acting as a GABAA agonist, results in neocortical inhibition. While propofol has been well studied at the molecular and clinical level, less is known about the effects of propofol at the level of individual neurons and local neocortical networks. We used Utah Electrode Arrays (UEAs) to investigate the effects of propofol anesthesia on action potentials (APs) and local field potentials (LFPs). UEAs were implanted into the neocortex of two humans and three felines. The two human patients and one feline received propofol by bolus injection, while the other two felines received target-controlled infusions. We examined the changes in LFP power spectra and AP firing at different levels of anesthesia. Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, and the generation of large-amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol. The probability that an AP would fire at this local minimum of the LFP increased with propofol administration. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased and the AP–LFP relationship became more predictable firing rate encoding capacity is impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness. PMID:23576977

  7. Auditory steady-state evoked potentials vs. compound action potentials for the measurement of suppression tuning curves in the sedated dog puppy.

    PubMed

    Markessis, Emily; Poncelet, Luc; Colin, Cécile; Hoonhorst, Ingrid; Collet, Grégory; Deltenre, Paul; Moore, Brian C J

    2010-06-01

    Auditory steady-state evoked potential (ASSEP) tuning curves were compared to compound action potential (CAP) tuning curves, both measured at 2 Hz, using sedated beagle puppies. The effect of two types of masker (narrowband noise and sinusoidal) on the tuning curve parameters was assessed. Whatever the masker type, CAP tuning curve parameters were qualitatively and quantitatively similar to the ASSEP ones, with a similar inter-subject variability, but with a greater incidence of upward tip displacement. Whatever the procedure, sinusoidal maskers produced sharper tuning curves than narrow-band maskers. Although these differences are not likely to have significant implications for clinical work, from a fundamental point of view, their origin requires further investigations. The same amount of time was needed to record a CAP and an ASSEP 13-point tuning curve. The data further validate the ASSEP technique, which has the advantages of having a smaller tendency to produce upward tip shifts than the CAP technique. Moreover, being non invasive, ASSEP tuning curves can be easily repeated over time in the same subject for clinical and research purposes. PMID:20482293

  8. Changes in cochlear responses in guinea pig with changes in perilymphatic K+. Part I: summating potentials, compound action potentials and DPOAEs.

    PubMed

    Marcon, Simon; Patuzzi, Robert

    2008-03-01

    We have measured the effects of changing perilymphatic K+ by perfusing scala tympani in guinea pigs with salt solutions high or low in K+, while monitoring the distortion product otoacoustic emissions (DPOAEs) in the ear canal (a measure of mechanical vibration of the organ of Corti), the summating potential (SP) evoked by high-frequency tone-bursts (taken to be a measure of pre-synaptic electrical activity of the inner hair cells) and the compound action potential (CAP) of the auditory nerve (taken to be a measure of post-synaptic neural activity). We have attempted to investigate the osmotic effects of our perfusates by comparison with simple hyperosmotic sucrose perfusates and iso-osmotic versions of perfusates, and for the effects of changes in other ions (e.g. Na+ and Cl-) by keeping these constant in some perfusates while elevating K+. We have found that changing the K+ concentration over the range 0-30mM elevated the SP and CAP thresholds almost equally in normal animals, and not at all in animals devoid of outer hair cells (OHCs), showing that OHCs are sensitive to the perfusates we have used, but the inner hair cells (IHCs) and the type I afferent dendrites are not, presumably because IHCs are shielded from perilymph by supporting cells, and the membranes of the afferent dendrite membranes exposed directly to our perfusates are dominated by Cl(-) permeability, rather than by K+ permeability. This view is supported by experiments in which the perilymphatic Cl(-) concentration was reduced, producing a large elevation in CAP threshold, but a much smaller elevation of SP threshold, suggesting disruption of action potential initiation. The view that threshold elevations with changes in perilymphatic K+ are due almost solely to a disruption of OHC function and a consequent change in the mechanical sensitivity of the organ of Corti was supported by measurements of amplitude of the 2f1-f2 distortion product otoacoustic emission. During elevations in K+, DPOAEs

  9. [Electrophysiologic analysis of the lumbosacral radiculopathy using nerve root conduction velocity (NRCV) and cauda equina action potentials (CEAP)].

    PubMed

    Kamitani, K; Baba, H; Shimada, T; Chiba, H

    1993-07-01

    Nerve root conduction velocity (NRCV) and cauda equina action potential (CEAP) have been measured to assess the severity of lumbosacral radiculopathy, the level-specific diagnosis of the symptomatic roots, and to predict the outcome. This study included 71 patients (40 males, 31 females, average age of 54 years at the time of surgery) who underwent decompressive surgery for lumbar radiculopathy. The NRCV and CEAP were directly measured during the operation. The NRCV decreased significantly with progression of radicular symptoms. The NRCV showed a marked reduction in the nerve roots of the patients with a two years or longer history of radicular symptoms; or those with compression of the nerve roots on the imaging examinations; or nerve roots that were considered to have been subjected to persistent compression over a prolonged period with severe inflammation and adhesions. Multivariative analyses suggested that the NRCV correlated closely to the postoperative neurologic recovery, and the outcome of the lumbosacral radiculopathy could be predicted to some extent by measurements of NRCV. The level-specific diagnosis of the radiculopathy could be determined when the CEAP showed a more than 30% left-right potentials difference. PMID:8409633

  10. On-Chip Multichannel Action Potential Recording System for Electrical Measurement of Single Neurites of Neuronal Network

    NASA Astrophysics Data System (ADS)

    Suzuki, Ikurou; Hattori, Akihiro; Yasuda, Kenji

    2007-11-01

    We have developed a multielectrode array recording system for single-neurite-firing measurement using an artificially constructed neuronal network on a chip, which has a 10 μm diameter array with electrodes spaced at 50 μm, for noninvasive 64-channel 100 kHz multirecording and the stimulation of a plurality of neurites extending from a single neuron. To improve the signal/noise ratio, the ground plane was set on the multi-electrode-array plane and platinum black was set on each of the 10 μm electrodes. Using this system, we performed a multisite recording of neurites of a single neuron of a rat hippocampal network in cases of both spontaneous firing and evoked responses to electrical stimulations, and estimated the velocity of action potential propagation among neurites of a single neuron from six recording sites. This demonstrated the potential use of our low-noise chip and our high-speed measurement system for the analysis of neuronal network activities at the single-neuron level.

  11. Effects of calcium channel antagonists on action potential conduction and transmitter release in the guinea-pig vas deferens.

    PubMed Central

    Beattie, D. T.; Cunnane, T. C.; Muir, T. C.

    1986-01-01

    The effects of the Ca2+ channel antagonists amlodipine, cobalt, diltiazem, nifedipine and verapamil and the local anaesthetic lignocaine were investigated on action potential conduction in and on evoked transmitter release from sympathetic nerves in the guinea-pig isolated vas deferens. Transmitter release was investigated by measurement of evoked (trains of pulses at 1 and 2 Hz, 0.1-0.5 ms supramaximal voltage) excitatory junction potentials (e.j.ps) using microelectrodes; tension was recorded simultaneously; tritium [3H] overflow from vasa preincubated (37 degrees C, 30 min) in Krebs solution containing either [3H]-noradrenaline (NA, 25 microCi ml-1, 2 X 10(-6) M NA) or [3H]-adenosine (50 microCi ml-1, 1 X 10(-6) M adenosine). Amlodipine (0.5-2 X 10(-4) M), verapamil (0.5-2 X 10(-4) M), diltiazem (1-8 X 10(-4) M), lignocaine (0.1-2 X 10(-3) M) and cobalt (2-6 X 10(-2) M) in descending order of potency, but not nifedipine (1-5 X 10(-3) M), increased the latency and inhibited, then abolished, the amplitude and number of action potentials in a concentration-dependent manner. Amlodipine (0.5-1 X 10(-4) M), verapamil (1-2 X 10(-4) M), diltiazem (1-5 X 10(-4) M) and cobalt (1 X 10(-3) M), in descending order of potency, but not nifedipine (5 X 10(-4) M), inhibited then abolished evoked e.j.ps in a concentration-dependent manner. Cobalt inhibited e.j.ps at a lower concentration than that (2-6 X 10(-2) M) required to block action potential conduction. In unstimulated tissues, the resting [3H] overflow following preincubation with [3H]-NA consisted largely of 4-hydroxy 3-methoxymandelic acid (VMA), 4-hydroxy 3-methoxy phenylglycol (MOPEG), 3,4 dihydroxyphenylglycol (DOPEG) and NA; stimulated tissues (300 pulses at 20 Hz, 0.5 ms supramaximal voltage) released mainly NA. Verapamil (0.1-1 X 10(-4) M), amlodipine (0.05-1 X 10(-4) M) and nifedipine (1-5 X 10(-4) M), but not cobalt (2 X 10(-3) M), increased, significantly, the resting overflow of 3H comprising mainly DOPEG

  12. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues

    PubMed Central

    Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.

    2013-01-01

    Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly

  13. Delineating the discharge zone and potential natural attenuation of a chlorinated solvent plume to a gaining lowland river: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Weatherill, J. J.; Krause, S.; Voyce, K. J.

    2012-04-01

    Chlorinated aliphatic hydrocarbons (CAHs), such as trichloroethene (TCE), are often recalcitrant groundwater pollutants which can form extensive dissolved plumes with the potential to impact on the quality of baseflow to rivers. There is a growing need to evaluate the risk to surface water posed by migrating plumes and the intrinsic potential for natural attenuation along contaminant flow paths through the groundwater/surface water interface (GSI). This study investigates the potential discharge of a poorly defined CAH plume to an accreting section of the River Tern (Shropshire, UK). Groundwater sampling in the area has revealed the presence of TCE (with minor chloroform and carbon tetrachloride) with maximum concentrations discovered at depths of up to 80 m in a number of deep boreholes in an unconfined sandstone aquifer hydraulically connected to the river. We aim to develop a conceptual understanding of spatial patterns of plume discharge at sub-catchment to sediment-scale and assess the potential significance of biogeochemical transformation in the river bed and riparian sediments of a baseflow-dominated lowland river. Concentrations of dissolved CAHs (including the anaerobic metabolites of TCE) were monitored in a reach-scale longitudinal channel network of liquid-liquid passive diffusion samplers, placed in direct contact with the top 10 cm of river bed sediment. Samplers comprised distilled water-filled glass vials capped by a thin (50 μm) film of commercially available LDPE tubing. A long integration time (33 days) was selected for sampler equilibration with in-situ pore water concentrations. Results provided a plan-view reconnaissance survey of TCE distribution in the river bed and indicated tentative core and fringe zones. Spatial connectivity between ground and surface water was mapped by means of an in-situ fibre-optic distributed temperature sensor system deployed in the uppermost 10 cm of sediment spanning the investigated reach. To determine changes

  14. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  15. Voltage-gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels.

    PubMed

    Telinius, Niklas; Majgaard, Jens; Kim, Sukhan; Katballe, Niels; Pahle, Einar; Nielsen, Jørn; Hjortdal, Vibeke; Aalkjaer, Christian; Boedtkjer, Donna Briggs

    2015-07-15

    Voltage-gated sodium channels (VGSC) play a key role for initiating action potentials (AP) in excitable cells. VGSC in human lymphatic vessels have not been investigated. In the present study, we report the electrical activity and APs of small human lymphatic collecting vessels, as well as mRNA expression and function of VGSC in small and large human lymphatic vessels. The VGSC blocker TTX inhibited spontaneous contractions in six of 10 spontaneously active vessels, whereas ranolazine, which has a narrower VGSC blocking profile, had no influence on spontaneous activity. TTX did not affect noradrenaline-induced contractions. The VGSC opener veratridine induced contractions in a concentration-dependent manner (0.1-30 μm) eliciting a stable tonic contraction and membrane depolarization to -18 ± 0.6 mV. Veratridine-induced depolarizations and contractions were reversed ∼80% by TTX, and were dependent on Ca(2+) influx via L-type calcium channels and the sodium-calcium exchanger in reverse mode. Molecular analysis determined NaV 1.3 to be the predominantly expressed VGSC isoform. Electrophysiology of mesenteric lymphatics determined the resting membrane potential to be -45 ± 1.7 mV. Spontaneous APs were preceded by a slow depolarization of 5.3 ± 0.6 mV after which a spike was elicited that almost completely repolarized before immediately depolarizing again to plateau. Vessels transiently hyperpolarized prior to returning to the resting membrane potential. TTX application blocked APs. We have shown that VGSC are necessary for initiating and maintaining APs and spontaneous contractions in human lymphatic vessels and our data suggest the main contribution from comes NaV 1.3. We have also shown that activation of these channels augments the contractile activity of the vessels. PMID:25969124

  16. Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents

    PubMed Central

    Ooi, N.; Eady, E. A.; Cove, J. H.; O'Neill, A. J.

    2015-01-01

    Objectives To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Methods Antistaphylococcal activity was evaluated by broth microdilution and by time–kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. Results All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25–128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4–256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. Conclusions In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. PMID:25368206

  17. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    PubMed

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes. PMID:26926152

  18. Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology.

    PubMed

    Scheel, Olaf; Frech, Stefanie; Amuzescu, Bogdan; Eisfeld, Jörg; Lin, Kun-Han; Knott, Thomas

    2014-10-01

    Recent progress in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) research led to high-purity preparations of human cardiomyocytes (CMs) differentiated from these two sources-suitable for tissue regeneration, in vitro models of disease, and cardiac safety pharmacology screening. We performed a detailed characterization of the effects of nifedipine, cisapride, and tetrodotoxin (TTX) on Cor.4U(®) human iPSC-CM, using automated whole-cell patch-clamp recordings with the CytoPatch™ 2 equipment, within a complex assay combining multiple voltage-clamp and current-clamp protocols in a well-defined sequence, and quantitative analysis of several action potential (AP) parameters. We retrieved three electrical phenotypes based on AP shape: ventricular, atrial/nodal, and S-type (with ventricular-like depolarization and lack of plateau). To suppress spontaneous firing, present in many cells, we injected continuously faint hyperpolarizing currents of -10 or -20 pA. We defined quality criteria (both seal and membrane resistance over 1 GΩ), and focused our study on cells with ventricular-like AP. Nifedipine induced marked decreases in AP duration (APD): APD90 (49.8% and 40.8% of control values at 1 and 10 μM, respectively), APD50 (16.1% and 12%); cisapride 0.1 μM increased APD90 to 176.2%; and tetrodotoxin 10 μM decreased maximum slope of phase to 33.3% of control, peak depolarization potential to 76.3% of control, and shortened APD90 on average to 80.4%. These results prove feasibility of automated voltage- and current-clamp recordings on human iPSC-CM and their potential use for in-depth drug evaluation and proarrhythmic liability assessment, as well as for diagnosis and pharmacology tests for cardiac channelopathy patients. PMID:25353059

  19. Shoulder surgery - discharge

    MedlinePlus

    SLAP repair - discharge; Acromioplasty - discharge; Bankart - discharge; Shoulder repair - discharge; Shoulder arthroscopy - discharge ... You had shoulder surgery to repair the tissues inside or around your shoulder joint. The surgeon may have used a tiny ...

  20. Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials.

    PubMed

    Lamborghini, J E; Revenaugh, M; Spitzer, N C

    1979-02-15

    We have examined the ultrastructure of the cell body of a vertebrate spinal neuron, the Rohon-Beard cell of Xenopus laevis, at four stages during its development (Nieuwkoop and Faber stages: 22, 29/30, 37/38 and 42). At this time it has attained its electrical excitability and the action potential mechanism in the cell body is maturing through a sequence of stages in which the inward current is carried by Ca++ (stages 20-25), later by Ca++ and Na+ (stages 25-40), and finally by Na+ (stages 40-51) (Spitzer and Baccaglini, '76; Baccaglini and Spitzer, '77). There is a change in the abundance and distribution of the organelles in the perikaryon during this period, characteristic of other developing neurons. Mitochondria and Golgi apparatus become localized progressively more in the interior of the cells, and rough endoplasmic reticulum progressively more to the periphery where it often appears in orderly tiers parallel to the plasma membrane. The mitochondria contain dense intramitochondrial granules which are known in other cells to contain concentrations of divalent cations. The number of granules declines over the course of the developmental period studied. The presence of the intramitochondrial granules was examined quantitatively because electrophysiological data indicate that the amount of Ca++ entering the cells in early stages should raise the internal Ca++ concentration by several orders of magnitude, and that Ca++ is rapidly sequestered (Baccaglini and Spitzer, '77). A minimum of 200 mitochondrial profiles from at least four Rohon-Beard cells were scored for the presence of dense intramitochondrial granules at each stage studied. In stage 22 Rohon-Beard cells 75 +/- 5% (mean +/- SD, n = 4) of the mitochondrial profiles scored contained granules; in stage 29/30, 56 +/- 10% (n = 7); in stage 37/38, 3 +/- 3% (n = 5); and in stage 42, 0.5 +/- 0.25% (n = 4). Therefore, dense intramitochondrial granules, an indication of calcium accumulation in mitochondria

  1. Total colectomy or proctocolectomy - discharge

    MedlinePlus

    ... colectomy or proctolectomy -discharge; Restorative proctocolectomy - discharge; Ileal-anal resection - discharge; Ileal-anal pouch - discharge; J-pouch - discharge; S-pouch - discharge; Pelvic ...

  2. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness.

    PubMed

    Breese, George R; Knapp, Darin J; Moy, Sheryl S

    2002-06-01

    NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia. PMID:12204191

  3. Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range

    SciTech Connect

    McLean, M.J.; Holcomb, R.R.; Wamil, A.W.; Pickett, J.D.; Cavopol, A.V.

    1995-05-01

    To characterize the inhibitory effect of a static magnetic field, action potentials (AP) were elicited by intracellular application of 1 ms depolarizing current pulses of constant amplitude to the somata of adult mouse dorsal root ganglion neurons in monolayer dissociated cell culture. During the control period, < 5% of stimuli failed to elicit AP. During exposure to an {approximately}11 mT static magnetic field at the cell position produced by an array of four permanent center-charged neodymium magnets of alternating polarity (MAG-4A), 66% of stimuli failed to elicit AP. The number of failures was maximal after about 200--250 s in the field and returned gradually to baseline over 400--600 s. A direct or indirect effect on the conformation of AP generating sodium channels could account for these results because (1) failure was preceded often by reduction of maximal rate of rise, an indirect measure of sodium current; (2) recovery was significantly prolonged in more than one-half of neurons that were not stimulated during exposure to the MAG-4A field; and (3) resting membrane potential, input resistance, and chronaxie were unaffected by the field. The effect was diminished or prevented by moving the MAG-4A array along the X or Z axis away from the neuron under study and by increasing the distance between magnets in the XY plane. Reduction of AP firing during exposure to the {approximately}0.1 mT field produced by a MAG-4A array of micromagnets was about the same as that produced by a MAG-4A array of the large magnets above. The {approximately}28 mT field produced at cell position by two magnets of alternating polarity and the {approximately}88 mT field produced by a single magnet had no significant effect on AP firing. These findings suggest that field strength alone cannot account for AP blockade.

  4. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures

    PubMed Central

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-01-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (−)-linalool, (+)-borneol, (−)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2–5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides >> hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol–water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation. PMID:26038703

  5. Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations.

    PubMed

    Morotti, Stefano; Grandi, Eleonora; Summa, Aurora; Ginsburg, Kenneth S; Bers, Donald M

    2012-09-15

    Sarcoplasmic reticulum (SR) Ca(2+) release mediates excitation–contraction coupling (ECC) in cardiac myocytes. It is triggered upon membrane depolarization by entry of Ca(2+) via L-type Ca(2+) channels (LTCCs), which undergo both voltage- and Ca(2+)-dependent inactivation (VDI and CDI, respectively). We developed improved models of L-type Ca(2+) current and SR Ca(2+) release within the framework of the Shannon-Bers rabbit ventricular action potential (AP) model. The formulation of SR Ca(2+) release was modified to reproduce high ECC gain at negative membrane voltages. An existing LTCC model was extended to reflect more faithfully contributions of CDI and VDI to total inactivation. Ba(2+) current inactivation included an ion-dependent component (albeit small compared with CDI), in addition to pure VDI. Under physiological conditions (during an AP) LTCC inactivates predominantly via CDI, which is controlled mostly by SR Ca(2+) release during the initial AP phase, but by Ca(2+) through LTCCs for the remaining part. Simulations of decreased CDI or K(+) channel block predicted the occurrence of early and delayed after depolarizations. Our model accurately describes ECC and allows dissection of the relative contributions of different Ca(2+) sources to total CDI, and the relative roles of CDI and VDI, during normal and abnormal repolarization. PMID:22586219

  6. Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration.

    PubMed

    Greenstein, J L; Wu, R; Po, S; Tomaselli, G F; Winslow, R L

    2000-11-24

    The Kv4.3-encoded current (I:(Kv4.3)) has been identified as the major component of the voltage-dependent Ca(2+)-independent transient outward current (I:(to1)) in human and canine ventricular cells. Experimental evidence supports a correlation between I:(to1) density and prominence of the phase 1 notch; however, the role of I:(to1) in modulating action potential duration (APD) remains unclear. To help resolve this role, Markov state models of the human and canine Kv4.3- and Kv1.4-encoded currents at 35 degrees C are developed on the basis of experimental measurements. A model of canine I:(to1) is formulated as the combination of these Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. PMID:11090548

  7. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade

    PubMed Central

    Gainey, Melanie A.; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G.

    2015-01-01

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up. PMID:26109571

  8. Liénard-type models for the simulation of the action potential of cardiac nodal cells

    NASA Astrophysics Data System (ADS)

    Podziemski, P.; Żebrowski, J. J.

    2013-10-01

    Existing models of cardiac cells which include multi-variable cardiac transmembrane current are too complex to simulate the long time dynamical properties of the heart rhythm. The large number of parameters that need to be defined and set for such models make them not only cumbersome to use but also require a large computing power. Consequently, the application of such models for the bedside analysis