Science.gov

Sample records for action potential mapping

  1. 16-Channel Organic Electrochemical Transistor Array for In Vitro Conduction Mapping of Cardiac Action Potential.

    PubMed

    Gu, Xi; Yao, Chunlei; Liu, Ying; Hsing, I-Ming

    2016-09-01

    16-Channel organic electrochemical transistor arrays (OECTs) are developed for mapping the propagation and studying the characteristics of action potentials of primary cardiomyocytes. The physiological activities of a rat cardiomyocyte monolayer during a long-term culturing is revealed by this biocompatible, low-cost, and high transconductance organic electronic device. OECT has great potential to be used in cardiac and neuronal drug screening.

  2. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues

    NASA Astrophysics Data System (ADS)

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  3. Novel Transabdominal Motor Action Potential (TaMAP) Neuromonitoring System for Spinal Surgery

    PubMed Central

    Feldman, Erica; Gabel, Brandon C; Taylor, Natalie; Gharib, James; Lee, Yu-Po; Taylor, William

    2016-01-01

    Introduction Minimally invasive lateral lumbar interbody fusion (LLIF) approaches to the lumbar spine reduce patient morbidity compared to anterior or posterior alternatives. This approach, however, decreases direct anatomical visualization, creating the need for highly sensitive and specific neurophysiological monitoring. We seek to determine feasibility in 'transabdominal motor action potential (TaMAP)' monitoring as an assessment for the integrity of the neural elements during lateral-approach surgeries to the lumbar spine.  Methods Cathode and anode leads were placed on the posterior and anterior surfaces of two porcine subjects. Currents of varying degrees were transmitted across, from front to back. Motor responses were monitored and recorded by needle electrodes in specific distal muscle groups of the lower extremity. Lastly, the cathode and anode were placed anterior and posterior to the chest wall and stimulated to the maximum of 1500 mA to determine any effect on cardiac rhythm. Results Responses were seen by measuring vertical height differences between peaks of corresponding evoked potentials. Recruitment began at 200 mA in the lower extremities. Stimulation at 450 mA recruited a reliable and distinguishable electrographic response from most muscle groups. Responses were recorded and reliably measured and increased in proportion to the graduation of transabdominal stimulation current; no responses were seen in the arms or face. 1500 mA across the chest wall failed to stimulate or induce cardiac arrhythmia on repeated stimulation, indicating safety of stimulation. Conclusion TaMAPs seen in the animal model provide a potential alternative to standard transcranial motor evoked potentials done in the lateral approach of LLIFs. TaMAP recordings in most muscle groups were recordable and reliable, though some muscle groups failed to stimulate. Safety of transabdominal motor evoked potentials was confirmed in this porcine study. Future studies

  4. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    NASA Astrophysics Data System (ADS)

    Wang, Shihong; Xie, Yuanfang; Qu, Zhilin

    2008-05-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable.

  5. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    NASA Technical Reports Server (NTRS)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  6. Toward panoramic in situ mapping of action potential propagation in transgenic hearts to investigate initiation and therapeutic control of arrhythmias

    PubMed Central

    Dura, Miroslav; Schröder-Schetelig, Johannes; Luther, Stefan; Lehnart, Stephan E.

    2014-01-01

    To investigate the dynamics and propensity for arrhythmias in intact transgenic hearts comprehensively, optical strategies for panoramic fluorescence imaging of action potential (AP) propagation are essential. In particular, mechanism-oriented molecular studies usually depend on transgenic mouse hearts of only a few millimeters in size. Furthermore, the temporal scales of the mouse heart remain a challenge for panoramic fluorescence imaging with heart rates ranging from 200 min−1 (e.g., depressed sinus node function) to over 1200 min−1 during fast arrhythmias. To meet these challenging demands, we and others developed physiologically relevant mouse models and characterized their hearts with planar AP mapping. Here, we summarize the progress toward panoramic fluorescence imaging and its prospects for the mouse heart. In general, several high-resolution cameras are synchronized and geometrically arranged for panoramic voltage mapping and the surface and blood vessel anatomy documented through image segmentation and heart surface reconstruction. We expect that panoramic voltage imaging will lead to novel insights about molecular arrhythmia mechanisms through quantitative strategies and organ-representative analysis of intact mouse hearts. PMID:25249982

  7. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  8. Mapping Joint Action.

    ERIC Educational Resources Information Center

    Slawski, Carl

    The flow diagrams in this document provide cognitive maps to aid in synthesizing diverse areas of knowledge in a special brand of field theory. A model is presented which highlights the domains of structural functionalism (with concepts of cultural, personal and societal systems) and symbolic interactionism (with the concepts of self, sentiments…

  9. Action potential in charophytes.

    PubMed

    Beilby, Mary Jane

    2007-01-01

    The plant action potential (AP) has been studied for more than half a century. The experimental system was provided mainly by the large charophyte cells, which allowed insertion of early large electrodes, manipulation of cell compartments, and inside and outside media. These early experiments were inspired by the Hodgkin and Huxley (HH) work on the squid axon and its voltage clamp techniques. Later, the patch clamping technique provided information about the ion transporters underlying the excitation transient. The initial models were also influenced by the HH picture of the animal AP. At the turn of the century, the paradigm of the charophyte AP shifted to include several chemical reactions, second messenger-activated channel, and calcium ion liberation from internal stores. Many aspects of this new model await further clarification. The role of the AP in plant movements, wound signaling, and turgor regulation is now well documented. Involvement in invasion by pathogens, chilling injury, light, and gravity sensing are under investigation.

  10. Competing mechanisms for mapping action-related categorical knowledge and observed actions.

    PubMed

    Candidi, Matteo; Vicario, Carmelo Mario; Abreu, Ana Maria; Aglioti, Salvatore Maria

    2010-12-01

    Responses to pictures of famous tennis and soccer athletes are slower when the responding effector is a hand or foot, respectively, indicating that visual recognition of individuals characterized by skilled motor behavior interferes with the motor reactivity of nonproficient observers. By contrast, directly viewing actions induces motor facilitation, suggesting that actions are mapped in the observers' motor system. Here, we used single-pulse Transcranial Magnetic Stimulation to determine 1) whether observing and recognizing the identity of famous tennis and soccer athletes selectively reduce the corticospinal excitability of arm and leg representations (categorization), 2) whether any athlete-related inhibition effect contrasts the facilitation associated with direct action observation (categorization + action), and 3) whether the classic action observation-related facilitation effect is found when viewing "in action" nonathlete models (action). In 3 experiments, we found that amplitude of motor evoked potentials (MEPs) recorded from leg and arm muscles gradually shifted from reduction to facilitation, moving from the categorization to the action observation tasks. Thus, semantic derivation of motor skills is reflected in limb-specific reduction of MEP amplitude, indicating that even abstract action knowledge is embodied in the motor system and that mapping others' actions on the basis of categorization or of their direct observation relies on competing functional mechanisms.

  11. Optical Potential Field Mapping System

    NASA Technical Reports Server (NTRS)

    Reid, Max B. (Inventor)

    1996-01-01

    The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.

  12. Characteristics of cardiac action potentials in marsupials.

    PubMed

    Campbell, T J

    1989-01-01

    Standard microelectrode techniques were used to record action potentials from single atrial, ventricular and Purkinje fibers of hearts taken from three species of marsupial (Macropus rufus, Macropus robustus and Macropus eugenii) and from dogs, sheep and guinea-pigs. The major electrophysiological parameters of marsupial potentials were qualitatively similar to the values for placental mammals. The grouped data for ventricular action potentials from studies on 6 adult male red kangaroos (Macropus rufus) were (mean +/- SD): Resting potential -69.5 +/- 5.0 mV; action potential amplitude 92.7 +/- 5.7 mV; action potential duration (to 90% repolarization): 182.5 +/- 17.5 ms; maximum rate of depolarization: 196.5 +/- 80.1 V/s. The major point of difference was the short duration of the red kangaroo ventricular action potential compared to those of the placental mammals, and compared to atrial cells from the kangaroos. It is suggested that this explains the short QT interval reported by others for kangaroo electrocardiograms, and that it may also be implicated in the high frequency of sudden death previously noted in these animals.

  13. ActionMap: A web-based software that automates loci assignments to framework maps.

    PubMed

    Albini, Guillaume; Falque, Matthieu; Joets, Johann

    2003-07-01

    Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/).

  14. ActionMap: a web-based software that automates loci assignments to framework maps

    PubMed Central

    Albini, Guillaume; Falque, Matthieu; Joets, Johann

    2003-01-01

    Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/). PMID:12824426

  15. Mapping the mechanical action of light

    SciTech Connect

    Kohlgraf-Owens, Dana C.; Sukhov, Sergey; Dogariu, Aristide

    2011-07-15

    We demonstrate that the mechanical action of light manifests itself in the perceived topography measured with a scanning probe microscope. This modality of sensing optically induced forces opens up possibilities to quantify properties of electromagnetic fields.

  16. Correlation of action potentials in adjacent neurons

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2015-12-01

    A possible mechanism for the synchronization of action potential propagation along a bundle of neurons (ephaptic coupling) is considered. It is shown that this mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons. The proposed model allows us to estimate the scale of the correlation, i.e., the distance between neurons in the nervous tissue, wherein their synchronization becomes possible. The possibility for experimental verification of the proposed model of synchronization is discussed.

  17. Screening Action Potentials: The Power of Light

    PubMed Central

    Kaestner, Lars; Lipp, Peter

    2011-01-01

    Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated read out and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for, e.g., pharmacological screens the following preparatory work has to be provided: (i) model cells under investigation need to represent target cells in the best possible manner; (ii) optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable read out with minimal interaction with the naive behavior of the cells and (iii) devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials. PMID:21847381

  18. Introducing the Action Potential to Psychology Students

    ERIC Educational Resources Information Center

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  19. The action potential of Dionaea muscipula Ellis.

    PubMed

    Hodick, D; Sievers, A

    1988-04-01

    The intention of this investigation was to acquire more concise information about the nature of the action potential of Dionaea muscipula Ellis and the different types of cells generating and conducting it. It is shown by microelectrode measurements that, besides the sensory cells, all the major tissues of the trap lobes are excitable, firing action potentials with pronounced after-hyperpolarizations. The action potentials are strictly dependent on Ca(2+). Their peak depolarizations are shifted 25-27 mV in a positive direction after a tenfold increase in external Ca(2+) concentration. Perfusions with 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or 1 mM LaCl3 completely inhibit excitability. Magnesium ions only slightly affect the peak depolarizations but considerably prolong action potentials. Sodium azide and 2,4-dinitrophenol also abolish excitation, probably by reducing the intracellular ATP concentration. Furthermore, it is tested whether the sensory cells can be distinguished from the other cells of the trap by their electrical behaviour. The resting potentials of sensory cells (-161±7 mV) and mesophyll cells (-155±8 mV) are of the same magnitude. Changes in external ion concentrations affect resting and action potentials in both cell types in a similar way. Additional freeze-fracture studies of both cell types reveal similar numbers and distributions of intramembrane particles on the fracture faces of the plasma membrane, which is most likely the mechanosensor. These findings stress the view that the high mechanosensitivity of the sensory hair results from its anatomy and not from a specialized perception mechanism. It is proposed that trap closure is triggered by a rise in the cytoplasmic concentration of Ca(2+) or a Ca(2+)-activated regulatory complex, which must exceed a threshold concentration. Since the Ca(2+) influx during a single action potential does not suffice to reach this threshold, at least two stimulations

  20. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  1. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  2. Gridded state maps of wind electric potential

    NASA Astrophysics Data System (ADS)

    Schwartz, M. N.; Elliott, D. L.; Gower, G. L.

    1992-10-01

    Estimates of wind electric potential and available windy land area in the contiguous United States, calculated in 1991, were revised by incorporating actual data on the distribution of environmental exclusion areas where wind energy development would be prohibited or severely restricted. The new gridded data base with actual environmental exclusion areas, in combination with a 'moderate' land-use scenario, is the basis for developing the first gridded maps of available windy land and wind electric potential. Gridded maps for the 48 contiguous states show the estimated windy land area and electric potential for each grid cell (1/40 latitude by 1/30 longitude). These new maps show the distribution of the estimated wind electric potential and available windy land within an individual state, unlike previous national maps that only show estimates of the total wind electric potential for the state as a whole. While changes for some individual states are fairly large (in percentage), on a national basis, the estimated windy land area and wind electric potential are only about 1 - 2 percent higher than estimated in 1991.

  3. Ca channel gating during cardiac action potentials.

    PubMed

    Mazzanti, M; DeFelice, L J

    1990-10-01

    How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the

  4. Ca channel gating during cardiac action potentials.

    PubMed

    Mazzanti, M; DeFelice, L J

    1990-10-01

    How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the

  5. Ionic requirements for arterial action potential

    PubMed Central

    Keatinge, W. R.

    1968-01-01

    1. Strips of smooth muscle from common carotid arteries of sheep were electrically quiescent in solution containing Na 148 mM and Ca 2·5 mM. 2. When Ca was removed they became electrically active. Addition of low concentrations of Ca (0·025-0·075 mM) or Mg (0·025-0·750 mM) stopped their activity while ethylenediamine tetra-acetate (EDTA) (1·25 mM) accelerated it. 3. Replacement of Na by Tris or choline stopped the activity in Ca-free solution. After partial replacement of Na electrical activity could be restored by lowering the resting potential but after complete replacement of Na it could not. 4. In the presence of Ca (2·5 mM) small spikes could sometimes be induced after 20 min in Na-free Tris solution by lowering the resting potential by an increase in the external K concentration. 5. The results indicate that the depolarizing current of action potentials in this smooth muscle was largely carried by Na, although a little may have been carried by Ca in Ca-containing solutions. 6. The arteries in general resembled striated muscle rather than intestinal smooth muscle in these respects, but unlike striated muscle their action potentials were not stopped by tetrodotoxin. ImagesFig. 2 PMID:5639765

  6. RISK COMMUNICATION IN ACTION: THE TOOLS OF MESSAGE MAPPING

    EPA Science Inventory

    Risk Communication in Action: The Tools of Message Mapping, is a workbook designed to guide risk communicators in crisis situations. The first part of this workbook will review general guidelines for risk communication. The second part will focus on one of the most robust tools o...

  7. Mapping geogenic radon potential by regression kriging.

    PubMed

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-02-15

    Radon ((222)Rn) gas is produced in the radioactive decay chain of uranium ((238)U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. PMID:26706761

  8. Mapping geogenic radon potential by regression kriging.

    PubMed

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-02-15

    Radon ((222)Rn) gas is produced in the radioactive decay chain of uranium ((238)U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly.

  9. McClellan AFB Management Action Plan (MAP) submittal

    SciTech Connect

    Not Available

    1992-12-23

    This Management Action Plan ('Action Plan' or 'MAP') contains a status summary of the McClellan Air Force Base (McAFB) environmental restoration and compliance programs and presents a comprehensive strategy for implementing response actions necessary to protect human health and the environment. This strategy integrates activities under both the Installation Restoration Program (IRP) and the Environmental Compliance Program (ECP). This Action Plan is a dynamic document that will be updated on a regular basis using the change-a-page looseleaf binder concept for day-to-day revisions along with a subsection at the end of each chapter to highlight any modifications or innovations since the previous major annual review/update.

  10. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  11. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  12. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  13. Mapping implied body actions in the human motor system.

    PubMed

    Urgesi, Cosimo; Moro, Valentina; Candidi, Matteo; Aglioti, Salvatore M

    2006-07-26

    The human visual system is highly tuned to perceive actual motion as well as to extrapolate dynamic information from static pictures of objects or creatures captured in the middle of motion. Processing of implied motion activates higher-order visual areas that are also involved in processing biological motion. Imagery and observation of actual movements performed by others engenders selective activation of motor and premotor areas that are part of a mirror-neuron system matching action observation and execution. By using single-pulse transcranial magnetic stimulation, we found that the mere observation of static snapshots of hands suggesting a pincer grip action induced an increase in corticospinal excitability as compared with observation of resting, relaxed hands, or hands suggesting a completed action. This facilitatory effect was specific for the muscle that would be activated during actual execution of the observed action. We found no changes in responsiveness of the tested muscles during observation of nonbiological entities with (e.g., waterfalls) or without (e.g., icefalls) implied motion. Thus, extrapolation of motion information concerning human actions induced a selective activation of the motor system. This indicates that overlapping motor regions are engaged in the visual analysis of physical and implied body actions. The absence of motor evoked potential modulation during observation of end posture stimuli may indicate that the observation-execution matching system is preferentially activated by implied, ongoing but not yet completed actions. PMID:16870739

  14. Mapping implied body actions in the human motor system.

    PubMed

    Urgesi, Cosimo; Moro, Valentina; Candidi, Matteo; Aglioti, Salvatore M

    2006-07-26

    The human visual system is highly tuned to perceive actual motion as well as to extrapolate dynamic information from static pictures of objects or creatures captured in the middle of motion. Processing of implied motion activates higher-order visual areas that are also involved in processing biological motion. Imagery and observation of actual movements performed by others engenders selective activation of motor and premotor areas that are part of a mirror-neuron system matching action observation and execution. By using single-pulse transcranial magnetic stimulation, we found that the mere observation of static snapshots of hands suggesting a pincer grip action induced an increase in corticospinal excitability as compared with observation of resting, relaxed hands, or hands suggesting a completed action. This facilitatory effect was specific for the muscle that would be activated during actual execution of the observed action. We found no changes in responsiveness of the tested muscles during observation of nonbiological entities with (e.g., waterfalls) or without (e.g., icefalls) implied motion. Thus, extrapolation of motion information concerning human actions induced a selective activation of the motor system. This indicates that overlapping motor regions are engaged in the visual analysis of physical and implied body actions. The absence of motor evoked potential modulation during observation of end posture stimuli may indicate that the observation-execution matching system is preferentially activated by implied, ongoing but not yet completed actions.

  15. The effect of stimulation frequency on the transmural ventricular monophasic action potential in yellowfin tuna Thunnus albacares.

    PubMed

    Patrick, S M; White, E; Brill, R W; Shiels, H A

    2011-02-01

    Monophasic action potentials (MAPs) were recorded from the spongy and compact layers of the yellowfin tuna Thunnus albacares ventricle as stimulation frequency was increased. MAP duration decreased with increase in stimulation frequency in both the spongy and compact myocardial layers, but no significant difference in MAP duration was observed between the layers. PMID:21284642

  16. Mapping Potential Croplands in the United States

    NASA Astrophysics Data System (ADS)

    Lark, T. J.; Gibbs, H. K.

    2012-12-01

    There is a growing debate about land availability in the U.S., with some proponents of biofuels suggesting a nearly endless supply of land for production, while others claim we have already reached "peak land". Until now, however, there has been no comprehensive evaluation of the extent and location of uncultivated land suitable for crop production in the U.S. We created the first spatially-explicit database of Potentially Available Cropland (PAC) in the United States by fusing NASS's Cropland Data Layer with data from the U.S. Census and Census of Agriculture, Soil Survey Geographic (SSURGO) data, and databases of public, private, and protected areas, while implementing rule-based decisions derived from stakeholder interviews. We considered all potential cropland, including idle land, pastureland, and areas of turf lawn that could be used for production. We then used the output maps to estimate maximum production potential and associated carbon debt for the U.S. under a range of scenarios. Preliminary results suggest that fully cultivating all PAC could increase U.S. annual corn grain production by 16 - 48 % and more than double current U.S. vegetable production. However, several economic, social, and physical constraints as well as ecological tradeoffs limit the practical expansion onto these lands. Our results will provide needed inputs to project national and global agricultural production potential, constrain estimates of direct and indirect land use change, and inform agricultural and energy policy.

  17. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  18. Mapping ecosystem services potential in Lithuania

    NASA Astrophysics Data System (ADS)

    Depellegrin, Daniel; Misiune, Ieva; Pereira, Paulo

    2016-04-01

    Ecosystem services (ES) are understood as the benefits that humans get from ecosystems functions. They are divided in providing, regulating, supporting and cultural. The correct management of ES is fundamental to achieve sustainable development goals. A good assessment of ES potential can be obtained using GIS techniques, in order to have a spatial dimension of ES distribution. This will help to have a better territorial planning, improve ES capacity, and have more benefits. ES potential analysis can be carried out based on the ES matrix developed by Burkhard et al. (2009). This method is based on the attribution a rank from 0 to 5 (0= no capacity to 5=very high relevant capacity) to the land use classes of the corine land cover (CLC). This represents an important advantage since a determined land use can be related with a certain number of services. The objective of this work is to Map the ES potential in Lithuania. The results showed that Lithuania has a high potential for regulating services, followed by cultural and provisioning services. Urban areas provide a very small amount of services, contrary to forest, where the highest potential is observed. The most comon land covers in Lithuania are non-irrigated arable land, complex cultivation patterns, mixed and coniferous forest. Total and regulating and cultural ES had dispersed pattern showing that they are scattered in the territory. They are located mainly in forested and coastal areas. In relation to provisioning services they had a clustered distribution, and they were mainly observed in the central part of Lithuania. References Burkhard B, Kroll F, Müller F, Windhorst W. 2009. Landscapes' capacities to provide ecosystem services - a concept for land-cover based assessments. Landsc. Online. 15:1-22

  19. Action potential initiation and propagation in rat neocortical pyramidal neurons.

    PubMed

    Stuart, G; Schiller, J; Sakmann, B

    1997-12-15

    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell-attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to

  20. Conduction velocity of antigravity muscle action potentials.

    PubMed

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  1. Selective effects of an octopus toxin on action potentials

    PubMed Central

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  2. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. PMID:27639239

  3. Potential Benefits of the Information Mapping Technique.

    ERIC Educational Resources Information Center

    Schaffer, Eric M.

    1982-01-01

    A comparison of the performance of 10 employees using the current version of a Corporate Time Reporting Instruction and a revision prepared using Information Mapping (IM) indicates that subjects committed 54 percent fewer errors when using the IM version. Samples of both versions and evaluation forms used are included. (MER)

  4. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    PubMed Central

    Bangert, Marc; Altenmüller, Eckart O

    2003-01-01

    Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529

  5. A physical action potential generator: design, implementation and evaluation

    PubMed Central

    Latorre, Malcolm A.; Chan, Adrian D. C.; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1–40 in incremental steps of 1) and the node drive potential (0–2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems. PMID:26539072

  6. [On the theory of action potential propagation in plant cells].

    PubMed

    Sizonenko, V L; Kovalenko, N I

    2012-01-01

    The distribution of an electric field in plant cells and zooblasts has been investigated at propagation of the action potential. The behavior of ions in the cytoplasm and in the extracellular fluid has been described with the equations of electric charge motion in the electrolytes. It has been shown that the action potential causes an electric potential change not only in the depth of the cytoplasm but also in the extracellular area far from the lipidic bilayer. The biomembrane resistance has been expressed by physical parameters of a cell, such as ionic diffusion coefficient in fluid, Debye-Huckel radius, dielectric conductivity etc. The presence of breakings in the action potential diagrams has been explained as a result of insufficient resolving power of the measuring devices at the instant the sodium ionic canals of the bilayer opens. PMID:23035528

  7. The metabolic energy cost of action potential velocity

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Sangrey, Thomas; Levy, William

    2006-03-01

    Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.

  8. Optical magnetic detection of single-neuron action potentials using NV-diamond

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  9. Extract relevant features from DEM for groundwater potential mapping

    NASA Astrophysics Data System (ADS)

    Liu, T.; Yan, H.; Zhai, L.

    2015-06-01

    Multi-criteria evaluation (MCE) method has been applied much in groundwater potential mapping researches. But when to data scarce areas, it will encounter lots of problems due to limited data. Digital Elevation Model (DEM) is the digital representations of the topography, and has many applications in various fields. Former researches had been approved that much information concerned to groundwater potential mapping (such as geological features, terrain features, hydrology features, etc.) can be extracted from DEM data. This made using DEM data for groundwater potential mapping is feasible. In this research, one of the most widely used and also easy to access data in GIS, DEM data was used to extract information for groundwater potential mapping in batter river basin in Alberta, Canada. First five determining factors for potential ground water mapping were put forward based on previous studies (lineaments and lineament density, drainage networks and its density, topographic wetness index (TWI), relief and convergence Index (CI)). Extraction methods of the five determining factors from DEM were put forward and thematic maps were produced accordingly. Cumulative effects matrix was used for weight assignment, a multi-criteria evaluation process was carried out by ArcGIS software to delineate the potential groundwater map. The final groundwater potential map was divided into five categories, viz., non-potential, poor, moderate, good, and excellent zones. Eventually, the success rate curve was drawn and the area under curve (AUC) was figured out for validation. Validation result showed that the success rate of the model was 79% and approved the method's feasibility. The method afforded a new way for researches on groundwater management in areas suffers from data scarcity, and also broaden the application area of DEM data.

  10. Exploring teacher's perceptions of concept mapping as a teaching strategy in science: An action research approach

    NASA Astrophysics Data System (ADS)

    Marks Krpan, Catherine Anne

    In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept

  11. Action prediction based on anticipatory brain potentials during simulated driving

    NASA Astrophysics Data System (ADS)

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  12. Action potential and contraction of Dionaea muscipula (Venus flytrap).

    PubMed

    DI PALMA, J R; MOHL, R; BEST, W

    1961-03-24

    Observation of the action potential and contraction of the leaf of Dionaea muscipula Ellis revealed several interesting phenomena. Two successive stimuli are generally necessary to cause contraction. The first and ineffective stimulus is associated with slow depolarization. The second stimulus has much more rapid depolarization and initiates contraction.

  13. Passive Responses Resembling Action Potentials: A Device for the Classroom

    ERIC Educational Resources Information Center

    Newman, Ian A.; Pickard, Barbara G.

    1975-01-01

    Describes the construction and operation of a network of entirely passive electrical components that gives a response to an electrical shock similar to an action potential. The network of resistors, capacitors, and diodes was developed to produce responses that would mimic those observed, for example, when a dark-grown pea epicotyl is shocked…

  14. Propagation of Action Potentials: An Active Participation Exercise.

    ERIC Educational Resources Information Center

    Felsten, Gary

    1998-01-01

    Describes an active participation exercise that demonstrates the propagation of action potentials (the ability to transmit information through the neural network, dependent upon chemical interactions in the brain). Students assume the structure and function of the network by lining up around the room and communicating through hand signals and…

  15. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  16. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.

    PubMed

    Sendin, Gaston; Bourien, Jérôme; Rassendren, François; Puel, Jean-Luc; Nouvian, Régis

    2014-02-01

    Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development. PMID:24429348

  17. Focused ultrasound effects on nerve action potential in vitro

    PubMed Central

    Colucci, Vincent; Strichartz, Gary; Jolesz, Ferenc; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-01-01

    Minimally invasive applications of thermal and mechanical energy to selective areas of the human anatomy have led to significant advances in treatment of and recovery from typical surgical interventions. Image-guided focused ultrasound allows energy to be deposited deep into the tissue, completely noninvasively. There has long been interest in using this focal energy delivery to block nerve conduction for pain control and local anesthesia. In this study, we have performed an in vitro study to further extend our knowledge of this potential clinical application. The sciatic nerves from the bullfrog (Rana catesbeiana) were subjected to focused ultrasound (at frequencies of 0.661MHz and 1.986MHz) and to heated Ringer’s solution. The nerve action potential was shown to decrease in the experiments and correlated with temperature elevation measured in the nerve. The action potential recovered either completely, partially, or not at all, depending on the parameters of the ultrasound exposure. The reduction of the baseline nerve temperature by circulating cooling fluid through the sonication chamber did not prevent the collapse of the nerve action potential; but higher power was required to induce the same endpoint as without cooling. These results indicate that a thermal mechanism of focused ultrasound can be used to block nerve conduction, either temporarily or permanently. PMID:19647923

  18. Identification and mapping of the nursing diagnoses and actions in an Intensive Care Unit.

    PubMed

    Salgado, Patrícia de Oliveira; Chianca, Tânia Couto Machado

    2011-01-01

    This is a descriptive study with the aim of examining the nursing diagnoses labels and actions prescribed by nurses in the clinical records of patients hospitalized in an Adult Intensive Care Unit. A sample of 44 clinical records was obtained and a total of 1087 nursing diagnoses and 2260 nursing actions were identified. After exclusion of repetitions 28 different nursing diagnoses labels and 124 different nursing actions were found. Twenty-five nursing diagnoses labels were related to human psychobiological needs and three to psychosocial needs. All the nursing actions were mapped to the physiological needs and also to interventions of the Nursing Interventions Classification-NIC. Concordance of 100% was obtained between the experts in the validation process of the mapping performed, both for the nursing diagnoses labels and actions. Similar studies should be conducted for the identification and development of nursing diagnoses and actions.

  19. Spatial polychaeta habitat potential mapping using probabilistic models

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Kuk; Oh, Hyun-Joo; Koo, Bon Joo; Ryu, Joo-Hyung; Lee, Saro

    2011-06-01

    The purpose of this study was to apply probabilistic models to the mapping of the potential polychaeta habitat area in the Hwangdo tidal flat, Korea. Remote sensing techniques were used to construct spatial datasets of ecological environments and field observations were carried out to determine the distribution of macrobenthos. Habitat potential mapping was achieved for two polychaeta species, Prionospio japonica and Prionospio pulchra, and eight control factors relating to the tidal macrobenthos distribution were selected. These included the intertidal digital elevation model (DEM), slope, aspect, tidal exposure duration, distance from tidal channels, tidal channel density, spectral reflectance of the near infrared (NIR) bands and surface sedimentary facies from satellite imagery. The spatial relationships between the polychaeta species and each control factor were calculated using a frequency ratio and weights-of-evidence combined with geographic information system (GIS) data. The species were randomly divided into a training set (70%) to analyze habitat potential using frequency ratio and weights-of-evidence, and a test set (30%) to verify the predicted habitat potential map. The relationships were overlaid to produce a habitat potential map with a polychaeta habitat potential (PHP) index value. These maps were verified by comparing them to surveyed habitat locations such as the verification data set. For the verification results, the frequency ratio model showed prediction accuracies of 77.71% and 74.87% for P. japonica and P. pulchra, respectively, while those for the weights-of-evidence model were 64.05% and 62.95%. Thus, the frequency ratio model provided a more accurate prediction than the weights-of-evidence model. Our data demonstrate that the frequency ratio and weights-of-evidence models based upon GIS analysis are effective for generating habitat potential maps of polychaeta species in a tidal flat. The results of this study can be applied towards

  20. Modelling in vivo action potential propagation along a giant axon.

    PubMed

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  1. Shockwave-induced compound action potentials in the peripheral nerve.

    PubMed

    Wehner, H D; Sellier, K

    1981-01-01

    To verify a presumed interaction between shockwaves arisen by impacts of high velocity projectiles and nervous tissue an electrophysiological experiment is performed with the following results: In peripheral nerves regular compound action potentials (CAPs) are provoked by shockwaves the amplitudes of which are increased corresponding to the pressure intensity of the shockwaves. The nerve shows no electrical activity below a certain pressure threshold (0.75 bar). Saturation of the CAP amplitude occurs beyond a pressure limit of 8 bar.

  2. Compound muscle action potential cartography of an accessory peroneal nerve.

    PubMed

    Van Dijk, J G; Van der Hoeven, B J

    1998-10-01

    In daily practice, accessory peroneal nerves (APNs) are detected in less than the 18-25% of legs, as revealed by systematic searches. In one APN case, compound muscle action potential cartography showed that the APN was only apparent when the recording electrode was placed over a small lateral region of the extensor digitorum brevis muscle. Effects of recording site can explain why many APNs go unrecognized.

  3. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  4. Primary cortical representation of sounds by the coordination of action-potential timing

    NASA Astrophysics Data System (ADS)

    Decharms, R. Christopher; Merzenich, Michael M.

    1996-06-01

    CORTICAL population coding could in principle rely on either the mean rate of neuronal action potentials, or the relative timing of action potentials, or both. When a single sensory stimulus drives many neurons to fire at elevated rates, the spikes of these neurons become tightly synchronized1,2, which could be involved in 'binding' together individual firing-rate feature representations into a unified object percept3. Here we demonstrate that the relative timing of cortical action potentials can signal stimulus features themselves, a function even more basic than feature grouping. Populations of neurons in the primary auditory cortex can coordinate the relative timing of their action potentials such that spikes occur closer together in time during continuous stimuli. In this way cortical neurons can signal stimuli even when their firing rates do not change. Population coding based on relative spike timing can systematically signal stimulus features, it is topographically mapped, and it follows the stimulus time course even where mean firing rate does not.

  5. Potentiation of antitumor drug action by centrophenoxine: specificity.

    PubMed

    Sladek, N E

    1977-05-01

    The cytotoxic action of certain antitumor agents is potentiated by centrophenoxine although centrophenoxine itself is not an antitumor agent. Previous investigations have suggested that centrophenoxine might potentiate the cytotoxicity produced by antitumor drugs that alkylate, and other modalities that damage, DNA, but that it would not potentiate the cytotoxicity produced by antitumor drugs that inflict cellular damage in other ways. To test this hypothesis, the antitumor effects of X-irradiation UV-irradiation, alkylating agents and antitumor drugs that are not ordinarily considered to be alkylating agents were determined in the presence and absence of centrophenoxine. Mouse P388 lymphoma cells growing in static suspension culture were used as the experimental tumor. The cytotoxic action of most alkylating agents was found to be potentiated by centrophenoxine; Included in this group were several difunctional nitrogen mustards, two ethylenimines, a nitrosourea and mitomycin C. Greatest enhancement, 7-fold, was of chlorambucil antitumor activity. Centrophenoxine did not potentiate the lethality of X- or UV-irradiation or the cytotoxicity of several antineoplastic drugs that are not alkylating agents.

  6. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons

  7. The COST 731 Action and the MAP D-PHASE Initiative - Overview on Main Outcomes

    NASA Astrophysics Data System (ADS)

    Rossa, A. M.

    2010-09-01

    The COST 731 Action, launched in 2005, addresses the problem of forecasting (heavy) precipitation events and the corresponding hydrological processes in connection with the uncertainty inherent in this task. The actual threat to society that potentially occurs from intense (and thus rare) events only becomes effective after the involvement of the hydrosphere. The main focus of the Action is the quantification of forecast uncertainty and its propagation through a meteo-hydrological forecast chain. COST 731 is structured in three working groups, which deal with uncertainty cascading from observation (predominantly from radar) into numerical weather prediction (NWP) models, from observation and NWP into hydrological models, and the use of uncertainty as support in decision making. The groups of scientists involved in the action therefore represent radar meteorology, NWP, hydrological modeling, as well as social scientists who deal with risk communication. MAP D-PHASE (Mesoscale Alpine Programme, Demonstration of Probabilistic Hydrological and Atmospheric Simulation of Flooding Events in the Alps) is the second WMO/WWRP Forecast Demonstration Project and constitutes an important element of COST 731. Its Operations Period (June - November 2007) was centred in the Alpine region and experienced a number of interesting weather cases. Real-time forecast information of 7 limited area ensemble prediction systems, 23 high-resolution limited area numerical weather prediction models, as well as 7 hydrological models coupled to NWP QPF and/or radar QPE input were collected, and synthetically displayed on a visualization platform. In this presentation an overview of the COST 731 main achievements of the action as well as open issues and future opportunities are given. They are put into context with the results and perspectives of D-PHASE, first verification results, end user feedback, lessons learnt. A notable number of operational groups in hydrological modeling are in the

  8. Mapping Irrigation Potential in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  9. The characteristics of action potentials in primo vessels and the effects of acetylcholine injection to the action potentials.

    PubMed

    Cho, Seong Jin; Lim, Jaekwan; Yeon, Sun Hee; Kwon, O Sang; Choi, Kwang-Ho; Choi, Sun-Mi; Ryu, Yeon-Hee

    2013-01-01

    In a previous study, we found that Primo vessels generate different action potentials in smooth muscles, but this study compared the pulse shape to distinguish the two tissues. Thus, a more sophisticated extracellular experiment was performed in this study using an acetylcholine injection; we then observed changes in the amplitude, FWHM (full width at half maximum), and period to explore Primo vessel function. A third type of pulse was recorded for Primo vessels. We observed fast depolarizing and repolarizing phases for this pulse. Further, its FWHM was 30 ms between smooth muscles and neurons. Acetylcholine affected only the period. The amplitude and FWHM were consistent after injection. Primo-vessels generated action potentials at twice the frequency after injection. From the results, we speculate that Primo-vessels perform a role in transferring signals in a different manner, which may be relevant for acupuncture treatment.

  10. Synchronous imitation of continuous action sequences: The role of spatial and topological mapping.

    PubMed

    Ramenzoni, Verónica C; Sebanz, Natalie; Knoblich, Günther

    2015-10-01

    What are the mapping mechanisms that enable people to synchronously imitate continuous action sequences observed in others? We investigated this question in 4 experiments that used a tapping task where participants synchronously performed alternating bimanual hand movements with a model presented in an egocentric or allocentric orientation. Their task was to tap in synchrony, with each hand matching the movements of the ipsilateral model hand as closely as possible. The results show that automatic establishment of topological mappings, where the performer's hand is mapped onto the model's anatomically matching hand even if the 2 are spatially misaligned, can interfere with maintaining spatial mappings (Experiments 1 and 2). The interference was particularly strong in musicians who have expertise in establishing topological mappings in continuous performance (Experiment 4). Adopting an unusual body posture greatly interfered with establishing spatial as well as topological mappings (Experiment 3). Together, the results suggest that synchronous imitation of continuous action sequences depends on flexible predictive models that simultaneously apply spatial and topological mapping constraints to enable an actor to act in synchrony with observed action sequences. PMID:26052697

  11. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.

    PubMed

    Zhang, Hanyu; Iijima, Kenichi; Huang, Jian; Walcott, Gregory P; Rogers, Jack M

    2016-07-26

    Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long

  12. Present and potential land use mapping in Mexico

    NASA Technical Reports Server (NTRS)

    Garduno, H.; Lagos, R. G.; Simo, F. G.

    1975-01-01

    The Mexican Water Plan (MWP) conducted studies of present and potential land use in Mexico using LANDSAT-1 satellite imagery. Present land use studies were carried out all over the country (197 million hectares); nine soil uses were mapped according to the first classification level recommended by the U.S. Geological Survey. Also 6.3 million hectares of land with advanced erosion were detected. Work was executed at a rate of 8 million hectares per month; reliability was 90% and the cost of only 0.1 cents/hectare. The potential land use study was performed in 45 million hectares at a rate of 4 million hectares per month and at a cost of 0.33 cents/hectare. Soil units according to FAO classification were delineated scale 1:1 million; interpretative maps were also prepared dealing with potential agricultural productivity carrying capacity for cattle, water, erosion risk, and slope ranges.

  13. Atrial action potential heterogeneity measured by unipolar electrograms.

    PubMed

    Vigmond, Edward J; Tsoi, Vincent; Pagé, Pierre

    2006-01-01

    Vagally-induced action potential duration (APD) heterogeneity can lead to the breakdown of atrial flutter into fibrillation. The exact distribution of vagal mediated effects in the atria is unknown, however. This study analyzed canine electrograms in order to determine changes in APD. Electrograms were recorded under control, and left and right vagal nerve stimulation. Simulations in a computer model were first performed in order to determine how local acetylcholine concentrations affect electrograms. Two measures were investigated to assess APD changes. Results indicate that APD is reduced nonuniformly, and contralateral effects were seen.

  14. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants.

  15. Compilation of geogenic radon potential map of Pest County, Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, K. Zs.; Pásztor, L.; Horváth, Á.; Bakacsi, Zs.; Szabó, J.; Szabó, Cs.

    2010-05-01

    222Rn and its effect on the human health have recently received major importance in environmental studies. This natural radioactive gas accounts for about 9% of lung cancer death and about 2% of all deaths from cancer in Europe due to indoor radon concentrations. It moves into the buildings from the natural decay chain of uranium in soils, rocks and building materials. Radon mapping regionalizes the average hazard from radon in a selected area as a radon risk map. Two major methods (concerning the applied radon data) have been used for mapping. One uses indoor radon data whereas the other is based on soil gas radon data. The outputs of the second approach are the geogenic radon potential maps. The principal objective of our work is to take the first step in geogenic radon mapping in Hungary. Soil samples collected in Pest County (Central Region of Hungary) in the frame of a countrywide soil survey (Soil Information and Monitoring System) were studied to have empirical information of the potential radon risk. As the first two steps radium concentration of soil samples, collected at 43 locations sampling soil profiles by genetic horizons from the surface level down to 60-150 cm, were determined using HPGe gamma-spectroscopy technique, as well as measurement of radon exhalation on the soil samples were carried out applying closed radon accumulation chamber coupled with RAD7 radon monitor detector. From these data the exhalation coefficient was calculated, which shows how many percent of the produced radon can come out from the sample. This rate strongly depends on the depth: at circa 100 cm a drastic decrease have been noticed, which is explained by the change in soil texture. The major source of indoor radon is the soil gas radon concentration (Barnet et al., 2005). We estimated this value from the measured radon exhalation and calculated soil porosity and density. The soil gas radon concentration values were categorized after Kemski et al. (2001) and then the

  16. A web portal for in-silico action potential predictions

    PubMed Central

    Williams, Geoff; Mirams, Gary R.

    2015-01-01

    Introduction Multiple cardiac ion channels are prone to block by pharmaceutical compounds, and this can have large implications for cardiac safety. The effect of a compound on individual ion currents can now be measured in automated patch clamp screening assays. In-silico action potential models are proposed as one way of predicting the integrated compound effects on whole-cell electrophysiology, to provide an improved indication of pro-arrhythmic risk. Methods We have developed open source software to run cardiac electrophysiology simulations to predict the overall effect of compounds that block IKr, ICaL, INa, IKs, IK1 and Ito to varying degrees, using a choice of mathematical electrophysiology models. To enable safety pharmacology teams to run and evaluate these simulations easily, we have also developed an open source web portal interface to this simulator. Results The web portal can be found at https://chaste.cs.ox.ac.uk/ActionPotential. Users can enter details of compound affinities for ion channels in the form of IC50 or pIC50 values, run simulations, store the results for later retrieval, view summary graphs of the results, and export data to a spreadsheet format. Discussion This web portal provides a simple interface to reference versions of mathematical models, and well-tested state-of-the-art equation solvers. It provides safety teams easy access to the emerging technology of cardiac electrophysiology simulations for use in the drug-discovery process. PMID:25963830

  17. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  18. Mapping the chemical potential landscape of a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Broome, M. A.; Gorman, S. K.; Keizer, J. G.; Watson, T. F.; Hile, S. J.; Baker, W. J.; Simmons, M. Y.

    2016-08-01

    We investigate the nonequilibrium charge dynamics of a triple quantum dot and demonstrate how electron transport through these systems can give rise to nontrivial tunneling paths. Using a real-time charge sensing method, we establish tunneling pathways taken by particular electrons under well-defined electrostatic configurations. We show how these measurements map to the chemical potentials for different charge states across the system. We use a modified Hubbard Hamiltonian to describes the system dynamics and show is reproduces all experimental observations.

  19. The Potential of Deweyan-Inspired Action Research

    ERIC Educational Resources Information Center

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  20. Cardiac dynamics: a simplified model for action potential propagation

    PubMed Central

    2012-01-01

    This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation. PMID:23194429

  1. Mapping the global geographic potential of Zika virus spread

    PubMed Central

    Samy, Abdallah M.; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A. Townsend

    2016-01-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear. PMID:27653360

  2. Mapping of electrical potential distributions with charged particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1982-01-01

    Methods for measuring electrostatic potentials on and near dielectric surfaces charged to several kilovolts are studied. Secondary emission from those charged dielectrics is measured. Candidates for potential measurement include the induced charge, from which potential is calculated; the trajectory endpoints of either high or low energy particles traversing the region near the surface; trajectory impact on the surface; and creating ions at points of interest near the surface. Some of the methods require computer simulations and iterative calculation if potential maps are to be generated. Several approaches are described and compared. A method using a half-cylinder as a test chamber and low-energy probing beams is adapted for the measurement of seconary emission.

  3. Mapping the global geographic potential of Zika virus spread

    PubMed Central

    Samy, Abdallah M.; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A. Townsend

    2016-01-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear.

  4. Mapping the global geographic potential of Zika virus spread.

    PubMed

    Samy, Abdallah M; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A Townsend

    2016-09-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear. PMID:27653360

  5. Mapping the global geographic potential of Zika virus spread.

    PubMed

    Samy, Abdallah M; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A Townsend

    2016-09-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear.

  6. Main results of strategic noise maps and action plans in Navarre (Spain).

    PubMed

    Arana, M; Martin, R San; Nagore, I; Pérez, D

    2013-06-01

    According to Directive 2002/49, strategic noise maps and their correspondent action plans were carried out in the Autonomous Community of Navarre, Spain. Six strategic noise maps were produced for 120 km of major roads as well as a strategic noise map for the Agglomeration of the Region of Pamplona (ARP) with a population of 280,199 inhabitants. In the ARP, a total of 36,400 people (13.0 %) are exposed to Ln levels over 55 dBA and 42,300 people (15.1 %) are exposed to Lden levels over 65 dBA. With regard to major roads, a total of 3,900 people are exposed to Ln levels over 55 dBA and 2,400 people are exposed to Lden levels over 65 dBA. When designing action plans, different prioritisation criteria concerning rank-based effectiveness measures (mainly the amount of people benefitting from them) were taken into account.

  7. Transforming echoes into pseudo-action potentials for classifying plants.

    PubMed

    Kuc, R

    2001-10-01

    Animals perceive their environment by converting sensory stimuli into action potentials, or temporal point processes, that are interpreted by the brain. This paper investigates the information content of point processes extracted from echoes from in situ plants in an effort to understand how bats recognize landmarks in the field. A mobile sonar converts echoes into biologically similar temporal point processes. termed pseudo-action potentials (PAPs), whose inter-PAP interval relates to echo amplitude. The sonar forms a sector scan of an object to produce a spatial-temporal PAP field. Classifier neurons apply delays and coincidence detection to the PAP field to identify three distinct echo types, glints, blobs, and fuzz, which characterize plant features. Glints are large amplitude echoes exhibiting coherence over successive echoes in the sector scan, typically produced by favorably oriented isolated specular reflectors. Blobs are large echoes lacking coherence, typically bordering glints or formed by collections of interfering reflectors. Fuzz represents weak echoes, typically produced by collection of weak scatterers or by reflectors on the beam periphery. A small mirror reflector models a flat leaf surface and motivates the glint criteria. Classifiers are applied to experimental data from two types of tree trunks, a glint-producing sycamore (Platanus occidenatalis) and a glint-absent Norway maple (Acer platanoides) and two plants, a glint-producing rhododendron (Rhododendron maximus) and a glint-absent yew (Taxus media). We speculate that our narrow-band sonar models the activity of a single frequency bin in the frequency-modulated (FM) sweep emitted by bats, and that one function of the frequency bins in the FM sweep is to form a sector scan of the environment.

  8. Dipole characterization of single neurons from their extracellular action potentials

    PubMed Central

    Victor, Jonathan D.

    2011-01-01

    The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to

  9. Mapping electrostatic potentials from the ionosphere to the magnetosphere

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Foster, J. C.; Banks, P. M.; Doupnik, J. R.

    1983-01-01

    Techniques for mapping observed ionospheric-potential distributions into the magnetosphere are discussed and illustrated using published Millstone Hill and Chatanika incoherent-scatter-radar data. It is shown that the mapping of a given field line to the equator is subject to strong diurnal and seasonal variations (attributed to the combination of internal and tail-current magnetic-field sources at auroral latitudes and the diurnal variation of solar declination in dipole coordinates) and longitude-dependent differences in ionospheric geometry. A mapping based on the tilt-dependent model of Olson and Pfitzer (1977) and using an empirical ionospheric-potential distribution derived from Chatanika plasma-drift measurements produces a relativity uniform magnetospheric electric field in the tail region. The field at 12 earth radii (Re) is found to be between 1 and 2 kV/Re; at the dawn-dusk meridian beyond the plasmasphere it is as high as 5 kV/Re. The plasmasphere is shown to have a dusk bulge in its equipotential structure and to be almost symmetric about the dawn-dusk meridian.

  10. Mapping electrostatic potentials from the ionosphere to the magnetosphere

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Foster, J. C.; Banks, P. M.; Doupnik, J. R.

    1983-11-01

    Techniques for mapping observed ionospheric-potential distributions into the magnetosphere are discussed and illustrated using published Millstone Hill and Chatanika incoherent-scatter-radar data. It is shown that the mapping of a given field line to the equator is subject to strong diurnal and seasonal variations (attributed to the combination of internal and tail-current magnetic-field sources at auroral latitudes and the diurnal variation of solar declination in dipole coordinates) and longitude-dependent differences in ionospheric geometry. A mapping based on the tilt-dependent model of Olson and Pfitzer (1977) and using an empirical ionospheric-potential distribution derived from Chatanika plasma-drift measurements produces a relativity uniform magnetospheric electric field in the tail region. The field at 12 earth radii (Re) is found to be between 1 and 2 kV/Re; at the dawn-dusk meridian beyond the plasmasphere it is as high as 5 kV/Re. The plasmasphere is shown to have a dusk bulge in its equipotential structure and to be almost symmetric about the dawn-dusk meridian.

  11. Compliance potential mapping: a tool to assess potential contributions of walking towards physical activity guidelines

    PubMed Central

    2014-01-01

    Background Walking for transport is increasingly considered an important component for meeting physical activity guidelines. This is true for individuals of all ages, and particularly important for seniors, for whom other physical activities may not be recommended. In order to evaluate the potential contributions of walking to physical activity, in this paper the concept of Compliance Potential Mapping is introduced. The concept is illustrated using seniors as a case study. Methods Based on estimates of walking trip distance and frequency, estimates of expected total daily walking distance are obtained. These estimates are converted to weekly walking minutes, which are in turn compared to recommended physical activity guidelines for seniors. Once estimates of travel behavior are available, the approach is straightforward and based on relatively simple map algebra operations. Results Compliance Potential Mapping as a tool to assess the potential contributions of walking towards physical activity is demonstrated using data from Montreal’s 2008 travel survey. The results indicate that the central parts of Montreal Island display higher potential for compliance with physical activity guidelines, but with variations according to age, income, occupation, possession of driver’s license and vehicle, and neighborhood and accessibility parameters. Conclusions Compliance Potential Maps offer valuable information for public health and transportation planning and policy analysis. PMID:24885360

  12. Retinotopic mapping of visual event-related potentials.

    PubMed

    Capilla, Almudena; Melcón, María; Kessel, Dominique; Calderón, Rosbén; Pazo-Álvarez, Paula; Carretié, Luis

    2016-07-01

    Visual stimulation is frequently employed in electroencephalographic (EEG) research. However, despite its widespread use, no studies have thoroughly evaluated how the morphology of the visual event-related potentials (ERPs) varies according to the spatial location of stimuli. Hence, the purpose of this study was to perform a detailed retinotopic mapping of visual ERPs. We recorded EEG activity while participants were visually stimulated with 60 pattern-reversing checkerboards placed at different polar angles and eccentricities. Our results show five pattern-reversal ERP components. C1 and C2 components inverted polarity between the upper and lower hemifields. P1 and N1 showed higher amplitudes and shorter latencies to stimuli located in the contralateral lower quadrant. In contrast, P2 amplitude was enhanced and its latency was reduced by stimuli presented in the periphery of the upper hemifield. The retinotopic maps presented here could serve as a guide for selecting optimal visuo-spatial locations in future ERP studies.

  13. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  14. A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping

    PubMed Central

    Shen, Bin; Zheng, Qiuhua; Li, Xingsen; Xu, Libo

    2015-01-01

    With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers’ shopping behaviors via multi-source RFID data. PMID:25751076

  15. A framework for mining actionable navigation patterns from in-store RFID datasets via indoor mapping.

    PubMed

    Shen, Bin; Zheng, Qiuhua; Li, Xingsen; Xu, Libo

    2015-01-01

    With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers' shopping behaviors via multi-source RFID data.

  16. Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart.

    PubMed

    Danik, Stephan; Cabo, Candido; Chiello, Christine; Kang, Sacha; Wit, Andrew L; Coromilas, James

    2002-07-01

    Transgenic mice have become important experimental models in the investigation of mechanisms causing cardiac arrhythmias because of the ability to create strains with alterations in repolarizing membrane currents. It is important to relate alterations in membrane currents in cells to their phenotypic expression on the electrocardiogram (ECG). The murine ECG, however, has unusual characteristics that make interpretation of the phenotypic expression of changes in ventricular repolarization uncertain. The major deflection representing the QRS (referred to as "a") is often followed by a secondary slower deflection ("b") and sometimes a subtle third deflection ("c"). To determine whether the second or third deflections or both represent ventricular repolarization, we recorded the ventricular monophasic action potential (MAP) in open-chest mice and correlated repolarization with the ECG. There was no significant correlation by linear regression, between action potential duration to 50% or 90% repolarization (APD(50) or APD(90)), respectively, of the MAP and either the interval from onset of Q to onset of b (Qb interval) or onset of c (Qc interval). Administration of 4-aminopyridine (4-AP) significantly prolonged APD(50) and APD(90) and the Qb interval, indicating that this deflection on the ECG represents part of ventricular repolarization. After 4-AP, the c wave disappeared, also suggesting that it represents a component of ventricular repolarization. Although it appears that both the b and c waves that follow the Q wave on the ECG represent ventricular repolarization, neither correlates exactly with APD(90) of the MAP. Therefore, an accurate measurement of complete repolarization of the murine ventricle cannot be obtained from the surface ECG. PMID:12063311

  17. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  18. Use of models to map potential capture of surface water

    USGS Publications Warehouse

    Leake, Stanley A.

    2006-01-01

    The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.

  19. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  20. Pharmacological actions of statins: potential utility in COPD.

    PubMed

    Young, R P; Hopkins, R; Eaton, T E

    2009-12-01

    Chronic obstructive pulmonary disease (COPD) is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-κB mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition of cytokine production (tumour necrosis factor-α, interleukin (IL)-6 and IL-8) and neutrophil infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated) effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5) inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD. PMID:20956147

  1. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  2. Effects of troglitazone and pioglitazone on the action potentials and membrane currents of rabbit ventricular myocytes.

    PubMed

    Ikeda, S; Watanabe, T

    1998-09-18

    The effects of the antidiabetic thiazolidinediones troglitazone and pioglitazone on action potentials and membrane currents were studied in rabbit ventricular myocytes. Troglitazone (10 microM) reversibly reduced excitability of the myocytes and modified their action potential configuration. It significantly increased the stimulation threshold required to elicit action potentials and decreased action potential amplitude and the maximum upstroke velocity of the action potentials. The Inhibition of the maximum upstroke velocity by troglitazone was also significant at 1 microM. Voltage-clamp experiments revealed that troglitazone (10 microM) reversibly inhibited both the slow inward Ca2+ current and the steady-state K+ current. In contrast to troglitazone, pioglitazone (1-10 microM) had no significant effect on the excitability, action potential configuration, or membrane currents of myocytes. These results suggest that troglitazone, but not pioglitazone, modulates Na+, Ca2+ and K+ currents, leading to the changes in excitability and action potential configuration of ventricular myocytes. PMID:9797043

  3. Fast-dynamo action in unsteady flows and maps in three dimensions

    NASA Technical Reports Server (NTRS)

    Bayly, B. J.; Childress, S.

    1987-01-01

    Unsteady fast-dynamo action is obtained in a family of stretch-fold-shear maps applied to a spatially periodic magnetic field in three dimensions. Exponential growth of a mean field in the limit of vanishing diffusivity is demonstrated by a numerical method which alternates instantaneous deformations with molecular diffusion over a finite time interval. Analysis indicates that the dynamo is a coherent feature of the large scales, essentially independent of the cascade of structure to small scales.

  4. Mathematical model of the neonatal mouse ventricular action potential

    PubMed Central

    Wang, Linda J.; Sobie, Eric A.

    2008-01-01

    Therapies for heart disease are based largely on our understanding of the adult myocardium. The dramatic differences in action potential (AP) shape between neonatal and adult cardiac myocytes, however, indicate that a different set of molecular interactions in neonatal myocytes necessitates different treatment for newborns. Computational modeling is useful for synthesizing data to determine how interactions between components lead to systems-level behavior, but this technique has not been used extensively to study neonatal heart cell function. We created a mathematical model of the neonatal (day 1) mouse myocyte by modifying, based on experimental data, the densities and/or formulations of ion transport mechanisms in an adult cell model. The new model reproduces the characteristic AP shape of neonatal cells, with a brief plateau phase and longer duration than the adult (APD80=60.1 vs. 12.6 ms). The simulation results are consistent with experimental data, including: 1) decreased density, and altered inactivation, of transient outward K+ currents, 2) increased delayed rectifier K+ currents, 3) Ca2+ entry through T-type as well as L-type Ca2+ channels, 4) increased Ca2+ influx through Na+-Ca2+ exchange, and 5) Ca2+ transients resulting from transmembrane Ca2+ entry rather than release from the sarcoplasmic reticulum (SR). Simulations performed with the model generated novel predictions, including increased SR Ca2+ leak and elevated intracellular [Na+] in neonatal compared with adult myocytes. This new model can therefore be used for testing hypotheses and obtaining a better quantitative understanding of differences between neonatal and adult physiology. PMID:18408122

  5. Developing index maps of water-harvest potential in Africa

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  6. 2D Potential theory using complex functions and conformal mapping

    NASA Astrophysics Data System (ADS)

    Le Maire, Pauline; Munschy, Marc

    2016-04-01

    For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.

  7. Mapping tobacco industry strategies in South East Asia for action planning and surveillance

    PubMed Central

    Stillman, F; Hoang, M; Linton, R; Ritthiphakdee, B; Trochim, W

    2008-01-01

    Objective: To develop a comprehensive conceptual framework of tobacco industry tactics in four countries in South East Asia for the purpose of: (1) generating consensus on key areas of importance and feasibility for regional and cross country tobacco industry monitoring and surveillance; (2) developing measures to track and monitor the effects of the tobacco industry and to design counterstrategies; and (3) building capacity to improve tobacco control planning in the participating countries. Design: A structured conceptualisation methodology known as concept mapping was used. The process included brainstorming, sorting and rating of statements describing industry activities. Statistical analyses used multidimensional scaling and cluster analysis. Interpretation of the maps was participatory, using regional tobacco control researchers, practitioners, and policy makers during a face to face meeting. Participants: 31 participants in this study come from the four countries represented in the project along with six people from the Johns Hopkins Blomberg School of Public Health. Conclusions: The map shows eight clusters of industry activities within the four countries. These were arranged into four general sectors: economics, politics, public relations and deception. For project design purposes, the map indicates areas of importance and feasibility for monitoring tobacco industry activities and serves as a basis for an initial discussion about action planning. Furthermore, the development of the map used a consensus building process across different stakeholders or stakeholder agencies and is critical when developing regional, cross border strategies for tracking and surveillance. PMID:18218787

  8. Ontogeny of vestibular compound action potentials in the domestic chicken

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  9. Mapping potential groundwater-dependent ecosystems for sustainable management.

    PubMed

    Gou, Si; Gonzales, Susana; Miller, Gretchen R

    2015-01-01

    Ecosystems which rely on either the surface expression or subsurface presence of groundwater are known as groundwater-dependent ecosystems (GDEs). A comprehensive inventory of GDE locations at an appropriate management scale is a necessary first-step for sustainable management of supporting aquifers; however, this information is unavailable for most areas of concern. To address this gap, this study created a two-step algorithm which analyzed existing geospatial and remote sensing data to identify potential GDEs at both state/province and aquifer/basin scales. At the state/province scale, a geospatial information system (GIS) database was constructed for Texas, including climate, topography, hydrology, and ecology data. From these data, a GDE index was calculated, which combined vegetative and hydrological indicators. The results indicated that central Texas, particularly the Edwards Aquifer region, had highest potential to host GDEs. Next, an aquifer/basin scale remote sensing-based algorithm was created to provide more detailed maps of GDEs in the Edwards Aquifer region. This algorithm used Landsat ETM+ and MODIS images to track the changes of NDVI for each vegetation pixel. The NDVI dynamics were used to identify the vegetation with high potential to use groundwater--such plants remain high NDVI during extended dry periods and also exhibit low seasonal and inter-annual NDVI changes between dry and wet seasons/years. The results indicated that 8% of natural vegetation was very likely using groundwater. Of the potential GDEs identified, 75% were located on shallow soil averaging 45 cm in depth. The dominant GDE species were live oak, ashe juniper, and mesquite. PMID:24571583

  10. Mapping potential groundwater-dependent ecosystems for sustainable management.

    PubMed

    Gou, Si; Gonzales, Susana; Miller, Gretchen R

    2015-01-01

    Ecosystems which rely on either the surface expression or subsurface presence of groundwater are known as groundwater-dependent ecosystems (GDEs). A comprehensive inventory of GDE locations at an appropriate management scale is a necessary first-step for sustainable management of supporting aquifers; however, this information is unavailable for most areas of concern. To address this gap, this study created a two-step algorithm which analyzed existing geospatial and remote sensing data to identify potential GDEs at both state/province and aquifer/basin scales. At the state/province scale, a geospatial information system (GIS) database was constructed for Texas, including climate, topography, hydrology, and ecology data. From these data, a GDE index was calculated, which combined vegetative and hydrological indicators. The results indicated that central Texas, particularly the Edwards Aquifer region, had highest potential to host GDEs. Next, an aquifer/basin scale remote sensing-based algorithm was created to provide more detailed maps of GDEs in the Edwards Aquifer region. This algorithm used Landsat ETM+ and MODIS images to track the changes of NDVI for each vegetation pixel. The NDVI dynamics were used to identify the vegetation with high potential to use groundwater--such plants remain high NDVI during extended dry periods and also exhibit low seasonal and inter-annual NDVI changes between dry and wet seasons/years. The results indicated that 8% of natural vegetation was very likely using groundwater. Of the potential GDEs identified, 75% were located on shallow soil averaging 45 cm in depth. The dominant GDE species were live oak, ashe juniper, and mesquite.

  11. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  12. Mapping optimal areas of ecosystem services potential in Vilnius (Lithuania)

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva; Cerda, Artemi

    2016-04-01

    Maps are fundamental to understand the spatial pattern of natural and human impacts on the landscape (Brevik et al., 2016; Lavado Contador et al., 2009; Pereira et al., 2010a,b). Urban areas are subjected to an intense human pressure (Beniston et al., 2015), contributing to the degradation of the ecosystems, reducing their capacity to provide services in quality and quantity (Requier-Desjardins et al., 2011; Zhang et al., 2011). Environments that can provide a high number and quality of ecosystem services (ES) must be identified and managed correctly, since are spaces that can mitigate the impacts of human settlements and improve their quality. thus is of major importance have identify the areas that can provide better ES (Deppelegrin and Pereira, 2015). The aim of this work is to identify areas with high ES potential in Vilnius city. Here, we identified a total of 4 different land uses, agricultural areas (32.48%), water bodies (1.46%), forest and semi-natural (31.91%) areas and artificial surfaces (34.16%). CORINE land cover 2006 was used as base information to classify ES potential. The assessment of each land cover potential was carried out using expert assessment. Each land use type was ranked from 0 (no potential) to 5 (High potential). In this work the sum of total regulating, providing and cultural ES were assessed. The areas with optimal ES were the ones with the sum of all ranks equal or higher than the 3rd Quartil of each distribution. After identifying these areas, data was mapped using ArcGIS software. The results showed that on average Vilnius city has a higher potential for regulating services (20.35±15.92), followed by cultural (14.43±8.81) and providing (14.26±8.87). There was a significant correlation among the different type of services. Regulating vs cultural (0.92, p<0.001), regulating vs providing (0.72, p<0.001) and providing vs cultural (0.65, p<0.001). The results of Morans I autocorrelation index showed that regulating (Z-score: 10

  13. Mapping optimal areas of ecosystem services potential in Vilnius (Lithuania)

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva; Cerda, Artemi

    2016-04-01

    Maps are fundamental to understand the spatial pattern of natural and human impacts on the landscape (Brevik et al., 2016; Lavado Contador et al., 2009; Pereira et al., 2010a,b). Urban areas are subjected to an intense human pressure (Beniston et al., 2015), contributing to the degradation of the ecosystems, reducing their capacity to provide services in quality and quantity (Requier-Desjardins et al., 2011; Zhang et al., 2011). Environments that can provide a high number and quality of ecosystem services (ES) must be identified and managed correctly, since are spaces that can mitigate the impacts of human settlements and improve their quality. thus is of major importance have identify the areas that can provide better ES (Deppelegrin and Pereira, 2015). The aim of this work is to identify areas with high ES potential in Vilnius city. Here, we identified a total of 4 different land uses, agricultural areas (32.48%), water bodies (1.46%), forest and semi-natural (31.91%) areas and artificial surfaces (34.16%). CORINE land cover 2006 was used as base information to classify ES potential. The assessment of each land cover potential was carried out using expert assessment. Each land use type was ranked from 0 (no potential) to 5 (High potential). In this work the sum of total regulating, providing and cultural ES were assessed. The areas with optimal ES were the ones with the sum of all ranks equal or higher than the 3rd Quartil of each distribution. After identifying these areas, data was mapped using ArcGIS software. The results showed that on average Vilnius city has a higher potential for regulating services (20.35±15.92), followed by cultural (14.43±8.81) and providing (14.26±8.87). There was a significant correlation among the different type of services. Regulating vs cultural (0.92, p<0.001), regulating vs providing (0.72, p<0.001) and providing vs cultural (0.65, p<0.001). The results of Morans I autocorrelation index showed that regulating (Z-score: 10

  14. Effect of a prenylamine analog (MG8926) on spontaneous action potentials in isolated rabbit sinoatrial node.

    PubMed

    Nakanishi, H; Matsuoka, I; Ono, T; Yoshida, H; Uchibori, T; Kogi, K

    1996-12-01

    Effects of verapamil, prenylamine and a prenylamine analog, MG8926 on the intracellular spontaneous action potentials recorded from the isolated rabbit sinoatrial (SA) node were studied. Verapamil (1 microM), a selective inhibitor for slow Ca2+ channels, prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential, the amplitude of action potential and the maximal diastolic potential, and usually arrested showing subthreshold fluctuation of the membrane potential within several ten min. Prenylamine (10 microM), a nonselective inhibitor for slow Ca2+ channels, tended to prolong the cycle length to decrease the diastolic depolarization, the rate of rise of action potential, the amplitude of action potential. However, these changes were statistically insignificant. Prenylamine at the concentration of 10 microM had no effect on the maximal diastolic potential. MG8926 (10 microM) prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential and tended to decrease the amplitude of action potential. MG8926 at the concentration of 10 microM had almost no effect on the maximal diastolic potential. The present findings may indicate that replacement of phenyl residue of prenylamine by cyclohexyl residue increases the inhibitory action on the slow Ca2+ channels in rabbit SA node.

  15. Mechanisms of action and potential therapeutic uses of thalidomide.

    PubMed

    Mujagić, Hamza; Chabner, Bruce A; Mujagić, Zlata

    2002-06-01

    Thalidomide was first introduced to the market in Germany under the brand name of Contergan in 1956, as a non-barbiturate hypnotic, advocated to ensure a good nights sleep and to prevent morning sickness in pregnancy. It was advertised for its prompt action, lack of hangover, and apparent safety. It has been banned from the market since 1963 after it caused the worldwide teratogenic disaster: babies exposed to thalidomide in utero during the first 34-50 days of pregnancy were born with severe life-threatening birth defects. Despite its unfortunate history, thalidomide has attracted scientific interest again because of its recently discovered action against inflammatory diseases and cancer. Its broad range of biological activities stems from its ability to moderate cytokine action in cancer and inflammatory diseases. Early studies examined its anxiolytic, mild hypnotic, antiemetic, and adjuvant analgesic properties. Subsequently, thalidomide was found to be highly effective in managing the cutaneous manifestations of leprosy, being superior to Aspirin in controlling leprosy-associated fever. Recent research has shown promising results with thalidomide in patients with myeloma, myelodysplastic syndrome, a variety of infectious diseases, autoimmune diseases, cancer, and progressive body weight loss related to advanced cancer and AIDS. Here we review the history of its development, pharmacokinetics, metabolism, biologic effects, and the results of clinical trials conducted thus far. Further research in this field should be directed towards better understanding of thalidomide metabolism, its mechanism of action, and the development of less toxic and more active analogs. PMID:12035132

  16. Mechanisms of action and potential therapeutic uses of thalidomide.

    PubMed

    Mujagić, Hamza; Chabner, Bruce A; Mujagić, Zlata

    2002-06-01

    Thalidomide was first introduced to the market in Germany under the brand name of Contergan in 1956, as a non-barbiturate hypnotic, advocated to ensure a good nights sleep and to prevent morning sickness in pregnancy. It was advertised for its prompt action, lack of hangover, and apparent safety. It has been banned from the market since 1963 after it caused the worldwide teratogenic disaster: babies exposed to thalidomide in utero during the first 34-50 days of pregnancy were born with severe life-threatening birth defects. Despite its unfortunate history, thalidomide has attracted scientific interest again because of its recently discovered action against inflammatory diseases and cancer. Its broad range of biological activities stems from its ability to moderate cytokine action in cancer and inflammatory diseases. Early studies examined its anxiolytic, mild hypnotic, antiemetic, and adjuvant analgesic properties. Subsequently, thalidomide was found to be highly effective in managing the cutaneous manifestations of leprosy, being superior to Aspirin in controlling leprosy-associated fever. Recent research has shown promising results with thalidomide in patients with myeloma, myelodysplastic syndrome, a variety of infectious diseases, autoimmune diseases, cancer, and progressive body weight loss related to advanced cancer and AIDS. Here we review the history of its development, pharmacokinetics, metabolism, biologic effects, and the results of clinical trials conducted thus far. Further research in this field should be directed towards better understanding of thalidomide metabolism, its mechanism of action, and the development of less toxic and more active analogs.

  17. Gifted Potential and Poverty: A Call for Extraordinary Action

    ERIC Educational Resources Information Center

    Kitano, Margie K.

    2003-01-01

    Dr. Robinson's proposed action plan will serve the needs of highly achieving gifted students. However, defining giftedness as high academic performance based on traditional assessment procedures could reverse the field's fledgling success in supporting culturally diverse gifted children and youth. Changing the focus of equity in gifted education…

  18. Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.

    PubMed

    Kistamás, Kornél; Hegyi, Bence; Váczi, Krisztina; Horváth, Balázs; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    Profound changes in tissue redox potential occur in the heart under conditions of oxidative stress frequently associated with cardiac arrhythmias. Since beat-to-beat variability (short term variability, SV) of action potential duration (APD) is a good indicator of arrhythmia incidence, the aim of this work was to study the influence of redox changes on SV in isolated canine ventricular cardiomyocytes using a conventional microelectrode technique. The redox potential was shifted toward a reduced state using a reductive cocktail (containing dithiothreitol, glutathione, and ascorbic acid) while oxidative changes were initiated by superfusion with H2O2. Redox effects were evaluated as changes in "relative SV" determined by comparing SV changes with the concomitant APD changes. Exposure of myocytes to the reductive cocktail decreased SV significantly without any detectable effect on APD. Application of H2O2 increased both SV and APD, but the enhancement of SV was the greater, so relative SV increased. Longer exposure to H2O2 resulted in the development of early afterdepolarizations accompanied by tremendously increased SV. Pretreatment with the reductive cocktail prevented both elevation in relative SV and the development of afterdepolarizations. The results suggest that the increased beat-to-beat variability during an oxidative stress contributes to the generation of cardiac arrhythmias.

  19. Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing

    PubMed Central

    Yaniv, Yael; Tsutsui, Kenta; Lakatta, Edward G.

    2015-01-01

    The heart's regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart. PMID:25755643

  20. Ionic differences between somatic and axonal action potentials in snail giant neurones

    PubMed Central

    Wald, Flora

    1972-01-01

    1. The ionic requirements of the somatic and axonal action potentials of `H' neurones of the snail Cryptomphallus aspersa were studied using intracellular micro-electrodes. 2. The overshoot of the somatic action potential increased by 10 mV for a tenfold increase in [Ca2+]o. In calcium-free media the action potential decreased gradually to values of 50 to 90% of the control and they could be completely eliminated with 2 mM-EGTA. The maximum rate of rise also varied with [Ca2+]o. 3. After 2 hr in sodium-free solution the somatic action potential decreased 6% in overshoot and 24% in rate of rise. 4. The somatic action potential was not affected by TTX, 5 × 10-6 g/ml. Procaine, 18 mM, reduced its rate of rise but did not eliminate it whereas 30 mM-CoCl2 did. 5. The size of the axonal action potential increased with increased [Na+]o, but decreased with an increase in [Ca2+]o. 6. Procaine, 18 mM, abolished the axonal action potential whereas it was not affected by TTX, 5 × 10-6 g/ml., nor, usually, by 30 mM-CoCl2. 7. The results obtained by studying the compound action potential of the nerves were similar to those from axonal action potentials. 8. The possibility that the somatic action potential is mainly calcium dependent while the axonal action potential is mainly produced by sodium is discussed. PMID:5014099

  1. Impedance and electrically evoked compound action potential (ECAP) drop within 24 hours after cochlear implantation.

    PubMed

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  2. Impedance and Electrically Evoked Compound Action Potential (ECAP) Drop within 24 Hours after Cochlear Implantation

    PubMed Central

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  3. Navigating knowledge to action: a conceptual map for facilitating translation of population health risk planning tools into practice.

    PubMed

    Peirson, Leslea; Rosella, Laura

    2015-01-01

    A population health risk tool was created that estimates future diabetes risk and provides outputs that can inform practical and meaningful diabetes prevention strategies and support local decision making and planning. A project was designed to inform and understand knowledge translation and application of this novel tool in multiple health-related settings. Lacking published studies in this area, the authors conceived a conceptual map to guide the project that integrates and adapts elements from several planned action theories. This paper describes the rationale and basis for constructing the Population Health Planning Knowledge-to-Action Model and elaborates on the 2 connected structures of the framework: the Tool Creation Path and the Action Cycle. Although created for an express purpose, this model has the potential to inform application of other tools. This work demonstrates how a research team can adapt and integrate existing frameworks to better align with novel real-world knowledge translation issues. Furthermore, the integration of a population risk tool to support health decision making highlights the interaction between continuing education and knowledge translation. PMID:26115114

  4. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  5. Mapping the geogenic radon potential of the eastern Canary Islands.

    NASA Astrophysics Data System (ADS)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    using a calibrated nomogram. As results, maps of radon in soils have been developed for the three islands to identify areas where may appear high activity concentrations of radon due to natural sources. Finally to determine the radon potential of soils analyzed we applied a procedure to classify the radon areas in several levels of risk using the measured values of radon activity concentration and soil permeability. Acknowledgments: This work was financed by the Nuclear Safety Council (CSN) through a grant in its R&D program 2009 and by the European Development Fund (ERDF) through a research project program 2007 granted by Canary Agency for Research, Innovation and Information Society (ACIISI) of the Canary Islands.

  6. Mapping Resources Potential of the Lunar Surface for Human Exploration

    NASA Astrophysics Data System (ADS)

    Garvin, James

    2005-07-01

    We propose to use the ACS/HRC to delineate UV through visible color units at three test sites on the lunar surface for the purpose of identifying localized areas enriched in potential resources, including TiO2. This pathfinding experiment will make use of HST's unique high resolution imaging capabilities in the near UV. We will observe the Apollo 15 and 17 sites to establish an empirical calibration against sampled lunar soils. We will then observe the Aristarchus Plateau in search of regions enriched in TiO2 at levels that could permit in situ resources utilization activities that support sustained human exploration. Precision mapping of TiO2 abundance and other chemical proxies by virtue of HST's high angular resolution in near UV wavelengths will extend lower resolution Visible-NIR results obtained from orbit by Clementine, and set the stage for future orbital surveys later in the decade. Understanding whether there are lunar near-side sites with adequate resource potential to target human "sorties" and related robotic precursor missions represents an important decision point in NASA's implementation of the President's Vision for Space Exploration. The proposed HST ACS/HRC test data directly support near-term engineering trades associated with the optimal location for the first human return missions to the Moon. No past, current, or planned future lunar orbiting spacecraft will have the ability to investigate the near UV aspects of the lunar spectrum at such scales { 50m}, so the results of the proposed HST observations are unique and relevant to NASA's mission.

  7. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity.

  8. Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.

    PubMed

    Villacorta-Atienza, Jose A; Calvo, Carlos; Makarov, Valeri A

    2015-06-01

    The ultimate navigation efficiency of mobile robots in human environments will depend on how we will appraise them: merely as impersonal machines or as human-like agents. In the latter case, an agent may take advantage of the cooperative collision avoidance, given that it possesses recursive cognition, i.e., the agent's decisions depend on the decisions made by humans that in turn depend on the agent's decisions. To deal with this high-level cognitive skill, we propose a neural network architecture implementing Prediction-for-CompAction paradigm. The network predicts possible human-agent collisions and compacts the time dimension by projecting a given dynamic situation into a static map. Thereby emerging compact cognitive map can be readily used as a "dynamic GPS" for planning actions or mental evaluation of the convenience of cooperation in a given context. We provide numerical evidence that cooperation yields additional room for more efficient navigation in cluttered pedestrian flows, and the agent can choose path to the target significantly shorter than a robot treated by humans as a functional machine. Moreover, the navigation safety, i.e., the chances to avoid accidental collisions, increases under cooperation. Remarkably, these benefits yield no additional load to the mean society effort. Thus, the proposed strategy is socially compliant, and the humanoid agent can behave as "one of us." PMID:25677525

  9. Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.

    PubMed

    Villacorta-Atienza, Jose A; Calvo, Carlos; Makarov, Valeri A

    2015-06-01

    The ultimate navigation efficiency of mobile robots in human environments will depend on how we will appraise them: merely as impersonal machines or as human-like agents. In the latter case, an agent may take advantage of the cooperative collision avoidance, given that it possesses recursive cognition, i.e., the agent's decisions depend on the decisions made by humans that in turn depend on the agent's decisions. To deal with this high-level cognitive skill, we propose a neural network architecture implementing Prediction-for-CompAction paradigm. The network predicts possible human-agent collisions and compacts the time dimension by projecting a given dynamic situation into a static map. Thereby emerging compact cognitive map can be readily used as a "dynamic GPS" for planning actions or mental evaluation of the convenience of cooperation in a given context. We provide numerical evidence that cooperation yields additional room for more efficient navigation in cluttered pedestrian flows, and the agent can choose path to the target significantly shorter than a robot treated by humans as a functional machine. Moreover, the navigation safety, i.e., the chances to avoid accidental collisions, increases under cooperation. Remarkably, these benefits yield no additional load to the mean society effort. Thus, the proposed strategy is socially compliant, and the humanoid agent can behave as "one of us."

  10. Epidermal laser stimulation of action potentials in the frog sciatic nerve

    NASA Astrophysics Data System (ADS)

    Jindra, Nichole M.; Goddard, Douglas; Imholte, Michelle; Thomas, Robert J.

    2010-01-01

    Measurements of laser-stimulated action potentials in the sciatic nerve of leopard frogs (Rana pipiens) are made using two infrared lasers. The dorsal sides of the frog's hind limbs are exposed to short-pulsed 1540- and 1064-nm wavelengths at three separate spot sizes: 2, 3, and 4 mm. Energy density thresholds are determined for eliciting an action potential at each experimental condition. Results from these exposures show similar evoked potential thresholds for both wavelengths. The 2-mm-diam spot sizes yield action potentials at radiant exposure levels almost double that seen with larger beam sizes.

  11. Perception-action map learning in controlled multiscroll systems applied to robot navigation.

    PubMed

    Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca

    2008-12-01

    In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported. PMID:19123629

  12. Perception-action map learning in controlled multiscroll systems applied to robot navigation

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca

    2008-12-01

    In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported.

  13. Perception-action map learning in controlled multiscroll systems applied to robot navigation.

    PubMed

    Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca

    2008-12-01

    In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported.

  14. Searching for closely related ligands with different mechanisms of action using machine learning and mapping algorithms.

    PubMed

    Balfer, Jenny; Vogt, Martin; Bajorath, Jürgen

    2013-09-23

    Supervised machine learning approaches, including support vector machines, random forests, Bayesian classifiers, nearest-neighbor similarity searching, and a conceptually distinct mapping algorithm termed DynaMAD, have been investigated for their ability to detect structurally related ligands of a given receptor with different mechanisms of action. For this purpose, a large number of simulated virtual screening trials were carried out with models trained on mechanistic subsets of different classes of receptor ligands. The results revealed that ligands with the desired mechanism of action were frequently contained in database selection sets of limited size. All machine learning approaches successfully detected mechanistic subsets of ligands in a large background database of druglike compounds. However, the early enrichment characteristics considerably differed. Overall, random forests of relatively simple design and support vector machines with Gaussian kernels (Gaussian SVMs) displayed the highest search performance. In addition, DynaMAD was found to yield very small selection sets comprising only ~10 compounds that also contained ligands with the desired mechanism of action. Random forest, Gaussian SVM, and DynaMAD calculations revealed an enrichment of compounds with the desired mechanism over other mechanistic subsets. PMID:23952618

  15. The potential of Landsat-3 RBV images for thematic mapping. [geomorphological, geological and land cover applications

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1980-01-01

    The potential of Return Beam Vidicon (RBV) imagery from Landsat-3 is discussed for thematic mapping. The advantages of the imagery arising from its high spatial resolution are described as well as the restrictions stemming from its limited spectral characteristics. The principal application areas discussed are geomorphological and geological mapping and land cover mapping.

  16. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Cheng, Qiuming; Xia, Qinglin; Wang, Xinqing

    2015-06-01

    In this study, the evidential belief functions (EBFs) were applied for mapping tungsten polymetallic potential in the Nanling belt, South China. Seven evidential layers (e.g., geological, geochemical, and geophysical) related to tungsten polymetallic deposits were extracted from a multi-source geospatial database. The relationships between evidential layers and the target deposits were quantified using EBFs model. Four EBF maps (belief map, disbelief map, uncertainty map, and plausibility map) are generated by integrating seven evidential layers which provide meaningful interpretations for tungsten polymetallic potential. On the final predictive map, the study area was divided into three target zones of high potential, moderate potential, and low potential areas, among which high potential and moderate potential areas accounted for 17.8% of the total area, containing 81% of the total deposits. To evaluate the success rate accuracy, the receiver operating characteristic (ROC) curves and the area under the curves (AUC) for the belief map were calculated. The area under the curve is 0.81 which indicates that the capability for correctly classifying the areas with existing mineral deposits is satisfactory. The results of this study indicate that the EBFs were effectively used for mapping mineral potential and for managing uncertainties associated with evidential layers.

  17. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  18. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    PubMed Central

    Crago, Patrick E; Makowski, Nathan S

    2014-01-01

    Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  19. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    PubMed

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed.

  20. Potential synergy of phytochemicals in cancer prevention: mechanism of action.

    PubMed

    Liu, Rui Hai

    2004-12-01

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer and cardiovascular disease. It is now widely believed that the actions of the antioxidant nutrients alone do not explain the observed health benefits of diets rich in fruits and vegetables, because taken alone, the individual antioxidants studied in clinical trials do not appear to have consistent preventive effects. Work performed by our group and others has shown that fruits and vegetable phytochemical extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. We proposed that the additive and synergistic effects of phytochemicals in fruits and vegetables are responsible for these potent antioxidant and anticancer activities and that the benefit of a diet rich in fruits and vegetables is attributed to the complex mixture of phytochemicals present in whole foods. This explains why no single antioxidant can replace the combination of natural phytochemicals in fruits and vegetables to achieve the health benefits. The evidence suggests that antioxidants or bioactive compounds are best acquired through whole-food consumption, not from expensive dietary supplements. We believe that a recommendation that consumers eat 5 to 10 servings of a wide variety of fruits and vegetables daily is an appropriate strategy for significantly reducing the risk of chronic diseases and to meet their nutrient requirements for optimum health.

  1. Potential Marine Benthic Habitat Map of Elkhorn Slough, California

    NASA Astrophysics Data System (ADS)

    Walton, K.; Garcia-Garcia, A.; Endris, C.

    2015-12-01

    While marine benthic habitat maps have been created for a big portion of California's coastline, the Elkhorn Slough Reserve lacks one. We have tentatively mapped its types of seafloor using a well-known classification system, which includes various types of large-scale and small-scale features, bottom induration, vegetation, surface texture, and slope. Seismic lines and sediment cores were collected to create the map. CSUMB's Seafloor Mapping Lab as well as the Elkhorn Slough National Estuarine Research Reserve provided bathymetry, raster files, and shapefiles to be incorporated into the project. We divided the Slough into three main sections: the Lower, Central, and Upper Slough. Sand sediments were found in the Lower Slough, which is a high-energy environment, whilst mud or silt sediments dominated the rest of the Slough. Five classification categories were used to describe the Slough's seafloor: flat sand sediments, sloped sand sediments, flat mud sediments, sloped mud sediments, and eelgrass on sandy sediment. Bathymetry data was used to discuss the Slough's sediment erosion and accretion. This preliminary map can be used to understand the location of various marine habitats, which is important for the wildlife conservation and planning efforts in the Slough. Acknowledgments: CSUMB (chirp), Ron Eby (ESNEER), Geoff (Triton Imaging Inc.). The Non-Senate Faculty Professional Development Award 19900-433332-ESGARC and ONR grant N00014-14-1-0172 supported this research.

  2. Coastal Hazards Maps: Actionable Information for Communities Facing Sea-Level Rise (Invited)

    NASA Astrophysics Data System (ADS)

    Gibeaut, J. C.; Barraza, E.

    2010-12-01

    Barrier islands along the U.S. Gulf coast remain under increasing pressure from development. This development and redevelopment is occurring despite recent hurricanes, ongoing erosion, and sea-level rise. To lessen the impacts of these hazards, local governments need information in a form that is useful for informing the public, making policy, and enforcing development rules. We recently completed the Galveston Island Geohazards Map for the city of Galveston, Texas and are currently developing maps for the Mustang and South Padre Island communities. The maps show areas that vary in their susceptibility to, and function for, mitigating the effects of geological processes, including sea-level rise, land subsidence, erosion and storm-surge flooding and washover. The current wetlands, beaches and dunes are mapped as having the highest geohazard potential both in terms of their exposure to hazardous conditions and their mitigating effects of those hazards for the rest of the island. These existing “critical environments” are generally protected under existing regulations. Importantly, however, the mapping recognizes that sea-level rise and shoreline retreat are changing the island; therefore, 60-year model projections of the effects of these changes are incorporated into the map. The areas that we project will become wetlands, beaches and dunes in the next 60 years are not protected. These areas are the most difficult to deal with from a policy point of view, yet we must address what happens there if real progress is to be made in how we live with sea-level rise. The geohazards maps draw on decades of geological knowledge of how barrier islands behave and put it in a form that is intuitive to the public and directly useful to planners. Some of the “messages” in the map include: leave salt marshes alone and give them room to migrate inland as sea level rises; set back and move development away from the shoreline to provide space for beaches and protective dunes

  3. Developmental changes in the inward current of the action potential of Rohon-Beard neurones

    PubMed Central

    Baccaglini, Paola I.; Spitzer, Nicholas C.

    1977-01-01

    1. Rohon-Beard cells in the spinal cord of Xenopus tadpoles have been studied in animals from early neural tube to free-swimming larval stages. The onset and further development of electrical excitability of these neurones has been investigated in different ionic environments, to determine the ionic species carrying the inward current of the action potential. 2. The cells appear inexcitable at early stages (Nieuwkoop & Faber stages 18-20) and do not give action potentials to depolarizing current pulses. 3. The action potential is first recorded at stage 20. (A) The inward current is carried by Ca2+ at stages 20-25, since it is blocked by mm quantitites of La3+, Co2+ or Mn2+ and is unaffected by removal of Na+ or the addition of tetrodotoxin (TTX). (B) The action potential is an elevated plateau of long duration (mean 190 msec at stages 20-22). The duration decreases exponentially with repetitive stimulation. (C) The specific Ca2+ conductance (gCa) at the onset of the plateau of the action potential is 2·6 × 10-4 mho/cm2. Calculations show that a single action potential raises [Ca2+]1 by more than 100-fold. 4. At later times (stages 25-40), the inward current of the action potential is carried by both Na+ and Ca2+: the action potential has two components, an initial spike which is blocked by removal of Na+ or addition of TTX, followed by a plateau which is blocked by La3+, Co2+ or Mn2+. 5. Finally (stages 40-51), the inward current is primarily carried by Na+, since the action potential is blocked only by removal of Na+ or addition of TTX, and the overshoot agrees with the prediction of the Nernst equation for a Na-selective membrane. When the outward current channel is blocked and cells exposed to Na-free solutions, 67% of cells at the latest stages studied were incapable of producing action potentials in which the inward current is carried by divalent cations. 6. The duration of the action potential decreases from a maximum of about 1000 msec to about 1 msec

  4. Is action potential duration of the intact dog heart related to contractility or stimulus rate?

    PubMed

    Drake, A J; Noble, M I; Schouten, V; Seed, A; Ter Keurs, H E; Wohlfart, B

    1982-10-01

    1. The contractility (maximum rate of rise of left ventricular pressure) and action potential duration were measured in intact closed-chest anaesthetized dogs with complete atrioventricular dissociation and beta-adrenergic blockade.2. Measurements were confined to test beats following a 1 sec interval. Prior to the test interval (priming period) a variety of potentiating stimulus trains were introduced.3. When the frequency of stimulation was increased in the priming period (frequency potentiation), there was an inverse relationship between action potential duration and contractility of the test beat.4. When the test beat was potentiated by a single beat terminating the priming period with one short interval (post-extrasystolic potentiation), there was no relationship between the action potential duration and contractility of the test beat.5. Paired pulse stimulation was used for any given frequency to vary contractility by short interval potentiation. For any given frequency of stimulation there was no relationship between action potential duration and contractility of the test beat. For any given value of contractility, action potential duration decreased with increased frequency of stimulation.6. The introduction of a high frequency train caused a step decrease in action potential duration on the first beat of the train. This was followed by a further slow decline in action potential duration with a time course of over 3 min. These two changes could be dissociated by the introduction during the train of one second interval test pulses, which only showed the slow shortening.7. The lack of a consistent relationship between action potential duration and contractility of the test beat disagrees with the hypothesis that repolarization is controlled by the activator calcium responsible for the contractility. The action potential shortening associated with increased frequency is related to the frequency change per se.8. The slow time course of change in action

  5. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  6. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  7. Renewable energy: GIS-based mapping and modelling of potentials and demand

    NASA Astrophysics Data System (ADS)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  8. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. PMID:21728204

  9. Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential

    PubMed Central

    1990-01-01

    The properties of the autonomically regulated chloride current (ICl) were studied in isolated guinea pig ventricular myocytes. This current was elicited upon exposure to isoproterenol (ISO) and reversed upon concurrent exposure to acetylcholine (ACh). ICl was time independent and exhibited outward rectification. The responses to ISO and ACh could be blocked by propranolol and atropine, respectively, and ICl was also elicited by forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, and 3-isobutyl-l-methylxanthine, indicating that the current is regulated through a cAMP-dependent pathway. The reversal potential of the ISO- induced current followed the predicted chloride equilibrium potential, consistent with it being carried predominantly by Cl-. Activation of ICl produced changes in the resting membrane potential and action potential duration, which were Cl- gradient dependent. These results indicate that under physiological conditions ICl may play an important role in regulating action potential duration and resting membrane potential in mammalian cardiac myocytes. PMID:2165130

  10. Detection and classification of raw action potential patterns in human Muscle Sympathetic Nerve Activity.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Shoemaker, J K

    2008-01-01

    The Muscle Sympathetic Nerve Activity (MSNA) consists of synchronous neural discharges separated by periods of neural silence dominated by heavy background noise. During measurement with electrodes, the raw MSNA signal is amplified, band-pass filtered, rectified and integrated. This integration process removes much neurophysiological information. In this paper a method for detecting a raw action potential (before the pre-amplifier) and filtered action potential (after the band-pass filter) is presented. This method is based on stationary wavelet transform (SWT) and a peak detection algorithm. Also, the detected action potentials were clustered using the k-means method and the cluster averages were calculated. The action potential detector and classification algorithm are evaluated using real MSNA recorded from three healthy subjects.

  11. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  12. Distinct electrophysiological potentials for intention in action and prior intention for action.

    PubMed

    Vinding, Mikkel C; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP)--an electrophysiological signal that appears before voluntary movements. Experiments, however, tend to study intentions in immediate relation to movements (proximal intentions), thus ignoring other aspects of intentions such as planning or deciding in advance of movement (distal intentions). The current study examines the difference in electrophysiological activity between proximal intention and distal intention, using electroencephalography (EEG). Participants had to form an intention to move and then wait 2.5 sec before performing the actual movement. In this way, the electrophysiological activity related to forming a conscious intention was separated from any confounding activity related to automated motor activity. This was compared to conditions in which participants had to act as soon as they had the intention and a condition where participants acted upon an external cue 2.5 sec prior to movement. We examined the RP for the three conditions. No difference was found in early RP, but late RP differed significantly depending on the type of intention. In addition, we analysed signals during a longer time-interval starting before the time of distal intention formation until after the actual movement concluded. Results showed a slow negative electrophysiological "intention potential" above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue.

  13. Transient outward currents and action potential alterations in rabbit ventricular myocytes.

    PubMed

    Kawano, S; Hiraoka, M

    1991-06-01

    To clarify ionic mechanisms underlying successive changes in action potential repolarization upon sudden increase in driving rate or initiation of rapid drive after a rest, membrane potentials and currents were recorded from isolated rabbit ventricular myocytes using the suction-pipette whole-cell clamp method. When 20 action potentials were elicited with a stimulus frequency of 2.0 Hz after a rest period of 20 s, the plateau and action potential duration showed complex changes in successive beats, whereas they were nearly constant with stimulation at 0.1 Hz. There were only weak correlations between changes in action potential parameters and preceding diastolic intervals. The changes were prominent in the first 10 beats but subsided gradually thereafter, attaining nearly steady configurations of action potentials. When depolarizing pulses were applied at a fast rate, under the voltage clamp, the amplitudes of the initial inward current in the presence of tetrodotoxin changed greatly depending on the pulse numbers and diastolic intervals, whereas the delayed outward K+ current changed little. Variations of the initial inward current in successive pulses were caused by different degrees of activation and recovery from inactivation in the Ca2+ current, the Ca(2+)-sensitive and -insensitive transient outward current. While inhibition of either one or two current components decreased the action potential alterations, blocking the three components completely abolished them. These results indicate that alterations of the Ca(2+)-sensitive and -insensitive transient outward current together with the Ca2+ current contribute to the action potential alterations after initiation of rapid drive or an increase in driving rates.

  14. Grouping 34 Chemicals Based on Mode of Action Using Connectivity Mapping.

    PubMed

    De Abrew, K Nadira; Kainkaryam, Raghunandan M; Shan, Yuqing K; Overmann, Gary J; Settivari, Raja S; Wang, Xiaohong; Xu, Jun; Adams, Rachel L; Tiesman, Jay P; Carney, Edward W; Naciff, Jorge M; Daston, George P

    2016-06-01

    Connectivity mapping is a method used in the pharmaceutical industry to find connections between small molecules, disease states, and genes. The concept can be applied to a predictive toxicology paradigm to find connections between chemicals, adverse events, and genes. In order to assess the applicability of the technique for predictive toxicology purposes, we performed gene array experiments on 34 different chemicals: bisphenol A, genistein, ethinyl-estradiol, tamoxifen, clofibrate, dehydorepiandrosterone, troglitazone, diethylhexyl phthalate, flutamide, trenbolone, phenobarbital, retinoic acid, thyroxine, 1α,25-dihydroxyvitamin D3, clobetasol, farnesol, chenodeoxycholic acid, progesterone, RU486, ketoconazole, valproic acid, desferrioxamine, amoxicillin, 6-aminonicotinamide, metformin, phenformin, methotrexate, vinblastine, ANIT (1-naphthyl isothiocyanate), griseofulvin, nicotine, imidacloprid, vorinostat, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) at the 6-, 24-, and 48-hour time points for 3 different concentrations in the 4 cell lines: MCF7, Ishikawa, HepaRG, and HepG2 GEO (super series accession no.: GSE69851). The 34 chemicals were grouped in to predefined mode of action (MOA)-based chemical classes based on current literature. Connectivity mapping was used to find linkages between each chemical and between chemical classes. Cell line-specific linkages were compared with each other and to test whether the method was platform and user independent, a similar analysis was performed against publicly available data. The study showed that the method can group chemicals based on MOAs and the inter-chemical class comparison alluded to connections between MOAs that were not predefined. Comparison to the publicly available data showed that the method is user and platform independent. The results provide an example of an alternate data analysis process for high-content data, beneficial for predictive toxicology, especially when grouping chemicals for read across

  15. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions

    PubMed Central

    Karch, Susanne; Loy, Fabian; Krause, Daniela; Schwarz, Sandra; Kiesewetter, Jan; Segmiller, Felix; Chrobok, Agnieszka I.; Keeser, Daniel; Pogarell, Oliver

    2016-01-01

    Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we compared neurobiological findings of the decision which action to perform with those referring to the decision whether or not to perform an action. Methods: Twenty-eight subjects participated in adapted go/nogo paradigms, including a voluntary selection condition allowing participants to (1) freely decide whether to press the response button or (2) to decide whether they wanted to press the response button with the right index finger or the left index finger. Results: The reaction times were increased when participants freely decided whether and how they wanted to respond compared to the go condition. Intentional processes were associated with a fronto-centrally located N2 and P3 potential. N2 and P3 amplitudes were increased during intentional actions compared to instructed responses (go). In addition, increased activity in the alpha-, beta- and gamma-frequency range was shown during voluntary behavior rather than during externally guided responses. Conclusion: These results may indicate that an additional cognitive process is needed for intentional actions compared to instructed behavior. However, the neural responses were comparatively independent of the kind of decision that was made (1) decision which action to perform; (2) decision whether or not to perform an action). Significance: The study demonstrates the importance of fronto-central alpha-, beta-, and gamma oscillations for voluntary behavior. PMID:26834680

  16. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  17. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  18. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  19. Potential benefits of new satellite sensors to wetland mapping

    NASA Technical Reports Server (NTRS)

    Dottavio, C. L.; Dottavio, F. D.

    1984-01-01

    Simulated Thematic Mapper (TMS) data are compared with data from a simulated multispectral scanner to determine whether digital data from the Thematic Mapper on board Landsat will be adequate for wetland mapping. Also considered is the question whether the Thematic Mapper will in fact improve discrimination among wetland cover types. It is found that for the six cover types examined the Thematic Mapper has the greatest discriminatory power in the infrared wavelength range from 1.0 to 1.3 microns. A distinct separation was found between low marsh and high marsh species in the middle infrared band (TM5), and this is expected to assist in the inventory of wetland habitats in the future.

  20. Rapidly calculated density functional theory (DFT) relaxed Iso-potential Phi Si Maps: Beta-cellobiose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...

  1. The Oil-Water Interface: Mapping the Solvation Potential

    SciTech Connect

    Bell, Richard C.; Wu, Kai; Iedema, Martin J.; Schenter, Gregory K.; Cowin, James P.

    2009-01-06

    Ions moving across the oil water interface are strongly impacted by the continuous changes in solvation. The solvation potential for Cs+ is directly measured as they approach the oil-water interface (“oil” = 3-methylpentane), from 0.4 to 4 nm away. The oil-water interfaces are created at 40K using molecular beam epitaxy and a softlanding ion beam, with pre-placed ions. The solvation potential slope was determined at each distance by balancing it against an increasing electrostatic potential made by increasing the number of imbedded ions at that distance, and monitoring the resulting ion motion. The potential approaches the Born model for greater than z>0.4nm, and shows the predicted reduction of the polarizability at z<0.4nm.

  2. Mapping organic contaminant plumes in groundwater using spontaneous potentials

    NASA Astrophysics Data System (ADS)

    Forte, Sarah

    Increased water demands have raised awareness of its importance. One of the challenges facing water resource management is dealing with contaminated groundwater; delineating, characterizing and remediating it. In the last decade, spontaneous potentials have been proposed as a method for delineating degrading organic contaminant plumes in groundwater. A hypothesis proposed that the redox potential gradient due to degradation of contaminants generated an electrical potential gradient that could be measured at the ground surface. This research was undertaken to better understand this phenomenon and find under what conditions it occurs. Spontaneous potentials are electrical potentials generated by three sources that act simultaneously: electrokinetic, thermoelectric and electrochemical sources. Over contaminant plumes electrochemical sources are those of interest. Thermoelectric sources are negligible unless in geothermal areas, but we hypothesized that electrokinetic potentials could be impacted by contaminants altering sediment surface properties. We built and calibrated a laboratory apparatus to make measurements that allowed us to calculate streaming current coupling coefficients. We tested sediment from hydrocarbon impacted sites with clean and hydrocarbon polluted groundwater and found a measurable though inconsistent effect. Moreover, numerical modelling was used to demonstrate that the impact of these changes on field measurements was negligible. Spontaneous potential surveys were conducted on two field sites with well characterized degrading hydrocarbon plumes in groundwater. We did not find a correlation between redox conditions and spontaneous potential, even after the electrical measurements were corrected for anthropogenic noise. In order to determine why the expected signal was not seen, we undertook numerical modelling based on coupled fluxes using two hypothesized types of current: redox and diffusion currents. The only scenarios that produced

  3. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  4. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    PubMed

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  5. Sodium and calcium currents shape action potentials in immature mouse inner hair cells

    PubMed Central

    Marcotti, Walter; Johnson, Stuart L; Rüsch, Alfons; Kros, Corné J

    2003-01-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency. PMID:12937295

  6. Effect of nanomaterials on the compound action potential of the shore crab, Carcinus maenas.

    PubMed

    Windeatt, Kirsten M; Handy, Richard D

    2013-06-01

    Little is known about the effects of manufactured nanomaterials on the function of nerves. The experiment aimed to test the effects of three different nanomaterials (1 mg l⁻¹ of TiO₂ NPs, Ag NPs or SWCNT) on the compound action potential of the shore crab (Carcinus maenas) compared with an appropriate bulk powder or metal salt control (bulk TiO₂ powder, AgNO₃ and carbon black respectively). In single action potential recordings, there were no effects of any of the nanomaterials on the peak amplitude, duration, rate of rise (depolarisation), or rate of decrease (repolarisation) of the compound action potential in crab saline, despite settling of each nanomaterial directly onto the nerve preparation. The ability of the crab nerve to be stimulated to tetanus was also unaffected by exposure to the nanomaterials compared with the appropriate bulk powder or metal salt control. Solvent controls with sodium dodecyl sulfate (SDS) also had no effect on action potentials. Overall, the study concludes that there were no effects of the materials at the concentrations tested on the compound action potential of the shore crab in physiological saline. PMID:22394242

  7. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction.

    PubMed

    Nichols, C G; Ripoll, C; Lederer, W J

    1991-01-01

    The role of ATP-sensitive potassium (KATP) channels in modulating the action potential and contraction of guinea pig ventricular myocytes was investigated. Under voltage clamp, the maximum whole-cell KATP channel conductance was estimated (195 +/- 10 nS, n = 6) by exposing the cells to complete metabolic blockade (2 mM cyanide in the presence of 10 mM 2-deoxy-glucose). In isolated inside-out membrane patches, the ATP dependence of KATP channel activity under relevant conditions was measured (half-maximal inhibition at 114 microM). Under current clamp (with intracellular ATP concentration = 5 mM), the effect of graded KATP channel activation on the action potential and the twitch was estimated by injection of a current (proportional to voltage) that simulated the KATP conductance. As this "conductance" was increased, the action potential was shortened, and contractile amplitude declined, as expected. From the results of these experiments, the quantitative dependence of the action potential duration on intracellular ATP concentration was estimated, without relying on a mathematical model of the cell membrane. The results imply that KATP-dependent action potential shortening is likely to occur if ATP concentration falls below normal levels (approximately 5 mM), as may happen regionally, or globally, during myocardial ischemia.

  8. Mapping

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1978-01-01

    Geologic mapping in the United States increased by about one-quarter in the past year. Examinations of mapping trends were in the following categories: (1) Mapping at scales of 1:100, 000; (2) Metric-scale base maps; (3) International mapping, and (4) Planetary mapping. (MA)

  9. RXP-E: A CX43-BINDING PEPTIDE THAT PREVENTS ACTION POTENTIAL PROPAGATION BLOCK

    PubMed Central

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi; Coombs, Wanda; Jalife, Jose; Nielsen, Morten S.; Taffet, Steven M.; Delmar, Mario

    2009-01-01

    Gap junctions (GJs) provide a low-resistance pathway for cardiac electrical propagation. The role of GJ regulation in arrhythmia is unclear, partly due to limited availability of pharmacological tools. Recently, we showed that a peptide called “RXP-E” binds to the carboxyl terminal of connexin43 (Cx43) and prevents chemically-induced uncoupling in Cx43-expressing N2a cells. Here, pull-down experiments show RXP-E binding to adult cardiac Cx43. Patch-clamp studies revealed that RXP-E prevented heptanol-induced and acidification-induced uncoupling in pairs of neonatal rat ventricular myocytes (NRVM’s). Separately, RXP-E was concatenated to a cytoplasmic transduction peptide for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential (AP) propagation was assessed by high resolution optical mapping in monolayers of NRVM’s, containing ~20% of randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, AP propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pHi=6.2) caused a loss of AP propagation in control monolayers; however, propagation was maintained in CTP-RXP-E treated cells, though at a slower rate. Patch clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2.1/Kir2.3 currents. RXP-E is the first synthetic molecule known to: (1) bind cardiac Cx43; (2) prevent heptanol and acidification-induced uncoupling of cardiac GJ’s and 3) preserve AP propagation among cardiac myocytes. RXP-E can be used to characterize the role of GJs in the function of multicellular systems, including the heart. PMID:18669919

  10. MOURA Martian magnetometer potential for high resolution magnetic mapping

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf

    2013-04-01

    Mars Global Surveyor (MGS) mission mapped the magnetic signature all along the Martian globe during its operation between 1996 and 2006. These data shows that Mars does not present an active global magnetic field as the Earth. However, the Martian crust has an overall magnetic signature stronger than the Earth which was inherited from the active magnetic field of the Martian core during its early cooling history. The MGS survey shows plenty of magnetic anomalies located in particular within high lands of its Southern Hemisphere. Several magnetic models have been derived to explain the MGS data considering magnetic dipoles distribution in the Martian crust with moderate to high magnetic intensities and pronounced regional anomalies. However, the origin of major magnetic anomalies remains highly disputed [1]. From the magnetic investigation point of view it would be of major importance to perform near-surface magnetic measurements [2] to compare both surface and in orbit (between 100 and 440 km) data. This would help to comprehend not only the distribution of the magnetic dipoles but also to make progress in the identification of different rock types and understanding of their degree of alteration which could have modified superficial magnetic signatures. In the frame of Finnish-Russian and Spanish MetNet mission, to perform meteorological studies on Martian surface, a miniaturized magnetometer and gradiometer named MOURA was developed with the objective to improve the interpretation of the magnetic anomalies and their origin. In order to test this magnetometer, comparative on Earth magnetic measurements were performed with MOURA and a reference absolute scalar magnetometer (Geometrics 853) in areas with a representative and large variation of magmatic rocks compositions. The final goal is to test the appropriateness of the developed magnetometer for the in situ measurements on Mars. The active continental margin of the Patagonian Andes was used for this case study

  11. Action!

    ERIC Educational Resources Information Center

    Senese, Joseph

    1998-01-01

    A small group of teachers at one Illinois high school is helping to effect and promote change. Through the Action Research Laboratory (ARL), teams of teachers conduct collaborative action research to improve classroom practices. Data from the first two years of the ARL indicate that teachers are eager to participate in, and have thrived in, their…

  12. Implementation of structure-mapping inference by event-file binding and action planning: a model of tool-improvisation analogies.

    PubMed

    Fields, Chris

    2011-03-01

    Structure-mapping inferences are generally regarded as dependent upon relational concepts that are understood and expressible in language by subjects capable of analogical reasoning. However, tool-improvisation inferences are executed by members of a variety of non-human primate and other species. Tool improvisation requires correctly inferring the motion and force-transfer affordances of an object; hence tool improvisation requires structure mapping driven by relational properties. Observational and experimental evidence can be interpreted to indicate that structure-mapping analogies in tool improvisation are implemented by multi-step manipulation of event files by binding and action-planning mechanisms that act in a language-independent manner. A functional model of language-independent event-file manipulations that implement structure mapping in the tool-improvisation domain is developed. This model provides a mechanism by which motion and force representations commonly employed in tool-improvisation structure mappings may be sufficiently reinforced to be available to inwardly directed attention and hence conceptualization. Predictions and potential experimental tests of this model are outlined.

  13. Granger Causality Mapping during Joint Actions Reveals Evidence for Forward Models That Could Overcome Sensory-Motor Delays

    PubMed Central

    Kokal, Idil; Keysers, Christian

    2010-01-01

    Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays. PMID:20975836

  14. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields.

    PubMed

    Shneider, M N; Pekker, M

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed. PMID:25353835

  15. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  16. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  17. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  18. Memantine reduces repetitive action potential firing in spinal cord nerve cell cultures.

    PubMed

    Netzer, R; Bigalke, H

    1990-09-21

    (1) The anticonvulsant effects of memantine were examined and compared with those of baclofen in monolayer primary cultures of murine nerve cells using conventional intracellular recordings. (2) Memantine and baclofen (each 10-100 microM) decreased spontaneous synaptic activity when action potential frequencies exceeded 6 Hz. Neurons firing action potentials at frequencies below 6 Hz (about 90% of all impaled cells), however, were not affected by the drugs. (3) Memantine reduced the duration of strychnine-elicited bursts and the firing rate of action potentials within a burst. In contrast, baclofen lowered the frequency of the bursts without reducing intra-burst firing. The duration of the bursts was increased. (4) Memantine, but not baclofen, reduced the extent of sustained repetitive firing evoked by pulses of depolarizing current. (5) In the presence of memantine, the second of two electrically evoked action potentials increasingly failed to appear as the intervals between successive stimulating pulses were shortened. Such an effect was not seen when baclofen was applied. Thus, both antispastic agents, memantine and baclofen, reduce hyperactivity of spinal cord neurons in culture, although their mechanisms of action are different.

  19. Potentiation of the cytotoxic action of melphalan and "activated" cyclophosphamide against cultured tumor cells by centrophenoxine.

    PubMed

    Sladek, N E

    1977-01-01

    Centrophenoxine, without antitumor activity itself, enhanced the cytotoxic action of melphalan and "activated" cyclophosphamide against mouse P388 lymphoma and rat W256 carcinosarcoma cells growing in static suspension culture. The concentration of alkylating agent required for 99% cell-kill was approximately halved when centrophenoxine was also present during exposure to the antitumor drug. Maximum potentiation by centrophenoxine of the cytotoxic action of melphalan occurred when cells were exposed to the two agents simultaneously; little or no potentiation was observed when cells were exposed to centrophenoxine before or after exposure to the alkylating agent.

  20. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action

  1. A Comprehensive Action Plan Information System: A Tool for Tracking and Mapping Quality of Life Action Implementation and Planning

    ERIC Educational Resources Information Center

    Krebs, Peter; Holden, Bill; Williams, Allison; Basualdo, Maria; Spence, Cara

    2008-01-01

    Since its inception, the Community-University Institute for Social Research (CUISR) has been involved in a participatory process aimed at understanding the quality of life in Saskatoon. Informed by the results of Quality of Life (QoL) survey in 2001 and by a list of QoL action priorities from a community forum, the CUISR QoL module set out to…

  2. Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.

    2016-06-01

    High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.

  3. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  4. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  5. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  6. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  7. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. PMID:26686984

  8. Contour Map for the Gravitational Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2006-12-01

    One usually does not draw a 2D contour plot for the gravitational potential of an astronomical system. It is too boring. For the solar system, the plot of equipotentials is simply a nest of circles about the sun as the center. Replace the sun with a black hole, squash the inner contours towards the x-y plane, and voila, the Milky Way. The situation is entirely different with the non-Newtonian sinusoidal potential. Here φ = -GM cos(2πr/λ)/r, λ =Ro/20, and Ro is the distance from the sun to the center of the Galaxy.[1] Now the contour plot for the Milky Way has an infinite number of minima and maxima. In this poster I show the contours for a disk galaxy having about 20 equal-spaced rings of mass mi = ai exp[-a&i/ 5λ ], ai = (i+1/4) λ, i=0,1,..19. The λ /4 offset is essential if this toy galaxy is to model the Milky Way that has, I predict, a physical bar in its center. (Other choices for the offset can model M31 or M33). Close to the center this model generates a dynamical disk of λ /4 = 100 pc half-thickness that is separate from the bulge. Evidence of this separation is clearly seen in CO (Fukui et al 2006). Near the solar circle, there are strong radial tidal forces. These forces appear in the data on long-period comets (Matese & Whitmire 1996) and on the position and kinematics of stars in the Gould Belt (Elias et al 2006). Finally the model accommodates the 3 evenly spaced stellar arcs at the periphery of the Milky Way (Grillmair 2006). I thank Peter Bender for suggesting this plot and John Cumulat for continual support. [1] D. F. Bartlett, "Analogies between Electricity and Gravity", Metrologia 41, 2004, S115-S124.

  9. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  10. Hybrid geomorphological maps as the basis for assessing geoconservation potential in Lech, Vorarlberg (Austria)

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, Harry; de Jong, Mat; Anders, Niels; de Graaff, Leo; Cammeraat, Erik

    2013-04-01

    Geoconservation potential is, in our approach, closely linked to the spatial distribution of geomorphological sites and thus, geomorphological inventories. Detailed geomorphological maps are translated, using a standardized workflow, into polygonal maps showing the potential geoconservation value of landforms. A new development is to semi-automatically extract in a GIS geomorphological information from high resolution topographical data, such as LiDAR, and combine this with conventional data types (e.g. airphotos, geological maps) into geomorphological maps. Such hybrid digital geomorphological maps are also easily translated into digital information layers which show the geoconservation potential in an area. We present a protocol for digital geomorphological mapping illustrated with an example for the municipality of Lech in Vorarlberg (Austria). The protocol consists of 5 steps: 1. data preparation, 2. generating training and validation samples, 3. parameterization, 4. feature extraction, and 5. assessing classification accuracy. The resulting semi-automated digital geomorphological map is then further validated, in two ways. Firstly, the map is manually checked with the help of a series of digital datasets (e.g. airphotos) in a digital 3D environment, such as ArcScene. The second validation is field visit, which preferably occurs in parallel to the digital evaluation, so that updates are quickly achieved. The final digital and coded geomorphological information layer is converted into a potential geoconservation map by weighting and ranking the landforms based on four criteria: scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The criteria with predefined scores for the various landform types are stored in a separate GIS attribute table, which is joined to the attribute table of the hybrid geomorphological information layer in an automated procedure. The results of the assessment can be displayed as the potential

  11. Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects

    ERIC Educational Resources Information Center

    Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan

    2011-01-01

    How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…

  12. 76 FR 21938 - Potential Environmental Impacts of the Proposed Runway 13 Extension and Associated Actions for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Federal Aviation Administration Potential Environmental Impacts of the Proposed Runway 13 Extension and... extension and associated actions for Devils Lake Regional Airport in Devils Lake, North Dakota. SUMMARY: The FAA has issued the final EA and FONSI/ROD for the proposed Runway 13 extension and associated...

  13. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    ERIC Educational Resources Information Center

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  14. Pre & Postsynaptic Tuning of Action Potential Timing by Spontaneous GABAergic Activity

    PubMed Central

    Caillard, Olivier

    2011-01-01

    Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABAA receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABAA activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABAA receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing. PMID:21789249

  15. A rule-based model for mapping potential exotic plant distribution

    USGS Publications Warehouse

    Despain, D.G.; Weaver, T.; Aspinall, R.J.

    2001-01-01

    Wildland managers need a method to predict which portions of the lands under their stewardship are susceptible to invasion by exotic plants. We combined a database listing exotic plant species known to occur in major environmental types (habitat types) throughout the northern Rocky Mountains with a digital vegetation map of environmental types for a major national park in the region (Yellowstone National Park) to produce maps of areas potentially threatened by major exotic species. Such maps should be helpful to managers concerned with monitoring and controlling exotic plants.

  16. Mapping heatwave health risk at the community level for public health action

    PubMed Central

    2012-01-01

    Background Climate change poses unprecedented challenges, ranging from global and local policy challenges to personal and social action. Heat-related deaths are largely preventable, but interventions for the most vulnerable populations need improvement. Therefore, the prior identification of high risk areas at the community level is required to better inform planning and prevention. We aimed to demonstrate a simple and flexible conceptual framework relying upon satellite thermal data and other digital data with the goal of easily reproducing this framework in a variety of urban configurations. Results The study area encompasses Rennes, a medium-sized French city. A Landsat ETM + image (60 m resolution) acquired during a localized heatwave (June 2001) was used to estimate land surface temperature (LST) and derive a hazard index. A land-use regression model was performed to predict the LST. Vulnerability was assessed through census data describing four dimensions (socio-economic status, extreme age, population density and building obsolescence). Then, hazard and vulnerability indices were combined to deliver a heatwave health risk index. The LST patterns were quite heterogeneous, reflecting the land cover mosaic inside the city boundary, with hotspots of elevated temperature mainly observed in the city center. A spatial error regression model was highly predictive of the spatial variation in the LST (R2 = 0.87) and was parsimonious. Three land cover descriptors (NDVI, vegetation and water fractions) were negatively linked with the LST. A sensitivity analysis (based on an image acquired on July 2000) yielded similar results. Southern areas exhibited the most vulnerability, although some pockets of higher vulnerability were observed northeast and west of the city. The heatwave health risk map showed evidence of infra-city spatial clustering, with the highest risks observed in a north–south central band. Another sensitivity analysis gave a very high

  17. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    PubMed

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation. PMID:27328786

  18. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-05-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D p-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α' corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an {N}=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  19. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    PubMed

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  20. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    SciTech Connect

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastiao, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 {mu}V amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  1. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    NASA Astrophysics Data System (ADS)

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastião, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 μV amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  2. Opposing actions of TGF{beta} and MAP kinase signaling in undifferentiated hen granulosa cells

    SciTech Connect

    Woods, Dori C.; Haugen, Morgan J.; Johnson, A.L. . E-mail: johnson.128@nd.edu

    2005-10-21

    The present studies were conducted to establish interactions between transforming growth factor (TGF)-{beta} and the epidermal growth factor (EGF) family members, TGF{alpha} and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGF{beta} isoforms, plus TGF{alpha}, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGF{alpha} or BTC increases levels of TGF{beta}1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGF{beta}1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGF{alpha} blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGF{beta}1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.

  3. Community Mapping in Action: Uncovering Resources and Assets for Young Children and Their Families

    ERIC Educational Resources Information Center

    Ordonez-Jasis, Rosario; Myck-Wayne, Janice

    2012-01-01

    Community mapping is a promising practice that can assist early intervention/early childhood special education (EI/ECSE) professionals uncover the depth and diversity of community needs, resources, and learning opportunities, in the neighborhoods surrounding their schools. Community mapping is an inquiry-based method that situates learning in the…

  4. An experimental study on a function of the cupula. Effect of cupula removal on the ampullary nerve action potential.

    PubMed

    Suzuki, M; Harada, Y; Sugata, Y

    1984-01-01

    We used a posterior semicircular canal that had been isolated from a frog. From the utricular side the ampulla was cut open at a position one third of the way along the long axis. The cupula was removed through this opening using a glass micropipette. The action potential from the posterior ampullary nerve was recorded before and after removal of the cupula. After removal, the action potential disappeared almost completely. When the cupula was put back on the crista, the action potential was restored. When the cupula was put back upside down, the action potential recovered, but to a lesser extent.

  5. The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records.

    PubMed

    VAUGHAN WILLIAMS, E M

    1958-09-01

    An attempt has been made to show why quinidine, which has long been known not to lengthen the duration of the cardiac action potential, measured with external electrodes, and also not to lengthen, and sometimes to shorten, the absolute refractory period, nevertheless reduces the maximum frequency at which atria can respond to a stimulus. Simultaneous measurements have been made in electrically driven isolated rabbit atria of contractions, conduction velocity and intracellular potentials before and during exposure to a wide range of concentrations of quinidine sulphate. The resting potential remained undiminished, in contrast to the effect of quinidine on Purkinje fibres. In the therapeutic range of doses, up to 10 mg./l., the half-time for repolarization was either shortened or unchanged, thus providing an explanation for the failure of quinidine to prolong the absolute refractory period. In contrast, even at low concentrations of quinidine, conduction velocity and the rate of rise of the action potential were greatly slowed, and the height of the overshoot was reduced. The terminal phase of the action potential was prolonged. It is known that the rate of rise of the action potential is a function of the level of repolarization at which an impulse takes off (the more negative the take-off point, the faster the rate of rise). Normally, a stimulus introduced when repolarization has proceeded to 2/3 of the resting potential evokes a response with a rate of rise fast enough for propagation, so that the duration of the terminal 1/3 of the phase of repolarization has no influence upon the length of the effective refractory period. In the presence of quinidine, however, the rate of rise itself was directly reduced, thus repolarization had to proceed further before the critical take-off point was reached at which the rate of rise was fast enough for propagation, and the duration of the terminal phase of repolarization thus became significant. It has been concluded that

  6. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons.

    PubMed

    Ogawa, Hiroto; Baba, Yoshichika; Oka, Kotaro

    2002-10-01

    To understand the relationship between the propagation direction of action potentials and dendritic Ca(2+) elevation, simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and intradendritic membrane potential were performed in the wind-sensitive giant interneurons of the cricket. The dendritic Ca(2+) transients induced by synaptically-evoked action potentials had larger amplitudes than those induced by backpropagating spikes evoked by antidromic stimulation. The amplitude of the [Ca(2+)](i) changes induced by antidromic stimuli combined with subthreshold synaptic stimulation was not different from that of the Ca(2+) increases evoked by the backpropagating spikes alone. This result means that the synaptically activated Ca(2+) release from intracellular stores does not contribute to enhancement of Ca(2+) elevation induced by backpropagating spikes. On the other hand, the synaptically evoked action potentials were also increased at distal dendrites in which the Ca(2+) elevation was enhanced. When the dendritic and axonal spikes were simultaneously recorded, the delay between dendritic spike and ascending axonal spike depended upon which side of the cercal nerves was stimulated. Further, dual intracellular recording at different dendritic branches illustrated that the dendritic spike at the branch arborizing on the stimulated side preceded the spike recorded at the other side of the dendrite. These results suggest that the spike-initiation site shifts depending on the location of the activated postsynaptic site. It is proposed that the difference of spike propagation manner could change the action potential waveform at the distal dendrite, and could produce synaptic activity-dependent Ca(2+) dynamics in the giant interneurons.

  7. Mapping Potential Ivory Billed Woodpecker Habitat using Lidar and Hyperspectral Data Fusion

    NASA Astrophysics Data System (ADS)

    Swatantran, A.; Dubayah, R.; Hofton, M.; Blair, J. B.; Handley, L.

    2008-12-01

    Multisensor fusion is a powerful approach towards characterizing forest structure for effective management of wildlife habitats. The rediscovery of the Ivory Billed Woodpecker in 2005 reinforced the need to map and conserve suitable habitat for the previously thought extinct bird. In this study we fused waveform lidar and hyperspectral data to map potential habitat for the woodpecker along the Lower Mississippi Valley of Arkansas. Laser Vegetation Imaging Sensor (LVIS) data was processed to produce high-resolution forest structure maps. We used multiple endmember spectral mixture analysis (MESMA) to map stressed and dead vegetation from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. LVIS and AVIRIS maps were fused to identify habitat hot-spots based on historical records of habitat preferences of the bird. Results indicate several small hotspots in the bottomland hardwood forests, but very few large and continuous patches qualify as potential woodpecker habitat. Results from this study are expected to aid search efforts for the woodpecker and also provide useful insights into lidar fusion for large scale habitat mapping.

  8. Self-organizing maps as a model of brain mechanisms potentially linked to autism.

    PubMed

    Noriega, Gerardo

    2007-06-01

    The application of artificial neural networks in the study of psychopathological syndromes has great potential. Several computational models of acquired and developmental disorders, including autism, have been proposed recently. In this paper, we use the framework of self-organizing maps to study several aspects of autism, by modeling abnormalities in the learning process in biologically plausible manners. We then interpret the resulting feature maps with reference to autistic characteristics. The effects of manipulating the physical structure and size of self-organizing maps were measured and compared with the general characteristics of neural growth abnormalities in autistic children. We find no effect on stimuli coverage, but a negative impact on map unfolding, dependant on the intensity of the abnormality, but not the time of onset. We analyze sensory issues by introducing the concept of attention functions, used to model hypersensitivities and hyposensitivities. The issue of focus on details rather than the whole is analyzed through a model in which distant neighbors are explicitly rejected; we show the model may lead to improved coverage of finely-shaped areas or isolated stimuli, but poorer map unfolding. Finally, we consider effects of noisy communication channels on the development of maps, and show a strong sensitivity of both coverage and unfolding of maps.

  9. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  10. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension.

  11. Mapping the Potential for Eolian Surface Activity in Grasslands of the High Plains using Landsat Images

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan Dain

    2002-01-01

    There are over 100,000 square kilometers of eolian sand dunes and sand sheets in the High Plains of the central United States. These land-forms may be unstable and may reactivate again as a result of land-use, climate change, or natural climatic variability. The main goal of this thesis was to develop a model that could be used to map an estimate of future dune activity. Multi-temporal calibrated Landsats 5 Thematic Mapper (TM) and 7 Enhanced Thematic Map per Plus (ETM+) NDVI imagery were used in conjunction with the CENTURY vegetation model to correlate vegetation cover to climatic variability. This allows the creation of a predicted vegetation map which, combined with current wind and soil data, was used to create a potential sand transport map for range land in the High Plains under drought conditions.

  12. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    PubMed

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  13. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  14. Post-tetanic mechanical tension and evoked action potentials in McArdle's disease

    PubMed Central

    Brandt, N. J.; Buchthal, F.; Ebbesen, F.; Kamieniecka, Z.; Krarup, C.

    1977-01-01

    The tension produced by the cramp evoked in the adductor pollicis muscle by repetitive stimuli to the nerve (20/s for 50 s) and by full voluntary effort in the brachial biceps was measured in a patient with McArdle's disease. The contracture was 17% of the peaktetanic tension, and was not associated with action potentials. Twitches superimposed on the contracture were at most diminished to half, as were their action potentials. Both slow and fast muscle fibres participated in the contracture. The contraction time of the twitches elicited after the tetanus was prolonged more in the patient than in a normal subject of the same age. There was evidence of delayed firing, first observed 90 seconds after the peak of the contracture. The patient had electromyographic and histological signs of myopathy. PMID:271684

  15. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon

    PubMed Central

    Dover, Katarzyna; Marra, Christopher; Solinas, Sergio; Popovic, Marko; Subramaniyam, Sathyaa; Zecevic, Dejan; D'Angelo, Egidio; Goldfarb, Mitchell

    2016-01-01

    Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons. PMID:27666389

  16. Attention-dependent reductions in burstiness and action potential height in macaque area V4

    PubMed Central

    Anderson, Emily B.; Mitchell, Jude F.; Reynolds, John H.

    2013-01-01

    Attention improves the encoding of visual stimuli. One mechanism that is implicated in facilitating sensory encoding is the firing of action potentials in bursts. We tested the hypothesis that when spatial attention is directed to a stimulus, this causes an increase in burst firing to the attended stimulus. To the contrary, we found an attention-dependent reduction in burstiness among putative pyramidal neurons in macaque area V4. We accounted for this using a conductance-based Hodgkin-Huxley style model in which attentional modulation stems from scaling excitation and inhibition. The model exhibited attention-dependent increases in firing rate and made the surprising and correct prediction that when attention is directed into a neuron’s receptive field, this reduces action potential height. The model thus provided a unified explanation for three distinct forms of attentional modulation, two of them novel, and implicates scaling of the responses of excitatory and inhibitory input populations in mediating attention. PMID:23852114

  17. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    PubMed Central

    Ford, Marc C.; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  18. Real-time imaging of action potentials in nerves using changes in birefringence

    PubMed Central

    Badreddine, Ali H.; Jordan, Tomas; Bigio, Irving J.

    2016-01-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time “movies”. This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  19. Real-time imaging of action potentials in nerves using changes in birefringence.

    PubMed

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  20. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.

    PubMed

    Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A

    2012-12-17

    Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

  1. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  2. Action potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a+/− hearts

    PubMed Central

    Matthews, Gareth D K; Guzadhur, Laila; Sabir, Ian N; Grace, Andrew A; Huang, Christopher L-H

    2013-01-01

    Reductions in cardiac action potential wavelength, and the consequent wavebreak, have been implicated in arrhythmogenesis. Tachyarrhythmias are more common in the Brugada syndrome, particularly following pharmacological challenge, previously modelled using Scn5a+/− murine hearts. Propagation latencies and action potential durations (APDs) from monophasic action potential recordings were used to assess wavelength changes with heart rate in Langendorff-perfused wild-type (WT) and Scn5a+/− hearts. Recordings were obtained from right (RV) and left (LV) ventricular, epicardial and endocardial surfaces during incremental pacing, before and following flecainide or quinidine challenge. Conduction velocities (θ′), action potential wavelengths (λ′= APD ×θ′), and their corresponding alternans depended non-linearly upon diastolic interval (DI). Maximum θ′ was lower in Scn5a+/− RV epicardium than endocardium. Flecainide further reduced θ′, accentuating this RV conduction block. Quinidine reduced maximum θ′ in WT and caused earlier conduction failure in the RV of both Scn5a+/− and WT. Use of recovery wavelengths (λ′0= DI ×θ′) rather than DI, provided novel λ restitution plots of λ′ against λ′0, which sum to a basic cycle distance permitting feedback analysis. λ′ restitution gradient better correlated with alternans magnitude than either APD or θ restitution gradient. The large differences in θ′ and APD restitution contrasted with minor differences in maximum λ′ between epi- and endocardia of untreated hearts, and quinidine-treated WT hearts. Strikingly, all regions and conditions converged to a common instability point, implying a conserved relationship. Flecainide or quinidine decreased the pacing rates at which this occurred, through reducing basic cycle distance, in the Scn5a+/− RV epicardium, directly predictive of its arrhythmic phenotype. PMID:23836691

  3. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief.

    PubMed

    Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Cousins, Michael J

    2012-03-01

    Electrical stimulation of the spinal cord provides effective pain relief to hundreds of thousands of chronic neuropathic pain sufferers. The therapy involves implantation of an electrode array into the epidural space of the subject and then stimulation of the dorsal column with electrical pulses. The stimulation depolarises axons and generates propagating action potentials that interfere with the perception of pain. Despite the long-term clinical experience with spinal cord stimulation, the mechanism of action is not understood, and no direct evidence of the properties of neurons being stimulated has been presented. Here we report novel measurements of evoked compound action potentials from the spinal cords of patients undergoing stimulation for pain relief. The results reveal that Aβ sensory nerve fibres are recruited at therapeutic stimulation levels and the Aβ potential amplitude correlates with the degree of coverage of the painful area. Aβ-evoked responses are not measurable below a threshold stimulation level, and their amplitude increases with increasing stimulation current. At high currents, additional late responses are observed. Our results contribute towards efforts to define the mechanism of spinal cord stimulation. The minimally invasive recording technique we have developed provides data previously obtained only through microelectrode techniques in spinal cords of animals. Our observations also allow the development of systems that use neuronal recording in a feedback loop to control neurostimulation on a continuous basis and deliver more effective pain relief. This is one of numerous benefits that in vivo electrophysiological recording can bring to a broad range of neuromodulation therapies. PMID:22188868

  4. Noisy unmaskers of multistability of periodic rhythms in a model of the ventricular cardiac action potential

    NASA Astrophysics Data System (ADS)

    Surovyatkina, Elena; Egorchenkov, Roman; Ivanov, Guennady

    2007-06-01

    The coexistence of different dynamical regimes of cardiac cell-model at a fixed set of stimulation parameters, i.e. multistability, revealed by noise is presented in this paper. Numerical simulations are performed using Luo-Rudy (LR1) action potential model. Numerical experiments with LR1 model conducted via noisy periodical stimulation showed the coexistence of several periodic rhythms. Weak noise in period of stimulation causes a hopping process between all the (meta-) stable rhythms of cell-model. This process is reflected in several parallel branches of the bifurcation diagram: noise unveils new, invisible before, stable rhythms which could appear in this model at different initial conditions. The phenomenon of multistability is directly evidenced by other numerical experiments: we have established the multistability property of a cell consisting in the fact that different initial conditions of stimulation (different extrasystole application times) lead to different stable periodic rhythms. We have obtained the shaping of attraction basins on the action potential curves. Such basins of attraction contain a set of initial conditions which determinate a stable periodic rhythm. We have found a close association between the attraction basins of the complex rhythms on the curves of action potential and the cardiac vulnerable windows on ECG record, during which extra stimuli can induce life threatening arrhythmias. Obtained results allow us to make a conclusion that multistability is very important for the electrical conduction system of the heart from the cell level to the integrated function of the heart.

  5. Seasonal variation in conduction velocity of action potentials in squid giant axons.

    PubMed

    Rosenthal, J J; Bezanilla, F

    2000-10-01

    To determine whether the electrical properties of the squid giant axon are seasonally acclimated, action potentials, recorded at different temperatures, were compared between giant axons isolated from Loligo pealei caught in May, from relatively cold waters (approximately 10 degrees-12 degrees C), and in August, from relatively warm waters (approximately 20 degrees C). Parameters relating to the duration of the action potential (e.g., maximum rate of rise, maximum rate of fall, and duration at half-peak) did not change seasonally. The relationship between conduction velocity and temperature remained constant between seasons as well, in spite of the fact that May axons were significantly larger than August axons. When normalized to the fiber diameter, mean May conduction velocities were 83% of the August values at all temperatures tested, and analysis of the rise time of the action potential foot suggested that a change in the axoplasmic resistivity was responsible for this difference. Direct measurements of axoplasmic resistance further supported this hypothesis. Thus seasonal changes in the giant axon's size and resistivity are not consistent with compensatory thermal acclimation, but instead serve to maintain a constant relationship between conduction velocity and temperature.

  6. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    PubMed

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-01-01

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis. PMID:27649160

  7. ER Stress-Mediated Signaling: Action Potential and Ca2+ as Key Players

    PubMed Central

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-01-01

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca2+) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca2+ regulates cell death both at the early and late stages of apoptosis. Severe Ca2+ dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca2+ (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca2+ and action potential in ER stress-mediated apoptosis. PMID:27649160

  8. A simple contact mapping algorithm for identifying potential peptide mimetics in protein–protein interaction partners

    PubMed Central

    Krall, Alex; Brunn, Jonathan; Kankanala, Spandana; Peters, Michael H

    2014-01-01

    A simple, static contact mapping algorithm has been developed as a first step at identifying potential peptide biomimetics from protein interaction partner structure files. This rapid and simple mapping algorithm, “OpenContact” provides screened or parsed protein interaction files based on specified criteria for interatomic separation distances and interatomic potential interactions. The algorithm, which uses all-atom Amber03 force field models, was blindly tested on several unrelated cases from the literature where potential peptide mimetics have been experimentally developed to varying degrees of success. In all cases, the screening algorithm efficiently predicted proposed or potential peptide biomimetics, or close variations thereof, and provided complete atom-atom interaction data necessary for further detailed analysis and drug development. In addition, we used the static parsing/mapping method to develop a peptide mimetic to the cancer protein target, epidermal growth factor receptor. In this case, secondary, loop structure for the peptide was indicated from the intra-protein mapping, and the peptide was subsequently synthesized and shown to exhibit successful binding to the target protein. The case studies, which all involved experimental peptide drug advancement, illustrate many of the challenges associated with the development of peptide biomimetics, in general. Proteins 2014; 82:2253–2262. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:24756879

  9. Breaking Concept Boundaries to Enhance Creative Potential: Using Integrated Concept Maps for Conceptual Self-Awareness

    ERIC Educational Resources Information Center

    Kao, Gloria Yi-Ming; Lin, Sunny S. J.; Sun, Chuen-Tsai

    2008-01-01

    The authors address the role of computer support for building conceptual self-awareness--that is, enabling students to think outside of concept boundaries in hope of enhancing creative potential. Based on meta-cognition theory, we developed an integrated concept mapping system (ICMSys) to improve users' conceptual self-awareness in addition to…

  10. Textbook Treatments of Electrostatic Potential Maps in General and Organic Chemistry

    ERIC Educational Resources Information Center

    Hinze, Scott R.; Williamson, Vickie M.; Deslongchamps, Ghislain; Shultz, Mary Jane; Williamson, Kenneth C.; Rapp, David N.

    2013-01-01

    Electrostatic potential maps (EPMs) allow for representation of key molecular-level information in a relatively simple and inexpensive format. As these visualizations become more prevalent in instruction, it is important to determine how students are exposed to them and supported in their use. A systematic review of current general and organic…

  11. The electrogenic Na+/HCO3− cotransport modulates resting membrane potential and action potential duration in cat ventricular myocytes

    PubMed Central

    Villa-Abrille, María C; Petroff, Martín G Vila; Aiello, Ernesto A

    2007-01-01

    Perforated whole-cell configuration of patch clamp was used to determine the contribution of the electrogenic Na+/HCO3− cotransport (NBC) on the shape of the action potential in cat ventricular myocytes. Switching from Hepes to HCO3− buffer at constant extracellular pH (pHo) hyperpolarized resting membrane potential (RMP) by 2.67 ± 0.42 mV (n = 9, P < 0.05). The duration of action potential measured at 50% of repolarization time (APD50) was 35.8 ± 6.8% shorter in the presence of HCO3− than in its absence (n = 9, P < 0.05). The anion blocker SITS prevented and reversed the HCO3−-induced hyperpolarization and shortening of APD. In addition, no HCO3−-induced hyperpolarization and APD shortening was observed in the absence of extracellular Na+. Quasi-steady-state currents were evoked by 8 s duration voltage-clamped ramps ranging from −130 to +30 mV. A novel component of SITS-sensitive current was observed in the presence of HCO3−. The HCO3−-sensitive current reversed at −87 ± 5 mV (n = 7), a value close to the expected reversal potential of an electrogenic Na+/HCO3− cotransport with a HCO3−:Na+ stoichiometry ratio of 2: 1. The above results allow us to conclude that the cardiac electrogenic Na+/HCO3− cotransport has a relevant influence on RMP and APD of cat ventricular cells. PMID:17138608

  12. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. PMID:23774164

  13. Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels.

    PubMed

    Kondakor, I; Lehmann, D; Michel, C M; Brandeis, D; Kochi, K; Koenig

    1997-01-01

    The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.

  14. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    SciTech Connect

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W.

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  15. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    PubMed

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  16. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre.

    PubMed Central

    Taggart, P; Sutton, P; John, R; Lab, M; Swanton, H

    1992-01-01

    OBJECTIVE--The strong association between ventricular arrhythmia and ventricular dysfunction is unexplained. This study was designed to investigate a mechanism by which a change in ventricular loading could alter the time course of repolarisation and hence refractoriness. A possible mechanism may be a direct effect of an altered pattern of contraction on ventricular repolarisation and hence refractoriness. This relation has been termed contraction-excitation feedback or mechano-electric feedback. METHODS--Monophasic action potentials were recorded from the left ventricular endocardium as a measure of the time course of local repolarisation. The Valsalva manoeuvre was used to change ventricular loading by increasing the intrathoracic pressure and impeding venous return, and hence reducing ventricular pressure and volume (ventricular unloading). PATIENTS--23 patients undergoing routine cardiac catheterisation procedures: seven with no angiographic evidence of abnormal wall motion or history of myocardial infarction (normal), five with a history of myocardial infarction but with normal wall motion, and 10 with angiographic evidence of abnormal wall motion--with or without previous infarction. One patient was a transplant recipient and was analysed separately. SETTING--Tertiary referral centre for cardiology. RESULTS--In patients with normal ventricles during the unloading phase of the Valsalva manoeuvre (mean (SD)) monophasic action potential duration shortened from 311 (47) ms to 295 (47) ms (p less than 0.001). After release of the forced expiration as venous return was restored the monophasic action potential duration lengthened from 285 (44) ms to 304 (44) ms (p less than 0.0001). In the group with evidence of abnormal wall motion the direction of change of action potential duration during the strain phase was normal in 7/21 observations, abnormal in 6/21, and showed no clear change in 8/21. During the release phase 11/20 observations were normal, five abnormal

  17. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.

    PubMed

    Nakornchai, Sunan; Konthiang, Phattanapong

    2006-09-01

    Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.

  18. A semi-quantitative technique for mapping potential aquifer productivity on the national scale: example of England and Wales (UK)

    NASA Astrophysics Data System (ADS)

    Abesser, Corinna; Lewis, Melinda

    2015-12-01

    The development and validation of aquifer productivity and depth-to-source maps for England and Wales are described. Aquifer productivity maps can provide valuable support for the assessment, planning and management of groundwater and renewable heat energy resources. Aquifer productivity is often mapped using geostatistical interpolation techniques such as kriging, but these techniques tend to be unsuitable for mapping at the national scale due to the high data (and time) demands. A methodology is outlined for mapping aquifer productivity at the national scale using existing national-scale data sets. Pumping test data are used to characterise the potential borehole yields that different geological formations of varying lithologies and ages can provide. Based on this analysis and using expert knowledge, the corresponding map codes on the geological map are assigned to potential productivity classes. The subsurface (concealed) extent of aquifer units is mapped from geophysical data, and together with the attributed geological map, provide the bedrock-aquifer productivity map. Drilling and pumping costs can be an important consideration when evaluating the feasibility of developing a groundwater source. Thus, a map of the approximate depth to source is developed alongside the aquifer productivity map. The maps are validated using independent data sets, and map performance is compared against performance from maps derived by random and uniform attribution. The results show that the maps successfully predict potential productivity and approximate depth to the water source, although utility of the depth-to-source map could be improved by increasing the vertical discretisation at which depth intervals are mapped.

  19. The effect of psychoemotional load on ventricular repolarization reflected in integral body surface potential maps.

    PubMed

    Kellerová, E; Regecová, V; Katina, S; Titomir, L I; Aidu, E A I; Trunov, V G; Szathmáry, V

    2006-01-01

    The aim of the present study was to investigate the reflection of psychoemotional stress in the body surface potential distribution as documented by isointegral maps of cardiac activation and recovery. In 72 young men (18.3+/- 7.3 y.) with no cardiovascular history body surface potential maps (BSPMs) at rest and during the test of mental arithmetic were recorded. The digitalized data for each point of the QRS, STT and QRST integral maps, for each subject in both situations, were processed and evaluated by methods of univariate as well as spatial mathematical and statistical modeling. The results showed during MA a significant decrease of repolarization integral values over the sternum and right precordium, which contributed to analogically localized decrements also in the QRST BSM. The decrease occurred in more than 2/3 of lead points. The most pronounced changes were observed in the right precordial area, where potentials decreased in more than in 70 % of subjects. In conclusion, the discriminative power of the difference STT and QRST integral maps was strong enough to distinguish the mental arithmetic induced changes in the superficial cardiac electric field. These adrenergic transient alterations in ventricular recovery may be of importance in subjects at risk for ventricular arrhythmias.

  20. Motor abstraction: a neuroscientific account of how action goals and intentions are mapped and understood.

    PubMed

    Gallese, Vittorio

    2009-07-01

    Recent findings in cognitive neuroscience shed light on the existence of a common neural mechanism that could account for action and intention to understand abilities in humans and non-human primates. Empirical evidence on the neural underpinnings of action goals and on their ontogeny and phylogeny is introduced and discussed. It is proposed that the properties of the mirror neuron system and the functional mechanism describing them, embodied simulation, enabled pre-linguistic forms of action and intention understanding. Basic aspects of social cognition appear to be primarily based on the motor cognition that underpins one's own capacity to act, here defined as motor abstraction. On the basis of this new account of the motor system, it is proposed that intersubjectivity is the best conceived of as intercorporeity.

  1. Xenin-25 Potentiates Glucose-dependent Insulinotropic Polypeptide Action via a Novel Cholinergic Relay Mechanism*

    PubMed Central

    Wice, Burton M.; Wang, Songyan; Crimmins, Dan L.; Diggs-Andrews, Kelly A.; Althage, Matthew C.; Ford, Eric L.; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A.; Wang, Qiuling; Fisher, Simon J.; Ladenson, Jack H.; Polonsky, Kenneth S.

    2010-01-01

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, “GIP/DT” animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the β-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in β-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  2. Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism.

    PubMed

    Wice, Burton M; Wang, Songyan; Crimmins, Dan L; Diggs-Andrews, Kelly A; Althage, Matthew C; Ford, Eric L; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A; Wang, Qiuling; Fisher, Simon J; Ladenson, Jack H; Polonsky, Kenneth S

    2010-06-25

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  3. Phasic changes in intracellular pH during action potentials of sheep Purkinje fibres.

    PubMed

    Pressler, M L

    1988-01-01

    Regulation of intracellular pH (pHi) and the relationship between H+ and Ca2+ may vary during activity. Ion-selective microelectrodes were used to record pHi during action potentials of sheep Purkinje fibres prolonged by low temperature (21 degrees C) and elevated CO2 content. Intracellular pH also was measured during changes in extracellular calcium concentration, [Ca2+]o. Cytosolic alkalinization (peak pHi change, 0.03-0.05) was observed during the long action-potential plateau and transient acidification (0.01-0.02 units) upon repolarization. Potassium-induced depolarization to plateau potentials (i.e. to -15 +/- 2 mV) simulated the peak magnitude of the alkalinization. However, compensation for the alkalinization occurred at a faster rate during the action potential (8.9 +/- 4.3 nM/min) than during K+ depolarization (1.2 +/- 0.5 nM/min). In comparison, the cytoplasm acidified in resting fibres (0.06-0.07 log units) during changes of [Ca2+]o thought to increase intracellular calcium concentration. Alterations of pHi were translated into changes of proton concentration ([H+]i). Ten- to twenty-fold elevation of [Ca2+]o evoked a comparable change in [H+]i (mean increase, 5.7 nM) but oppositely directed from that during the plateau (mean decrease, 8.8 nM). The findings in resting fibres seem consistent with displacement of bound protons by Ca2+. In contrast, the initial change in pHi during the plateau is proposed to be consequent to Ca2+-release from sarcoplasmic reticulum and/or phosphocreatine hydrolysis coupled to ATP regeneration.

  4. Viewed actions are mapped in retinotopic coordinates in the human visual pathways.

    PubMed

    Porat, Yuval; Pertzov, Yoni; Zohary, Ehud

    2011-10-21

    Viewed object-oriented actions elicit widespread fMRI activation in the dorsal and ventral visual pathways. This activation is typically stronger in the hemisphere contralateral to the visual field in which action is seen. However, since in previous studies participants kept fixation at the same screen position throughout the scan, it was impossible to infer if the viewed actions are represented in retina-based coordinates or in a more elaborated coordinate system. Here, participants changed their gaze between experimental conditions, such that some conditions shared the same retinotopic coordinates (but differed in their screen position), while other pairs of conditions shared the opposite trait. The degree of similarity between the patterns of activation elicited by the various conditions was assessed using multivoxel pattern analysis methods. Regions of interest, showing robust overall activation, included the intraparietal sulcus (IPS) and the occipitotemporal cortex. In these areas, the correlation between activation patterns for conditions sharing the same retinotopic coordinates was significantly higher than that of those having different retinotopic coordinates. In contrast, the correlations between activation patterns for conditions with the same spatiotopic coordinates were not significantly greater than for non-spatiotopic conditions. These results suggest that viewed object-oriented actions are likely to be maintained in retinotopic-framed coordinates.

  5. Advancing Civic Learning and Engagement in Democracy: A Road Map and Call to Action

    ERIC Educational Resources Information Center

    US Department of Education, 2012

    2012-01-01

    Today, the U.S. Department of Education joins the National Task Force on Civic Learning and Democratic Engagement, the American Commonwealth Partnership, and the Campaign for the Civic Mission of Schools in a new national call to action to infuse and enhance civic learning and democratic engagement for all students throughout the American…

  6. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    NASA Astrophysics Data System (ADS)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based

  7. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.

    PubMed Central

    Wu, J; Wikswo, J P

    1997-01-01

    This study presents a simplified version of the quasi-one-dimensional theory (Wu, J., E. A. Johnson, and J. M. Kootsey. 1996. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys. J. 71:2427-2439) with two components of the extracellular current, along and perpendicular to the axis, and a simulation and its experimental confirmation for the giant axon of the squid. By extending the one-dimensional core conductor cable equations, this theory predicts, as confirmed by the experiment, that the shapes of the intracellular and the extracellular action potentials are related to the resistance of the bath. Such a result was previously only expected by the field theories. The correlation between the shapes of the intracellular and the extracellular potentials of the giant axon of the squid resembles that observed during the anisotropic propagation of excitation in cardiac muscle. Therefore, this study not only develops a quasi-one-dimensional theory for a squid axon, but also provides one possible factor contributing to the anisotropic propagation of action potentials in cardiac muscle. PMID:9370430

  8. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.

    PubMed

    Wu, J; Wikswo, J P

    1997-11-01

    This study presents a simplified version of the quasi-one-dimensional theory (Wu, J., E. A. Johnson, and J. M. Kootsey. 1996. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys. J. 71:2427-2439) with two components of the extracellular current, along and perpendicular to the axis, and a simulation and its experimental confirmation for the giant axon of the squid. By extending the one-dimensional core conductor cable equations, this theory predicts, as confirmed by the experiment, that the shapes of the intracellular and the extracellular action potentials are related to the resistance of the bath. Such a result was previously only expected by the field theories. The correlation between the shapes of the intracellular and the extracellular potentials of the giant axon of the squid resembles that observed during the anisotropic propagation of excitation in cardiac muscle. Therefore, this study not only develops a quasi-one-dimensional theory for a squid axon, but also provides one possible factor contributing to the anisotropic propagation of action potentials in cardiac muscle.

  9. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

    NASA Astrophysics Data System (ADS)

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-05-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology.

  10. An Excel-based implementation of the spectral method of action potential alternans analysis.

    PubMed

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results.

  11. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    PubMed

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers. PMID:25622192

  12. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    PubMed

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.

  13. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes.

    PubMed

    Bridge, J H; Ershler, P R; Cannell, M B

    1999-07-15

    1. Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo-3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species. 2. Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1.4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L-type calcium channels with the changes in driving force for calcium entry during the action potential. 3. When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to 'all-or-none' behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation-contraction coupling. 4. A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal-to-noise levels.

  14. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles.

    PubMed

    Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S

    2015-08-11

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.

  15. Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations

    PubMed Central

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne R.

    2013-01-01

    Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity. PMID:24146650

  16. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles

    PubMed Central

    Tucker, Kristal R.; Block, Ethan R.; Levitan, Edwin S.

    2015-01-01

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H+-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca2+-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP+), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H+ countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs. PMID:26216995

  17. The global hidden hunger indices and maps: an advocacy tool for action.

    PubMed

    Muthayya, Sumithra; Rah, Jee Hyun; Sugimoto, Jonathan D; Roos, Franz F; Kraemer, Klaus; Black, Robert E

    2013-01-01

    The unified global efforts to mitigate the high burden of vitamin and mineral deficiency, known as hidden hunger, in populations around the world are crucial to the achievement of most of the Millennium Development Goals (MDGs). We developed indices and maps of global hidden hunger to help prioritize program assistance, and to serve as an evidence-based global advocacy tool. Two types of hidden hunger indices and maps were created based on i) national prevalence data on stunting, anemia due to iron deficiency, and low serum retinol levels among preschool-aged children in 149 countries; and ii) estimates of Disability Adjusted Life Years (DALYs) attributed to micronutrient deficiencies in 136 countries. A number of countries in sub-Saharan Africa, as well as India and Afghanistan, had an alarmingly high level of hidden hunger, with stunting, iron deficiency anemia, and vitamin A deficiency all being highly prevalent. The total DALY rates per 100,000 population, attributed to micronutrient deficiencies, were generally the highest in sub-Saharan African countries. In 36 countries, home to 90% of the world's stunted children, deficiencies of micronutrients were responsible for 1.5-12% of the total DALYs. The pattern and magnitude of iodine deficiency did not conform to that of other micronutrients. The greatest proportions of children with iodine deficiency were in the Eastern Mediterranean (46.6%), European (44.2%), and African (40.4%) regions. The current indices and maps provide crucial data to optimize the prioritization of program assistance addressing global multiple micronutrient deficiencies. Moreover, the indices and maps serve as a useful advocacy tool in the call for increased commitments to scale up effective nutrition interventions.

  18. The global hidden hunger indices and maps: an advocacy tool for action.

    PubMed

    Muthayya, Sumithra; Rah, Jee Hyun; Sugimoto, Jonathan D; Roos, Franz F; Kraemer, Klaus; Black, Robert E

    2013-01-01

    The unified global efforts to mitigate the high burden of vitamin and mineral deficiency, known as hidden hunger, in populations around the world are crucial to the achievement of most of the Millennium Development Goals (MDGs). We developed indices and maps of global hidden hunger to help prioritize program assistance, and to serve as an evidence-based global advocacy tool. Two types of hidden hunger indices and maps were created based on i) national prevalence data on stunting, anemia due to iron deficiency, and low serum retinol levels among preschool-aged children in 149 countries; and ii) estimates of Disability Adjusted Life Years (DALYs) attributed to micronutrient deficiencies in 136 countries. A number of countries in sub-Saharan Africa, as well as India and Afghanistan, had an alarmingly high level of hidden hunger, with stunting, iron deficiency anemia, and vitamin A deficiency all being highly prevalent. The total DALY rates per 100,000 population, attributed to micronutrient deficiencies, were generally the highest in sub-Saharan African countries. In 36 countries, home to 90% of the world's stunted children, deficiencies of micronutrients were responsible for 1.5-12% of the total DALYs. The pattern and magnitude of iodine deficiency did not conform to that of other micronutrients. The greatest proportions of children with iodine deficiency were in the Eastern Mediterranean (46.6%), European (44.2%), and African (40.4%) regions. The current indices and maps provide crucial data to optimize the prioritization of program assistance addressing global multiple micronutrient deficiencies. Moreover, the indices and maps serve as a useful advocacy tool in the call for increased commitments to scale up effective nutrition interventions. PMID:23776712

  19. The potential of gamma-ray spectrometry as supplementary information for mapping central European soils

    NASA Astrophysics Data System (ADS)

    Schuler, U.; Bock, M.; Baritz, R.; Willer, J.; Pickert, E.; Kardel, K.; Herrmann, L.

    2012-04-01

    Permanently updated soil maps are needed inter alia for the prediction of landslide hazards, flooding and drought effects, land degradation monitoring, and precision farming. Since comprehensive and intensive field mapping is not affordable, alternative mapping approaches are required. A promising tool, with quite unrecognised potential for modern soil science is gamma-ray spectrometry. As the radioelements potassium, thorium and uranium respond differently to soil forming processes, it should be possible to infer from their concentration on weathering status, and after calibration on soil properties and types. This paper aims to investigate the potential of airborne gamma spectrometry for mapping of central European soils and soil properties. The study was conducted for a test site in Southern Saxony, Germany, 140*85 km wide, representing diverse soil landscapes. Seven different petrographic training and validation areas were chosen each. To assess the potential of gamma-ray spectrometry as additional data layer, predictions were carried out (i) with and (ii) without radiometric data. The outputs were compared with independent soil information of the validation areas. Both prediction runs used the following predictors: elevation, slope, curvature, planform curvature, profile curvature, terrain ruggedness index, relative altitude, vertical distance above drainage network, wetness index, and convergence index. As additional predictor parent material derived from a reclassification of the official geological map (1:1M scale) was used. As radiometric properties potassium, thorium and uranium were used. The radiometric raster datasets were generated by universal kriging using relative altitude as covariate. Training and validation datasets were selected from a comprehensive dataset representing more than 14.000 point data. Point data include soil types and substrates, and for more than 800 sites soil profiles with analysed texture, pH, exchangeable cations, nutrients

  20. Dynamical speckles patterns of action potential transmission effects in squid giant axon membrane

    NASA Astrophysics Data System (ADS)

    Llovera-González, Juan J.; Moreno-Yeras, Alfredo B.; Muramatsu, Mikiya; Soga, Diogo; Serra-Toledo, Rolando L.; Magalhães, Daniel S. F.

    2013-11-01

    Undoubtedly the most important result of the investigations in physiology and biophysics was the discovery of the electrochemical mechanism of propagation of the action potential in nerves that was made by Hodgkin and Huxley during the first half of the past century. Since some decades ago diverse experiments about the electro optical properties of the axon membrane there was published using the most diverse optical experimental procedures6-10. In this paper some results of a dynamical speckle technique applied for obtaining microscopic images of a section of a squid giant axon membrane during the activation by electrical impulses and his digital process are presented.

  1. Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons.

    PubMed Central

    Hopfield, J J; Herz, A V

    1995-01-01

    The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons. Images Fig. 2 PMID:7624307

  2. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling.

    PubMed

    Gumma, Murali Krishna; Pavelic, Paul

    2013-04-01

    Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions.

  3. Potential and limitations of using soil mapping information to understand landscape hydrology

    NASA Astrophysics Data System (ADS)

    Terribile, F.; Coppola, A.; Langella, G.; Martina, M.; Basile, A.

    2011-12-01

    This paper addresses the following points: how can whole soil data from normally available soil mapping databases (both conventional and those integrated by digital soil mapping procedures) be usefully employed in hydrology? Answering this question requires a detailed knowledge of the quality and quantity of information embedded in and behind a soil map. To this end a description of the process of drafting soil maps was prepared (which is included in Appendix A of this paper). Then a detailed screening of content and availability of soil maps and database was performed, with the objective of an analytical evaluation of the potential and the limitations of soil data obtained through soil surveys and soil mapping. Then we reclassified the soil features according to their direct, indirect or low hydrologic relevance. During this phase, we also included information regarding whether this data was obtained by qualitative, semi-quantitative or quantitative methods. The analysis was performed according to two main points of concern: (i) the hydrological interpretation of the soil data and (ii) the quality of the estimate or measurement of the soil feature. The interaction between pedology and hydrology processes representation was developed through the following Italian case studies with different hydropedological inputs: (i) comparative land evaluation models, by means of an exhaustive itinerary from simple to complex modelling applications depending on soil data availability, (ii) mapping of soil hydrological behaviour for irrigation management at the district scale, where the main hydropedological input was the application of calibrated pedo-transfer functions and the Hydrological Function Unit concept, and (iii) flood event simulation in an ungauged basin, with the functional aggregation of different soil units for a simplified soil pattern. In conclusion, we show that special care is required in handling data from soil databases if full potential is to be achieved

  4. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  5. Hypergraph-based saliency map generation with potential region-of-interest approximation and validation

    NASA Astrophysics Data System (ADS)

    Liang, Zhen; Fu, Hong; Chi, Zheru; Feng, Dagan

    2012-01-01

    A novel saliency model is proposed in this paper to automatically process images in the similar way as the human visual system which focuses on conspicuous regions that catch human beings' attention. The model combines a hypergraph representation and a partitioning process with potential region-of-interest (p-ROI) approximation and validation. Experimental results demonstrate that the proposed method shows considerable improvement in the performance of saliency map generation.

  6. Actions taken in response to the potential for volatile organics in RLWTF influent tanks

    SciTech Connect

    DEL SIGNORE, JOHN C.

    2007-01-01

    Positive USQD-RL W -06.0729-JPS, titled "Potential for Volatile Organics in RLW" was signed Friday, 09-08-06, at 1600. It resulted from a Potentially Inadequate Safety Analysis (PISA) for the Radioactive Liquid Waste Treatment Facility (RLWTF) at Technical Area 50. The PISA posits that an unspecified accident occurs at a generator facility, and that said accident does not ignite the volatile organic liquid, but results instead in the release of a large volume of volatile organic liquid into an RLW drain. Once in the drain, the liquid flows unimpeded into the RLWTF influent tanks. After entering the influent tanks, a spark causes a deflagration or explosion. This report documents actions taken in response to the PISA.

  7. A Practical Map-Analysis Tool for Detecting Potential Dispersal Corridors

    SciTech Connect

    Hargrove, William Walter; Hoffman, Forrest M; Efroymson, Rebecca Ann

    2005-01-01

    We describe the Pathway Analysis Through Habitat (PATH) tool, which can predict the location of potential corridors of animal movement between patches of habitat within any map. The algorithm works by launching virtual entities that we call 'walkers' from each patch of habitat in the map, simulating their travel as they journey through land cover types in the intervening matrix, and finally arrive at a different habitat 'island.' Each walker is imbued with a set of user-specified habitat preferences that make its walking behavior resemble a particular animal species. Because the tool operates in parallel on a supercomputer, large numbers of walkers can be efficiently simulated. The importance of each habitat patch as a source or a sink for a species is calculated, consistent with existing concepts in the metapopulation literature. The manipulation of a series of contrived artificial landscapes demonstrates that the location of potential dispersal corridors and relative source and sink importance among patches can be purposefully altered in expected ways. Finally, potential dispersal corridors are predicted among remnant woodlots within three actual landscape maps.

  8. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates.

    PubMed

    Schlaepfer, Charles H; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell's motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium's large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students' laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around -30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20-30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature's conclusion in a V-Gated Ca(++) influx and depolarization resulting in feedback from intracellular Ca(++) that inactivates V-Gated Ca(++) channels and activates Ca-Dependent K(+) channels through a secondary messenger cascade that results in the K(+) efflux and repolarization. PMID:26557800

  9. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials.

    PubMed

    Trantidou, Tatiana; Terracciano, Cesare M; Kontziampasis, Dimitrios; Humphrey, Eleanor J; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 - 2.22) are comparable with values for healthy adult rat ventricles (1.98 - 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies.

  10. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. PMID:27570104

  11. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system.

  12. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials

    PubMed Central

    Trantidou, Tatiana; Terracciano, Cesare M.; Kontziampasis, Dimitrios; Humphrey, Eleanor J.; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 – 2.22) are comparable with values for healthy adult rat ventricles (1.98 – 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies. PMID:26053434

  13. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  14. Quantitative Assessment of the Distributions of Membrane Conductances Involved in Action Potential Backpropagation Along Basal Dendrites

    PubMed Central

    Acker, Corey D.; Antic, Srdjan D.

    2009-01-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or Ih conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which IA down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  15. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    PubMed Central

    Frey, Scott H.; Povinelli, Daniel J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of intended future actions. Recently, the question of whether similar mechanisms exist in other primates has received growing, but still limited, attention. Here, we present data that bear on this issue from a species that is a natural user of tools, our nearest living relative, the chimpanzee. In experiment 1, a subset of chimpanzees showed a non-significant tendency for their grip preferences to be affected by anticipation of the demands associated with bringing a tool's baited end to their mouths. In experiment 2, chimpanzees' initial grip preferences were consistently affected by anticipation of the forthcoming movements in a task that involves using a tool to extract a food reward. The partial discrepancy between the results of these two studies is attributed to the ability to accurately represent differences between the motor costs associated with executing the two response alternatives available within each task. These findings suggest that chimpanzees are capable of accurately representing the costs of intended future actions, and using those predictions to select movements in the present even in the context of externally directed tool use. PMID:22106426

  16. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-01

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation.

  17. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed

  18. The effects of heart rate on the action potential of guinea-pig and human ventricular muscle.

    PubMed

    Attwell, D; Cohen, I; Eisner, D A

    1981-01-01

    1. On increasing the stimulation frequency of isolated pieces of guinea-pig ventricular muscle, the resting potential depolarizes, and the action potential duration and amplitude are reduced. On termination of the high frequency train of action potentials, these changes are reversed. 2. The resting potential changes are roughly exponential, with a time constant of the order of 10 sec, and are attributable to K+ accumulation in the extracellular space. They are not explicable in terms of known gating variables. 3. The action potential duration and amplitude recover much more slowly than the resting potential, after a high frequency train (half-time approximately 5 min). The time course of these recoveries is not exponential, and is slower after trains which produce more shortening of the action potential. The slow time course suggests that K+ accumulation is not the main cause of the changes in action potential shape. Furthermore, when a certain depolarization of the resting potential is produced by a high frequency train, there is a greater reduction of the action potential duration than that which occurs when the bathing [K+] is raised to produce the same depolarization (Reiter & Stickel, 1968). This is so even when a gradient of extracellular [K+] is induced in the preparation, to mimic non-uniform K+ accumulation. 4. Similarly, the shortening of the action potential produced by toxic doses or cardiotonic steroids is probably not the result of K+ accumulation. 5. The slow changes of the action potential shape produced by a high frequency train are not attributable to the effects of gating variables, nor (solely) to a rise in the intracellular Na concentration stimulating the electrogenic Na/K pump. The dye 3,3'-diethylthiadicarbocyanine, which blocks the Ca2+-activated K conductance in the erythrocyte, has no significant effect on the shape changes. 6. After a sudden change in heart rate, the QT interval of the human electrocardiogram (e.c.g.) changes slowly to a

  19. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    ERIC Educational Resources Information Center

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  20. Action potential-induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells.

    PubMed

    Isomura, Y; Kato, N

    1999-10-01

    In hippocampal CA1 pyramidal cells, intracellular calcium increases are required for induction of long-term potentiation (LTP), an activity-dependent synaptic plasticity. LTP is known to develop in magnitude during the second and third postnatal weeks in the rats. Little is known, however, about development of intracellular calcium dynamics during the same postnatal weeks. We investigated postnatal development of intracellular calcium dynamics in the proximal apical dendrites of CA1 pyramidal cells by whole cell patch-clamp recordings and calcium imaging with the Ca(2+) indicator fura-2. Dendritic calcium increases induced by intrasomatically evoked action potentials were slight during the first postnatal week but gradually became robust 3 to 6-fold during the second and third postnatal weeks. These calcium increases were blocked by application of 250 microM CdCl(2), a nonspecific blocker for high-threshold voltage-dependent calcium channels (VDCCs). Under the voltage-clamp condition, both calcium currents and dendritic calcium accumulations induced by depolarization were larger at the late developmental stage (P15-18) than the early stage (P4-7), indicating developmental enhancement of calcium influx mediated by high-threshold VDCCs. Moreover, theta-burst stimulation (TBS), a protocol for LTP induction, induced large intracellular calcium increases at the late developmental stage, in synchrony with maturation of TBS-induced LTP. These results suggest that developmental enhancement of intracellular calcium increases induced by action potentials may underlie maturation of calcium-dependent functions such as synaptic plasticity in hippocampal neurons.

  1. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  2. Establishing a leaf proteome reference map for Ginkgo biloba provides insight into potential ethnobotanical uses.

    PubMed

    Uvackova, Lubica; Ondruskova, Emilia; Danchenko, Maksym; Skultety, Ludovit; Miernyk, Ján A; Hrubík, Pavel; Hajduch, Martin

    2014-11-26

    Although ginkgo (Maidenhair tree, Ginkgo biloba L.) is an ancient medicinal and ornamental tree, there has not previously been any systematic proteomic study of the leaves. Herein we describe results from the initial study identifying abundant ginkgo leaf proteins and present a gel reference map. Proteins were isolated from fully developed mature leaves in biological triplicate and analyzed by two-dimensional electrophoresis plus tandem mass spectrometry. Using this approach, we were able to reproducibly quantify 190 abundant protein spots, from which 157 proteins were identified. Most of identified proteins are associated with the energy and protein destination/storage categories. The reference map provides a basis for understanding the accumulation of flavonoids and other phenolic compounds in mature leaves (e.g., identification of chalcone synthase, the first committed enzyme in flavonoid biosynthesis). We additionally detected several proteins of as yet unknown function. These proteins comprise a pool of potential targets that might be useful in nontraditional medical applications. PMID:25365400

  3. A 10-form gauge potential and an M-9-brane Wess-Zumino action in massive 11D theory

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2000-03-01

    We discuss some properties of an M-9-brane in ``massive 11D theory'' proposed by Bergshoeff, Lozano and Ortin. A 10-form gauge potential is consistently introduced into the massive 11D supergravity, and an M-9-brane Wess-Zumino action is constructed as that of a gauged /σ-model. Using duality relations is crucial in deriving the action, which we learn from the study of a 9-form potential in 10D massive IIA theory. A target space solution of an M-9-brane with a non-vanishing 10-form gauge field is also obtained, whose source is shown to be the M-9-brane effective action.

  4. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    PubMed Central

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-01-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology1-6. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution1,2. Ideally the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior1,2, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints4,7-9. Field-effect transistors (FETs) can also record electric potentials inside cells10, and since their performance does not depend on impedance11,12, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously we have demonstrated FET-based intracellular recording with kinked nanowire structures10, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here we report a new approach where a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. After penetrating the cell membrane, the SiO2 nanotube brings the cell cytosol into contact with the FET and enables the recording of intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale which is well below that accessible with other methods1,2,4. Studies of cardiomyocyte cells demonstrate that when brought close, the nanotubes of phospholipid-modified BIT-FETs spontaneously penetrate the cell membrane to yield stable, full-amplitude intracellular action

  5. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.

    PubMed

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  6. Potential Mechanisms of Action in the Treatment of Social Impairment and Disorganization in Adolescents with ADHD

    PubMed Central

    Evans, Steven W.; Schultz, Brandon K.; Zoromski, Allison K.

    2014-01-01

    Two important domains that can be impaired in adolescents with ADHD are organization and social functioning; however, the development of interventions to target these areas in adolescents is in the early stages. Currently, small efficacy trials are beginning to be used to conduct preliminary tests on the proposed mechanisms of action for these interventions. These two studies examined the efficacy of organization and social functioning interventions for adolescents with ADHD, as well as the potential mechanisms of action for each intervention. Results from the organization intervention provide support for a significant relationship between performance on the organization checklist and overall GPA; however, there was no meaningful pattern of relationships between achieving mastery of the organization tasks and grades within quarter. Further, results from the social functioning intervention support a moderate relationship between performance on process measures of response to the intervention and outcome measures of social functioning. Results of this study provide implications for modifications to the measures and intervention procedures in future research. PMID:24748901

  7. Eudragit E100® potentiates the bactericidal action of ofloxacin against fluoroquinolone-resistant Pseudomonas aeruginosa.

    PubMed

    Romero, Verónica L; Pons, Patricia; Bocco, José L; Manzo, Rubén H; Alovero, Fabiana L

    2012-09-01

    We report the enhanced bactericidal activity of ofloxacin in drug-containing Eudragit E100(®) dispersions (EuCl-OFX) against Pseudomonas aeruginosa and the effect of the cationic polymer on bacterial membrane. Organisms treated with EuCl-OFX showed changes in cell morphology, altered outer membrane (OM) and cytoplasm with low electrodensity areas. Zeta potential of bacterial surface was shifted to positive. Sensitization to lytic agents was also observed. A profound effect on bacterial size, granularity and membrane depolarization was found by flow cytometry. Cultures exposed to drug-free polymer also showed some damaged bacterial membranes, but there was no significant cell death. Inhibition of P. aeruginosa by EuCl-OFX may involve surface effect and, to some extent, permeation effect. The cationic polymer act to mitigate the electronegativity of cell surface in the process of disorganizing the OM, rendering it more permeable to antibiotic. In addition, cytoplasmic membrane depolarization turns bacterial cell more vulnerable. The effects on membranes combined with the mechanism of action of quinolone explain the improved bactericidal action exhibited by EuCl-OFX. The behavior described for Eudragit E100(®) against P. aeruginosa may be a useful tool to broaden the spectrum of antibiotics whose clinical use is limited by the impermeability of the bacterial OM.

  8. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty

    PubMed Central

    Dixon, David; Coates, Jonathon; del Carpio Pons, Alicia; Horabin, Joanna; Walker, Andrew; Abdul, Nicole; Kalson, Nicholas S.; Brewster, Nigel T.; Weir, David J.; Deehan, David J.; Mann, Derek A.; Borthwick, Lee A.

    2015-01-01

    Arthrofibrosis is a fibroproliferative disease characterised by excessive deposition of extracellular matrix components intra-articularly leading to pain and restricted range of movement. Although frequently observed following total knee arthroplasty (TKA) no therapeutic options exist. A pilot study demonstrated that intra-articular injection of Anakinra, an IL-1R antagonist, improved range of movement and pain in patients with arthrofibrosis however the mechanism of action is unknown. We hypothesise that IL-1α/β will drive an inflammatory phenotype in fibroblasts isolated from the knee, therefore identifying a potential mechanism of action for Anakinra in arthrofibrosis following TKA. Fibroblasts isolated from synovial membranes and infra-patellar fat pad of patients undergoing TKA express high levels of IL-1R1. Stimulation with IL-1α/β induced a pro-inflammatory phenotype characterised by increased secretion of GMCSF, IL-6 and IL-8. No significant difference in the inflammatory response was observed between fibroblasts isolated from synovial membrane or infra-patellar fat pad. IL-1α/β treatments induced a pro-inflammatory phenotype in fibroblasts from both synovial membrane and infra-patellar fat pad and therefore Anakinra can likely have an inhibitory effect on fibroblasts present in both tissues in vivo. It is also likely that fibroblast responses in the tissues are controlled by IL-1α/β availability and not their ability to respond to it. PMID:26553966

  9. Communicating Potential Ash-Fall Hazards With Scenario Maps at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Griswold, J.; Wardwell, R. S.; Bohlander, A.

    2006-12-01

    Shortly after the reawakening of Mount St. Helens in September 2004, the USGS Cascades Volcano Observatory (CVO) began producing twice-daily ash-fall-scenario maps to aid in eruption response on the part of scientists and emergency managers. We use the advection-diffusion-sedimentation program ASHFALL of Hurst (1994) and numerical forecast winds from the NOAA Air Resources Laboratory to produce the maps for 00 and 12 hours UTC. The ASHFALL program produces a gridded output of potential uncompacted tephra thicknesses. We produce scenario maps using bulk tephra volumes of 1 and 10 million cubic meters (MCM), with column heights of 7 and 12 km, respectively. These volumes are judged to cover the range of possible tephra volumes that the ongoing dome-building eruption is capable of producing. Thus far, none of the few tephra-producing eruptive events since 2004 has ejected more than several hundred thousand MCM of tephra. Georeferenced gridded output from the ASHFALL program is imported to GIS software so that it can be visualized on a regional map. These maps are distributed to personnel at CVO to aid in communicating hazards information in daily updates of the volcanoe's activity, and to emergency management officials and the public in the event of a tephra producing event. In late 2004, at the start of the current eruption period, the ashfall scenario maps were used to support contingency planning in the Joint Operations Center in Vancouver, Washington and in the Washington State Emergency Operations Center. At the present time, gridded output is sent directly to the State of Washington's Emergency Management Division where they are incorporated into their GIS-based emergency information system, ready to be distributed to local emergency management entities in case of an ash-producing event. Having daily scenario maps in hand facilitates rapid communication of where ashfall is likely to occur. Once an event is underway, the ASHFALL program is run using observed

  10. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons.

    PubMed

    Renganathan, M; Cummins, T R; Waxman, S G

    2001-08-01

    C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Na(v)1.8 (+/+) and (-/-) small DRG neurons maintained for 2-8 h in vitro to examine the role of sodium channel Na(v)1.8 (alpha-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Na(v)1.8 (+/+) and (-/-) DRG neurons, there were significant differences in action potential electrogenesis. Most Na(v)1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Na(v)1.8 (-/-) neurons produce smaller graded responses. The peak of the response was significantly reduced in Na(v)1.8 (-/-) neurons [31.5 +/- 2.2 (SE) mV] compared with Na(v)1.8 (+/+) neurons (55.0 +/- 4.3 mV). The maximum rise slope was 84.7 +/- 11.2 mV/ms in Na(v)1.8 (+/+) neurons, significantly faster than in Na(v)1.8 (-/-) neurons where it was 47.2 +/- 1.3 mV/ms. Calculations based on the action potential overshoot in Na(v)1.8 (+/+) and (-/-) neurons, following blockade of Ca(2+) currents, indicate that Na(v)1.8 contributes a substantial fraction (80-90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na(+) channels can produce all-or-none action potentials in some Na(v)1.8 (-/-) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Na(v)1.8 (-/-) neurons is more sensitive to membrane depolarization than in Na(v)1.8 (+/+) neurons, and, in the absence of Na(v)1.8, is attenuated with even modest depolarization. These observations

  11. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-09-25

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.

  12. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations.

    PubMed

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2015-09-01

    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations.

  13. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  14. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles

    PubMed Central

    Arnold, W. David; Sheth, Kajri A.; Wier, Christopher G.; Kissel, John T.; Burghes, Arthur H.; Kolb, Stephen J.

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  15. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons

    PubMed Central

    Russo, Giovanni; Nieus, Thierry R.; Maggi, Silvia; Taverna, Stefano

    2013-01-01

    Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior. PMID:24294191

  16. [Adrenaline potentiates antiepileptic but not sedative action of diazepam in rats].

    PubMed

    Serdiuk, S E; Gmiro, V E

    2012-02-01

    Intramuscular (i.m.) administration ofdiazepam in a dose of 10 mg/kg and adrenaline in a dose of 0.2 mg/kg prevents generalized clonic-tonic pentylenetetrazol (PTZ) seizures in 75-80 % of rats, but only in 35-40 % of rats it prevents local clonic PTZ seizures. In the above mentioned dose, diazepam causes a strong sedation, but adrenaline does not cause a sedative effects. The combined administration of diazepam and adrenaline in threshold independently ineffective doses prevents both clonic-tonic and clonic PTZ seizures in 80 % of rats without a sedation development. The basis for mechanism of potentiation of anticonvulsant action of diazepam is the stimulation of gastric mucosa afferents by adrenaline. PMID:22650067

  17. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    PubMed

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators.

  18. Effect of intense sound exposure on cochlear microphonics and whole nerve action potential

    NASA Astrophysics Data System (ADS)

    Yamamura, K.; Yamamoto, N.; Kohyama, A.; Sawada, Y.; Ohno, H.; Saitoh, Y.

    1989-06-01

    An investigation was carried out to determine whether or not the critical band with Temporary Threshold Shift (TTS) is affected by exposure to high frequency sound. The function of the cochlea and the 8th nerve in guinea pigs was estimated by the intensity function and maximum output voltage of cochlear microphonics (CM) and by whole nerve action potential (Ap). Our results showed that both the intensity function and the maximum output voltage of CM and Ap decreased. Ap obtained at the test frequency higher, by half an octave, than the center frequency of the exposure noise was especially lowered. These results suggest that the critical band with TTS of both Ap and CM may be affected in exposure to high frequency sound.

  19. Action potentials occur spontaneously in squid giant axons with moderately alkaline intracellular pH.

    PubMed

    Clay, J R; Shrier, A

    2001-10-01

    This report demonstrates a novel finding from the classic giant axon preparation of the squid. Namely, the axon can be made to fire autonomously (spontaneously occurring action potentials) when the intracellular pH (pH(i)) was increased to about 7.7, or higher. (Physiological pH(i) is 7.3.) The frequency of firing was 33 Hz (T = 5 degrees ). No changes in frequency or in the voltage waveform itself were observed when pH(i) was increased from 7.7 up to 8.5. In other words, the effect has a threshold at a pH(i) of about 7.7. A mathematical model that is sufficient to mimic these results is provided using a modified version of the Clay (1998) description of the axonal ionic currents.

  20. Control and Plasticity of the Presynaptic Action Potential Waveform at Small CNS Nerve Terminals

    PubMed Central

    Hoppa, Michael B.; Gouzer, Geraldine; Armbruster, Moritz; Ryan, Timothy A.

    2014-01-01

    SUMMARY The steep dependence of exocytosis on Ca2+ entry at nerve terminals implies that voltage control of both Ca2+ channel opening and the driving force for Ca2+ entry are powerful levers in sculpting synaptic efficacy. Using fast, genetically encoded voltage indicators in dissociated primary neurons, we show that at small nerve terminals K+ channels constrain the peak voltage of the presynaptic action potential (APSYN) to values much lower than those at cell somas. This key APSYN property additionally shows adaptive plasticity: manipulations that increase presynaptic Ca2+ channel abundance and release probability result in a commensurate lowering of the APSYN peak and narrowing of the waveform, while manipulations that decrease presynaptic Ca2+ channel abundance do the opposite. This modulation is eliminated upon blockade of Kv3.1 and Kv1 channels. Our studies thus reveal that adaptive plasticity in the APSYN waveform serves as an important regulator of synaptic function. PMID:25447742

  1. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke.

    PubMed

    Li, Wentao; Xu, Haoliang; Testai, Fernando D

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood-brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720's mechanisms of action in stroke. PMID:27617002

  2. Effect of Cardiac Tissue Anisotropy on Three-Dimensional Electrical Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    He, Zhi Zhu; Liu, Jing

    A three-dimensional (3D) electrical action potential propagation model is developed to characterize the integrated effect of cardiac tissue structure using a homogenous function with a spatial inhomogeneity. This method may be more effective for bridging the gap between computational models and experimental data for cardiac tissue anisotropy. A generalized 3D eikonal relation considering anisotropy and a self-similar evolution solution of such a relation are derived to identify the effect of anisotropy and predict the anisotropy-induced electrical wave propagation instabilities. Furthermore, the phase field equation is introduced to obtain the complex three-dimensional numerical solution of the new correlation. The present results are expected to be valuable for better understanding the physiological behavior of cardiac tissues.

  3. A supervised multi-sensor matched filter for the detection of extracellular action potentials.

    PubMed

    Szymanska, Agnieszka F; Doty, Michael; Scannell, Kathryn V; Nenadic, Zoran

    2014-01-01

    Multi-sensor extracellular recording takes advantage of several electrode channels to record from multiple neurons at the same time. However, the resulting low signal-to-noise ratio (SNR) combined with biological noise makes signal detection, the first step of any neurophysiological data analysis, difficult. A matched filter was therefore designed to better detect extracellular action potentials (EAPs) from multi-sensor extracellular recordings. The detector was tested on tetrode data from a locust antennal lobe and assessed against three trained analysts. 25 EAPs and noise samples were selected manually from the data and used for training. To reduce complexity, the filter assumed that the underlying noise in the data was spatially white. The detector performed with an average TP and FP rate of 84.62% and 16.63% respectively. This high level of performance indicates the algorithm is suitable for widespread use.

  4. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    PubMed Central

    Li, Wentao; Xu, Haoliang; Testai, Fernando D.

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood–brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke.

  5. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    PubMed Central

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  6. Enhanced Action Potential Passage Through the Node of Ranvier of Myelinated Axons via Proton Hopping.

    PubMed

    Kier, Lemont; Hall, Lowell; Tombes, Robert M

    2015-01-01

    Nerve impulses travel along myelinated axons as much as 300-fold faster than they do along unmyelinated axons. Myelination is essential for normal nervous system behavior in vertebrates as illustrated by leukodystrophies, such as amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS), where myelin is degenerated or damaged. The increased conduction velocity that occurs in myelinated axons is dependent on gaps in the myelin called Nodes of Ranvier that are enriched in ion channels. These Nodes are separated by long stretches of myelin insulation where no transmembrane ion conductance occurs. It is believed that the action potential jumps or skips between nodes, conserving its information content, while maintaining its speed. In this study, a model is presented that implicates Nodes of Ranvier as responsible for regenerating the proton hopping that is responsible for nerve impulse conductance in myelinated axons.

  7. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    PubMed Central

    Li, Wentao; Xu, Haoliang; Testai, Fernando D.

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood–brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke. PMID:27617002

  8. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  9. Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.

    PubMed

    Rowan, Matthew J M; DelCanto, Gina; Yu, Jianqing J; Kamasawa, Naomi; Christie, Jason M

    2016-07-20

    In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. PMID:27346528

  10. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates

    PubMed Central

    Schlaepfer, Charles H.; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell’s motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium’s large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students’ laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around −30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20–30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature’s conclusion in a V-Gated Ca++ influx and depolarization resulting in feedback from intracellular Ca++ that inactivates V-Gated Ca++ channels and activates Ca-Dependent K+ channels through a secondary messenger cascade that results in the K+ efflux and repolarization. PMID:26557800

  11. Mannan Oligosaccharides in Nursery Pig Nutrition and Their Potential Mode of Action

    PubMed Central

    Halas, Veronika; Nochta, Imre

    2012-01-01

    Simple Summary The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action. Mannan oligosaccharide products maintain intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period in pigs and enhance disease resistance by promoting antigen presentation. We find that dietary supplementation has growth promoting effects in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards. Abstract Mannan oligosaccharides (MOSs) are often referred to as one of the potential alternatives for antimicrobial growth promoters. The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action based on the latest publications. We discuss the dietary impact of MOSs on (1) microbial changes, (2) morphological changes of gut tissue and digestibility of nutrients, and (3) immune response of pigs after weaning. Dietary MOSs maintain the intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period. Recent results suggest that MOS enhances the disease resistance in swine by promoting antigen presentation facilitating thereby the shift from an innate to an adaptive immune response. Accordingly, dietary MOS supplementation has a potential growth promoting effect in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards that are able to maintain a high growth rate after weaning. PMID:26486920

  12. Glutamine and glutamate limit the shortening of action potential duration in anoxia-challenged rabbit hearts

    PubMed Central

    Drake, Kenneth J; Shotwell, Matthew S; Wikswo, John P; Sidorov, Veniamin Y

    2015-01-01

    In clinical conditions, amino acid supplementation is applied to improve contractile function, minimize ischemia/reperfusion injury, and facilitate postoperative recovery. It has been shown that glutamine enhances myocardial ATP/APD (action potential duration) and glutathione/oxidized glutathione ratios, and can increase hexosamine biosynthesis pathway flux, which is believed to play a role in cardioprotection. Here, we studied the effect of glutamine and glutamate on electrical activity in Langendorff-perfused rabbit hearts. The hearts were supplied by Tyrode's media with or without 2.5 mmol/L glutamine and 150 μmol/L glutamate, and exposed to two 6-min anoxias with 20-min recovery in between. Change in APD was detected using a monophasic action potential probe. A nonlinear mixed-effects regression technique was used to evaluate the effect of amino acids on APD over the experiment. Typically, the dynamic of APD change encompasses three phases: short transient increase (more prominent in the first episode), slow decrease, and fast increase (starting with the beginning of recovery). The effect of both anoxic challenge and glutamine/glutamate was cumulative, being more pronounced in the second anoxia. The amino acids' protective effect became largest by the end of anoxia – 20.0% (18.9, 95% CI: [2.6 ms, 35.1 ms]), during the first anoxia and 36.6% (27.1, 95% CI: [7.7 ms, 46.6 ms]), during the second. Following the second anoxia, APD difference between control and supplemented hearts progressively increased, attaining 10.8% (13.6, 95% CI: [4.1 ms, 23.1 ms]) at the experiments' end. Our data reveal APD stabilizing and suggest an antiarrhythmic capacity of amino acid supplementation in anoxic/ischemic conditions. PMID:26333831

  13. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    PubMed Central

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  14. Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary.

    PubMed

    Szabó, Katalin Zsuzsanna; Jordan, Gyozo; Horváth, Ákos; Szabó, Csaba

    2014-03-01

    A detailed geogenic radon potential (GRP) mapping based on field soil gas radon and soil gas permeability measurements was carried out in this study. A conventional continuous variable approach was used in this study for GRP determination and to test its applicability to the selected area of Hungary. Spatial pattern of soil gas radon concentration, soil permeability and GRP and the relationship between geological formations and these parameters were studied by performing detailed spatial analysis. Exploratory data analysis revealed that higher soil gas radon activity concentration and GRP characterizes the mountains and hills than the plains. The highest values were found in the proluvial-deluvial sediments, rock debris on the downhill slopes eroded from hills. Among the Quaternary sediments, which characterize the study area, the fluvial sediment has the highest values, which are also located in the hilly areas. The lowest values were found in the plain areas covered by drift sand, fluvioeolic sand, fluvial sand and loess. As a conclusion, radon is related to the sediment cycle in the study area. A geogenic radon risk map was created, which assists human health risk assessment and risk reduction since it indicates the potential of the source of indoor radon. The map shows that low and medium geogenic radon potential characterizes the study area in central Hungary. High risk occurs only locally. The results reveal that Quaternary sediments are inhomogeneous from a radon point of view, fluvial sediment has medium GRP, whereas the other rock formations such as drift sand, fluioeolic sand, fluvial sand and loess, found in the study area, have low GRP.

  15. Mapping potential of digitized aerial photographs and space images for site-specific crop management

    NASA Astrophysics Data System (ADS)

    Nielsen, Gerald A.; Long, Daniel S.; Queen, Lloyd P.

    1996-11-01

    In site-specific crop management, treatments (e.g., fertilizer and herbicides) are applied precisely where they are needed. Global positioning system receivers allow accurate navigation of field implements and creation of crop yield maps. Remote sensing products help producers explain the wide range of yields shown on these maps and become the basis for digitized field management maps. Previous sources of remote sensing products for agriculture did not provide services that generated a sustained demand by crop producers, often because data were not delivered quickly enough. Public Access Resource Centers could provide a nearly uninterrupted electronic flow of data from NASA's MODIS and other sensors that could help producers and their advisors monitor crop conditions. This early warning/opportunity system would provide a low-cost way to discover conditions that merit examination on the ground. High-spatial-resolution digital aerial photographs or data from new commercial satellite companies would provide the basis for site-specific treatments. These detailed data are too expensive to acquire often and must be timed so as to represent differences in water supply characteristics and crop yield potentials. Remote sensing products must be linked to specific prescriptions that crop produces use to control operations and improve outcomes.

  16. Mapping environmental injustices: pitfalls and potential of geographic information systems in assessing environmental health and equity.

    PubMed Central

    Maantay, Juliana

    2002-01-01

    Geographic Information Systems (GIS) have been used increasingly to map instances of environmental injustice, the disproportionate exposure of certain populations to environmental hazards. Some of the technical and analytic difficulties of mapping environmental injustice are outlined in this article, along with suggestions for using GIS to better assess and predict environmental health and equity. I examine 13 GIS-based environmental equity studies conducted within the past decade and use a study of noxious land use locations in the Bronx, New York, to illustrate and evaluate the differences in two common methods of determining exposure extent and the characteristics of proximate populations. Unresolved issues in mapping environmental equity and health include lack of comprehensive hazards databases; the inadequacy of current exposure indices; the need to develop realistic methodologies for determining the geographic extent of exposure and the characteristics of the affected populations; and the paucity and insufficiency of health assessment data. GIS have great potential to help us understand the spatial relationship between pollution and health. Refinements in exposure indices; the use of dispersion modeling and advanced proximity analysis; the application of neighborhood-scale analysis; and the consideration of other factors such as zoning and planning policies will enable more conclusive findings. The environmental equity studies reviewed in this article found a disproportionate environmental burden based on race and/or income. It is critical now to demonstrate correspondence between environmental burdens and adverse health impacts--to show the disproportionate effects of pollution rather than just the disproportionate distribution of pollution sources. PMID:11929725

  17. Evaluating the Potential of Waveform Lidar and Hyperspectral Data Fusion for Species Level Biomass Mapping.

    NASA Astrophysics Data System (ADS)

    Swatantran, A.; Dubayah, R.; Hofton, M.; Blair, J. B.

    2007-12-01

    Many studies have demonstrated the ability of waveform lidar to map forest structural metrics such as canopy height, canopy cover and above ground biomass with high accuracies over different forest cover and types. Hyperspectral data provides forest attributes complementary to lidar such as vegetation stress, moisture content and land cover at species level. This study explores and evaluates the combined potential of waveform lidar (LVIS) and AVIRIS hyperspectral imagery for species level biomass mapping in the Sierra Nevada spotted owl habitat.LVIS quartile heights and canopy cover along with spectral metrics and endmember fractions from AVIRIS were compared with field biomass measures using linear and stepwise regression.Water band indices and shade fractions from AVIRIS show moderate to strong correlation with LVIS canopy height and biomass for certain species. LVIS variables were found to be consistently good predictors of total biomass as well as species level biomass. The inclusion of AVIRIS metrics in combination with lidar added little explanatory value for biomass. However, biomass prediction at species level lowered residual error by 20% or more in comparison to total biomass estimates, suggesting that its main value for biomass mapping is through species-level stratification.

  18. The Potential for Mapping Nematode Distributions for Site-specific Management

    PubMed Central

    Wyse-Pester, Dawn Y.; Wiles, Lori J.; Westra, Philip

    2002-01-01

    The success of site-specific nematode management depends on a grower or advisor being able to afford to make a map of an infestation that is accurate enough for management decisions. The spatial dependence of nematode infestations and correlation of soil attributes with nematode density were assessed to investigate the scale of sampling required to obtain correlated observations of density and the use of soils data to reduce the cost of sampling. Nematodes and soil were sampled on a 76.2 × 76.2-m grid in two irrigated corn (Zea mays) fields for 2 years. Nematodes of each of three species were found in 36% to 77% of the cores from a field. Spatial dependence was detected for 10 of 16 distributions, and 22% to 67% of the variation in density within a field could be attributed to spatial correlation. Density was correlated to distances of 115 to 649 m in the directions of 0, 45, 90, and 135° from the crop row, and distances varied with direction. Correlations between nematode density and soil attributes were inconsistent between species and fields. These results indicate a potential for mapping nematode infestations for site-specific management, but provide no evidence for reducing the cost of sampling by substituting soils data for nematode counts when making a map. PMID:19265913

  19. Mosquito habitat and dengue risk potential in Kenya: alternative methods to traditional risk mapping techniques.

    PubMed

    Attaway, David F; Jacobsen, Kathryn H; Falconer, Allan; Manca, Germana; Rosenshein Bennett, Lauren; Waters, Nigel M

    2014-11-01

    Outbreaks, epidemics and endemic conditions make dengue a disease that has emerged as a major threat in tropical and sub-tropical countries over the past 30 years. Dengue fever creates a growing burden for public health systems and has the potential to affect over 40% of the world population. The problem being investigated is to identify the highest and lowest areas of dengue risk. This paper presents "Similarity Search", a geospatial analysis aimed at identifying these locations within Kenya. Similarity Search develops a risk map by combining environmental susceptibility analysis and geographical information systems, and then compares areas with dengue prevalence to all other locations. Kenya has had outbreaks of dengue during the past 3 years, and we identified areas with the highest susceptibility to dengue infection using bioclimatic variables, elevation and mosquito habitat as input to the model. Comparison of the modelled risk map with the reported dengue epidemic cases obtained from the open source reporting ProMED and Government news reports from 1982-2013 confirmed the high-risk locations that were used as the Similarity Search presence cells. Developing the risk model based upon the bioclimatic variables, elevation and mosquito habitat increased the efficiency and effectiveness of the dengue fever risk mapping process.

  20. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  1. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  2. A calcium-activated sodium conductance produces a long-duration action potential in the egg of a nemertean worm.

    PubMed Central

    Jaffe, L A; Kado, R T; Kline, D

    1986-01-01

    1. The egg of the nemertean worm Cerebratulus lacteus produced an action potential having a duration of about 9 min. We investigated the ionic conductances which accounted for this long-duration action potential. 2. The peak of the action potential was about +50 mV and depended on extracellular Ca2+, while the plateau potential was about +25 mV and depended on extracellular Na+. 3. Under voltage-clamp conditions, depolarization produced two temporally separate inward currents: a fast current which reached a peak at about 10 ms, and a slow current which took up to 1 min to reach its peak and lasted for several min. 4. The fast current was independent of extracellular Na+, but was blocked by removal of extracellular Ca2+. 5. The slow current was not seen when extracellular Na+ was replaced by choline+ or K+. 6. The slow current did not develop in Ca2+-free sea water, and was reduced to about half if Ca2+ was removed after the current had been initiated. 7. Microinjection of EGTA blocked the slow current, and reduced the action potential duration to about 1 min. 8. We concluded that a voltage-activated Ca2+ conductance produced the peak of the action potential, while a Ca2+-activated Na+ conductance produced its plateau. PMID:2442351

  3. Preliminary Map of Potentially Karstic Carbonate Rocks in the Central and Southern Appalachian States

    USGS Publications Warehouse

    Weary, David J.

    2008-01-01

    Karst is a landscape produced by dissolution of rocks and the development of integrated subterranean drainages dominated by the flow of ground water in solutionally enlarged conduits. Karst landscapes typically include cave entrances, sinkholes, blind valleys, losing streams, springs, and large and small-scale solution features on bedrock surfaces. Water-bearing rocks beneath the surface containing solutionally enlarged pores, fractures, or conduits are referred to as karst aquifers. About 40 percent of all ground water extracted in the United States comes from karst aquifers (Karst Waters Institute). Karst means many things to many people. To most cavers and many speleologists, karst means areas containing caves. To engineers, home builders, local governments, and insurance companies, karst is exemplified by the occurrence of sinkholes and subsidence hazard. To hydrologists, well drillers, and environmental consultants, the focus on karst may be more limited to karst aquifers and springs. Precise figures are not available, but ground collapses in karst areas in the United States require hundreds of millions of dollars in repair and mitigation costs each year. Most karst in the United States is formed in either carbonate or evaporite rocks. This map depicts only areas of carbonate rock outcrop, the chief host for karst formation in the eastern United States. The U.S. Geological Survey (USGS), in cooperation with the National Cave and Karst Research Institute (NCKRI), the National Speleological Society (NSS), and various State geological surveys, is working on a new national karst map that will delineate areas of karst and karst-like features nationwide. This product attempts to identify potentially karstic areas of the Appalachian states as defined by the Appalachian Regional Commission (ARC), with the addition of the state of Delaware. This map is labeled preliminary because there is an expectation that it will be revised and updated as part of a new national

  4. Risk assessment of ventricular arrhythmia using new parameters based on high resolution body surface potential mapping

    PubMed Central

    Fereniec, Malgorzata; Stix, Gunter; Kania, Michal; Mroczka, Tomasz; Janusek, Dariusz; Maniewski, Roman

    2011-01-01

    Summary Background The effective screening of myocardial infarction (MI) patients threatened by ventricular tachycardia (VT) is an important issue in clinical practice, especially in the process of implantable cardioverter-defibrillator (ICD) therapy recommendation. This study proposes new parameters describing depolarization and repolarization inhomogeneity in high resolution body surface potential maps (HR BSPM) to identify MI patients threatened by VT. Material/Methods High resolution ECGs were recorded from 64 surface leads. Time-averaged HR BSPMs were used. Several parameters for arrhythmia risk assessment were calculated in 2 groups of MI patients: those with and without documented VT. Additionally, a control group of healthy subjects was studied. To assess the risk of VT, the following parameters were proposed: correlation coefficient between STT and QRST integral maps (STT_QRST_CORR), departure index of absolute value of STT integral map (STT_DI), and departure index of absolute value of T-wave shape index (TSI_DI). These new parameters were compared to known parameters: QRS width, QT interval, QT dispersion, Tpeak-Tend interval, total cosines between QRS complex and T wave, and non-dipolar content of QRST integral maps. Results STT_DI, TSI_DI, STT_QRST_CORR, QRS width, and QT interval parameters were statistically significant (p≤0.05) in arrhythmia risk assessment. The highest sensitivity was found for the STT_DI parameter (0.77) and the highest specificity for TSI_DI (0.79). Conclusions Arrhythmia risk is demonstrated by both abnormal spatial distribution of the repolarization phase and changed relationship between depolarization and repolarization phases, as well as their prolongation. The proposed new parameters might be applied for risk stratification of cardiac arrhythmia. PMID:21358612

  5. Cardiac action potential duration and contractility in the intact dog heart.

    PubMed

    Drake-Holland, A J; Noble, M I; Pieterse, M; Schouten, V J; Seed, W A; ter Keurs, H E; Wohlfart, B

    1983-12-01

    The maximum rate of rise of left ventricular pressure (DP) and action potential duration (a.p.d.) were measured in closed-chest anaesthetized dogs with atrioventricular dissociation and beta-adrenergic blockade. Right ventricular stimulation was carried out with protocols consisting of a conditioning 'priming' period and a test period. When a single test stimulus was introduced at varying intervals after the priming period, DP was found to be maximal at 800-1000 ms. With this single test stimulus fixed at the optimum, DP was found to be a variable inverse function of the a.p.d. of the same beat; no positive correlation could be found between DP and a.p.d. When a second test stimulus at the optimum interval was introduced after the first, the DP (DP2) was found to be strongly dependent on that elicited by the first test stimulus (DP1); the relationship was positive, linear, independent of the method used to vary DP, and independent of whether DP1 was depressed or potentiated. The slope of the relationship was less than 1.0 and the line passed through the point where DP2 = DP1; this is the point of continuous stimulation at the optimum interval in a steady state. This result is consistent with the hypothesis that the coefficient relating DP1 to DP2, at constant a.p.d. of the first test pulse (AP1), is an index of the proportion of the activator of contraction stored during relaxation of test beat 1 which is released again on beat 2. In order to test the hypothesis that the remaining contractility depended on the action potential of test beat 1, AP1 was varied by changing the intervals between the priming stimuli. In order to determine the relationship between DP2 and AP1 it was necessary to carry out multiple regression analysis because DP2 was already known to be strongly dependent on DP1 (point 3 above), i.e. DP2 = BDP(DP1) + BAP(AP1 - D). This analysis yielded highly significant positive values for the coefficients BDP and BAP. This result is compatible with the

  6. Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling

    PubMed Central

    Brunner, János; Szabadics, János

    2016-01-01

    We report that back-propagating action potentials (bAPs) are not simply digital feedback signals in dendrites but also carry analogue information about the overall state of neurons. Analogue information about the somatic membrane potential within a physiological range (from −78 to −64 mV) is retained by bAPs of dentate gyrus granule cells as different repolarization speeds in proximal dendrites and as different peak amplitudes in distal regions. These location-dependent waveform changes are reflected by local calcium influx, leading to proximal enhancement and distal attenuation during somatic hyperpolarization. The functional link between these retention and readout mechanisms of the analogue content of bAPs critically depends on high-voltage-activated, inactivating calcium channels. The hybrid bAP and calcium mechanisms report the phase of physiological somatic voltage fluctuations and modulate long-term synaptic plasticity in distal dendrites. Thus, bAPs are hybrid signals that relay somatic analogue information, which is detected by the dendrites in a location-dependent manner. PMID:27703164

  7. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    PubMed Central

    Lovell, Nigel H.; Dokos, Socrates

    2013-01-01

    A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN), intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue. PMID:23935704

  8. Compound Muscle Action Potential and Motor Function in Children with Spinal Muscular Atrophy

    PubMed Central

    Lewelt, Aga J.; Krosschell, Kristin J.; Scott, Charles; Sakonju, Ai; Kissel, John T.; Crawford, Thomas O.; Acsadi, Gyula; D'Anjou, Guy; Elsheikh, Bakri; Reyna, Sandra P.; Schroth, Mary K.; Maczulski, Jo Anne; Stoddard, Gregory J.; Elovic, Elie; Swoboda, Kathryn J.

    2010-01-01

    Introduction Reliable outcome measures that reflect the underlying disease process and correlate with motor function in children with SMA are needed for clinical trials. Methods Maximum ulnar compound muscle action potential (CMAP) data were collected at 2 visits over a 4–6 week period in children with SMA types II and III, ages 2–17 years old, at 4 academic centers. Primary functional outcome measures included the Modified Hammersmith Functional Motor Scale (MHFMS) and MHFMS-Extend. Results CMAP negative peak amplitude and area showed excellent discrimination between the ambulatory and non-ambulatory SMA cohorts (ROC=0.88). CMAP had excellent test-retest reliability (ICC=0.96–0.97, n=64) and moderate to strong correlation with the MHFMS and MHFMS-Extend (r=0.61–0.73, n=68, p<0.001). Discussion Maximum ulnar CMAP amplitude and area is a feasible, valid and reliable outcome measure for use in pediatric multicenter clinical trials in SMA. CMAP correlates well with motor function and has potential value as a relevant surrogate for disease status. PMID:20737553

  9. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    PubMed Central

    Spencer, C. Ian; Baba, Shiro; Nakamura, Kenta; Hua, Ethan A.; Sears, Marie A.F.; Fu, Chi-cheng; Zhang, Jianhua; Balijepalli, Sadguna; Tomoda, Kiichiro; Hayashi, Yohei; Lizarraga, Paweena; Wojciak, Julianne; Scheinman, Melvin M.; Aalto-Setälä, Katriina; Makielski, Jonathan C.; January, Craig T.; Healy, Kevin E.; Kamp, Timothy J.; Yamanaka, Shinya; Conklin, Bruce R.

    2014-01-01

    Summary Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM). In myocytes carrying an LQT2 mutation (HERG-A422T), APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site. PMID:25254341

  10. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  11. Evaluating the noise in electrically evoked compound action potential measurements in cochlear implants.

    PubMed

    Undurraga, Jaime A; Carlyon, Robert P; Wouters, Jan; van Wieringen, Astrid

    2012-07-01

    Electrically evoked compound action potentials (ECAPs) are widely used to study the excitability of the auditory nerve and stimulation properties in cochlear implant (CI) users. However, ECAP detection can be difficult and very subjective at near-threshold stimulation levels or in spread of excitation measurements. In this study, we evaluated the statistical properties of the background noise (BN) and the postaverage residual noise (RN) in ECAP measurements in order to determine an objective detection criterion. For the estimation of the BN and the RN, a method currently used in auditory brainstem response measurements was applied. The potential benefit of using weighted (Bayesian) averages was also examined. All estimations were performed with a set of approximately 360 ECAP measurements recorded from five human CI users of the CII or HiRes90K device (advanced bionics). Results demonstrated that the BN was normally distributed and the RN decreased according to the square root of the number of averages. No additional benefit was observed by using weighted averaging. The noise was not significantly different either at different stimulation intensities or across recording electrodes along the cochlea. The analysis of the statistical properties of the noise indicated that a signal-to-noise ratio of 1.7 dB as a detection criterion corresponds to a false positive detection rate of 1% with the used measurement setup.

  12. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  13. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    NASA Astrophysics Data System (ADS)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  14. Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons

    PubMed Central

    Pagès, Stéphane; Côté, Daniel; De Koninck, Paul

    2011-01-01

    Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution. PMID:22016723

  15. The interactions between potassium and sodium currents in generating action potentials in the rat sympathetic neurone.

    PubMed Central

    Belluzzi, O; Sacchi, O

    1988-01-01

    V, indicating that at these membrane potentials the IA current mainly, if not exclusively, contributes to the action potential falling phase. 5. The basic features of the sympathetic neurone action potential were reconstructed by simulations based on present and previous voltage-clamp characterization of the IA, IK(V) and INa conductances.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2457694

  16. Potential Deep Seated Landslide Mapping from Various Temporal Data - Benchmark, Aerial Photo, and SAR

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; Lin, Jun-Tin; Lee, Yi-Hsuan; Lin, Meei-Ling; Chen, Chao-Wei; Liao, Ray-Tang; Chi, Chung-Chi; Lin, Hsi-Hung

    2016-04-01

    Landslide is always not hazard until mankind development in highly potential area. The study tries to map deep seated landslide before the initiation of landslide. Study area in central Taiwan is selected and the geological condition is quite unique, which is slate. Major direction of bedding in this area is northeast and the dip ranges from 30-75 degree to southeast. Several deep seated landslides were discovered in the same side of bedding from rainfall events. The benchmarks from 2002 ~ 2009 are in this study. However, the benchmarks were measured along Highway No. 14B and the road was constructed along the peak of mountains. Taiwan located between sea plates and continental plate. The elevation of mountains is rising according to most GPS and benchmarks in the island. The same trend is discovered from benchmarks in this area. But some benchmarks are located in landslide area thus the elevation is below average and event negative. The aerial photos from 1979 to 2007 are used for orthophoto generation. The changes of land use are obvious during 30 years and enlargement of river channel is also observed in this area. Both benchmarks and aerial photos have discovered landslide potential did exist this area but how big of landslide in not easy to define currently. Thus SAR data utilization is adopted in this case. DInSAR and SBAS sar analysis are used in this research and ALOS/PALSAR from 2006 to 2010 is adopted. DInSAR analysis shows that landslide is possible mapped but the error is not easy to reduce. The error is possibly form several conditions such as vegetation, clouds, vapor, etc. To conquer the problem, time series analysis, SBAS, is adopted in this research. The result of SBAS in this area shows that large deep seated landslides are easy mapped and the accuracy of vertical displacement is reasonable.

  17. Subsurface mapping in the Iberian Pyrite Belt using seismic reflection profiling and potential-field data

    NASA Astrophysics Data System (ADS)

    Carvalho, João; Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Granado, Isabel; Branch, Tim; Represas, Patrícia; Carabaneanu, Livia; Matias, Luís; Sousa, Pedro

    2016-06-01

    The Iberian Pyrite Belt (IPB) hosts world-class massive sulphide deposits, such as Neves-Corvo in Portugal and Rio Tinto in Spain. In Portugal, the Palaeozoic Volcanic-Sedimentary Complex (VSC) hosts these ore deposits, extending from the Grândola-Alcácer region to the Spanish border with a NW-SE to WNW-ESE trend. In the study area, between the Neves-Corvo mine region and Alcoutim (close to the Spanish border), the VSC outcrops only in a small horst near Alcoutim. Sparse exploration drill-hole data indicate that the depth to the top of the VSC varies from several 100 m to about 1 km beneath the Mértola Formation Flysch cover. Mapping of the VSC to the SE of Neves-Corvo mine is an important exploration goal and motivated the acquisition of six 2D seismic reflection profiles with a total length of approximately 82 km in order to map the hidden extension of the VSC. The data, providing information deeper than 10 km at some locations, were integrated in a 3D software environment along with potential-field, geological and drill-hole data to form a 3D structural framework model. Seismic data show strong reflections that represent several long Variscan thrust planes that smoothly dip to the NNE. Outcropping and previously unknown Late Variscan near-vertical faults were also mapped. Our data strongly suggest that the structural framework of Neves-Corvo extends south-eastwards to Alcoutim. Furthermore, the VSC top is located at depths that show the existence within the IPB of new areas with good potential to develop exploration projects envisaging the discovery of massive sulphide deposits of the Neves-Corvo type.

  18. Mapping potential Blanding's turtle habitat using aerial orthophotographic imagery and object based classification

    NASA Astrophysics Data System (ADS)

    Barker, Rebecca

    Blanding's turtle (Emydoidea blandingii) is a threatened species in southern Quebec that is being inventoried to determine abundance and potential habitat by the Quebec Ministry of Natural Resources and Wildlife. In collaboration with that program and using spring leaf-off aerial orthophotos of Gatineau Park, attributes associated with known habitat criteria were analyzed: wetlands with open water, vegetation mounds for camouflage and thermoregulation, and logs for spring sun-basking. Pixel-based classification to separate wetlands from other land cover types was followed by object-based segmentation and rule-based classification of within--wetland vegetation and logs. Classifications integrated several image characteristics including texture, context, shape, area and spectral attributes. Field data and visual interpretation showed the accuracies of wetland and within wetland habitat feature classifications to be over 82.5%. The wetland classification results were used to develop a ranked potential habitat suitability map for Blanding's turtle that can be employed in conservation planning and management.

  19. Differential action potentials and firing patterns in injured and uninjured small dorsal root ganglion neurons after nerve injury.

    PubMed

    Zhang, Xu-Feng; Zhu, Chang Z; Thimmapaya, Rama; Choi, Won S; Honore, Prisca; Scott, Victoria E; Kroeger, Paul E; Sullivan, James P; Faltynek, Connie R; Gopalakrishnan, Murali; Shieh, Char-Chang

    2004-05-29

    The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons. PMID:15120592

  20. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    PubMed Central

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R.; Mahajan, Anubha; Asimit, Jennifer L.; Ferreira, Teresa; Locke, Adam E.; Robertson, Neil R.; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E.; Tam, Claudia H.T.; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I.; Blangero, John; Burtt, Noél P.; Duggirala, Ravindranath; Florez, Jose C.; Hanis, Craig L.; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C.N.; Ma, Ronald C.W.; Froguel, Philippe; Wilson, James G.; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B.; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S.; Chambers, John C.; Saleheen, Danish; Kadowaki, Takashi; Tai, E. Shyong; Mohlke, Karen L.; Cox, Nancy J.; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I.; Morris, Andrew P.

    2016-01-01

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. PMID:26911676

  1. Modeling and mapping potential distribution of Crimean juniper (Juniperus excelsa Bieb.) using correlative approaches.

    PubMed

    Özkan, Kürşad; Şentürk, Özdemir; Mert, Ahmet; Negiz, Mehmet Güvenç

    2015-01-01

    Modeling and mapping potential distribution of living organisms has become an important component of conservation planning and ecosystem management in recent years. Various correlative and mechanistic methods can be applied to build predictive distributions of living organisms in terrestrial and marine ecosystems. Correlative methods used to predict species' potential distribution have been described as either group discrimination techniques or profile techniques. We attempted to determine whether group discrimination techniques could perform as well as profile techniques for predicting species potential distributions, using elevation (ELVN), parent material (ROCK), slope (SLOP), radiation index (RI) and topographic position index (TPI)) as explanatory variables. We compared potential distribution predictions made for Crimean juniper (Juniperus excelsa Bieb.) in the Yukan Gokdere forest district of the Mediterranean region, Turkey, applying four group discrimination techniques (discriminate analysis (DA), logistic regression analysis (LR), generalized addictive model (GAM) and classification tree technique (CT)) and two profile techniques (a maximum entropy approach to species distribution modeling (MAXENT), the genetic algorithm for rule-set prediction (GARP)). Visual assessments of the potential distribution probability of the applied models for Crimean juniper were performed by using geographical information systems (GIS). Receiver-operating characteristic (ROC) curves were used to objectively assess model performance. The results suggested that group discrimination techniques are better than profile techniques and, among the group discrimination techniques, GAM indicated the best performance.

  2. Modeling and mapping potential distribution of Crimean juniper (Juniperus excelsa Bieb.) using correlative approaches.

    PubMed

    Özkan, Kürşad; Şentürk, Özdemir; Mert, Ahmet; Negiz, Mehmet Güvenç

    2015-01-01

    Modeling and mapping potential distribution of living organisms has become an important component of conservation planning and ecosystem management in recent years. Various correlative and mechanistic methods can be applied to build predictive distributions of living organisms in terrestrial and marine ecosystems. Correlative methods used to predict species' potential distribution have been described as either group discrimination techniques or profile techniques. We attempted to determine whether group discrimination techniques could perform as well as profile techniques for predicting species potential distributions, using elevation (ELVN), parent material (ROCK), slope (SLOP), radiation index (RI) and topographic position index (TPI)) as explanatory variables. We compared potential distribution predictions made for Crimean juniper (Juniperus excelsa Bieb.) in the Yukan Gokdere forest district of the Mediterranean region, Turkey, applying four group discrimination techniques (discriminate analysis (DA), logistic regression analysis (LR), generalized addictive model (GAM) and classification tree technique (CT)) and two profile techniques (a maximum entropy approach to species distribution modeling (MAXENT), the genetic algorithm for rule-set prediction (GARP)). Visual assessments of the potential distribution probability of the applied models for Crimean juniper were performed by using geographical information systems (GIS). Receiver-operating characteristic (ROC) curves were used to objectively assess model performance. The results suggested that group discrimination techniques are better than profile techniques and, among the group discrimination techniques, GAM indicated the best performance. PMID:26591876

  3. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches. PMID:27042973

  4. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches.

  5. Differentiation of the action potential in the smooth muscle of canine gastric antrum using calcium-inhibitory drugs.

    PubMed

    Hohnsbein, J; Golenhofen, K

    1985-03-01

    Electrical and mechanical activity were recorded simultaneously in smooth muscle preparations from the antrum region of canine stomach by means of a single sucrose gap technique (SGT). The SGT was optimized to permit stable recording from multicellular smooth muscle preparations over several hours of electrical and mechanical activity with little disturbance of their normal properties. Acetylcholine (ACh, 10(-8) to 10(-6) M) induced or augmented dose-dependently the electrical and mechanical activity. The plateau of the action potential complex was elevated by ACh, while the contraction was increased in linear correlation to the magnitude of the plateau component. In spontaneously active (or in ACh-stimulated) preparations TEA (5 to 20 mM) magnified the plateau component, induced or strengthened spikes on the plateau ('secondary spikes'), and induced or strengthened phasic contractions. Nifedipine (10(-6) M) abolished secondary spikes, part of the plateau component of the action potential, and suppressed mechanical activity. The complex action potential of canine gastric antrum can be differentiated into (a) a basic action potential, consisting of an initial, primary spike and a plateau depolarization; this basic action potential is resistant to nifedipine and does not trigger any mechanical activity; and (b) a nifedipine-sensitive component (calcium component), which consists of an augmentation of the plateau depolarization and of secondary spikes, and which is responsible for the initiation of mechanical activity.

  6. An experimental study on the physical properties of the cupula. Effect of cupular sectioning on the ampullary nerve action potential.

    PubMed

    Suzuki, M; Harada, Y; Kishimoto, A

    1985-01-01

    The frog posterior semicircular canal (PSC) was isolated and a part of the ampullary wall was cut to allow removal of the cupula from the crista. The cupula was replaced on the crista and the PSC ampullary action potential was recorded. The cupula was again removed and was sectioned in half, either in the plane vertical to the crista (vertical sectioning), or in the plane parallel to the crista (horizontal sectioning). The sectioned half of the cupula was then replaced on the crista. The action potentials after replacement of the vertical or horizontal segments of the cupula were compared to those achieved when the entire cupula was replaced. After vertical sectioning, the action potentials were significantly reduced; they were 50.3% of the completely replaced cupula when a small stimulus was used and 79.1% when a large stimulus was used. A reduced attachment surface between the cupular base and the crista is possibly responsible for the decreased action potential in the vertically sectioned specimen. After horizontal sectioning, the action potentials were 64.5% for the small stimulus and 108.2% for the large stimulus. These results indicate that elicited responses are related to the height of the cupula and the deflection angle. This further suggests that the movement of the cupula is represented by that of the elastic system.

  7. A new method for the extraction and classification of single motor unit action potentials from surface EMG signals.

    PubMed

    Gazzoni, Marco; Farina, Dario; Merletti, Roberto

    2004-07-30

    It has been shown that multi-channel surface EMG allows assessment of anatomical and physiological single motor unit (MU) properties. To get this information, the action potentials of single MUs should be extracted from the interference EMG signals. This study describes an automatic system for the detection and classification of MU action potentials from multi-channel surface EMG signals. The methods for the identification and extraction of action potentials from the raw signals and for their clustering into the MUs to which they belong are described. The segmentation phase is based on the matched Continuous Wavelet Transform (CWT) while the classification is performed by a multi-channel neural network that is a modified version of the multi-channel Adaptive Resonance Theory networks. The neural network can adapt to slow changes in the shape of the MU action potentials. The method does not require any interaction of the operator. The technique proposed was validated on simulated signals, at different levels of force, generated by a structure based surface EMG model. The MUs identified from the simulated signals covered almost the entire recruitment curve. Thus, the proposed algorithm was able to identify a MU sample representative of the muscle. Results on experimental signals recorded from different muscles and conditions are reported, showing the possibility of investigating anatomical and physiological properties of the detected MUs in a variety of practical cases. The main limitation of the approach is that complete firing patterns can be obtained only in specific cases due to MU action potential superpositions.

  8. Validation of an interactive map assessing the potential spread of Galba truncatula as intermediate host of Fasciola hepatica in Switzerland.

    PubMed

    Baggenstos, Rhea; Dahinden, Tobias; Torgerson, Paul R; Bär, Hansruedi; Rapsch, Christina; Knubben-Schweizer, Gabriela

    2016-01-01

    Bovine fasciolosis, caused by Fasciola hepatica, is widespread in Switzerland. The risk regions were modelled in 2008 by an interactive map, showing the monthly potential risk of transmission of F. hepatica in Switzerland. As this map is based on a mathematical model, the aim of the present study was to evaluate the interactive map by means of a field survey taking different data sources into account. It was found that the interactive map has a sensitivity of 40.7-88.9%, a specificity of 11.4-18.8%, a positive predictive value of 26.7-51.4%, and a negative predictive value of 13.1-83.6%, depending on the source of the data. In conclusion, the grid of the interactive map (100 x 100 m) does not reflect enough detail and the underlying model of the interactive map is lacking transmission data. PMID:27245800

  9. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning.

    PubMed

    Abee, T; Krockel, L; Hill, C

    1995-12-01

    Lactic acid bacteria (LAB) play an essential role in the majority of food fermentations, and a wide variety of strains are routinely employed as starter cultures in the manufacture of dairy, meat, vegetable and bakery products. One of the most important contributions of these microorganisms is the extended shelf life of the fermented product by comparison to that of the raw substrate. Growth of spoilage and pathogenic bacteria in these foods is inhibited due to competition for nutrients and the presence of starter-derived inhibitors such as lactic acid, hydrogen peroxide and bacteriocins (Ray and Daeschel, 1992). Bacteriocins, are a heterogenous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. Currently, artificial chemical preservatives are employed to limit the number of microorganisms capable of growing within foods, but increasing consumer awareness of potential health risks associated with some of these substances has led researchers to examine the possibility of using bacteriocins produced by LAB as biopreservatives. The major classes of bacteriocins produced by LAB include: (I) lantibiotics, (II) small heat stable peptides, (III) large heat labile proteins, and (IV) complex proteins whose activity requires the association of carbohydrate or lipid moieties (Klaenhammer, 1993). Significantly however, the inhibitory activity of these substances is confined to Gram-positive bacteria and inhibition of Gram-negatives by these bacteriocins has not been demonstrated, an observation which can be explained by a detailed analysis and comparison of the composition of Gram-positive and Gram-negative bacterial cell walls (Fig. 1). In both types the cytoplasmic membrane which forms the border between the cytoplasm and the external environment, is surrounded by a layer of peptidoglycan which is significantly thinner in Gram-negative bacteria than in Gram-positive bacteria. Gram

  10. Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells.

    PubMed

    Kim, Dong-Hyun; Jarvis, Roger M; Allwood, J William; Batman, Gavin; Moore, Rowan E; Marsden-Edwards, Emma; Hampson, Lynne; Hampson, Ian N; Goodacre, Royston

    2010-12-01

    It has been shown that the HIV protease inhibitors indinavir and lopinavir may have activity against the human papilloma virus (HPV) type 16 inhibiting HPV E6-mediated proteasomal degradation of p53 in cultured cervical carcinoma cells. However, their mode and site of action is unknown. HPV-negative C33A cervical carcinoma cells and the same cells stably transfected with E6 (C33AE6) were exposed to indinavir and lopinavir at concentrations of 1 mM and 30 μM, respectively. The intracellular distribution of metabolites and metabolic changes induced by these treatments were investigated by Raman microspectroscopic imaging combined with the analysis of cell fractionation products by liquid chromatography-mass spectrometry (LC-MS). A uniform cellular distribution of proteins was found in drug-treated cells irrespective of cell type. Indinavir was observed to co-localise with nucleic acid in the nucleus, but only in E6 expressing cells. Principal components analysis (PCA) score maps generated on the full Raman hypercube and the corresponding PCA loadings plots revealed that the majority of metabolic variations influenced by the drug exposure within the cells were associated with changes in nucleic acids. Analysis of cell fractionation products by LC-MS confirmed that the level of indinavir in nuclear extracts was approximately eight-fold greater than in the cytoplasm. These data demonstrate that indinavir undergoes enhanced nuclear accumulation in E6-expressing cells, which suggests that this is the most likely site of action for this compound against HPV.

  11. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    NASA Astrophysics Data System (ADS)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  12. Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport.

    PubMed

    Shepherd, Virginia A; Beilby, Mary J; Al Khazaaly, Sabah A S; Shimmen, Teruo

    2008-11-01

    This paper investigates the impact of increased salinity on touch-induced receptor and action potentials of Chara internodal cells. We resolved underlying changes in ion transport by current/voltage analysis. In a saline medium with a low Ca(2+) ion concentration [(Ca(2+))(ext)], the cell background conductance significantly increased and proton pump currents declined to negligible levels, depolarizing the membrane potential difference (PD) to the excitation threshold [action potential (AP)(threshold)]. The onset of spontaneous repetitive action potentials further depolarized the PD, activating K(+) outward rectifying (KOR) channels. K(+) efflux was then sustained and irrevocable, and cells were desensitized to touch. However, when [Ca(2+)](ext) was high, the background conductance increased to a lesser extent and proton pump currents were stimulated, establishing a PD narrowly negative to AP(threshold). Cells did not spontaneously fire, but became hypersensitive to touch. Even slight touch stimulus induced an action potential and further repetitive firing. The duration of each excitation was extended when [Ca(2+)](ext) was low. Cell viability was prolonged in the absence of touch stimulus. Chara cells eventually depolarize and die in the saline media, but touch-stimulated and spontaneous excitation accelerates the process in a Ca(2+)-dependent manner. Our results have broad implications for understanding the interactions between mechano-perception and salinity stress in plants.

  13. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations.

  14. Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model

    PubMed Central

    Ito, Zenya; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki

    2015-01-01

    Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morphology change of the CMAP wave and locomotor scale were evaluated for one month. Results Four different types of wave morphology changes were observed: no change, amplitude decrease only, morphology change only, and amplitude and morphology change. Amplitude and morphology changed simultaneously and significantly as the injury force increased (p<0.05) Locomotor scale in the amplitude and morphology group worsened more than the other groups. Conclusions Amplitude and morphology change of the CMAP wave exists and could be the key of the alarm point in CMAP. PMID:26713129

  15. Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light

    PubMed Central

    Schei, Jennifer L.; McCluskey, Matthew D.; Foust, Amanda J.; Yao, Xin-Cheng; Rector, David M.

    2008-01-01

    To identify the neural constituents responsible for generating polarized light changes, we created spatially resolved movies of propagating action potentials from stimulated lobster leg nerves using both reflection and transmission imaging modalities. Changes in light polarization are associated with membrane depolarization and provide sub-millisecond temporal resolution. Typically, signals are detected using light transmitted through tissue; however, because we eventually would like to apply polarization techniques in-vivo, reflected light is required. In transmission mode, the optical signal was largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. In support of these observations, an optical model of the tissue showed that the outer sheath is more reflective while the inner nerve bundle is more transmissive. In order to apply these techniques in-vivo, we must consider that brain tissue does not have a regular orientation of processes as in the lobster nerve. We tested the effect of randomizing cell orientation by tying the nerve in an overhand knot prior to imaging, producing polarization changes that can be imaged even without regular cell orientations. PMID:18272402

  16. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  17. A new three-variable mathematical model of action potential propagation in cardiac tissue.

    NASA Astrophysics Data System (ADS)

    Fenton, Flavio; Karma, Alain

    1996-03-01

    Modeling the electrical activity of the heart, and the complex signaling patterns which underly dangerous arrhythmias such as tachycardia and fibrillation, requires a quantitative model of action potential (AP) propagation. At present, there exist detailed ionic models of the Hodgkin-Huxley form that accurately reproduce dynamical features of the AP at a single cell level (e.g. Luo-Rudy, 1994). However, such models are not computationally tractable to study propagation in two and three-dimensional tissues of many resistively coupled cells. At the other extreme, there exists generic models of excitable media, such as the well-known FitzHugh-Nagumo model, which are only qualitative and do not reproduce essential dynamical features of cardiac AP. A new three-variable model is introduced which bridges the gap between these two types of models. It reproduces quantitatively important `mesoscopic' dynamical properties which are specific to cardiac AP, namely restitution and dispersion. At the same time, it remains computationally tractable and makes it possible to study the effect of these properties on the initiation, dynamics, and stability of complex reentrant excitations in two and three dimensions. Preliminary numerical results of the effect of restitution and dispersion on two-dimensional reentry (i.e. spiral waves) are presented.

  18. Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates

    PubMed Central

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B.; Niven, Jeremy E.

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  19. Action potential-like’ ST elevation following pseudo-Wellens' electrocardiogram

    PubMed Central

    Oksuz, Fatih; Sensoy, Baris; Sen, Fatih; Celik, Ethem; Ozeke, Ozcan; Maden, Orhan

    2015-01-01

    Coronary artery vasospasm is an important cause of chest pain syndromes that can lead to myocardial infarction, ventricular arrhythmias, and sudden death. In 1959, Prinzmetal et al described a syndrome of nonexertional chest pain with ST-segment elevation on electrocardiography. Persistent angina is challenging, and repeated coronary angioplasty may be required in this syndrome. Calcium antagonists are extremely effective in treating and preventing coronary spasm, and may provide long-lasting relief for the patient. Whereas the Wellens' syndrome is characterized by symmetrically inverted T-waves with preserved R waves in the precordial leads suggestive of impending myocardial infarction due to a critical proximal left anterior descending stenosis, the pseudo-Wellens' syndrome caused by coronary artery spasm has also rarely been reported in literature. We present a pseudo-Wellens syndrome as a cause of vasospastic angina, and a diffuse ST segment elavation on electrocardiogram resembling the Greek letter lambda, called also 'action potential-like' ECG in a patient with vasospastic-type Printzmetal angina. PMID:26432739

  20. Efficacy of action potential simulation and interferential therapy in the rehabilitation of patients with knee osteoarthritis

    PubMed Central

    Eftekharsadat, Bina; Habibzadeh, Afshin; Kolahi, Babak

    2015-01-01

    Objective: Knee osteoarthritis (OA) is the main cause of pain, physical impairment and chronic disability in older people. Electrotherapeutic modalities such as interferential therapy (IFT) and action potential simulation (APS) are used for the treatment of knee OA. In this study, we aim to evaluate the therapeutic effects of APS and IFT on knee OA. Methods: In this randomized clinical trial, 67 patients (94% female and 6% male with mean age of 52.80 ± 8.16 years) with mild and moderate knee OA were randomly assigned to be treated with APS (n = 34) or IFT (n = 33) for 10 sessions in 4 weeks. Baseline and post-treatment Western Ontario and McMaster Universities Osteoarthritis (WOMAC) subscales, visual analogue scale (VAS) and timed up and go (TUG) test were measured in all patients. Results: VAS and WOMAC subscales were significantly improved after treatment in APS and IFT groups (p < 0.001 for all). TUG was also significantly improved after treatment in APS group (p < 0.001), but TUG changes in IFT was not significant (p = 0.09). There was no significant difference in VAS, TUG and WOMAC subscales values before and after treatment as well as the mean improvement in VAS, TUG and WOMAC subscales during study between groups. Conclusion: Short-term treatment with both APS and IFT could significantly reduce pain and improve physical function in patients with knee OA. PMID:26029268

  1. Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals

    PubMed Central

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455

  2. Wavelet transform for real-time detection of action potentials in neural signals.

    PubMed

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.

  3. Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier.

    PubMed

    Krogh-Madsen, Trine; Christini, David J

    2007-02-15

    Structural barriers to wave propagation in cardiac tissue are associated with a decreased threshold for repolarization alternans both experimentally and clinically. Using computer simulations, we investigated the effects of a structural barrier on the onset of spatially concordant and discordant alternans. We used two-dimensional tissue geometry with heterogeneity in selected potassium conductances to mimic known apex-base gradients. Although we found that the actual onset of alternans was similar with and without the structural barrier, the increase in alternans magnitude with faster pacing was steeper with the barrier--giving the appearance of an earlier alternans onset in its presence. This is consistent with both experimental structural barrier findings and the clinical observation of T-wave alternans occurring at slower pacing rates in patients with structural heart disease. In ionically homogeneous tissue, discordant alternans induced by the presence of the structural barrier arose at intermediate pacing rates due to a source-sink mismatch behind the barrier. In heterogeneous tissue, discordant alternans occurred during fast pacing due to a barrier-induced decoupling of tissue with different restitution properties. Our results demonstrate a causal relationship between the presence of a structural barrier and increased alternans magnitude and action potential duration dispersion, which may contribute to why patients with structural heart disease are at higher risk for ventricular tachyarrhythmias.

  4. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation.

    PubMed

    Galati, Domenico F; Hiester, Brian G; Jones, Kevin R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF's function. PMID:27683544

  5. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells.

    PubMed Central

    Rapp, M; Yarom, Y; Segev, I

    1996-01-01

    Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2

  6. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells.

    PubMed

    Rapp, M; Yarom, Y; Segev, I

    1996-10-15

    Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2

  7. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  8. An Improved Genetically Encoded Red Fluorescent Ca2+ Indicator for Detecting Optically Evoked Action Potentials

    PubMed Central

    Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Genetically encoded Ca2+ indicators (GECIs) are powerful tools to image activities of defined cell populations. Here, we developed an improved red fluorescent GECI, termed R-CaMP1.07, by mutagenizing R-GECO1. In HeLa cell assays, R-CaMP1.07 exhibited a 1.5–2-fold greater fluorescence response compared to R-GECO1. In hippocampal pyramidal neurons, R-CaMP1.07 detected Ca2+ transients triggered by single action potentials (APs) with a probability of 95% and a signal-to-noise ratio >7 at a frame rate of 50 Hz. The amplitudes of Ca2+ transients linearly correlated with the number of APs. The expression of R-CaMP1.07 did not significantly alter the electrophysiological properties or synaptic activity patterns. The co-expression of R-CaMP1.07 and channelrhodpsin-2 (ChR2), a photosensitive cation channel, in pyramidal neurons demonstrated that R-CaMP1.07 was applicable for the monitoring of Ca2+ transients in response to optically evoked APs, because the excitation light for R-CaMP1.07 hardly activated ChR2. These technical advancements provide a novel strategy for monitoring and manipulating neuronal activity with single cell resolution. PMID:22808076

  9. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  10. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    NASA Astrophysics Data System (ADS)

    Reichenbach, Tobias; Hudspeth, A. J.

    2012-11-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans.

  11. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    PubMed

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  12. Latencies in action potential stimulation in a two-dimensional bidomain: A numerical simulation

    NASA Astrophysics Data System (ADS)

    Barach, John Paul

    1991-05-01

    A numerical simulation is performed in which a uniform planar slab of idealized cardiac tissue is stimulated at the center. The cardiac slab is modeled as an anisotropic bidomain; within each domain current flow is determined by a forced diffusion equation in which the transmembrane current connecting the domains provides the forcing term. An action potential (AP) propagates outward after a time latency dependent upon the stimulus size and the physiological variables. Its isochrones are elliptical with an asymmetry that is a small fraction of the imposed asymmetry in resistivity. External voltages resemble the first derivative of those in the internal domain and tests with continuing stimuli exhibit a relaxation time of about 3 ms and space constants that agree with other work. The AP latency increases very strongly near threshold stimulus and decreases as the log (stimulus) for large stimuli in the ``virtual cathode'' range. Latencies in the longitudinal, transverse, and diagonal directions are found to be the same over a wide range of stimulus size and type.

  13. Improved health and growth of fish fed mannan oligosaccharides: potential mode of action.

    PubMed

    Torrecillas, Silvia; Montero, Daniel; Izquierdo, Marisol

    2014-02-01

    Nowadays, aquaculture industry still confronts several disease-related problems mainly caused by viruses, bacteria and parasites. In the last decade, the use of mannan oligosaccharides (MOS) in fish production has received increased attention due to its beneficial effects on fish performance and disease resistance. This review shows the MOS use in aquaculture with a specific emphasis on the effectiveness of the several MOS forms available in the market related to disease resistance, fish nutrition and the possible mechanisms involved. Among the main beneficial effects attributed to MOS dietary supplementation, enhanced fish performance, feed efficiency and pathogen protection by potentiation of the systemic and local immune system and the reinforcement of the epithelial barrier structure and functionality are some of the most commonly demonstrated benefits. These combined effects suggest that the reinforcement of the intestinal integrity and functionality, together with the stimulation of the innate immune system, are the primary mode of action of MOS in fish. However, the supplementation strategy related to the structure of the MOS added, the correct dose and duration, as well as fish species, size and culture conditions are determinant factors to achieve improvements in health status and growth performance.

  14. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders.

    PubMed

    Chiu, Chi-Tso; Chuang, De-Maw

    2010-11-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.

  15. Ionic mechanisms maintaining action potential conduction velocity at high firing frequencies in an unmyelinated axon.

    PubMed

    Cross, Kevin P; Robertson, R Meldrum

    2016-05-01

    The descending contralateral movement detector (DCMD) is a high-performance interneuron in locusts with an axon capable of transmitting action potentials (AP) at more than 500 Hz. We investigated biophysical mechanisms for fidelity of high-frequency transmission in this axon. We measured conduction velocities (CVs) at room temperature during exposure to 10 mmol/L cadmium, a calcium current antagonist, and found significant reduction in CV with reduction at frequencies >200 Hz of ~10%. Higher temperatures induced greater CV reductions during exposure to cadmium across all frequencies of ~20-30%. Intracellular recordings during 15 min of exposure to cadmium or nickel, also a calcium current antagonist, revealed an increase in the magnitude of the afterhyperpolarization potential (AHP) and the time to recover to baseline after the AHP (Medians for Control: -19.8%; Nickel: 167.2%; Cadmium: 387.2%), that could be due to a T-type calcium current. However, the removal of extracellular calcium did not mimic divalent cation exposure suggesting calcium currents are not the cause of the AHP increase. Computational modeling showed that the effects of the divalent cations could be modeled with a persistent sodium current which could be blocked by high concentrations of divalent cations. Persistent sodium current shortened the AHP duration in our models and increased CV for high-frequency APs. We suggest that faithful, high-frequency axonal conduction in the DCMD is enabled by a mechanism that shortens the AHP duration like a persistent or resurgent sodium current. PMID:27225630

  16. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    PubMed

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. PMID:26804557

  17. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders

    PubMed Central

    Chiu, Chi-Tso; Chuang, De-Maw

    2011-01-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium’s therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium’s main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington’s, Alzheimer’s, and Parkinson’s diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium’s neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases. PMID:20705090

  18. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans.

    PubMed

    Pereira, Jozinete Vieira; Freires, Irlan Almeida; Castilho, Aline Rogéria; da Cunha, Marcos Guilherme; Alves, Harley da Silva; Rosalen, Pedro Luiz

    2016-10-01

    Context The emergence of resistant pathogens and toxicity of antifungals have encouraged an active search for novel candidates to manage Candida biofilms. Objective In this study, the little known species Sideroxylon obtusifolium T.D. Penn (Sapotacea) and Syzygium cumini (L.) Skeels (Myrtaceae), from the Caatinga biome in Brazil were chemically characterized and explored for their antifungal potential against C. albicans. Materials and methods We determined the effects of hydroalcoholic extracts/fractions upon fungal growth (minimum inhibitory and fungicidal concentrations, MIC/MFC), biofilm morphology (scanning electron microscopy) and viability (confocal laser scanning microscopy), proposed their mode of action (sorbitol and ergosterol assays), and finally investigated their effects against macrophage and keratinocyte cells in a cell-based assay. Data were analysed using one-way analysis of variance with Tukey-Kramer post-test (α = 0.05). Results The n-butanol (Nb) fraction from S. obtusifolium and S. cumini extract (Sc) showed flavonoids (39.11 ± 6.62 mg/g) and saponins (820.35 ± 225.38 mg/g), respectively, in their chemical composition and demonstrated antifungal activity, with MICs of 62.5 and 125 μg/mL, respectively. Nb and Sc may complex with ergosterol as there was a 4-16-fold increase in MICs in the presence of exogenous ergosterol, leading to disrupted permeability of cell membrane. Deleterious effects were observed on morphology and viability of treated biofilms from concentrations as low as their MICs and higher. Sc was not toxic to macrophages and keratinocytes at these concentrations (p > 0.05), unlike Nb. Conclusions Nb and Sc demonstrated considerable antifungal activity and should be further investigated as potential alternative candidates to treat Candida biofilms. PMID:26987037

  19. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

    PubMed Central

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-01-01

    Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557

  20. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.

    PubMed

    Kapucu, Fikret E; Tanskanen, Jarno M A; Mikkonen, Jarno E; Ylä-Outinen, Laura; Narkilahti, Susanna; Hyttinen, Jari A K

    2012-01-01

    In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  1. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    PubMed

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant.

  2. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    NASA Astrophysics Data System (ADS)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  3. Assessing the Relative Integrity of Formed Cardiac Linear Lesions by Recording Both Focal Monophasic Action Potentials and Contact Forces: A Technical Brief

    PubMed Central

    Benscoter, Mark A.

    2015-01-01

    The use of therapeutic ablation in patients with atrial fibrillation has become a mainstay in the treatment of this disease, yet often these individuals require multiple procedures. In other words, successful first time treatments are impacted by challenges, including the generation of linear lesions in certain anatomies like the mitral isthmus of the left atrium. Hence, there is a need to find ways to address the presence of unwanted conduction gaps at the time of lesion creation. In this paper, we describe a novel approach to examine conduction gaps, by using a proof of concept device to examine local electrical activation within the cardiac areas of an applied lesion, i.e., to locate gaps in the lesion set. To accomplish this, both epicardial and endocardial linear ablation lines composed of spot lesions with conduction gaps were created in a porcine model. The forces necessary to elicit monophasic action potentials (MAP) were collected from >200 measurements on the epicardium of the right ventricle. Ablations were then performed on the ventricular epicardium and left atrial mitral isthmus endocardially, while recording MAPs. We were able to successfully demonstrate the use of a proof of concept device to identify conduction gaps in linear lesion sets; furthermore, we were able to determine required contact forces to appropriately determine focal electrical changes of the underlying tissues. New catheter designs that incorporate capabilities to record focal MAPs could be employed clinically to better assess a given lesion quality and/or to determine the existence of an undesired conduction gap. PMID:27170896

  4. Action potential waveform voltage clamp shows significance of different Ca2+ channel types in developing ascidian muscle

    PubMed Central

    Dallman, Julia E; Dorman, Jennie B; Moody, William J

    2000-01-01

    Early in development, ascidian muscle cells generate spontaneous, long-duration action potentials that are mediated by a high-threshold, inactivating Ca2+ current. This spontaneous activity is required for appropriate physiological development.Mature muscle cells generate brief action potentials only in response to motor neuron input. The mature action potential is mediated by a high-threshold sustained Ca2+ current.Action potentials recorded from these two stages were imposed as voltage-clamp commands on cells of the same and different stages from which they were recorded. This strategy allowed us to study how immature and mature Ca2+ currents are optimized to their particular functions.Total Ca2+ entry during an action potential did not change during development. The developmental increase in Ca2+ current density exactly compensated for decreased spike duration. This compensation was a function purely of Ca2+ current density, not of the transition from immature to mature Ca2+ current types.In immature cells, Ca2+ entry was spread out over the entire waveform of spontaneous activity, including the interspike voltage trajectory. This almost continuous Ca2+ entry may be important in triggering Ca2+-dependent developmental programmes, and is a function of the slightly more negative voltage dependence of the immature Ca2+ current.In contrast, Ca2+ entry in mature cells was confined to the action potential itself, because of the slightly more positive voltage dependence of the mature Ca2+ current. This may be important in permitting rapid contraction-relaxation cycles during larval swimming.The inactivation of the immature Ca2+ current serves to limit the frequency and burst duration of spontaneous activity. The sustained kinetics of the mature Ca2+ current permit high-frequency firing during larval swimming. PMID:10766919

  5. Potential and Limits of temporally and spatially calibrated NDSI snow cover maps

    NASA Astrophysics Data System (ADS)

    Härer, Stefan; Bernhardt, Matthias; Schulz, Karsten

    2016-04-01

    The Normalised-Difference Snow Index (NDSI) was formulated by Dozier in 1989 for Landsat data and is still the most frequently used relationship to derive satellite snow cover maps as it is simple and effective. Though, our recent study presenting the Photo Rectification And ClassificaTIon SoftwarE (PRACTISE v2.1, 2016) highlighted that the determination of the NDSI threshold value is critical for optimum results. We therefore developed a new and objective method to automatically calibrate the NDSI threshold value in a satellite image by making use of terrestrial photographs as in situ information. A first case study for Landsat scenes in the alpine Zugspitzplatt catchment at the German-Austrian border demonstrated that the calibrated NDSI threshold values vary temporally but are representative for the surrounding alpine area of several square kilometers at the specific date. Furthermore, it was shown that the application of these optimized NDSI threshold values instead of the generally used value from literature leads to significant changes in the NDSI snow cover maps. The study mentioned, however, did neither investigate long-term temporal NDSI threshold variability nor the representativeness of the NDSI threshold on the regional scale. Both topics are now addressed by processing the complete time series at the Zugspitzplatt and by including a second alpine and long-term observation site, the Vernagtferner area in Austria. The analysis of the two long-term time series located within the same Landsat scene is thus utilized to investigate and understand the spatially and temporally distributed NDSI threshold variability, as well as to define the potential and limits of the complementary use of terrestrial photographs and satellite images to derive optimum snow cover maps.

  6. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    NASA Astrophysics Data System (ADS)

    Darwin, N.; Ahmad, A.; Zainon, O.

    2014-02-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power.

  7. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products.

    PubMed

    Kibble, Milla; Saarinen, Niina; Tang, Jing; Wennerberg, Krister; Mäkelä, Sari; Aittokallio, Tero

    2015-08-01

    It is widely accepted that drug discovery often requires a systems-level polypharmacology approach to tackle problems such as lack of efficacy and emerging resistance of single-targeted compounds. Network pharmacology approaches are increasingly being developed and applied to find new therapeutic opportunities and to re-purpose approved drugs. However, these recent advances have been relatively slow to be translated into the field of natural products. Here, we argue that a network pharmacology approach would enable an effective mapping of the yet unexplored target space of natural products, hence providing a systematic means to extend the druggable space of proteins implicated in various complex diseases. We give an overview of the key network pharmacology concepts and recent experimental-computational approaches that have been successfully applied to natural product research, including unbiased elucidation of mechanisms of action as well as systematic prediction of effective therapeutic combinations. We focus specifically on anticancer applications that use in vivo and in vitro functional phenotypic measurements, such as genome-wide transcriptomic response profiles, which enable a global modelling of the multi-target activity at the level of the biological pathways and interaction networks. We also provide representative examples of other disease applications, databases and tools as well as existing and emerging resources, which may prove useful for future natural product research. Finally, we offer our personal view of the current limitations, prospective developments and open questions in this exciting field.

  8. A simple circuit for producing vertical arrays of analogue signals and dot raster displays of nerve and muscle action potentials.

    PubMed

    Miles, T S; Woodland, M J

    1986-03-01

    It is often helpful to display analogue signals such as electromyograms, electroencephalograms, nerve action potentials, etc., in a regular vertical array. A special case of this display is the widely-used dot raster. This paper describes a simple circuit which enables up to 31 analogue signals to be thus displayed on an analogue storage oscilloscope screen or X-Y plotter. A modification permits up to 255 trials to be displayed. The same circuit produces a standard, dot raster display from standard pulses representing nerve or muscle cell action potentials.

  9. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  10. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  11. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center.

    PubMed

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-01-01

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value. PMID:27199260

  12. Simultaneous optical mapping of transmembrane potential and wall motion in isolated, perfused whole hearts

    NASA Astrophysics Data System (ADS)

    Bourgeois, Elliot B.; Bachtel, Andrew D.; Huang, Jian; Walcott, Gregory P.; Rogers, Jack M.

    2011-09-01

    Optical mapping of cardiac propagation has traditionally been hampered by motion artifact, chiefly due to changes in photodetector-to-tissue registration as the heart moves. We have developed an optical mapping technique to simultaneously record electrical waves and mechanical contraction in isolated hearts. This allows removal of motion artifact from transmembrane potential (Vm) recordings without the use of electromechanical uncoupling agents and allows the interplay of electrical and mechanical events to be studied at the whole organ level. Hearts are stained with the voltage-sensitive dye di-4-ANEPPS and ring-shaped markers are attached to the epicardium. Fluorescence, elicited on alternate frames by 450 and 505 nm light-emitting diodes, is recorded at 700 frames/ per second by a camera fitted with a 605+/-25 nm emission filter. Marker positions are tracked in software. A signal, consisting of the temporally interlaced 450 and 505 nm fluorescence, is collected from the pixels enclosed by each moving ring. After deinterlacing, the 505 nm signal consists of Vm with motion artifact, while the 450 nm signal is minimally voltage-sensitive and contains primarily artifacts. The ratio of the two signals estimates Vm. Deformation of the tissue enclosed by each set of 3 rings is quantified using homogeneous finite strain.

  13. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center

    PubMed Central

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-01-01

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value. PMID:27199260

  14. Topographic voltage and coherence mapping of brain potentials by means of the symbolic resonance analysis

    NASA Astrophysics Data System (ADS)

    Graben, Peter Beim; Frisch, Stefan; Fink, Andrew; Saddy, Douglas; Kurths, Jürgen

    2005-11-01

    We apply the recently developed symbolic resonance analysis to electroencephalographic measurements of event-related brain potentials (ERPs) in a language processing experiment by using a three-symbol static encoding with varying thresholds for analyzing the ERP epochs, followed by a spin-flip transformation as a nonlinear filter. We compute an estimator of the signal-to-noise ratio (SNR) for the symbolic dynamics measuring the coherence of threshold-crossing events. Hence, we utilize the inherent noise of the EEG for sweeping the underlying ERP components beyond the encoding thresholds. Plotting the SNR computed within the time window of a particular ERP component (the N400) against the encoding thresholds, we find different resonance curves for the experimental conditions. The maximal differences of the SNR lead to the estimation of optimal encoding thresholds. We show that topographic brain maps of the optimal threshold voltages and of their associated coherence differences are able to dissociate the underlying physiological processes, while corresponding maps gained from the customary voltage averaging technique are unable to do so.

  15. Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons.

    PubMed

    Parsons, Rodney L; Barstow, Karen L; Scornik, Fabiana S

    2002-09-01

    Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforated-patch whole cell voltage recordings were used to determine whether activation of SMHs contributed to action potential (AP) repolarization or affected the latency to AP generation. Blockade of BK channels by iberiotoxin (IBX, 100 nM) slowed AP repolarization and increased AP duration. Treatment with omega-conotoxin GVIA (3 microM) or nifedipine (10 microM) to inhibit Ca(2+) influx through N- or L-type voltage-dependent calcium channels (VDCCs), respectively, also decreased the rate of AP repolarization and increased AP duration. Elimination of CICR by treatment with either thapsigargin (1 microM) or ryanodine (10 microM) produced no significant change in AP repolarization or duration. Blockade of BK channels with IBX and inhibition of N-type VDCCs with omega-conotoxin GVIA, but not inhibition of L-type VDCCs with nifedipine, decreased the latency of AP generation. A decrease in latency to AP generation occurred with elimination of SMHs by inhibition of CICR following treatment with thapsigargin. Ryanodine treatment decreased AP latency in three of six cells. Apamin (100 nM) had no affect on AP repolarization, duration, or latency to AP generation, but did decrease the hyperpolarizing afterpotential (HAP). Inhibition of L-type VDCCs by nifedipine also decreased HAP amplitude. Inhibition of CICR by either thapsigargin or ryanodine treatment increased the number of APs generated with long depolarizing current pulses, whereas exposure to IBX or omega-conotoxin GVIA depressed excitability. We conclude that CICR, the process responsible for SMH generation, represents a unique

  16. Facilitating Youth to Take Sustainability Actions: The Potential of Peer Education

    ERIC Educational Resources Information Center

    de Vreede, Catherine; Warner, Alan; Pitter, Robert

    2014-01-01

    Peer education is an understudied yet valuable strategy for sustainability educators in shifting youth to take action for sustainability. This case study conceptualizes the change process in facilitating youth to take sustainability actions, and explores the benefits, dynamics, and challenges of peer education as a strategy in facilitating change.…

  17. Comprehensive personal RF-EMF exposure map and its potential use in epidemiological studies.

    PubMed

    Gonzalez-Rubio, Jesus; Najera, Alberto; Arribas, Enrique

    2016-08-01

    In recent years, numerous epidemiological studies, which deal with the potential effects of mobile phone antennas on health, have almost exclusively focused on their distance to mobile phone base stations. Although it is known that this is not the best approach to the problem, this situation occurs due to the numerous difficulties when determining the personal exposure to the radiofrequency electromagnetic fields (RF-EMF). However, due to the rise of personal exposimeters, the evolution of spatial statistics, the development of geographical information systems and the use of powerful software, new alternatives are available to deal with these epidemiological studies and thus overcome the aforementioned difficulties. Using these tools, this paper presents a lattice map of personal RF-EMF exposure from exterior mobile phone base stations, covering the entire 110 administrative regions in the city of Albacete (Spain). For this purpose, we used a personal exposimeter, Satimo EME Spy 140 model, performing measurements every 4s The exposimeter was located inside the plastic basket of a bicycle, whose versatility permitted the access to all the zones of the city. Once the exposure map was prepared, its relation with the known antenna locations was studied. The 64 mobile telephone antennas of the city were also georeferenced; the randomness of both variables (exposure and antennas) were studied by means of the Moran's I test. Results showed that the distribution of the antennas follows a grouped pattern (p<0.001), while the distribution of the average exposure values have a random distribution (p=0.618). In addition, we showed two Spearman correlation studies: the first between the average exposure values and the number of mobile telephone antennas per administrative region, and the second, also considering the antennas of the neighbouring regions. No substantial correlation was detected in either of the two cases. This study also reveals the weaknesses of the

  18. Comprehensive personal RF-EMF exposure map and its potential use in epidemiological studies.

    PubMed

    Gonzalez-Rubio, Jesus; Najera, Alberto; Arribas, Enrique

    2016-08-01

    In recent years, numerous epidemiological studies, which deal with the potential effects of mobile phone antennas on health, have almost exclusively focused on their distance to mobile phone base stations. Although it is known that this is not the best approach to the problem, this situation occurs due to the numerous difficulties when determining the personal exposure to the radiofrequency electromagnetic fields (RF-EMF). However, due to the rise of personal exposimeters, the evolution of spatial statistics, the development of geographical information systems and the use of powerful software, new alternatives are available to deal with these epidemiological studies and thus overcome the aforementioned difficulties. Using these tools, this paper presents a lattice map of personal RF-EMF exposure from exterior mobile phone base stations, covering the entire 110 administrative regions in the city of Albacete (Spain). For this purpose, we used a personal exposimeter, Satimo EME Spy 140 model, performing measurements every 4s The exposimeter was located inside the plastic basket of a bicycle, whose versatility permitted the access to all the zones of the city. Once the exposure map was prepared, its relation with the known antenna locations was studied. The 64 mobile telephone antennas of the city were also georeferenced; the randomness of both variables (exposure and antennas) were studied by means of the Moran's I test. Results showed that the distribution of the antennas follows a grouped pattern (p<0.001), while the distribution of the average exposure values have a random distribution (p=0.618). In addition, we showed two Spearman correlation studies: the first between the average exposure values and the number of mobile telephone antennas per administrative region, and the second, also considering the antennas of the neighbouring regions. No substantial correlation was detected in either of the two cases. This study also reveals the weaknesses of the

  19. Mapping Supports Potential Submission to U.N. Law of the Sea

    NASA Astrophysics Data System (ADS)

    Gardner, James V.; Mayer, Larry A.; Armstrong, Andrew

    2006-04-01

    Multibeam bathymetric data from selected U.S. continental margins are being collected for use in the future development of potential submissions that the United States may make to the United Nations Commission on the Law of the Sea (UNCLOS) to extend the nation's sovereign rights over the resources of the seafloor and the subsurface. However, the new data also represent a valuable resource for the next generation of marine geologists to study the complexity of surficial processes of several U.S. continental margins. For example, the details of the morphology of large sediment slides on the U.S. Atlantic continental slope and rise have been mapped, and enigmatic features such as a meandering channel on a channel levee on the U.S. Alaskan Pacific margin have been discovered.

  20. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.

  1. Encoding of point of view during action observation in the local field potentials of macaque area F5.

    PubMed

    Caggiano, Vittorio; Giese, Martin; Thier, Peter; Casile, Antonino

    2015-02-01

    The discovery of mirror neurons compellingly shows that the monkey premotor area F5 is active not only during the execution but also during the observation of goal-directed motor acts. Previous studies have addressed the functioning of the mirror-neuron system at the single-unit level. Here, we tackled this research question at the network level by analysing local field potentials in area F5 while the monkey was presented with goal-directed actions executed by a human or monkey actor and observed either from a first-person or third-person perspective. Our analysis showed that rhythmic responses are not only present in area F5 during action observation, but are also modulated by the point of view. Observing an action from a subjective point of view produced significantly higher power in the low-frequency band (2-10 Hz) than observing the same action from a frontal view. Interestingly, an increase in power in the 2-10 Hz band was also produced by the execution of goal-directed motor acts. Independently of the point of view, action observation also produced a significant decrease in power in the 15-40 Hz band and an increase in the 60-100 Hz band. These results suggest that, depending on the point of view, action observation might activate different processes in area F5. Furthermore, they may provide information about the functional architecture of action perception in primates.

  2. Identifying Potential Areas for Siting Interim Nuclear Waste Facilities Using Map Algebra and Optimization Approaches

    SciTech Connect

    Omitaomu, Olufemi A; Liu, Cheng; Cetiner, Sacit M; Belles, Randy; Mays, Gary T; Tuttle, Mark A

    2013-01-01

    The renewed interest in siting new nuclear power plants in the United States has brought to the center stage, the need to site interim facilities for long-term management of spent nuclear fuel (SNF). In this paper, a two-stage approach for identifying potential areas for siting interim SNF facilities is presented. In the first stage, the land area is discretized into grids of uniform size (e.g., 100m x 100m grids). For the continental United States, this process resulted in a data matrix of about 700 million cells. Each cell of the matrix is then characterized as a binary decision variable to indicate whether an exclusion criterion is satisfied or not. A binary data matrix is created for each of the 25 siting criteria considered in this study. Using map algebra approach, cells that satisfy all criteria are clustered and regarded as potential siting areas. In the second stage, an optimization problem is formulated as a p-median problem on a rail network such that the sum of the shortest distance between nuclear power plants with SNF and the potential storage sites from the first stage is minimized. The implications of obtained results for energy policies are presented and discussed.

  3. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Kumar, Sunil; Oliveira, Leonardo S S; Alfenas, Acelino C; Neven, Lisa G; Al-Sadi, Abdullah M; Picanço, Marcelo C

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  4. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata

    PubMed Central

    Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  5. 3D Inversion of a Self-Potential Dataset for Contaminant Detection and Mapping

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Sogade, J.; Briggs, V.; Lambert, M.; Reppert, P.; Coles, D.; Morgan, F.; Rossabi, J.; Riha, B.; Shi, W.

    2003-12-01

    Due to the complicated nature of subsurface contaminant migration, it is difficult to determine the spatial extent and severity of contamination, which can provide essential information for efficient remediation efforts. Self-potential (SP) geophysics is employed to provide a minimally invasive, fast, and inexpensive method for remote in-situ detection and three-dimensional mapping of subsurface DNAPL (Dense Non-Aqueous Phase Liquid) in conjunction with inverse methods. The self-potential method is commonly used to detect a variety of phenomena that are typically related to thermoelectric, electrochemical, or electrokinetic coupling processes. Surface self-potential surveys have been documented to show anomalies over areas known to be contaminated, but interpretation of these datasets is often mostly qualitative, and can be plagued with problems of non-uniqueness. In this study, oxidation-reduction (redox) reactions, one of the mechanisms associated with the attenuation of chemicals released into the environment, provide an electrochemical source for the SP signal. Electrochemical potentials associated with subsurface zones of redox activity are analogous to localized 'batteries' buried within native earth materials, and produce an electric field that is remotely detected using electrodes placed at the surface and in nearby boreholes. Three-dimensional inversion of the self-potential data incorporating resistivity information is the necessary step in characterizing the source parameters, which are directly related to the redox activity, and therefore to the contaminant itself. Surface and borehole SP data are collected in order to help constrain the solution in depth, and resistivity information is taken from an induced polarization survey performed over the same area during this field excursion. Inversion results are correlated with contaminant concentration data sampled from a series of ground-truth boreholes within the region of interest.

  6. Mapping rivers with a potential danger of damage by flash flooding and debris flows

    NASA Astrophysics Data System (ADS)

    Peereboom, I.; Svegården, J.; Fergus, T.

    2009-04-01

    Landforms associated with past debris flows such as alluvial fans are typical locations for settlements in Norway. Flash floods with associated debris flows in small and steep river catchments cause a great deal of damage to infrastructure and housing located on alluvial fans. The Norwegian Water Resources and Energy Resources Directorate (NVE) is the national authority responsible for flood and landslide hazard management in Norway. Mapping areas with a risk of damage from flooding and landslides coupled with advice on land use planning, results in better land use practices and an increased awareness of the potential hazard among local authorities and citizens. Methods for mapping floodplain inundation for large rivers are well developed. This is not the case for rivers with small and steep catchments with a potential for high rates of erosion and sediment transport. A method for identifying and mapping rivers with a potential danger of flash flooding and associated debris flows is currently being developed at NVE. The resultant maps will assist local authorities in the first step in land use planning where they are required to identify if there is a potential hazard in the area. The method makes use of spatial data available for the whole country and is based on a 25*25 m terrain model. The method is based on two simple assumptions adapted to the available data: i) Under normal hydraulic conditions there is a balance between processes of erosion and sedimentation. A debris flow will first occur when this balance is disturbed. This is quantified by the relative difference between the discharge of an extreme flood and floods that occur more frequently, ie. if the difference is large the probability of a debris flow occurring is greater and vice versa. ii) Steep rivers with a large difference in height between cells have more energy available for erosion and sediment transport and therefore a larger potential for erosion and sediment transport than less steep rivers

  7. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  8. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning.

    PubMed

    Abee, T; Krockel, L; Hill, C

    1995-12-01

    Lactic acid bacteria (LAB) play an essential role in the majority of food fermentations, and a wide variety of strains are routinely employed as starter cultures in the manufacture of dairy, meat, vegetable and bakery products. One of the most important contributions of these microorganisms is the extended shelf life of the fermented product by comparison to that of the raw substrate. Growth of spoilage and pathogenic bacteria in these foods is inhibited due to competition for nutrients and the presence of starter-derived inhibitors such as lactic acid, hydrogen peroxide and bacteriocins (Ray and Daeschel, 1992). Bacteriocins, are a heterogenous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. Currently, artificial chemical preservatives are employed to limit the number of microorganisms capable of growing within foods, but increasing consumer awareness of potential health risks associated with some of these substances has led researchers to examine the possibility of using bacteriocins produced by LAB as biopreservatives. The major classes of bacteriocins produced by LAB include: (I) lantibiotics, (II) small heat stable peptides, (III) large heat labile proteins, and (IV) complex proteins whose activity requires the association of carbohydrate or lipid moieties (Klaenhammer, 1993). Significantly however, the inhibitory activity of these substances is confined to Gram-positive bacteria and inhibition of Gram-negatives by these bacteriocins has not been demonstrated, an observation which can be explained by a detailed analysis and comparison of the composition of Gram-positive and Gram-negative bacterial cell walls (Fig. 1). In both types the cytoplasmic membrane which forms the border between the cytoplasm and the external environment, is surrounded by a layer of peptidoglycan which is significantly thinner in Gram-negative bacteria than in Gram-positive bacteria. Gram

  9. A Web-based tool for processing and visualizing body surface potential maps.

    PubMed

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-01-01

    The body surface potential map (BSPM) is potentially more accurate for diagnosing cardiac pathologies when compared to the standard 12-lead electrocardiogram (ECG). However, a contributing factor to the lack of widespread adoption of the BSPM is the shortage of standard methods for its storage and visualization. Based on these observations, a BSPM storage format based on the eXtensible Markup Language has been developed within this study, alongside a Web-based BSPM viewer. This viewer was created using a lossless vector graphics tool (Adobe Flash) to maintain the quality of the ECG waveforms when they are enlarged. The viewer also runs inside the Web browser to facilitate BSPM visualization independent of the clinician's geographical location. This online nature enabled the creation of a comments system that can be used to assist in a collaborative diagnosis. This is useful because BSPM diagnostic criteria are not well established. Moreover, using the viewer's innovative tools (ie, calipers, isopotential maps), the clinician can explore BSPM datasets. Algorithms have also been integrated within the system to extract and display the 12-lead ECG and the vectorcardiogram from the BSPM. This viewer has been available online for 10 months alongside a Weblog, which has been used to record the user's feedback. During this period, 12 experts from both the clinical and visualization domains evaluated the viewer and contributed to its design. It has been the general consensus of all experts that the application is an effective solution for visualizing BSPMs. This viewer has been tested to visualize 2 different BSPMs using a PC (3 GHz CPU, 3 GB RAM, 6 MB broadband). The Lux-192 BSPM and the Kornreich-117 BSPM where both uploaded and visualized within 3.8 seconds (mean time from 10 trials). This BSPM storage format and its associated viewer provide a framework for a BSPM management system. If this system is made widely available, it has the potential to provide BSPM

  10. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons

    PubMed Central

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C.

    2016-01-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377724

  11. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    PubMed

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461

  12. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  13. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  14. Spatial variation of compound muscle action potentials across human gastrocnemius medialis.

    PubMed

    Vieira, Taian M; Botter, Alberto; Minetto, Marco A; Hodson-Tole, Emma F

    2015-09-01

    The massed action potential (M wave) elicited through nerve stimulation underpins a wide range of physiological and mechanical understanding of skeletal muscle structure and function. Although systematic approaches have evaluated the effect of different factors on M waves, the effect of the location and distribution of activated fibers within the muscle remains unknown. By detecting M waves from the medial gastrocnemius (MG) of 12 participants with a grid of 128 electrodes, we investigated whether different populations of muscle units have different spatial organization within MG. If populations of muscle units occupy discrete MG regions, current pulses of progressively greater intensities applied to the MG nerve branch would be expected to lead to local changes in M-wave amplitudes. Electrical pulses were therefore delivered at 2 pps, with the current pulse amplitude increased every 10 stimuli to elicit different degrees of muscle activation. The localization of MG response to increases in current intensity was determined from the spatial distribution of M-wave amplitude. Key results revealed that increases in M-wave amplitude were detected somewhat locally, by 10-50% of the 128 electrodes. Most importantly, the electrodes detecting greatest increases in M-wave amplitude were localized at different regions in the grid, with a tendency for greater stimulation intensities to elicit M waves in the more distal MG region. The presented results indicate that M waves recorded locally may not provide a representative MG response, with major implications for the estimation of, e.g., the maximal stimulation levels, the number of motor units, and the onset and normalization in H-reflex studies.

  15. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    PubMed

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  16. Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential.

    PubMed

    Chang, C L T; Chen, Yi-Ching; Chen, Hui-Ming; Yang, Ning-Sun; Yang, Wen-Chin

    2013-01-01

    Autoimmune diseases are the third largest category of illness in the industrialized world, following cardiovascular diseases and cancers. Among them, type 1 diabetes, also named autoimmune diabetes, afflicts 10 million people worldwide. This disease is caused by autoimmunity-mediated destruction of pancreatic β-cells, leading to insulin deficiency, hyperglycemia and complications. Currently, there is no cure for type 1 diabetes. Insulin injection is the only medication; however, it accompanies serious medical complications. Current strategies to cure type 1 diabetes include immunotherapy, replacement therapy, and combination therapy. Despite recent advances in anti-diabetic strategies, no strategy is clinically successful. How to cure type 1 diabetes without undesirable side effects still remains a formidable challenge in drug research and development. Plants provide an extraordinary source of natural medicines for different diseases. Moreover, secondary metabolites of plant origin serve as an invaluable chemical library for drug discovery and current medicinal chemistry in the pharmaceutical industry. Over the past 25 years, 50% of prescription drugs have been developed from natural products and their derivatives. In this article, we review more than 20 plant compounds and extracts reported in the literature to prevent and treat type-1 diabetes. Emphasis is placed on their chemistry and biology in terms of regulation of immune cells and pancreatic β-cells. We summarize recent progress in understanding the biological actions, mechanisms and therapeutic potential of the compounds and extracts of plant origin in type 1 diabetes. New views on phytocompound-based strategies for prevention and treatment of type 1 diabetes are also discussed. PMID:23210779

  17. The role of action potentials in determining neuron-type-specific responses to nitric oxide.

    PubMed

    Estes, Stephen; Zhong, Lei Ray; Artinian, Liana; Tornieri, Karine; Rehder, Vincent

    2015-05-01

    The electrical activity in developing and mature neurons determines the intracellular calcium concentration ([Ca(2+)]i), which in turn is translated into biochemical activities through various signaling cascades. Electrical activity is under control of neuromodulators, which can alter neuronal responses to incoming signals and increase the fidelity of neuronal communication. Conversely, the effects of neuromodulators can depend on the ongoing electrical activity within target neurons; however, these activity-dependent effects of neuromodulators are less well understood. Here, we present evidence that the neuronal firing frequency and intrinsic properties of the action potential (AP) waveform set the [Ca(2+)]i in growth cones and determine how neurons respond to the neuromodulator nitric oxide (NO). We used two well-characterized neurons from the freshwater snail Helisoma trivolvis that show different growth cone morphological responses to NO: B5 neurons elongate filopodia, while those of B19 neurons do not. Combining whole-cell patch clamp recordings with simultaneous calcium imaging, we show that the duration of an AP contributes to neuron-specific differences in [Ca(2+)]i, with shorter APs in B19 neurons yielding lower growth cone [Ca(2+)]i. Through the partial inhibition of voltage-gated K(+) channels, we increased the B19 AP duration resulting in a significant increase in [Ca(2+)]i that was then sufficient to cause filopodial elongation following NO treatment. Our results demonstrate a neuron-type specific correlation between AP shape, [Ca(2+)]i, and growth cone motility, providing an explanation to how growth cone responses to guidance cues depend on intrinsic electrical properties and helping explain the diverse effects of NO across neuronal populations.

  18. A Novel Computational Model of the Human Ventricular Action Potential and Ca Transient

    PubMed Central

    Grandi, Eleonora; Pasqualini, Francesco S.; Bers, Donald M.

    2009-01-01

    We have developed a detailed mathematical model for Ca handling and ionic currents in the human ventricular myocyte. Our aims were to: 1) simulate basic excitation-contraction coupling phenomena; 2) use realistic repolarizing K current densities; 3) reach steady-state. The model relies on the framework of the rabbit myocyte model previously developed by our group, with subsarcolemmal and junctional compartments where ion channels sense higher [Ca] vs. bulk cytosol. Ion channels and transporters have been modeled on the basis of the most recent experimental data from human ventricular myocytes. Rapidly and slowly inactivating components of Ito have been formulated to differentiate between endocardial and epicardial myocytes. Transmural gradients of Ca handling proteins and Na pump were also simulated. The model has been validated against a wide set of experimental data including action potential duration (APD) adaptation and restitution, frequency-dependent increase in Ca transient peak and [Na]i. Interestingly, Na accumulation at fast heart rate is a major determinant of APD shortening, via outward shifts in Na pump and Na-Ca exchange currents. We investigated the effects of blocking K currents on APD and repolarization reserve: IKs block does not affect the former and slightly reduces the latter; IK1 blockade modestly increases APD and more strongly reduces repolarization reserve; IKr blockers significantly prolong APD, an effect exacerbated as pacing frequency is decreased, in good agreement with experimental results in human myocytes. We conclude that this model provides a useful framework to explore excitation-contraction coupling mechanisms and repolarization abnormalities at the single myocyte level. PMID:19835882

  19. Autism and Intellectual Disability-Associated KIRREL3 Interacts with Neuronal Proteins MAP1B and MYO16 with Potential Roles in Neurodevelopment

    PubMed Central

    Liu, Ying F.; Sowell, Sarah M.; Luo, Yue; Chaubey, Alka; Cameron, Richard S.; Kim, Hyung-Goo; Srivastava, Anand K.

    2015-01-01

    Cell-adhesion molecules of the immunoglobulin superfamily play critical roles in brain development, as well as in maintaining synaptic plasticity, the dysfunction of which is known to cause cognitive impairment. Recently dysfunction of KIRREL3, a synaptic molecule of the immunoglobulin superfamily, has been implicated in several neurodevelopmental conditions including intellectual disability, autism spectrum disorder, and in the neurocognitive delay associated with Jacobsen syndrome. However, the molecular mechanisms of its physiological actions remain largely unknown. Using a yeast two-hybrid screen, we found that the KIRREL3 extracellular domain interacts with brain expressed proteins MAP1B and MYO16 and its intracellular domain can potentially interact with ATP1B1, UFC1, and SHMT2. The interactions were confirmed by co-immunoprecipitation and colocalization analyses of proteins expressed in human embryonic kidney cells, mouse neuronal cells, and rat primary neuronal cells. Furthermore, we show KIRREL3 colocalization with the marker for the Golgi apparatus and synaptic vesicles. Previously, we have shown that KIRREL3 interacts with the X-linked intellectual disability associated synaptic scaffolding protein CASK through its cytoplasmic domain. In addition, we found a genomic deletion encompassing MAP1B in one patient with intellectual disability, microcephaly and seizures and deletions encompassing MYO16 in two unrelated patients with intellectual disability, autism and microcephaly. MAP1B has been previously implicated in synaptogenesis and is involved in the development of the actin-based membrane skeleton. MYO16 is expressed in hippocampal neurons and also indirectly affects actin cytoskeleton through its interaction with WAVE1 complex. We speculate KIRREL3 interacting proteins are potential candidates for intellectual disability and autism spectrum disorder. Moreover, our findings provide further insight into understanding the molecular mechanisms underlying

  20. The afterhyperpolarizing potential following a train of action potentials is suppressed in an acute epilepsy model in the rat Cornu Ammonis 1 area.

    PubMed

    Kernig, K; Kirschstein, T; Würdemann, T; Rohde, M; Köhling, R

    2012-01-10

    In hippocampal Cornu Ammonis 1 (CA1) neurons, a prolonged depolarization evokes a train of action potentials followed by a prominent afterhyperpolarizing potential (AHP), which critically dampens neuronal excitability. Because it is not known whether epileptiform activity alters the AHP and whether any alteration of the AHP is independent of inhibition, we acutely induced epileptiform activity by bath application of the GABA(A) receptor blocker gabazine (5 μM) in the rat hippocampal slice preparation and studied its impact on the AHP using intracellular recordings. Following 10 min of gabazine wash-in, slices started to develop spontaneous epileptiform discharges. This disinhibition was accompanied by a significant shift of the resting membrane potential of CA1 neurons to more depolarized values. Prolonged depolarizations (600 ms) elicited a train of action potentials, the number of which was not different between baseline and gabazine treatment. However, the AHP following the train of action potentials was significantly reduced after 20 min of gabazine treatment. When the induction of epileptiform activity was prevented by co-application of 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 10 μM) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 μM) to block α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors, respectively, the AHP was preserved despite of GABA(A) receptor inhibition suggesting that the epileptiform activity was required to suppress the AHP. Moreover, the AHP was also preserved when the slices were treated with the protein kinase blockers H-9 (100 μM) and H-89 (1 μM). These results demonstrate that the AHP following a train of action potentials is rapidly suppressed by acutely induced epileptiform activity due to a phosphorylation process-presumably involving protein kinase A.

  1. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma

    SciTech Connect

    Faudot, E.; Devaux, S.; Moritz, J.; Heuraux, S.; Molina Cabrera, P.; Brochard, F.

    2015-06-15

    Langmuir probe measurements in front of high power ion cyclotron resonant frequency antennas are not possible or simply too noisy to be analyzed properly. A linear experiment is a radio frequency (RF) magnetized plasma discharge reactor designed to probe the rectified potential in front of such antennas but at low power level (1 kW) to next improve antenna design and mitigate sheath effects. The maximum magnetic field is 0.1 T, and the RF amplifier can work between 10 kHz and 250 MHz allowing ion cyclotron resonances for argon or helium. The first measurements with no magnetic field are presented here, especially 2D potential maps extracted from the RF compensated probe measurements yield ni ≈ 10{sup 15} m{sup −3} and Te ≈ 2 eV for RF power lower than 100 W. Series resonances in the chamber are highlighted and allow to deduce the plasma parameters from a simple equivalent impedance model of the plasma in helium gas. Next studies will be focused on magnetized plasmas and especially magnetized RF sheaths.

  2. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma.

    PubMed

    Faudot, E; Devaux, S; Moritz, J; Heuraux, S; Molina Cabrera, P; Brochard, F

    2015-06-01

    Langmuir probe measurements in front of high power ion cyclotron resonant frequency antennas are not possible or simply too noisy to be analyzed properly. A linear experiment is a radio frequency (RF) magnetized plasma discharge reactor designed to probe the rectified potential in front of such antennas but at low power level (1 kW) to next improve antenna design and mitigate sheath effects. The maximum magnetic field is 0.1 T, and the RF amplifier can work between 10 kHz and 250 MHz allowing ion cyclotron resonances for argon or helium. The first measurements with no magnetic field are presented here, especially 2D potential maps extracted from the RF compensated probe measurements yield ni ≈ 10(15) m(-3) and Te ≈ 2 eV for RF power lower than 100 W. Series resonances in the chamber are highlighted and allow to deduce the plasma parameters from a simple equivalent impedance model of the plasma in helium gas. Next studies will be focused on magnetized plasmas and especially magnetized RF sheaths. PMID:26133834

  3. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. PMID:24372936

  4. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions.

  5. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  6. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  7. Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    PubMed Central

    Copeland, Holly E.; Doherty, Kevin E.; Naugle, David E.; Pocewicz, Amy; Kiesecker, Joseph M.

    2009-01-01

    Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation. PMID:19826472

  8. Mapping the potential risk of mycetoma infection in Sudan and South Sudan using ecological niche modeling.

    PubMed

    Samy, Abdallah M; van de Sande, Wendy W J; Fahal, Ahmed Hassan; Peterson, A Townsend

    2014-10-01

    In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected tropical conditions due to the efforts of the mycetoma consortium. This same consortium formulated knowledge gaps that require further research. One of these gaps was that very few data are available on the epidemiology and transmission cycle of the causative agents. Previous work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma case distributions. Here, we map risk of mycetoma infection across Sudan and South Sudan using ecological niche modeling (ENM). For this study, records of mycetoma cases were obtained from the scientific literature and GIDEON; Acacia records were obtained from the Global Biodiversity Information Facility. We developed ENMs based on digital GIS data layers summarizing soil characteristics, land-surface temperature, and greenness indices to provide a rich picture of environmental variation across Sudan and South Sudan. ENMs were calibrated in known endemic districts and transferred countrywide; model results suggested that risk is greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under diverse environmental conditions. We compared niches of mycetoma and Acacia trees, and could not reject the null hypothesis of niche similarity. This study revealed contributions of different environmental factors to mycetoma infection risk, identified suitable environments and regions for transmission, signaled a potential mycetoma-Acacia association, and provided steps towards a robust risk map for the disease. PMID:25330098

  9. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat.

    PubMed

    McMillin, Kenneth W

    2008-09-01

    Modified atmosphere packaging (MAP) is the removal and/or replacement of the atmosphere surrounding the product before sealing in vapor-barrier materials. While technically different, many forms of MAP are also case-ready packaging, where meat is cut and packaged at a centralized location for transport to and display at a retail store. Most of the shelf life properties of meat are extended by use of MAP, but anoxic forms of MAP without carbon monoxide (CO) do not provide bloomed red meat color and MAP with oxygen (O(2)) may promote oxidation of lipids and pigments. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled fresh meat. Current MAP options of air-permeable overwrapped trays in master packs, low O(2) formats of shrunk film vacuum packaging (VP) or MAP with carbon dioxide (CO(2)) and nitrogen (N(2)) and their peelable barrier film derivatives, and high O(2) MAP each have advantages and disadvantages. Packaging technology innovations and ingenuity will continue to provide MAP that is consumer oriented, product enhancing, environmentally responsive, and cost effective, but continued research and development by the scientific and industry sectors will be needed. PMID:22063169

  10. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  11. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. PMID:27110848

  12. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk.

  13. Sural sensory nerve action potential: A study in healthy Indian subjects

    PubMed Central

    Sreenivasan, Aarthika; Mansukhani, Khushnuma A; Sharma, Alika; Balakrishnan, Lajita

    2016-01-01

    Background: The sural sensory nerve action potential (SNAP) is an important electrodiagnostic study for suspected peripheral neuropathies. Incorrect technique and unavailability of reference data can lead to erroneous conclusions. Objectives: To establish reference data for sural SNAP in age-stratified healthy subjects at three sites of stimulation. Materials and Methods: A prospective study was conducted in 146 nerves from healthy subjects aged between 18 years and 90 years, stratified into six age groups (a = 18-30 years, b = 31–40 years, c = 41–50 years, d = 51–60 years, e = 61–70 years, and f >71 years). Sural SNAP was recorded antidromically, stimulating at three sites at distances of 14 cm, 12 cm, and 10 cm from the recording electrode. Mean – 2 standard deviation (SD) of the transformed data was used to generate reference values for amplitudes. Analysis of variance (ANOVA) test was used for inter-group and between three sites comparisons of amplitudes. Results: The lower limits of amplitude at 14 cm were 12.4 μV, 10.4 μV, 6.5 μV, 5.3 μV, 2.9 μV, and 1.9 μV; at 12 cm were 13.5 μV, 13.6 μV, 8.5 μV, 7.8 μV, 3.5 μV, and 2.8 μV; and at 10 cm were 16.3 μV, 16.3 μV, 11.1 μV, 10.0 μV, 4.8 μV, and 3.7 μV for groups a, b, c, d, e, and f, respectively. A statistically significant difference in amplitudes was noted from the three different sites of stimulation (P < 0.001). The amplitude differed significantly above the age of 60 years (P < 0.01) but not between groups e and f (P > 0.05). Conclusion: This study provides reference data for sural SNAP in Indian population at three different sites of stimulation along the calf in six age groups. It also shows significant variation in amplitude from the three different sites of stimulation. PMID:27570380

  14. Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog

    PubMed Central

    Muers, M. F.; Sleight, P.

    1972-01-01

    1. In experiments to determine the type of intra-cardiac receptors which cause the coronary sinus occlusion reflex, recordings were made from sixty-nine single and small multi-fibre preparations of cardiac vagal afferents in open-chest anaesthetized dogs. 2. Thirty-two fibres were stimulated by occlusion of the coronary sinus outflow through an indwelling Morawitz cannula. No receptors were stimulated during occlusions at peak systolic coronary venous pressures below the threshold for reflex cardiovascular depression. At higher pressures, fibre recruitment and further increases in stimulated discharge were demonstrated. 3. The afferent endings of twenty-nine of these fibres were mechanically localized to the epicardium and myocardium of the left ventricle. Three were in the right ventricle. Seventeen single fibres discharged spontaneously at an average of 0·9 impulses/sec. There was cardiac modulation of both resting and stimulated discharge, with most action potentials in systole. Seven of eight fibres conducted at less than 1·0 m/sec. 4. These ventricular receptors and a further twenty-two otherwise like them but not stimulated by occlusions were designated epi-myocardial receptors. 5. 73% of receptors were stimulated by intrapericardial nicotine (50-100 μg). Presumptively superficial receptors were more sensitive to this stimulus. 6. Epi-myocardial receptors were stimulated by intravenous or intracoronary catecholamines, by electrical stimulation of cardiac sympathetic nerves, and by eliciting the carotid sinus occlusion reflex. Aortic occlusion stimulated 66% of fibres tested, but was a less effective stimulus. After all these stimuli, there was a systolic modulation of discharge in more than 70% of fibres. 7. It was concluded that the epi-myocardial receptors are similar to those previously shown to cause the epicardial chemoreflex, and to participate in the coronary chemoreflex. It is suggested that they are responsive to systolic mechanical changes which

  15. Evaluating potential changes in salmonid rearing capacity from alternative sets of rehabilitation actions in the Trinity River, California

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Imaki, H.; Martin, A.; Alvarez, J.; Goodman, D.

    2013-12-01

    River restoration plans often propose numerous rehabilitation actions to address key habitat impairments for salmonids. However, restoration plans rarely propose alternative sets of actions or attempt to quantify the potential benefits to targeted biota. In this paper we use geomorphic and biological analyses to estimate restoration potential for each of 37 reaches in a 64-km section of Trinity River, California from the North Fork Trinity River to Lewiston Dam (the focus of habitat rehabilitation efforts under the Trinity River Restoration Program). We first predicted the channel pattern that might develop based in each reach on slope-discharge criteria, and then used these potential patterns along with floodplain width to estimate the maximum sinuosity that restoration actions could likely achieve, as well as a maximum side-channel length that might be created in each reach. For each scenario, we then used existing stream habitat and juvenile salmonid data from previous studies in the Trinity River and other watersheds to determine current and restored carrying capacity. Potential increases in Chinook and steelhead carrying capacity range from 39% for a relatively realistic estimate of increasing habitat quality (more low velocity areas with cover) to 67% for a more optimistic scenario that increases both sinuosity and habitat quality. Only the most optimistic scenario that increases habitat quality, increases sinuosity, and constructs tens of kilometers of side channels more than doubles potential juvenile salmonid production (140% increase). These quantitative predictions provide a frame of reference for evaluating alternative restoration options, and for setting measurable restoration goals.

  16. A Regional Reduction in Ito and IKACh in the Murine Posterior Left Atrial Myocardium Is Associated with Action Potential Prolongation and Increased Ectopic Activity

    PubMed Central

    Tull, Samantha; Syeda, Fahima; Kuhlmann, Stefan M.; O’Brien, Sian-Marie; Patel, Pushpa; Brain, Keith L.; Pavlovic, Davor; Brown, Nigel A.; Fabritz, Larissa; Kirchhof, Paulus

    2016-01-01

    Background The left atrial posterior wall (LAPW) is potentially an important area for the development and maintenance of atrial fibrillation. We assessed whether there are regional electrical differences throughout the murine left atrial myocardium that could underlie regional differences in arrhythmia susceptibility. Methods We used high-resolution optical mapping and sharp microelectrode recordings to quantify regional differences in electrical activation and repolarisation within the intact, superfused murine left atrium and quantified regional ion channel mRNA expression by Taqman Low Density Array. We also performed selected cellular electrophysiology experiments to validate regional differences in ion channel function. Results Spontaneous ectopic activity was observed during sustained 1Hz pacing in 10/19 intact LA and this was abolished following resection of LAPW (0/19 resected LA, P<0.001). The source of the ectopic activity was the LAPW myocardium, distinct from the pulmonary vein sleeve and LAA, determined by optical mapping. Overall, LAPW action potentials (APs) were ca. 40% longer than the LAA and this region displayed more APD heterogeneity. mRNA expression of Kcna4, Kcnj3 and Kcnj5 was lower in the LAPW myocardium than in the LAA. Cardiomyocytes isolated from the LAPW had decreased Ito and a reduced IKACh current density at both positive and negative test potentials. Conclusions The murine LAPW myocardium has a different electrical phenotype and ion channel mRNA expression profile compared with other regions of the LA, and this is associated with increased ectopic activity. If similar regional electrical differences are present in the human LA, then the LAPW may be a potential future target for treatment of atrial fibrillation. PMID:27149380

  17. Regional Analysis of River Conductivity Maps Salinity Driven Aquatic Habitat Degradation Potential Throughout New England

    NASA Astrophysics Data System (ADS)

    Zuidema, S.; Wollheim, W. M.; Green, M.; Mineau, M.; Stewart, R. J.; Volitis, E.

    2014-12-01

    River salinity is increasing in urban areas throughout the world, and can impact habitat for aquatic organisms. Riverine impairment cascades through the stream network based on the distribution of development and climate conditions that affect dilution capacity. We present a regional river network transport model that assimilates data from the Lotic Volunteer Temperature Electrical Conductivity and Stage (LoVoTECS) network in New Hampshire, USA. LoVoTECS is measuring high temporal resolution stream conductivity at over 100 sites spanning 6 stream orders and ranging from pristine to near complete imperviousness. Total upstream developed land area is a strong predictor of baseflow specific conductance across the region (r2=0.848, p<0.001, n=85). Empirical loading of dissolved solids from head-water specific conductance data, and characteristic storm dilution rates, are incorporated into a network scale transport model using the Framework for Aquatic Modeling in the Earth System (FrAMES). The model predicts specific conductance and derived Cl to develop a continuous spatial mapping of habitat degradation potential. The model performs well against LoVoTECS and USGS station data in high (5 - 7) order rivers with median residual of 7 μS cm-1 (9.5%), and RMSE of 25 μS cm-1 (12% of measured range). Summertime exceedances of EPA guidance for chloride (4 days above 230 mg Cl/L) are only predicted in small urban catchments. Potential thresholds for fish community shifts may be as low as 33 to 108 mg Cl/L (Morgan et al 2012), and exceedances of 108 mg Cl/L occur in low (1 - 2) order developed streams. In higher order (3 - 7) streams passing through New England urban centers, dilution from more pristine watershed areas moderates chloride concentration. However, exceedances of 33 mg Cl/L are common and 7th order reaches exceed this threshold more than lower order reaches due to local urban runoff and the downstream accumulation of dissolved solids. Further simulations will

  18. Elastic resistance change and action potential generation of non-faradaic Pt/TiO2/Pt capacitors

    NASA Astrophysics Data System (ADS)

    Lim, Hyungkwang; Jang, Ho Won; Lee, Doh-Kwon; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2013-06-01

    Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in experimental and theoretical methods. The similarity between the action potential firing behaviour in nerve cells and the elasticity of the non-faradaic capacitors is addressed.Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in

  19. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size

    PubMed Central

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development. PMID:25762957

  20. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    NASA Astrophysics Data System (ADS)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  1. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size.

    PubMed

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  2. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure. PMID:26383867

  3. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

  4. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  5. Action Learning in Higher Education: An Investigation of Its Potential to Develop Professional Capability

    ERIC Educational Resources Information Center

    Lizzio, Alf; Wilson, Keithia

    2004-01-01

    This study investigated the extent to which a course, designed using peer and action learning principles to function as an 'on campus practicum', can develop the professional capabilities of students. As part of their formal coursework, third year behavioural science students, functioning as 'student consultants', entered into a…

  6. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    PubMed

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720

  7. Determining electrically evoked compound action potential thresholds: A comparison of computer versus human analysis methods

    PubMed Central

    Glassman, E. Katelyn; Hughes, Michelle L.

    2012-01-01

    Objectives Current cochlear implants (CIs) have telemetry capabilities for measuring the electrically evoked compound action potential (ECAP). Neural Response Telemetry (NRT™; Cochlear) and Neural Response Imaging (NRI; Advanced Bionics [AB]) can measure ECAP responses across a range of stimulus levels to obtain an amplitude growth function. Software-specific algorithms automatically mark the leading negative peak, N1, and the following positive peak/plateau, P2, and apply linear regression to estimate ECAP threshold. Alternatively, clinicians may apply expert judgments to modify the peak markers placed by the software algorithms, and/or use visual detection to identify the lowest level yielding a measurable ECAP response. The goals of this study were to: (1) assess the variability between human and computer decisions for (a) marking N1 and P2, and (b) determination of linear regression threshold (LRT) and visual detection threshold (VDT); and (2) compare LRT and VDT methods within and across human and computer decision methods. Design ECAP amplitude growth functions were measured for three electrodes in each of 20 ears (10 Cochlear Nucleus® 24RE/CI512, and 10 AB CII/90K). LRT, defined as the current level yielding an ECAP with zero amplitude, was calculated for both computer- (C-LRT) and human-picked peaks (H-LRT). VDT, defined as the lowest level resulting in a measurable ECAP response, was also calculated for both computer- (C-VDT) and human-picked peaks (H-VDT). Because NRI assigns peak markers to all waveforms but does not include waveforms with amplitudes less than 20 μV in its regression calculation, C-VDT for AB subjects was defined as the lowest current level yielding an amplitude ≥20 μV. Results Overall, there were significant correlations between human and computer decisions for peak-marker placement, LRT, and VDT for both manufacturers (r = 0.78 to 1.00, p < 0.001). For Cochlear devices, LRT and VDT correlated equally well for both computer- and

  8. Introducing ShakeMap to potential users in Puerto Rico using scenarios of damaging historical and probable earthquakes

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Cua, G.; von Hillebrandt, C.; Saffar, A.

    2007-12-01

    The island of Puerto Rico has a long history of damaging earthquakes. Major earthquakes from off-shore sources have affected Puerto Rico in 1520, 1615, 1670, 1751, 1787, 1867, and 1918 (Mueller et al, 2003; PRSN Catalogue). Recent trenching has also yielded evidence of possible M7.0 events inland (Prentice, 2000). The high seismic hazard, large population, high tsunami potential and relatively poor construction practice can result in a potentially devastating combination. Efficient emergency response in event of a large earthquake will be crucial to minimizing the loss of life and disruption of lifeline systems in Puerto Rico. The ShakeMap system (Wald et al, 2004) developed by the USGS to rapidly display and disseminate information about the geographical distribution of ground shaking (and hence potential damage) following a large earthquake has proven to be a vital tool for post earthquake emergency response efforts, and is being adopted/emulated in various seismically active regions worldwide. Implementing a robust ShakeMap system is among the top priorities of the Puerto Rico Seismic Network. However, the ultimate effectiveness of ShakeMap in post- earthquake response depends not only on its rapid availability, but also on the effective use of the information it provides. We developed ShakeMap scenarios of a suite of damaging historical and probable earthquakes that severely impact San Juan, Ponce, and Mayagüez, the 3 largest cities in Puerto Rico. Earthquake source parameters were obtained from McCann and Mercado (1998); and Huérfano (2004). For historical earthquakes that generated tsunamis, tsunami inundation maps were generated using the TIME method (Shuto, 1991). The ShakeMap ground shaking maps were presented to local and regional governmental and emergency response agencies at the 2007 Annual conference of the Puerto Rico Emergency Management and Disaster Administration in San Juan, PR, and at numerous other emergency management talks and training

  9. A Critical Role for Neurofascin in Regulating Action Potential Initiation through Maintenance of the Axon Initial Segment

    PubMed Central

    Zonta, Barbara; Desmazieres, Anne; Rinaldi, Arianna; Tait, Steven; Sherman, Diane L.; Nolan, Matthew F.; Brophy, Peter J.

    2011-01-01

    Summary The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex. PMID:21382554

  10. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network. PMID:27079105

  11. Identifying Student Use of Ball-and-Stick Images versus Electrostatic Potential Map Images via Eye Tracking

    ERIC Educational Resources Information Center

    Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III

    2013-01-01

    This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…

  12. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  13. A first look at the application of signal extraction techniques to the analysis of body surface potential maps

    NASA Technical Reports Server (NTRS)

    Weinstein, S. B.; Mcneel, M. L.; Matthews, E.; Fischmann, E. J.

    1976-01-01

    Partial body surface potential maps from both normal subjects and subjects with independently diagnosed myocardial infarcts are visually compared from superimposed plots. A correlation test is devised to distinguish the two groups, with the reference waveform determined by means of a gradient-search algorithm. The results are encouraging, and suggest further investigation of these techniques as a future diagnostic tool.

  14. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  15. Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice.

    PubMed

    Herde, Michel K; Herbison, Allan E

    2015-11-01

    GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.

  16. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    PubMed

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation.

  17. Role of gap junction channel in the development of beat-to-beat action potential repolarization variability and arrhythmias.

    PubMed

    Magyar, Janos; Banyasz, Tamas; Szentandrassy, Norbert; Kistamas, Kornel; Nanasi, Peter P; Satin, Jonathan

    2015-01-01

    The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a random alteration of the ventricular repolarization duration. SBVR has been suggested to be more predictive of the development of lethal arrhythmias than the action potential prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not completely understood but it is known that SBVR depends on stochastic ion channel gating, intracellular calcium handling and intercellular coupling. Coupling of single cardiomyocytes significantly decreases the beat-to-beat changes in action potential duration (APD) due to the electrotonic current flow between neighboring cells. The magnitude of this electrotonic current depends on the intercellular gap junction resistance. Reduced gap junction resistance causes greater electrotonic current flow between cells, and reduces SBVR. Myocardial ischaemia (MI) is known to affect gap junction channel protein expression and function. MI increases gap junction resistance that leads to slow conduction, APD and refractory period dispersion, and an increase in SBVR. Ultimately, development of reentry arrhythmias and fibrillation are associated post-MI. Antiarrhythmic drugs have proarrhythmic side effects requiring alternative approaches. A novel idea is to target gap junction channels. Specifically, the use of gap junction channel enhancers and inhibitors may help to reveal the precise role of gap junctions in the development of arrhythmias. Since cell-to-cell coupling is represented in SBVR, this parameter can be used to monitor the degree of coupling of myocardium.

  18. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy: an analysis of 500 cases.

    PubMed

    Zhang, Yunqian; Li, Jintao; Wang, Tingjuan; Wang, Jianlin

    2014-07-15

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Affiliated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control subjects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were significantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. Moreover, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The amplitude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, asymptomatic stage of diabetic peripheral neuropathy.

  19. Elastic resistance change and action potential generation of non-faradaic Pt/TiO2/Pt capacitors.

    PubMed

    Lim, Hyungkwang; Jang, Ho Won; Lee, Doh-Kwon; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2013-07-21

    Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in experimental and theoretical methods. The similarity between the action potential firing behaviour in nerve cells and the elasticity of the non-faradaic capacitors is addressed.

  20. Using a map-based assessment tool for the development of cost-effective WFD river basin action programmes in a changing climate.

    PubMed

    Kaspersen, Bjarke Stoltze; Jacobsen, Torsten Vammen; Butts, Michael Brian; Jensen, Niels H; Boegh, Eva; Seaby, Lauren Paige; Müller, Henrik Gioertz; Kjaer, Tyge

    2016-08-01

    For the 2nd and 3rd river basin management cycles (2015-2027) of the Water Framework Directive (WFD), EU Member States are required to fully integrate climate change into the process of river basin management planning (RBMP). Complying with the main WFD objective of achieving 'good ecological status' in all water bodies in Denmark requires Programmes of Measures (PoMs) to reduce nitrogen (N) pollution from point and diffuse sources. Denmark is among the world's most intensively farmed countries and in spite of thirty years of significant policy actions to reduce diffuse nutrient emissions, there is still a need for further reductions. In addition, the impacts of climate change are projected to lead to a situation where nutrient loads will have to be reduced still further in comparison to current climate conditions. There is an urgent need to address this challenge in WFD action programmes in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate leaching were evaluated using the dynamic agro-ecosystem model 'Daisy'. Results show that nitrate leaching rates increase by approx. 25% under current management practices. This impact outweighs the expected total N reduction effect of Baseline 2015 and the first RBMP in the case study river basin. The particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions

  1. Using a map-based assessment tool for the development of cost-effective WFD river basin action programmes in a changing climate.

    PubMed

    Kaspersen, Bjarke Stoltze; Jacobsen, Torsten Vammen; Butts, Michael Brian; Jensen, Niels H; Boegh, Eva; Seaby, Lauren Paige; Müller, Henrik Gioertz; Kjaer, Tyge

    2016-08-01

    For the 2nd and 3rd river basin management cycles (2015-2027) of the Water Framework Directive (WFD), EU Member States are required to fully integrate climate change into the process of river basin management planning (RBMP). Complying with the main WFD objective of achieving 'good ecological status' in all water bodies in Denmark requires Programmes of Measures (PoMs) to reduce nitrogen (N) pollution from point and diffuse sources. Denmark is among the world's most intensively farmed countries and in spite of thirty years of significant policy actions to reduce diffuse nutrient emissions, there is still a need for further reductions. In addition, the impacts of climate change are projected to lead to a situation where nutrient loads will have to be reduced still further in comparison to current climate conditions. There is an urgent need to address this challenge in WFD action programmes in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate leaching were evaluated using the dynamic agro-ecosystem model 'Daisy'. Results show that nitrate leaching rates increase by approx. 25% under current management practices. This impact outweighs the expected total N reduction effect of Baseline 2015 and the first RBMP in the case study river basin. The particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions

  2. An extended action for the effective field theory of dark energy: a stability analysis and a complete guide to the mapping at the basis of EFTCAMB

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Papadomanolakis, Georgios; Silvestri, Alessandra

    2016-07-01

    We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Hořava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mapping at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of α-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.

  3. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome.

    PubMed

    Fuller, Scott; Stephens, Jacqueline M

    2015-03-01

    Metabolic syndrome and its complications continue to rise in prevalence and show no signs of abating in the immediate future. Therefore, the search for effective treatments is a high priority in biomedical research. Products derived from botanicals have a time-honored history of use in the treatment of metabolic diseases including type 2 diabetes. Trigonella foenum-graecum, commonly known as fenugreek, is an annual herbaceous plant that has been a staple of traditional herbal medicine in many cultures. Although fenugreek has been studied in both clinical and basic research settings, questions remain about its efficacy and biologic mechanisms of action. Diosgenin, 4-hydroxyisoleucine, and the fiber component of the plant are the most intensively studied bioactive constituents present in fenugreek. These compounds have been demonstrated to exert beneficial effects on several physiologic markers including glucose tolerance, inflammation, insulin action, liver function, blood lipids, and cardiovascular health. Although insights into the molecular mechanisms underlying the favorable effects of fenugreek have been gained, we still do not have definitive evidence establishing its role as a therapeutic agent in metabolic disease. This review aims to summarize the currently available evidence on the physiologic effects of the 3 best-characterized bioactive compounds of fenugreek, with particular emphasis on biologic mechanisms of action relevant in the context of metabolic syndrome. PMID:25770257