Sample records for action potential estimates

  1. GABAergic excitation of spider mechanoreceptors increases information capacity by increasing entropy rather than decreasing jitter.

    PubMed

    Pfeiffer, Keram; French, Andrew S

    2009-09-02

    Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.

  2. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Estimating the National Carbon Abatement Potential of City Policies: A Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Heeter, Jenny; Keyser, David

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy City Energy Profile tool. The analysismore » develops a national estimate of the carbon abatement potential of realizable city actions in six specific policy areas encompassing the most commonly implemented city actions. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a 'moderate abatement scenario' by 2035 and 480 MMT CO2/year in a 'high abatement scenario' by 2035 through these common actions typically within a city's control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. In the context of U.S. climate commitments under the 21st session of the Conference of the Parties (COP21), the estimated national abatement potential of the city actions analyzed in this report equates to about 15%-35% of the remaining carbon abatement necessary to achieve the U.S. COP21 target. Additional city actions outside the scope of this report, such as community choice aggregation (city-level purchasing of renewable energy), zero energy districts, and multi-level governance strategies, could significantly augment the carbon abatement contributions of city actions toward national climate targets. The results suggest that cities may play a pivotal role in progress toward national climate targets. In addition to providing carbon and emissions estimates, this report estimates the national net economic impacts of policies for which cost and benefit data are available. Impact metrics include employment, worker earnings, and gross domestic product (GDP). For the policy areas studied, the economic analysis demonstrates that city carbon abatement may be achieved with only minimal and generally slightly positive economic impacts. Employment impacts range from 0.04% to 0.13% of U.S, employment during implementation and zero to 0.1% thereafter. GDP estimates show net impacts of 0.02% to 0.07% of GDP during implementation and impacts from -0.02% to zero thereafter. This report quantitatively demonstrates the material impact of a limited set of local policy areas on national carbon abatement potential. The magnitude of estimated carbon reductions from city policies, 3%-7% of national emissions by 2035, suggests an important role for city-led actions in reaching U.S. climate goals. Multi-level governance at the city, state, and national levels could augment the carbon abatement potential of city actions and make cities a key component of long-term U.S. climate strategies.« less

  4. Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials

    PubMed Central

    Lichtenhan, Jeffery T.; Chertoff, Mark E.

    2008-01-01

    An analytic compound action potential (CAP) obtained by convolving functional representations of the post-stimulus time histogram summed across auditory nerve neurons [P(t)] and a single neuron action potential [U(t)] was fit to human CAPs. The analytic CAP fit to pre- and postnoise-induced temporary hearing threshold shift (TTS) estimated in vivoP(t) and U(t) and the number of neurons contributing to the CAPs (N). The width of P(t) decreased with increasing signal level and was wider at the lowest signal level following noise exposure. P(t) latency decreased with increasing signal level and was shorter at all signal levels following noise exposure. The damping and oscillatory frequency of U(t) increased with signal level. For subjects with large amounts of TTS, U(t) had greater damping than before noise exposure particularly at low signal levels. Additionally, U(t) oscillation was lower in frequency at all click intensities following noise exposure. N increased with signal level and was smaller after noise exposure at the lowest signal level. Collectively these findings indicate that neurons contributing to the CAP during TTS are fewer in number, shorter in latency, and poorer in synchrony than before noise exposure. Moreover, estimates of single neuron action potentials may decay more rapidly and have a lower oscillatory frequency during TTS. PMID:18397026

  5. Effect of age and gender on the number of motor units in healthy subjects estimated by the multipoint incremental MUNE method.

    PubMed

    Gawel, Malgorzata; Kostera-Pruszczyk, Anna

    2014-06-01

    Motor unit number estimation (MUNE) is a tool for estimating the number of motor units. The aim was to evaluate the multipoint incremental MUNE method in a healthy population, to analyze whether aging, gender, and the dominant hand side influence the motor unit number, and to assess reproducibility of MUNE with the Shefner modification. We studied 60 volunteers (mean age, 47 ± 17.7 years) in four groups aged 18 to 30, 31 to 45, 46 to 60, and above 60 years. Motor unit number estimation was calculated in the abductor pollicis brevis (APB) and the abductor digiti minimi (ADM) by dividing the single motor unit action potential amplitude into the maximal compound motor action potential amplitude. Test-retest variability was 7%. The mean value of MUNE for APB was 133.2 ± 43 and for ADM was 157.1 ± 39.4. Significant differences in MUNE results were found between groups aged 18 to 30 and 60 years or older and between groups aged 31 to 45 and 60 years or older. Motor unit number estimation results correlated negatively with the age of subjects for both APB and ADM. Single motor unit action potential, reflecting the size of motor unit, increased with the age of subjects only in APB. Compound motor action potential amplitude correlated negatively with the age of subjects in APB and ADM. Significant correlations were seen between MUNE in APB or ADM and compound motor action potential amplitude in these muscles and the age of female subjects. A similar relationship was not found in males. Multipoint incremental MUNE method with the Shefner modification is a noninvasive, easy to perform method with high reproducibility. The loss of motor neurons because of aging could be confirmed by our MUNE study and seems to be more pronounced in females.

  6. Updated energy budgets for neural computation in the neocortex and cerebellum

    PubMed Central

    Howarth, Clare; Gleeson, Padraig; Attwell, David

    2012-01-01

    The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use. PMID:22434069

  7. Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials.

    PubMed

    Rodríguez, Javier; Navallas, Javier; Gila, Luis; Dimitrova, Nonna Alexandrovna; Malanda, Armando

    2011-04-30

    In situ recording of the intracellular action potential (IAP) of human muscle fibres is not yet possible, and consequently, knowledge concerning certain IAP characteristics is still limited. According to the core-conductor theory, close to a fibre, a single fibre action potential (SFAP) can be assumed to be proportional to the IAP second derivative. Thus, we might expect to be able to derive some characteristics of the IAP, such as the duration of its spike, from the SFAP waveform. However, SFAP properties not only depend on the IAP shape but also on the fibre-to-electrode (radial) distance and other physiological properties of the fibre. In this paper we, first, propose an SFAP parameter (the negative phase duration, NPD) appropriate for estimating the IAP spike duration and, second, show that this parameter is largely independent of changes in radial distance and muscle fibre propagation velocity. Estimation of the IAP spike duration from a direct measurement taken from the SFAP waveform provides a possible way to enhance the accuracy of SFAP models. Because IAP spike duration is known to be sensitive to the effects of fatigue and calcium accumulation, the proposed SFAP parameter, the NPD, has potential value in electrodiagnosis and as an indicator of IAP profile changes due to peripheral fatigue. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  9. Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials.

    PubMed

    Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp

    2007-09-15

    Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

  10. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  11. Limiting climate change: what’s most worth doing?

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Wolske, Kimberly S.

    2017-09-01

    Wynes and Nicholas (2017 Environ. Res. Lett. 12 074024) claim that some of the most important actions individuals can take to mitigate climate change have been overlooked, particularly in educational messages for adolescents, and estimate the potential impact of some of these, including having fewer children and living car free. These estimates raise questions that deserve serious analysis, but they are based only on the technical potential of the actions and do not consider the plasticity of the behaviors and the feasibility of policies to support them. The actions identified as having the greatest potential are lifestyle changes that accrue benefits over a lifetime or longer, so are not realistic alternatives to actions that can be enacted immediately. But presenting lifestyle choices and the relative impacts of different actions as discussion starters for adolescents could be promising, especially if the discussions highlight issues of behavioral plasticity, policy plasticity, and time scale. Research has identified design principles for interventions to achieve the strongest emissions reductions at time scales up to the decadal. Design principles for achieving longer-lasting changes deserve careful analytic attention, as well as a stronger focus in adolescent textbooks and messages to the general population. Both adolescents and researchers would do well to think carefully about what could promote the generational changes needed to reach a climate change target such as ‘well below 2 °C’.

  12. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Heeter, Jenny; Keyser, David

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy’s City Energy Profile tool. The analysismore » estimates the national carbon abatement potential of the most commonly implemented actions in six specific policy areas. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO 2) per year in a "moderate abatement scenario" by 2035 and 480 MMT CO 2/year in a "high abatement scenario" by 2035 through these common actions typically within a city’s control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. City carbon abatement potential is sensitive to national and state policies that affect the carbon intensity of electricity and transportation. Specifically, the U.S. Clean Power Plan and further renewable energy cost reductions could reduce city carbon emissions overall, helping cities achieve their carbon reduction goals.« less

  14. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    PubMed Central

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  15. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-05-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.

  16. Exemplar-based human action pose correction.

    PubMed

    Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen

    2014-07-01

    The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.

  17. Development of Action Monitoring through Adolescence into Adulthood: ERP and Source Localization

    ERIC Educational Resources Information Center

    Ladouceur, Cecile D.; Dahl, Ronald E.; Carter, Cameron S.

    2007-01-01

    In this study we examined the development of three action monitoring event-related potentials (ERPs)--the error-related negativity (ERN/Ne), error positivity (P[subscript E]) and the N2--and estimated their neural sources. These ERPs were recorded during a flanker task in the following groups: early adolescents (mean age = 12 years), late…

  18. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    PubMed

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  19. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  20. Environmental Asthma Reduction Potential Estimates for Selected Mitigation Actions in Finland Using a Life Table Approach

    PubMed Central

    Rumrich, Isabell Katharina; Hänninen, Otto

    2015-01-01

    Aims: To quantify the reduction potential of asthma in Finland achievable by adjusting exposures to selected environmental factors. Methods: A life table model for the Finnish population for 1986–2040 was developed and Years Lived with Disability caused by asthma and attributable to the following selected exposures were estimated: tobacco smoke (smoking and second hand tobacco smoke), ambient fine particles, indoor dampness and mould, and pets. Results: At baseline (2011) about 25% of the total asthma burden was attributable to the selected exposures. Banning tobacco was the most efficient mitigation action, leading to 6% reduction of the asthma burden. A 50% reduction in exposure to dampness and mould as well as a doubling in exposure to pets lead each to a 2% reduction. Ban of urban small scale wood combustion, chosen as a mitigation action to reduce exposure to fine particles, leads to a reduction of less than 1% of the total asthma burden. Combination of the most efficient mitigation actions reduces the total asthma burden by 10%. A more feasible combination of mitigation actions leads to 6% reduction of the asthma burden. Conclusions: The adjustment of environmental exposures can reduce the asthma burden in Finland by up to 10%. PMID:26067987

  1. 75 FR 2181 - 60-Day Notice of Proposed Information Collection: DS-4100, Iran Program Grants Vetting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ...-4100, Iran Program Grants Vetting, Information Collection 1405-0176 ACTION: Notice of request for... accordance with the Paperwork Reduction Act of 1995. Title of Information Collection: Iran Program Grants OMB...: Potential grantees and participants for Iran programs Estimated Number of Respondents: 100 Estimated Number...

  2. Skating down a steeper slope: Fear influences the perception of geographical slant

    PubMed Central

    Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish

    2008-01-01

    Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594

  3. Auditory thresholds in the American cockroach (Orthoptera: Blattidae): estimates using single-unit and compound-action potential recordings.

    PubMed

    Decker, T N; Jones, T A; Gold, R E

    1989-06-01

    Recent commercial suggestions that insect populations can be controlled through the use of ultrasound raises the question of whether or not certain insects have receptors that are sensitive to high-frequency sound. Single neural unit discharges and compound-action potentials were recorded from the ventral nerve cord in the American cockroach, Periplaneta americana L., to constant rise time tone pulses from 100 to 40,000 hertz (Hz). Unit responses and compound-action potentials show that the cockroach is insensitive to sound above approximately 3,000 Hz. Data relating latency of the response to intensity of the stimulus suggest that the cockroach cercal system operates on the principle of energy envelope detection. Decreases in latency likely occur primarily as a result of increases in the rate of membrane depolarization in cercal dendrites.

  4. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.

    PubMed

    Chen, Chang Hao; McCullagh, Elizabeth A; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C

    2017-03-01

    The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.

  5. Vitamin K modulates cardiac action potential by blocking sodium and potassium ion channels.

    PubMed

    Drolet, B; Emond, A; Fortin, V; Daleau, P; Rousseau, G; Cardinal, R; Turgeon, J

    2000-10-01

    Cardiovascular collapses, syncopes, and sudden deaths have been observed following the rapid administration of intravenous vitamin K. Our objectives were to characterize the effects of vitamin K on cardiac action potentials and to evaluate effects of vitamin K on sodium and potassium currents, namely I(Na), I(Kr), and I(Ks). Guinea pig hearts (n = 21) were paced at a cycle length of 250 msec and exposed to vitamin K at 1.15-4.6 micromol/L (2.5-10 mg/L). Monophasic action potential duration measured at 90% repolarization (MAPD(90)) was not significantly reduced (-1.6 +/- 0.3 msec; P >.05; N.S.) at 1.15 micromol/L, but increased by 6.5 +/- 0.4 msec (P <.05) at 2.3 micromol/L. MAPD(90) was not measurable at 4.6 micromol/L, as a result of inexcitability. Patch-clamp experiments in ventricular myocytes demonstrated a approximately 50% reduction in I(Na) by 10 micromol/L vitamin K and a concentration-dependent reduction of the K(+) current elicited by short depolarizations (250 msec; I(K250)). Estimated IC(50) for I(K250), mostly representing I(Kr), was 2.3 micromol/L. Vitamin K was less potent to block the K(+) current elicited by long depolarizations (5,000 msec; I(K5000)), mostly representing I(Ks), with an estimated IC(50) over 100 micromol/L. Therapeutic concentrations ( approximately 1.5 micromol/L) of intravenous vitamin K modulate cardiac action potential by blocking ionic currents involved in cardiac depolarization and repolarization.

  6. Deciphering the contribution of intrinsic and synaptic currents to the effects of transient synaptic inputs on human motor unit discharge

    PubMed Central

    Powers, Randall K.; Türker, Kemal S.

    2010-01-01

    The amplitude and time course of synaptic potentials in human motoneurons can be estimated in tonically discharging motor units by measuring stimulus-evoked changes in the rate and probability of motor unit action potentials. However, in spite of the fact that some of these techniques have been used for over thirty years, there is still no consensus on the best way to estimate the characteristics of synaptic potentials or on the accuracy of these estimates. In this review, we compare different techniques for estimating synaptic potentials from human motor unit discharge and also discuss relevant animal models in which estimated synaptic potentials can be compared to those directly measured from intracellular recordings. We also review the experimental evidence on how synaptic noise and intrinsic motoneuron properties influence their responses to synaptic inputs. Finally, we consider to what extent recordings of single motor unit discharge in humans can be used to distinguish the contribution of changes in synaptic inputs versus changes in intrinsic motoneuron properties to altered motoneuron responses following CNS injury. PMID:20427230

  7. Linking intended visitation to regional economic impact models of bison and elk management

    USGS Publications Warehouse

    Loomis, J.; Caughlan, L.

    2004-01-01

    This article links intended National Park visitation estimates to regional economic models to calculate the employment impacts of alternative bison and elk management strategies. The survey described alternative National Elk Refuge (NER) management actions and the effects on elk and bison populations at the NER and adjacent Grand Teton National Park (GTNP). Park visitors were then asked if they would change their number of visits with each potential management action. Results indicate there would be a 10% decrease in visitation if bison populations were reduced from 600 to 400 animals and elk populations were reduced in GTNP and the NER. The related decrease in jobs in Teton counties of Wyoming and Idaho is estimated at 5.5%. Adopting a “no active management” option of never feeding elk and bison on the NER yields about one-third the current bison population (200 bison) and about half the elk population. Visitors surveyed about this management option would take about 20% fewer trips, resulting in an 11.3% decrease in employment. Linking intended visitation surveys and regional economic models represents a useful tool for natural resource planners who must present the consequences of potential actions in Environmental Impact Statements and plans to the public and decision makers prior to any action being implemented.

  8. Argumentation for Decision Making

    NASA Astrophysics Data System (ADS)

    Amgoud, Leila

    Decision making, often viewed as a form of reasoning toward action, has raised the interest of many scholars including economists, psychologists, and computer scientists for a long time. Any decision problem amounts to selecting the “best” or sufficiently “good” action(s) that are feasible among different alternatives, given some available information about the current state of the world and the consequences of potential actions. Available information may be incomplete or pervaded with uncertainty. Besides, the goodness of an action is judged by estimating how much its possible consequences fit the preferences of the decision maker. This agent is assumed to behave in a rational way [29] amgoud-woold, at least in the sense that his decisions should be as much as possible consistent with his preferences.

  9. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    NASA Astrophysics Data System (ADS)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  10. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  11. Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals

    PubMed Central

    Luo, Fujun; Dittrich, Markus; Stiles, Joel R.; Meriney, Stephen D.

    2011-01-01

    We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca2+) channels during an action potential and the number of such Ca2+ channels within active zones of frog neuromuscular junctions. Analysis revealed ~36 Ca2+ channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (~200–250). The probability that each channel opened during an action potential was only ~0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca2+ channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca2+ influx through individual Ca2+ channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones. PMID:21813687

  12. Selective pressure of antibiotic pollution on bacteria of importance to public health.

    PubMed

    Tello, Alfredo; Austin, Brian; Telfer, Trevor C

    2012-08-01

    Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance.

  13. Shared Mechanisms in the Estimation of Self-Generated Actions and the Prediction of Other's Actions by Humans.

    PubMed

    Ikegami, Tsuyoshi; Ganesh, Gowrishankar

    2017-01-01

    The question of how humans predict outcomes of observed motor actions by others is a fundamental problem in cognitive and social neuroscience. Previous theoretical studies have suggested that the brain uses parts of the forward model (used to estimate sensory outcomes of self-generated actions) to predict outcomes of observed actions. However, this hypothesis has remained controversial due to the lack of direct experimental evidence. To address this issue, we analyzed the behavior of darts experts in an understanding learning paradigm and utilized computational modeling to examine how outcome prediction of observed actions affected the participants' ability to estimate their own actions. We recruited darts experts because sports experts are known to have an accurate outcome estimation of their own actions as well as prediction of actions observed in others. We first show that learning to predict the outcomes of observed dart throws deteriorates an expert's abilities to both produce his own darts actions and estimate the outcome of his own throws (or self-estimation). Next, we introduce a state-space model to explain the trial-by-trial changes in the darts performance and self-estimation through our experiment. The model-based analysis reveals that the change in an expert's self-estimation is explained only by considering a change in the individual's forward model, showing that an improvement in an expert's ability to predict outcomes of observed actions affects the individual's forward model. These results suggest that parts of the same forward model are utilized in humans to both estimate outcomes of self-generated actions and predict outcomes of observed actions.

  14. Stimfit: quantifying electrophysiological data with Python

    PubMed Central

    Guzman, Segundo J.; Schlögl, Alois; Schmidt-Hieber, Christoph

    2013-01-01

    Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals. PMID:24600389

  15. Correlates of a single cortical action potential in the epidural EEG

    PubMed Central

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  16. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    PubMed

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-05

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.

  17. Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    PubMed Central

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470

  18. Level 1 remedial investigation work plan, 300 Area Process Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report discusses the objectives of the site characterization for the 300 Area Process Ponds which are to identify and quantify contamination at the ponds and to estimate their potential impact on human health and the environment. The results of the site characterization will be used to identify any future actions related to contamination at the site and to identify any additional data requirements needed to support selection of a remedial action. 9 refs., 12 figs., 8 tabs.

  19. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA

    PubMed Central

    1995-01-01

    Sarcoplasmic reticulum (SR) Ca release was studied at 13-16 degrees C in cut fibers (sarcomere length, 3.4-3.9 microns) mounted in a double Vaseline-gap chamber. The amplitude and duration of the action- potential stimulated free [Ca] transient were reduced by equilibration with end-pool solutions that contained 20 mM EGTA with 1.76 mM Ca and 0.63 mM phenol red, a maneuver that appeared to markedly reduce the amount of Ca complexed by troponin. A theoretical analysis shows that, under these conditions, the increase in myoplasmic free [Ca] is expected to be restricted to within a few hundred nanometers of the SR Ca release sites and to have a time course that essentially matches that of release. Furthermore, almost all of the Ca that is released from the SR is expected to be rapidly bound by EGTA and exchanged for protons with a 1:2 stoichiometry. Consequently, the time course of SR Ca release can be estimated by scaling the delta pH signal measured with phenol red by -beta/2. The value of beta, the buffering power of myoplasm, was determined in fibers equilibrated with a combination of EGTA, phenol red, and fura-2; its mean value was 22 mM/pH unit. The Ca content of the SR (expressed as myoplasmic concentration) was estimated from the total amount of Ca released by either a train of action potentials or a depleting voltage step; its mean value was 2,685 microM in the action-potential experiments and 2,544 microM in the voltage- clamp experiments. An action potential released, on average, 0.14 of the SR Ca content with a peak rate of release of approximately 5%/ms. A second action potential, elicited 20 ms later, released only 0.6 times as much Ca (expressed as a fraction of the SR content), probably because Ca inactivation of Ca release was produced by the first action potential. During a depolarizing voltage step to 60 mV, the rate of Ca release rapidly increased to a peak value of approximately 3%/ms and then decreased to a quasi-steady level that was only 0.6 times as large; this decrease was also probably due to Ca inactivation of Ca release. SR Ca release was studied with small step depolarizations that open no more than one SR Ca channel in 7,000 and increase the value of spatially averaged myoplasmic free [Ca] by only 0.2 nM. PMID:8537818

  20. A four-component model of the action potential in mouse detrusor smooth muscle cell

    PubMed Central

    Brain, Keith L.; Young, John S.; Manchanda, Rohit

    2018-01-01

    Background and hypothesis Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. Methods and results The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. Conclusions We conclude that the four basic components—sEJP, nAP, sAHP, and vsAHP—identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes. PMID:29351282

  1. A four-component model of the action potential in mouse detrusor smooth muscle cell.

    PubMed

    Padmakumar, Mithun; Brain, Keith L; Young, John S; Manchanda, Rohit

    2018-01-01

    Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. We conclude that the four basic components-sEJP, nAP, sAHP, and vsAHP-identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes.

  2. A strategy for prioritizing threats and recovery actions for at-risk species.

    PubMed

    Darst, Catherine R; Murphy, Philip J; Strout, Nathan W; Campbell, Steven P; Field, Kimberleigh J; Allison, Linda; Averill-Murray, Roy C

    2013-03-01

    Ensuring the persistence of at-risk species depends on implementing conservation actions that ameliorate threats. We developed and implemented a method to quantify the relative importance of threats and to prioritize recovery actions based on their potential to affect risk to Mojave desert tortoises (Gopherus agassizii). We used assessments of threat importance and elasticities of demographic rates from population matrix models to estimate the relative contributions of threats to overall increase in risk to the population. We found that urbanization, human access, military operations, disease, and illegal use of off highway vehicles are the most serious threats to the desert tortoise range-wide. These results suggest that, overall, recovery actions that decrease habitat loss, predation, and crushing will be most effective for recovery; specifically, we found that habitat restoration, topic-specific environmental education, and land acquisition are most likely to result in the greatest decrease in risk to the desert tortoise across its range. In addition, we have developed an application that manages the conceptual model and all supporting information and calculates threat severity and potential effectiveness of recovery actions. Our analytical approach provides an objective process for quantifying threats, prioritizing recovery actions, and developing monitoring metrics for those actions for adaptive management of any at-risk species.

  3. Shared Mechanisms in the Estimation of Self-Generated Actions and the Prediction of Other’s Actions by Humans

    PubMed Central

    Ganesh, Gowrishankar

    2017-01-01

    Abstract The question of how humans predict outcomes of observed motor actions by others is a fundamental problem in cognitive and social neuroscience. Previous theoretical studies have suggested that the brain uses parts of the forward model (used to estimate sensory outcomes of self-generated actions) to predict outcomes of observed actions. However, this hypothesis has remained controversial due to the lack of direct experimental evidence. To address this issue, we analyzed the behavior of darts experts in an understanding learning paradigm and utilized computational modeling to examine how outcome prediction of observed actions affected the participants’ ability to estimate their own actions. We recruited darts experts because sports experts are known to have an accurate outcome estimation of their own actions as well as prediction of actions observed in others. We first show that learning to predict the outcomes of observed dart throws deteriorates an expert’s abilities to both produce his own darts actions and estimate the outcome of his own throws (or self-estimation). Next, we introduce a state-space model to explain the trial-by-trial changes in the darts performance and self-estimation through our experiment. The model-based analysis reveals that the change in an expert’s self-estimation is explained only by considering a change in the individual’s forward model, showing that an improvement in an expert’s ability to predict outcomes of observed actions affects the individual’s forward model. These results suggest that parts of the same forward model are utilized in humans to both estimate outcomes of self-generated actions and predict outcomes of observed actions. PMID:29340300

  4. POLLUTION FROM THE COMBINED ACTIVITIES, ACTIONS, AND BEHAVIORS OF THE PUBLIC: PHARMACEUTICALS AND PERSONAL CARE PRODUCTS

    EPA Science Inventory

    ORD's four-fold objectives in its efforts have been to: (i) Identify potential (future) environmental concerns (anticipatory research and identification of emerging issues, especially to identify pivotal sources of uncertainty that might affect risk estimates), (ii) Be proactive ...

  5. GPS disruptions : efforts to assess risks to critical infrastructure and coordinate agency actions should be enhanced.

    DOT National Transportation Integrated Search

    2013-11-01

    To assess the risks and potential effects from disruptions in the Global : Positioning System (GPS) on critical infrastructure, the Department of Homeland : Security (DHS) published the GPS National Risk Estimate (NRE) in 2012. In : doing so, DHS con...

  6. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    PubMed

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  8. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of twomore » naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.« less

  9. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals.

    PubMed

    Bradbury, Steven P; Russom, Christine L; Ankley, Gerald T; Schultz, T Wayne; Walker, John D

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) in assessing potential toxic effects of organic chemicals on aquatic organisms continues to evolve as computational efficiency and toxicological understanding advance. With the ever-increasing production of new chemicals, and the need to optimize resources to assess thousands of existing chemicals in commerce, regulatory agencies have turned to QSARs as essential tools to help prioritize tiered risk assessments when empirical data are not available to evaluate toxicological effects. Progress in designing scientifically credible QSARs is intimately associated with the development of empirically derived databases of well-defined and quantified toxicity endpoints, which are based on a strategic evaluation of diverse sets of chemical structures, modes of toxic action, and species. This review provides a brief overview of four databases created for the purpose of developing QSARs for estimating toxicity of chemicals to aquatic organisms. The evolution of QSARs based initially on general chemical classification schemes, to models founded on modes of toxic action that range from nonspecific partitioning into hydrophobic cellular membranes to receptor-mediated mechanisms is summarized. Finally, an overview of expert systems that integrate chemical-specific mode of action classification and associated QSAR selection for estimating potential toxicological effects of organic chemicals is presented.

  10. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons.

    PubMed

    Ogawa, Hiroto; Mitani, Ruriko

    2015-11-13

    The spatial dynamics of action potentials, including their propagation and the location of spike initiation zone (SIZ), are crucial for the computation of a single neuron. Compared with mammalian central neurons, the spike dynamics of invertebrate neurons remain relatively unknown. Thus, we examined the spike dynamics based on single spike-induced Ca(2+) signals in the dendrites of cricket mechanosensory projection neurons, known as giant interneurons (GIs). The Ca(2+) transients induced by a synaptically evoked single spike were larger than those induced by an antidromic spike, whereas subthreshold synaptic potentials caused no elevation of Ca(2+). These results indicate that synaptic activity enhances the dendritic Ca(2+) influx through voltage-gated Ca(2+) channels. Stimulation of the presynaptic sensory afferents ipsilateral to the recording site evoked a dendritic spike with higher amplitude than contralateral stimulation, thereby suggesting that alteration of the spike waveform resulted in synaptic enhancement of the dendritic Ca(2+) transients. The SIZ estimated from the spatial distribution of the difference in the Ca(2+) amplitude was distributed throughout the right and left dendritic branches across the primary neurite connecting them in GIs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Inventory Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might makemore » a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.« less

  12. POLLUTION FROM THE COMBINED ACTIVITIES, ACTIONS ...

    EPA Pesticide Factsheets

    ORD's four-fold objectives in its efforts have been to: (i) Identify potential (future) environmental concerns (anticipatory research and identification of emerging issues, especially to identify pivotal sources of uncertainty that might affect risk estimates), (ii) Be proactive versus reactive (allowing for pollution prevention versus remediation/restoration; identify and foster investigation of

  13. Uncertainty of climate change impacts on soil erosion from cropland in central Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Impacts of climate change on soil erosion and the potential need for additional conservation actions are typically estimated by applying a hydrologic and soil erosion model under present and future climate conditions defined by an emission scenario. Projecting future climate conditions harbors sever...

  14. 75 FR 25307 - 30-Day Notice of Proposed Information Collection: DS-4100, Iran Program Grants Vetting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...-4100, Iran Program Grants Vetting, Information Collection 1405-0176 ACTION: Notice of request for... Collection: Iran Program Grants. OMB Control Number: 1405-0176. Type of Request: Extension of a Currently...). Form Number: DS-4100. Respondents: Potential grantees and participants for Iran programs. Estimated...

  15. The integrated landscape assessment project

    Treesearch

    Miles A. Hemstrom; Janine Salwasser; Joshua Halofsky; Jimmy Kagan; Cyndi Comfort

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) is a three-year effort that produces information, models, data, and tools to help land managers, policymakers, and others examine mid- to broad-scale (e.g., watersheds to states and larger areas) prioritization of land management actions, perform landscape assessments, and estimate potential effects of management...

  16. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.

    PubMed

    Tyzio, Roman; Khalilov, Ilgam; Represa, Alfonso; Crepel, Valerie; Zilberter, Yuri; Rheims, Sylvain; Aniksztejn, Laurent; Cossart, Rosa; Nardou, Romain; Mukhtarov, Marat; Minlebaev, Marat; Epsztein, Jérôme; Milh, Mathieu; Becq, Helene; Jorquera, Isabel; Bulteau, Christine; Fohlen, Martine; Oliver, Viviana; Dulac, Olivier; Dorfmüller, Georg; Delalande, Olivier; Ben-Ari, Yehezkel; Khazipov, Roustem

    2009-08-01

    The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.

  17. Real-time estimation and biofeedback of single-neuron firing rates using local field potentials

    PubMed Central

    Hall, Thomas M.; Nazarpour, Kianoush; Jackson, Andrew

    2014-01-01

    The long-term stability and low-frequency composition of local field potentials (LFPs) offer important advantages for robust and efficient neuroprostheses. However, cortical LFPs recorded by multi-electrode arrays are often assumed to contain only redundant information arising from the activity of large neuronal populations. Here we show that multichannel LFPs in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials that accompany neuronal firing. As a result, the firing rates of individual neurons can be estimated with surprising accuracy. We implemented this method in a real-time biofeedback brain–machine interface, and found that monkeys could learn to modulate the activity of arbitrary neurons using feedback derived solely from LFPs. These findings provide a principled method for monitoring individual neurons without long-term recording of action potentials. PMID:25394574

  18. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Integrated analysis for population estimation, management impact evaluation, and decision-making for a declining species

    USGS Publications Warehouse

    Crawford, Brian A.; Moore, Clinton; Norton, Terry M.; Maerz, John C.

    2018-01-01

    A challenge for making conservation decisions is predicting how wildlife populations respond to multiple, concurrent threats and potential management strategies, usually under substantial uncertainty. Integrated modeling approaches can improve estimation of demographic rates necessary for making predictions, even for rare or cryptic species with sparse data, but their use in management applications is limited. We developed integrated models for a population of diamondback terrapins (Malaclemys terrapin) impacted by road-associated threats to (i) jointly estimate demographic rates from two mark-recapture datasets, while directly estimating road mortality and the impact of management actions deployed during the study; and (ii) project the population using population viability analysis under simulated management strategies to inform decision-making. Without management, population extirpation was nearly certain due to demographic impacts of road mortality, predators, and vegetation. Installation of novel flashing signage increased survival of terrapins that crossed roads by 30%. Signage, along with small roadside barriers installed during the study, increased population persistence probability, but the population was still predicted to decline. Management strategies that included actions targeting multiple threats and demographic rates resulted in the highest persistence probability, and roadside barriers, which increased adult survival, were predicted to increase persistence more than other actions. Our results support earlier findings showing mitigation of multiple threats is likely required to increase the viability of declining populations. Our approach illustrates how integrated models may be adapted to use limited data efficiently, represent system complexity, evaluate impacts of threats and management actions, and provide decision-relevant information for conservation of at-risk populations.

  20. Trial-Type Dependent Frames of Reference for Value Comparison

    PubMed Central

    Hunt, Laurence T.; Woolrich, Mark W.; Rushworth, Matthew F. S.; Behrens, Timothy E. J.

    2013-01-01

    A central question in cognitive neuroscience regards the means by which options are compared and decisions are resolved during value-guided choice. It is clear that several component processes are needed; these include identifying options, a value-based comparison, and implementation of actions to execute the decision. What is less clear is the temporal precedence and functional organisation of these component processes in the brain. Competing models of decision making have proposed that value comparison may occur in the space of alternative actions, or in the space of abstract goods. We hypothesized that the signals observed might in fact depend upon the framing of the decision. We recorded magnetoencephalographic data from humans performing value-guided choices in which two closely related trial types were interleaved. In the first trial type, each option was revealed separately, potentially causing subjects to estimate each action's value as it was revealed and perform comparison in action-space. In the second trial type, both options were presented simultaneously, potentially leading to comparison in abstract goods-space prior to commitment to a specific action. Distinct activity patterns (in distinct brain regions) on the two trial types demonstrated that the observed frame of reference used for decision making indeed differed, despite the information presented being formally identical, between the two trial types. This provides a potential reconciliation of conflicting accounts of value-guided choice. PMID:24068906

  1. Does levonorgestrel emergency contraceptive have a post-fertilization effect? A review of its mechanism of action

    PubMed Central

    Peck, Rebecca; Rella, Walter; Tudela, Julio; Aznar, Justo; Mozzanega, Bruno

    2016-01-01

    Background Recent studies have identified that levonorgestrel administered orally in emergency contraception (LNG-EC) is only efficacious when taken before ovulation. However, the drug does not consistently prevent follicular rupture or impair sperm function. Objective The present systematic review is performed to analyze and more precisely define the extent to which pre-fertilization mechanisms of action may explain the drug's efficacy in pregnancy avoidance. We also examine the available evidence to determine if pre-ovulatory drug administration may be associated with post-fertilization effects. Conclusion The mechanism of action of LNG-EC is reviewed. The drug has no ability to alter sperm function at doses used in vivo and has limited ability to suppress ovulation. Our analysis estimates that the drug's ovulatory inhibition potential could prevent less than 15 percent of potential conceptions, thus making a pre-fertilization mechanism of action significantly less likely than previously thought. Luteal effects (such as decreased progesterone, altered glycodelin levels, and shortened luteal phase) present in the literature may suggest a pre-ovulatory induced post-fertilization drug effect. Lay Summary Plan B is the most widely used emergency contraceptive available. It is important for patients and physicians to clearly understand the drug’s mechanism of action (MOA). The drug was originally thought to work by preventing fertilization. Recent research has cast doubt on this. Our review of the research suggests that it could act in a pre-fertilization capacity, and we estimate that it could prevent ovulation in only 15 percent or less of cases. The drug has no ability to alter sperm function and limited ability to suppress ovulation. Further, data suggest that when administered pre-ovulation, it may have a post-fertilization MOA. PMID:27833181

  2. Does levonorgestrel emergency contraceptive have a post-fertilization effect? A review of its mechanism of action.

    PubMed

    Peck, Rebecca; Rella, Walter; Tudela, Julio; Aznar, Justo; Mozzanega, Bruno

    2016-02-01

    Recent studies have identified that levonorgestrel administered orally in emergency contraception (LNG-EC) is only efficacious when taken before ovulation. However, the drug does not consistently prevent follicular rupture or impair sperm function. The present systematic review is performed to analyze and more precisely define the extent to which pre-fertilization mechanisms of action may explain the drug's efficacy in pregnancy avoidance. We also examine the available evidence to determine if pre-ovulatory drug administration may be associated with post-fertilization effects. The mechanism of action of LNG-EC is reviewed. The drug has no ability to alter sperm function at doses used in vivo and has limited ability to suppress ovulation. Our analysis estimates that the drug's ovulatory inhibition potential could prevent less than 15 percent of potential conceptions, thus making a pre-fertilization mechanism of action significantly less likely than previously thought. Luteal effects (such as decreased progesterone, altered glycodelin levels, and shortened luteal phase) present in the literature may suggest a pre-ovulatory induced post-fertilization drug effect. Plan B is the most widely used emergency contraceptive available. It is important for patients and physicians to clearly understand the drug's mechanism of action (MOA). The drug was originally thought to work by preventing fertilization. Recent research has cast doubt on this. Our review of the research suggests that it could act in a pre-fertilization capacity, and we estimate that it could prevent ovulation in only 15 percent or less of cases. The drug has no ability to alter sperm function and limited ability to suppress ovulation. Further, data suggest that when administered pre-ovulation, it may have a post-fertilization MOA.

  3. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  4. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W., E-mail: robyn@astro.columbia.edu

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like datamore » in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.« less

  5. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    PubMed

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  6. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Jason C.; Parker, Graham B.

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation.more » In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.« less

  7. Sub-Second Parallel State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Rice, Mark J.; Glaesemann, Kurt R.

    This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly statemore » estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of the SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects of severe events on the grid. The power grid continues to grow and the number of measurements is increasing at an accelerated rate due to the variety of smart grid devices being introduced. A parallel state estimation implementation will have better performance than traditional, sequential state estimation by utilizing the power of high performance computing (HPC). This increased performance positions parallel state estimators as valuable tools for operating the increasingly more complex power grid.« less

  8. Remedial Action Assessment System: A computer-based methodology for conducting feasibility studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.K.; Buelt, J.L.; Stottlemyre, J.A.

    1991-02-01

    Because of the complexity and number of potential waste sites facing the US Department of Energy (DOE) for potential cleanup, DOE is supporting the development of a computer-based methodology to streamline the remedial investigation/feasibility study process. The Remedial Action Assessment System (RAAS), can be used for screening, linking, and evaluating established technology processes in support of conducting feasibility studies. It is also intended to do the same in support of corrective measures studies. The user interface employs menus, windows, help features, and graphical information while RAAS is in operation. Object-oriented programming is used to link unit processes into sets ofmore » compatible processes that form appropriate remedial alternatives. Once the remedial alternatives are formed, the RAAS methodology can evaluate them in terms of effectiveness, implementability, and cost. RAAS will access a user-selected risk assessment code to determine the reduction of risk after remedial action by each recommended alternative. The methodology will also help determine the implementability of the remedial alternatives at a site and access cost estimating tools to provide estimates of capital, operating, and maintenance costs. This paper presents the characteristics of two RAAS prototypes currently being developed. These include the RAAS Technology Information System, which accesses graphical, tabular and textual information about technologies, and the main RAAS methodology, which screens, links, and evaluates remedial technologies. 4 refs., 3 figs., 1 tab.« less

  9. Multi-species occurrence models to evaluate the effects of conservation and management actions

    USGS Publications Warehouse

    Zipkin, E.F.; Andrew, Royle J.; Dawson, D.K.; Bates, S.

    2010-01-01

    Conservation and management actions often have direct and indirect effects on a wide range of species. As such, it is important to evaluate the impacts that such actions may have on both target and non-target species within a region. Understanding how species richness and composition differ as a result of management treatments can help determine potential ecological consequences. Yet it is difficult to estimate richness because traditional sampling approaches detect species at variable rates and some species are never observed. We present a framework for assessing management actions on biodiversity using a multi-species hierarchical model that estimates individual species occurrences, while accounting for imperfect detection of species. Our model incorporates species-specific responses to management treatments and local vegetation characteristics and a hierarchical component that links species at a community-level. This allows for comprehensive inferences on the whole community or on assemblages of interest. Compared to traditional species models, occurrence estimates are improved for all species, even for those that are rarely observed, resulting in more precise estimates of species richness (including species that were unobserved during sampling). We demonstrate the utility of this approach for conservation through an analysis comparing bird communities in two geographically similar study areas: one in which white-tailed deer (Odocoileus virginianus) densities have been regulated through hunting and one in which deer densities have gone unregulated. Although our results indicate that species and assemblage richness were similar in the two study areas, point-level richness was significantly influenced by local vegetation characteristics, a result that would have been underestimated had we not accounted for variability in species detection.

  10. Uncertainty in action-value estimation affects both action choice and learning rate of the choice behaviors of rats

    PubMed Central

    Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu

    2012-01-01

    The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20–549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. PMID:22487046

  11. Mechanism of action of substance P in guinea-pig ileum longitudinal smooth muscle: a re-evaluation.

    PubMed Central

    Hall, J M; Morton, I K

    1990-01-01

    1. A proposed mechanism of contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in membrane K+ permeability (PK) has been re-examined. 2. Potentiation of responses to substance P by the K+ channel blocker tetraethylammonium (TEA) was originally proposed as evidence for a mechanism of action of substance P involving a decrease in PK. Potentiation was confirmed; however this was found not to be specific to substance P since a similar potentiation of responses was seen with agonists not thought to act via a decrease in PK. 3. Antagonism of contractile responses to substance P by noradrenaline was similarly confirmed. However, this antagonism was found to represent a non-specific functional interaction through the inhibitory actions of beta-adrenoceptors rather than the proposed specific interaction with an increase in PK by noradrenaline which is normally alpha 1-adrenoceptor mediated. 4. Experiments were made measuring 86Rb efflux, in depolarized guinea-pig ileum longitudinal smooth muscle, to estimate PK. These studies confirmed a reported decrease in PK with TEA, but failed to detect the previously reported decrease with substance P. 5. These results, although not disproving a suggested mechanism of direct contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in PK, do throw doubt on either the evidence, or its interpretation, as proposed by the original authors in support of such a mechanism. PMID:1712846

  12. The Efficacy of the Theory of Reasoned Action to Explain Gambling Behavior in College Students

    ERIC Educational Resources Information Center

    Thrasher, Robert G.; Andrew, Damon P. S.; Mahony, Daniel F.

    2007-01-01

    Shaffer and Hall (1997) have estimated college student gambling to be three times as high as their adult counterparts. Despite a considerable amount of research on gambling, researchers have struggled to develop a universal theory that explains gambling behavior. This study explored the potential of Ajzen and Fishbein's (1980) Theory of Reasoned…

  13. 76 FR 20721 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Conservation Act of 1978 (Pub. L. 95-541) AGENCY: National Science Foundation. ACTION: Notice of permit... physiology of penguins in at least two ways. First, the respiratory oxygen store is estimated to comprise one... volume is a potential mechanism for prevention of pulmonary barotrauma (``lung squeeze''). Yet the...

  14. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation

    PubMed Central

    Chen, Chang Hao; McCullagh, Elizabeth A.; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C.

    2017-01-01

    The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design. PMID:28221990

  15. Markov Decision Process Measurement Model.

    PubMed

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  16. Model-based estimators of density and connectivity to inform conservation of spatially structured populations

    USGS Publications Warehouse

    Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris

    2017-01-01

    Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.

  17. Click- and chirp-evoked human compound action potentials

    PubMed Central

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-01-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463–470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus. PMID:21117748

  18. Uncertainty in action-value estimation affects both action choice and learning rate of the choice behaviors of rats.

    PubMed

    Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu

    2012-04-01

    The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20-549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  20. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  1. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (ORION)

    NASA Technical Reports Server (NTRS)

    Mott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA uses two HRA assessment methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is still expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a PRA model that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more problematic. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  2. 75 FR 47490 - Raisins Produced From Grapes Grown In California; Use of Estimated Trade Demand to Compute Volume...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... this spring; and the potential for higher prices in the wine and juice markets, which compete for...-term benefits of this action are expected to outweigh the costs. The committee believes that with no... NS raisin producers benefit more from those raisins which are free tonnage, a lower free tonnage...

  3. The Social and Economic Impacts of Space Weather (US Project)

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.

    2017-12-01

    The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.

  4. Electrophysiological and neuromuscular stability of persons with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Gilmore, Kevin J; Allen, Matti D; Doherty, Timothy J; Kimpinski, Kurt; Rice, Charles L

    2017-09-01

    We assessed motor unit (MU) properties and neuromuscular stability in the tibialis anterior (TA) of chronic inflammatory demyelinating polyneuropathy (CIDP) patients using decomposition-based quantitative electromyography. Dorsiflexion strength was assessed, and surface and concentric needle electromyography were sampled from the TA. Estimates of MU numbers were derived using decomposition-based quantitative electromyography and spike-triggered averaging. Neuromuscular transmission stability was assessed from concentric needle-detected MU potentials. CIDP patients had 43% lower compound muscle action potential amplitude than controls, and despite near-maximum voluntary activation, were 37% weaker. CIDP had 27% fewer functioning MUs in the TA, and had 90% and 44% higher jiggle and jitter values, respectively compared with controls. CIDP had lower strength and compound muscle action potential values, moderately fewer numbers of MUs, and significant neuromuscular instability compared with controls. Thus, in addition to muscle atrophy, voluntary weakness is also due to limitations of peripheral neural transmission consistent with demyelination. Muscle Nerve 56: 413-420, 2017. © 2016 Wiley Periodicals, Inc.

  5. What a car does to your perception: Distance evaluations differ from within and outside of a car.

    PubMed

    Moeller, Birte; Zoppke, Hartmut; Frings, Christian

    2016-06-01

    Almost a century ago it was first suggested that cars can be interpreted as tools, but consequences of this assumption were never tested. Research on hand-held tools that are used to manipulate objects in the environment suggests that perception of near space is extended by using tools. Literature on environment perception finds perception of far space to be modulated by the observer's potential to act in the environment. Here we argue that a car increases the action potential and modulates perception of far space in a way similar to how hand-held tools modulate perception of near space. Five distances (4 to 20 meters) were estimated by pedestrians and drivers before and after driving/walking. Drivers underestimated all distances to a larger percentage than did pedestrians. Underestimation was even stronger after driving. We conclude that cars modulate the perception of far distances because they modulate the driver's perception, like a tool typically does, and change the perceived action potential.

  6. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    NASA Astrophysics Data System (ADS)

    Bottaro, D.; Wheatley, N. J.

    Various methods the states have devised to implement federal policy regarding the Public Utility Regulatory Policies Act (PURPA) of 1978, which requires that utilities pay their full 'avoided costs' to small power producers for the energy and capacity provided, are examined. The actions of several states are compared with rates estimated using utility expansion and rate-setting models, and the potential break-even capital costs of a photovoltaic system are estimated using models which calculate photovoltaic worth. The potential for the development of photovoltaics has been increased by the PURPA regulations more from the guarantee of utility purchase of photovoltaic power than from the high buy-back rates paid. The buy-back rate is high partly because of the surprisingly high effective capacity of photovoltaic systems in some locations.

  7. [Specialties of singlet oxygen and ozone inhalations action on lipoperozydation and antioxidant system of rats blood and tissues].

    PubMed

    Martusevich, A A; Martusevich, A K; Peretiagin, S P

    2013-09-01

    The aim of this work was the analysis of singlet oxygen and the ozone effect on lipid peroxidation and antioxidant activity of rat organs and blood. Wistar rats were randomly divided into five groups: control group (without any manipulations; n = 10) and four main groups (n = 10 in each group) with inhalations by dry, moisture and oil-processed ozone-oxygen mixture (ozone concentration 60 micro g/l) or singlet oxygen, respectively. Activity of pro- and antioxidant systems was estimated in blood and tissues (lungs, heart, liver and kidney) by inducing biochemiluminescence. Singlet oxygen was shown to exert the "mildest" effect with stimulation of blood antioxidant potential and saving tissue oxidative potential without hyperactivation of lipid peroxidation. Use of moistened ozone-oxygen mixture caused moderate stimulating action on antioxidant re serves of blood and tissues. Dry ozone-oxygen mixture clearly decreased lipid peroxidation intensity.

  8. Modeling integrated water user decisions in intermittent supply systems

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  9. Estimation of potential maximum biomass of trout in Wyoming streams to assist management decisions

    USGS Publications Warehouse

    Hubert, W.A.; Marwitz, T.D.; Gerow, K.G.; Binns, N.A.; Wiley, R.W.

    1996-01-01

    Fishery managers can benefit from knowledge of the potential maximum biomass (PMB) of trout in streams when making decisions on the allocation of resources to improve fisheries. Resources are most likely to he expended on streams with high PMB and with large differences between PMB and currently measured biomass. We developed and tested a model that uses four easily measured habitat variables to estimate PMB (upper 90th percentile of predicted mean bid mass) of trout (Oncorhynchus spp., Salmo trutta, and Salvelinus fontinalis) in Wyoming streams. The habitat variables were proportion of cover, elevation, wetted width, and channel gradient. The PMB model was constructed from data on 166 stream reaches throughout Wyoming and validated on an independent data set of 50 stream reaches. Prediction of PMB in combination with estimation of current biomass and information on habitat quality can provide managers with insight into the extent to which management actions may enhance trout biomass.

  10. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  11. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    PubMed

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  12. Identifying potential exposure reduction priorities using regional rankings based on emissions of known and suspected carcinogens to outdoor air in Canada.

    PubMed

    Setton, Eleanor M; Veerman, Basil; Erickson, Anders; Deschenes, Steeve; Cheasley, Roz; Poplawski, Karla; Demers, Paul A; Keller, C Peter

    2015-08-22

    Emissions inventories aid in understanding the sources of hazardous air pollutants and how these vary regionally, supporting targeted reduction actions. Integrating information on the relative toxicity of emitted pollutants with respect to cancer in humans helps to further refine reduction actions or recommendations, but few national programs exist in North America that use emissions estimates in this way. The CAREX Canada Emissions Mapping Project provides key regional indicators of emissions (total annual and total annual toxic equivalent, circa 2011) of 21 selected known and suspected carcinogens. The indicators were calculated from industrial emissions reported to the National Pollutant Release Inventory (NPRI) and estimates of emissions from transportation (airports, trains, and car and truck traffic) and residential heating (oil, gas and wood), in conjunction with human toxicity potential factors. We also include substance-specific annual emissions in toxic equivalent kilograms and annual emissions in kilograms, to allow for ranking substances within any region. For provinces and territories in Canada, the indicators suggest the top five substances contributing to the total toxic equivalent emissions in any region could be prioritized for further investigation. Residents of Quebec and New Brunswick may be more at risk of exposure to industrial emissions than those in other regions, suggesting that a more detailed study of exposure to industrial emissions in these provinces is warranted. Residential wood smoke may be an important emission to control, particularly in the north and eastern regions of Canada. Residential oil and gas heating, along with rail emissions contribute little to regional emissions and therefore may not be an immediate regional priority. The developed indicators support the identification of pollutants and sources for additional investigation when planning exposure reduction actions among Canadian provinces and territories, but have important limitations similar to other emissions inventory-based tools. Additional research is required to evaluate how the Emissions Mapping Project is used by different groups and organizations with respect to informing actions aimed at reducing Canadians' potential exposure to harmful air pollutants.

  13. Natural climate solutions.

    PubMed

    Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-31

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  14. Calcium signals recorded from cut frog twitch fibers containing antipyrylazo III

    PubMed Central

    1987-01-01

    The Ca indicator antipyrylazo III was introduced into cut frog twitch fibers by diffusion (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:41-81). Like arsenazo III, antipyrylazo III was largely bound to or sequestered by intracellular constituents; on average, a fraction 0.68 was so immobilized. After action potential stimulation, there was an early change in absorbance, with a wavelength dependence that nearly matched a cuvette Ca-difference spectrum. As with arsenazo III, this signal became prolonged as experiments progressed. In a freshly prepared cut fiber containing 0.3 mM indicator, the absorbance change had an average half-width of 10 ms at 18 degrees C. The peak amplitude of this Ca signal depended on the indicator concentration in a roughly parabolic manner, which is consistent with a 1:2 stoichiometry for Ca:indicator complexation and, for indicator concentrations less than or equal to 0.4 mM, constant peak free [Ca]. If all the antipyrylazo III inside a fiber can react normally with Ca, peak free [Ca] is 3 microM at 18 degrees C. If only freely diffusible indicator can react, the estimate is 42 microM. The true amplitude probably lies somewhere in between. The time course of Ca binding to intracellular buffers and of Ca release from the sarcoplasmic reticulum is estimated from the 3- and 42- microM myoplasmic [Ca] transients. After action potential stimulation, the release waveform is rapid and brief; its latency after the surface action potential is 2-3 ms and its half-width is 2-4 ms. This requires rapid coupling between the action potential in the transverse tubular system and Ca release from the sarcoplasmic reticulum. The peak fractional occupancy calculated for Ca-regulatory sites on troponin is 0.46 for the 3-microM transient and 0.93 for the 42-microM transient. During a 100-ms tetanus at 100 Hz, the corresponding fractional occupancies are 0.56 and 0.94. The low value of occupancy associated with the low-amplitude [Ca] calibration seems inconsistent with a brief tetanus being able to produce near-maximal activation (Blinks, J. R., R. Rudel, and S. R. Taylor. 1978. Journal of Physiology. 277:291-323; Lopez J. R., L. A. Wanck, and S. R. Taylor. 1981. Science. 214:47-82). PMID:3494102

  15. The Brazilian Air Force Health System: Workforce-Needs Estimation Using System Dynamics

    DTIC Science & Technology

    2009-03-01

    workforce in the system. 3. Non- intervention This forecast provides a potential scenario of workforce numbers, based solely on actual numbers derived from...present knowledge and actions taken under the assumption that no unexpected interventions will occur. It is a red flag that guides future decisions...represented as a distribution. Bartholomew (1974) establishes a stochastic model of manpower systems as a probabilistic description of the

  16. Mapping auditory nerve firing density using high-level compound action potentials and high-pass noise masking a

    PubMed Central

    Earl, Brian R.; Chertoff, Mark E.

    2012-01-01

    Future implementation of regenerative treatments for sensorineural hearing loss may be hindered by the lack of diagnostic tools that specify the target(s) within the cochlea and auditory nerve for delivery of therapeutic agents. Recent research has indicated that the amplitude of high-level compound action potentials (CAPs) is a good predictor of overall auditory nerve survival, but does not pinpoint the location of neural damage. A location-specific estimate of nerve pathology may be possible by using a masking paradigm and high-level CAPs to map auditory nerve firing density throughout the cochlea. This initial study in gerbil utilized a high-pass masking paradigm to determine normative ranges for CAP-derived neural firing density functions using broadband chirp stimuli and low-frequency tonebursts, and to determine if cochlear outer hair cell (OHC) pathology alters the distribution of neural firing in the cochlea. Neural firing distributions for moderate-intensity (60 dB pSPL) chirps were affected by OHC pathology whereas those derived with high-level (90 dB pSPL) chirps were not. These results suggest that CAP-derived neural firing distributions for high-level chirps may provide an estimate of auditory nerve survival that is independent of OHC pathology. PMID:22280596

  17. Testosterone, Cortisol and Financial Risk-Taking

    PubMed Central

    Herbert, Joe

    2018-01-01

    Both testosterone and cortisol have major actions on financial decision-making closely related to their primary biological functions, reproductive success and response to stress, respectively. Financial risk-taking represents a particular example of strategic decisions made in the context of choice under conditions of uncertainty. Such decisions have multiple components, and this article considers how much we know of how either hormone affects risk-appetite, reward value, information processing and estimation of the costs and benefits of potential success or failure, both personal and social. It also considers how far we can map these actions on neural mechanisms underlying risk appetite and decision-making, with particular reference to areas of the brain concerned in either cognitive or emotional functions. PMID:29867399

  18. Action potentials reliably invade axonal arbors of rat neocortical neurons

    PubMed Central

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955

  19. Seeing Through the Fog: The Evolution of Problem Framing in United States Army Decision-Making Doctrine

    DTIC Science & Technology

    2014-05-22

    Commander and Staff 2: Mission Analysis 3: Mission analysis 3: Course of Action (COA) Development 4: Staff Estimates 4: COA Analysis 5: Commander’s...Commander and Staff 2: Mission Analysis 2: Mission Analysis 3: Mission analysis 3: Course of Action (COA) Development 3: Course of Action (COA... Development 4: Staff Estimates 4: COA Analysis 4: COA Analysis 5: Commander’s Estimate 5: COA Comparison 5: COA Comparison 6: Preparation

  20. A Framework for Modeling Emerging Diseases to Inform Management

    PubMed Central

    Katz, Rachel A.; Richgels, Katherine L.D.; Walsh, Daniel P.; Grant, Evan H.C.

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge. PMID:27983501

  1. A Framework for Modeling Emerging Diseases to Inform Management.

    PubMed

    Russell, Robin E; Katz, Rachel A; Richgels, Katherine L D; Walsh, Daniel P; Grant, Evan H C

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.

  2. A framework for modeling emerging diseases to inform management

    USGS Publications Warehouse

    Russell, Robin E.; Katz, Rachel A.; Richgels, Katherine L. D.; Walsh, Daniel P.; Grant, Evan H. Campbell

    2017-01-01

    The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.

  3. Demography of a reintroduced population: moving toward management models for an endangered species, the whooping crane

    USGS Publications Warehouse

    Servanty, Sabrina; Converse, Sarah J.; Bailey, Larissa L.

    2014-01-01

    The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population, e.g., via comparison with wild populations. For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods - namely, hierarchical Bayesian implementations of state-space models - allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered whooping cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.

  4. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules, and operational requirements are developed and then finalized.

  5. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Bigler, Mark

    2016-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  6. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  7. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, John; Keil, Karen; Staten, Jane

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS undermore » the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of remedial alternatives for the IWCS. (authors)« less

  8. Using Correlation to Compute Better Probability Estimates in Plan Graphs

    NASA Technical Reports Server (NTRS)

    Bryce, Daniel; Smith, David E.

    2006-01-01

    Plan graphs are commonly used in planning to help compute heuristic "distance" estimates between states and goals. A few authors have also attempted to use plan graphs in probabilistic planning to compute estimates of the probability that propositions can be achieved and actions can be performed. This is done by propagating probability information forward through the plan graph from the initial conditions through each possible action to the action effects, and hence to the propositions at the next layer of the plan graph. The problem with these calculations is that they make very strong independence assumptions - in particular, they usually assume that the preconditions for each action are independent of each other. This can lead to gross overestimates in probability when the plans for those preconditions interfere with each other. It can also lead to gross underestimates of probability when there is synergy between the plans for two or more preconditions. In this paper we introduce a notion of the binary correlation between two propositions and actions within a plan graph, show how to propagate this information within a plan graph, and show how this improves probability estimates for planning. This notion of correlation can be thought of as a continuous generalization of the notion of mutual exclusion (mutex) often used in plan graphs. At one extreme (correlation=0) two propositions or actions are completely mutex. With correlation = 1, two propositions or actions are independent, and with correlation > 1, two propositions or actions are synergistic. Intermediate values can and do occur indicating different degrees to which propositions and action interfere or are synergistic. We compare this approach with another recent approach by Bryce that computes probability estimates using Monte Carlo simulation of possible worlds in plan graphs.

  9. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  10. EMR documentation of physician-patient communication following genomic counseling for actionable complex disease and pharmacogenomic results.

    PubMed

    Sweet, K; Sturm, A C; Schmidlen, T; Hovick, S; Peng, J; Manickam, K; Salikhova, A; McElroy, J; Scheinfeldt, L; Toland, A E; Roberts, J S; Christman, M

    2017-04-01

    Genomic risk information for potentially actionable complex diseases and pharmacogenomics communicated through genomic counseling (GC) may motivate physicians and patients to take preventive actions. The Ohio State University-Coriell Personalized Medicine Collaborative is a randomized trial to measure the effects of in-person GC on chronic disease patients provided with multiplex results. Nine personalized genomic risk reports were provided to patients through a web portal, and to physicians via electronic medical record (EMR). Active arm participants (98, 39% female) received GC within 1 month of report viewing; control arm subjects (101, 54% female) could access counseling 3-months post-report viewing. We examined whether GC affected documentation of physician-patient communication by reviewing the first clinical note following the patient's GC visit or report upload to the EMR. Multivariable logistic regression modeling estimated the independent effect of GC on physician-patient communication, as intention to treat (ITT) and per protocol (PP), adjusted for physician educational intervention. Counselees in the active arm had more physician-patient communications than control subjects [ITT, odds ratio (OR): 3.76 (95% confidence interval (CI): 1.38-10.22, p < 0.0094); PP, OR: 5.53 (95% CI: 2.20-13.90, p = 0.0017). In conclusion, GC appreciably affected physician-patient communication following receipt of potentially actionable genomic risk information. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    PubMed Central

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  12. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    PubMed

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  13. Final Environmental Assessment and Finding of No Significant Impact: Construction and Operation of the Molecular Foundry at Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2003-03-07

    Lawrence Berkeley National Laboratory (LBNL) proposes to build a six-story, approximately 86,500 gross square foot (gsf) Molecular Foundry building; and an adjacent 8,000 gsf, partly below-grade Central Utility Plant building (for a combined 94,500 gsf), to be funded and operated by the U.S. Department of Energy's Office of Basic Energy Sciences. The buildings would be located on an approximately 2 1/2-acre site in the southeastern portion of the LBNL facility in the Oakland-Berkeley hills. The site is on mostly undeveloped slopes between Building 72, which is the National Center for Electron Microscopy (NCEM), and Building 66, which is the Surfacemore » Science and Catalysis Laboratory (SSCL). The Molecular Foundry building would include laboratories, offices, and conference and seminar rooms; the Central Utility Plant would also serve as the foundation for 16 surface parking spaces. A new plaza and pedestrian bridges would connect or provide ready access between the proposed Molecular Foundry building and adjacent scientific buildings. The Proposed Action would extend Lee Road approximately 350 feet, and widen a portion of the road to accommodate two-way traffic. The Molecular Foundry would be staffed and/or used by an estimated 137 persons, of whom an estimated 59 would be staff persons, 36 would be students, and 42 would be visitors (i.e., visiting scientists) to the Center. The Proposed Action would require removal of an existing paved 18-space parking lot and retaining walls, as well as excavation into an undeveloped hillside. Approximately two-dozen mature trees would be removed along with approximately one-dozen saplings. The Proposed Action would replant or replace trees, generally in-kind and in or around the site. LBNL anticipates it would reuse all soil excavated for the Molecular Foundry to construct the new Lee Road extension and widen the existing roadway. This Proposed Action would be a resource for the Department of Energy's participation in the National Nanotechnology Initiative (NNI). Nanotechnology is the design, fabrication, characterization, and use of materials, devices, and systems through the control of matter at the nanometer-length scale. Nanoscience will develop the understanding of building blocks at the nanometer-length scale and the methods by which they are assembled into multi-component devices. Alternatives to the Proposed Action include a reduced size building configuration, location of the building on a different on-site location, and a No Action alternative. Several off-site alternatives were considered but were not found to reasonably meet the purpose and need for the Proposed Action. Of the reasonable alternatives analyzed, the Proposed Action is found to best meet DOE's purpose and need for action. Although the Proposed Action would take place on a partially developed site that is generally surrounded by existing buildings and roads, the site is near to designated Critical Habitat of the Federally-listed Alameda Whipsnake. To minimize any potential but unexpected impact to the Alameda whipsnake, several mitigation measures are proposed. In addition, the Proposed Action would result in minor increases in stormwater runoff, air pollutant emissions, visual quality impacts, noise impacts, and the potential to disturb unanticipated archaeological resources. It would produce marginal increases in traffic and parking demand, as well as incremental demand increases for water, energy, wastewater treatment, waste disposal, and public services. The following impact is found to be potentially significant without mitigation in this Environmental Assessment: Although the site is not located in USFWS-designated critical habitat, due to the potential for Alameda whipsnake movement into the project area, mitigation measures would be implemented to ensure that whipsnakes are protected to the greatest extent possible during project construction.« less

  14. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  15. Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations.

    PubMed

    Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L

    2011-09-15

    Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.

  16. Monitoring is not enough: on the need for a model-based approach to migratory bird management

    USGS Publications Warehouse

    Nichols, J.D.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Informed management requires information about system state and about effects of potential management actions on system state. Population monitoring can provide the needed information about system state, as well as information that can be used to investigate effects of management actions. Three methods for investigating effects of management on bird populations are (1) retrospective analysis, (2) formal experimentation and constrained-design studies, and (3) adaptive management. Retrospective analyses provide weak inferences, regardless of the quality of the monitoring data. The active use of monitoring data in experimental or constrained-design studies or in adaptive management is recommended. Under both approaches, learning occurs via the comparison of estimates from the monitoring program with predictions from competing management models.

  17. State and location dependence of action potential metabolic cost in cortical pyramidal neurons.

    PubMed

    Hallermann, Stefan; de Kock, Christiaan P J; Stuart, Greg J; Kole, Maarten H P

    2012-06-03

    Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.

  18. Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres.

    PubMed

    Hollingworth, Stephen; Kim, Michele M; Baylor, Stephen M

    2012-02-01

    Bundles of intact fibres from soleus muscles of adult mice were isolated by dissection and one fibre within a bundle was micro-injected with either furaptra or mag-fluo-4, two low-affinity rapidly responding Ca(2+) indicators. Fibres were activated by action potentials to elicit changes in indicator fluorescence (ΔF), a monitor of the myoplasmic free Ca(2+) transient ([Ca(2+)]), and changes in fibre tension. All injected fibres appeared to be slow-twitch (type I) fibres as inferred from the time course of their tension responses. The full-duration at half-maximum (FDHM) of ΔF was found to be essentially identical with the two indicators; the mean value was 8.4 ± 0.3 ms (±SEM) at 16°C and 5.1 ± 0.3 ms at 22°C. The value at 22°C is about one-third that reported previously in enzyme-dissociated slow-twitch fibres that had been AM-loaded with mag-fluo-4: 12.4 ± 0.8 ms and 17.2 ± 1.7 ms. We attribute the larger FDHM in enzyme-dissociated fibres either to an alteration of fibre properties due to the enzyme treatment or to some error in the measurement of ΔF associated with AM loading. ΔF in intact fibres was simulated with a multi-compartment reaction-diffusion model that permitted estimation of the amount and time course of Ca(2+) release from the sarcoplasmic reticulum (SR), the binding and diffusion of Ca(2+) in the myoplasm, the re-uptake of Ca(2+) by the SR Ca(2+) pump, and Δ[Ca(2+)] itself. In response to one action potential at 16°C, the following estimates were obtained: 107 μm for the amount of Ca(2+) release; 1.7 ms for the FDHM of the release flux; 7.6 μm and 4.9 ms for the peak and FDHM of spatially averaged Δ[Ca(2+)]. With five action potentials at 67 Hz, the estimated amount of Ca(2+) release is 186 μm. Two important unknown model parameters are the on- and off-rate constants of the reaction between Ca(2+) and the regulatory sites on troponin; values of 0.4 × 10(8) m(-1) s(-1) and 26 s(-1), respectively, were found to be consistent with the ΔF measurements.

  19. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 East Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E.; Mehta, S.; Nell, R. M.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  20. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E; Nell, R. M.; Mehta, S.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  1. Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2012-03-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  2. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    PubMed

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  3. Inferring the Why in Images

    DTIC Science & Technology

    2014-01-01

    model. We combinatorially replaced tokens with words from our vocabulary to score the relationships be- tween concepts. The second-order queries (not...is the action, y3 is an object, and y4 is the scene. Language Potentials: We captialize on state-of-the-art natural language models to score the rela...model estimated on billions of web-pages [4, 10] to form each L(·). Scoring Function: Given the image x, we score a possible labeling configuration y of

  4. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.

    PubMed

    Ojovan, Silviya M; Rabieh, Noha; Shmoel, Nava; Erez, Hadas; Maydan, Eilon; Cohen, Ariel; Spira, Micha E

    2015-09-14

    The development of multi-electrode array platforms for large scale recording of neurons is at the forefront of neuro-engineering research efforts. Recently we demonstrated, at the proof-of-concept level, a breakthrough neuron-microelectrode interface in which cultured Aplysia neurons tightly engulf gold mushroom-shaped microelectrodes (gMμEs). While maintaining their extracellular position, the gMμEs record synaptic- and action-potentials with characteristic features of intracellular recordings. Here we examined the feasibility of using gMμEs for intracellular recordings from mammalian neurons. To that end we experimentally examined the innate size limits of cultured rat hippocampal neurons to engulf gMμEs and measured the width of the "extracellular" cleft formed between the neurons and the gold surface. Using the experimental results we next analyzed the expected range of gMμEs-neuron electrical coupling coefficients. We estimated that sufficient electrical coupling levels to record attenuated synaptic- and action-potentials can be reached using the gMμE-neuron configuration. The definition of the engulfment limits of the gMμEs caps diameter at ≤2-2.5 μm and the estimated electrical coupling coefficients from the simulations pave the way for rational development and application of the gMμE based concept for in-cell recordings from mammalian neurons.

  5. Development of the Updated Environmental Protection Agency Manual of Protective Action Guides (PAGS) and Protective Actions for Nuclear Incidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, L.M.

    2008-07-01

    As a student intern with the United States Environmental Protection Agency (EPA) Headquarters, the author was trained in the National Response Plan (NRP) and assisted in the editing of the new (unpublished) EPA Protective Action Guides (PAGs) [1] which has been revised in light of the perceived post 9/11 potential for 'Dirty Bomb' and 'Improvised Nuclear Device' attacks on civilian areas. Technical aspects and the public policy aspects of developing the new guides are discussed. Early Phase initial responses discussed include: Notification of state and/or local authorities, immediate evacuation/sheltering prior to release information or measurements, monitoring of releases and exposuremore » rate measurements, estimation of dose consequences, implementation of protective actions in other areas. The new PAG clarifies the use of 1992 PAGs [2] for incidents other than nuclear power plant accidents, lowers projected thyroid dose for potassium iodine (KI), provides drinking water guidance, includes guidance for long-term site restoration, and updates dosimetry from ICRP 26 to ICRP 60. (authors)« less

  6. Effects of premature stimulation on HERG K+ channels

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I

    2001-01-01

    The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759

  7. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially harmful to our health or the environment. Hazardous wastes can be liquids, solids, gases, or sludges. They can be discarded commercial products, like cleaning fluids or pesticides, or the by-products of manufacturing processes. The RCRA Corrective Action Program, run by EPA and 43 authorized states and territories, works with facilities that have treated, stored, or disposed of hazardous wastes (TSDs) to protect public health and the environment by investigating and cleaning up hazardous releases to soil, ground water, surface water, and air at their facilities.RCRA Corrective Action sites in all 50 states and four U.S. territories cover 18 million acres of land.EPA estimates that more than 35 million people, roughly 12 percent of the U.S. population, live within one mile of a RCRA Corrective Action site (based on the 2000 U.S. Census).RCRA Corrective Action facilities include many current and former chemical manufacturing plants, oil refineries, lead smelters, wood preservers, steel mills, commercial landfills, and a variety of other types of entities. Due to poor practices prior to environmental regulations, Corrective Action facilities have left large stretches of river sediments laden with PCBs; deposited lead in residential yards and parks beyond site boundaries; polluted drinking water wells

  8. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed Central

    Julé, Y; Szurszewski, J H

    1983-01-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones. PMID:6140310

  9. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed

    Julé, Y; Szurszewski, J H

    1983-11-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones.

  10. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    PubMed

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  11. Assessment of the potential of urban organic carbon dynamics to off-set urban anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.

    2010-12-01

    The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.

  12. Estimating Individual Influences of Behavioral Intentions: An Application of Random-Effects Modeling to the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Hedeker, Donald; And Others

    1996-01-01

    Methods are proposed and described for estimating the degree to which relations among variables vary at the individual level. As an example, M. Fishbein and I. Ajzen's theory of reasoned action is examined. This article illustrates the use of empirical Bayes methods based on a random-effects regression model to estimate individual influences…

  13. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons

    PubMed Central

    Williams, Stephen R; Stuart, Greg J

    1999-01-01

    Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro.Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing.High frequency (330 ± 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250–500 μm; n = 8) to, the perfusion medium.The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nm; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mm; n = 5).Apical dendritic depolarisation resulted in low frequency (157 ± 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11).Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 μm from the soma.Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression.A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from membrane potentials positive to -60 mV, providing a postsynaptic mechanism that counteracts use-dependent depression at synapses between layer 5 pyramidal neurons. PMID:10581316

  14. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.

    PubMed

    Ohyu, Shigeharu; Okamoto, Yoshiwo; Kuriki, Shinya

    2002-06-01

    A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.

  15. From Spiking Neuron Models to Linear-Nonlinear Models

    PubMed Central

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-01

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777

  16. From spiking neuron models to linear-nonlinear models.

    PubMed

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  17. Crash avoidance potential of four passenger vehicle technologies.

    PubMed

    Jermakian, Jessica S

    2011-05-01

    The objective was to update estimates of maximum potential crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and adaptive headlights. Compared with previous estimates (Farmer, 2008), estimates in this study attempted to account for known limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as vehicle damage location, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented or mitigated the crash. Of the four crash avoidance technologies, forward collision warning/mitigation had the greatest potential for preventing crashes of any severity; the technology is potentially applicable to 1.2 million crashes in the United States each year, including 66,000 serious and moderate injury crashes and 879 fatal crashes. Lane departure warning/prevention systems appeared relevant to 179,000 crashes per year. Side view assist and adaptive headlights could prevent 395,000 and 142,000 crashes per year, respectively. Lane departure warning/prevention was relevant to the most fatal crashes, up to 7500 fatal crashes per year. A combination of all four current technologies potentially could prevent or mitigate (without double counting) up to 1,866,000 crashes each year, including 149,000 serious and moderate injury crashes and 10,238 fatal crashes. If forward collision warning were extended to detect objects, pedestrians, and bicyclists, it would be relevant to an additional 3868 unique fatal crashes. There is great potential effectiveness for vehicle-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. The actual effectiveness of these systems will not be known until sufficient real-world experience has been gained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Actionable exomic incidental findings in 6503 participants: challenges of variant classification

    PubMed Central

    Amendola, Laura M.; Dorschner, Michael O.; Robertson, Peggy D.; Salama, Joseph S.; Hart, Ragan; Shirts, Brian H.; Murray, Mitzi L.; Tokita, Mari J.; Gallego, Carlos J.; Kim, Daniel Seung; Bennett, James T.; Crosslin, David R.; Ranchalis, Jane; Jones, Kelly L.; Rosenthal, Elisabeth A.; Jarvik, Ella R.; Itsara, Andy; Turner, Emily H.; Herman, Daniel S.; Schleit, Jennifer; Burt, Amber; Jamal, Seema M.; Abrudan, Jenica L.; Johnson, Andrew D.; Conlin, Laura K.; Dulik, Matthew C.; Santani, Avni; Metterville, Danielle R.; Kelly, Melissa; Foreman, Ann Katherine M.; Lee, Kristy; Taylor, Kent D.; Guo, Xiuqing; Crooks, Kristy; Kiedrowski, Lesli A.; Raffel, Leslie J.; Gordon, Ora; Machini, Kalotina; Desnick, Robert J.; Biesecker, Leslie G.; Lubitz, Steven A.; Mulchandani, Surabhi; Cooper, Greg M.; Joffe, Steven; Richards, C. Sue; Yang, Yaoping; Rotter, Jerome I.; Rich, Stephen S.; O’Donnell, Christopher J.; Berg, Jonathan S.; Spinner, Nancy B.; Evans, James P.; Fullerton, Stephanie M.; Leppig, Kathleen A.; Bennett, Robin L.; Bird, Thomas; Sybert, Virginia P.; Grady, William M.; Tabor, Holly K.; Kim, Jerry H.; Bamshad, Michael J.; Wilfond, Benjamin; Motulsky, Arno G.; Scott, C. Ronald; Pritchard, Colin C.; Walsh, Tom D.; Burke, Wylie; Raskind, Wendy H.; Byers, Peter; Hisama, Fuki M.; Rehm, Heidi; Nickerson, Debbie A.; Jarvik, Gail P.

    2015-01-01

    Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base. PMID:25637381

  19. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada with ROTC-1, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Kauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracksmore » • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: • At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. • At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed low-level radioactive waste. Wastes were disposed of in the appropriate onsite landfills. The NNSA/NSO provides the following recommendations: • Clean closure is required at CAS 26-99-05. • Closure in place is required at CAS 25-99-21. • A UR is required at CAS 25-99-21. • A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 539. • Corrective Action Unit 539 should be moved from Appendix III to Appendix IV of the FFACO.« less

  20. Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles.

    PubMed

    Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario

    2018-04-01

    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.

  1. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    PubMed

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  2. Superfund Record of Decision (EPA Region 9): Watkins-Johnson (Stewart Division), Scotts Valley, California (first remedial action), Final report, June 29, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Watkins-Johnson site is an active research and development, manufacturing, and industrial complex in Santa Cruz County, five miles north of Santa Cruz, California. The Watkins-Johnson Company has owned and operated the complex since 1963, conducting such activities as: metal machining, degreasing, metal plating, and photo laboratory activities. During these activities, a variety of organics, inorganics and metals were used. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE and TCE, and metals including silver. The selected remedial action for the site includes soil vapor (vacuum) extraction with pretreatment of extracted vapors using GACmore » prior to ambient discharge; capping and grading contaminated soil areas to minimize the potential for mobilization of soil contaminants to the ground water; installing infiltration leachfields to prevent offsite migration of ground water contaminants in the perched zone; installing gravity drains to transfer the contaminated ground water from the perched zone to the regional aquifer zone for subsequent extraction; ground water pumping and onsite treatment to remove contamination from both the perched and regional zones using GAC adsorption with offsite regeneration of spent carbon. The estimated present worth cost for this remedial action is $2,156,243, which includes an estimated annual O and M cost of $167,820.« less

  3. Visual perception and regulatory conflict: motivation and physiology influence distance perception.

    PubMed

    Cole, Shana; Balcetis, Emily; Zhang, Sam

    2013-02-01

    Regulatory conflict can emerge when people experience a strong motivation to act on goals but a conflicting inclination to withhold action because physical resources available, or physiological potentials, are low. This study demonstrated that distance perception is biased in ways that theory suggests assists in managing this conflict. Participants estimated the distance to a target location. Individual differences in physiological potential measured via waist-to-hip ratio interacted with manipulated motivational states to predict visual perception. Among people low in physiological potential and likely to experience regulatory conflict, the environment appeared easier to traverse when motivation was strong compared with weak. Among people high in potential and less likely to experience conflict, perception was not predicted by motivational strength. The role of motivated distance perception in self-regulation is discussed. 2013 APA, all rights reserved

  4. Hierarchical human action recognition around sleeping using obscured posture information

    NASA Astrophysics Data System (ADS)

    Kudo, Yuta; Sashida, Takehiko; Aoki, Yoshimitsu

    2015-04-01

    This paper presents a new approach for human action recognition around sleeping with the human body parts locations and the positional relationship between human and sleeping environment. Body parts are estimated from the depth image obtained by a time-of-flight (TOF) sensor using oriented 3D normal vector. Issues in action recognition of sleeping situation are the demand of availability in darkness, and hiding of the human body by duvets. Therefore, the extraction of image features is difficult since color and edge features are obscured by covers. Thus, first in our method, positions of four parts of the body (head, torso, thigh, and lower leg) are estimated by using the shape model of bodily surface constructed by oriented 3D normal vector. This shape model can represent the surface shape of rough body, and is effective in robust posture estimation of the body hidden with duvets. Then, action descriptor is extracted from the position of each body part. The descriptor includes temporal variation of each part of the body and spatial vector of position of the parts and the bed. Furthermore, this paper proposes hierarchical action classes and classifiers to improve the indistinct action classification. Classifiers are composed of two layers, and recognize human action by using the action descriptor. First layer focuses on spatial descriptor and classifies action roughly. Second layer focuses on temporal descriptor and classifies action finely. This approach achieves a robust recognition of obscured human by using the posture information and the hierarchical action recognition.

  5. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    PubMed Central

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  6. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.

  7. The effects of saxitoxin and tetrodotoxin on nerve conduction in the presence of lithium ions and of magnesium ions

    PubMed Central

    Evans, M. H.

    1969-01-01

    1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802

  8. Actions and mechanisms of action of novel analogues of sotalol on guinea-pig and rabbit ventricular cells.

    PubMed Central

    Connors, S. P.; Gill, E. W.; Terrar, D. A.

    1992-01-01

    1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393293

  9. Effects of covert subject actions on percent body fat by air-displacement plethsymography.

    PubMed

    Tegenkamp, Michelle H; Clark, R Randall; Schoeller, Dale A; Landry, Greg L

    2011-07-01

    Air-displacement plethysmography (ADP) is used for estimation of body composition, however, some individuals, such as athletes in weight classification sports, may use covert methods during ADP testing to alter their apparent percent body fat. The purpose of this study was to examine the effect of covert subject actions on percent body fat measured by ADP. Subjects underwent body composition analysis in the Bod Pod following the standard procedure using the manufacturer's guidelines. The subjects then underwent 8 more measurements while performing the following intentional manipulations: 4 breathing patterns altering lung volume, foot movement to disrupt air, hand cupping to trap air, and heat and cold exposure before entering the chamber. Increasing and decreasing lung volume during thoracic volume measurement and during body density measurement altered the percent body fat assessment (p < 0.001). High lung volume during thoracic gas measures overestimated fat by 3.7 ± 2.1 percentage points. Lowered lung volume during body volume measures overestimated body fat by an additional 2.2 ± 2.1 percentage points. The heat and cold exposure, tapping, and cupping treatments provided similar estimates of percent body fat when compared with the standard condition. These results demonstrate the subjects were able to covertly change their estimated ADP body composition value by altering breathing when compared with the standard condition. We recommend that sports conditioning coaches, athletic trainers, and technicians administering ADP should be aware of the potential effects of these covert actions. The individual responsible for administering ADP should remain vigilant during testing to detect deliberate altered breathing patterns by athletes in an effort to gain a competitive advantage by manipulating their body composition assessment.

  10. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-05-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  11. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-01-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  12. Estimating millet production for famine early warning: An application of crop simulation modelling using satellite and ground-based data in Burkina Faso

    USGS Publications Warehouse

    Thornton, P. K.; Bowen, W. T.; Ravelo, A.C.; Wilkens, P. W.; Farmer, G.; Brock, J.; Brink, J. E.

    1997-01-01

    Early warning of impending poor crop harvests in highly variable environments can allow policy makers the time they need to take appropriate action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations. Crop production estimates for the current season can be obtained using crop simulation models and remotely sensed estimates of rainfall in real time, embedded in a geographic information system that allows simple analysis of simulation results. A prototype yield estimation system was developed for the thirty provinces of Burkina Faso. It is based on CERES-Millet, a crop simulation model of the growth and development of millet (Pennisetum spp.). The prototype was used to estimate millet production in contrasting seasons and to derive production anomaly estimates for the 1986 season. Provincial yields simulated halfway through the growing season were generally within 15% of their final (end-of-season) values. Although more work is required to produce an operational early warning system of reasonable credibility, the methodology has considerable potential for providing timely estimates of regional production of the major food crops in countries of sub-Saharan Africa.

  13. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    PubMed

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  14. The role of Na-Ca exchange current in the cardiac action potential.

    PubMed

    Janvier, N C; Boyett, M R

    1996-07-01

    Since 1981, when Mullins published his provocative book proposing that the Na-Ca exchanger is electrogenic, it has been shown, first by computer simulation by Noble and later by experiment by various investigators, that inward iNaCa triggered by the Ca2+ transient is responsible for the low plateau of the atrial action potential and contributes to the high plateau of the ventricular action potential. Reduction or complete block of inward iNaCa by buffering intracellular Ca2+ with EGTA or BAPTA, by blocking SR Ca2+ release or by substituting extracellular Na+ with Li+ can result in a shortening of the action potential. The effect of block of outward iNaCa or complete block of both inward and outward iNaCa on the action potential has not been investigated experimentally, because of the lack of a suitable blocker, and remains a goal for the future. An increase in the intracellular Na+ concentration (after the application of cardiac glycoside or an increase in heart rate) or an increase in extracellular Ca2+ are believed to lead to an outward shift in iNaCa at plateau potentials and a shortening of the action potential. Changes in the Ca2+ transient are expected to result in changes in inward iNaCa and thus the action potential. This may explain the shortening of the premature action potential as well as the prolongation of the action potential when a muscle is allowed to shorten during the action potential. Inward iNaCa may play an important role in both normal and abnormal pacemaker activity in the heart.

  15. Simulation of action potential propagation in plants.

    PubMed

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    PubMed

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P < 0.001; 406 motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. High-performance, low-cost solar collectors for disinfection of contaminated water.

    PubMed

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  18. Struggling toward reward: Recent experience of anhedonia interacts with motivation to predict reward pursuit in the face of a stressful manipulation.

    PubMed

    Bryant, Jessica; Winer, E Samuel; Salem, Taban; Nadorff, Michael R

    2017-01-01

    Anhedonia, or the loss of interest and/or pleasure, is a core symptom of depression. Individuals experiencing anhedonia have difficulty motivating themselves to pursue rewarding stimuli, which can result in dysfunction. Action orientation is a motivational factor that might interact with anhedonia to potentially buffer against this dysfunction, as action-oriented individuals upregulate positive affect to quickly motivate themselves to complete goals in the face of stress. The Effort-Expenditure for Rewards Task (EEfRT) is a promising new method for examining differences in motivation in individuals experiencing anhedonia. In the EEfRT, participants choose either easier tasks associated with smaller monetary rewards or harder tasks associated with larger monetary rewards. We examined the relationship between action orientation and EEfRT performance following a negative mood induction in a sample with varying levels of anhedonia. There were two competing hypotheses: (1) action orientation would act as a buffer against anhedonia such that action-oriented individuals, regardless of anhedonic symptoms, would be motivated to pursue greater rewards despite stress, or (2) anhedonia would act as a debilitating factor such that individuals with elevated anhedonic symptoms, regardless of action orientation, would not pursue greater rewards. We examined these hypotheses via Generalized Estimating Equations and found an interaction between anhedonia and action orientation. At low levels of anhedonia, action orientation was associated with effort for reward, but this relationship was not present at high levels of anhedonia. Thus, at low levels of anhedonia, action orientation acted as a buffer against stress, but at high levels, anhedonia debilitated action orientation so that it was no longer a promotive factor.

  19. Using Electrically-evoked Compound Action Potentials to Estimate Perceptive Levels in Experienced Adult Cochlear Implant Users.

    PubMed

    Joly, Charles-Alexandre; Péan, Vincent; Hermann, Ruben; Seldran, Fabien; Thai-Van, Hung; Truy, Eric

    2017-10-01

    The cochlear implant (CI) fitting level prediction accuracy of electrically-evoked compound action potential (ECAP) should be enhanced by the addition of demographic data in models. No accurate automated fitting of CI based on ECAP has yet been proposed. We recorded ECAP in 45 adults who had been using MED-EL CIs for more than 11 months and collected the most comfortable loudness level (MCL) used for CI fitting (prog-MCL), perception thresholds (meas-THR), and MCL (meas-MCL) measured with the stimulation used for ECAP recording. Linear mixed models taking into account cochlear site factors were computed to explain prog-MCL, meas-MCL, and meas-THR. Cochlear region and ECAP threshold were predictors of the three levels. In addition, significant predictors were the ECAP amplitude for the prog-MCL and the duration of deafness for the prog-MCL and the meas-THR. Estimations were more accurate for the meas-THR, then the meas-MCL, and finally the prog-MCL. These results show that 1) ECAP thresholds are more closely related to perception threshold than to comfort level, 2) predictions are more accurate when the inter-subject and cochlear regions variations are considered, and 3) differences between the stimulations used for ECAP recording and for CI fitting make it difficult to accurately predict the prog-MCL from the ECAP recording. Predicted prog-MCL could be used as bases for fitting but should be used with care to avoid any uncomfortable or painful stimulation.

  20. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  1. [Loudness optimized registration of compound action potential in cochlear implant recipients].

    PubMed

    Berger, Klaus; Hocke, Thomas; Hessel, Horst

    2017-11-01

    Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  2. Last-position elimination-based learning automata.

    PubMed

    Zhang, Junqi; Wang, Cheng; Zhou, MengChu

    2014-12-01

    An update scheme of the state probability vector of actions is critical for learning automata (LA). The most popular is the pursuit scheme that pursues the estimated optimal action and penalizes others. This paper proposes a reverse philosophy that leads to last-position elimination-based learning automata (LELA). The action graded last in terms of the estimated performance is penalized by decreasing its state probability and is eliminated when its state probability becomes zero. All active actions, that is, actions with nonzero state probability, equally share the penalized state probability from the last-position action at each iteration. The proposed LELA is characterized by the relaxed convergence condition for the optimal action, the accelerated step size of the state probability update scheme for the estimated optimal action, and the enriched sampling for the estimated nonoptimal actions. The proof of the ϵ-optimal property for the proposed algorithm is presented. Last-position elimination is a widespread philosophy in the real world and has proved to be also helpful for the update scheme of the learning automaton via the simulations of well-known benchmark environments. In the simulations, two versions of the LELA, using different selection strategies of the last action, are compared with the classical pursuit algorithms Discretized Pursuit Reward-Inaction (DP(RI)) and Discretized Generalized Pursuit Algorithm (DGPA). Simulation results show that the proposed schemes achieve significantly faster convergence and higher accuracy than the classical ones. Specifically, the proposed schemes reduce the interval to find the best parameter for a specific environment in the classical pursuit algorithms. Thus, they can have their parameter tuning easier to perform and can save much more time when applied to a practical case. Furthermore, the convergence curves and the corresponding variance coefficient curves of the contenders are illustrated to characterize their essential differences and verify the analysis results of the proposed algorithms.

  3. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    PubMed

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder.

    PubMed

    Takagi, Hiroaki; Hashitani, Hikaru

    2016-10-15

    The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The influence of passband limitation on the waveform of extracellular action potential.

    PubMed

    Mizuhiki, Takashi; Inaba, Kiyonori; Setogawa, Tsuyoshi; Toda, Koji; Ozaki, Shigeru; Shidara, Muneteka

    2012-03-01

    The duration of the extracellular action potential (EAP) in single neuronal recording has often been used as a clue to infer biochemical, physiological or functional substrate of the recorded neurons, e.g. neurochemical type. However, when recording a neuronal activity, the high-pass filter is routinely used to achieve higher signal-to-noise ratio. Signal processing theory predicts that passband limitation stretches the waveform of discrete brief impulse. To examine whether the duration of filtered EAP could be the reliable measure, we investigated the influence of high-pass filter both by simulation and unfiltered unit recording data from monkey dorsal raphe. Consistent with the findings in recent theoretical study, the unfiltered EAPs displayed the sharp wave without following bumps. The duration of unfiltered EAP was not correlated with that of filtered EAP. Thus the duration of original EAP cannot be estimated from filtered EAP. It is needed to reexamine the EAP duration measured for classifying the neurons whose activities were recorded under the passband limitation in the related studies. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    PubMed

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  7. Pathological prolongation of action potential duration as a cause of the reduced alpha-adrenoceptor-mediated negative inotropy in streptozotocin-induced diabetic mice myocardium.

    PubMed

    Kanae, Haruna; Hamaguchi, Shogo; Wakasugi, Yumi; Kusakabe, Taichi; Kato, Keisuke; Namekata, Iyuki; Tanaka, Hikaru

    2017-11-01

    Effect of pathological prolongation of action potential duration on the α-adrenoceptor-mediated negative inotropy was studied in streptozotocin-induced diabetic mice myocardium. In streptozotocin-treated mouse ventricular myocardium, which had longer duration of action potential than that in control mice, the negative inotropic response induced by phenylephrine was smaller than that in control mice. 4-Aminopyridine prolonged the action potential duration and decreased the negative inotropy in control mice. Cromakalim shortened the action potential duration and increased the negative inotropy in streptozotocin-treated mice. These results suggest that the reduced α-adrenoceptor-mediated inotropy in the diabetic mouse myocardium is partly due to its prolonged action potential. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials.

    PubMed

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-10-15

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    PubMed Central

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  10. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsey, Henry; Fleming, Katherine; Ball, Brian

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is calledmore » metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.« less

  11. Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons.

    PubMed

    Hardie, Jason; Spruston, Nelson

    2009-03-11

    Long-term potentiation (LTP) requires postsynaptic depolarization that can result from EPSPs paired with action potentials or larger EPSPs that trigger dendritic spikes. We explored the relative contribution of these sources of depolarization to LTP induction during synaptically driven action potential firing in hippocampal CA1 pyramidal neurons. Pairing of a weak test input with a strong input resulted in large LTP (approximately 75% increase) when the weak and strong inputs were both located in the apical dendrites. This form of LTP did not require somatic action potentials. When the strong input was located in the basal dendrites, the resulting LTP was smaller (< or =25% increase). Pairing the test input with somatically evoked action potentials mimicked this form of LTP. Thus, back-propagating action potentials may contribute to modest LTP, but local synaptic depolarization and/or dendritic spikes mediate a stronger form of LTP that requires spatial proximity of the associated synaptic inputs.

  12. A simple model for the generation of the vestibular evoked myogenic potential (VEMP).

    PubMed

    Wit, Hero P; Kingma, Charlotte M

    2006-06-01

    To describe the mechanism by which the vestibular evoked myogenic potential is generated. Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long time axis. But because between approximately 15 and 20 ms after a loud short sound stimulus (almost) no action potentials are generated during VEMP measurements in human subjects, no action potentials are present in the model during this time. The evoked potential is the result of the lack of amplitude cancellation in the averaged surface electromyogram at the edges of this 5 ms long time interval. The relatively simple model describes generation and some properties of the vestibular evoked myogenic potential very well. It is shown that, in contrast with other evoked potentials (BAEPs, VERs), the vestibular evoked myogenic potential is the result of an interruption of activity and not that of summed synchronized neural action potentials.

  13. Climate Action Planning Tool | NREL

    Science.gov Websites

    NREL's Climate Action Planning Tool provides a quick, basic estimate of how various technology options can contribute to an overall climate action plan for your research campus. Use the tool to

  14. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  15. Actionable exomic incidental findings in 6503 participants: challenges of variant classification.

    PubMed

    Amendola, Laura M; Dorschner, Michael O; Robertson, Peggy D; Salama, Joseph S; Hart, Ragan; Shirts, Brian H; Murray, Mitzi L; Tokita, Mari J; Gallego, Carlos J; Kim, Daniel Seung; Bennett, James T; Crosslin, David R; Ranchalis, Jane; Jones, Kelly L; Rosenthal, Elisabeth A; Jarvik, Ella R; Itsara, Andy; Turner, Emily H; Herman, Daniel S; Schleit, Jennifer; Burt, Amber; Jamal, Seema M; Abrudan, Jenica L; Johnson, Andrew D; Conlin, Laura K; Dulik, Matthew C; Santani, Avni; Metterville, Danielle R; Kelly, Melissa; Foreman, Ann Katherine M; Lee, Kristy; Taylor, Kent D; Guo, Xiuqing; Crooks, Kristy; Kiedrowski, Lesli A; Raffel, Leslie J; Gordon, Ora; Machini, Kalotina; Desnick, Robert J; Biesecker, Leslie G; Lubitz, Steven A; Mulchandani, Surabhi; Cooper, Greg M; Joffe, Steven; Richards, C Sue; Yang, Yaoping; Rotter, Jerome I; Rich, Stephen S; O'Donnell, Christopher J; Berg, Jonathan S; Spinner, Nancy B; Evans, James P; Fullerton, Stephanie M; Leppig, Kathleen A; Bennett, Robin L; Bird, Thomas; Sybert, Virginia P; Grady, William M; Tabor, Holly K; Kim, Jerry H; Bamshad, Michael J; Wilfond, Benjamin; Motulsky, Arno G; Scott, C Ronald; Pritchard, Colin C; Walsh, Tom D; Burke, Wylie; Raskind, Wendy H; Byers, Peter; Hisama, Fuki M; Rehm, Heidi; Nickerson, Debbie A; Jarvik, Gail P

    2015-03-01

    Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base. © 2015 Amendola et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures.

    PubMed

    Pekala, Dobromila; Szkudlarek, Hanna; Raastad, Morten

    2016-10-01

    We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate action potentials, but at temperatures >39°C, the propagation of the action potentials to a more distal recording site was reduced. This temperature-sensitive conduction may be specific for the very thin unmyelinated axons because similar recordings from myelinated CNS axons did not show conduction failures. We found that the conduction fidelity improved with 1 mmol/L TEA in the bath, probably due to block of voltage-sensitive potassium channels responsible for the fast repolarization of action potentials. Furthermore, by recording electrically activated antidromic action potentials from the soma of cerebellar granule cells, we showed that the axons failed less if they were triggered 10-30 msec after another action potential. This was because individual action potentials were followed by a depolarizing after-potential, of constant amplitude and shape, which facilitated conduction of the following action potentials. The temperature-sensitive conduction failures above, but not below, normal body temperature, and the failure-reducing effect of the spike's depolarizing after-potential, are two intrinsic mechanisms in normal gray matter axons that may help us understand how the hyperthermic brain functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  18. Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other's Action Intention.

    PubMed

    Zhang, Li; Gan, John Q; Zheng, Wenming; Wang, Haixian

    2018-05-01

    In action intention understanding, the mirror system is involved in perception-action matching process and the mentalizing system underlies higher-level intention inference. By analyzing the dynamic functional connectivity in α (8-12 Hz) and β (12-30 Hz) frequency bands over a "hand-cup interaction" observation task, this study investigates the topological transition from the action observation network (AON) to the mentalizing network (MZN), and estimates their functional relevance for intention identification from other's different action kinematics. Sequential brain microstates were extracted based on event-related potentials (ERPs), in which significantly differing neuronal responses were found in N170-P200 related to perceptually matching kinematic profiles and P400-700 involved in goal inference. Inter-electrode weighted phase lag index analysis on the ERP microstates revealed a shift of hub centrality salient in α frequency band, from the AON dominated by left-lateral frontal-premotor-temporal and temporal-parietooccipital synchronizations to the MZN consisting of more bilateral frontal-parietal and temporal-parietal synchronizations. As compared with usual actions, intention identification of unintelligible actions induces weaker synchronizations in the AON but dramatically increased connectivity in right frontal-temporal-parietal regions of the MZN, indicating a spatiotemporally complementary effect between the functional network configurations involved in mirror and mentalizing processes. Perceptual processing in observing usual/unintelligible actions decreases/increases requirements for intention inference, which would induce less/greater functional network reorganization on the way to mentalization. From the comparison, our study suggests that the adaptive topological changes from the AON to the MZN indicate implicit causal association between the mirror and mentalizing systems for decoding others' intentionality.

  19. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    PubMed Central

    Crago, Patrick E; Makowski, Nathan S

    2014-01-01

    Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation. PMID:25161163

  20. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  1. Potential economic losses to the USA corn industry from aflatoxin contamination

    PubMed Central

    Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  2. Potential economic losses to the US corn industry from aflatoxin contamination.

    PubMed

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.

  3. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  4. Effect of an educational game on university students' learning about action potentials.

    PubMed

    Luchi, Kelly Cristina Gaviao; Montrezor, Luís Henrique; Marcondes, Fernanda K

    2017-06-01

    The aim of this study was to evaluate the effect of an educational game that is used for teaching the mechanisms of the action potentials in cell membranes. The game was composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na + -K + -ATPase pump. During the game activity, the students arranged the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movement with a graph of the action potential. To test the effect of the game activity on student understanding, first-year dental students were given the game to play at different times in a series of classes teaching resting membrane potential and action potentials. In all experiments, students who played the game performed better in assessments. According to 98% of the students, the game supported the learning process. The data confirm the students' perception, indicating that the educational game improved their understanding about action potentials. Copyright © 2017 the American Physiological Society.

  5. Applying the Land Use Portfolio Model to Estimate Natural-Hazard Loss and Risk - A Hypothetical Demonstration for Ventura County, California

    USGS Publications Warehouse

    Dinitz, Laura B.

    2008-01-01

    With costs of natural disasters skyrocketing and populations increasingly settling in areas vulnerable to natural hazards, society is challenged to better allocate its limited risk-reduction resources. In 2000, Congress passed the Disaster Mitigation Act, amending the Robert T. Stafford Disaster Relief and Emergency Assistance Act (Robert T. Stafford Disaster Relief and Emergency Assistance Act, Pub. L. 93-288, 1988; Federal Emergency Management Agency, 2002, 2008b; Disaster Mitigation Act, 2000), mandating that State, local, and tribal communities prepare natural-hazard mitigation plans to qualify for pre-disaster mitigation grants and post-disaster aid. The Federal Emergency Management Agency (FEMA) was assigned to coordinate and implement hazard-mitigation programs, and it published information about specific mitigation-plan requirements and the mechanisms (through the Hazard Mitigation Grant Program-HMGP) for distributing funds (Federal Emergency Management Agency, 2002). FEMA requires that each community develop a mitigation strategy outlining long-term goals to reduce natural-hazard vulnerability, mitigation objectives and specific actions to reduce the impacts of natural hazards, and an implementation plan for those actions. The implementation plan should explain methods for prioritizing, implementing, and administering the actions, along with a 'cost-benefit review' justifying the prioritization. FEMA, along with the National Institute of Building Sciences (NIBS), supported the development of HAZUS ('Hazards U.S.'), a geospatial natural-hazards loss-estimation tool, to help communities quantify potential losses and to aid in the selection and prioritization of mitigation actions. HAZUS was expanded to a multiple-hazard version, HAZUS-MH, that combines population, building, and natural-hazard science and economic data and models to estimate physical damages, replacement costs, and business interruption for specific natural-hazard scenarios. HAZUS-MH currently performs analyses for earthquakes, floods, and hurricane wind. HAZUS-MH loss estimates, however, do not account for some uncertainties associated with the specific natural-hazard scenarios, such as the likelihood of occurrence within a particular time horizon or the effectiveness of alternative risk-reduction options. Because of the uncertainties involved, it is challenging to make informative decisions about how to cost-effectively reduce risk from natural-hazard events. Risk analysis is one approach that decision-makers can use to evaluate alternative risk-reduction choices when outcomes are unknown. The Land Use Portfolio Model (LUPM), developed by the U.S. Geological Survey (USGS), is a geospatial scenario-based tool that incorporates hazard-event uncertainties to support risk analysis. The LUPM offers an approach to estimate and compare risks and returns from investments in risk-reduction measures. This paper describes and demonstrates a hypothetical application of the LUPM for Ventura County, California, and examines the challenges involved in developing decision tools that provide quantitative methods to estimate losses and analyze risk from natural hazards.

  6. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity. Copyright © 2015 The American Physiological Society.

  7. Quantifying potential health impacts of cadmium in cigarettes on smoker risk of lung cancer: a portfolio-of-mechanisms approach.

    PubMed

    Cox, Louis Anthony Tony

    2006-12-01

    This article introduces an approach to estimating the uncertain potential effects on lung cancer risk of removing a particular constituent, cadmium (Cd), from cigarette smoke, given the useful but incomplete scientific information available about its modes of action. The approach considers normal cell proliferation; DNA repair inhibition in normal cells affected by initiating events; proliferation, promotion, and progression of initiated cells; and death or sparing of initiated and malignant cells as they are further transformed to become fully tumorigenic. Rather than estimating unmeasured model parameters by curve fitting to epidemiological or animal experimental tumor data, we attempt rough estimates of parameters based on their biological interpretations and comparison to corresponding genetic polymorphism data. The resulting parameter estimates are admittedly uncertain and approximate, but they suggest a portfolio approach to estimating impacts of removing Cd that gives usefully robust conclusions. This approach views Cd as creating a portfolio of uncertain health impacts that can be expressed as biologically independent relative risk factors having clear mechanistic interpretations. Because Cd can act through many distinct biological mechanisms, it appears likely (subjective probability greater than 40%) that removing Cd from cigarette smoke would reduce smoker risks of lung cancer by at least 10%, although it is possible (consistent with what is known) that the true effect could be much larger or smaller. Conservative estimates and assumptions made in this calculation suggest that the true impact could be greater for some smokers. This conclusion appears to be robust to many scientific uncertainties about Cd and smoking effects.

  8. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    PubMed

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation.

    PubMed

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.

  11. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229

  12. Action potential propagation: ion current or intramembrane electric field?

    PubMed

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  13. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.

    PubMed

    Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S

    2008-02-01

    Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

  14. Preventability of Cancer

    PubMed Central

    Colditz, Graham A.; Wei, Esther K.

    2013-01-01

    Whereas models of cancer disparities and variation in cancer burden within population groups now specify multiple levels of action from biologic processes to individual risk factors and social and physical contextual factors, approaches to estimating the preventable proportion of cancer use more traditional direct models often from single exposures to cancer at specific organ sites. These approaches are reviewed, and the strengths and limitations are presented. The need for additional multilevel data and approaches to estimation of preventability are identified. International or regional variation in cancer may offer the most integrated exposure assessment over the life course. For the four leading cancers, which account for 50% of incidence and mortality, biologic, social, and physical environments play differing roles in etiology and potential prevention. Better understanding of the interactions and contributions across these levels will help refine prevention strategies. PMID:22224878

  15. 40 CFR 258.73 - Financial assurance for corrective action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action. 258.73 Section 258.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... the cost of hiring a third party to perform the corrective action in accordance with the program required under § 258.58 of this part. The corrective action cost estimate must account for the total costs...

  16. 40 CFR 258.73 - Financial assurance for corrective action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action. 258.73 Section 258.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... the cost of hiring a third party to perform the corrective action in accordance with the program required under § 258.58 of this part. The corrective action cost estimate must account for the total costs...

  17. Estimating the impact of grouping misclassification on risk ...

    EPA Pesticide Factsheets

    Environmental health risk assessments of chemical mixtures that rely on component approaches often begin by grouping the chemicals of concern according to toxicological similarity. Approaches that assume dose addition typically are used for groups of similarly-acting chemicals and those that assume response addition are used for groups of independently acting chemicals. Grouping criteria for similarity can include a common adverse outcome pathway (AOP) and similarly shaped dose-response curves, with the latter used in the relative potency factor (RPF) method for estimating mixture response. Independence of toxic action is generally assumed if there is evidence that the chemicals act by different mechanisms. Several questions arise about the potential for misclassification error in the mixture risk prediction. If a common AOP has been established, how much error could there be if the same dose-response curve shape is assumed for all chemicals, when the shapes truly differ and, conversely, what is the error potential if different shapes are assumed when they are not? In particular, how do those concerns impact the choice of index chemical and uncertainty of the RPF-estimated mixture response? What is the quantitative impact if dose additivity is assumed when complete or partial independence actually holds and vice versa? These concepts and implications will be presented with numerical examples in the context of uncertainty of the RPF-estimated mixture response,

  18. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in the inhibitory effects of minocycline upon AMPH-elicited action potential bursts. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Selective effects of an octopus toxin on action potentials

    PubMed Central

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  20. Crash avoidance potential of four large truck technologies.

    PubMed

    Jermakian, Jessica S

    2012-11-01

    The objective of this paper was to estimate the maximum potential large truck crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and vehicle stability control. Estimates accounted for limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as location of damage on the vehicle, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented the crash. Of the four technologies, side view assist had the greatest potential for preventing large truck crashes of any severity; the technology is potentially applicable to 39,000 crashes in the United States each year, including 2000 serious and moderate injury crashes and 79 fatal crashes. Vehicle stability control is another promising technology, with the potential to prevent or mitigate up to 31,000 crashes per year including more serious crashes--up to 7000 moderate-to-serious injury crashes and 439 fatal crashes per year. Vehicle stability control could prevent or mitigate up to 20 and 11 percent of moderate-to-serious injury and fatal large truck crashes, respectively. Forward collision warning has the potential to prevent as many as 31,000 crashes per year, including 3000 serious and moderate injury crashes and 115 fatal crashes. Finally, 10,000 large truck crashes annually were relevant to lane departure warning/prevention systems. Of these, 1000 involved serious and moderate injuries and 247 involved fatal injuries. There is great potential effectiveness for truck-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. Actual effectiveness of crash avoidance systems will not be known until sufficient real-world experience has been gained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Relationship between size and latency of action potentials in human muscle sympathetic nerve activity.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Steinback, Craig D; Usselman, Charlotte W; Goswami, Ruma; Shoemaker, J Kevin

    2011-06-01

    We employed a novel action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human muscle sympathetic nerve activity (MSNA). Multifiber postganglionic sympathetic nerve activity from the common fibular nerve was collected using microneurography in 10 healthy subjects at rest and during activation of sympathetic outflow using lower body negative pressure (LBNP). Burst occurrence increased with LBNP. Integrated burst strength (size) varied from 0.22 ± 0.07 V at rest to 0.28 ± 0.09 V during LBNP. Sympathetic burst size (i.e., peak height) was directly related to the number of action potentials within a sympathetic burst both at baseline (r = 0.75 ± 0.13; P < 0.001) and LBNP (r = 0.75 ± 0.12; P < 0.001). Also, the amplitude of detected action potentials within sympathetic bursts was directly related to the increased burst size at both baseline (r = 0.59 ± 0.16; P < 0.001) and LBNP (r = 0.61 ± 0.12; P < 0.001). In addition, the number of detected action potentials and the number of distinct action potential clusters within a given sympathetic burst were correlated at baseline (r = 0.7 ± 0.1; P < 0.001) and during LBNP (r = 0.74 ± 0.03; P < 0.001). Furthermore, action potential latency (i.e., an inverse index of neural conduction velocity) was decreased as a function of action potential size at baseline and LBNP. LBNP did not change the number of action potentials and unique clusters per sympathetic burst. It was concluded that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger (i.e., larger amplitude bursts). This fundamental pattern was evident at rest and was not altered by the level of baroreceptor unloading applied in this study.

  2. Effects of Training on the Estimation of Muscular Moment in Submaximal Exercise

    ERIC Educational Resources Information Center

    Leverrier, Celine; Gauthier, Antoine; Nicolas, Arnaud; Molinaro, Corinne

    2011-01-01

    The purpose of this study was to observe the effects of a submaximal isometric training program on estimation capacity at 25, 50, and 75% of maximal contraction in isometric action and at two angular velocities. The second purpose was to study the variability of isometric action. To achieve these purposes, participants carried out an isokinetic…

  3. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  4. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    PubMed Central

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930

  5. The relationship between religion and thought-action fusion: use of an in vivo paradigm.

    PubMed

    Berman, Noah C; Abramowitz, Jonathan S; Pardue, Caleb M; Wheaton, Michael G

    2010-07-01

    Research has demonstrated that higher levels of religiosity are positively correlated with thought-action fusion (TAF), a set of cognitive biases found to be associated with obsessive-compulsive symptoms. However, previous studies have exclusively relied on a nomothetic approach to measuring TAF using a single self-report instrument, the thought-action fusion scale. The current study examined the relationship between religiosity and TAF using an in vivo behaviorally-based assessment in which participants thought about and wrote down thoughts of negative events involving loved ones. Forty-three highly religious Protestant Christians were compared to 30 Atheists/Agnostics on their in vivo ratings of anxiety, estimates of likelihood, and moral wrongness related to the negative thoughts. Results indicated that compared to the non-religious participants, those who were highly religious believed that writing and thinking about the negative events was more morally wrong and increased the likelihood of the event. Results are discussed in terms of the potential relationship between certain religious teachings and TAF-related beliefs about the importance, significance, and influence of thoughts. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Median and ulnar muscle and sensory evoked potentials.

    PubMed

    Felsenthal, G

    1978-08-01

    The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no significant difference between the ulnar muscle action potentials or for the median and ulnar distal motor and sensory latencies in the right and left hands of this group of volunteers.

  7. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?

    PubMed

    Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C

    2006-01-01

    Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.

  8. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Low concentrations of procaine and diethylaminoethanol reduce the excitability but not the action potential amplitude of hippocampal pyramidal cells.

    PubMed

    Butterworth, J F; Cole, L R

    1990-10-01

    To determine whether concentrations of diethylaminoethanol (DEAE) and procaine below those that reduce the amplitude of action potentials might alter the excitability of brain cells, a single microelectrode intracellular recording technique was used to measure firing threshold and action potential amplitude of pyramidal cells in rat hippocampal slices. At low concentrations of both DEAE (less than or equal to 5 mM) and procaine (less than or equal to 0.5 mM), firing threshold was significantly increased (P less than 0.01), whereas action potential spike amplitude was minimally altered. At higher concentrations, both drugs significantly decreased action potential spike amplitude (P less than 0.025) as well as increased firing threshold (P less than 0.001). Diethylaminoethanol tended to increase threshold relatively more than procaine, when drug concentrations that similarly reduced action potential amplitude were compared. All actions of DEAE and procaine were reversible. Inhibition of action potentials by DEAE and procaine was clearly concentration-dependent (P less than or equal to 0.015). Diethylaminoethanol effects on threshold were marginally concentration-dependent (P = 0.08); procaine did not demonstrate clear concentration-dependent effects (P = 0.33) over the concentrations tested in this study. These similar actions of procaine and DEAE on brain cells suggest a mechanism by which intravenous local anesthetics may contribute to the general anesthetic state. Moreover, it appears possible that procaine metabolism and DEAE accumulation may underlie the prolonged effects sometimes seen after intravenous procaine administration.

  10. 78 FR 34031 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ...) Evaluate potential threats to critical values; (2) determine the risk level for each threat; (3) identify... actions that meet the objectives; (6) evaluate potential response actions on likelihood for timely... stabilization actions. Improved the descriptive guidelines for employing response actions involving...

  11. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    PubMed

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety assessment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    PubMed

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  13. Active action potential propagation but not initiation in thalamic interneuron dendrites

    PubMed Central

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  14. Event-Related Potentials Discriminate Familiar and Unusual Goal Outcomes in 5-Month-Olds and Adults

    ERIC Educational Resources Information Center

    Michel, Christine; Kaduk, Katharina; Ní Choisdealbha, Áine; Reid, Vincent M.

    2017-01-01

    Previous event-related potential (ERP) work has indicated that the neural processing of action sequences develops with age. Although adults and 9-month-olds use a semantic processing system, perceiving actions activates attentional processes in 7-month-olds. However, presenting a sequence of action context, action execution and action conclusion…

  15. Estimating Preferences for Complex Health Technologies: Lessons Learned and Implications for Personalized Medicine.

    PubMed

    Marshall, Deborah A; Gonzalez, Juan Marcos; MacDonald, Karen V; Johnson, F Reed

    2017-01-01

    We examine key study design challenges of using stated-preference methods to estimate the value of whole-genome sequencing (WGS) as a specific example of genomic testing. Assessing the value of WGS is complex because WGS provides multiple findings, some of which can be incidental in nature and unrelated to the specific health concerns that motivated the test. In addition, WGS results can include actionable findings (variants considered to be clinically useful and can be acted on), findings for which evidence for best clinical action is not available (variants considered clinically valid but do not meet as high of a standard for clinical usefulness), and findings of unknown significance. We consider three key challenges encountered in designing our national study on the value of WGS-layers of uncertainty, potential downstream consequences with endogenous aspects, and both positive and negative utility associated with testing information-and potential solutions as strategies to address these challenges. We conceptualized the decision to acquire WGS information as a series of sequential choices that are resolved separately. To determine the value of WGS information at the initial decision to undergo WGS, we used contingent valuation questions, and to elicit respondent preferences for reducing risks of health problems and the consequences of taking the steps to reduce these risks, we used a discrete-choice experiment. We conclude by considering the implications for evaluating the value of other complex health technologies that involve multiple forms of uncertainty. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Natural climate solutions

    NASA Astrophysics Data System (ADS)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  17. A review on cluster estimation methods and their application to neural spike data.

    PubMed

    Zhang, James; Nguyen, Thanh; Cogill, Steven; Bhatti, Asim; Luo, Lingkun; Yang, Samuel; Nahavandi, Saeid

    2018-06-01

    The extracellular action potentials recorded on an electrode result from the collective simultaneous electrophysiological activity of an unknown number of neurons. Identifying and assigning these action potentials to their firing neurons-'spike sorting'-is an indispensable step in studying the function and the response of an individual or ensemble of neurons to certain stimuli. Given the task of neural spike sorting, the determination of the number of clusters (neurons) is arguably the most difficult and challenging issue, due to the existence of background noise and the overlap and interactions among neurons in neighbouring regions. It is not surprising that some researchers still rely on visual inspection by experts to estimate the number of clusters in neural spike sorting. Manual inspection, however, is not suitable to processing the vast, ever-growing amount of neural data. To address this pressing need, in this paper, thirty-three clustering validity indices have been comprehensively reviewed and implemented to determine the number of clusters in neural datasets. To gauge the suitability of the indices to neural spike data, and inform the selection process, we then calculated the indices by applying k-means clustering to twenty widely used synthetic neural datasets and one empirical dataset, and compared the performance of these indices against pre-existing ground truth labels. The results showed that the top five validity indices work consistently well across variations in noise level, both for the synthetic datasets and the real dataset. Using these top performing indices provides strong support for the determination of the number of neural clusters, which is essential in the spike sorting process.

  18. Natural climate solutions

    PubMed Central

    Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-01-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344

  19. A review on cluster estimation methods and their application to neural spike data

    NASA Astrophysics Data System (ADS)

    Zhang, James; Nguyen, Thanh; Cogill, Steven; Bhatti, Asim; Luo, Lingkun; Yang, Samuel; Nahavandi, Saeid

    2018-06-01

    The extracellular action potentials recorded on an electrode result from the collective simultaneous electrophysiological activity of an unknown number of neurons. Identifying and assigning these action potentials to their firing neurons—‘spike sorting’—is an indispensable step in studying the function and the response of an individual or ensemble of neurons to certain stimuli. Given the task of neural spike sorting, the determination of the number of clusters (neurons) is arguably the most difficult and challenging issue, due to the existence of background noise and the overlap and interactions among neurons in neighbouring regions. It is not surprising that some researchers still rely on visual inspection by experts to estimate the number of clusters in neural spike sorting. Manual inspection, however, is not suitable to processing the vast, ever-growing amount of neural data. To address this pressing need, in this paper, thirty-three clustering validity indices have been comprehensively reviewed and implemented to determine the number of clusters in neural datasets. To gauge the suitability of the indices to neural spike data, and inform the selection process, we then calculated the indices by applying k-means clustering to twenty widely used synthetic neural datasets and one empirical dataset, and compared the performance of these indices against pre-existing ground truth labels. The results showed that the top five validity indices work consistently well across variations in noise level, both for the synthetic datasets and the real dataset. Using these top performing indices provides strong support for the determination of the number of neural clusters, which is essential in the spike sorting process.

  20. Phasor Measurement Unit and Its Application in Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less

  1. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  2. Detachable glass microelectrodes for recording action potentials in active moving organs.

    PubMed

    Barbic, Mladen; Moreno, Angel; Harris, Tim D; Kay, Matthew W

    2017-06-01

    Here, we describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100-µg glass microelectrode, a "microdevice," is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs, and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration was monitored continuously for 15 min in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in action potential duration. Action potentials from neurons in the hippocampus of anesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ. NEW & NOTEWORTHY Cellular action potential measurements within tissue using glass micropipette electrodes usually require tissue immobilization, potentially influencing the physiological relevance of the measurement. Here, we addressed this limitation with novel 100-µg detachable glass microelectrodes that can be precisely positioned to provide long-term measurements of action potential duration during unconstrained tissue movement. Copyright © 2017 the American Physiological Society.

  3. Internal Dynamics and Crustal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The objective of this work is to improve understanding of the internal structure, crustal evolution, and thermal history of Mars by combining geophysical data analysis of topography, gravity and magnetics with results from analytical and computational modeling. Accomplishments thus far in this investigation include: (1) development of a new crustal thickness model that incorporates constraints from Mars meteorites, corrections for polar cap masses and other surface loads, Pratt isostasy, and core flattening; (2) determination of a refined estimate of crustal thickness of Mars from geoid/topography ratios (GTRs); (3) derivation of a preliminary estimate of the k(sub 2) gravitational Love number and a preliminary estimate of possible dissipation within Mars consistent with this value; and (4) an integrative analysis of the sequence of evolution of early Mars. During the remainder of this investigation we will: (1) extend models of degree-1 mantle convection from 2-D to 3-D; (2) investigate potential causal relationships and effects of major impacts on mantle plume formation, with primary application to Mars; (3) develop exploratory models to assess the convective stability of various Martian core states as relevant to the history of dynamo action; and (4) develop models of long-wavelength relaxation of crustal thickness anomalies to potentially explain the degree-1 structure of the Martian crust.

  4. Threat evaluation for impact assessment in situation analysis systems

    NASA Astrophysics Data System (ADS)

    Roy, Jean; Paradis, Stephane; Allouche, Mohamad

    2002-07-01

    Situation analysis is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of situation awareness, for the decision maker. Data fusion is a key enabler to meeting the demanding requirements of military situation analysis support systems. According to the data fusion model maintained by the Joint Directors of Laboratories' Data Fusion Group, impact assessment estimates the effects on situations of planned or estimated/predicted actions by the participants, including interactions between action plans of multiple players. In this framework, the appraisal of actual or potential threats is a necessary capability for impact assessment. This paper reviews and discusses in details the fundamental concepts of threat analysis. In particular, threat analysis generally attempts to compute some threat value, for the individual tracks, that estimates the degree of severity with which engagement events will potentially occur. Presenting relevant tracks to the decision maker in some threat list, sorted from the most threatening to the least, is clearly in-line with the cognitive demands associated with threat evaluation. A key parameter in many threat value evaluation techniques is the Closest Point of Approach (CPA). Along this line of thought, threatening tracks are often prioritized based upon which ones will reach their CPA first. Hence, the Time-to-CPA (TCPA), i.e., the time it will take for a track to reach its CPA, is also a key factor. Unfortunately, a typical assumption for the computation of the CPA/TCPA parameters is that the track velocity will remain constant. When a track is maneuvering, the CPA/TCPA values will change accordingly. These changes will in turn impact the threat value computations and, ultimately, the resulting threat list. This is clearly undesirable from a command decision-making perspective. In this regard, the paper briefly discusses threat value stabilization approaches based on neural networks and other mathematical techniques.

  5. Measuring the effectiveness of conservation: a novel framework to quantify the benefits of sage-grouse conservation policy and easements in Wyoming.

    PubMed

    Copeland, Holly E; Pocewicz, Amy; Naugle, David E; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James

    2013-01-01

    Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance "core" habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14-29% (95% CI: 4-46%). However, a conservation strategy that includes the "core area" policy and $250 million in targeted easements could reduce these losses to 9-15% (95% CI: 3-32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing.

  6. Measuring the Effectiveness of Conservation: A Novel Framework to Quantify the Benefits of Sage-Grouse Conservation Policy and Easements in Wyoming

    PubMed Central

    Copeland, Holly E.; Pocewicz, Amy; Naugle, David E.; Griffiths, Tim; Keinath, Doug; Evans, Jeffrey; Platt, James

    2013-01-01

    Increasing energy and housing demands are impacting wildlife populations throughout western North America. Greater sage-grouse (Centrocercus urophasianus), a species known for its sensitivity to landscape-scale disturbance, inhabits the same low elevation sage-steppe in which much of this development is occurring. Wyoming has committed to maintain sage-grouse populations through conservation easements and policy changes that conserves high bird abundance “core” habitat and encourages development in less sensitive landscapes. In this study, we built new predictive models of oil and gas, wind, and residential development and applied build-out scenarios to simulate future development and measure the efficacy of conservation actions for maintaining sage-grouse populations. Our approach predicts sage-grouse population losses averted through conservation action and quantifies return on investment for different conservation strategies. We estimate that without conservation, sage-grouse populations in Wyoming will decrease under our long-term scenario by 14–29% (95% CI: 4–46%). However, a conservation strategy that includes the “core area” policy and $250 million in targeted easements could reduce these losses to 9–15% (95% CI: 3–32%), cutting anticipated losses by roughly half statewide and nearly two-thirds within sage-grouse core breeding areas. Core area policy is the single most important component, and targeted easements are complementary to the overall strategy. There is considerable uncertainty around the magnitude of our estimates; however, the relative benefit of different conservation scenarios remains comparable because potential biases and assumptions are consistently applied regardless of the strategy. There is early evidence based on a 40% reduction in leased hectares inside core areas that Wyoming policy is reducing potential for future fragmentation inside core areas. Our framework using build-out scenarios to anticipate species declines provides estimates that could be used by decision makers to determine if expected population losses warrant ESA listing. PMID:23826250

  7. Fructose toxicity: is the science ready for public health actions?

    PubMed Central

    Tappy, Luc; Mittendorfer, Bettina

    2013-01-01

    Summary Purpose of review The assumption that fructose may be “toxic” and involved in the pathogenesis of non communicable diseases such as obesity, diabetes mellitus, dyslipidemia, and even cancer has resulted in the call for public health action, such as introducing taxes on sweetened beverages. This review evaluates the scientific basis for such action. Recent findings Although some studies hint towards some potential adverse effects of excessive fructose consumption especially when combined with excess energy intake, the results from clinical trials do not support a significant detrimental effect of fructose on metabolic health when consumed as part of a weight maintaining diet in amounts consistent with the average estimated fructose consumption in Western countries. However, definitive studies are missing. Summary and conclusion Public health policies to eliminate or limit fructose in the diet should be considered premature. Instead, efforts should be made to promote a healthy life style that includes physical activity and nutritious foods while avoiding intake of excess calories until solid evidence to support action against fructose is available. Public health is almost certainly to benefit more from policies that are aimed at promoting what is known to be good than from policies that are prohibiting what is not (yet) known to be bad. PMID:22617566

  8. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  10. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, L

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, togethermore » with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.« less

  11. Predicting lethal entanglements as a consequence of drag from fishing gear.

    PubMed

    van der Hoop, Julie M; Corkeron, Peter; Henry, Allison G; Knowlton, Amy R; Moore, Michael J

    2017-02-15

    Large whales are frequently entangled in fishing gear and sometimes swim while carrying gear for days to years. Entangled whales are subject to additional drag forces requiring increased thrust power and energy expenditure over time. To classify entanglement cases and aid potential disentanglement efforts, it is useful to know how long an entangled whale might survive, given the unique configurations of the gear they are towing. This study establishes an approach to predict drag forces on fishing gear that entangles whales, and applies this method to ten North Atlantic right whale cases to estimate the resulting increase in energy expenditure and the critical entanglement duration that could lead to death. Estimated gear drag ranged 11-275N. Most entanglements were resolved before critical entanglement durations (mean±SD 216±260days) were reached. These estimates can assist real-time development of disentanglement action plans and U.S. Federal Serious Injury assessments required for protected species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

    PubMed

    Koutsos, Ermis; Cretu, Vlad; Georgiou, Pantelis

    2016-12-01

    Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

  13. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  14. A strategy to facilitate cleanup at the Mare Island Naval Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.; Albert, D.

    1995-12-31

    A strategy based on an early realistic estimation of ecological risk was devised to facilitate cleanup of installation restoration units at the Mare Island Naval Station. The strategy uses the results of 100 years of soil-plant studies, which centered on maximizing the bioavailability of nutrients for crop growth. The screening strategy classifies sites according to whether they present (1) little or no ecological risk and require no further action, (2) an immediate and significant risk, and (3) an ecological risk that requires further quantification. The strategy assumes that the main focus of screening level risk assessment is quantification of themore » potential for abiotic-to-biotic transfer (bioavailability) of contaminants, especially at lower trophic levels where exposure is likely to be at a maximum. Sediment screening criteria developed by the California Environmental Protection Agency is used as one regulatory endpoint for evaluating total chemical concentrations. A realistic estimation of risk is then determined by estimating the bioavailability of contaminants.« less

  15. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    PubMed

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  16. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations

    PubMed Central

    Bolzoni, F; Jankowska, E

    2015-01-01

    The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625

  17. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.

    PubMed

    Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain

    2016-01-15

    The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  18. 14 CFR 1216.306 - Actions normally requiring an EIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... normally requiring an EIS. (a) NASA will prepare an EIS for actions with the potential to significantly... action or mitigation of its potentially significant impacts. (b) Typical NASA actions normally requiring... material greater than the quantity for which the NASA Nuclear Flight Safety Assurance Manager may grant...

  19. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses

    PubMed Central

    2017-01-01

    Introduction Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. Aim The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. Methods A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. Results The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Conclusion Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors. PMID:29077727

  20. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  1. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses.

    PubMed

    Sultana, Janet; Calabró, Marco; Garcia-Serna, Ricard; Ferrajolo, Carmen; Crisafulli, Concetta; Mestres, Jordi; Trifirò', Gianluca

    2017-01-01

    Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors.

  2. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    PubMed

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. The optimal distance between two electrode tips during recording of compound nerve action potentials in the rat median nerve

    PubMed Central

    Li, Yongping; Lao, Jie; Zhao, Xin; Tian, Dong; Zhu, Yi; Wei, Xiaochun

    2014-01-01

    The distance between the two electrode tips can greatly influence the parameters used for recording compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spacings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance between two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential. PMID:25206798

  4. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  5. Short infrared laser pulses block action potentials in neurons

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb P.; Martens, Stacey L.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses have many physiological effects on cells including the ability to stimulate action potentials in neurons. Here we show that short infrared laser pulses can also reversibly block action potentials. Primary rat hippocampal neurons were transfected with the Optopatch2 plasmid, which contains both a blue-light activated channel rhodopsin (CheRiff) and a red-light fluorescent membrane voltage reporter (QuasAr2). This optogenetic platform allows robust stimulation and recording of action potential activity in neurons in a non-contact, low noise manner. For all experiments, QuasAr2 was imaged continuously on a wide-field fluorescent microscope using a Krypton laser (647 nm) as the excitation source and an EMCCD camera operating at 1000 Hz to collect emitted fluorescence. A co-aligned Argon laser (488 nm, 5 ms at 10Hz) provided activation light for CheRiff. A 200 mm fiber delivered infrared light locally to the target neuron. Reversible action potential block in neurons was observed following a short infrared laser pulse (0.26-0.96 J/cm2; 1.37-5.01 ms; 1869 nm), with the block persisting for more than 1 s with exposures greater than 0.69 J/cm2. Action potential block was sustained for 30 s with the short infrared laser pulsed at 1-7 Hz. Full recovery of neuronal activity was observed 5-30s post-infrared exposure. These results indicate that optogenetics provides a robust platform for the study of action potential block and that short infrared laser pulses can be used for non-contact, reversible action potential block.

  6. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

    PubMed

    Myoga, Michael H; Beierlein, Michael; Regehr, Wade G

    2009-06-17

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.

  7. A Simulation Based Analysis of Motor Unit Number Index (MUNIX) Technique Using Motoneuron Pool and Surface Electromyogram Models

    PubMed Central

    Li, Xiaoyan; Rymer, William Zev; Zhou, Ping

    2013-01-01

    Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208

  8. Input-output mapping reconstruction of spike trains at dorsal horn evoked by manual acupuncture

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Shi, Dingtian; Yu, Haitao; Deng, Bin; Lu, Meili; Han, Chunxiao; Wang, Jiang

    2016-12-01

    In this study, a generalized linear model (GLM) is used to reconstruct mapping from acupuncture stimulation to spike trains driven by action potential data. The electrical signals are recorded in spinal dorsal horn after manual acupuncture (MA) manipulations with different frequencies being taken at the “Zusanli” point of experiment rats. Maximum-likelihood method is adopted to estimate the parameters of GLM and the quantified value of assumed model input. Through validating the accuracy of firings generated from the established GLM, it is found that the input-output mapping of spike trains evoked by acupuncture can be successfully reconstructed for different frequencies. Furthermore, via comparing the performance of several GLMs based on distinct inputs, it suggests that input with the form of half-sine with noise can well describe the generator potential induced by acupuncture mechanical action. Particularly, the comparison of reproducing the experiment spikes for five selected inputs is in accordance with the phenomenon found in Hudgkin-Huxley (H-H) model simulation, which indicates the mapping from half-sine with noise input to experiment spikes meets the real encoding scheme to some extent. These studies provide us a new insight into coding processes and information transfer of acupuncture.

  9. 78 FR 38999 - Recreational Boating-Estimating Benefits of Reducing Injuries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ...--Estimating Benefits of Reducing Injuries AGENCY: Coast Guard, DHS. ACTION: Notice of availability and request... Guard entitled ``Estimating Benefits of Reducing Recreational Boating Injuries: Alternative Sources of... material on the report entitled ``Estimating Benefits of Reducing Recreational Boating Injuries...

  10. Action and perception in social contexts: intentional binding for social action effects

    PubMed Central

    Pfister, Roland; Obhi, Sukhvinder S.; Rieger, Martina; Wenke, Dorit

    2014-01-01

    The subjective experience of controlling events in the environment alters the perception of these events. For instance, the interval between one's own actions and their consequences is subjectively compressed—a phenomenon known as intentional binding. In two experiments, we studied intentional binding in a social setting in which actions of one agent prompted a second agent to perform another action. Participants worked in pairs and were assigned to a “leader” and a “follower” role, respectively. The leader's key presses triggered (after a variable interval) a tone and this tone served as go signal for the follower to perform a keypress as well. Leaders and followers estimated the interval between the leader's keypress and the following tone, or the interval between the tone and the follower's keypress. The leader showed reliable intentional binding for both intervals relative to the follower's estimates. These results indicate that human agents experience a pre-reflective sense of agency for genuinely social consequences of their actions. PMID:25228869

  11. Advanced subsonic long-haul transport terminal area compatibility study. Volume 2: Research and technology recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Terminal Area Compatibility (TAC) study is briefly summarized for background information. The most important research items for the areas of noise congestion, and emissions are identified. Other key research areas are also discussed. The 50 recommended research items are categorized by flight phase, technology, and compatibility benefits. The relationship of the TAC recommendations to the previous ATT recommendations is discussed. The bulk of the document contains the 50 recommended research items. For each item, the potential payoff, state of readiness, recommended action and estimated cost and schedule are given.

  12. Review of sports-related concussion: Potential for application in military settings.

    PubMed

    Lew, Henry L; Thomander, Darryl; Chew, Kelvin T L; Bleiberg, Joseph

    2007-01-01

    This article reviews current issues and practices in the assessment and clinical management of sports-related concussion. An estimated 300,000 sports-related concussions occur annually in the United States. Much of what has been learned about concussion in the sports arena can be applied to the diagnosis and management of concussion in military settings. Current military guidelines for assessing and managing concussion in war zones incorporate information and methods developed through sports-concussion research. We discuss the incidence, definition, and diagnosis of concussion; concussion grading scales; sideline evaluation tools; neuropsychological assessment; return-to-action criteria; and complications of concussion.

  13. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+)-dependence of a transient K+ current.

    PubMed

    Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N

    2011-01-01

    Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.

  14. The simulated effects of wastewater-management actions on the hydrologic system and nitrogen-loading rates to wells and ecological receptors, Popponesset Bay Watershed, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.

    2013-01-01

    The discharge of excess nitrogen into Popponesset Bay, an estuarine system on western Cape Cod, has resulted in eutrophication and the loss of eel grass habitat within the estuaries. Septic-system return flow in residential areas within the watershed is the primary source of nitrogen. Total Maximum Daily Loads (TMDLs) for nitrogen have been assigned to the six estuaries that compose the system, and local communities are in the process of implementing the TMDLs by the partial sewering, treatment, and disposal of treated wastewater at wastewater-treatment facilities (WTFs). Loads of waste-derived nitrogen from both current (1997–2001) and future sources can be estimated implicitly from parcel-scale water-use data and recharge areas delineated by a groundwater-flow model. These loads are referred to as “instantaneous” loads because it is assumed that the nitrogen from surface sources is delivered to receptors instantaneously and that there is no traveltime through the aquifer. The use of a solute-transport model to explicitly simulate the transport of mass through the aquifer from sources to receptors can improve implementation of TMDLs by (1) accounting for traveltime through the aquifer, (2) avoiding limitations associated with the estimation of loads from static recharge areas, (3) accounting more accurately for the effect of surface waters on nitrogen loads, and (4) determining the response of waste-derived nitrogen loads to potential wastewater-management actions. The load of nitrogen to Popponesset Bay on western Cape Cod, which was estimated by using current sources as input to a solute-transport model based on a steady-state flow model, is about 50 percent of the instantaneous load after about 7 years of transport (loads to estuary are equal to loads discharged from sources); this estimate is consistent with simulated advective traveltimes in the aquifer, which have a median of 5 years. Model-calculated loads originating from recharge areas reach 80 percent of the instantaneous load within 30 years; this result indicates that loads estimated from recharge areas likely are reasonable for estimating current instantaneous loads. However, recharge areas are assumed to remain static as stresses and hydrologic conditions change in response to wastewater-management actions. Sewering of the Popponesset Bay watershed would not change hydraulic gradients and recharge areas to receptors substantially; however, disposal of wastewater from treatment facilities can change hydraulic gradients and recharge areas to nearby receptors, particularly if the facilities are near the boundary of the recharge area. In these cases, nitrogen loads implicitly estimated by using current recharge areas that do not accurately represent future hydraulic stresses can differ significantly from loads estimated with recharge areas that do represent those stresses. Nitrogen loads to two estuaries in the Popponesset Bay system estimated by using recharge areas delineated for future hydrologic conditions and nitrogen sources were about 3 and 9 times higher than loads estimated by using current recharge areas; for this reason, reliance on static recharge areas can present limitations for effective TMDL implementation by means of a hypothetical, but realistic, wastewater-management action. A solute-transport model explicitly represents nitrogen transport from surface sources and does not rely on the use of recharge areas; because changes in gradients resulting from wastewater-management actions are accounted for in transport simulations, they provide more reliable predictions of future nitrogen loads. Explicitly representing the mass transport of nitrogen can better account for the mechanisms by which nitrogen enters the estuary and improve estimates of the attenuation of nitrogen concentrations in fresh surface waters. Water and associated nitrogen can enter an estuary as either direct groundwater discharge or as surface-water inflow. Two estuaries in the Popponesset Bay watershed receive surface-water inflows: Shoestring Bay receives water from the Santuit River, and the tidal reach of the Mashpee River receives water (and associated nitrogen) from the nontidal reach of the Mashpee River. Much of the water discharging into these streams passes through ponds prior to discharge. The additional attenuation of nitrogen in groundwater that has passed through a pond and discharged into a stream prior to entering an estuary is about 3 kilograms per day. Advective-transport times in the aquifer generally are small—median traveltimes are about 4.5 years—and nitrogen loads at receptors respond quickly to wastewater-management actions. The simulated decreases in nitrogen loads were 50 and 80 percent of the total decreases within 5 and 15 years, respectively, after full sewering of the watershed and within 3 and 10 years, for sequential phases of partial sewering and disposal at WTFs. The results show that solute-transport models can be used to assess the responses of nitrogen loads to wastewater-management actions, and that loads at ecological receptors (receiving waters—ponds, streams or coastal waters—that support ecosystems) will respond within a few years to those actions. The responses vary for individual receptors as functions of hydrologic setting, traveltimes in the aquifer, and the unique set of nitrogen sources representing current and future wastewater-disposal actions within recharge areas. Changes in nitrogen loads from groundwater discharge to individual estuaries range from a decrease of 90 percent to an increase of 80 percent following sequential phases of hypothetical but realistic wastewater-management actions. The ability to explicitly represent the transport of mass through the aquifer allows for the evaluation of complex responses that include the effects of surface waters, traveltimes, and complex changes in sources. Most of the simulated decreases in nitrogen loads to Shoestring Bay and the tidal portion of the Mashpee River, 79 and 69 percent, respectively, were caused by decreases in the nitrogen loads from surface-water inflow.

  15. 78 FR 23740 - Notice of Availability of a Swine Brucellosis and Pseudorabies Proposed Action Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ...] Notice of Availability of a Swine Brucellosis and Pseudorabies Proposed Action Plan AGENCY: Animal and... proposed action plan describing a potential new approach to managing swine brucellosis and pseudorabies...-0086) a notice that made a proposed action plan describing a potential new approach to managing swine...

  16. Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness.

    PubMed

    D'Imperio, Daniela; Bulgarelli, Cristina; Bertagnoli, Sara; Avesani, Renato; Moro, Valentina

    2017-07-01

    Anosognosia for hemiplegia is a lack of awareness of motor deficits following a right hemisphere lesion. Residual forms of awareness co-occur with an explicit denial of hemiplegia. The term emergent awareness refers to a condition in which awareness of motor deficits is reported verbally during the actual performance of an action involving the affected body part. In this study, two tasks were used to explore the potential effects of i) attempting actions which are impossible for sufferers of hemiplegia and ii) attempting actions which are potentially dangerous. Sixteen hemiplegic patients (8 anosognosic, and 8 non-anosognosic) were asked to perform both potentially dangerous and neutral actions. Our results confirm an increase in emergent awareness in anosognosic patients during the execution of both of these types of action. Moreover, actions that are potentially dangerous improved the degree of awareness. However, lesions in the fronto-temporal areas appear to be associated with a reduced effect of action execution (emergent awareness) while lesions in the basal ganglia and amygdale and the white matter underlying the insula and fronto-temporal areas are associated with a lesser degree of improvement resulting from attempting to perform dangerous actions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 43 CFR 11.84 - Damage determination phase-implementation guidance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the damage assessment. (2) Natural resource damages are the residual to be determined by incorporating... estimates of natural recovery rates as well as recovery rates that reflect management actions or resource... actions or resource acquisitions, including a “No Action-Natural Recovery” alternative. After the recovery...

  18. Efficacy of the Fun For Wellness Online Intervention to Promote Well-Being Actions: A Secondary Data Analysis.

    PubMed

    Myers, Nicholas D; Dietz, Samantha; Prilleltensky, Isaac; Prilleltensky, Ora; McMahon, Adam; Rubenstein, Carolyn L; Lee, Seungmin

    2018-04-30

    Fun For Wellness (FFW) is a new online intervention designed to promote growth in well-being by providing capability-enhancing learning opportunities (e.g., play an interactive game) to participants. The purpose of this study was to provide an initial evaluation of the efficacy of the FFW intervention to increase well-being actions. The study design was a secondary data analysis of a large-scale prospective, double-blind, parallel-group randomized controlled trial. Data were collected at baseline and 30 and 60 days postbaseline. A total of 479 adult employees at a major university in the southeast of the United States of America were enrolled. Participants who were randomly assigned to the FFW group were provided with 30 days of 24-hour access to the intervention. A two-class linear regression model with complier average causal effect estimation was fitted to well-being actions scores at 30 and 60 days. Intent-to-treat analysis provided evidence that the effect of being assigned to the FFW intervention, without considering actual participation in the FFW intervention, had a null effect on each dimension of well-being actions at 30 and 60 days. Participants who complied with the FFW intervention, however, had significantly higher well-being actions scores, compared to potential compliers in the Usual Care group, in the interpersonal dimension at 60 days, and the physical dimension at 30 days. Results from this secondary data analysis provide some supportive evidence for both the efficacy of and possible revisions to the FFW intervention in regard to promoting well-being actions.

  19. Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function

    NASA Astrophysics Data System (ADS)

    Herman, Jay R.

    2010-12-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone Ω, U(Ω/200)-RAF, where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 nm) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  20. Use of an Improved Radiation Amplification Factor to Estimate the Effect of Total Ozone Changes on Action Spectrum Weighted Irradiances and an Instrument Response Function

    NASA Technical Reports Server (NTRS)

    Herman, Jay R.

    2010-01-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone OMEGA, U(OMEGA/200)(sup -RAF), where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 run) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  1. Can data science inform environmental justice and community risk screening for type 2 diabetes?

    PubMed

    Davis, J Allen; Burgoon, Lyle D

    2015-01-01

    Having the ability to scan the entire country for potential "hotspots" with increased risk of developing chronic diseases due to various environmental, demographic, and genetic susceptibility factors may inform risk management decisions and enable better environmental public health policies. Develop an approach for community-level risk screening focused on identifying potential genetic susceptibility hotpots. Our approach combines analyses of phenotype-genotype data, genetic prevalence of single nucleotide polymorphisms, and census/geographic information to estimate census tract-level population attributable risks among various ethnicities and total population for the state of California. We estimate that the rs13266634 single nucleotide polymorphism, a type 2 diabetes susceptibility genotype, has a genetic prevalence of 56.3%, 47.4% and 37.0% in Mexican Mestizo, Caucasian, and Asian populations. Looking at the top quintile for total population attributable risk, 16 California counties have greater than 25% of their population living in hotspots of genetic susceptibility for developing type 2 diabetes due to this single genotypic susceptibility factor. This study identified counties in California where large portions of the population may bear additional type 2 diabetes risk due to increased genetic prevalence of a susceptibility genotype. This type of screening can easily be extended to include information on environmental contaminants of interest and other related diseases, and potentially enables the rapid identification of potential environmental justice communities. Other potential uses of this approach include problem formulation in support of risk assessments, land use planning, and prioritization of site cleanup and remediation actions.

  2. Politically informed advice for climate action

    NASA Astrophysics Data System (ADS)

    Geden, Oliver

    2018-06-01

    Upward estimates for carbon budgets are unlikely to lead to action-focused climate policy. Climate researchers need to understand processes and incentives in policymaking and politics to communicate effectively.

  3. [Effect of pulse magnetic field on distribution of neuronal action potential].

    PubMed

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  4. Intracellular recording of action potentials by nanopillar electroporation.

    PubMed

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-02-12

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.

  5. Intracellular recording of action potentials by nanopillar electroporation

    NASA Astrophysics Data System (ADS)

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.

  6. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    PubMed Central

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  7. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  8. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  9. Synchronization of action potentials during low-magnesium-induced bursting

    PubMed Central

    Johnson, Sarah E.; Hudson, John L.

    2015-01-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103

  10. Synchronization of action potentials during low-magnesium-induced bursting.

    PubMed

    Johnson, Sarah E; Hudson, John L; Kapur, Jaideep

    2015-04-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg(2+) model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg(2+). In decreased Mg(2+) medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg(2+) media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg(2+) concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. Copyright © 2015 the American Physiological Society.

  11. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

    PubMed Central

    Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice

    2017-01-01

    This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085

  12. [Effects of dauricine on action potentials and slow inward currents of guinea pig ventricular papillary muscles].

    PubMed

    Li, S N; Zhang, K Y

    1992-11-01

    Effects of dauricine (Dau) on the action potentials (AP), the slow action potentials (SAP), and the slow inward currents (Isi) of guinea pig ventricular papillary muscles were observed by means of intracellular microelectrode and single sucrose gap voltage clamp technique. In the early stage, Dau shortened action potential duration 100 (APD100) and effective refractory period (ERP) (ERP/APD < 1; P < 0.01), but did not affect APD20 and other parameters. In the late stage, Dau prolonged APD100, ERP, and APD20, significantly decreased action potential amplitude (APA), maximum velocity (Vmax), and overshot (OS) (ERP/APD > 1; P < 0.01), greatly diminished APA and OS of SAP induced by isoprenaline (P < 0.01), and remarkably inhibited Isi (P < 0.01). The results suggested that Dau exerted an inhibitory effect on Na+, Ca2+, and K+ channels.

  13. Simulation of axonal excitability using a Spreadsheet template created in Microsoft Excel.

    PubMed

    Brown, A M

    2000-08-01

    The objective of this present study was to implement an established simulation protocol (A.M. Brown, A methodology for simulating biological systems using Microsoft Excel, Comp. Methods Prog. Biomed. 58 (1999) 181-90) to model axonal excitability. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet and does not require any programming skills or use of the macro language. Once the initial spreadsheet template has been set up the simulations described in this paper can be executed with a few simple keystrokes. The model axon contained voltage-gated ion channels that were modeled using Hodgkin Huxley style kinetics. The basic properties of axonal excitability modeled were: (1) threshold of action potential firing, demonstrating that not only are the stimulus amplitude and duration critical in the generation of an action potential, but also the resting membrane potential; (2) refractoriness, the phenomenon of reduced excitability immediately following an action potential. The difference between the absolute refractory period, when no amount of stimulus will elicit an action potential, and relative refractory period, when an action potential may be generated by applying increased stimulus, was demonstrated with regard to the underlying state of the Na(+) and K(+) channels; (3) temporal summation, a process by which two sub-threshold stimuli can unite to elicit an action potential was shown to be due to conductance changes outlasting the first stimulus and summing with the second stimulus-induced conductance changes to drive the membrane potential past threshold; (4) anode break excitation, where membrane hyperpolarization was shown to produce an action potential by removing Na(+) channel inactivation that is present at resting membrane potential. The simulations described in this paper provide insights into mechanisms of axonal excitation that can be carried out by following an easily understood protocol.

  14. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  15. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  16. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.

    PubMed

    Buhl, E H; Han, Z S; Lörinczi, Z; Stezhka, V V; Karnup, S V; Somogyi, P

    1994-04-01

    1. The properties of a well-defined type of GABAergic local circuit neuron, the axo-axonic cell (n = 17), were investigated in rat hippocampal slice preparations. During intracellular recording we injected axo-axonic cells with biocytin and subsequently identified them with correlated light and electron microscopy. Employing an immunogold-silver intensification technique we showed that one of the physiologically characterized cells was immunoreactive for gamma-aminobutyric acid (GABA). 2. Axo-axonic cells were encountered in the dentate gyrus (n = 5) as well as subfields CA3 (n = 2) and CA1 (n = 10). They generally had smooth, beaded dendrites that extended throughout all hippocampal layers. Their axons ramified densely in the cell body layers and in the subjacent stratum oriens or hilus, respectively. Tested with electron microscopy, labeled terminals (n = 53) established synapses exclusively with the axon initial segment of principal cells in strata oriens and pyramidale and rarely in lower radiatum. Within a 400-microns slice a single CA1 axo-axonic cell was estimated to be in synaptic contact with 686 pyramidal cells. 3. Axo-axonic cells (n = 14) had a mean resting membrane potential of -65.1 mV, an average input resistance of 73.9 M omega, and a mean time constant of 7.7 ms. Action potentials were of short duration (389-microseconds width at half-amplitude) and had a mean amplitude of 64.1 mV. 4. Nine of 10 tested cells showed a varying degree of spike frequency adaptation in response to depolarizing current injection. Current-evoked action potentials were usually curtailed by a deep (10.2 mV) short-latency afterhyperpolarization (AHP) with a mean duration of 28.1 ms. 5. Cells with strong spike frequency accommodation (n = 5) had a characteristic firing pattern with numerous spike doublets. These appeared to be triggered by an underlying depolarizing afterpotential. In the same cells, prolonged bursts of action potentials were followed by a prominent long-duration AHP with a mean time constant of 1.15 s. 6. Axo-axonic cells responded to the stimulation of afferent pathways with short-latency excitatory postsynaptic potentials (EPSPs) or at higher stimulation intensity with up to three action potentials. Axo-axonic cells in the dentate gyrus could be activated by stimulating the CA3 area as well as the perforant path, whereas in the CA1 area responses were elicited after shocks to the perforant path, Schaffer collaterals, and the stratum oriens-alveus border. 7. In the CA1 area the EPSP amplitude increased in response to membrane hyperpolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Injury risk associated with playing actions during competitive soccer

    PubMed Central

    Rahnama, N; Reilly, T; Lees, A

    2002-01-01

    Objective: To assess the exposure of players to injury risk during English Premier League soccer matches in relation to selected factors. Methods: Injury risk was assessed by rating the injury potential of playing actions during competition with respect to (a) type of playing action, (b) period of the game, (c) zone of the pitch, and (d) playing either at home or away. In all, 10 games from the English Premier League 1999–2000 were chosen for analysis. A notation system was used whereby 16 soccer specific playing actions were classified into three categories: those inducing actual injury, those with a potential for injury (graded as mild, moderate, or high), and those deemed to have no potential for injury. The pitch was divided into 18 zones, and the position of each event was recorded along with time elapsed in the game, enabling six 15 minute periods to be defined. Results: Close to 18 000 actions were notated. On average (mean (SD)), 1788 (73) events (one every three seconds), 767 (99) events with injury potential (one every six seconds), and 2 (1) injuries (one every 45 minutes) per game were recorded. An overall injury incidence of 53 per 1000 playing hours was calculated. Receiving a tackle, receiving a "charge", and making a tackle were categorised as having a substantial injury risk, and goal catch, goal punch, kicking the ball, shot on goal, set kick, and heading the ball were all categorised as having a significant injury risk. All other actions were deemed low in risk. The first 15 minutes of each half contained the highest number of actions with mild injury potential, the last 15 minutes having the highest number of actions with moderate injury potential (p<0.01). The first and last 15 minutes of the game had the highest number of actions with high injury potential, although not significant. More actions with mild injury potential occurred in the goal area, and more actions with moderate and high injury potential occurred in the zone adjacent to the goal area (p<0.001). There was no significant difference between home and away with regard to injury potential. Conclusions: Playing actions with high injury risk were linked to contesting possession. Injury risk was highest in the first and last 15 minutes of the game, reflecting the intense engagements in the opening period and the possible effect of fatigue in the closing period. Injury risk was concentrated in the areas of the pitch where possession of the ball is most vigorously contested, which were specific attacking and defending zones close to the goal. Injury potential was no greater in away matches than at home. PMID:12351333

  18. Information-Driven Active Audio-Visual Source Localization

    PubMed Central

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application. PMID:26327619

  19. Spontaneous action potentials and neural coding in unmyelinated axons.

    PubMed

    O'Donnell, Cian; van Rossum, Mark C W

    2015-04-01

    The voltage-gated Na and K channels in neurons are responsible for action potential generation. Because ion channels open and close in a stochastic fashion, spontaneous (ectopic) action potentials can result even in the absence of stimulation. While spontaneous action potentials have been studied in detail in single-compartment models, studies on spatially extended processes have been limited. The simulations and analysis presented here show that spontaneous rate in unmyelinated axon depends nonmonotonically on the length of the axon, that the spontaneous activity has sub-Poisson statistics, and that neural coding can be hampered by the spontaneous spikes by reducing the probability of transmitting the first spike in a train.

  20. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    PubMed

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  1. Action potentials contribute to epileptic high-frequency oscillations recorded with electrodes remote from neurons.

    PubMed

    Kobayashi, Katsuhiro; Akiyama, Tomoyuki; Ohmori, Iori; Yoshinaga, Harumi; Gotman, Jean

    2015-05-01

    The importance of epileptic high-frequency oscillations (HFOs) in electroencephalogram (EEG) is growing. Action potentials generating some HFOs are observed in the vicinity of neurons in experimental animals. However electrodes that are remote from neurons, as in case of clinical situations, should not record action potentials. We propose to resolve this question by a realistic simulation of epileptic neuronal network. The rat dentate gyrus with sclerosis was simulated in silico. We computed the current dipole moment generated by each granule cell and the field potentials in a measurement area far from neurons. The dentate gyrus was stimulated through synaptic input to evoke discharges resembling interictal epileptiform discharges, which had superimposed HFOs⩽295Hz that were recordable with remote electrodes and represented bursts of action potentials of granule cells. The increase in power of HFOs was associated with the progression of sclerosis, the reduction of GABAergic inhibition, and the increase in cell connectivity. Spectral frequency of HFOs had similar tendencies. HFOs recorded with electrodes remote from neurons could actually be generated by clusters of action potentials. The phenomenon of action potentials recorded with remote electrodes can possibly extend the clinical meaning of EEG. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. A physical action potential generator: design, implementation and evaluation.

    PubMed

    Latorre, Malcolm A; Chan, Adrian D C; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1-40 in incremental steps of 1) and the node drive potential (0-2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems.

  3. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.

  4. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  5. The Direct Detection of a Single Evoked Action Potential with Magnetic Resonance Spectroscopy in Lumbricus Terrestris

    PubMed Central

    Poplawsky, Alexander J.; Dingledine, Raymond

    2011-01-01

    Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204

  6. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    PubMed

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  7. Review of economic and energy sector implications of adopting global climate change policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, M.H.

    1997-12-31

    This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countriesmore » are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.« less

  8. Cognitive costs of encoding novel natural activities: Can "learning by doing" be distracting and deceptive?

    PubMed

    von Stülpnagel, Rul; Schult, Janette C; Richter, Claudia; Steffens, Melanie C

    2016-01-01

    Findings from action memory research suggest that the enactment of simple actions and naturalistic activities results in similar memory performance to that from their observation. However, little is known about potential differences between the conditions during the encoding of the to-be-studied actions and activities. We analysed the cognitive costs of encoding two novel naturalistic activities studied via enactment or via observation in four experiments. In addition to memory performance, we measured objective cognitive costs with a secondary task and subjective cognitive costs with repeated ratings of mental effort and estimates of general activity difficulty. Memory performance was comparable across study conditions throughout all experiments. The enactment of activities repeatedly resulted in slower reaction times in the secondary task than did observation, suggesting higher objective costs. In contrast, subjective costs were rated lower after enactment than after observation. Findings from a pantomimic enactment condition suggested that the low ratings of subjective costs after enactment represent a misinterpretation of task demands. Our findings imply that the widespread belief about "learning by doing" as an easy way of learning does not stem from an actual advantage in memory performance, but rather from continuous feedback about one's performance resulting from enactment.

  9. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    PubMed

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  10. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events

    PubMed Central

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate. PMID:28066225

  11. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.

    PubMed

    Yazmir, Boris; Reiner, Miriam

    2018-05-15

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. A reliability analysis of cardiac repolarization time markers.

    PubMed

    Scacchi, S; Franzone, P Colli; Pavarino, L F; Taccardi, B

    2009-06-01

    Only a limited number of studies have addressed the reliability of extracellular markers of cardiac repolarization time, such as the classical marker RT(eg) defined as the time of maximum upslope of the electrogram T wave. This work presents an extensive three-dimensional simulation study of cardiac repolarization time, extending the previous one-dimensional simulation study of a myocardial strand by Steinhaus [B.M. Steinhaus, Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study, Circ. Res. 64 (3) (1989) 449]. The simulations are based on the bidomain - Luo-Rudy phase I system with rotational fiber anisotropy and homogeneous or heterogeneous transmural intrinsic membrane properties. The classical extracellular marker RT(eg) is compared with the gold standard of fastest repolarization time RT(tap), defined as the time of minimum derivative during the downstroke of the transmembrane action potential (TAP). Additionally, a new extracellular marker RT90(eg) is compared with the gold standard of late repolarization time RT90(tap), defined as the time when the TAP reaches 90% of its resting value. The results show a good global match between the extracellular and transmembrane repolarization markers, with small relative mean discrepancy (or=0.92), ensuring a reasonably good global match between the associated repolarization sequences. However, large local discrepancies of the extracellular versus transmembrane markers may ensue in regions where the curvature of the repolarization front changes abruptly (e.g. near front collisions) or is negligible (e.g. where repolarization proceeds almost uniformly across fiber). As a consequence, the spatial distribution of activation-recovery intervals (ARI) may provide an inaccurate estimate of (and weakly correlated with) the spatial distribution of action potential durations (APD).

  13. Sodium and calcium currents shape action potentials in immature mouse inner hair cells

    PubMed Central

    Marcotti, Walter; Johnson, Stuart L; Rüsch, Alfons; Kros, Corné J

    2003-01-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency. PMID:12937295

  14. A question of intention in motor imagery.

    PubMed

    Gabbard, Carl; Cordova, Alberto; Lee, Sunghan

    2009-03-01

    We examined the question-is the intention of completing a simulated motor action the same as the intention used in processing overt actions? Participants used motor imagery to estimate distance reachability in two conditions: Imagery-Only (IO) and Imagery-Execution (IE). With IO (red target) only a verbal estimate using imagery was given. With IE (green target) participants knew that they would actually reach after giving a verbal estimate and be judged on accuracy. After measuring actual maximum reach, used for the comparison, imagery targets were randomly presented across peripersonal- (within reach) and extrapersonal (beyond reach) space. Results indicated no difference in overall accuracy by condition, however, there was a significant distinction by space; participants were more accurate in peripersonal space. Although more research is needed, these findings support an increasing body of evidence suggesting that the neurocognitive processes (in this case, intention) driving motor imagery and overt actions are similar.

  15. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration

    PubMed Central

    Niedergerke, R.; Orkand, R. K.

    1966-01-01

    1. The overshoot of the action potential of the frog's heart was reduced when external sodium chloride was replaced by sucrose. However, the potential decrement was only 17·3 mV for a 10-fold reduction of sodium as compared with 58 mV expected on the basis of the sodium hypothesis of excitation. 2. Replacement of up to 75% of the external sodium by choline did not reduce the overshoot, provided atropine was present in sufficient concentrations to suppress any parasympathomimetic action. 3. The maximum rate of rise of the action potential markedly declined in low sodium fluids whether sucrose or choline chloride was used to replace sodium chloride. 4. The maximum rate of rise was reduced to only a small extent when external sodium was replaced by lithium. 5. Increasing the intracellular sodium concentration in exchange for lost potassium caused overshoots to decline. The effects resembled those obtained in similar experiments with skeletal muscle fibres (Desmedt, 1953). 6. Action potentials occurring under certain conditions even in the presence of very low external sodium concentrations (≤ 5% normal) also declined in height when the intracellular sodium concentration was increased. 7. The behaviour of the action potential in low external sodium concentrations may be explained by an action of calcium on the excitable membrane. PMID:5921833

  16. Cost/Benefit considerations for recent saltcedar control, Middle Pecos River, New Mexico.

    PubMed

    Barz, Dave; Watson, Richard P; Kanney, Joseph F; Roberts, Jesse D; Groeneveld, David P

    2009-02-01

    Major benefits were weighed against major costs associated with recent saltcedar control efforts along the Middle Pecos River, New Mexico. The area of study was restricted to both sides of the channel and excluded tributaries along the 370 km between Sumner and Brantley dams. Direct costs (helicopter spraying, dead tree removal, and revegetation) within the study area were estimated to be $2.2 million but possibly rising to $6.4 million with the adoption of an aggressive revegetation program. Indirect costs associated with increased potential for erosion and reservoir sedimentation would raise the costs due to increased evaporation from more extensive shallows in the Pecos River as it enters Brantley Reservoir. Actions such as dredging are unlikely given the conservative amount of sediment calculated (about 1% of the reservoir pool). The potential for water salvage was identified as the only tangible benefit likely to be realized under the current control strategy. Estimates of evapotranspiration (ET) using Landsat TM data allowed estimation of potential water salvage as the difference in ET before and after treatment, an amount totaling 7.41 million m(3) (6010 acre-ft) per year. Previous saltcedar control efforts of roughly the same magnitude found that salvaged ET recharged groundwater and no additional flows were realized within the river. Thus, the value of this recharge is probably less than the lowest value quoted for actual in-channel flow, and estimated to be <$63,000 per year. Though couched in terms of costs and benefits, this paper is focused on what can be considered the key trade-off under a complete eradication strategy: water salvage vs. erosion and sedimentation. It differs from previous efforts by focusing on evaluating the impacts of actual control efforts within a specific system. Total costs (direct plus potential indirect) far outweighed benefits in this simple comparison and are expected to be ongoing. Problems induced by saltcedar control may permanently reduce reservoir capacity and increase reservoir evaporation rates, which could further deplete supplies on this water short system. These potential negative consequences highlight that such costs and benefits need to be considered before initiating extensive saltcedar control programs on river systems of the western United States.

  17. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  18. Wind Turbine Gust Prediction Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Towers, Paul; Jones, Bryn

    2013-11-01

    Offshore wind energy is a growing energy source as governments around the world look for environmentally friendly solutions to potential future energy shortages. In order to capture more energy from the wind, larger turbines are being designed, leading to the structures becoming increasingly vulnerable to damage caused by violent gusts of wind. Advance knowledge of such gusts will enable turbine control systems to take preventative action, reducing turbine maintenance costs. We present a system which can accurately forecast the velocity profile of an oncoming wind, given only limited spatial measurements from light detection and ranging (LiDAR) units, which are currently operational in industry. Our method combines nonlinear state estimation techniques with low-order models of atmospheric boundary-layer flows to generate flow-field estimates. We discuss the accuracy of our velocity profile predictions by direct comparison to data derived from large eddy simulations of the atmospheric boundary layer.

  19. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Estimating Improper Payments in Medicaid and CHIP § 431.992 Corrective action plan. (a) The State agency must develop a separate corrective action plan for Medicaid and CHIP, which is not required to be approved by... which the State's Medicaid or CHIP error rates are posted on the CMS contractor's Web site. (d) The...

  20. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Estimating Improper Payments in Medicaid and CHIP § 431.992 Corrective action plan. (a) The State agency must develop a separate corrective action plan for Medicaid and CHIP, which is not required to be approved by... which the State's Medicaid or CHIP error rates are posted on the CMS contractor's Web site. (d) The...

  1. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Estimating Improper Payments in Medicaid and CHIP § 431.992 Corrective action plan. (a) The State agency must develop a separate corrective action plan for Medicaid and CHIP, which is not required to be approved by... which the State's Medicaid or CHIP error rates are posted on the CMS contractor's Web site. (d) The...

  2. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling

    PubMed Central

    Benavides, Julio A; Cross, Paul C; Luikart, Gordon; Creel, Scott

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced. PMID:25469159

  3. Limitations to estimating bacterial cross-speciestransmission using genetic and genomic markers: inferencesfrom simulation modeling

    USGS Publications Warehouse

    Julio Andre, Benavides; Cross, Paul C.; Luikart, Gordon; Scott, Creel

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.

  4. Method and system for controlling a permanent magnet machine

    DOEpatents

    Walters, James E.

    2003-05-20

    Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.

  5. Bayesian assessment of overtriage and undertriage at a level I trauma centre.

    PubMed

    DiDomenico, Paul B; Pietzsch, Jan B; Paté-Cornell, M Elisabeth

    2008-07-13

    We analysed the trauma triage system at a specific level I trauma centre to assess rates of over- and undertriage and to support recommendations for system improvements. The triage process is designed to estimate the severity of patient injury and allocate resources accordingly, with potential errors of overestimation (overtriage) consuming excess resources and underestimation (undertriage) potentially leading to medical errors.We first modelled the overall trauma system using risk analysis methods to understand interdependencies among the actions of the participants. We interviewed six experienced trauma surgeons to obtain their expert opinion of the over- and undertriage rates occurring in the trauma centre. We then assessed actual over- and undertriage rates in a random sample of 86 trauma cases collected over a six-week period at the same centre. We employed Bayesian analysis to quantitatively combine the data with the prior probabilities derived from expert opinion in order to obtain posterior distributions. The results were estimates of overtriage and undertriage in 16.1 and 4.9% of patients, respectively. This Bayesian approach, which provides a quantitative assessment of the error rates using both case data and expert opinion, provides a rational means of obtaining a best estimate of the system's performance. The overall approach that we describe in this paper can be employed more widely to analyse complex health care delivery systems, with the objective of reduced errors, patient risk and excess costs.

  6. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  7. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  8. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  9. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  10. Effect of Exogenous Extracellular Nicotinamide Adenine Dinucleotide (NAD⁺) on Bioelectric Activity of the Pacemaker and Conduction System of the Heart.

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2015-06-01

    In rat sinoatrial node, NAD(+) (10 μM) reduced the rate of spontaneous action potentials, duration of action potentials, and the velocity of slow diastolic depolarization, but the rate of action potential front propagation increases. In passed rabbit Purkinje fibers, NAD(+) (10 μM) reduced the duration of action potentials. Under conditions of spontaneous activity of Purkinje fibers, NAD(+) reduced the fi ring rate and the rate of slow diastolic depolarization. The effects of extracellular NAD(+) on bioelectric activity of the pacemaker (sinoatrial node) and conduction system of the heart (Purkinje fibers) are probably related to activation of P1 and P2 purinoceptors.

  11. Refining estimates of availability bias to improve assessments of the conservation status of an endangered dolphin.

    PubMed

    Sucunza, Federico; Danilewicz, Daniel; Cremer, Marta; Andriolo, Artur; Zerbini, Alexandre N

    2018-01-01

    Estimation of visibility bias is critical to accurately compute abundance of wild populations. The franciscana, Pontoporia blainvillei, is considered the most threatened small cetacean in the southwestern Atlantic Ocean. Aerial surveys are considered the most effective method to estimate abundance of this species, but many existing estimates have been considered unreliable because they lack proper estimation of correction factors for visibility bias. In this study, helicopter surveys were conducted to determine surfacing-diving intervals of franciscanas and to estimate availability for aerial platforms. Fifteen hours were flown and 101 groups of 1 to 7 franciscanas were monitored, resulting in a sample of 248 surface-dive cycles. The mean surfacing interval and diving interval times were 16.10 seconds (SE = 9.74) and 39.77 seconds (SE = 29.06), respectively. Availability was estimated at 0.39 (SE = 0.01), a value 16-46% greater than estimates computed from diving parameters obtained from boats or from land. Generalized mixed-effects models were used to investigate the influence of biological and environmental predictors on the proportion of time franciscana groups are visually available to be seen from an aerial platform. These models revealed that group size was the main factor influencing the proportion at surface. The use of negatively biased estimates of availability results in overestimation of abundance, leads to overly optimistic assessments of extinction probabilities and to potentially ineffective management actions. This study demonstrates that estimates of availability must be computed from suitable platforms to ensure proper conservation decisions are implemented to protect threatened species such as the franciscana.

  12. Refining estimates of availability bias to improve assessments of the conservation status of an endangered dolphin

    PubMed Central

    Danilewicz, Daniel; Cremer, Marta; Andriolo, Artur; Zerbini, Alexandre N.

    2018-01-01

    Estimation of visibility bias is critical to accurately compute abundance of wild populations. The franciscana, Pontoporia blainvillei, is considered the most threatened small cetacean in the southwestern Atlantic Ocean. Aerial surveys are considered the most effective method to estimate abundance of this species, but many existing estimates have been considered unreliable because they lack proper estimation of correction factors for visibility bias. In this study, helicopter surveys were conducted to determine surfacing-diving intervals of franciscanas and to estimate availability for aerial platforms. Fifteen hours were flown and 101 groups of 1 to 7 franciscanas were monitored, resulting in a sample of 248 surface-dive cycles. The mean surfacing interval and diving interval times were 16.10 seconds (SE = 9.74) and 39.77 seconds (SE = 29.06), respectively. Availability was estimated at 0.39 (SE = 0.01), a value 16–46% greater than estimates computed from diving parameters obtained from boats or from land. Generalized mixed-effects models were used to investigate the influence of biological and environmental predictors on the proportion of time franciscana groups are visually available to be seen from an aerial platform. These models revealed that group size was the main factor influencing the proportion at surface. The use of negatively biased estimates of availability results in overestimation of abundance, leads to overly optimistic assessments of extinction probabilities and to potentially ineffective management actions. This study demonstrates that estimates of availability must be computed from suitable platforms to ensure proper conservation decisions are implemented to protect threatened species such as the franciscana. PMID:29534086

  13. Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons.

    PubMed

    Holthoff, Knut; Zecevic, Dejan; Konnerth, Arthur

    2010-04-01

    Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.

  14. 22 CFR 161.8 - General description of the Department's NEPA process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 161.8 General description of the Department's NEPA process. In reviewing proposed actions for potential environmental effects in the United States responsible action officers will follow the procedural... review the action to determine if it may cause potential significant environmental effects on the...

  15. A Cost Savings Analysis of the Streamlined Military Construction Program Process

    DTIC Science & Technology

    1990-04-16

    program through Congressional action . Review of these two years allowed the biennial budget to be addressed from the perspective of the first year of...specifications in outline form. c. Preliminar- project design cost estimates.. d. Back-up daca as required by this Appendix. 2. The 35 percent preliminary...delayed Congressional action . A pragmatic estimate would add an additional 12-36 months to the optimistic total. How can it possibly take that long? In

  16. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  17. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons

    PubMed Central

    Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas

    2009-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744

  18. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  19. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.

    PubMed

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-12-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.

  20. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus

    PubMed Central

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-01-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na+ (Nav) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of ∼5 m s−1 and ∼0.7 m s−1, respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na+] ACSF or the selective Nav channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Nav channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABAA receptors regulates the axonal initiation of action potentials. PMID:18832425

  1. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.

    PubMed

    Fortier, Pierre A; Bray, Chelsea

    2013-04-16

    Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Mortality and potential years of life lost by road traffic injuries in Brazil, 2013

    PubMed Central

    Andrade, Silvânia Suely Caribé de Araújo; de Mello-Jorge, Maria Helena Prado

    2016-01-01

    ABSTRACT OBJECTIVE To estimate the potential years of life lost by road traffic injuries three years after the beginning of the Decade of Action for Traffic Safety. METHODS We analyzed the data of the Sistema de Informações sobre Mortalidade (SIM – Mortality Information System) related to road traffic injuries, in 2013. We estimated the crude and standardized mortality rates for Brazil and geographic regions. We calculated, for the Country, the proportional mortality according to age groups, education level, race/skin color, and type or quality of the victim while user of the public highway. We estimated the potential years of life lost according to sex. RESULTS The mortality rate in 2013 was of 21.0 deaths per 100,000 inhabitants for the Country. The Midwest region presented the highest rate (29.9 deaths per 100,000 inhabitants). Most of the deaths by road traffic injuries took place with males (34.9 deaths per 100,000 males). More than half of the people who have died because of road traffic injuries were of black race/skin color, young adults (24.2%), individuals with low schooling (24.0%), and motorcyclists (28.5%). The mortality rate in the triennium 2011-2013 decreased 4.1%, but increased among motorcyclists. Across the Country, more than a million of potential years of life were lost, in 2013, because of road traffic injuries, especially in the age group of 20 to 29 years. CONCLUSIONS The impact of the high mortality rate is of over a million of potential years of life lost by road traffic injuries, especially among adults in productive age (early mortality), in only one year, representing extreme social cost arising from a cause of death that could be prevented. Despite the reduction of mortality by road traffic injuries from 2011 to 2013, the mortality rates increased among motorcyclists. PMID:27706375

  3. Prioritizing sites for conservation based on similarity to historical baselines and feasibility of protection.

    PubMed

    Popejoy, Traci; Randklev, Charles R; Neeson, Thomas M; Vaughn, Caryn C

    2018-05-08

    The shifting baseline syndrome concept advocates for the use of historical knowledge to inform conservation baselines, but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land-owner participation. We use zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro-American influence at a river-reach scale. We evaluate how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We first present a conceptual model that incorporates community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identify modern mussel beds that are most like the historical baseline. We then quantify the housing density and land use near each reach to estimate feasibility of habitat restoration. Using our conceptual framework, we identify reaches that have high conservation value (i.e., reaches that contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton in central Texas, U.S.A. were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appear to be most feasible. This study demonstrates how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale. This article is protected by copyright. All rights reserved.

  4. Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems.

    PubMed

    Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota

    2016-01-26

    The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling's adsorption theory was the most plausible theory. Ling's adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling's adsorption theory which has for long years been forgotten in the history of physiology.

  5. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes.

    PubMed

    Verkerk, Arie O; Geuzebroek, Guillaume S C; Veldkamp, Marieke W; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1-1000 nM, while a clear-cut frequency dependence in the range of 1-4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins.

  6. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    PubMed Central

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  7. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Lin, Dan; Hyun, Sung-Ae; Yoon, Seong Shoon; Seo, Joung-Wook

    Cell culture media usually contains antibiotics including gentamicin or penicillin/streptomycin (PS) to protect cells from bacterial contamination. However, little is known about the effects of antibiotics on action potential and field potential parameters in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The present study examined the effects of gentamicin (10, 25, and 50μg/ml) and PS (50, 100, and 200U/μg/ml) on electrophysiological activity in spontaneously beating hiPSC-CMs using manual patch clamp and multi-electrode array. We also measured mRNA expression of cardiac ion channels in hiPSC-CMs grown in media with or without gentamicin (25μg/ml) using reverse transcription-polymerase chain reaction. We recorded action potential and field potential of hiPSC-CMs grown in the presence or absence of gentamicin or PS. We also observed action potential parameters in hiPSC-CMs after short-term treatment with these antibiotics. Changes in action potential and field potential parameters were observed in hiPSC-CMs grown in media containing gentamicin or PS. Treatment with PS also affected action potential parameters in hiPSC-CMs. In addition, the mRNA expression of cardiac sodium and potassium ion channels was significantly attenuated in hiPSC-CMs grown in the presence of gentamicin (25μg/ml). The present findings suggested that gentamicin should not be used in the culture media of hiPSC-CMs used for the measurement of electrophysiological parameters. Our findings also suggest that 100U/100μg/ml of PS are the maximum appropriate concentrations of these antibiotics for recording action potential waveform, because they did not influence action potential parameters in these cells. Copyright © 2017. Published by Elsevier Inc.

  8. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  9. Beta function quintessence cosmological parameters and fundamental constants - I. Power and inverse power law dark energy potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-07-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.

  10. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed. © 2015 Wiley Periodicals, Inc.

  11. From creatures of habit to goal-directed learners: Tracking the developmental emergence of model-based reinforcement learning

    PubMed Central

    Decker, Johannes H.; Otto, A. Ross; Daw, Nathaniel D.; Hartley, Catherine A.

    2016-01-01

    Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults, performed a sequential reinforcement-learning task that enables estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was evident in choice behavior across all age groups, evidence of a model-based strategy only emerged during adolescence and continued to increase into adulthood. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. PMID:27084852

  12. Associations between errors and contributing factors in aircraft maintenance

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Williamson, Ann

    2003-01-01

    In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.

  13. A Game Theoretical Approach to Hacktivism: Is Attack Likelihood a Product of Risks and Payoffs?

    PubMed

    Bodford, Jessica E; Kwan, Virginia S Y

    2018-02-01

    The current study examines hacktivism (i.e., hacking to convey a moral, ethical, or social justice message) through a general game theoretic framework-that is, as a product of costs and benefits. Given the inherent risk of carrying out a hacktivist attack (e.g., legal action, imprisonment), it would be rational for the user to weigh these risks against perceived benefits of carrying out the attack. As such, we examined computer science students' estimations of risks, payoffs, and attack likelihood through a game theoretic design. Furthermore, this study aims at constructing a descriptive profile of potential hacktivists, exploring two predicted covariates of attack decision making, namely, peer prevalence of hacking and sex differences. Contrary to expectations, results suggest that participants' estimations of attack likelihood stemmed solely from expected payoffs, rather than subjective risks. Peer prevalence significantly predicted increased payoffs and attack likelihood, suggesting an underlying descriptive norm in social networks. Notably, we observed no sex differences in the decision to attack, nor in the factors predicting attack likelihood. Implications for policymakers and the understanding and prevention of hacktivism are discussed, as are the possible ramifications of widely communicated payoffs over potential risks in hacking communities.

  14. Detection and quantification of MS lesions using fuzzy topological principles

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Wei, Luogang; Samarasekera, Supun; Miki, Yukio; van Buchem, M. A.; Grossman, Robert I.

    1996-04-01

    Quantification of the severity of the multiple sclerosis (MS) disease through estimation of lesion volume via MR imaging is vital for understanding and monitoring the disease and its treatment. This paper presents a novel methodology and a system that can be routinely used for segmenting and estimating the volume of MS lesions via dual-echo spin-echo MR imagery. An operator indicates a few points in the images by pointing to the white matter, the gray matter, and the CSF. Each of these objects is then detected as a fuzzy connected set. The holes in the union of these objects correspond to potential lesion sites which are utilized to detect each potential lesion as a fuzzy connected object. These 3D objects are presented to the operator who indicates acceptance/rejection through the click of a mouse button. The volume of accepted lesions is then computed and output. Based on several evaluation studies and over 300 3D data sets that were processed, we conclude that the methodology is highly reliable and consistent, with a coefficient of variation (due to subjective operator actions) of less than 1.0% for volume.

  15. Potential economic value of drought information to support early warning in Africa

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Iglesias, A.; Diz, A.; Garrote, L.

    2012-04-01

    We present a methodology to estimate the economic value of advanced climate information for food production in Africa under climate change scenarios. The results aim to facilitate better choices in water resources management. The methodology includes 4 sequential steps. First two contrasting management strategies (with and without early warning) are defined. Second, the associated impacts of the management actions are estimated by calculating the effect of drought in crop productivity under climate change scenarios. Third, the optimal management option is calculated as a function of the drought information and risk aversion of potential information users. Finally we use these optimal management simulations to compute the economic value of enhanced water allocation rules to support stable food production in Africa. Our results show how a timely response to climate variations can help reduce loses in food production. The proposed framework is developed within the Dewfora project (Early warning and forecasting systems to predict climate related drought vulnerability and risk in Africa) that aims to improve the knowledge on drought forecasting, warning and mitigation, and advance the understanding of climate related vulnerability to drought and to develop a prototype operational forecasting.

  16. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components:more » a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.« less

  17. Na and Ca components of action potentials in amphioxus muscle cells

    PubMed Central

    Hagiwara, S.; Kidokoro, Y.

    1971-01-01

    1. The ionic mechanism of the action potential produced in lamella-like muscle cells of amphioxus, Branchiostoma californiense, was investigated with intracellular recording and polarization techniques. 2. The resting potential and action potential overshoot in normal saline are -53±5 mV (S.D.) and +29±10 mV (S.D.) respectively. 3. The action potential is eliminated by tetrodotoxin (3 μM) and by replacing NaCl in the saline with Tris-chloride but maintained by replacing Na with Li. 4. After elimination of the normal action potential by tetrodotoxin or replacing Na with Tris, the addition of procaine (7·3 mM) to the external saline makes the membrane capable of producing a regenerative potential change. 5. The peak potential of the regenerative response depends on external Ca concentration in a manner predicted by the Nernst equation with Ca concentrations close to normal. 6. The Ca dependent response is reversibly suppressed by Co or La ions. 7. Similar regenerative responses are obtained when Ca is substituted with Sr or Ba. 8. It is concluded that two independent mechanisms of ionic permeability increase occur in the membrane of amphioxus muscle cell, one to Na and the other to Ca. PMID:5158595

  18. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  19. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  20. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  1. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    USGS Publications Warehouse

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  2. Action potentials recorded from bundles of very thin, gray matter axons in rat cerebellar slices using a grease-gap method.

    PubMed

    Palani, Damodharan; Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna; Raastad, Morten

    2012-07-15

    We investigated the ability of a grease-gap method to record fast and slow changes of the membrane potential from bundles of gray matter axons. Their membrane potentials are of particular interest because these axons are different from most axons that have been investigated using intra-axonal or gap techniques. One of the main differences is that gray matter axons typically have closely spaced presynaptic specializations, called boutons or varicosities, distributed along their entire paths. In response to electrical activation of bundles of parallel fiber axons we were able to record small (128-416μV) but stable signals that we show most likely represented a fraction of the trans-membrane action potentials. A less-than 100% fraction prevents measurements of absolute values for membrane potentials, but the good signal-to-noise ratio (typically 10-16) allows detection of changes in resting membrane potential, action potentials and their after-potentials. Because very little is known about the shape of action potentials and after-potentials in these axons we used several independent methods to make it likely that the grease-gap signal was of intra-axonal origin. We demonstrate the utility of the method by showing that the action potentials in cerebellar parallel fibers and hippocampal Schaffer collaterals had a slowly decaying, depolarized after-potential. The method is ideal for pharmacological tests, which we demonstrate by showing that the slow after-potential was sensitive to 4-AP, and that the membrane potential was reduced by 200μM Ba(2+). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Assessing the transferability of ecosystem service production estimates and functions

    EPA Science Inventory

    Estimates of ecosystem service (ES) production, and their responses to stressors or policy actions, may be obtained by direct measurement, other empirical studies, or modeling. Direct measurement is costly and often impractical, and thus many studies transfer ES production estim...

  4. Deterministic estimate of hypocentral pore fluid pressure of the M5.8 Pawnee, Oklahoma earthquake: Lower pre-injection pressure requires lower resultant pressure for slip

    NASA Astrophysics Data System (ADS)

    Levandowski, W. B.; Walsh, F. R. R.; Yeck, W.

    2016-12-01

    Quantifying the increase in pore-fluid pressure necessary to cause slip on specific fault planes can provide actionable information for stakeholders to potentially mitigate hazard. Although the M5.8 Pawnee earthquake occurred on a previously unmapped fault, we can retrospectively estimate the pore-pressure perturbation responsible for this event. We first estimate the normalized local stress tensor by inverting focal mechanisms surrounding the Pawnee Fault. Faults are generally well oriented for slip, with instabilities averaging 96% of maximum. Next, with an estimate of the weight of local overburden we solve for the pore pressure needed at the hypocenters. Specific to the Pawnee fault, we find that hypocentral pressure 43-104% of hydrostatic (accounting for uncertainties in all relevant parameters) would have been sufficient to cause slip. The dominant source of uncertainty is the pressure on the fault prior to fluid injection. Importantly, we find that lower pre-injection pressure requires lower resultant pressure to cause slip, decreasing from a regional average of 30% above hydrostatic pressure if the hypocenters begin at hydrostatic pressure to 6% above hydrostatic pressure with no pre-injection fluid. This finding suggests that underpressured regions such as northern Oklahoma are predisposed to injection-induced earthquakes. Although retrospective and forensic, similar analyses of other potentially induced events and comparisons to natural earthquakes will provide insight into the relative importance of fault orientation, the magnitude of the local stress field, and fluid-pressure migration in intraplate seismicity.

  5. Tympanal mechanics and neural responses in the ears of a noctuid moth

    NASA Astrophysics Data System (ADS)

    Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  6. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; Vanengelsdorp, Dennis

    2016-09-01

    This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.

  7. Overcoming Learning Aversion in Evaluating and Managing Uncertain Risks.

    PubMed

    Cox, Louis Anthony Tony

    2015-10-01

    Decision biases can distort cost-benefit evaluations of uncertain risks, leading to risk management policy decisions with predictably high retrospective regret. We argue that well-documented decision biases encourage learning aversion, or predictably suboptimal learning and premature decision making in the face of high uncertainty about the costs, risks, and benefits of proposed changes. Biases such as narrow framing, overconfidence, confirmation bias, optimism bias, ambiguity aversion, and hyperbolic discounting of the immediate costs and delayed benefits of learning, contribute to deficient individual and group learning, avoidance of information seeking, underestimation of the value of further information, and hence needlessly inaccurate risk-cost-benefit estimates and suboptimal risk management decisions. In practice, such biases can create predictable regret in selection of potential risk-reducing regulations. Low-regret learning strategies based on computational reinforcement learning models can potentially overcome some of these suboptimal decision processes by replacing aversion to uncertain probabilities with actions calculated to balance exploration (deliberate experimentation and uncertainty reduction) and exploitation (taking actions to maximize the sum of expected immediate reward, expected discounted future reward, and value of information). We discuss the proposed framework for understanding and overcoming learning aversion and for implementing low-regret learning strategies using regulation of air pollutants with uncertain health effects as an example. © 2015 Society for Risk Analysis.

  8. Reassessing hypoxia forecasts for the Gulf of Mexico.

    PubMed

    Scavia, Donald; Donnelly, Kristina A

    2007-12-01

    Gulf of Mexico hypoxia has received considerable scientific and policy attention because of its potential ecological and economic impacts and implications for agriculture within its massive watershed. A 2000 assessment concluded that increased nitrate load to the Gulf since the 1950s was the primary cause of large-scale hypoxia areas. More recently, models have suggested that large-scale hypoxia did not start untilthe mid-1970s, and that a 40-45% nitrogen load reduction may be needed to reach the hypoxia area goal of the Hypoxia Action Plan. Recently, USGS revised nutrient load estimates to the Gulf, and the Action Plan reassessment has questioned the role of phosphorus versus nitrogen in controlling hypoxia. In this paper, we re-evaluate model simulations, hindcasts, and forecasts using revised nitrogen loads, and testthe ability of a phosphorus-driven version of the model to reproduce hypoxia trends. Our analysis suggests that, if phosphorus is limiting now, it became so because of relative increases in nitrogen loads during the 1970s and 1980s. While our model suggests nitrogen load reductions of 37-45% or phosphorus load reductions of 40-50% below the 1980-1996 average are needed, we caution that a phosphorus-only strategy is potentially dangerous, and suggest it would be prudent to reduce both.

  9. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States

    PubMed Central

    Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; vanEngelsdorp, Dennis

    2016-01-01

    This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health. PMID:27628343

  10. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.

    PubMed

    Rieger, Robert; Schuettler, Martin; Chuang, Sheng-Chih

    2014-09-01

    This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems.

  11. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred tomore » as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.« less

  12. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  13. ShakeCast: Automating and improving the use of shakemap for post-earthquake deeision-making and response

    USGS Publications Warehouse

    Wald, D.; Lin, K.-W.; Porter, K.; Turner, Loren

    2008-01-01

    When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, on its own can be useful for emergency response, loss estimation, and public information. However, to take full advantage of the potential of ShakeMap, we introduce ShakeCast. ShakeCast facilitates the complicated assessment of potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps of structures or facilities most likely impacted. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users' facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for both public and private emergency managers and responders. ?? 2008, Earthquake Engineering Research Institute.

  14. Central Nervous System-Toxic Lidocaine Concentrations Unmask L-Type Ca²⁺ Current-Mediated Action Potentials in Rat Thalamocortical Neurons: An In Vitro Mechanism of Action Study.

    PubMed

    Putrenko, Igor; Ghavanini, Amer A; Meyer Schöniger, Katrin S; Schwarz, Stephan K W

    2016-05-01

    High systemic lidocaine concentrations exert well-known toxic effects on the central nervous system (CNS), including seizures, coma, and death. The underlying mechanisms are still largely obscure, and the actions of lidocaine on supraspinal neurons have received comparatively little study. We recently found that lidocaine at clinically neurotoxic concentrations increases excitability mediated by Na-independent, high-threshold (HT) action potential spikes in rat thalamocortical neurons. Our goal in this study was to characterize these spikes and test the hypothesis that they are generated by HT Ca currents, previously implicated in neurotoxicity. We also sought to identify and isolate the specific underlying subtype of Ca current. We investigated the actions of lidocaine in the CNS-toxic concentration range (100 μM-1 mM) on ventrobasal thalamocortical neurons in rat brain slices in vitro, using whole-cell patch-clamp recordings aided by differential interference contrast infrared videomicroscopy. Drugs were bath applied; action potentials were generated using current clamp protocols, and underlying currents were identified and isolated with ion channel blockers and electrolyte substitution. Lidocaine (100 μM-1 mM) abolished Na-dependent tonic firing in all neurons tested (n = 46). However, in 39 of 46 (85%) neurons, lidocaine unmasked evoked HT action potentials with lower amplitudes and rates of de-/repolarization compared with control. These HT action potentials remained during the application of tetrodotoxin (600 nM), were blocked by Cd (50 μM), and disappeared after superfusion with an extracellular solution deprived of Ca. These features implied that the unmasked potentials were generated by high-voltage-activated Ca channels and not by Na channels. Application of the L-type Ca channel blocker, nifedipine (5 μM), completely blocked the HT potentials, whereas the N-type Ca channel blocker, ω-conotoxin GVIA (1 μM), had little effect. At clinically CNS-toxic concentrations, lidocaine unmasked in thalamocortical neurons evoked HT action potentials mediated by the L-type Ca current while substantially suppressing Na-dependent excitability. On the basis of the known role of an increase in intracellular Ca in the pathogenesis of local anesthetic neurotoxicity, this novel action represents a plausible contributing candidate mechanism for lidocaine's CNS toxicity in vivo.

  15. Models of resource allocation optimization when solving the control problems in organizational systems

    NASA Astrophysics Data System (ADS)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  16. An intracellular analysis of the visual responses of neurones in cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981

  17. Left atrial booster function in valvular heart disease.

    PubMed

    Heidenreich, F P; Shaver, J A; Thompson, M E; Leonard, J J

    1970-09-01

    This study was designed to assess atrial booster pump action in valvular heart disease and to dissect booster pump from reservoir-conduit functions. In five patients with aortic stenosis and six with mitral stenosis, sequential atrioventricular (A-V) pacing was instituted during the course of diagnostic cardiac catheterization. Continuous recording of valvular gradient allowed estimation of flow for each cardiac cycle by transposition of the Gorlin formula. Left ventricular ejection time and left ventricular stroke work in aortic stenosis or left ventricular mean systolic pressure in mitral stenosis were also determined. Control observations were recorded during sequential A-V pacing with well-timed atrial systole. Cardiac cycles were then produced with no atrial contraction but undisturbed atrial reservoir function by intermittently interrupting the atrial pacing stimulus during sequential A-V pacing. This intervention significantly reduced valvular gradient, flow, left ventricular ejection time, and left ventricular mean systolic pressure or stroke work. Cardiac cycles were then produced with atrial booster action eliminated by instituting synchronous A-V pacing. The resultant simultaneous contraction of the atrium and ventricle not only eliminated effective atrial systole but also placed atrial systole during the normal period of atrial reservoir function. This also significantly reduced all the hemodynamic measurements. However, comparison of the magnitude of change from these two different pacing interventions showed no greater impairment of hemodynamic state when both booster pump action and reservoir function were impaired than when booster pump action alone was impaired. The study confirms the potential benefit of well placed atrial booster pump action in valvular heart disease in man.

  18. A path integral approach to the Hodgkin-Huxley model

    NASA Astrophysics Data System (ADS)

    Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando

    2017-11-01

    To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.

  19. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    NASA Astrophysics Data System (ADS)

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; de Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  20. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    PubMed Central

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; De Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-01-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ~15–30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5–1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures. PMID:27941898

  1. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes.

    PubMed

    Jayant, Krishna; Hirtz, Jan J; Plante, Ilan Jen-La; Tsai, David M; De Boer, Wieteke D A M; Semonche, Alexa; Peterka, Darcy S; Owen, Jonathan S; Sahin, Ozgur; Shepard, Kenneth L; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  2. Overrepresentation of extreme events in decision making reflects rational use of cognitive resources.

    PubMed

    Lieder, Falk; Griffiths, Thomas L; Hsu, Ming

    2018-01-01

    People's decisions and judgments are disproportionately swayed by improbable but extreme eventualities, such as terrorism, that come to mind easily. This article explores whether such availability biases can be reconciled with rational information processing by taking into account the fact that decision makers value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of their finite time decision makers should overrepresent the most important potential consequences relative to less important, put potentially more probable, outcomes. To evaluate this account, we derive and test a model we call utility-weighted sampling. Utility-weighted sampling estimates the expected utility of potential actions by simulating their outcomes. Critically, outcomes with more extreme utilities have a higher probability of being simulated. We demonstrate that this model can explain not only people's availability bias in judging the frequency of extreme events but also a wide range of cognitive biases in decisions from experience, decisions from description, and memory recall. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. 77 FR 6682 - Marine Mammals; Subsistence Taking of Northern Fur Seals; Harvest Estimates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    .... 110781394-2048-02] RIN 0648-BB09 Marine Mammals; Subsistence Taking of Northern Fur Seals; Harvest Estimates...), Commerce. ACTION: Final estimates of annual fur seal subsistence needs. SUMMARY: Pursuant to the regulations governing the subsistence taking of [[Page 6683

  4. Incorporating detection probability into northern Great Plains pronghorn population estimates

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; DePerno, Christopher S.

    2014-01-01

    Pronghorn (Antilocapra americana) abundances commonly are estimated using fixed-wing surveys, but these estimates are likely to be negatively biased because of violations of key assumptions underpinning line-transect methodology. Reducing bias and improving precision of abundance estimates through use of detection probability and mark-resight models may allow for more responsive pronghorn management actions. Given their potential application in population estimation, we evaluated detection probability and mark-resight models for use in estimating pronghorn population abundance. We used logistic regression to quantify probabilities that detecting pronghorn might be influenced by group size, animal activity, percent vegetation, cover type, and topography. We estimated pronghorn population size by study area and year using mixed logit-normal mark-resight (MLNM) models. Pronghorn detection probability increased with group size, animal activity, and percent vegetation; overall detection probability was 0.639 (95% CI = 0.612–0.667) with 396 of 620 pronghorn groups detected. Despite model selection uncertainty, the best detection probability models were 44% (range = 8–79%) and 180% (range = 139–217%) greater than traditional pronghorn population estimates. Similarly, the best MLNM models were 28% (range = 3–58%) and 147% (range = 124–180%) greater than traditional population estimates. Detection probability of pronghorn was not constant but depended on both intrinsic and extrinsic factors. When pronghorn detection probability is a function of animal group size, animal activity, landscape complexity, and percent vegetation, traditional aerial survey techniques will result in biased pronghorn abundance estimates. Standardizing survey conditions, increasing resighting occasions, or accounting for variation in individual heterogeneity in mark-resight models will increase the accuracy and precision of pronghorn population estimates.

  5. Staff Handbook on Natural Gas.

    ERIC Educational Resources Information Center

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  6. 75 FR 43072 - Trichoderma Hamatum Isolate 382; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Information A. Does this Action Apply to Me? You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include... exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action...

  7. Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in Langendorff-perfused rabbit hearts

    PubMed Central

    Chou, Chung-Chuan; Zhou, Shengmei; Hayashi, Hideki; Nihei, Motoki; Liu, Yen-Bin; Wen, Ming-Shien; Yeh, San-Jou; Fishbein, Michael C; Weiss, James N; Lin, Shien-Fong; Wu, Delon; Chen, Peng-Sheng

    2007-01-01

    We hypothesize that remodelling of action potential and intracellular calcium (Cai) dynamics in the peri-infarct zone contributes to ventricular arrhythmogenesis in the postmyocardial infarction setting. To test this hypothesis, we performed simultaneous optical mapping of Cai and membrane potential (Vm) in the left ventricle in 15 rabbit hearts with myocardial infarction for 1 week. Ventricular premature beats frequently originated from the peri-infarct zone, and 37% showed elevation of Cai prior to Vm depolarization, suggesting reverse excitation–contraction coupling as their aetiology. During electrically induced ventricular fibrillation, the highest dominant frequency was in the peri-infarct zone in 61 of 70 episodes. The site of highest dominant frequency had steeper action potential duration restitution and was more susceptible to pacing-induced Cai alternans than sites remote from infarct. Wavebreaks during ventricular fibrillation tended to occur at sites of persistently elevated Cai. Infusion of propranolol flattened action potential duration restitution, reduced wavebreaks and converted ventricular fibrillation to ventricular tachycardia. We conclude that in the subacute phase of myocardial infarction, the peri-infarct zone exhibits regions with steep action potential duration restitution slope and unstable Cai dynamics. These changes may promote ventricular extrasystoles and increase the incidence of wavebreaks during ventricular fibrillation. Whereas increased tissue heterogeneity after subacute myocardial infarction creates a highly arrhythmogenic substrate, dynamic action potential and Cai cycling remodelling also contribute to the initiation and maintenance of ventricular fibrillation in this setting. PMID:17272354

  8. Components of action potential repolarization in cerebellar parallel fibres.

    PubMed

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  9. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.

    PubMed

    Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng

    2013-08-25

    Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.

  11. Big data prediction of durations for online collective actions based on peak's timing

    NASA Astrophysics Data System (ADS)

    Nie, Shizhao; Wang, Zheng; Pujia, Wangmo; Nie, Yuan; Lu, Peng

    2018-02-01

    Peak Model states that each collective action has a life circle, which contains four periods of "prepare", "outbreak", "peak", and "vanish"; and the peak determines the max energy and the whole process. The peak model's re-simulation indicates that there seems to be a stable ratio between the peak's timing (TP) and the total span (T) or duration of collective actions, which needs further validations through empirical data of collective actions. Therefore, the daily big data of online collective actions is applied to validate the model; and the key is to check the ratio between peak's timing and the total span. The big data is obtained from online data recording & mining of websites. It is verified by the empirical big data that there is a stable ratio between TP and T; furthermore, it seems to be normally distributed. This rule holds for both the general cases and the sub-types of collective actions. Given the distribution of the ratio, estimated probability density function can be obtained, and therefore the span can be predicted via the peak's timing. Under the scenario of big data, the instant span (how long the collective action lasts or when it ends) will be monitored and predicted in real-time. With denser data (Big Data), the estimation of the ratio's distribution gets more robust, and the prediction of collective actions' spans or durations will be more accurate.

  12. Strategies for improving neural signal detection using a neural-electronic interface.

    PubMed

    Szlavik, Robert B

    2003-03-01

    There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.

  13. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.

    PubMed

    Ferrero, J M; Sáiz, J; Ferrero, J M; Thakor, N V

    1996-08-01

    The role of the ATP-sensitive K+ current (IK-ATP) and its contribution to electrophysiological changes that occur during metabolic impairment in cardiac ventricular myocytes is still being discussed. The aim of this work was to quantitatively study this issue by using computer modeling. A model of IK-ATP is formulated and incorporated into the Luo-Rudy ionic model of the ventricular action potential. Action potentials under different degrees of activation of IK-ATP are simulated. Our results show that in normal ionic concentrations, only approximately 0.6% of the KATP channels, when open, should account for a 50% reduction in action potential duration. However, increased levels of intracellular Mg2+ counteract this shortening. Under conditions of high [K+]0, such as those found in early ischemia, the activation of only approximately 0.4% of the KATP channels could account for a 50% reduction in action potential duration. Thus, our results suggest that opening of IK-ATP channels should play a significant role in action potential shortening during hypoxic/ischemic episodes, with the fraction of open channels involved being very low ( < 1%). However, the results of the model suggest that activation of IK-ATP alone does not quantitatively account for the observed K+ efflux in metabolically impaired cardiac myocytes. Mechanisms other than KATP channel activation should be responsible for a significant part of the K+ efflux measured in hypoxic/ischemic situations.

  14. Peripheral nerve recruitment curve using near-infrared stimulation

    NASA Astrophysics Data System (ADS)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  15. 76 FR 21750 - State Median Income Estimate for a Four-Person Family: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... Income Estimate for a Four-Person Family: Notice of the Federal Fiscal Year (FFY) 2012 State Median Income Estimates for Use Under the Low Income Home Energy Assistance Program (LIHEAP) AGENCY.... ACTION: Notice of State median income estimates for FFY 2012. SUMMARY: This notice announces to LIHEAP...

  16. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  17. Action Learning: Potential for Inner City Youth

    ERIC Educational Resources Information Center

    Epps, Edgar G.

    1974-01-01

    Working class and minority participation in action-learning poses potential problems likely to be overlooked by program planners. This presentation reveals the trouble spots and offers constructive suggestions. (Editor)

  18. Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons: quantification of the difference.

    PubMed

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-04-09

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.

  19. Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference

    PubMed Central

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-01-01

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics. PMID:18398478

  20. A Study on Active Disaster Management System for Standardized Emergency Action Plan using BIM and Flood Damage Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.

    2013-12-01

    In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.

  1. Effect of Detergent on Electrical Properties of Squid Axon Membrane

    PubMed Central

    Kishimoto, Uichiro; Adelman, William J.

    1964-01-01

    The effects of detergents on squid giant axon action and resting potentials as well as membrane conductances in the voltage clamp have been studied. Anionic detergents (sodium lauryl sulfate, 0.1 to 1.0 mM; dimethyl benzene sulfonate, 1 to 20 mM, pH 7.6) cause a temporary increase and a later decrease of action potential height and the value of the resting potential. Cationic detergent (cetyl trimethyl ammonium chloride, 6 x 10-5 M or more, pH 7.6) generally brings about immediate and irreversible decreases in the action and resting potentials. Non-ionic detergent (tween 80, 0.1 M, pH 7.6) causes a slight reversible reduction of action potential height without affecting the value of the resting potential. Both anionic and cationic detergents generally decrease the sodium and potassium conductances irreversibly. The effect of non-ionic detergent is to decrease the sodium conductance reversibly, leaving the potassium conductance almost unchanged. PMID:14158665

  2. The influence of action observation on action execution: Dissociating the contribution of action on perception, perception on action, and resolving conflict.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2017-04-01

    For more than 15 years, motor interference paradigms have been used to investigate the influence of action observation on action execution. Most research on so-called automatic imitation has focused on variables that play a modulating role or investigated potential confounding factors. Interestingly, furthermore, a number of functional magnetic resonance imaging (fMRI) studies have tried to shed light on the functional mechanisms and neural correlates involved in imitation inhibition. However, these fMRI studies, presumably due to poor temporal resolution, have primarily focused on high-level processes and have neglected the potential role of low-level motor and perceptual processes. In the current EEG study, we therefore aimed to disentangle the influence of low-level perceptual and motoric mechanisms from high-level cognitive mechanisms. We focused on potential congruency differences in the visual N190 - a component related to the processing of biological motion, the Readiness Potential - a component related to motor preparation, and the high-level P3 component. Interestingly, we detected congruency effects in each of these components, suggesting that the interference effect in an automatic imitation paradigm is not only related to high-level processes such as self-other distinction but also to more low-level influences of perception on action and action on perception. Moreover, we documented relationships of the neural effects with (autistic) behavior.

  3. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature andmore » extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.« less

  4. Associative, Bidirectional Changes in Neural Signaling Utilizing NMDA Receptor- and Endocannabinoid-Dependent Mechanisms

    ERIC Educational Resources Information Center

    Li, Qin; Burrell, Brian D.

    2011-01-01

    Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We…

  5. Supervision of dynamic systems: Monitoring, decision-making and control

    NASA Technical Reports Server (NTRS)

    White, T. N.

    1982-01-01

    Effects of task variables on the performance of the human supervisor by means of modelling techniques are discussed. The task variables considered are: The dynamics of the system, the task to be performed, the environmental disturbances and the observation noise. A relationship between task variables and parameters of a supervisory model is assumed. The model consists of three parts: (1) The observer part is thought to be a full order optimal observer, (2) the decision-making part is stated as a set of decision rules, and (3) the controller part is given by a control law. The observer part generates, on the basis of the system output and the control actions, an estimate of the state of the system and its associated variance. The outputs of the observer part are then used by the decision-making part to determine the instants in time of the observation actions on the one hand and the controls actions on the other. The controller part makes use of the estimated state to derive the amplitude(s) of the control action(s).

  6. Characterization of fractures and flow zones in a contaminated shale at the Watervliet Arsenal, Albany County, New York

    USGS Publications Warehouse

    Williams, John H.; Paillet, Frederick L.

    2002-01-01

    Flow zones in a fractured shale in and near a plume of volatile organic compounds at the Watervliet Arsenal in Albany County, N. Y. were characterized through the integrated analysis of geophysical logs and single- and cross-hole flow tests. Information on the fracture-flow network at the site was needed to design an effective groundwater monitoring system, estimate offsite contaminant migration, and evaluate potential containment and remedial actions.Four newly drilled coreholes and four older monitoring wells were logged and tested to define the distribution and orientation of fractures that intersected a combined total of 500 feet of open hole. Analysis of borehole-wall image logs obtained with acoustic and optical televiewers indicated 79 subhorizontal to steeply dipping fractures with a wide range of dip directions. Analysis of fluid resistivity, temperature, and heat-pulse and electromagnetic flowmeter logs obtained under ambient and short-term stressed conditions identified 14 flow zones, which consist of one to several fractures and whose estimated transmissivity values range from 0.1 to more than 250 feet squared per day.Cross-hole flow tests, which were used to characterize the hydraulic connection between fracture-flow zones intersected by the boreholes, entailed (1) injection into or extraction from boreholes that penetrated a single fracture-flow zone or whose zones were isolated by an inflatable packer, and (2) measurement of the transient response of water levels and flow in surrounding boreholes. Results indicate a wellconnected fracture network with an estimated transmissivity of 80 to 250 feet squared per day that extends for at least 200 feet across the site. This interconnected fracture-flow network greatly affects the hydrology of the site and has important implications for contaminant monitoring and remedial actions.

  7. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individualmore » at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.« less

  8. Final Environmental Assessment: Addressing An Army and Air Force Exchange Service (AAFES) Lifestyle Center at Eglin Air Force Base, Florida

    DTIC Science & Technology

    2008-11-01

    the proposed site has the potential for adverse effects on surface water bodies in the event of a spill or uncontrolled erosion. Implementation of...inclusion of a No Action Alternative against which potential effects can be compared. While the No Action Alternative would not satisfy the purpose... potential effects on project site and adjacent land uses. The foremost factor affecting a proposed action in terms of land use is its compliance

  9. Localization of effective actions in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Merlano, Alberto

    2018-03-01

    We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.

  10. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.

  11. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402

  12. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Maina, Joseph M; Graham, Nicholas A J; Jones, Kendall R

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.

  13. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Maina, Joseph M.; Graham, Nicholas A. J.; Jones, Kendall R.

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability. PMID:27149673

  14. 77 FR 45535 - Aldicarb; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Aldicarb; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Information A. Does this action apply to me? You may be potentially affected by this action if you are an... exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action...

  15. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada. Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitatemore » site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and closure in place. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAU 413, and the detailed and comparative analysis of CAAs, clean closure was selected as the preferred CAA for CAU 413 by the U.S. Air Force, Nevada Division of Environmental Protection, and U.S. Department of Energy at the CAA meeting held on August 24, 2016.« less

  16. Estimating total population size for Songbirds

    Treesearch

    Jonathan Bart

    2005-01-01

    A conviction has developed during the past few years within the avian conservation community that estimates of total population size are needed for many species, especially ones that warrant conservation action. For example, the recently completed monitoring plans for North American shorebirds and landbirds establish estimating population size as a major objective....

  17. Risk assessment for safety laboratories in Politeknik Negeri Medan

    NASA Astrophysics Data System (ADS)

    Viyata Sundawa, Bakti; Hutajulu, Elferida; Sirait, Regina; Banurea, Waldemar; Indrayadi; Mulyadi, Sangap

    2017-09-01

    International Labour Organization (ILO) estimated 2.34 million people die each year because accidents and diseases in workplace. It also impact to economic losses in some countries. It need to do safety and healthy in working environment especially in laboratory. Identification of potential hazards and risks must be done in Telecommunication Laboratory Politeknik Negeri Medan. Therefore, this study was assessed 5 of potential hazards and risks in our laboratory by Likert Scale. This object was divided into 2 assessment namely likelihood of hazards and severity of consequences. Collecting data is taken from questionnaire who involved 100 students at random academic level. The result showed The highest score is chemical hazards 73.2% in likelihood of hazards and electrical hazards 85% in severity of consequences. This condition is classified as “high” state. Big attention must be given to “high” state because it can help us to determine mitigate action.

  18. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. PMID:25762313

  19. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.

    PubMed

    Teka, Wondimu; Stockton, David; Santamaria, Fidel

    2016-03-01

    We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.

  1. Minimizing the risks created by an emissions inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppenfeld, R.R. von; Evans, D.M.; Vamos, J.C.

    Emissions inventories are required under the federal Clean Air Act ({open_quotes}Act{close_quotes}). Sources must identify emissions points and the types of air pollutants emitted, and quantify by measurement, modeling, or estimation the amount of each pollutant. The emissions inventory is an information gathering tool, providing regulatory agencies and the public with an overview of pollutants that may be emitted. Emission inventories are not reports of precise measurements of emissions and may be misunderstood, misinterpreted or misused. The emissions inventory and the underlying documentation are potential evidence in enforcement actions under the Act and other federal and state environmental laws. Readily availablemore » to the public, emission inventories may also be used in citizen suits, toxic tort actions and other types of civil actions for damages. Practical as well as legal mechanisms allow regulated entities to minimize the possibility that an emissions inventory or its underlying documentation will be a {open_quotes}smoking gun.{close_quotes} Practical tools include use of qualifying or disclaimer language in the final inventory. The inventory effort can be planned and executed to minimize the risk of misuse and to bring the effort within privileges, such as the self-evaluative privilege, statutory audit privileges, the attorney-client privilege or the attorney work product privilege.« less

  2. DOUBLE TRACKS Test Site interim corrective action plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarilymore » of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.« less

  3. A Summary of Publications on the Development of Mode-of ...

    EPA Pesticide Factsheets

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures of potentially toxic disinfection byproducts (DBPs). The types and concentrations of DBPs formed during disinfection and the relative proportions of the components vary depending on factors such as source water conditions (e.g., types of NOM present), disinfectant type (e.g., chlorine, ozone, chloramine), and treatment conditions (e.g., pH and temperature). To date, over 500 DBPs have been detected in treated waters. However, typically more than 50% of the organic halide mass produced by chlorination disinfection consists of unidentified chemicals, which are not measured by routine analyses of DBPs. The protocols and methods typically used to evaluate chemical mixtures are best applied to simple defined mixtures consisting of relatively few chemicals. These approaches rely on assumptions (e.g., common mode of action, independent toxic action) regarding the type of joint toxic action (e.g., dose-additivity, synergism) that might be observed. Such methods, used for site assessments or toxicological studies, are often not sufficient to estimate health risk for complex drinking water DBP mixtures. Actual drinking water exposures involve multiple chemicals, many of w

  4. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    PubMed

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bulk Fuel: Actions Needed to Improve DODs Fuel Consumption Budget Data

    DTIC Science & Technology

    2016-09-01

    BULK FUEL Actions Needed to Improve DOD’s Fuel Consumption Budget Data Report to Congressional Committees...16-644, a report to congressional committees. September 2016 BULK FUEL Actions Needed to Improve DOD’s Fuel Consumption Budget Data What GAO...of about $10.1 billion in fiscal year 2015 but differed from budget estimates, which officials largely attributed to changes in operations and

  6. Coping with constraints: Achieving effective conservation with limited resources

    USGS Publications Warehouse

    Walls, Susan

    2018-01-01

    Conservation resources have become increasingly limited and, along with social, cultural and political complexities, this shortfall frequently challenges effectiveness in conservation. Because conservation can be costly, efforts are often only initiated after a species has declined below a critical threshold and/or when statutory protection is mandated. However, implementing conservation proactively, rather than reactively, is predicted to be less costly and to decrease a species' risk of extinction. Despite these benefits, I document that the number of studies that have implemented proactive conservation around the world are far fewer than those that simply acknowledge the need for such action. I provide examples of proactive actions that can ameliorate shortfalls in funding and other assets, thus helping conservation practitioners and managers cope with the constraints that resource limitation imposes. Not all of these options are new; however, the timing of their implementation is critical for effective conservation, and the need for more proactive conservation is increasingly recognized. These actions are (1) strengthening and diversifying stakeholder involvement in conservation projects; (2) complementing time-consuming and labor-intensive demographic studies with alternative approaches of detecting declines and estimating extinction risk; and (3) minimizing future costly conservation and management by proactively keeping common species common. These approaches may not constitute a cure-all for every conservation crisis. However, given escalating rates of species' losses, perhaps a reminder that these proactive actions can reduce conservation costs, save time, and potentially thwart population declines is warranted.

  7. The limits of earthquake early warning: Timeliness of ground motion estimates

    USGS Publications Warehouse

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  8. The limits of earthquake early warning: Timeliness of ground motion estimates

    PubMed Central

    Hanks, Thomas C.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information. PMID:29750190

  9. Tuning in to Another Person's Action Capabilities: Perceiving Maximal Jumping-Reach Height from Walking Kinematics

    ERIC Educational Resources Information Center

    Ramenzoni, Veronica; Riley, Michael A.; Davis, Tehran; Shockley, Kevin; Armstrong, Rachel

    2008-01-01

    Three experiments investigated the ability to perceive the maximum height to which another actor could jump to reach an object. Experiment 1 determined the accuracy of estimates for another actor's maximal reach-with-jump height and compared these estimates to estimates of the actor's standing maximal reaching height and to estimates of the…

  10. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  11. Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2012-12-01

    Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.

  12. Association between imagined and actual functional reach (FR): a comparison of young and older adults.

    PubMed

    Gabbard, Carl; Cordova, Alberto

    2013-01-01

    Recent studies indicate that the ability to mentally represent action using motor imagery declines with advanced age (>64 years). As the ability to represent action declines, the elderly may experience increasing difficulty with movement planning and execution. Here, we determined the association between estimation of reach via use of motor imagery and actual FR. Young adults (M=22 years) and older adults (M=66 years) estimated reach while standing with targets randomly presented in peripersonal (within actual reach) and extrapersonal (beyond reach) space. Imagined responses were compared to the individual's scaled maximum reach. FR, also while standing, was assessed using the standardized Functional Reach Test (FRT). Results for total score estimation accuracy showed that there was no difference for age; however, results for mean bias and distribution of error revealed that the older group underestimated while the younger group overestimated. In reference to FR, younger adults outperformed older adults (30 versus 14in.) and most prominent, only the younger group showed a significant relationship between estimation and FR. In addition to gaining insight to the effects of advanced age on the ability to mentally represent action and its association with movement execution, these results although preliminary, may have clinical implications based on the question of whether motor imagery training could improve movement estimations and how that might affect actual reach. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. HEALTH AND ENVIRONMENTAL EFFECTS DOCUMENT ...

    EPA Pesticide Factsheets

    Health and Environmental Effects Documents (HEEDS) are prepared for the Office of Solid Waste and Emergency Response (OSWER). This document series is intended to support listings under the Resource Conservation and Recovery Act (RCRA) as well as to provide health-related limits and goals for emergency and remedial actions under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency Program Office files are evaluated as they pertain to potential human health, aquatic life and environmental effects of hazardous waste constituents. Several quantitative estimates are presented provided sufficient data are available. For systemic toxicants, these include Reference Doses (RfDs) for chronic and subchronic exposures for both the inhalation and oral exposures. In the case of suspected carcinogens, RfDs may not be estimated. Instead, a carcinogenic potency factor, or q1*, is provided. These potency estimates are derived for both oral and inhalation exposures where possible. In addition, unit risk estimates for air and drinking water are presented based on inhalation and oral data, respectively. Reportable quantities (RQs) based on both chronic toxicity and carcinogenicity are derived. The RQ is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified under CERCLA.

  14. Comparison between changes in flood hazard and risk in Spain using historical information

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Mediero, Luis; Garrote, Luis; Gilabert, Joan

    2015-04-01

    Recently, the COST Action ES0901 "European procedures for flood frequency estimation (FloodFreq)" had as objective "the comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe". It was highlighted the improvement of regional analyses on at-site estimates, in terms of the uncertainty of quantile estimates. In the case of Spain, a regional analysis was carried out at a national scale, which allows identifying the flow threshold corresponding to a given return period from the observed flow series recorded at a gauging station. In addition, Mediero et al. (2014) studied the possible influence of non-stationarity on flood series for the period 1942-2009. In parallel, Barnolas and Llasat (2007), among others, collected documentary information of catastrophic flood events in Spain for the last centuries. Traditionally, the first approach ("top-down") usually identifies a flood as catastrophic, when its exceeds the 500-year return period flood. However, the second one ("bottom-up approach") accounts for flood damages (Llasat et al, 2005). This study presents a comparison between both approaches, discussing the potential factors that can lead to discrepancies between them, as well as accounting for information about major changes experienced in the catchment that could lead to changes in flood hazard and risk.

  15. 75 FR 3245 - Agency Information Collection Activities: Aircraft/Vessel Report (Form I-92)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... international travel, trade, and tourism. Current Actions: This submission is being made to extend the... Public: Businesses, Carriers. Estimated Number of Responses: 720,000. Estimated Time per Respondent: 11...

  16. DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Huang, Yong-Chang, E-mail: ychuang@bjut.edu.cn

    We derive a Dirac-Born-Infeld (DBI) potential and DBI inflation action by rescaling the metric. The determinant of the induced metric naturally includes the kinetic energy and the potential energy. In particular, the potential energy and kinetic energy can convert into each other in any order, which is in agreement with the limit of classical physics. This is quite different from the usual DBI action. We show that the Taylor expansion of the DBI action can be reduced into the form in the non-linear classical physics. These investigations are the support for the statement that the results of string theory aremore » consistent with quantum mechanics and classical physics. We deduce the Phantom, K-essence, Quintessence and Generalized Klein-Gordon Equation from the DBI model.« less

  17. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    PubMed

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  18. The marketing potential of corporate social responsibility activities: the case of the alcohol industry in Latin America and the Caribbean.

    PubMed

    Pantani, Daniela; Peltzer, Raquel; Cremonte, Mariana; Robaina, Katherine; Babor, Thomas; Pinsky, Ilana

    2017-01-01

    The aims were to: (1) identify, monitor and analyse the Corporate Social Responsibility (CSR) practices of the alcohol industry in Latin America and the Caribbean (LAC) and (2) examine whether the alcohol industry is using these actions to market their products and brands. Nine health experts from Argentina, Brazil and Uruguay conducted a content analysis of 218 CSR activities using a standardized protocol. A content rating procedure was used to evaluate the marketing potential of CSR activities as well as their probable population reach and effectiveness. The LEAD procedure (longitudinal, expert and all data) was applied to verify the accuracy of industry-reported descriptions. A total of 55.8% of the actions were found to have a marketing potential, based on evidence that they are likely to promote brands and products. Actions with marketing potential were more likely to reach a larger audience than actions classified with no marketing potential. Most actions did not fit into any category recommended by the World Health Organization; 50% of the actions involving classroom and college education for young people were found to have marketing potential; 62.3% were classified as meeting the definition of risk management CSR. Alcohol industry Corporate Social Responsibility activities in Latin America and the Caribbean appear to have a strategic marketing role beyond their stated philanthropic and public health purpose. © 2016 Society for the Study of Addiction.

  19. 76 FR 40811 - Maneb; Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ...; Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is... established a docket for this action under docket identification (ID) number EPA-HQ-OPP-2010-0327. All... . SUPPLEMENTARY INFORMATION: I. General Information A. Does this action apply to me? You may be potentially...

  20. Through a Feminist Poststructuralist Lens: Embodied Subjectivites and Participatory Action Research

    ERIC Educational Resources Information Center

    Chesnay, Catherine T.

    2016-01-01

    An emerging literature has been building bridges between poststructuralism and participatory action research, highlighting the latter's potential for transformative action. Using examples from participative action research projects with incarcerated or previously incarcerated women, this article discusses how participatory action research is a…

  1. 77 FR 18748 - Dicloran and Formetanate; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Dicloran and Formetanate; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION... . SUPPLEMENTARY INFORMATION: I. General Information A. Does this action apply to me? You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer...

  2. Differential regulation of GnRH secretion in the preoptic area (POA) and the median eminence (ME) in male mice.

    PubMed

    Glanowska, Katarzyna M; Moenter, Suzanne M

    2015-01-01

    GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.

  3. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339

  4. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  6. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  7. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  8. Generalizability of Evidence-Based Assessment Recommendations for Pediatric Bipolar Disorder

    PubMed Central

    Jenkins, Melissa M.; Youngstrom, Eric A.; Youngstrom, Jennifer Kogos; Feeny, Norah C.; Findling, Robert L.

    2013-01-01

    Bipolar disorder is frequently clinically diagnosed in youths who do not actually satisfy DSM-IV criteria, yet cases that would satisfy full DSM-IV criteria are often undetected clinically. Evidence-based assessment methods that incorporate Bayesian reasoning have demonstrated improved diagnostic accuracy, and consistency; however, their clinical utility is largely unexplored. The present study examines the effectiveness of promising evidence-based decision-making compared to the clinical gold standard. Participants were 562 youth, ages 5-17 and predominantly African American, drawn from a community mental health clinic. Research diagnoses combined semi-structured interview with youths’ psychiatric, developmental, and family mental health histories. Independent Bayesian estimates relied on published risk estimates from other samples discriminated bipolar diagnoses, Area Under Curve=.75, p<.00005. The Bayes and confidence ratings correlated rs =.30. Agreement about an evidence-based assessment intervention “threshold model” (wait/assess/treat) had K=.24, p<.05. No potential moderators of agreement between the Bayesian estimates and confidence ratings, including type of bipolar illness, were significant. Bayesian risk estimates were highly correlated with logistic regression estimates using optimal sample weights, r=.81, p<.0005. Clinical and Bayesian approaches agree in terms of overall concordance and deciding next clinical action, even when Bayesian predictions are based on published estimates from clinically and demographically different samples. Evidence-based assessment methods may be useful in settings that cannot routinely employ gold standard assessments, and they may help decrease rates of overdiagnosis while promoting earlier identification of true cases. PMID:22004538

  9. Generation of action potentials in a mathematical model of corticotrophs.

    PubMed Central

    LeBeau, A P; Robson, A B; McKinnon, A E; Donald, R A; Sneyd, J

    1997-01-01

    Corticotropin-releasing hormone (CRH) is an important regulator of adrenocorticotropin (ACTH) secretion from pituitary corticotroph cells. The intracellular signaling system that underlies this process involves modulation of voltage-sensitive Ca2+ channel activity, which leads to the generation of Ca2+ action potentials and influx of Ca2+. However, the mechanisms by which Ca2+ channel activity is modulated in corticotrophs are not currently known. We investigated this process in a Hodgkin-Huxley-type mathematical model of corticotroph plasma membrane electrical responses. We found that an increase in the L-type Ca2+ current was sufficient to generate action potentials from a previously resting state of the model. The increase in the L-type current could be elicited by either a shift in the voltage dependence of the current toward more negative potentials, or by an increase in the conductance of the current. Although either of these mechanisms is potentially responsible for the generation of action potentials, previous experimental evidence favors the former mechanism, with the magnitude of the shift required being consistent with the experimental findings. The model also shows that the T-type Ca2+ current plays a role in setting the excitability of the plasma membrane, but does not appear to contribute in a dynamic manner to action potential generation. Inhibition of a K+ conductance that is active at rest also affects the excitability of the plasma membrane. PMID:9284294

  10. The development of a Simplified, Effective, Labour Monitoring-to-Action (SELMA) tool for Better Outcomes in Labour Difficulty (BOLD): study protocol.

    PubMed

    Souza, João Paulo; Oladapo, Olufemi T; Bohren, Meghan A; Mugerwa, Kidza; Fawole, Bukola; Moscovici, Leonardo; Alves, Domingos; Perdona, Gleici; Oliveira-Ciabati, Livia; Vogel, Joshua P; Tunçalp, Özge; Zhang, Jim; Hofmeyr, Justus; Bahl, Rajiv; Gülmezoglu, A Metin

    2015-05-26

    The partograph is currently the main tool available to support decision-making of health professionals during labour. However, the rate of appropriate use of the partograph is disappointingly low. Apart from limitations that are associated with partograph use, evidence of positive impact on labour-related health outcomes is lacking. The main goal of this study is to develop a Simplified, Effective, Labour Monitoring-to-Action (SELMA) tool. The primary objectives are: to identify the essential elements of intrapartum monitoring that trigger the decision to use interventions aimed at preventing poor labour outcomes; to develop a simplified, monitoring-to-action algorithm for labour management; and to compare the diagnostic performance of SELMA and partograph algorithms as tools to identify women who are likely to develop poor labour-related outcomes. A prospective cohort study will be conducted in eight health facilities in Nigeria and Uganda (four facilities from each country). All women admitted for vaginal birth will comprise the study population (estimated sample size: 7,812 women). Data will be collected on maternal characteristics on admission, labour events and pregnancy outcomes by trained research assistants at the participating health facilities. Prediction models will be developed to identify women at risk of intrapartum-related perinatal death or morbidity (primary outcomes) throughout the course of labour. These predictions models will be used to assemble a decision-support tool that will be able to suggest the best course of action to avert adverse outcomes during the course of labour. To develop this set of prediction models, we will use up-to-date techniques of prognostic research, including identification of important predictors, assigning of relative weights to each predictor, estimation of the predictive performance of the model through calibration and discrimination, and determination of its potential for application using internal validation techniques. This research offers an opportunity to revisit the theoretical basis of the partograph. It is envisioned that the final product would help providers overcome the challenging tasks of promptly interpreting complex labour information and deriving appropriate clinical actions, and thus increase efficiency of the care process, enhance providers' competence and ultimately improve labour outcomes. Please see related articles ' http://dx.doi.org/10.1186/s12978-015-0027-6 ' and ' http://dx.doi.org/10.1186/s12978-015-0028-5 '.

  11. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor

    PubMed Central

    St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z

    2015-01-01

    Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy. PMID:24755780

  12. Reestablishing Public Health and Land Use Planning to Protect Public Water Supplies

    PubMed Central

    Greenberg, Michael; Mayer, Henry; Miller, K. Tyler; Hordon, Robert; Knee, Daniel

    2003-01-01

    Objectives. This study measured the extent to which land use, design, and engineering practices could reduce contamination of major public water supplies. Methods. Key parcels of land were identified in New Jersey, and the potential uncontrolled loading of contaminants was estimated with the US Environmental Protection Agency’s Long-Term Hydrologic Impact Assessment model for a variety of land use, design, and engineering scenarios. Results. High-density per-acre development and engineering controls, along with housing and light commercial activity near main railroads, would substantially reduce runoff. Conclusions. In New Jersey, government and purveyor action is being taken as a result of, and in support of, these findings. PMID:12948974

  13. Stimulus waveform determines the characteristics of sensory nerve action potentials.

    PubMed

    Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep

    2016-03-01

    In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Effects of Muscle Atrophy on Motor Control: Cage-size Effects

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.

  15. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  16. Medical Devices; General Hospital and Personal Use Devices; Classification of the Image Processing Device for Estimation of External Blood Loss. Final order.

    PubMed

    2017-12-20

    The Food and Drug Administration (FDA or we) is classifying the image processing device for estimation of external blood loss into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the image processing device for estimation of external blood loss' classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  17. An improved silhouette for human pose estimation

    NASA Astrophysics Data System (ADS)

    Hawes, Anthony H.; Iftekharuddin, Khan M.

    2017-08-01

    We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.

  18. Electromyography (image)

    MedlinePlus

    ... inserted through the skin into the muscle. Each muscle fiber that contracts will produce an action potential. The presence, size, and shape of the wave form of the action potential ... the ability of the muscle to respond to nervous stimulation.

  19. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  20. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  1. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  2. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    PubMed Central

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  3. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    PubMed

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  4. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients

    PubMed Central

    Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

    2014-01-01

    Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603

  5. Examination of a demyelinated fiber by action-potential-encoded second harmonic generation

    NASA Astrophysics Data System (ADS)

    Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen

    2012-03-01

    Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.

  6. Expeditionary Readiness Training (ExpeRT) Course Expansion Final Environmental Assessment Creech Air Force Base

    DTIC Science & Technology

    2006-07-01

    potential environmental consequences of the proposed action and no-action alternative and are addressed for: air quality, soils and water resources...evaluated in detail to identify potential environmental consequences: air quality; soils and water resources; biological resources; and cultural resources...significance. Therefore, this proposed action would not constitute a significant impact and would conform to regional standards. Soils and Water Resources

  7. Voltage-gated currents in identified rat olfactory receptor neurons.

    PubMed

    Trombley, P Q; Westbrook, G L

    1991-02-01

    Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.

  8. The Potential of Deweyan-Inspired Action Research

    ERIC Educational Resources Information Center

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  9. Signal propagation along the axon.

    PubMed

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  11. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    PubMed

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  12. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  13. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    PubMed

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. ( NCT00912041.).

  14. Mechanisms of action of ligands of potential-dependent sodium channels.

    PubMed

    Tikhonov, D B

    2008-06-01

    Potential-dependent sodium channels play a leading role in generating action potentials in excitable cells. Sodium channels are the site of action of a variety of modulator ligands. Despite numerous studies, the mechanisms of action of many modulators remain incompletely understood. The main reason that many important questions cannot be resolved is that there is a lack of precise data on the structures of the channels themselves. Structurally, potential-dependent sodium channels are members of the P-loop channel superfamily, which also include potassium and calcium channels and glutamate receptor channels. Crystallization of a series of potassium channels showed that it was possible to analyze the structures of different members of the superfamily using the "homologous modeling" method. The present study addresses model investigations of the actions of ligands of sodium channels, including tetrodotoxin and batrachotoxin, as well as local anesthetics. Comparison of experimental data on sodium channel ligands with x-ray analysis data allowed us to reach a new level of understanding of the mechanisms of channel modulation and to propose a series of experimentally verifiable hypotheses.

  15. Palm boards are not action measures: an alternative to the two-systems theory of geographical slant perception.

    PubMed

    Durgin, Frank H; Hajnal, Alen; Li, Zhi; Tonge, Natasha; Stigliani, Anthony

    2010-06-01

    Whereas most reports of the perception of outdoor hills demonstrate dramatic overestimation, estimates made by adjusting a palm board are much closer to the true hill orientation. We test the dominant hypothesis that palm board accuracy is related to the need for motor action to be accurately guided and conclude instead that the perceptual experience of palm-board orientation is biased and variable due to poorly calibrated proprioception of wrist flexion. Experiments 1 and 3 show that wrist-flexion palm boards grossly underestimate the orientations of near, reachable surfaces whereas gesturing with a free hand is fairly accurate. Experiment 2 shows that palm board estimates are much lower than free hand estimates for an outdoor hill as well. Experiments 4 shows that wrist flexion is biased and noisy compared to elbow flexion, while Experiment 5 shows that small changes in palm board height produce large changes in palm board estimates. Together, these studies suggest that palm boards are biased and insensitive measures. The existing literature arguing that there are two systems in the perception of geographical slant is re-evaluated, and a new theoretical framework is proposed in which a single exaggerated representation of ground-surface orientation guides both action and perception. Copyright 2010 Elsevier B.V. All rights reserved.

  16. The Chemical Decomposition of 5-aza-2′-deoxycytidine (Decitabine): Kinetic Analyses and Identification of Products by NMR, HPLC, and Mass Spectrometry

    PubMed Central

    Rogstad, Daniel K.; Herring, Jason L.; Theruvathu, Jacob A.; Burdzy, Artur; Perry, Christopher C.; Neidigh, Jonathan W.; Sowers, Lawrence C.

    2014-01-01

    The nucleoside analog 5-aza-2′-deoxycytidine (Decitabine, DAC) is one of several drugs in clinical use that inhibit DNA methyltransferases, leading to a decrease of 5-methylcytosine in newly replicated DNA and subsequent transcriptional activation of genes silenced by cytosine methylation. In addition to methyltransferase inhibition, DAC has demonstrated toxicity and potential mutagenicity, and can induce a DNA-repair response. The mechanisms accounting for these events are not well understood. DAC is chemically unstable in aqueous solutions, but there is little consensus between previous reports as to its half-life and corresponding products of decomposition at physiological temperature and pH, potentially confounding studies on its mechanism of action and long-term use in humans. Here we have employed a battery of analytical methods to estimate kinetic rates and to characterize DAC decomposition products under conditions of physiological temperature and pH. Our results indicate that DAC decomposes into a plethora of products, formed by hydrolytic opening and deformylation of the triazine ring, in addition to anomerization and possibly other changes in the sugar ring structure. We also discuss the advantages and problems associated with each analytical method used. The results reported here will facilitate ongoing studies and clinical trials aimed at understanding the mechanisms of action, toxicity, and possible mutagenicity of DAC and related analogs. PMID:19480391

  17. Chemical decomposition of 5-aza-2'-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry.

    PubMed

    Rogstad, Daniel K; Herring, Jason L; Theruvathu, Jacob A; Burdzy, Artur; Perry, Christopher C; Neidigh, Jonathan W; Sowers, Lawrence C

    2009-06-01

    The nucleoside analogue 5-aza-2'-deoxycytidine (Decitabine, DAC) is one of several drugs in clinical use that inhibit DNA methyltransferases, leading to a decrease of 5-methylcytosine in newly replicated DNA and subsequent transcriptional activation of genes silenced by cytosine methylation. In addition to methyltransferase inhibition, DAC has demonstrated toxicity and potential mutagenicity, and can induce a DNA-repair response. The mechanisms accounting for these events are not well understood. DAC is chemically unstable in aqueous solutions, but there is little consensus between previous reports as to its half-life and corresponding products of decomposition at physiological temperature and pH, potentially confounding studies on its mechanism of action and long-term use in humans. Here, we have employed a battery of analytical methods to estimate kinetic rates and to characterize DAC decomposition products under conditions of physiological temperature and pH. Our results indicate that DAC decomposes into a plethora of products, formed by hydrolytic opening and deformylation of the triazine ring, in addition to anomerization and possibly other changes in the sugar ring structure. We also discuss the advantages and problems associated with each analytical method used. The results reported here will facilitate ongoing studies and clinical trials aimed at understanding the mechanisms of action, toxicity, and possible mutagenicity of DAC and related analogues.

  18. Quantifying Differences in the Impact of Variable Chemistry on Equilibrium Uranium(VI) Adsorption Properties of Aquifer Sediments

    PubMed Central

    2011-01-01

    Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109

  19. Quantifying differences in the impact of variable chemistry on equilibrium Uranium(VI) adsorption properties of aquifer sediments.

    PubMed

    Stoliker, Deborah L; Kent, Douglas B; Zachara, John M

    2011-10-15

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  20. Small-wind-systems application analysis. Technical report and executive summary

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A small wind energy conversion systems (SWECS) analysis was conducted to estimate the potential market for SWEC, or wind machines smaller than 100 kW for five selected applications. The goals were to aid manufacturers in attaining financing by convincing venture capital investors of the potential of SWECS and to aid government planners in allocating R and D expenditures that will effectively advance SWECS commercialization. Based on these goals, the study: (1) provides a basis for assisting the DOE in planning R and D programs that will advance the state of SWECS industry; (2) quantifies estimates of market size vs. installed system cost to enable industry to plan expansion of capacity and product lines; (3) identifies marketing strategies for industry to use in attaining financing from investors and in achieving sales goals; and (4) provides DOE with data that will assist in determining actions, incentives, and/or legislation required to achieve a commercially viable SWECS industry. The five applications were selected through an initial screening and priority-ranking analysis. The year of analysis was 1985, but all dollar amounts, such as fuel costs, are expressed in 1980 dollars. The five SWECS applications investigated were farm residences, non-farm residences, rural electric cooperatives, feed grinders, and remote communities.

  1. Parallel Evolution of Larval Feeding Behavior, Morphology, and Habitat in the Snail-Kiling fly Genus Tetanocera

    NASA Astrophysics Data System (ADS)

    Chapman, E. G.; Foote, B. A.; Malukiewicz, J.; Hoeh, W. R.

    2005-05-01

    Sciomyzid larvae (Diptera: Acalyptratae) display a wide range of feeding behaviors, typically preying on a wide variety of gastropods. The genus Tetanocera is particularly interesting because its species occupy five larval feeding groups with each species' larvae living in one of two habitat types (aquatic or terrestrial). We constructed a molecular phylogeny for Tetanocera, estimated evolutionary transitions in larval feeding behaviors and habitats that occurred during Tetanocera phylogenesis, and investigated potential correlations among larval habitat and morphological characteristics. Approximately 3800 base pairs (both mitochondrial and nuclear) of sequence data were used to build the phylogeny. Larval feeding groups and habitat type were mapped onto the phylogeny and pair-wise comparisons were used to evaluate potential associations between habitat and morphology. Feeding and habitat groups within Tetanocera were usually not monophyletic and it was estimated that Tetanocera lineages made at least three independent aquatic to terrestrial transitions. These parallel habitat shifts were typically accompanied by parallel character state changes in four morphological characteristics (larval color and three posterior spiracular disc characters). These larval habitat-morphology associations were statistically significant and consistent with the action of natural selection in facilitating the morphological changes that occurred during aquatic to terrestrial habitat transitions in Tetanocera.

  2. A stochastic bioenergetics model based approach to translating large river flow and temperature in to fish population responses: The pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.

    2015-01-01

    In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.

  3. Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation

    PubMed Central

    Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong

    2017-01-01

    Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175

  4. Total Economic Consequences of an Influenza Outbreak in the United States.

    PubMed

    Prager, Fynnwin; Wei, Dan; Rose, Adam

    2017-01-01

    Pandemic influenza represents a serious threat not only to the population of the United States, but also to its economy. In this study, we analyze the total economic consequences of potential influenza outbreaks in the United States for four cases based on the distinctions between disease severity and the presence/absence of vaccinations. The analysis is based on data and parameters on influenza obtained from the Centers for Disease Control and the general literature. A state-of-the-art economic impact modeling approach, computable general equilibrium, is applied to analyze a wide range of potential impacts stemming from the outbreaks. This study examines the economic impacts from changes in medical expenditures and workforce participation, and also takes into consideration different types of avoidance behavior and resilience actions not previously fully studied. Our results indicate that, in the absence of avoidance and resilience effects, a pandemic influenza outbreak could result in a loss in U.S. GDP of $25.4 billion, but that vaccination could reduce the losses to $19.9 billion. When behavioral and resilience factors are taken into account, a pandemic influenza outbreak could result in GDP losses of $45.3 billion without vaccination and $34.4 billion with vaccination. These results indicate the importance of including a broader set of causal factors to achieve more accurate estimates of the total economic impacts of not just pandemic influenza but biothreats in general. The results also highlight a number of actionable items that government policymakers and public health officials can use to help reduce potential economic losses from the outbreaks. © 2016 Society for Risk Analysis.

  5. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart

    PubMed Central

    Martišienė, Irma; Mačianskienė, Regina; Treinys, Rimantas; Navalinskas, Antanas; Almanaitytė, Mantė; Karčiauskas, Dainius; Kučinskas, Audrius; Grigalevičiūtė, Ramunė; Zigmantaitė, Vilma; Benetis, Rimantas; Jurevičius, Jonas

    2016-01-01

    So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic. PMID:26840736

  6. Comparison of Global and Mode of Action-Based Models for Aquatic Toxicity

    EPA Science Inventory

    The ability to estimate aquatic toxicity for a wide variety of chemicals is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based QSAR (Quantitative Structure Activity Relationship) models yield ...

  7. 77 FR 32593 - Agency Information Collection Activities; Notice of Intent To Renew Collection: Rules Relating To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Association decisions in disciplinary, membership denial, registration, and member responsibility actions... and disciplinary actions. The Commission estimates the burden of this collection of information as... Renew Collection: Rules Relating To Review of National Futures Association Decisions in Disciplinary...

  8. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO 2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefitsmore » in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO 2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.« less

  9. User fees across ecosystem boundaries: Are SCUBA divers willing to pay for terrestrial biodiversity conservation?

    PubMed

    Roberts, Michaela; Hanley, Nick; Cresswell, Will

    2017-09-15

    While ecological links between ecosystems have been long recognised, management rarely crosses ecosystem boundaries. Coral reefs are susceptible to damage through terrestrial run-off, and failing to account for this within management threatens reef protection. In order to quantify the extent to that coral reef users are willing to support management actions to improve ecosystem quality, we conducted a choice experiment with SCUBA divers on the island of Bonaire, Caribbean Netherlands. Specifically, we estimated their willingness to pay to reduce terrestrial overgrazing as a means to improve reef health. Willingness to pay was estimated using the multinomial, random parameter and latent class logit models. Willingness to pay for improvements to reef quality was positive for the majority of respondents. Estimates from the latent class model determined willingness to pay for reef improvements of between $31.17 - $413.18/year, dependent on class membership. This represents a significant source of funding for terrestrial conservation, and illustrates the potential for user fees to be applied across ecosystem boundaries. We argue that such across-ecosystem-boundary funding mechanisms are an important avenue for future investigation in many connected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.

    PubMed

    Marmarelis, V Z; Berger, T W

    2005-07-01

    This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.

  11. Integrating legal liabilities in nanomanufacturing risk management.

    PubMed

    Mohan, Mayank; Trump, Benjamin D; Bates, Matthew E; Monica, John C; Linkov, Igor

    2012-08-07

    Among other things, the wide-scale development and use of nanomaterials is expected to produce costly regulatory and civil liabilities for nanomanufacturers due to lingering uncertainties, unanticipated effects, and potential toxicity. The life-cycle environmental, health, and safety (EHS) risks of nanomaterials are currently being studied, but the corresponding legal risks have not been systematically addressed. With the aid of a systematic approach that holistically evaluates and accounts for uncertainties about the inherent properties of nanomaterials, it is possible to provide an order of magnitude estimate of liability risks from regulatory and litigious sources based on current knowledge. In this work, we present a conceptual framework for integrating estimated legal liabilities with EHS risks across nanomaterial life-cycle stages using empirical knowledge in the field, scientific and legal judgment, probabilistic risk assessment, and multicriteria decision analysis. Such estimates will provide investors and operators with a basis to compare different technologies and practices and will also inform regulatory and legislative bodies in determining standards that balance risks with technical advancement. We illustrate the framework through the hypothetical case of a manufacturer of nanoscale titanium dioxide and use the resulting expected legal costs to evaluate alternative risk-management actions.

  12. Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential

    PubMed Central

    Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio

    2001-01-01

    The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703

  13. Electrophysiological, vasoactive, and gastromodulatory effects of stevia in healthy Wistar rats.

    PubMed

    Yesmine, Saquiba; Connolly, Kylie; Hill, Nicholas; Coulson, Fiona R; Fenning, Andrew S

    2013-07-01

    Antihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats. The effects of stevia (1 × 10-9 M to 1 × 10-4 M) were measured on these tissues. Stevia's effects in the presence of verapamil, 4-AP, and L-NAME were also assessed. In cardiomyocytes, stevia attenuated the force of contraction, decreased the average peak amplitude, and shortened the repolarisation phase of action potential - repolarisation phase of action potential20 by 25 %, repolarisation phase of action potential50 by 34 %, and repolarisation phase of action potential90 by 36 %. Stevia caused relaxation of aortic tissues which was significantly potentiated in the presence of verapamil. In mesenteric arteries, incubation with L-NAME failed to block stevia-induced relaxation indicating the mechanism of action may not be fully via nitric oxide-dependent pathways. Stevia concentration-dependently reduced electrical field stimulated and carbachol-induced contractions in the isolated ileum. This study is the first to show the effectiveness of stevia in reducing cardiac action potential duration at 20 %, 50 %, and 90 % of repolarisation. Stevia also showed beneficial modulatory effects on cardiovascular and gastrointestinal tissues via calcium channel antagonism, activation of the M2 muscarinic receptor function, and enhanced nitric oxide release. Georg Thieme Verlag KG Stuttgart · New York.

  14. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30–300 mg kg−1 HIE, 30 mg kg−1 prednisolone, 10 mg kg−1 chlorpheniramine, or 10 mL kg−1 PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg−1 HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01–0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression. PMID:26681960

  15. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis.

    PubMed

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Owusu-Afriyie, Osei; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30-300 mg kg(-1) HIE, 30 mg kg(-1) prednisolone, 10 mg kg(-1) chlorpheniramine, or 10 mL kg(-1) PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg(-1) HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01-0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression.

  16. Risk assessment of carcinogens in food.

    PubMed

    Barlow, Susan; Schlatter, Josef

    2010-03-01

    Approaches for the risk assessment of carcinogens in food have evolved as scientific knowledge has advanced. Early methods allowed little more than hazard identification and an indication of carcinogenic potency. Evaluation of the modes of action of carcinogens and their broad division into genotoxic and epigenetic (non-genotoxic, non-DNA reactive) carcinogens have played an increasing role in determining the approach followed and provide possibilities for more detailed risk characterisation, including provision of quantitative estimates of risk. Reliance on experimental animal data for the majority of risk assessments and the fact that human exposures to dietary carcinogens are often orders of magnitude below doses used in experimental studies has provided a fertile ground for discussion and diverging views on the most appropriate way to offer risk assessment advice. Approaches used by national and international bodies differ, with some offering numerical estimates of potential risks to human health, while others express considerable reservations about the validity of quantitative approaches requiring extrapolation of dose-response data below the observed range and instead offer qualitative advice. Recognising that qualitative advice alone does not provide risk managers with information on which to prioritise the need for risk management actions, a "margin of exposure" approach for substances that are both genotoxic and carcinogenic has been developed, which is now being used by the World Health Organization and the European Food Safety Authority. This review describes the evolution of risk assessment advice on carcinogens and discusses examples of ways in which carcinogens in food have been assessed in Europe.

  17. Assessing Space and Satellite Environment and System Security

    NASA Astrophysics Data System (ADS)

    Haith, G.; Upton, S.

    Satellites and other spacecraft are key assets and critical vulnerabilities in our communications, surveillance and defense infrastructure. Despite their strategic importance, there are significant gaps in our real-time knowledge of satellite security. One reason is the lack of infrastructure and applications to filter and process the overwhelming amounts of relevant data. Some efforts are addressing this challenge by fusing the data gathered from ground, air and space based sensors to detect and categorize anomalous situations. The aim is to provide decision support for Space Situational Awareness (SSA) and Defensive Counterspace (DCS). Most results have not yielded estimates of impact and cost of a given situation or suggested courses of action (level 3 data fusion). This paper describes an effort to provide high level data fusion for SSA/DCS though two complementary thrusts: threat scenario simulation with Automatic Red Teaming (ART), and historical data warehousing and mining. ART uses stochastic search algorithms (e.g., evolutionary algorithms) to evolve strategies in agent based simulations. ART provides techniques to formally specify anomalous condition scenarios envisioned by subject matter experts and to explore alternative scenarios. The simulation data can then support impact estimates and course of action evaluations. The data mining thrust has focused on finding correlations between subsystems anomalies on MightySat II and publicly available space weather data. This paper describes the ART approach, some potential correlations discovered between satellite subsystem anomalies and space weather events, and future work planned on the project.

  18. Neural correlates of the divergence of instrumental probability distributions.

    PubMed

    Liljeholm, Mimi; Wang, Shuo; Zhang, June; O'Doherty, John P

    2013-07-24

    Flexible action selection requires knowledge about how alternative actions impact the environment: a "cognitive map" of instrumental contingencies. Reinforcement learning theories formalize this map as a set of stochastic relationships between actions and states, such that for any given action considered in a current state, a probability distribution is specified over possible outcome states. Here, we show that activity in the human inferior parietal lobule correlates with the divergence of such outcome distributions-a measure that reflects whether discrimination between alternative actions increases the controllability of the future-and, further, that this effect is dissociable from those of other information theoretic and motivational variables, such as outcome entropy, action values, and outcome utilities. Our results suggest that, although ultimately combined with reward estimates to generate action values, outcome probability distributions associated with alternative actions may be contrasted independently of valence computations, to narrow the scope of the action selection problem.

  19. Neural Correlates of the Divergence of Instrumental Probability Distributions

    PubMed Central

    Wang, Shuo; Zhang, June; O'Doherty, John P.

    2013-01-01

    Flexible action selection requires knowledge about how alternative actions impact the environment: a “cognitive map” of instrumental contingencies. Reinforcement learning theories formalize this map as a set of stochastic relationships between actions and states, such that for any given action considered in a current state, a probability distribution is specified over possible outcome states. Here, we show that activity in the human inferior parietal lobule correlates with the divergence of such outcome distributions–a measure that reflects whether discrimination between alternative actions increases the controllability of the future–and, further, that this effect is dissociable from those of other information theoretic and motivational variables, such as outcome entropy, action values, and outcome utilities. Our results suggest that, although ultimately combined with reward estimates to generate action values, outcome probability distributions associated with alternative actions may be contrasted independently of valence computations, to narrow the scope of the action selection problem. PMID:23884955

  20. Novel Psychoactive Substances-Recent Progress on Neuropharmacological Mechanisms of Action for Selected Drugs.

    PubMed

    Hassan, Zurina; Bosch, Oliver G; Singh, Darshan; Narayanan, Suresh; Kasinather, B Vicknasingam; Seifritz, Erich; Kornhuber, Johannes; Quednow, Boris B; Müller, Christian P

    2017-01-01

    A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.

  1. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.

    PubMed

    Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A

    2016-06-01

    Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. © The Author(s) 2016.

  2. Rosewood oil induces sedation and inhibits compound action potential in rodents.

    PubMed

    de Almeida, Reinaldo Nóbrega; Araújo, Demétrius Antonio Machado; Gonçalves, Juan Carlos Ramos; Montenegro, Fabrícia Costa; de Sousa, Damião Pergentino; Leite, José Roberto; Mattei, Rita; Benedito, Marco Antonio Campana; de Carvalho, José Gilberto Barbosa; Cruz, Jader Santos; Maia, José Guilherme Soares

    2009-07-30

    Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.

  3. Space Station: Actions Under Way to Manage Cost, but Significant Challenges Remain

    DTIC Science & Technology

    2002-07-01

    GAO United States General Accounting OfficeReport to Congressional CommitteesJuly 2002 SPACE STATION Actions Under Way to Manage Cost , but...because NASA does not have good cost - accounting systems or practices. 1 The estimated cost growth is having a profound effect on the utility of the...SPACE STATION: Actions Under Way to Manage Cost , but Significant Challenges Remain Contract Number Grant Number Program Element Number Author(s

  4. Time-Based and Event-Based Prospective Memory in Autism Spectrum Disorder: The Roles of Executive Function and Theory of Mind, and Time-Estimation

    ERIC Educational Resources Information Center

    Williams, David; Boucher, Jill; Lind, Sophie; Jarrold, Christopher

    2013-01-01

    Prospective memory (remembering to carry out an action in the future) has been studied relatively little in ASD. We explored time-based (carry out an action at a pre-specified time) and event-based (carry out an action upon the occurrence of a pre-specified event) prospective memory, as well as possible cognitive correlates, among 21…

  5. Correlation between human ether‐a‐go‐go‐related gene channel inhibition and action potential prolongation

    PubMed Central

    Saxena, P; Hortigon‐Vinagre, M P; Beyl, S; Baburin, I; Andranovits, S; Iqbal, S M; Costa, A; IJzerman, A P; Kügler, P; Timin, E

    2017-01-01

    Background and Purpose Human ether‐a‐go‐go‐related gene (hERG; Kv11.1) channel inhibition is a widely accepted predictor of cardiac arrhythmia. hERG channel inhibition alone is often insufficient to predict pro‐arrhythmic drug effects. This study used a library of dofetilide derivatives to investigate the relationship between standard measures of hERG current block in an expression system and changes in action potential duration (APD) in human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs). The interference from accompanying block of Cav1.2 and Nav1.5 channels was investigated along with an in silico AP model. Experimental Approach Drug‐induced changes in APD were assessed in hiPSC‐CMs using voltage‐sensitive dyes. The IC50 values for dofetilide and 13 derivatives on hERG current were estimated in an HEK293 expression system. The relative potency of each drug on APD was estimated by calculating the dose (D150) required to prolong the APD at 90% (APD90) repolarization by 50%. Key Results The D150 in hiPSC‐CMs was linearly correlated with IC50 of hERG current. In silico simulations supported this finding. Three derivatives inhibited hERG without prolonging APD, and these compounds also inhibited Cav1.2 and/or Nav1.5 in a channel state‐dependent manner. Adding Cav1.2 and Nav1.2 block to the in silico model recapitulated the direction but not the extent of the APD change. Conclusions and Implications Potency of hERG current inhibition correlates linearly with an index of APD in hiPSC‐CMs. The compounds that do not correlate have additional effects including concomitant block of Cav1.2 and/or Nav1.5 channels. In silico simulations of hiPSC‐CMs APs confirm the principle of the multiple ion channel effects. PMID:28681507

  6. Outcome producing potential influences twelve-month-olds' interpretation of a novel action as goal-directed.

    PubMed

    Biro, Szilvia; Verschoor, Stephan; Coalter, Esther; Leslie, Alan M

    2014-11-01

    Learning about a novel, goal-directed action is a complex process. It requires identifying the outcome of the action and linking the action to its outcome for later use in new situations to predict the action or to anticipate its outcome. We investigated the hypothesis that linking a novel action to a salient change in the environment is critical for infants to assign a goal to the novel action. We report a study in which we show that 12-month-old infants, who were provided with prior experience with a novel action accompanied with a salient visible outcome in one context, can interpret the same action as goal-directed even in the absence of the outcome in another context. Our control condition shows that prior experience with the action, but without the salient effect, does not lead to goal-directed interpretation of the novel action. We also found that, for the case of 9-month-olds infants, prior experience with the outcome producing potential of the novel action does not facilitate a goal-directed interpretation of the action. However, this failure was possibly due to difficulties with generalizing the learnt association to another context rather than with linking the action to its outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Critical Action Research and Third Wave Feminism: A Meeting of Paradigms

    ERIC Educational Resources Information Center

    Weiner, Gaby

    2004-01-01

    Critical action research emphasises participation, democracy and social critique, and thus has had considerable potential for feminist scholarship and action. Feminist action research, in turn, has gained a foothold in education, for example, through the work of Hollingsworth, Miller, Lather and others, although much action research might still be…

  8. Enhancing Postgraduate Learning and Development: A Participatory Action Learning and Action Research Approach through Conferences

    ERIC Educational Resources Information Center

    Wood, Lesley; Louw, Ina; Zuber-Skerritt, Ortrun

    2017-01-01

    As supervisors who advocate the transformational potential of research both to generate theory and practical and emancipatory outcomes, we practice participatory action learning and action research (PALAR). This paper offers an illustrative case of how supervision practices based on action learning can foster emancipatory and lifelong learning…

  9. Time-based and event-based prospective memory in autism spectrum disorder: the roles of executive function and theory of mind, and time-estimation.

    PubMed

    Williams, David; Boucher, Jill; Lind, Sophie; Jarrold, Christopher

    2013-07-01

    Prospective memory (remembering to carry out an action in the future) has been studied relatively little in ASD. We explored time-based (carry out an action at a pre-specified time) and event-based (carry out an action upon the occurrence of a pre-specified event) prospective memory, as well as possible cognitive correlates, among 21 intellectually high-functioning children with ASD, and 21 age- and IQ-matched neurotypical comparison children. We found impaired time-based, but undiminished event-based, prospective memory among children with ASD. In the ASD group, time-based prospective memory performance was associated significantly with diminished theory of mind, but not with diminished cognitive flexibility. There was no evidence that time-estimation ability contributed to time-based prospective memory impairment in ASD.

  10. 43 CFR 11.73 - Quantification phase-resource recoverability analysis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equivalent resources efforts are undertaken beyond response actions performed or anticipated shall be estimated. This time period shall be used as the “No Action-Natural Recovery” period for purposes of § 11.82... requirements of biological species involved, including their reaction or tolerance to the oil or hazardous...

  11. SL(2, C) group action on cohomological field theories

    NASA Astrophysics Data System (ADS)

    Basalaev, Alexey

    2018-01-01

    We introduce the S} (2,C) group action on a partition function of a cohomological field theory via a certain Givental's action. Restricted to the small phase space we describe the action via the explicit formulae on a CohFT genus g potential. We prove that applied to the total ancestor potential of a simple-elliptic singularity the action introduced coincides with the transformation of Milanov-Ruan changing the primitive form (cf. Milanov and Ruan in Gromov-Witten theory of elliptic orbifold P1 and quasi-modular forms, arXiv:1106.2321 , 2011).

  12. Assessing potentially dangerous medical actions with the computer-based case simulation portion of the USMLE step 3 examination.

    PubMed

    Harik, Polina; Cuddy, Monica M; O'Donovan, Seosaimhin; Murray, Constance T; Swanson, David B; Clauser, Brian E

    2009-10-01

    The 2000 Institute of Medicine report on patient safety brought renewed attention to the issue of preventable medical errors, and subsequently specialty boards and the National Board of Medical Examiners were encouraged to play a role in setting expectations around safety education. This paper examines potentially dangerous actions taken by examinees during the portion of the United States Medical Licensing Examination Step 3 that is particularly well suited to evaluating lapses in physician decision making, the Computer-based Case Simulation (CCS). Descriptive statistics and a general linear modeling approach were used to analyze dangerous actions ordered by 25,283 examinees that completed CCS for the first time between November 2006 and January 2008. More than 20% of examinees ordered at least one dangerous action with the potential to cause significant patient harm. The propensity to order dangerous actions may vary across clinical cases. The CCS format may provide a means of collecting important information about patient-care situations in which examinees may be more likely to commit dangerous actions and the propensity of examinees to order dangerous tests and treatments.

  13. Crataegus extract prolongs action potential duration in guinea-pig papillary muscle.

    PubMed

    Müller, A; Linke, W; Zhao, Y; Klaus, W

    1996-11-01

    Crataegus extract is used in cardiology for the treatment of moderate heart failure (NYHA II). Recently it was shown that Crataegus extract prolongs the refractory period in isolated perfused guinea pig hearts. In order to find out what mechanism is responsible for this prolongation of refractory period, we investigated the effects of Crataegus extract (LI 132) on the action potential of guinea pig papillary muscle with the help of conventional microelectrode techniques. Crataegus extract, when put in a concentration (10 mg/l) capable of inducing an inotropic effect of about 20%, significantly increased action potential duration at all investigated levels of repolarisation. Maximum prolongation was 8.5±2.3 ms, 12.5±2.6 ms and 11.7±2.9 ms at 20%, 50% and 90% repolarisation, respectively (control APD(90): 172±4 ms). Experiments on the time course of recovery of the maximum upstroke velocity (V(max)) of the action potential revealed that Crataegus extract increased the time constant of recovery of V(max) from 8.80±2.33 ms to 22.60±5.77 ms, indicating a weak Class I-like antiarrhythmic action. In addition, we observed a small reduction in V(max). In summary, our results show that Crataegus extract prolongs action potential duration and delays recovery of V(max). We, therefore, suggest that Crataegus extract possesses certain antiarrhythmic properties. Copyright © 1996 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  14. Modeling specific action potentials in the human atria based on a minimal single-cell model.

    PubMed

    Richter, Yvonne; Lind, Pedro G; Maass, Philipp

    2018-01-01

    We present an effective method to model empirical action potentials of specific patients in the human atria based on the minimal model of Bueno-Orovio, Cherry and Fenton adapted to atrial electrophysiology. In this model, three ionic are currents introduced, where each of it is governed by a characteristic time scale. By applying a nonlinear optimization procedure, a best combination of the respective time scales is determined, which allows one to reproduce specific action potentials with a given amplitude, width and shape. Possible applications for supporting clinical diagnosis are pointed out.

  15. Reconstruction of the action potential of ventricular myocardial fibres

    PubMed Central

    Beeler, G. W.; Reuter, H.

    1977-01-01

    1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889

  16. Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2018-04-01

    This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.

  17. Action spectrum conversion factors that change erythemally weighted to previtamin D3-weighted UV doses.

    PubMed

    Pope, Stanley J; Holick, Michael F; Mackin, Steven; Godar, Dianne E

    2008-01-01

    Many solar UV measurements, either terrestrial or personal, weight the raw data by the erythemal action spectrum. However, a problem arises when one tries to estimate the benefit of vitamin D(3) production based on erythemally weighted outdoor doses, like those measured by calibrated R-B meters or polysulphone badges, because the differences between action spectra give dissimilar values. While both action spectra peak in the UVB region, the erythemal action spectrum continues throughout the UVA region while the previtamin D(3) action spectrum stops near that boundary. When one uses the previtamin D(3) action spectrum to weight the solar spectra (D(eff)), one gets a different contribution in W m(-2) than what the erythemally weighted data predicts (E(eff)). Thus, to do proper benefit assessments, one must incorporate action spectrum conversion factors (ASCF) into the calculations to change erythemally weighted to previtamin D(3)-weighted doses. To date, all benefit assessments for vitamin D(3) production in human skin from outdoor exposures are overestimates because they did not account for the different contributions of each action spectrum with changing solar zenith angle and ozone and they did not account for body geometry. Here we describe how to normalize the ratios of the effective irradiances (D(eff)/E(eff)) to get ASCF that change erythemally weighted to previtamin D(3)-weighted doses. We also give the ASCF for each season of the year in the northern hemisphere every 5 degrees from 30 degrees N to 60 degrees N, based on ozone values. These ASCF, along with geometry conversion factors and other information, can give better vitamin D(3) estimates from erythemally weighted outdoor doses.

  18. Evidence for the role of self-priming in epistemic action: expertise and the effective use of memory.

    PubMed

    Maglio, Paul P; Wenger, Michael J; Copeland, Angelina M

    2008-01-01

    Epistemic actions are physical actions people take to simplify internal problem solving rather than to move closer to an external goal. When playing the video game Tetris, for instance, experts routinely rotate falling shapes more than is strictly needed to place the shapes. Maglio and Kirsh [Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513-549; Maglio, P. P. (1995). The computational basis of interactive skill. PhD thesis, University of California, San Diego] proposed that such actions might serve the purpose of priming memory by external means, reducing the need for internal computation (e.g., mental rotation), and resulting in performance improvements that exceed the cost of taking additional actions. The present study tests this priming hypothesis in a set of four experiments. The first three explored precisely the conditions under which priming produces benefits. Results showed that presentation of multiple orientations of a shape led to faster responses than did presentation of a single orientation, and that this effect depended on the interval between preview and test. The fourth explored whether the benefit of seeing shapes in multiple orientations outweighs the cost of taking the extra actions to rotate shapes physically. Benefits were measured using a novel statistical method for mapping reaction-time data onto an estimate of the increase in processing capacity afforded by seeing multiple orientations. Cost was measured using an empirical estimate of time needed to take action in Tetris. Results showed that indeed the increase in internal processing capacity obtained from seeing shapes in multiple orientations outweighed the time to take extra actions.

  19. Intensive Group Learning and On-Site Services to Improve Sexual and Reproductive Health Among Young Adults in Liberia: A Randomized Evaluation of HealthyActions.

    PubMed

    Firestone, Rebecca; Moorsmith, Reid; James, Simon; Urey, Marilyn; Greifinger, Rena; Lloyd, Danielle; Hartenberger-Toby, Lisa; Gausman, Jewel; Sanoe, Musa

    2016-09-28

    Young Liberians, particularly undereducated young adults, face substantial sexual and reproductive health (SRH) challenges, with low uptake of contraceptive methods, high rates of unintended pregnancy, and low levels of knowledge about HIV status. The purpose of this study was to assess the impact of a 6-day intensive group learning intervention combined with on-site SRH services (called HealthyActions) among out-of-school young adults, implemented through an existing alternative education program, on uptake of contraception and HIV testing and counseling (HTC). The intervention was implemented among young women and men ages 15-35 who were enrolled in alternative basic education learning sites in 5 counties of Liberia. We conducted a randomized evaluation to assess program impact. Baseline data were collected in January-March 2014, and endline data in June-July 2014. Key outcomes of condom use, contraceptive use, and HTC were estimated with difference-in-difference models using fixed effects. All analyses were conducted in Stata 13. We assessed outcomes for 1,157 learners at baseline and 1,052 learners at endline, across 29 treatment and 26 control sites. After adjusting for potential confounders, learners in the HealthyActions intervention group were 12% less likely to report never using a condom with a regular partner over the last month compared with the control group (P = .02). Female learners who received HealthyActions were 13% more likely to use any form of modern contraception compared with learners in control sites (P<.001), with the greatest increase in the use of contraceptive implants. Learners in HealthyActions sites were 45% more likely to have received HTC (P<.001). Providing intensive group learning in a supportive environment coupled with on-site health services improved SRH outcomes among participating learners. The focus of HealthyActions on participatory learning for low-literacy populations presents an adaptable solution for health programming across Liberia and the region. © Firestone et al.

  20. Towards automated assistance for operating home medical devices.

    PubMed

    Gao, Zan; Detyniecki, Marcin; Chen, Ming-Yu; Wu, Wen; Hauptmann, Alexander G; Wactlar, Howard D

    2010-01-01

    To detect errors when subjects operate a home medical device, we observe them with multiple cameras. We then perform action recognition with a robust approach to recognize action information based on explicitly encoding motion information. This algorithm detects interest points and encodes not only their local appearance but also explicitly models local motion. Our goal is to recognize individual human actions in the operations of a home medical device to see if the patient has correctly performed the required actions in the prescribed sequence. Using a specific infusion pump as a test case, requiring 22 operation steps from 6 action classes, our best classifier selects high likelihood action estimates from 4 available cameras, to obtain an average class recognition rate of 69%.

Top